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Laymen’s summary

The study of compound symmetry groups is a branch of mathematics that has only re-
cently emerged. The study of these groups began with the Gizmo Gears puzzle designed
by Douglas Engel. The goal of this puzzle is to rotate two overlapping gears until all pieces
are in the correct place. The difficulty lies in the fact that if one gear is turned, a part of
the other gear is also moved because they overlap. All the possible configurations the gears
can take when rotated can be studied using a branch of mathematics called group theory.
For a more general example of this puzzle, consider two overlapping disks, each of which
can be rotated 90◦ degrees. As the disks are rotated, they are cut up into pieces, as rotat-
ing one disk also moves a piece of the other disk. On a surface level, compound symmetry
groups can be described as a collection of all combinations of rotations that result in a new
permutation of the disk pieces. As the overlap between the disks increases, more pieces
are created under their rotations. From a certain amount of overlap, more formally called
the critical radius, the number of pieces may even become infinite. Several estimates are
given for where this critical radius lies, along with results that characterise the existence of
such radii. Furthermore, compound symmetry groups can be generalised by considering
an arbitrary amount of disks. For three or more disks, we only have numerical estimates for
the critical radii, which are found using a brute-force approach.
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Summary

In [4], compound symmetry groups are defined as "groups generated by a set of isometries
of subspaces of a metric space." Here the main focus is on groups generated by discrete
rotations of overlapping disks in the plane. The simplest case occurs when only two disks
are involved, which are called two-disk systems. The groups corresponding to these sys-
tems are denoted as GGn1,n2 (r ), where n1,n2 represents the rotational symmetry of the left
and right disk respectively, and r the radius of both disks. When the disks are rotated, they
are partitioned into pieces. Below a certain radius of the disks, we can label the pieces
and express the rotations as permutations, from which we can identify the group structure.
However, after a certain radius, the group may become infinite, and we will call this radius
the critical radius. We know that there exists some r for which GGn1,n2 (r ) is infinite if and
only if lcm(n1,n2) ∉ {1,2,3,4,6} (see theorem 2). For some n = n1 = n2 there exists an al-
gebraic expression for the critical radius (see theorem 3), but for most n only numerical
estimates are known. Two-disk systems can be extended to three-disk systems, and gener-
alised to k-disk systems. Estimates of critical radii for three-disk systems can be found in
table 4.1. These estimates are found using a brute-force approach.

v





Contents

1 Introduction 1

2 Preliminaries 3
2.1 Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Symmetry groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Two-disk systems 7
3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Infinite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 k-disk systems 19
4.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Three-disk systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 General disk systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Numerical approaches 23
5.1 Orbit patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Critical radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Conclusion and discussion 29

A Detailed calculations 31

B Code 35

Bibliography 41

vii





1
Introduction

Group theory plays a prominent role in many areas of science, from crystallography to
cryptography to topology. A particularly interesting concept in group theory is the sym-
metry group of a pattern in the plane, which consists of isometries (such as rotations or
reflections) that leave the pattern unchanged. In this paper the general notion of these
kinds of symmetry is expanded, by defining discrete rotations on disks that overlap in the
Euclidean plane. The groups generated by these rotations are called compound symme-
try groups. When the radii of the disks are increased, more overlap is created, giving rise to
more complex group structures. From a certain radius, which we will call the critical radius,
the group can even become infinite.

Compound symmetry groups which arise from two overlapping disks have been anal-
ysed in [4], where basic properties and the cardinality of these groups are discussed. Several
questions that remain are the structure of finite compound symmetry groups and the be-
haviour of three (or more) overlapping disks. Thus, the goal of this thesis is to formalize the
results from [4] and extend their research by considering the aforementioned questions.

In chapter 2, foundational concepts from group theory are recalled. Then, in chap-
ter 3, terminology on compound symmetry groups is defined, and the behaviour of these
groups within the framework of two overlapping disks is analysed. In chapter 4, the study
on two-disk systems is extended by exploring k-disk systems, and estimates are given for
the critical radii of three-disk systems. In chapter 5, numerical algorithms are explained
concerning the generation of orbit patterns and the estimates for the critical radii. Lastly,
in chapter 6 the results are stated and suggestions for future research are given.
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2
Preliminaries

The study of compound symmetry groups is based on fundamental notions in group the-
ory. In this chapter we recall some theoretical background knowledge from the fields of
algebra and real analysis. In section 2.1 groups are defined. In section 2.2 symmetry groups
are discussed, which are a stepping stone to the study of compound symmetry groups.

2.1. Groups
Definition 1. A group is a set G with an operation G ×G → G , denoted as (a,b) 7→ a ◦ b,
which satisfies the following three group axioms:

(G1) ∀a,b,c ∈G a ◦ (b ◦ c) = (a ◦b)◦ c (Associativity)

(G2) ∃e ∈G : ∀a ∈G e ◦a = a ◦e = a (Identity element)

(G3) ∀a ∈G ∃a∗ ∈G : a ◦a∗ = a∗ ◦a = e (Inverse element)

For the group operation it is conventional to use multiplicative notation. That means we
will write a ·b or ab instead of a ◦b

Definition 2. Let G1 and G2 be groups. A map f : G1 → G2 is called a homomorphism if
for all a,b ∈ G1 it holds that f (ab) = f (a) f (b). G1 and G2 are isomorphic, where we write
G1

∼=G2, if there exists a bijective homomorphism from G1 to G2.

Definition 3. Let G be a group and S = {s1, s2, . . . } ⊆ G . Then S is a generating set for G
if for all g ∈ G there exists x1, x2, . . . , xn ∈ S and ϵ1,ϵ2, . . . ,ϵn ∈ {−1,1} for some n ∈ N such
that g = xϵ1

1 xϵ2
2 . . . xϵn

n . The elements of S are called generators of G and we write G = 〈S〉 or
G = 〈s1, s2, . . .〉
Example 1. (Cyclic groups) Examples of groups are Z and Z/nZ with + as the operation.
These groups are cyclic. That is, there exists x ∈ G such that G = 〈x〉. We denote a cyclic
group of n elements by Cn .

Definition 4. Let G be a group and X be a set. Then G acts on X if for all g ∈ G and for all
x ∈ X there exists g ◦x ∈ X such that:

(W1) ∀x ∈ X e ◦x = x

3



4 2. Preliminaries

(W2) ∀g ,h ∈G , x ∈ X (g ◦h)◦x = g ◦ (h ◦x)

Definition 5. Let the group G act on the set X . Let x ∈ X . Then the set

Gx = {g ◦x : g ∈G}

is called the orbit of x under G

Example 2. Let X be the unit disk and G =C4 be the cyclic group of order 4 that acts on X
by 90◦ counter-clockwise rotations. Then

G(1,0) = {(1,0), (0,1), (−1,0), (0,−1)}

and
G(0,0) = {(0,0)}

Theorem 1. (Bézout’s identity) Let a,b ∈Z. Then there exist x, y ∈Z such that

xa + yb = gcd(a,b)

Proof. Cf. e.g. [13], p.6.

