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Thomas, Elvis, Adria, Gerben, Colin, Kenji, Odiel, Dani, Wastu and Caroline. Luckily, there are amaz-
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for sharing his wisdom about the PhD life and for always encouraging me.
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Niv Bharos
Delft, May 2023

i



Summary

For many quantum applications we require high-fidelity entanglement between multiple pairs of solid
state qubits at a distance. To achieve a high fidelity, we have to minimize the time during which the
generated qubits need to stay coherent. Entanglement protocols often used in practice only generate
one qubit at the same time. To generate multiple entangled pairs, the protocol is repeated. However
during the time it takes for all pairs to be generated, the memory qubits will dephase. The required
coherence time increases with the inverse transmission probability of the photons, which decreases
exponentially with distance. This thesis is concerned with entanglement generation protocols that
herald multiple entangled pairs simultaneously and in general herald N-dimensional entangled bipartite
states. The main advantage of using more than 2 dimensions is that the qudits only dephase during
the time in which the protocol executes. With simulations we show that the fidelity of the entangled
pairs created with our protocols is higher than the fidelity of pairs created by protocols that heralds
one entangled pair for distances L ≥ 10 km. We also show a polynomial relation between the total
success probability of the tailored protocol with dimension, which is an exponential improvement with
respect to previous works. We first give background information in Chapter 2 and discuss existing
high-dimensional protocols in Chapter 3. We propose the all-input modes entanglement protocol in
Chapter 4 and a novel protocol in Chapter 5: the tailored protocol.
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1
Introduction

Entanglement is a peculiar phenomenon in the realm of quantum mechanics that Einstein described as
spooky action at a distance. It is peculiar because it does not align with our classical intuitions. This is
the setting: there are two parties that we usually call Alice and Bob and they are far apart. They both
have a fair coin that they toss once. In the classical case Alice may get heads and when Bob tosses
his coin, he still has a probability of 1

2 to get heads and probability 1
2 to get tails. We call the events

of tossing two coins uncorrelated. The coins can in reality never be qubits, but let us pretend that the
coins are qubits and that they are entangled in the following way:

1√
2
(|HAHB⟩+ |TATB⟩) . (1.1)

Here H represents heads, T represents tails and the subscript A and B indicate the coin of Alice or Bob.
If Alice tosses her coin now and gets heads, Bob will get heads for sure as well. Similarly, if Alice gets
tails, Bob gets tails. This example illustrates that correlations between quantum systems can be higher
than we get in the classical setting.

The stronger correlations of entangled quantum systems play an important role in quantum technology.
One example is that by entangling remote quantum nodes, we can create a secure quantum commu-
nication channel. If an eavesdropper tries to intercept the message, the parties trying to communicate
can detect this as a change in the correlation of their states. Motivated by algorithms like these, many
current experimental and theoretical efforts go towards entangling remote nodes [8]. The aim is to
entangle many quantum nodes in the (hopefully not-so-far) future, thereby creating a quantum network.
Aside from secure communication [18], quantum networks will allow us to execute some algorithms
faster [28] and even increase the resolution of instruments like telescopes [22]. In this thesis we take a
closer look at generating entanglement with a high rate from a theoretical perspective.

Recent research has demonstrated entanglement generation between remote nodes with various phys-
ical platforms: between rare-earth doped solids [31], quantum dots [46] and NV centers [40]. These
schemes rely on entanglement swapping: first, the nodes are entangled with photons. By interfering
the photons at a middle station, entanglement is probabilistically heralded. Here, one Bell pair is gen-
erated in one successful run of the protocol. By executing the same protocol multiple times in parallel
(multiplexing), we can generate multiple pairs at the same time. However, dephasing still lowers the
average fidelity of the generated entangled pairs. To see this, let’s consider an example where we want
to entangle two qubits.

1
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1.1. Motivating Example
Alice and Bob are far apart and they want to entangle two qubits to use in a quantum algorithm to create
a secret key of two bits. They want the quality of entanglement, the so-called fidelity, to be high such
that they are very likely to get the same secret key. To generate entanglement they use an entanglement
protocol that generates one entangled qubit pair in one successful run of the entanglement protocol and
succeeds with a probability p. This probability decreases exponentially as the distance between Alice
and Bob increases. If Alice and Bob execute the entanglement protocol twice at the same time, the
probability to generate all pairs at the same time is small for large distances. We give a visualization
of two possible outcomes in Figure 1.1. In (a1) and (b1), Alice and Bob execute the protocol for both
qubits in parallel. In (a2) we show the case where both protocols immediately succeed. However if
we are less lucky, one entangled pair is generated but the protocol fails for the second pair (b2). The
second qubits of Alice and Bob have to execute the protocol again (b3). Now the protocol succeeds at
best in this second try (b4).

The problem is that the quality of the qubits decreases over time and this lowers the average fidelity of
the generated entangled pairs. In case (a), the qubits have to wait during the time it takes to execute the
protocol once. In case (b), the qubit that is entangled in the first try has to wait until the other pair is
generated. Since the probability of success is low for large distances, this can take a while.

Figure 1.1: Alice and Bob want to generate two entangled pairs with an entanglement protocol. The protocols is executed
simultaneously for both pairs (a1) and (b1). (a2) is the case where the protocol succeeds twice at the same time. (b2) is the

case where one attempt succeeds and the other fails. The protocol is executed again for qubits that are not entangled (b3) and
(b4) is the case where the attempt succeeds during the second round.

Moreover, there are even worse cases where the first entangled pair has to wait for a longer time.
Also, if Alice and Bob want to entangle more qubits the waiting time increases even more. We can
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avoid this long waiting time by generating multiple entangled pairs in one successful run. By heralding
multiple entangled pairs simultaneously, the waiting time of all qubits is limited to the time of one
execution of the protocol. Thus the average fidelity is higher than when the entangled pairs are gen-
erated sequentially. Moreover, we aim to generate a general form of entanglement: high-dimensional
entanglement. Alice and Bob want to entangle N energy levels where the number of energy levels does
not necessarily correspond to an integer number of qubits d: N ̸= 2d .

1.2. Research Goals
Recent work by Yunzhe et al. [50] proposes to create multiple entangled pairs in one successful run
of the protocol by using photonic qudits: a photon encoded in more dimensions than two. However
the implementation outlined by Yunzhe et al. requires multiple emitters strongly coupled to optical
resonators and fast optical switching, which makes it difficult to implement in practice. In this thesis we
want to generate high-dimensional entanglement while lowering the demands on the physical systems:
we want to perform a Bell state measurement (BSM) on the photonic qudits of Alice and Bob with
linear optical elements. Therefore our main research question is:

"How can we use linear optical elements and time-bin encoded photonic qudits to herald
high-dimensional entanglement between remote qudits?"

1.3. Contributions
Previous works by Luo et al. [32] and Zhang et al. [48] have proposed a Bell state measurement at
the middle station that relies on implementing an N-dimensional quantum Fourier transform in order
to perform quantum teleportation in N dimensions. Luo et al. demonstrate experimental quantum tele-
portation of a three-dimensional state encoded in a photon. However their implementation requires N2

spatial modes and photon detectors. In our first protocol, the all-input modes protocol, we propose an
adaptation of the protocol of Luo et al. where we use photonic qudits encoded in time-bins. We only
need N spatial modes and photon detectors and by using a time-bin encoding the photons are robust to
bit flips during transmission and no additional [10].

Additionally, the success probability of the protocol of Luo et al. does not scale well with dimen-
sion. The Bell state measurement is upper bounded by psucc =

N!
NN . Zhang et al. improve this success

probability to a polynomial scaling in their protocol that we call the permutation protocol from now on.
However, their implementation requires another Bell state measurement which lowers the total success
probability to an even worse scaling than psucc. Thus, an efficient protocol of the high-dimensional
Bell state measurement is missing in current research.

We propose a new protocol for high-dimensional entanglement generation that achieves a success prob-
ability psucc =

2
N2 for all even dimensions. This is an exponential improvement compared to existing

protocols and we show that this success probability can be achieved for every even dimension. Also,
the initial states necessary for our protocol are entangled, but they are not EPR pairs as Zhang et al. [48]
require. We propose a deterministic way to create the initial states necessary for our protocol which
is the main advantage over the permutation protocol since we do not need an additional Bell state
measurement that would lower the total success probability. To summarize, our main contributions are:

1. An adaptation of the protocol of Luo et al. that uses time-bins instead of spatial modes and thus
lowers the number of required hardware elements with a square root and is more robust to bit
flips.

2. A novel tailored protocol for high-dimensional entanglement generation in even dimensions that
outperforms the state of the art on success probability and hardware requirements.
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3. With simulations we show that for distances approximately L ≥ 10 km the average fidelities of
high-dimensional entanglement protocols perform better than the average fidelities of existing
protocols.

1.4. Outline
The rest of this thesis is structured as follows. We start with background information in chapter 2 and
evaluate previous works on high-dimensional Bell state measurements. In chapter 4 we describe our
first high-dimensional entanglement protocol that uses an equal superposition as input to the interfer-
ometer: the all-input modes protocol. In chapter 5 we propose our second protocol with a tailored
input state: the tailored protocol. We compare our protocols to each other and to existing entanglement
protocols in chapter 6 and conclude in chapter 7.



2
Background Information

In this chapter we start with the fundamentals of quantum information: we describe concepts such
as qudits and entanglement. This discussion is largely based on chapters from Nielsen and Chuang
[36]. Since 2000 quantum computation with photons has been widely researched. We aim to give a
background for quantum computation with linear optical elements. We discuss a protocol that uses
entanglement as a resource and linear optical elements: quantum teleportation. Finally we consider
optical switches, a non-linear optical element that we encounter in Section 5.6.

2.1. From Qubits to Qudits
When we talk about quantum technology, we usually think about quantum circuits with qubits being
the main unit of information. This qubit is fundamentally different from the classical bit: the classical
bit can exist in the state 0 or 1, but not both at the same time. Qubits can exist in a superposition of
both states simultaneously. This property is often used in some quantum algorithms to apply a function
to all possible input states at the same time, for example in Shor’s algorithm to factorize large numbers
[44]. The wave function describes the state of a quantum system with the standard notation for quantum
states: the Dirac notation ’| ⟩’.

|ψ⟩= α |0⟩+β |1⟩ α,β ∈ C ∧ |α|2 + |β |2 = 1 . (2.1)

Here, |0⟩=
[

1
0

]
and |1⟩=

[
0
1

]
. We rewrite Eq. (2.1) to:

|ψ⟩= eiδ
(

cos
β
2
|0⟩+ eiϕ sin

β
2
|1⟩
)

ϕ ∈ [0,2π], β ∈ [0,π] . (2.2)

In this representation, the state of a single qubit can be visualized on the Bloch sphere defined by the
phases β and ϕ . The global phase factor δ is always neglected since it does not have any physical
relevance. We give a visualization of the state corresponding to Eq. (2.2) on the Bloch sphere in Figure
2.1.

5
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Figure 2.1: Representation of the state of a qubit on the Bloch sphere.

2.1.1. Photonic Degrees of Freedom
Quantum information can be stored in various physical systems, for example in the energy levels of
Rubidium atoms [43], the energy levels of a defect in diamond [25] or in a degree of freedom of photons
[19]. Entanglement generation protocols use photons to generate entanglement between remote nodes
since photons are the ideal carriers of quantum information over large distances: they travel with the
speed of light and have almost no interactions with the environment. We consider some examples of
photonic degrees of freedom:

1. Polarization. Photons can have a horizontal |H⟩ or vertical |V ⟩ linear polarization and these
states are orthogonal to each other. A general wavefunction looks like:

|ψ⟩= α |H⟩+β |V ⟩ α,β ∈ C ∧ |α|2 + |β |2 = 1 . (2.3)

2. Time-bins. There are multiple ways of encoding quantum information in time-bins. The single
rail encoding uses the absence |vac⟩ or presence |0⟩ of a photon in one time-bin that we call 0
here.

|ψ⟩= α |vac⟩+β |0⟩ . (2.4)

The dual rail encoding uses two time-bins, for example 0 and 1. A general state looks like:

|ψ⟩= α · â†
0 |vac⟩0 |vac⟩1 +β · â†

1 |vac⟩0 |vac⟩1 . (2.5)

Here, â†
i is the creation operator of a photon in time-bin i. Usually the more convenient notation

is used and the vacuum is omitted. We write down time-bin i of the photon as |i⟩:

|ψ⟩= α |0⟩+β |1⟩ . (2.6)

Now |0⟩ indicates a photon in time-bin 0 and |1⟩ a photon in time-bin 1. We use the time-bin
encoding often in this thesis and in Section 2.3.1 we discuss how we can encode any quantum
state in time-bins by using linear optical elements.
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3. Frequency. Quantum information can also be stored in two discrete frequencies of a photon.
4. Path degree of freedom (spatial modes). By using two optical fibers we can encode a photonic

qubit. The state |0⟩ can correspond to a photon in fiber 0 and |1⟩ to a photon in fiber 1.

There are more degrees of freedom of photons that can be used and combinations of photonic degrees
of freedom are also used. For example in Section 3.3.3 we discuss a paper that uses both the spatial
mode encoding of photons and their polarization.

Most quantum systems have access to more than two distinguishable quantum states and by using
these levels, a qudit is created. A qudit is the generalization of a qubit: it has N orthogonal states with
N > 2. Examples include the qutrit, a three-level system, or the lesser known ququart, a four-level
system. Similar to qubits, qudits can be in a superposition of quantum states. An example of a qudit
state in four dimensions is:

|ψ⟩= α0 |0⟩+α1 |1⟩+α2 |2⟩+α3 |3⟩
α0,α1,α2,α3 ∈ C ∧ |α0|2 + |α1|2 + |α2|2 + |α3|2 = 1 .

(2.7)

Here, the physical realization of quantum state |i⟩ could be the occupation of time-bin i by a photon or
a photon occupying spatial mode i. The general form of a qudit with N levels is:

|ψ⟩=
N−1

∑
k=0

αk |k⟩

αk ∈ C ∧
N−1

∑
k=0

|αk|2 = 1 .

(2.8)

Just like photonic qubits, photonic qudits can be encoded in many degrees of freedom. In this thesis,
we only encounter qudits encoded in time-bins and spatial modes. We aim to use qudits to herald a
high-dimensional entangled state, but qudits have been considered for other applications: for example
for noise resistance in quantum key distribution schemes [5][14] and as we discuss in Section 3.3.3 for
high-dimensional quantum teleportation.

2.1.2. Photon Loss over Optical Fibers
When photons are transmitted over an optical fiber, the probability of successfully transmitting the
photon decreases exponentially as a function of distance:

pT ∼ e−L/Latt . (2.9)

Here Latt is the attenuation length of the fiber. We assume this coefficient to be Latt = 20 km, which
corresponds to light traveling through an optical fiber in the telecom range (the range of frequencies
for which the photon loss is minimized). Thus, the probability of successfully transmitting a photon
decreases to 1

e if the photon travels over a distance L = 20 km.

2.2. Entanglement
Aside from superpositions, an important difference between quantum physics and the classical descrip-
tion of the world is entanglement. Alice and Bob each have a qubit. Their quantum state is entangled if
the joint bipartite state |ψ⟩AB cannot be written as a product state of the local particles |ψ⟩A and |ψ⟩B:

|ψ⟩AB ̸= |ψ⟩A ⊗|ψ⟩B . (2.10)
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In the two-level quantum state, the four maximally entangled states that form a basis are the Bell states:

|Φ+⟩= 1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B) |ψ+⟩= 1√

2
(|0⟩A |1⟩B + |1⟩A |0⟩B)

|Φ−⟩= 1√
2
(|0⟩A |0⟩B −|1⟩A |1⟩B) |ψ−⟩= 1√

2
(|0⟩A |1⟩B −|1⟩A |0⟩B) .

(2.11)

This can be generalized to high dimensional entanglement for systems with N > 2 orthogonal states.
The N-dimensional Bell basis can be written as:

|Ψ⟩mn
AB =

1√
N

N−1

∑
k=0

e
2πi
d nk |k⟩A |k+m (mod N −1)⟩B . (2.12)

Here, (n, m) ∈ {0,1, ..., N − 1}2. For example, for a quantum system with N = 4 energy levels there
are 16 Bell basis states:

|Ψ⟩00
AB =

1
2
(|0⟩A |0⟩B + |1⟩A |1⟩B + |2⟩A |2⟩B + |3⟩A |3⟩B)

|Ψ⟩01
AB =

1
2
(|0⟩A |0⟩B + i |1⟩A |1⟩B −|2⟩A |2⟩B − i |3⟩A |3⟩B)

...

|Ψ⟩33
AB =

1
2
(|0⟩A |3⟩B − i |1⟩A |0⟩B −|2⟩A |1⟩B + i |3⟩A |0⟩B) .

(2.13)

2.2.1. Quantifying Entanglement
There are various metrics to quantify entanglement in a quantum system. The metrics we encounter in
this thesis are:

1. Fidelity. This metric measures how similar two quantum states are. Thus, it allows us to compare
any state to a Bell basis state to see how similar this state is to the Bell basis state. Given two
density matrices ρ and σ , the fidelity is defined as:

F(ρ,σ) =

(
Tr
(√√

ρσ
√

ρ
))2

. (2.14)

In the case of two pure states |ψ⟩ and |ϕ⟩ the fidelity simplifies to:

F(ψ,ϕ) = | ⟨ψ| |ϕ⟩ |2 . (2.15)

From the last expression, we see that the fidelity indeed measures the similarity. If the pure states
are completely orthogonal, the inner product returns zero. If the states are the exactly the same
the fidelity is F = 1 and in general the closer |ψ⟩ is to |ϕ⟩, the closer the fidelity is to 1. For
F > 1

2 the quantum state is considered entangled.
2. Schmidt rank. According to the Schmidt decomposition, every bipartite quantum state can be

written in the form:

|ψ⟩AB =
min(dA,dB)

∑
i=1

λi |ui⟩A ⊗|vi⟩B . (2.16)
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For some bases {|ui⟩A} and {|vi⟩B}, |ui⟩ and |vi⟩ are the Schmidt vectors and λi are the Schmidt
coefficients. dA and dB denote the dimensions of systems A and B. The Schmidt rank S is defined
as the number of non-zero Schmidt coefficients and it can be used to see whether a state is
separable or not: iff S = 1, the state is separable and thus not entangled [11]. This metric is less
specific than fidelity since it only takes into account the number of non-zero Schmidt coefficients
and not the specific values of these coefficients. Even if the Schmidt rank is maximized the
fidelity may not equal one.