2.2. Symmetry groups
The symmetry group of an object consists of transformations that map the object to itself.
To build these symmetry groups, we need to define metric spaces and groups of maps.

Definition 6. For any set X , the set

S(X ) = { f : X → X | f is bijective}

with function composition as the operation forms a group, called a symmetric group.

Definition 7. A metric space is a couple (M ,d), where M is a set and d : M ×M 7→ [0,∞) is a
metric on M . That is, d is a function that satisfies the following properties:

(a) ∀x, y ∈ M 0 ≤ d(x, y) <∞
(b) d(x, y) = 0 ⇔ x = y

(c) ∀x, y,∈ M d(x, y) = d(y, x)

(d) ∀x, y, z ∈ M d(x, y) ≤ d(x, z)+d(z, y)

Note that every subset A ⊆ M together with the metric d on M is again a metric space. (A,d)
is also called a subspace of (M ,d).

Definition 8. An isometry of a metric space (M ,d) is a map σ : M → M such that for all
p, q ∈ M we have that

d(p, q) = d(σ(p),σ(q))

Example 3. (Isometries of the Euclidean plane) Let (C,d) be a metric space, where d :C→C

defined by d(z1, z2) = |z1 − z2| is the Euclidean metric. Then examples of isometries are:
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(a) translations: for z0 ∈C, the map tz0 :C→C given by tz0 (z) = z + z0 is called a transla-
tion over z0.

(b) rotations of the plane around the origin: for ϕ ∈ R, the map ρϕ : C → C given by
ρϕ(z) = eϕi z rotates the plane counter-clockwise around the origin over an angle ϕ.

(c) reflections across a line through the origin: for ϕ ∈ R, the map σϕ : C→ C given by

σϕ(z) = eϕi e−ϕi z reflects the plane across the line through the origin that intersects
the x-axis at an angle ϕ.

The set of all isometries of the Euclidean plane forms a group, denoted E(R2). If we
restrict ourselves to the isometries of the plane that fix the origin, we get the orthogonal
group O2(R). An equivalent formulation of these isometries exists if we take R2 with the Eu-
clidean metric instead ofC, which involves matrices. However, in the context of compound
symmetry groups, it is more convenient to work in the complex plane.

Lemma 1. The composition of rotations (about points which may be different) is either a
rotation or a translation.

Proof. Cf. e.g. [11], p.5.

Corollary 1. Consider a composition of rotations, and let ϕ be the sum of the individual
rotation angles. If ϕ= 0 mod 2π, then the composition is a translation. Otherwise, the com-
position is a rotation with rotation angle ϕ.

Proof. Cf. e.g. [11], p.5.

Example 4. (Dihedral groups) The dihedral group Dn with n ∈ Z≥2, consists of the isome-
tries of C that map a regular n-gon onto itself. In particular, if we take the origin as the
centre of the n-gon and (1,0) as one of its vertices, then

Dn = {ρ0, ρ2π/n , ρ4π/n , . . . , ρ(2n−2)π/n}∪ {σ0, σπ/n , σ2π/n , . . . , σ(n−1)π/n}

Note that in this case Dn consists of n rotations and n reflections.

Definition 9. A lattice in Rn is a subset

L = {a1v1 +a2v2 +·· ·+anvn | a1, a2, . . . , an ∈Z}

where {v1,v2, . . . ,vn} is a basis of Rn .

Definition 10. Let H be any subgroup of E(R2). The translation subgroup Trans(H) consists
of all translations in H . The point group Point(H) consists of all rotations and reflections in
H . That is, Point(H) ∼= H/Trans(H)1.

Definition 11. A subgroup W of E(R2) is called a wallpaper group if Trans(W ) is a lattice
and Point(W ) is finite.

1Note that Trans(H) is a normal subgroup (for a proof, Cf. e.g. [1], p.2), so the quotient group is well defined.
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Remark 1. Informally, a wallpaper group is the set of isometries acting on a wallpaper pat-
tern, which is a two-dimensional design that repeats in two directions. A wallpaper pattern
thus admits a lattice of translational symmetries, which is invariant under the wallpaper
group. In other words, consider a lattice L induced by Trans(W ) for some wallpaper group
W . Then each lattice point in L gets mapped to another lattice point in L under W .

Remark 2. There are exactly 17 wallpaper groups up to isomorphism. A classification of
these groups can be found in [10]. Wallpaper patterns corresponding to each group are
shown in figure 2.1.

Figure 2.1: Wallpaper patterns for each of the 17 wallpaper groups [8].



3
Two-disk systems

With the preliminaries in place, we are ready to discuss compound symmetry groups. A way
to visualise these groups is to consider two overlapping disks, which we call a two-disk sys-
tem. When discrete rotations are defined on each disk, they are partitioned into segments
when the rotations are applied. In section 3.1, we define the necessary terminology around
compound symmetry groups. In section 3.2, the group structure of finite two-disk systems
is discussed. Lastly, we will discuss properties of infinite two-disk systems in section 3.3.

3.1. Terminology
Definition 12. Let (C,d) be the complex plane with the Euclidean metric d and let {Ai }i∈I

be a family of closed, not necessarily disjoint, subspaces of C for some index set I . For
each i ∈ I , let σi : C→ C be a function which is an isometry on Ai ⊆ C and the identity
function onC\Ai . We will call this function a partial isometry on Ai . A compound symmetry
group is defined as the group generated by the partial isometries σi on Ai , with function
composition as the group operation: f g (x) = g ( f (x)). More formally:

G = 〈σi |i ∈ I 〉

Remark 3. The above definition can be generalised to a general metric space. However,
in the current setting we are interested in groups generated by discrete rotations of two
overlapping closed disks, which we have been calling a two-disk system. Therefore we set
the following specifications:

(a) Fix r1,r2 > 0. Let A1 and A2 be two closed disks with centres −1+0i and 1+0i and
radii r1 and r2 respectively:

A1 = {z ∈C : |z +1| ≤ r1}, A2 = {z ∈C : |z −1| ≤ r2}

(b) For the partial isometries we define a :C→C and b :C→C as the clockwise rotations
of the left disk by 2π/n1 and right disk by 2π/n2 respectively, for some n1,n2 ∈ Z≥2.

7



8 3. Two-disk systems

More formally:

a(z) =
{

(z +1)e−2πi /n1 −1 if z ∈ A1

z if z ∈C\A1

b(z) =
{

(z −1)e−2πi /n2 +1 if z ∈ A2

z if z ∈C\A2

We denote the group with these specifications as

GGn1,n2 (r1,r2) = 〈a,b〉

If n1 = n2 or r1 = r2, we use a single subscript. The radii can also be omitted to indicate a
family of groups where the disks have equal radii but are not specified.

Remark 4. Recall that the group operation is defined as

f g (x) = g ( f (x))

for f , g ∈G . We choose this convention so that the rotations can be read left to right.