2.2.2. Applications of Entanglement
The advantage of entanglement in quantum algorithms is not immediately obvious. By itself, entangle-
ment does not allow for the transmission of information. This is called the no-communication theory
[38] and to see this we consider the following situation. Alice and Bob are far apart again and Alice
wants to send Bob a message. Their qubits are entangled, the joint state is |Φ+⟩= 1√

2
(|00⟩AB+ |11⟩AB).

If Alice measures her qubit in the computational basis, both qubits collapse to either |0⟩ or |1⟩. How-
ever, only Alice knows the outcome of the measurement. If she wants to communicate with Bob, she
still has to communicate the result classically. Thus, entanglement cannot be used to communicate
faster than we do already.

Entanglement does allow two systems two to be correlated stronger than classically possible as has
been demonstrated in various experiments with Bell tests [1][24]. This property can be used as a re-
source in quantum algorithms, for example to distribute secret keys to communicate in an information
theoretically secure way with quantum key distribution [18]. Entanglement can also be used to execute
algorithms faster [28] and for quantum sensing [23].

2.3. Linear Optics Quantum Computing (LOQC)
In 2000 Knill, Laflamme and Milburn (KLM) [29] showed that universal quantum computation with
photons being the carrier of quantum information is possible by using linear optical elements and
additional ancillary photons. There are many platforms being researched nowadays that can also do
universal quantum computation. The advantage of photons is that they are very suitable for quantum
communication: photonic qubits are used to communicate between remote quantum nodes. They are
able to carry quantum information over long distances and they are robust to bit-flip errors when they are
encoded in time-bins [10]. In this section, we discuss linear optical elements and how they manipulate
the states of photons. This discussion is largely based on chapters from Gerry and Knight [21].

Linear Optical Elements
A beam splitter is a partially reflecting mirror that splits the incoming light into two outgoing beams:
reflected light and transmitted light. In the quantum regime we consider a photon source that produces
one or a few photons. In this regime, the beam splitter is described by Fock states that represent the
input and output ports: |n⟩i with n the number of photons at a port i, where i = 0,1,2,3. Fock states
are manipulated via creation and annihilation operators: â†

i and âi respectively. The actions of these
operators on the Fock states are:

â†
i |n⟩=

√
n+1 |n+1⟩

âi |n⟩=
√

n |n−1⟩ .
(2.17)

The creation operator adds a photon to the Fock state and the annihilation operator removes a photon.
The relation between the input ports and output ports of a beam splitter can be described in terms of
creation and annihilation operators: input modes â0 and â1 transform into output modes â2 and â3 as
follows:
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â2 = râ1 + tâ0

â3 = tâ1 + râ0 .
(2.18)

Or equivalently in matrix form: [
â2
â3

]
=

[
t r
r t

][
â0
â1

]
= τ

[
â0
â1

]
. (2.19)

Here, r and t are the reflectances and transmittances and τ is the transfer matrix. We give a depiction
of the beam splitter and annihilation operators in Figure 2.2.

Figure 2.2: Quantum mechanical depiction of the beam splitter.

Since photons are bosons, they should satisfy the bosonic commutation relations:

[âi, â
†
j ] = δi j, [âi, â j] = [â†

i , â
†
j ] = 0 ∧ (i, j) ∈ {0,1,2,3}2 . (2.20)

Substituting the transformation of the beam splitter Eq. (2.18) into the commutation relations Eq. (2.20)
yields constraints for the beam splitter matrix in Eq. (2.19). In its most general form we can write the
beam splitter matrix as:

τ = eiϕ0

[
cosθeiϕT sinθeiϕR

−sinθe−iϕR cosθe−iϕT

]
. (2.21)

Here, 2 · ϕT is the phase difference between the transmitted beams and 2 · ϕR is the phase difference
between the reflected beams. ϕ0 is a global phase that we assume to be ϕ0 = 0 from now on. θ is
related to the transmittance and reflectance as t = cosθ and r = sinθ .

Symmetric Beam Splitters
By choosing the parameters ϕT and ϕR, we can construct several types of beam splitters. We choose
ϕT = 0 and ϕR =−π

2 to find the transfer matrix of a symmetric beam splitter:[
â2
â3

]
=

1√
2

[
cosθ −isinθ

−isinθ cosθ

][
â0
â1

]
= cosθ Î − isinθ X̂ . (2.22)

This is a rotation around the x̂ - axis through an angle of 2θ radians.

50:50 Beam Splitter
In this thesis we use the 50 : 50 beam splitter most of the time. Here ϕT and ϕR differ by a factor
e±

iπ
2 =±i and θ = π

4 . By choosing ϕR = π
2 , we find the following transfer matrix:
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[
â2
â3

]
=

1√
2

[
1 i
i 1

][
â0
â1

]
. (2.23)

Polarizing Beam Splitter
In Section 2.1.1 we discussed various photonic degrees of freedom in which a quantum state can be
encoded. Photons encoded in the polarization degree of freedom can be manipulated with polarizing
beam splitters polarization (PBs). These beam splitters refract the two polarizations at different angles
θ from Eq. (2.22). The difference with normal beam splitters is that light leaving the PBs in one output
port has an orthogonal polarization with regard to the other output port.

Phase Shifter
Phase shifters are often used to apply a phase shift to a photon. In the Bloch sphere representation, it
applies a rotation of −ϕ around the ẑ-axis. The transfer matrix looks like:

UP(ϕ) =
[

eiϕ 0
0 1

]
. (2.24)

With a beam splitter and phase shifter combination, the Hadamard gate can be created:

H =

[
1 1
1 −1

]
. (2.25)

Creating Single Photons
There are many ways to generate single photons. One way could be to attenuate a laser pulse, for
example turning a laser on for a very short time. The resulting state is called a coherent state:

|α⟩= e−|α|2/2
∞

∑
n=0

αn
√

n
|n⟩ . (2.26)

Here |n⟩ represents a Fock state (or number state) where n is the number of photons being emitted. We
see that an attenuated laser pulse does not yield a single photon, but rather a superposition of all number
states. The mean photon number is |α|2, thus by choosing α we can lower the probability of modes
with n > 1.

Figure 2.3: Single photon emission.

Alternatively, emitters can generate single photons via spontaneous emission. We give an overview
of the two-level optical system in Figure 2.3. There are two energy levels: a ground state and an ex-
cited state. A short laser pulse excites the electron occupying the ground state to the excited state. The
electron decays radiatively to the ground state and a photon will be emitted.

Delay Lines
Delay lines are used to delay a photon traveling in a spatial mode with n time-bins. For example time
bin |i⟩ gets delayed to |i+n⟩.
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2.3.1. Universal Quantum Computation with Linear Optics
To achieve universal quantum computation with linear optical elements, we should be able to apply
arbitrary single-qubit operations and two-qubit operations. In Chapter 4 Nielsen and Chuang [36] state
that any single qubit operation U may be written as:

U = eiαRn̂(β )Rm̂(γ)Rn̂(δ ) . (2.27)

Here, n̂ and m̂ are non-parallel axes, α , β , γ and δ are the appropriate angles and Rn̂(β ) is a gate
that applies a rotation of β radians around axis n̂. This theorem tells us that if rotations around two
non-parallel axes are possible, any single qubit operation can be executed. Thus, phase shifters and
symmetric beam splitters are sufficient to achieve arbitrary single-qubit rotations on the Bloch sphere.
In Figure 2.4 we give a set-up to create any superposition |ψ⟩ = α |0⟩+βeiϕ |1⟩ by using a photon in
an early time-bin |0⟩ and a late time-bin |1⟩. The photon first enters a symmetric beam splitter. With
probability ||α|2 the photon continues in a straight line and with probability |β |2 the photon is reflected
into another spatial mode. The reflected photon travels longer through the delay line and a phase shift
of ϕ radians is applied. Finally, the two paths are combined the photon encodes a quantum state.

Figure 2.4: Scheme to encode a photon in an arbitrary superposition of two time-bins.

Controlled operations are less straightforward with linear optical elements. Knill, Laflamme and
Milburn [29] were the first to propose a probabilistic scheme to implement a two-qubit gate with linear
optical elements. They require two ancillary modes and a photon detector to measure the ancillary
photon at the end of the scheme. We will not use their set-up for a controlled phase operation in
this thesis, but it is an important finding that controlled operations can be implemented with ancillary
photons, linear optical elements and photon detectors.

2.4. Quantum Teleportation
In 1993 Bennet et al. [7] proposed a protocol called quantum teleportation that uses entangled qubits as
a resource. This protocol allows the transfer of quantum information from one party to another without
actually sending the qubit. Suppose Alice wants to transfer the state of her photonic qubit |ϕ⟩A to Bob,
who is a distance L away. Alice could just send her photon to Bob over a quantum communication
channel, but that is not very efficient: we know from Section 2.1.2 that the transmission loss increases
exponentially with distance. This is the main advantage of quantum teleportation: the particles between
which quantum information is transferred do not have to move at all.

Quantum teleportation does require an entangled state as a resource, shared by Alice and Bob. We
give the scheme for quantum teleportation in the figure below.
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Alice EPR

Bell State

Measurement

Bob

EPR

U

Figure 2.5: Quantum teleportation of the quantum state of a qubit |ϕ⟩A. Alice performs a Bell state measurement on this
qubit and the qubit that is entangled with Bob. If the measurement succeeds, Bob applies an outcome-dependent unitary on

his photon. Now Bob’s qubit encodes the state |ϕ⟩A.

Here, Alice holds a photon in the state |ϕ⟩A. The state can be encoded in many degrees of freedom
of the photon but in general it looks like:

|ϕ⟩A = α |0⟩+β |1⟩ . (2.28)

Alice and Bob both have one photon of an entangled photon pair. Alice performs a Bell state measure-
ment on her two photons. This projects the particle with her quantum state and the entangled photon
into a joint state. She classically communicates the outcome to Bob and with probability 1

2 Bob can
reconstruct |ϕ⟩A by applying an outcome-dependent local unitary operation. In Section 3.1 we discuss
how the Bell state measurement can be implemented if the photons are encoded in two time-bins.

2.5. Optical Switches
The optical switch is the only non-linear element that we encounter in this thesis. It allows us to switch
a photon between spatial modes in between time-bins [30]. A photon in an early time-bin will go to
one spatial mode and by turning on the optical switch, a photon in the late time-bin switches goes to
another spatial mode. We give an overview of the set-up for an optical switch in Figure 2.6.
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splitter

shift

beam 

phase

50:50

Figure 2.6: An optical switch. A photon enters input mode 0 and input mode 1 is always vacuum. By switching the phase
shift between ϕ = 0 and ϕ = π , the output port of the photon can be chosen.

To see how this works, we consider the transformation of input modes â0 and â1 into output modes
â5 and â6. Here, we assume that the particle enters input port â0 and that input port â1 is always a
vacuum. After the first 50 : 50 beam splitter, the transformation according to Eq. (2.23) is:

â2 →
1√
2
(â0 + iâ1)

â3 →
1√
2
(iâ0 + â1) .

(2.29)

Next we apply the phase shifter according to Eq. (2.24):

â4 →
1√
2
(eiϕ â0 + ieiϕ â1)

â3 →
1√
2
(iâ0 + â1) .

(2.30)

After the final beam splitter we find:

â5 →
1
2
(eiϕ â0 + eiϕ â1 − â0 + iâ1)

â6 →
1
2
(ieiϕ â0 − eiϕ â1 + iâ0 + â1) .

(2.31)

We control the angle ϕ . If we choose ϕ = 0, we find:

â5 →
1+ i

2
â1

â6 →
2i
2

â0 = iâ0 .

(2.32)

Since 1 is always a vacuum, the photon will always leave output port 5 for this choice of ϕ . Now we
choose ϕ = π . We substitute this in Eq. (2.31) and find:



2.5. Optical Switches 15

â5 →
−2
2

â0 =−â0

â6 →
2
2

â1 = â1 .

(2.33)

The photon always leaves output port 6. By switching the phase in between time-bins, the spatial mode
in which the photon leaves is changed.



3
Literature Review

In this chapter, we start by discussing single-photon and two-photon entanglement protocols as pro-
posed by Barrett and Kok [4]. In higher dimensions, we need an N-dimensional Bell state measurement
in order to perform entanglement generation. First of all we aim to give a background on the theoretical
limitations of the N-dimensional Bell state measurement. The N-dimensional Bell state measurement
can be applied in more protocols, for example many works have considered high-dimensional quantum
teleportation as proposed by Bennett et al. [7]. Their implementations of N-dimensional Bell state
measurements can be used for N-dimensional entanglement generation. For N = 2d , we herald d entan-
gled qubits at the same time and thus increase the average fidelity for large distances. We summarize
previous works towards high-dimensional quantum teleportation.

3.1. Single Photon Entanglement Protocol
One way of generating an entangled qubit pair is with the single-photon entanglement protocol with
quantum emitters as described by Barrett and Kok [4]. In this section, we take a closer look at this
protocol and how the success probability scales with distance. This discussion is based on the paper by
Hermans et al. [25]

Alice and Bob each have a qubit that they want to entangle. We give a visualization of the level
structure of their qubits in Figure 3.1. There are two ground state levels, |0⟩ and |1⟩. We see that the
transition between the ground state levels can be driven. |e⟩ is the excited level and only the ground
state level |0⟩ can be excited to this state. The excited state decays radiatively, therefore |0⟩ is also
called the bright state.

Figure 3.1: Level structure of the qubit on Alice’s and Bob’s side. The transition between the ground states |0⟩ and |1⟩ can
be driven and only |0⟩ can be excited to |e⟩. After this excitation, |e⟩ decays under emission of a photon to |0⟩.

An example of a quantum emitter is the nitrogen-vacancy center which consists of a nitrogen atom
next to a vacancy. An electron is trapped in the vacancy and by applying a laser the electron can

16
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be excited depending on its spin state [15]. We give an overview of the single-photon entanglement
scheme in Figure 3.2. The BSM is performed with a beam splitter and the creation and annihilation
operators âi and â†

i have a subscript i that corresponds to the ports of the beam splitter i ∈ {0,1,2,3}.
The photon detectors are numbered by 0 and 1. Alice and Bob try to entangle their qubits by each
executing the following protocol:

1. Prepare the qubit in the superposition state:

√
α |0⟩+

√
1−α |1⟩ . (3.1)

2. Excite the qubit with an optical pulse. A photon is emitted in time-bin 0 if the electron was in
the bright state and it remains dark for |1⟩:

√
α |0⟩ |0⟩ph +

√
1−α |1⟩ |vac⟩ph . (3.2)

3. Send their photon to a middle station where the photons interfere on a beam splitter and are
measured with photon detectors at output ports 2 and 3.

4. The middle station communicates to Alice and Bob which detectors have clicked via a classical
communication channel. If exactly one of the detectors clicks, the protocol succeeds.

Alice Bob

Figure 3.2: In the single-photon entanglement protocol Alice and Bob both emit either no photon or one photon that is
entangled with the state of their qubit. A middle station performs a BSM on its incoming photons with a beam splitter and

two photon detectors 0 and 1.

The joint state of Alice’s and Bob’s qubits (indicated by A and B) and their photons (indicated by a and
b) before the beam splitter is:

|ψ⟩ABab =
(√

α |0⟩A |0⟩a +
√

1−α |1⟩A |vac⟩a

)
⊗
(√

α |0⟩B |0⟩b +
√

1−α |1⟩B |vac⟩b

)
= α |00⟩AB |0⟩a |0⟩b +

√
α(1−α)

(
|10⟩AB |vac⟩a |0⟩b + |01⟩AB |0⟩a |vac⟩b

)
+(1−α) |11⟩AB |vac⟩a |vac⟩b .

(3.3)
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We rewrite the input-output relations of photons interfering with the 50 : 50 beam splitter from Eq. (2.23):

[
â0
â1

]
=

1√
2

[
1 i
i 1

][
â2
â3

]
. (3.4)

If photons arrive at input port 0 and 1, photons exit port 2 and 3 in the following way:

â†
0 →

1√
2

(
â†

2 − iâ†
3

)
â†

1 →
1√
2

(
−iâ†

2 + â†
3

)
.

(3.5)

After the beam splitter, the photon detectors measure either zero, one or two photons. This measure-
ment projects the state of the matter qubits in a state that depends on how many photons are measured
and at which detector. For each scenario, we define the projection of the photons in terms of the photon
detector that clicked: d0 and d1 both can be 0 or 1 depending on the detector at which the photon is
measured.

One Click
If one of the detectors clicks, a photon is measured at some detector d0: |0⟩ and no photon at the other
detector d1: |vac⟩. This projects the joint state in the basis before the beam splitter as follows:

⟨P|= ⟨0|d0
⟨vac|d1

BS . (3.6)

Here, ’BS’ corresponds to the effect of the beam splitter. There are two options: either detector 0 clicks
(d0 = 0), or detector 1 clicks (d0 = 1).

1. For d0 = 0, the photons project into:

⟨P|= ⟨0|0 ⟨vac|1 BS =
1√
2
(⟨0|a ⟨vac|b − i⟨vac|a ⟨0|b) . (3.7)

Next, we apply the projection to the initial state |ψ⟩in from Eq. (3.3) to find the output state of the
matter qubits:

⟨P|ψ⟩ABab =
1√
2
(⟨0|a ⟨vac|b − i⟨vac|a ⟨0|b)

(
α |00⟩AB |0⟩a |0⟩b +

√
α(1−α)(|10⟩AB |vac⟩a |0⟩b + |01⟩AB |0⟩a |vac⟩b)

+(1−α) |11⟩AB |vac⟩a |vac⟩b

)
=
√

α(1−α) · 1√
2
(|01⟩AB − i |10⟩AB) .