A visual representation of a two-disk system can be given by its portrait. A portrait
shows the two disks in the Euclidean plane, where "regions that remain connected under
all the group elements (pieces) are colored identically; the color is a function of the size of
the orbit" [4]. Note that if we take X = A1 ∪ A2, then a compound symmetry group can act
on X . The orbit of x ∈ X then consists of all possible images of x under the group elements.
Figure 3.1 shows portraits of GG5(r ) for different values of r . Figure 3.1a shows the por-
trait of GG5(0.8), where it is seen that the disks are disjoint. Figure 3.1b portrays GG5(1.2).
Here the disks overlap, and In this case nine wedge pieces are added. In figure 3.1c, r = 1.5,
which creates additional pieces with different orbits.

(a) (b) (c)

Figure 3.1: GG5(r ) for (a) r = 0.8, (b) r = 1.2, (c) r = 1.5. Adapted from https://www.twodisks.org

Another method of visualising two-disk systems is to plot the orbit of specific points
in the disks [4], which we will call the orbit pattern. Here we discretise the boundary into
finitely many points and compute the orbit of each of these points under all group ele-
ments. If we plot the union of all the orbits, we get the orbit pattern as shown in figure
3.2.
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(a) (b)

Figure 3.2: Orbits of discretized boundary of GG5(2.144). (a) shows the full orbits, (b) shows a magnified view.

Remark 5. When numerically computing the orbits, only the boundary points of the disks
are considered, rather than a discretised version of the disks itself. This choice is made
to reduce computation time, without significantly affecting any quantitative results. A de-
tailed discussion on how these patterns are generated can be found in chapter 5.

3.2. Finite groups
A proportion of the compound symmetry groups are finite. Looking at the portraits in fig-
ure 3.1, group structure arises from the permutations of the pieces under the rotation of the
disks. For a given portrait, we will see the group which acts on that portrait is a subgroup
of a symmetric group1. For two disks with parameters n1,n2, and radii r1,r2 such that the
disks do not overlap, there is no interaction between the disks. Therefore the group struc-
ture is the direct product of two cyclic groups:

GGn1,n2 (r1,r2) ∼=Cn1 ×Cn2

If the radii are chosen such that the disks overlap, the group structure becomes more com-
plex. Recall that G = 〈a,b〉. To find the group structure given a certain portrait, we will
proceed as follows:

1. Label each piece of the portrait.

2. Express the generators a and b in terms of the permutation of these pieces.

3. Find the group generated by these permutations using results from group theory or a
computer algorithm.

For example, consider the portrait of GG2(1.5) in figure 3.3a, where each piece is labelled
1 up to and including 10. Note than even though visually there are five coloured regions,
we will act as if there are ten to account for the two-rotational symmetry of the disks (later
we will see that labelling the portrait using 7 numbers yields the same group). Applying
a is equivalent to rotating the left disk clockwise by 180◦. This means that the pieces are
mapped in the following way:

1 7→ 4, 2 7→ 3, 3 7→ 2, 4 7→ 1, 5 7→ 5, 6 7→ 6, 7 7→ 8, 8 7→,7, 9 7→ 9, 10 7→ 10

1In fact, every group is isomorphic to a subgroup of a symmetric group. This is also known as Cayley’s theo-
rem.



10 3. Two-disk systems

In cycle notation this corresponds to the permutation (1,4)(2,3)(7,8). Likewise applying b
is equivalent to the permutation (3,6)(4,5)(9,10). Therefore

GG2(1.5) = 〈(1,4)(2,3)(7,8), (3,6)(4,5)(9,10)〉 ∼= D6

One can show that the group is isomorphic to D6 by writing out all the elements or us-
ing group-theoretical results. However, for more complicated portraits this becomes an
involved task. Therefore we will resort to software to speed up the process. We will use
SageMath [12], which is a free open source mathematics software which has the capability
to identify a group given its generators (written as permutations).

(a) (b) (c)

Figure 3.3: GG2(r ) for (a) r = 1.5, (b) r = 2.5, (c) r = 3.5. Adapted from https://www.twodisks.org

The same procedure can be applied to characterise the compound symmetry groups
GG2(2.5) and GG2(3.5) acting on the portraits shown in figure 3.3b and 3.3c respectively. It
can be verified that

GG2(2.5) = 〈(1,6)(2,5)(3,4)(9,12)(10,11)(15,16) , (3,8)(4,7)(5,6)(11,14)(12,13)(17,18)〉 ∼= D12

and

GG2(3.5) = 〈a,b〉 ∼= D60

where

a = (1,8)(2,7)(3,6)(4,5)(11,16)(12,15)(13,14)(19,22)(20,21)(25,26)

b = (3,10)(4,9)(5,8)(6,7)(13,18)(14,17)(15,16)(21,24)(22,23)(27,28)

Note that the label we give each piece in the portrait does not matter; the pieces can be
labelled in a different order. Also remark that for the portrait of GG2(1.5), the labelling
shown in figure 3.4 yields the same group D6. In this case the generators are (1,2)(4,5) and
(2,3)(6,7). The reason these generators yield the same group is because the beige wedge
pieces in figure 3.4 are not rotated around their own axes when the disks are rotated. This
is not the case for the portrait of GG2(2.5) shown in figure 3.3b. For example, the green
piece labelled 3 and 4 is rotated 180◦ around its own axis when the left disk is rotated. Since
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this does not happen for GG2(1.5), fewer labels can be used. In table 3.1, the characterised
compound symmetry groups are stated again, along with several others.

Figure 3.4: Labelling of GG2(1.5). Adapted from https://www.twodisks.org

Group Isomorphic to
GG2(1.5) D6

GG2(2.5) D12

GG2(3.5) D60

GG3(1.5) C3 ×C3 × A5

GG3(1.9) C3 ×C3 × A5 ×S7 ×S7

GG3(2) A5 ×S7 ×S7

GG4(1.2) C4 × A7 ⋊ 2C4

GG5(1.2) C5 ×C5 × A9

GG6(1.1) C3 ×C6 ×S11

GG7(1.1) C7 ×C7 × A13

Table 3.1: Characterisation of several compound symmetry groups.

For more complicated portraits, identifying its group structure becomes a computa-
tionally intensive process, such as the group acting on the portrait shown in figure 3.1c.
Therefore, table 3.1 only show groups acting on relatively simple portraits.

3.3. Infinite groups
Many compound symmetry groups have an infinite number of elements for a large enough
radius. Proof sketches of two theorems that characterise the infinite behaviour of com-
pound symmetry groups have been given in [4]. We will attempt to formalise these proof
sketches. We start with a definition.

Definition 13. Let GGn1,n2 be a family of groups with an infinite member. If there exists
rc > 0, such that GGn1,n2 (r ) is finite for r < rc and infinite for r > rc , then rc is called the
critical radius.

Theorem 2. There exists some r for which GGn1,n2 (r ) is infinite if and only if lcm(n1,n2) ∉
{1,2,3,4,6}

2This notation is used for the semidirect product: https://mathworld.wolfram.com/SemidirectProduct.html
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Proof. Suppose lcm(n1,n2) ∉ {1,2,3,4,6}. Define A1, A2, a, and b as in remark 3 and assume
r1 = r2 = r .