(3.8)

Alice or Bob applies a local unitary to their qubits to go to the state |Ψ+⟩ = 1√
2
(|01⟩+ |10⟩)AB. The

probability to see this detection pattern is the square of the constant in front of the state from Eq. (3.8):

p1 click = |
√

α(1−α) |2 = α(1−α) . (3.9)

Which is maximized for α = 1
2 : p1 click = 1

4 .

2. For d0 = 1, the photons are projected in a slightly different way but by applying a local unitary
on Alice or Bob’s side we herald the same Bell state. We project the photons into:
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⟨P|= ⟨0|1 ⟨vac|0 BS =
1√
2
(−i⟨0|a ⟨vac|b + ⟨vac|a ⟨0|b) . (3.10)

The state of Alice and Bob’s memory qubits collapses to:

⟨P|ψ⟩in =
√

α(1−α) · 1√
2
(−i |01⟩AB + |10⟩AB) . (3.11)

After Alice or Bob applies a local unitary, they share the Bell state |Ψ+⟩. The probability for this to
happen is the same as Eq. (3.9).

Thus, when exactly one of the detectors clicks the protocol has succeeded and Alice and Bob share
the state |Ψ+⟩ after applying a unitary that is conditional on which detector clicked. The total probabil-
ity of success is psucc = 2α(1−α) and at most psucc =

1
2 .

Zero Clicks

If no detector clicks, the photons project into:

⟨P|= ⟨vac|0 ⟨vac|1 BS = ⟨vac|a ⟨vac|b . (3.12)

The state of Alice and Bob collapses to:

⟨P|ψ⟩in = (1−α) |11⟩AB . (3.13)

The probability to see this detection pattern is:

p0 clicks = (1−α)2 . (3.14)

The Schmidt rank of the heralded state from Eq. (3.13) is S0 clicks = 1. Local unitaries applied by Alice
and Bob cannot increase S0 clicks to the Schmidt rank of a Bell state: SBell = 2 [36]. Thus, the protocol
fails to herald a Bell state if there are no photons detected.

Two Clicks

If the detectors measure two photons, both Alice and Bob emitted a photon. Thus, a photon entered
each input port of the 50 : 50 beam splitter. This leads to two-photon interference: the Hong-Ou-Mandel
effect [26]. Two photons that arrive at exactly the same time and in general are indistinguishable will
exit the beam splitter in the same output port. One detector will click twice (if the detector can measure
two photons at the same time). If detector 0 measures both photons, the photons are projected into:

⟨P|= ⟨1|0 ⟨1|0 BS =
1
2
(⟨1|a − i⟨1|b)⊗ (⟨1|a − i⟨1|b)

=
1
2
(⟨1|a ⟨1|a −2i⟨1|b ⟨1|a −⟨1|b ⟨1|b)

=−2i⟨1|a ⟨1|b .

(3.15)

In the last line, we only keep the terms that are possible in this scheme: all terms with more than one
photon entering the same input port are neglected. We apply this projection to the input state from
Eq. (3.3):

⟨P|ψ⟩in = iα |00⟩AB . (3.16)
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Similar to the situation with no clicks, the Schmidt rank of the heralded state is S2 clicks = 1 instead
of SBell = 2. The protocol fails with probability p2 clicks = α2. If the other detector measured both
photons, the result is the same up to a global phase factor.

Robustness against loss of one photon

If we could ensure that no photons get lost, the success probability is optimized for α = 1
2 , which

gives a total success probability of psucc =
1
2 . However, when photons are transmitted over an optical

fiber the probability of successfully transmitting the photon decreases exponentially as a function of
distance as described by Eq. (2.9). The single-photon is not very robust to losing a photon since we
cannot distinguish between the case where two photons were emitted and one was lost or the case
where one photon was emitted and not lost. If one photon is detected but in reality two photons were
emitted, the average fidelity of the heralded entangled state with |Ψ+⟩ is lower than one. To avoid emit-
ting two photons the coefficient α should be small: α ≤ 1. The success probability decreases as well:
2α (1−α). We see that there is a trade-off between the fidelity of the heralded state and the success
probability in the single-photon protocol. The two-photon protocol circumvents this trade-off [4], but
it requires the successful transmission of two photons.

3.2. Two-Photon Entanglement Protocol
The two-photon protocol is similar to the single-photon protocol [4]. Now, after the first excitation of
Alice and Bob’s qubits in the second step of the single-photon protocol 3.1, the state of qubits is flipped:
|0⟩↔ |1⟩. Next, they both excite their qubit again and there is a probability to emit a photon in a second
time-bin.

Alice and Bob send two photons to the middle station. The photons in the first time-bin interfere
on a beam splitter. If one of the detectors clicks, we know the protocol has succeeded. However, if two
photons were emitted in time-bin 0, the corresponding state is |00⟩AB. With probability γ one of these
photons gets lost during transmission. In the second time-bin, the state of Alice and Bob’s memory
qubits |00⟩ is flipped to |11⟩ and upon excitation it remains dark: none of the detectors click. Thus,
even if one photon is measured in the first round, we can distinguish between the case where a single
photon is emitted versus two emitted photons followed by the loss of one photon. We do not need to
suppress the emission of two photons in this protocol, so the success probability can be maximized:
psucc =

1
2 .

The rate at which entanglement can be generated depends on the loss of photons during transmission.
In the single-photon protocol, one photon needs to travel to the middle station in a successful run of the
protocol. Thus, the expected number of entanglement attempts scales as ⟨n⟩SP ∼ 1

γ . For the two-photon
protocol we need two photons to arrive at the middle states so the number of entanglement attempts
increases quadratically: ⟨n⟩T P ∼ 1

γ2 . To summarize, the fidelity of the heralded state in the two-photon
protocol is more robust to photon loss but the number of attempts is quadratically higher than for the
single-photon protocol.

3.3. Bell State Measurement in Higher Dimensions
3.3.1. Motivation
In the single-photon and two-photon entanglement protocol, the memory qubits need to stay coherent
approximately for the time it takes to create one successful pair: tSP = L

c . Here, L is the distance be-
tween Alice and Bob. In practice we may want to generate multiple entangled pairs, for example for
entanglement purification [6][16]. If the two nodes are far apart, the transmission loss of the photons
will be high. In addition to this, there will be other losses that depend on which quantum system is
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being used. For example for NV centers many photons are being emitted in the phonon sideband and
these photons will have a different frequency than we want. They are unsuited to use for entanglement
generation because the photons coming into the middle station need to be indistinguishable. Only 3%
of the photons are emitted with the correct frequency in the zero-phonon line [20].

To lower the requirements on the memory time, the single-photon or two-photon entanglement protocol
can be executed in parallel as has been demonstrated experimentally [31]. This is called multiplexing
and allows the generation of d entangled pairs simultaneously. If we execute the two-photon protocol
simultaneously d times, the probability for all protocols to succeed and to generate d pairs at the same
time is:

pall =
(

p2
t · psucc

)d
=

e−2dL/Latt

2d . (3.17)

Here, pt is the probability to transmit a photon over a distance L. We consider the two-photon entangle-
ment protocol, hence we use the transmission probability squared since two photons need to survive the
transmission. The term psucc is the success probability of the two-photon entanglement protocol. The
total probability pall decreases exponentially with distance and the required number of entangled pairs
and this negatively impacts the rate at which entangled pairs are generated. In general the probability
to generate x pairs with x ≤ d in the first execution of the protocols is given by the probability mass
function:

px =
d!

x!(d − x)!
(pt · psucc)

x (1− pt · psucc)
d−x . (3.18)

During the time it takes to generate the remaining pairs d − x, the generated pairs dephase. We can
circumvent this by heralding that all pairs are generated at the same time in every successful run of the
protocol. This can be done by performing a Bell state measurement in higher dimensions.

The Bell state measurement is used in many applications, for example high-dimensional quantum tele-
portation. In our case, we want to use the Bell state measurement for N-dimensional entanglement
generation between remote nodes in higher dimensions. This would allow us to generate d entangled
pairs at the same time for N = 2d which means that the qubits in the register only have to stay coherent
during the time it takes to execute the protocol once: t = L

c . We start by discussing the theoretical
limitations of the Bell state measurement and then we discuss recent work towards high-dimensional
quantum teleportation.

3.3.2. Limitations
The entanglement protocols from the previous sections do not perform a complete Bell state mea-
surement since the measurement at the middle station cannot distinguish all Bell states as given by
Eq. (2.11). They do not measure in the basis of the following Bell states, with modes that would
contain two photons in the same time-bin:

|Φ+⟩= 1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B)

|Φ−⟩= 1√
2
(|0⟩A |0⟩B −|1⟩A |1⟩B) .

(3.19)

The beam splitter removes the which-path information of the incoming photons. When only one photon
is emitted, we do not know from which side it came and thus the entangled state is heralded. For |Φ+⟩
and |Φ−⟩, the term |0⟩A |0⟩B corresponds to two emitted photons and |1⟩A |1⟩B corresponds to zero emit-
ted photons. Removing the which-path information does not work since the measurement collapses the
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state to the mode with two photons or no photons.

Previous works have proved important limitations of performing Bell state measurements in higher
dimensions. Calsamiglia [12] showed in 2002 that it is impossible to perform a BSM for dimensions
higher than 2 with just 2 photons. More generally, he presents a proof that the Schmidt rank of the
heralded state can at most equal the number of initial particles. The Schmidt rank of an N-dimensional
entangled state is N and therefore the Bell state measurement needs N input photons. For entanglement
generation we always have one photon coming from Alice’s side and one photon from Bob’s side. Thus,
the minimum number of ancillary photons required is N −2.

Research has been done to the possibility of deterministic discrimination of Bell states: Calsamiglia
and Lütkenhaus prove that the success probability of entangling two qubits without ancillary photons
is upper bounded by 1

2 [13]. Lütkenhaus et al. [33] show that it is impossible to perform a deterministic
BSM with linear elements, even with many ancillary photons. However in theory the success proba-
bility does converge to 1 when infinitely many ancillary photons are used, as Dusek [17] showed. By
combining the ancillary photons into entangled states, the success probability scales with the number
of initial particles x as: psucc =

( x
x+1

)2. While it is very interesting, it is not practical to implement:
the complicated set-up and a large number of required ancillary photons in complex entangled states
would lead to many required resources and errors in practice.

Main Challenges

To summarize, the main challenges for performing a Bell state measurement in higher dimensions
are:

1. It is impossible to perform a deterministic BSM with linear optical elements and ancillary pho-
tons.

2. The partial BSM can only be implemented with ancillary photons as resources. In order to
perform an N-dimensional partial BSM, N initial particles are required.

Note that in the rest of this thesis we follow the convention from related literature and we use ’Bell
state measurement’ or ’BSM’ instead of ’partial Bell state measurement’.

3.3.3. Existing Schemes
By using non-linear elements, Bell state measurements can in theory be performed deterministically
in higher dimensions. The protocol proposed by Yunzhe et al. [50] generates d entangled pairs at the
same time, thereby reducing the scaling of the coherence time to t ∼ L

c again. However the implemen-
tation outlined in the paper of Yunzhe et al. requires d emitters strongly coupled to optical resonators
to enable spin-photon gate operations.

In two dimensions, previous works demonstrate complete Bell state measurements to generate one
qubit pair [34]. Kim et al. [27] use non-linear crystals for the Bell state measurement but the efficiency
of the measurement remains low: of the order of 10−10.

This motivates research into performing a Bell state measurement with linear optical elements. Lin-
ear optical elements are widely used and while photons can be lost as well, the errors are usually
smaller than for non-linear optical elements. Previous works have proposed schemes for a Bell state
measurement in higher dimensions in the context of quantum teleportation.
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Quantum Teleportation in High Dimensions
There have been many experimental demonstrations of quantum teleportation with a photonic qubit, for
example the teleportation of a polarization encoded photon [9][49], atoms [2], nitrogen-vacancy centers
[39], trapped ions [42] and superconducting circuits [45]. In high dimensions, we want to teleport an
N-dimensional state |ϕ⟩A = ∑N−1

k=0 αk |k⟩ from Alice to Bob, without sending the photon that encodes
this state directly to Bob. We give an overview of high-dimensional quantum teleportation in Figure
3.3.

Quantum 
Fourier 
Transform

(QFT) 

Alice

photon

ancillary photons

detectorsN

Bob

U

Figure 3.3: Quantum teleportation of an N-dimensional state |ϕ⟩A. Alice performs a QFT on the qudit that is to be
teleported, N −2 ancillary photonic qudits in a state depending on the protocol and a photonic qudit that is entangled with

Bob’s photonic qudit. After the QFT the photons are measured. If they are all detected in different time-bins, a unitary
operation U conditional on the detectors that clicked is applied on Bob’s photonic qudit and Bob’s qudit now encodes |ϕ⟩A.

Alice and Bob share a pair of qudits that are entangled in N dimensions and Alice performs a
N-dimensional Bell state measurement on her entangled photon, the photon that encodes |ϕ⟩A and
N − 2 ancillary photons. In previous works, the Bell state measurement is implemented with an N-
dimensional quantum Fourier transform followed by N photon detectors. The main difference between
these protocols is the input state of the ancillary photons.

Luo et al. [32] have demonstrated experimental 3-dimensional quantum teleportation of a quantum
state encoded in the spatial modes of a photon. We give the set-up of their experiment in Figure 3.4.
Since there are 3 photons on Alice’s side and 1 photon on Bob’s side, there are 12 spatial modes in total.
To apply the quantum Fourier transform they also use the polarization of the photons and linear optical
elements such as wave plates and polarizing beam splitters. The input state of the ancillary photon is
an equal superposition state:

|anc⟩= 1√
3
(|0⟩+ |1⟩+ |2⟩) . (3.20)

The Bell state measurement succeeds when N photons are measured in different time-bins. In 3 dimen-
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sions, their protocol succeeds for all combinations of detectors that can click. Luo et al. show that this
leads to a theoretical success probability of psucc =

2
9 . In general, the success probability scales with

dimensions as ptot, up = N!
NN . Note that this is an upper bound and it has not been proved that the upper

bound can be achieved for any dimension. One disadvantage of their protocol is that they require an
additional energy level on Bob’s side to go to the 3-dimensional state.

Figure 3.4: Set-up of the protocol of Luo et al. [32] for experimental 3-dimensional quantum teleportation.

Another scheme is proposed by Zhang et al. [48] that we call the permutation protocol in the rest
of this thesis. We give an overview of their set-up in arbitrary dimensions in Figure 3.5. They prepare
the ancillary photons a1 i,a2 i, ...,aN−1 i in a superposition state of all time-bin permutations, which is
an entangled state:

|anc⟩= 1√
N! ∑

i0i1,...,iN−1∈P[N]

|i0i1...iN−1⟩a1 i,a2 i,...,aN−1 i
. (3.21)

The part lined with red in the figure below describes the Bell state measurement that heralds whether the
quantum teleportation was successful. The protocol succeeds when the Bell state measurement selects
terms where all photons are in different time-bins. By only inputting modes for the ancillary photons
where they are in different time-bins for sure, the success probability pU of the Bell state measurement
is boosted. However, in order to create the state of the ancillary photons, their implementation requires
N − 2 extra entangled pairs. One photonic qudit of each pair is measured in the Bell basis with a
second N-dimensional Bell state measurement (in the figure indicated with ’V’) in order to herald the
state from Eq. (3.21). The probability of success of this Bell state measurement is the same as in the
protocol of Luo et al.: pV = N!

NN . Since this success probability needs to be multiplied with pU, the
success probability of the total scheme still decreases exponentially with dimension.



3.3. Bell State Measurement in Higher Dimensions 25

Figure 3.5: Set-up of the theoretical permutation protocol of Zhang et al. [48] to perform quantum teleportation of an
N-dimensional quantum state |ψ⟩.

We give a few values for the success probability of state preparation pprep, the teleportation ptel
and the total success probability ptot in Table 3.1 as given in [48]:

dimension N 3 4 5 6
pprep 0.22 (2/9) 0.09 (3/32) 0.19 (24/125) 0.02 (5/324)
ptel 0.11 (1/9) 0.15 (5/32) 0.04 (1/25) 0.06 (1/18)
ptot = ptel · pprep 0.02 (2/81) 0.01 (15/1024) 0.01 (24/3125) 0.001 (5/5832)

Table 3.1: Success probability of the ancillary state preparation, teleportation and the total success probability of the
permutation protocol proposed by Zhang et al. [48].



4
N-Dimensional Entanglement
Protocol with All Input Modes

The paper of Luo et al. [32] presents a protocol for high-dimensional entanglement generation with
photonic qudits encoded in spatial modes and polarization. In this chapter, we outline a protocol that
is an adaptation of the protocol of Luo et al. To keep track of the various protocols that we discuss in
this thesis we call the protocol we propose here the all-input modes protocol. We use their implemen-
tation of the N-dimensional Bell state measurement to generate high-dimensional entanglement. Note
that for N = 2d the generated entangled state with our protocol can be written as d Bell pairs that are
simultaneously generated.

Luo et al. use photons encoded in spatial modes. The number of spatial modes and photon detectors
necessary fans out: they both scale as O(N2). We propose an implementation with time-bins instead of
spatial modes. This gives a quadratic speedup of required hardware elements to O(N). The Bell state
measurement is implemented with a quantum Fourier transform combined followed by a measurement
of all photons. Thus, in Section 4.4 we describe research that has been conducted towards using lin-
ear optical elements for implementing the quantum Fourier transform, which maps the input states to
the Bell basis. Luo et al. teleport a 3-dimensional state from a photon to another photon. Since we
want to entangle qudit registers, we need to entangle both qudit registers with a photonic qudit. The N-
dimensional Bell state measurement subsequently swaps the entanglement of the qudits with photons
to the two qudit registers. We propose two methods to create the qudit-photon entanglement that we
need in Sections 4.5 and 4.6.

First, we give a description of our protocol and we present the proof for arbitrary dimensions. Also, we
discuss the scaling of success probability with dimension N and we give an upper and lower bound.