Case 1: assume n1 = n2 = n. Choose r > 0 such that there exists z0 ∈ A1 ∩ A2 such that

{a−k (z0) : k = 0, . . . ,n −1} ⊆ A1 ∩ A2

That is, there is a point in the intersection of the two disks such that after repeatedly rotating
the left disk counterclockwise, the resulting points stay in the intersection. We claim that
the points

{a−k bk (z0) : k = 0, . . . ,n −1}

are the vertices of a regular n-gon. Indeed,

a−k bk (z0) = bk (a−k (z0)) = bk ((z0 +1)e2kπi /n −1) = ((z0 +1)e2kπi /n −2)e−2kπi /n +1 =
z0 +1−2e−2kπi /n +1 = z0 +2−2e−2kπi /n

and note that the set B0 = {z0 + 2− 2e−2kπi /n : k = 0, . . . ,n − 1} is a parametrization of the
vertices of a regular n-gon with center z0 +2, circumradius c0(= 2) and sidelength s0. Call
this n-gon P0. Thus, the claim follows.

Subcase 1: n > 6. We generate translations between adjacent vertices of P0. More pre-
cisely, if a−k bk (z0) is one vertex of P0, then a−(k+1)bk+1(z0) is its clockwise adjacent vertex.
Thus the operation

(a−k bk )−1a−(k+1)bk+1 = b−k ak a−k−1bk+1 = b−k a−1bbk (3.1)

maps one vertex of P0 to its clockwise adjacent one. Note that they are indeed translations,
as the sum of the individual rotation angles is zero (see lemma 1 and corollary 1), and that
for every k ∈ {1, . . . ,n−1} we get a different operation. Thus, there are n distinct translations,
each corresponding to a different side of P0. We can interpret these operations as vectors:
take n = 7 as an example. In figure 3.5 (left) it can be seen that each side of the heptagon
corresponds to a vector translation as defined in equation (3.1). These vector translations
are shown more explicitly in figure 3.6.

Figure 3.5: P0 (left) and P1 (right).
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Figure 3.6: Translation vectors of P0 for n = 7.

Now consider the set

B1 = {b−k a−1bbk (0) : k = 0, . . . ,n −1}

which contains the n distinct images of these translations applied to the origin. It can be
seen that this set also forms an n-gon which we will call P1 (see figure 3.5 (right)). Contin-
uing in this fashion, we can generate translations from one vertex to an adjacent vertex in
P1 (as indicated by the pink vectors in figure 3.5). and subsequently create the set

B2 = {b−k−1ab−1a−1bk+2(0) : k = 0, . . . ,n −1}

which contains the vertices of a polygon which we will call P2. In figure 3.5, this corre-
sponds to applying the pink translation vectors to the origin. Note the operators are again
translations, as they are a composition of translations (alternatively one can check the sum
of the individual rotation angles is zero). The above description marks the beginning of a
general procedure: given a polygon Pm , create a polygon Pm+1 by:

1. Generating the n translations from each vertex to its clockwise-adjacent vertex (to be
interpreted as translation vectors).

2. Applying these n translations on the origin, which form the vertices of Pm+1.

Denote the circumradius of Pm by cm and its side length by lm . We claim that cm+1 < cm .
Indeed, recall that the relation between the side length and circumradius of a n-gon is given
by lm = 2cm sin(πn ) [9]. Then, since n > 6, we have

lm = 2cm sin
(π

n

)
< 2cm sin

(π
6

)
= 2cm · 1

2
= cm

Since cm+1 = lm by construction, the claim follows. We can therefore create an infinite
amount of polygons via this construction. Each vertex of Pm with m ∈N is the image of an
operation applied to the origin. Since no two vertices overlap, we conclude the group must
be infinite.

subcase 2 n = 5. In this case the side length of a pentagon is larger than its circumradius,
so we need a different approach. We know that {a−k bk (z0) : k = 0, . . . ,4} are the vertices of a
pentagon P0 (see figure 3.7 (left)). Now let tk = b−k a−1bbk be the translations from one ver-
tex to an adjacent one as defined as before, also seen in figure 3.8. Instead of constructing
B1 as in subcase 1, we make B1 as follows (see figure 3.7 (right)):

B1 = {t0(0), t0t2(0), t0t2t4(0), t0t2t4t1(0), t0t2t4t1t3(0)}
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Figure 3.7: P0 (left) and P1 (right).

Figure 3.8: Translation vectors of P0 for n = 5.

We start in the origin and keep applying consecutive translations to make a pentagram.
The vertices of this pentagram form a pentagon P1, and the process is repeated. The general
procedure is similar as before: given a pentagon Pm , create a pentagon Pm+1 by

1. Generating the 5 translations from each vertex to its clockwise-adjacent vertex (to be
interpreted as translation vectors).

2. Applying these 5 translations consecutively in a specific order to the origin to make a
pentagram, whose vertices form a pentagon Pm+1.

It is clear that Pm+1 has a smaller circumradius than Pm . Using a similar reasoning as in
subcase 1, we conclude that the group is infinite.

Case 2: n1 ̸= n2. We claim (a−1b)p and (ba−1)p are rotations by 2π/lcm(n1,n2) around
two different centres for some p ∈ Z . These rotations can play the role of a and b in the
above proof. We prove the claim for (a−1b)p ; the claim for (ba−1)p follows by symmetry.
Note that a−1b is a rotation over an angle 2π/n1 −2π/n2 (see lemma 1 and corollary 1). We
need to show that there exist p, q ∈Z such that

p

(
2π

n1
− 2π

n2

)
= 2π

lcm(n1,n2)
+q2π

where we are accounting for the 2π-periodicity of the exponential. Using that for all n1,n2 ∈
N, n1n2 = gcd(n1,n2)lcm(n1,n2), this is equivalent to finding p and q with

(−p −qn2)n1 +pn2 = gcd(n1,n2) (3.2)
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See appendix A for a detailed calculation. By Bézout’s identity (see theorem 1), there exist
integers x =−p −qn2 and y = p such that xn1 + yn2 = gcd(n1,n2). From this it follows that
p ∈Z, but q is not necessarily integer. However, we can multiply both sides of equation 3.2
with an integer k so that q is also integer. The case (ba−1)p is similar. This proves the "if"
implication of theorem 2.

Conversely, suppose lcm(n1,n2) ∈ {1,2,3,4,6}. The case r < 2 is trivial, so let r ≥ 2 be
arbitrary. Note that if n1 = 1 or n2 = 1, the group is trivially finite. We first prove the case for
n1 = n2 = 3. The other cases are nearly identical. We start by showing the orbits of all points
in the disks are finite.