4.1. Description of the Protocol
Alice and Bob both have a qudit register with N energy levels that they want to entangle in one suc-
cessful run of the protocol. Here N can be any natural number N ≥ 2. If N = 2d , the state shared by
Alice and Bob in case of success can be written as d Bell pairs in two dimensions. They execute the
following steps as illustrated in Figure 4.1:

1. Alice and Bob start with a superposition of their N energy levels:

|ψ⟩= 1√
N

N−1

∑
k=0

|k⟩ . (4.1)

26
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2. Alice and Bob entangle each mode |k⟩ with the presence of a photon in the k-th time-bin, as we
later describe in Section 4.5 and 4.6. For example, the state of Alice is:

|ψ⟩Aa =
1√
N

N−1

∑
k=0

|k⟩A |k⟩a . (4.2)

3. The N −2 ancillary photons x0,x1, ...,xN−3 are prepared in an equal superposition state:

|ψ⟩x0x1...xN−3
=

1√
NN−2

N−3⊗
j=0

N−1

∑
k=0

|k⟩x j
. (4.3)

4. The photons from Alice and Bob and N − 2 ancillary photons go to a middle station where
they undergo a Bell state measurement. The Bell state measurement is implemented with an
N-dimensional quantum Fourier transform and N photon detectors.

5. The middle station classically sends the detection pattern to Alice and Bob.
6. Bob applies the unitary operation from Eq. (4.9) to his qudit. Note that this unitary operation

requires one additional energy level.
7. Bob reads out the additional energy level: if the state collapses to the additional energy level, the

protocol failed. Bob communicates this to Alice in a classical way and they start over. If the state
does not collapse to the additional energy level Alice and Bob continue to step 8.

8. If all photons are measured in different time-bins at the same detector, the time-bin information
has been removed and the protocol has succeeded. In this case, either Alice or Bob applies the
outcome-dependent local unitary operation U(d0,d1, ...,dN−1). Here di represent the number of
the detector at which photon i is measured. Otherwise, the protocol is repeated.

quantum 
Fourier 
transform 

Alice

photon

ancillary photons

detectors

N

N

aqudit qudit b

Bob

energy

levels

N

N-2

energy

levels

U

Figure 4.1: High-level overview of the generation of N-dimensional entanglement with the all-input modes protocol. Alice
and Bob entangle their qudit register with a photonic qudit encoded in N time-bins. At the middle station the Bell state

measurement is performed on the photons from Alice, Bob and N −2 ancillary photons. Bob applies a unitary operation U
to his register depending on the detection pattern.
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4.2. Proof for Arbitrary Dimensions
In this section we show that this protocol indeed creates an N-dimensional entangled state and we give
a lower and upper bound on the success probability in arbitrary dimensions.

In step 4 of the all-input modes protocol 4.1 all photons arrive at the middle station. The joint state
before the Bell state measurement is:

|ψ⟩ABabx0x1...xN−3
=

1√
N

N−1

∑
k=0

|k⟩A |k⟩a ⊗
1√
N

N−1

∑
l=0

|l⟩B |l⟩b ⊗
1√

NN−2

N−3⊗
j=0

N−1

∑
m=0

|m⟩x j
. (4.4)

Here, we indicate the state of Alice’s qudit with subscript A, the state of Bob’s qudit with B and the
photonic qudits of Alice’s and Bob’s side are respectively denoted by a and b.

In step 4, the middle station applies the N-dimensional quantum Fourier transform to photons a, b
and x0 to xN−3 in the following way:

|i⟩0 → 1√
N

(
|i⟩a + |i⟩b + |i⟩x0

+ ...+ |i⟩xN−3

)
|i⟩1 → 1√

N

(
|i⟩a +ω |i⟩b +ω2 |i⟩x0

+ ... +ωN−1 |i⟩xN−3

)
|i⟩2 → 1√

N

(
|i⟩a +ω2 |i⟩b +ω4 |i⟩x0

+ ... +ω2(N−1) |i⟩xN−3

)
...

|i⟩N−1 → 1√
N

(
|i⟩a +ωN−1 |i⟩b +ω2(N−1) |i⟩x0

+ ... +ω(N−1)(N−1) |i⟩xN−3

)
.

(4.5)

Here, ω = e2πi/N and 0,1, ...,N are the output spatial modes corresponding to the numbers of the
detectors as we see in Figure 4.1. Next we only consider the case where all photons are measured in
different time-bins but at the same detector d. We write the quantum Fourier transform in terms of a
general detector d ∈ {0,1, ...,N −1} where all photons are measured.

|i⟩d → 1√
N

(
|i⟩a +ωd |i⟩b +ω2d |i⟩x0

+ω3d |x1⟩+ ...+ωd(N−1) |i⟩xN−3

)
. (4.6)

The photons are all measured in different time-bins i at detector d. To see how the input state is
projected, we apply the quantum Fourier transform to this projection. The projection of photons in the
basis before the Bell state measurement is:

⟨P|abx0x1...xN−3
=

N−1⊗
i=0

⟨i|d QFT =
N−1⊗
i=0

1√
N

(
⟨i|a +ωd ⟨i|b +ω2d ⟨i|x0

+ ...+ωd(N−1) ⟨i|xN−3

)
=

ωd+2d+3d+ ...+ d(N−1)
√

NN ∑
{i0,i1,...,iN−1}∈P[N]

⟨i0|a ⟨i1|b ⟨i2|x0
. . .⟨iN−1|xN−3

.

(4.7)

Here P[N] is the full permutation group of the set {0,1, ...,N − 1}. The full expression of Eq. (4.7)
should contain all photon combinations, including modes with multiple photons in the same spatial
mode. This is impossible in our protocol since we only have one photon per input spatial mode. Thus,
we only keep the terms corresponding to one photon in each spatial mode and this leaves us with a
superposition of all possible permutations of time-bins.
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Next, we apply the projection of Eq. (4.7) to the input state from Eq. (4.4). We arrive at the state
that Alice’s and Bob’s qudits are projected into in case of success.

|ψ⟩out = ⟨P|abx0x1...xN−3
|ψ⟩ABabx0x1...xN−3

=
ωd·N(N−1)/2
√

NN ·
√

NN ∑
j1, j2∈{0,1,...,N} ∧ j1 ̸= j2

| j1⟩A | j2⟩B . (4.8)

Alice and Bob’s qudits are in the superposition state of all modes | j1⟩A and | j2⟩B for j1 ̸= j2. To
go to a maximally entangled state, we have to apply the operation TN to Bob’s qudits. To make this
transformation unitary, we need one extra energy level on Bob’s side: UN+1.

TN =


2−N 1 . . . 1

1 2−N
. . . 1

...
. . . . . .

...
1 1 . . . 2−N

 → UN+1 =
1

N −1


2−N 1 . . . 1

√
N −2

1
. . . . . .

...
...

...
. . . . . . 1

...
1 . . . 1 2−N

√
N −2√

N −2 . . . . . .
√

N −2 −1

 .

(4.9)
After applying this unitary operation, Bob measures the additional energy level. The state of Bob’s
qudits does not collapse to the additional energy level with probability:

p = 1−

∣∣∣∣∣ωd·N(N−1)/2√N −2
NN

∣∣∣∣∣
2

(4.10)

Alice and Bob finally share the N-dimensional entangled state |Ψ⟩ND:

|Ψ⟩ND = IA ⊗UB
N+1 |ψ⟩out =

ωd·N(N−1)/2
√

N
NN · 1√

N

N−1

∑
j=0

| j⟩A | j⟩B . (4.11)

4.3. Success Probability
For the probability of success of one detection pattern with all photons in different time-bins and at the
same detector, we square the constant from Eq. (4.11) and multiply by p from Eq. (4.10):

psuc,1 =

∣∣∣∣∣ωd·N(N−1)/2
√

N
NN

∣∣∣∣∣
2

·

1−

∣∣∣∣∣ωd·N(N−1)/2√N −2
NN

∣∣∣∣∣
2


=
1

N2N−1 −
N −2
N4N−1 .

(4.12)

The number of detectors is N, so all photons can be measured in different time-bins at N different
detectors. Thus, we multiply the probability of success of one detection pattern psuc,1 by N to get the
total success probability psuc:

psuc =
N

N2N − N(N −2)
N4N . (4.13)

Note that this is the probability of success if all photons need to be measured at the same detector for
the protocol to succeed. Luo et al. [32] have shown that for 3 dimensions the successful Bell state
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measurement can be performed for all different time-bin detections independent of the detector. By ap-
plying an outcome-dependent controlled unitary to Bob’s qudit, the protocol succeeds for all detection
patterns as long as all photons are measured in different time-bins. However, they do not prove that
this is possible for arbitrary dimensions. If we assume this is possible for arbitrary dimensions, this
would boost the success probability significantly. Thus, we also give an upper bound for the success
probability of this protocol.

If the photons can be measured by all detectors, the projection looks like:

⟨P|abx0x1...xN−3
= ⟨0|d0

⟨1|d1
. . .⟨N −1|dN−1

QFT

=
1√
NN ∑

{i0,i1,...,iN−1}∈ P[N]

ω∑N−1
j=0 i jd j ⟨i0i1 . . . iN−1|abx0x1...xN−3

.
(4.14)

We see that the interferometer selects the modes (in the basis before the interferometer) with all pho-
tons in different time-bins: there are N! modes that lead to success. The state Eq. (4.4) before the
interferometer is a superposition of all combinations of time-bins: there are NN input modes. Thus, the
probability to be in a mode that leads to success is:

psucc, up =
N!
NN . (4.15)

This is a much better scaling with dimension than the lower bound from Eq. (4.13). We give a few
values for the lower and upper bound of the success probability in Table 4.1.

dimension N 3 4 5 6

psuc, low 4.1×10−3 6.1×10−5 5.1×10−7 2.8×10−9

psuc, up 2/9 (0.22) 3/32 (0.09) 24/625 (0.04) 5/324 (0.02)

Table 4.1: Lower and upper bound for the success probability of N-dimensional entanglement generation with the all-input
modes protocol, calculated from Eq. (4.13) and (4.15) respectively.