Suppose n1 = n2 = 3. Recall that a and b are partial isometries of A1 and A2 respectively.
Now define α :C→C and β :C→C as follows:

α(z) = (z +1)e−2πi /3 −1

β(z) = (z −1)e−2πi /3 +1

That is, α and β are rotations with the same rotation angles as a and b, but now they are
defined as isometries acting on the entirety of C. It holds that

〈α,β〉 = 〈α,α−1β〉

Indeed, it is clear that α,α−1β ∈ 〈α,β〉, so therefore 〈α,α−1β〉 ⊆ 〈α,β〉. Conversely, it is also
clear that α,β ∈ 〈α,α−1β〉, so therefore 〈α,β〉 ⊆ 〈α,α−1β〉. Note that α−1β is a translation by
corollary 1, and therefore 〈α,α−1β〉 is precisely the wallpaper group p3 [7]. Recall from def-
inition 11 that Trans(p3) is a lattice, and from remark 1 that each lattice point gets mapped
to another lattice point under p3.

Now let p ∈ A1 ∪ A2 be arbitrary. Let L be the lattice induced by p3 which contains p as
a lattice point. We claim for all g ∈ GG3(r ), g (p) is a lattice point in L. Recall that we can
write g = σ1σ2 . . .σm with σi ∈ {a,b}. We prove the claim by induction on m. For the base
case, take m = 1. Then either g = a or g = b. If g = a, then

a(p) =
{
α(p) if p ∈ A1

p if p ∉ A1

Note that p is a lattice point and α(p) is a lattice point as α ∈ p3 (see remark 1). Thus a(p)
is a lattice point of L. The case g = b is identical. For the induction hypothesis, let k be
arbitrary and suppose gk (p) = σ1σ2 . . .σk (p) is a lattice point in L. For the induction step,
consider gk+1 =σ1σ2 . . .σkσk+1. Then either σk+1 = a or σk+1 = b. If σk+1 = a, then

gk+1(p) = a(gk (p))

{
α(gk (p)) if p ∈ A1

gk (p) if p ∉ A1

Note gk (p) is a lattice point by the induction hypothesis, so α(gk (p)) is also a lattice point
as α ∈ p3 (see remark 1). Thus gk+1(p) is a lattice point. The case σk+1 = b is identical. By
induction, the claim follows.

Consequently, the orbit of p is a subset of L within A1 ∪ A2. Since A1 ∪ A2 is bounded,
we conclude that the orbit of p is finite.
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(a) (b)

Figure 3.9: Orbit pattern of GG3(2.5). (a) shows the union of the boundaries and the boundaries after only
applying a. (b) shows the whole orbit pattern.

Now consider the disk boundaries ∂A1∪∂A2. By construction, the boundaries between
pieces in a portrait are precisely the orbits of the disk boundaries (see figure 3.9) [4]. For
example, when the left disk is rotated, a circular arc from the right disk gets rotated as well
(see figure 3.9a). Each point in the boundary has finite orbit, so the orbit of ∂A1 ∪ ∂A2

consists of finitely many circular arcs3. These arcs partition the disks into pieces (see figure
3.9b). The compound symmetry group consists of all possible permutations of these pieces
under the rotation of the disks. Since there are finitely many pieces, there are also finitely
many permutations of them. Thus, the group is finite.

The other cases are almost identical. The only difference is that in each case, the group
generated by the global rotations with rotation angles 2π/n1 and 2π/n2 are isomorphic to
a different wallpaper group. It is not hard to show the remaining isomorphisms, which are
given in table 3.2:

wallpaper
n1 n2 group [7]
2 4 〈α,β〉 ∼= p4

4 4 〈α,β〉 ∼= p4

2 6 〈α,β〉 ∼= p6

3 6 〈α,β〉 ∼= p6

6 6 〈α,β〉 ∼= p6

Table 3.2: Corresponding wallpaper groups for various n1 and n2 such that lcm(n1,n2) ∈ {1,2,3,4,6}.

For the case n1 = n2 = 2, we have that 〈α,β〉 ∼= p2, but here p2 is not a wallpaper group.
Instead it is a frieze group, which is similar to a wallpaper group, but has translational sym-
metry in only one direction instead of two [6]. At first glance this seems out of the ordinary,
but this frieze group and all of the aforementioned wallpaper groups have in common that
their generators consist of a rotation and a translation.

3A formal continuity argument is required here. However, the intuition behind this claim should be clear.



3.3. Infinite groups 17

The "only if" direction of theorem 2 states that if lcm(n1,n2) ∈ {1,2,3,4,6}, GGn1,n2 (r ) is
finite for all r . In section 3.2 finite groups are constructed by expressing the rotations as
permutations of the pieces of the portrait. When the disks increase in radii, more pieces
are created, and therefore there exists no upper bound for the size of these particular finite
groups (except for the identity group GG1(r )). We formalise this observation in corollary 2.

Corollary 2. Suppose lcm(n1,n2) ∈ {2,3,4,6}. Then for all M ∈N, there exists r > 0 such that
|GGn1,n2 (r )| ≥ M. In other words, when considering the compound symmetry groups
GGn1,n2 (r ) that are finite for all r , there exists no upper bound for their size.

Proof. Let M ∈N be arbitrary. Consider a−1b(z) for some z ∈ A1 ∩ A2, and recall that a−1b
is a translation (see corollary 1) on A1 ∩ A2. We can choose r such that

a−1(z), a−1b(z), a−1ba−1(z), . . . ,
(
a−1b

)M
(z) ∈ A1 ∩ A2

So there are at least M elements in GGn1,n2 (r ). So
∣∣GGn1,n2 (r )

∣∣≥ M .

Theorem 3. GG5 is infinite at r =√
3+ϕ

Proof. Let ζn = e2πi /n and define the points E = ζ5 − ζ2
5, F = 1− ζ5 + ζ2

5 − ζ3
5, G = 2F −E ,

E ′ = −E , F ′ = −F , G ′ = −G . See figure 3.10. Note that F , F ′, G , and G ′ lie on line segment
EE ′ and that |E +1| = r . See appendix A for a detailed calculation. Now define the following
three translations:

1. line segment E ′F ′ is transformed by a−2b−1a−1b−1 to line segment GF

2. line segment F ′G ′ is transformed by abab2 to line segment F E

3. line segment G ′E is transformed by abab−1a−1b−1 to line segment E ′G

The sum of the individual rotation angles of transformations 1, 2, and 3 are −2π, 2π, and 0
respectively. Thus, these transformations are indeed translations by lemma 1 and corollary
1. Moreover, these translations translate any portion of line segment EE ′ piecewise onto
itself, and one can check that during these transformations no point on a segment leaves
the intersection of the two disks [4].

Figure 3.10: Geometric construction for critical radius [4].
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The first two transformations are translations of length |F −F ′|, and the third transfor-
mation is a translation of length |E−G|. With some analysis we derive that |E−E ′|/|F −F ′| =
ϕ and |E −E ′|/|E −G| = 1+ϕ (see appendix A). Therefore, any point on line segment EE ′

has infinite orbit. Indeed, suppose on the contrary there exists a point on EE ′ such that it
has finite orbit. Then there exists a combination of aforementioned translations such that
the net distance of these translations is zero. In other terms:

a|F −F ′|+b|E −G| = 0 ⇔

−a

b
= |E −G|

|F −F ′| =
|E −G|
|F −F ′| ·

|E −E ′|
|E −E ′| =

ϕ

1+ϕ =ϕ−1

for some a,b ∈ Z, which contradicts the fact that ϕ−1 is irrational [5]. So every point on
EE ′ has infinite orbit. So GG5(

√
3+ϕ) is infinite.

According to [4], the critical radius of GG5 is exactly
√

3+ϕ. However, "for most n, all
we have is our numerical estimates."



4
k-disk systems

In the previous chapter compound symmetry groups in the context of two-disk systems are
discussed. In this chapter, this system is broadened by considering k ∈N disks which can
be placed freely in the Euclidean plane. In section 4.1, we expand the terminology we have
defined in chapter 3. In section 4.2 properties of three-disk systems are discussed. Lastly,
in section 4.3, some examples of k-disk systems are given.

4.1. Terminology
We will still work with compound symmetry groups as given in definition 12. Recall that
the specifications set in remark 3 characterise two-disk systems. This characterisation can
be broadened to a general definition.

Definition 14. A k-disk system is defined as follows: let A1, A2,. . . , Ak be k closed disks with
centres C = {c1,c2, . . . ,ck } ⊆C and radii R = {r1,r2, . . .rk } ⊆R>0 respectively:

A1 = {z ∈C : |z − c1| ≤ r1}, A2 = {z ∈C : |z − c2| ≤ r2}, . . . , Ak = {z ∈C : |z − ck | ≤ rk }

For the partial isometries define σi : C→ C as the clockwise rotation of Ai by 2π/ni with
ni ∈ N = {n1,n2, . . . ,nk } ⊆Z≥2. More formally:

σi (z) =
{

(z − ci )e−2πi /ni + ci if z ∈ Ai

z if z ∈C\Ai

We denote the group with these specifications as

Gk
C ,N (R) = 〈σ1,σ2, . . . ,σk〉

If n1 = n2 = ·· · = nk or r1 = r2 = ·· · = rk , a single value is written. As before, the radii can be
omitted to indicate a family of groups where the disks have equal radii but are not specified.
For two-disk systems, the notation GGn1,n2 (r1,r2) is still used.

4.2. Three-disk systems
For three-disk systems, we expand on two-disk systems by choosing the centre of the third
disk such that all three centres are equidistant. We therefore take C = {−1+0i ,1+0i ,0+i

p
3},

which will be used throughout this section.

19
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Finite groups can be characterized as in section 3.2 by labelling the pieces of the portrait
of a k-disk system. When expressing the generators as permutations, the group structure
can be derived. For example, consider the portrait of G3

C ,3(2/
p

3) as shown in figure 4.1. By
writing the generators as permutations we get that

G3
C ,3

(
2p
3

)
= 〈a,b,c〉 =C3 ×C3 × A5

where

a = (1,2,3)(15,19,17)(20,18,16)

b = (4,5,6)(14,23,21)(20,24,22)

c = (7,8,9)(11,13,15)(12,14,10)

The group structure is found computationally using SageMath [12].

Figure 4.1: Labelled portrait of G3
C ,3(2/

p
3).

Like two-disk systems, there also exist families of groups corresponding to three-disk
systems with a critical radius. We will discuss the critical radii of G3

C ,n for various n. It is un-
certain for which n there exists an algebraic expression for the critical radii, but numerical
estimates can be found by considering the orbit length of points on the disk boundaries.
The numerical estimates can be found in table 4.1, which are computed up to three deci-
mal places. These estimates are found using a brute-force algorithm, where the algorithm
assumes that a group is infinite if it discovers a point whose orbit length exceeds a prede-
fined threshold. A detailed discussion on how these estimates are computed is found in
chapter 5.

n Estimate
4 1.999
5 1.376
7 1.137
8 1.151
9 1.122

10 1.086

n Estimate
11 1.056
12 1.376
13 1.040
14 1.044
15 1.044
16 1.034

Table 4.1: Critical radii for G3
C ,n .
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Note that in table 4.1, the estimates for each n are lower than those of the two-disk
systems stated in [4]. Also note that no estimates are given for n ∈ {1,2,3,6}. This is because
computationally, for large radii, no point is found within the disks that exceeds the orbit
threshold. Therefore, it is conjectured that for these n, the groups are finite for all r > 0. We
will state a conjecture similar to theorem 2.

Conjecture 1. Let G3
C ,N be a family of groups corresponding to a three-disk system with C =

{−1+0i ,1+0i ,0+ i
p

3} and N = {n1,n2,n3}. Then there exists some r for which G3
C ,N (r ) is

infinite if and only if lcm(n1,n2,n3) ∉ {1,2,3,6}.

4.3. General disk systems
Up until now only disk systems with equidistant centres have been analysed. In the Eu-
clidean plane however, no more than three points can be equidistant. This constraint
makes it unnatural to extend our analysis to systems with more disks. Nevertheless, it is
still worth investigating whether the group structure changes when the distance condition
is relaxed. We will explore some examples.

Example 5. (4-disk systems) Consider the two 4-disk systems as shown in figure 4.2. The
portraits in figure 4.2a and 4.2b correspond to G4

C1,2(r1) and G4
C2,2(r2) respectively, with

C1 = {−1− i ,−1+ i ,1− i ,1+ i }, C2 = {0,−2,1+ i
p

3,1− i
p

3} and r1,r2 > 0 such that ’wedge
pieces’ are created (indicated by the blue regions). By labelling the pieces and expressing
the rotations as permutations, one can verify that the portrait shown in figure 4.2a corre-
sponds to the group D6 and the portrait shown in figure 4.2b corresponds to C6×S4. Having
different centers for the disks may thus result in different groups.

(a) (b)

Figure 4.2: Two configurations of a 4-disk system corresponding to (a) G4
C1,2(r1) and (b) G4

C2,2(r2).

Example 6. (Critical radius) Consider the same two 4-disk systems as shown in figure 4.2,
but now with each disk having 4-rotational symmetry instead of 2. Denote the family of
these groups as G4

C1,4 and G4
C2,4. We will try to numerically estimate the critical radius of

both systems by using a brute-force approach (explained in more detail in chapter 5). For
G4

C2,4 the critical radius is estimated to be r = 1.946. However, for G4
C1,4, the values 1 ≤ r ≤

10 were checked, but none of these yielded a point that exceeded the orbit threshold. A
plausible hypothesis is that G4

C1,4 is finite for all r > 0.





5
Numerical approaches

Several algorithms are implemented in Python to generate orbit patterns and estimate crit-
ical radii. In section 5.1 we will discuss how the various orbit patterns of compound sym-
metry groups are generated. In section 5.2 algorithms for estimating critical radii are dis-
cussed. The code can be found in appendix B.

5.1. Orbit patterns

At its core, an orbit pattern shows the orbits traced by the boundary of the disks. The first
step in generating such a pattern is to discretize the boundary of each disk into finitely
many points. In the code this is done by the create_boundary method and the amount
of points is given by num_points. For each of the discretized points, we calculate its or-
bit using the get_orbit method: for a given start point (in this case a boundary point),
we compute its image under the clockwise and counterclockwise rotation of the two disks,
and add those points to the orbit. Then, for those images, we calculate their images again,
where we do not add a point to the orbit if it has already been encountered before. This pro-
cess is repeated until all the points in the orbit are found (in which case the orbit is finite),
or until a predefined threshold cut_off for the length of the orbit is reached. Since many
orbits have infinite length, the latter ensures get_orbit terminates in a finite amount of
time. We will choose cut_off in such a way that, if the orbit reaches this length, we can
reasonably assume that it is infinite. The pseudocode of get_orbit is given by algorithm
1, where we use the notation for k-disk systems as defined in definition 14.

23
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Algorithm 1 Procedure for calculating the orbit of a given start point.

procedure GET_ORBIT(z,cut_off)
orbit= {z}
m ← 0
while m < |orbit| and |orbit| < cut_off do ▷ Terminates when all points are

found or cut_off is reached
for i ← 1 to k do

if orbit[m] ∈ Ai then
orbit← orbit∪ {σi (orbit[m])}∪ {σ−1

i (orbit[m])}
end if

end for
m ← m +1

end while
return orbit

end procedure

(a) (b)

Figure 5.1: Orbit patterns of (a) GG7(1.6), and (b) GG8(1.6).

(a) (b)

Figure 5.2: Orbit patterns of (a) GG3,5(2.4), and (b) GG4,7(1.4,2.4).

After the orbits of all boundary points are computed, they are stored in one array and
then mapped onto a bitmap, which is an image in which each pixel can have one of two
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colours. The colours are chosen arbitrarily. Calculating the orbit of every boundary point
is computationally expensive. Therefore, several optimizations have been made. Firstly,
the joblib package [2] is used to allow for parallel computing of the orbits, considerably
shortening the runtime. Secondly, the KDTree class from the scipy.spatial library [3] is
used. This class helps with rapid nearest neighbour look-up, which is used to efficiently
map the orbits onto the bitmap. The full code can be found in appendix B. Note that the
code treats disks as instances from a class, so it can be used easily to analyse an arbitrary
number of disks.

(a) (b)

Figure 5.3: Orbit patterns of (a) G3
C ,5(1.5), and (b) G3

C ,N (1.5,1.3,1.4) with C = {−1,1, i
p

3} and N = {5,6,7}.

5.2. Critical radii

To estimate the critical radius of a family of groups Gk
n , we compute the length of the orbit

of the discretised boundary points of the disk (using create_boundary), which is similar
to the generation of orbit patterns described above. The main method is find_radius
which, as the names suggests, estimates the critical radius of Gk

n . It does so by incrementally
increasing the radius of the disks, until there exists a boundary point which reaches the
predefined cut_off threshold, from which we then can assume that the orbit is infinite. We
only consider the boundary points as it is computationally less expensive than discretizing
the entire disks. See algorithm 2 for the pseudocode.

A naive approach would be to discretize an interval in which we believe the critical ra-
dius is present and then check every value in that interval. A more optimised approach
would be to estimate the critical radius up to, for example, one decimal place (which is less
expensive to compute), and then use that estimate as a starting point to compute the radius
up to two decimal places. In this manner, refining the critical radius by adding another dec-
imal of precision becomes more efficient as we start from an estimate that is already close
to the actual value. This approach can be used by the find_radius method by decreasing
the step size each time a new estimate is found. Furthermore, runtime is also reduced by
the joblibpackage [2], which is used again to parallelly compute the orbits across multiple
CPU cores.
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Algorithm 2 Brute-force estimation of the critical radius.

procedure find_radius(start, stop, step, num_points, cut_off)
for R ← start to stop step step do

for i ← 1 to k do ▷ Assign radius R to all disks
ri = R

end for
boundary = create_boundary(num_points) ▷ Discretizes disk boundaries
orbits← {}
for z in boundary do ▷ Compute orbit of every boundary point

orbit = get_orbit(z, cut_off)
orbits← orbits∪ {orbit}

end for
for orbit in orbits do ▷ If cut_off is reached, return R

if |orbit| ≥ cut_off then
return R

end if
end for

end for
return None ▷ if cut_off is never reached, return None

end procedure

The natural question that arises is how accurate the computed estimates are. To obtain
an indication of the accuracy, we use critical_radius to approximate the critical radii
of two-disk systems and compare these estimates to those found in [4]. Here we discretize
each disk into 20 points, take the orbit threshold at 1.000.000, and estimate the radius up
to 6 decimal places. It is mentioned in [4] that "points were found with a minimum of 10
billion destinations, in some cases up to 10 trillion." See table 5.1.

n critical_radius Estimates by [4]
5 2.147940 2.148961
7 1.623600 1.623574
8 1.708243 1.711411
9 1.408573 1.408482

10 1.540012 1.543357
11 1.290629 1.290582
12 1.375706 1.376547
13 1.214101 1.213594
14 1.196373 1.196554
15 1.163295 1.163276
16 1.148509 1.148470

Table 5.1: Critical radii for GGn .

Note in table 5.1 that for each n, almost all estimates are similar up to two decimal
places, from which then they start to differ. This is expected, since the permitted orbit
length in [4] is several orders of magnitude larger than the threshold used by our own
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method; critical_radius cannot afford such a large threshold due to our limited com-
putational power. Nevertheless, this comparison does show that critical_radius yields
reasonable approximations. It can be confidently said that they are accurate up to two dec-
imal places. Consequently, it can be assumed that the estimates given in table 4.1 are also
accurate up to two decimal places.





6
Conclusion and discussion

The research on compound symmetry groups is still in its early stages. In this thesis, we for-
malised the results in [4] while also exploring other areas within the study of these groups.
In chapter 3 compound symmetry groups acting on two-disk systems are analysed. Here a
formal proof of theorem 2 and 3 is given, whose proof sketches are explained in [4]. Addi-
tionally, a method for identifying the group structure of finite compound symmetry groups
is developed: first the pieces of the portrait are labelled, and then the generators are writ-
ten as permutations from which the group structure can be identified. In chapter 4 our
research is expanded by exploring k-disk systems. For three-disk systems in particular, nu-
merical estimates for their critical radii are shown in table 4.1, which are believed to be
accurate up to two decimal places. Lastly, in chapter 5, algorithms for generating orbit pat-
terns and approximating the critical radii are described. Orbit patterns are generated by
tracing the orbits of discretised boundary points. Estimates for the critical radii are com-
puted by incrementally checking an interval of potential radii, and determining the first
radius which contains a boundary points whose orbit exceeds a large enough threshold
(and can thus be considered infinite).

There is still much more investigation to be done on compound symmetry groups. The
question remains as to whether conjecture 1 holds. Moreover, it is unknown if algebraic
expressions exist for the critical radii of three-disk systems, and the study of k-disk systems
remains preliminary. Additionally, within the described numerical algorithms only the disk
boundaries are considered because of limited computational power. Future research could
focus on proving conjecture 1, and whether the theorems on the infinite behaviour of two-
disk systems can be generalised to k-disk systems. Another direction for future research
can be the development of more efficient numerical algorithms, for example, for approxi-
mating the critical radii.
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A
Detailed calculations

Theorem 2

2π

n1
− 2π

n2
= 2π

n2 −n1

n1n2
= 2π

lcm(n1,n2)

n2 −n1

gcd(n1,n2)

We need to show that there exists p, q ∈Z such that

p
2π

lcm(n1,n2)

n2 −n1

gcd(n1,n2)
= 2π

lcm(n1,n2)
+q2π

With some algebraic manipulation we get the following

p

lcm(n1,n2)

n2 −n1

gcd(n1,n2)
= 1

lcm(n1,n2)
+q ⇔

p

lcm(n1,n2)
(n2 −n1) = gcd(n1,n2)

lcm(n1,n2)
+qgcd(n1,n2) ⇔

p

lcm(n1,n2)
(n2 −n1)−qgcd(n1,n2) = gcd(n1,n2)

lcm(n1,n2)
⇔

p(n2 −n1)−qn1n2 = gcd(n1,n2) ⇔
(−p −qn2)n1 +pn2 = gcd(n1,n2)
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B
Code

# -*- coding: utf-8 -*-
"""
Created on Sat May 31 13:28:03 2025

@author: jinny
"""

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import KDTree
from joblib import Parallel, delayed

class Disk:
def __init__(self, n, center, radius = 1):

self.n = n
self.center = np.array(center)
self.radius = radius
self.rotation_matrix = np.array(

[[np.cos(2*np.pi/self.n),
-np.sin(2*np.pi/self.n)],,→

[np.sin(2*np.pi/self.n),
np.cos(2*np.pi/self.n)]],→

)

# discretizes disk boundary into finitely many points
def create_boundary(self, num_points):

angles = np.linspace(0, 2*np.pi, num_points)
points = np.stack([self.center[0] + self.radius *

np.cos(angles),,→

self.center[1] + self.radius *
np.sin(angles)], axis = 1),→

return points
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# rotate point clockwise
def rotate_cw(self, point):

translation_to_origin = point - self.center
rotation = self.rotation_matrix @ translation_to_origin.T
return rotation + self.center

# rotate point anti-clockwise
def rotate_acw(self, point):

translation_to_origin = point - self.center
rotation = self.rotation_matrix.T @ translation_to_origin.T
return rotation + self.center

class DiskSystem:
def __init__(self, *Disks):

self.disks = list(Disks)
self.amount = len(list(Disks))

# concatenate discretized boundary points of all disks into one
array,→

def create_boundary(self, num_points):
boundary = []
for disk in self.disks:

boundary.append(disk.create_boundary(num_points))
return np.concatenate(boundary)

# compute orbit of start_point
def get_orbit(self, start_point, cut_off = 1000):

orbit = [np.array(start_point)]
seen = {tuple(np.round(start_point, 5))}

k = 0
while k < len(orbit) and len(orbit) < cut_off:

for disk in self.disks:
if np.dot(orbit[k] - disk.center, orbit[k] -

disk.center) <= disk.radius**2:,→

for rotate in [disk.rotate_cw, disk.rotate_acw]:
point = rotate(orbit[k])
rounded = tuple(np.round(point, 5))
if rounded not in seen:

orbit.append(point)
seen.add(rounded)

k += 1
return np.array(orbit)

# find critical radius by checking an interval of radii
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def find_radius(self, start, stop, step, num_points, cut_off):
for R in np.arange(start, stop, step):

for disk in self.disks:
disk.radius = R

boundary = self.create_boundary(num_points)
orbits = Parallel(n_jobs =

-1)(delayed(self.get_orbit)(start_point, cut_off) for
start_point in boundary)

,→

,→

for orbit in orbits:
if len(orbit) >= cut_off:

for disk in self.disks:
disk.radius = R - step

boundary1 = self.create_boundary(50)
orbits1 = Parallel(n_jobs =

-1)(delayed(self.get_orbit)(start_point,
cut_off) for start_point in boundary1)

,→

,→

lengths = [len(orbit) for orbit in orbits1]
print(max(lengths))
return R

return None

# find critical radius up to a certain decimal
def critical_radius(self, precision, num_points, cut_off):

start = 1
steps = [0] + [10**(-k) for k in range(1, precision + 1)]
for k in range(1, len(steps)):

try:
start = self.find_radius(start - steps[k-1], 3,

steps[k], num_points, cut_off),→

except TypeError:
print('N = ',self.disks[0].n,'cut_off point not reached;

the group is considered finite'),→

break
if start is not None:

print('N = ',self.disks[0].n,'cut_off point reached at r
=',start, '; orbit is considered infinite'),→

# define image grid for portrait generation
@staticmethod
def coord_grid(xmin, xmax, ymin, ymax, density):

x = np.linspace(xmin, xmax, int(xmax - xmin) * density)
y = np.linspace(ymin, ymax, int(ymax - ymin) * density)

x_grid, y_grid = np.meshgrid(x,y)
return np.stack([x_grid, y_grid], axis = -1)
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# generates bitmap portrait
def bitmap_portrait(self, num_points, cut_off, density, xmin, xmax,

ymin, ymax):,→

boundary = self.create_boundary(num_points)
orbits = Parallel(n_jobs =

-1)(delayed(self.get_orbit)(start_point, cut_off) for
start_point in boundary)

,→

,→

grid = self.coord_grid(xmin, xmax, ymin, ymax, density)
flattened_output = np.reshape(grid, (-1, 2))
tree = KDTree(flattened_output)

height, width = grid.shape[:2]
image = np.zeros((height, width))

all_points = np.vstack(orbits)
_, indices = tree.query(all_points)

for index in indices:
i, j = np.unravel_index(index, (height, width))
image[i,j] = 1

return image

# example
N = 4
r= 1.8

d1 = Disk(N, [0,0],r)
d2 = Disk(N, [-2,0],r)
d3 = Disk(N, [1, np.sqrt(3)],r)
d4 = Disk(N, [1, -np.sqrt(3)],r)

NDisk = DiskSystem(d1,d2,d3,d4)

critrad_orbit_cutoff = 1000000
critrad_disk_numpoints = 20

for N in range(1,17):
for disk in NDisk.disks:

disk.n = N
disk.rotation_matrix = np.array(

[[np.cos(2*np.pi/N),
-np.sin(2*np.pi/N)],,→

[np.sin(2*np.pi/N),
np.cos(2*np.pi/N)]],→

)
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NDisk.critical_radius(3, critrad_disk_numpoints,
critrad_orbit_cutoff),→

image_orbit_cutoff = 1000
image_disk_numpoints = 100
image_density = 300
xmin, xmax, ymin, ymax = -4, 4, -3, 3

image = NDisk.bitmap_portrait(image_disk_numpoints, image_orbit_cutoff,
image_density, xmin, xmax, ymin, ymax),→

plt.figure()
plt.imshow(image, cmap = "Greens_r", origin = 'lower', extent=[xmin,

xmax, ymin, ymax]),→

plt.show()
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