Even if the upper bound of the success probability can be achieved for all dimensions, the success
probability still decreases exponentially with dimension. In the next chapter, we propose a completely
new protocol that achieves a polynomial scaling for even dimensions.

4.4. Implementation of the Quantum Fourier Transform with Lin-
ear Optical Elements

The quantum Fourier transform that we need in the all-input modes protocol as given by Eq. (4.5) can
be described by an N x N unitary matrix. Reck and Zeilinger [41] showed in 1994 that any NxN unitary
matrix can be decomposed in a sequence of two-dimensional unitary matrices. The two-dimensional
matrices can be constructed with at most one beam splitter and one phase shifter. The number of beam
splitters and phase shifters combinations scales with the dimension as N(N+2)

2 for an N-dimensional
quantum Fourier transform. Barak and Ben-Aryeh [3] published a protocol that implements the N-
dimensional quantum Fourier transform for N = 2d with at most d ·2d−1 beam splitter and phase shifter
combinations. Finally, Oshima [37] shows that the reduction of number of beam splitter and phase
shifter combinations of Barek and Ben Aryeh holds for general dimensions where N ̸= prime. Thus,
for all dimensions where N ̸= prime, the quantum Fourier transform can be implemented on the spatial
modes with at most d ·2d−1 beam splitter and phase shifter combinations.
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4.5. General Algorithm to Create Photon-Qudit Entanglement
We propose a general method to create the initial entanglement from Eq. (4.2) between Alice and Bob’s
energy levels with photonic qudits a and b respectively. Our implementation uses a quantum emitter
coupled to a quantum memory with N energy levels, for example an NV center coupled to surrounding
carbon atoms [47]. We find an overview of the system in Figure 4.2.

Figure 4.2: A quantum emitter on the left: the dark state |1⟩e and the bright state |0⟩e that can be excited to |e⟩ and decay
under emission of a photon in time-bin i. The quantum emitter is coupled to a quantum memory on the right with N energy

levels.

There is an optical connection between |0⟩e and |e⟩: we can drive from |0⟩e to the excited state
|e⟩ and the excited state will decay to the same ground state while emitting a photon. Aside from the
electron spin, we need to interact with N energy levels in the qudit register. These are the energy levels
Alice and Bob eventually want to entangle. We assume that it is possible to apply a controlled-NOT
gate from each of these energy levels to the electron spin. Alice and Bob both execute the following
protocol to generate qudit-photon entanglement:
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Algorithm 1 Generating qudit-photon entanglement
1. Alice and Bob start in a superposition of all qudit levels and the electron spin

starts in the level that is not optically active |1⟩e:

1√
N

N−1

∑
k=0

|k⟩⊗ |1⟩e . (4.16)

for j ∈ {0,1, ...,d −1} do

2. Alice and Bob apply a controlled-NOT operation with energy level | j⟩
in the qudit register as control to the target qubit, the quantum emitter. The
state after the first iteration ( j = 0) is:

1√
N

(N−1

∑
k=1

|k⟩⊗ |1⟩e + |0⟩⊗ |0⟩e

)
. (4.17)

3. Apply an optical pulse such that the optically active ground state |0⟩e of the
electron spin is excited to |e⟩. The electron decays radiatively to |0⟩e again
and the corresponding photon is in time-bin j. Thus, the state from Eq. (4.17)
becomes:

1√
N

(N−1

∑
k=1

|k⟩⊗ |1⟩e + |0⟩⊗ |0⟩e ⊗|0⟩ph

)
. (4.18)

Here, | j⟩ph indicates a photons in the j-th time-bin. We see that a photon is
only emitted when the qudit register is in mode | j⟩.

4. Alice and Bob apply the same controlled-NOT operation from step 2
again to flip the state of the quantum emitter to the dark state |1⟩e. In the
first iteration j = 0, the state from Eq. (4.18) becomes:

1√
N

(N−1

∑
k=1

|k⟩⊗ |1⟩e + |0⟩⊗ |1⟩e ⊗|0⟩ph

)
. (4.19)

end for

5. Now, Alice and Bob both have a state of the form:

1√
N

N−1

∑
j=0

| j⟩⊗ |1⟩e ⊗| j⟩ph . (4.20)

In the rest of the protocol, the state of the quantum emitter can be ignored since it is not entangled
with the qudit register or the photonic qudit.

4.6. Algorithm to Create Photon-Qudit Entanglement with π-pulses
In the previous section, we discussed how to generate the initial states from Eq. (4.2) with multi-
controlled operations. Some physical systems may have control over the energy levels in the quantum
register in a way that allows us to generate the state in a simpler way. For example, if π - pulses can be
applied between the electron spin and each energy level of the qudit register, the scheme from Figure
4.3 can be used:
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Figure 4.3: Creating the photon-qudit entanglement for the initial states from Eq. (4.2) with π-pulses, a quantum emitter
and the qudit register.

Each energy level gets ’swapped’ with the optically active electron ground state in subsequent time-
bins by applying a π-pulse between an energy level and |0⟩e. After each π-pulse, the emitter is excited
and a photon in that time-bin is emitted. By starting in a superposition of all energy levels in the qudit
register, one photon entangled with all qudit levels is emitted. We describe the protocol in more detail
in Algorithm 2.
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Algorithm 2 Generating qudit-photon entanglement with π-pulses

1. Alice and Bob start in a superposition of all qudit levels and the electron spin
starts in an arbitrary state:

1√
N

N−1

∑
k=0

|k⟩⊗ (α |0⟩e +β |1⟩e) . (4.21)

2. As we see in (a) of Figure 4.3, in step1. Alice and Bob apply a π-pulse between |N −1⟩
and |0⟩e: (

1√
N

N−2

∑
k=0

|k⟩+α |N −1⟩

)
⊗
(

1√
N
|0⟩e +β |1⟩e

)
. (4.22)

In step 2. they excite the quantum emitter from |0⟩e to |e⟩; in step 3. the emitter decays radiatively
back to |0⟩e and emits a photon in the 0-th time-bin:(

1√
N

N−2

∑
k=0

|k⟩+α |N −1⟩

)
⊗
(

1√
N
|0⟩e ⊗|0⟩ph +β |1⟩e

)
. (4.23)

In step 4. they apply another π-pulse between |0⟩e and |0⟩. The resulting state is:(
1√
N

N−2

∑
k=1

|k⟩+ 1√
N
|0⟩⊗ |0⟩ph +α |N −1⟩

)
⊗
(

1√
N
|0⟩e +β |1⟩e

)
. (4.24)

for j ∈ {0,1, ...,d −1} do

3. As we see in (b) and (c) of Figure 4.3, in step 1. Alice and Bob optically excite the
emitter; in step 2. the emitter decays radiatively back to |0⟩e and emits a photon in
the j-th time-bin. For the first iteration ( j = 1), Eq. (4.24) becomes:

(
1√
N

N−2

∑
k=1

|k⟩+ 1√
N
|0⟩⊗ |0⟩ph +α |N −1⟩

)
⊗
(

1√
N
|0⟩e ⊗|1⟩ph +β |1⟩e

)
. (4.25)

In step 3. they apply a π-pulse between |0⟩e and energy level | j⟩ from the qudit
register:(

1√
N

(
N−2

∑
k=2

|k⟩+ |0⟩⊗ |0⟩ph + |1⟩⊗ |1⟩ph

)
+α |N −1⟩

)
⊗
(

1√
N
|0⟩e +β |1⟩e

)
. (4.26)

end for

4. After all iterations of the for-loop, Alice and Bob both have the following state:

1√
N

N−1

∑
k=0

|k⟩ |k⟩ph ⊗ (α |0⟩e +β |1⟩e) . (4.27)

In the rest of the protocol, the state of the quantum emitter can be ignored since it is not entangled
with the qudit register or the photonic qudit.



5
N-Dimensional Entanglement

Protocol with Tailored Ancilla Photons

The previous all-input modes protocol demonstrates an implementation of the Bell state measurement
as proposed by Luo et al. [32] for time-bin encoded photonic qudits instead of spatially encoded
photons. In this section, we propose a completely new protocol for the generation of high dimensional
entanglement in even dimensions: we call this the tailored protocol. The difference lies in the state
preparation of the ancillary photons. The previous protocol uses an equal superposition of all modes
for the ancillary state. We tailor the state of the ancillary photons to the modes that the quantum Fourier
transform can choose, such that the photons from Alice and Bob are projected into an N-dimensional
state. This increases the probability of success to a polynomial scaling with dimension, which is an
exponential speed-up with respect to the previous protocol. To better illustrate this concept, we consider
the generation of 4-dimensional entanglement with our protocol in Section 5.2. We also investigate the
analytical expression for the success probability in Section 5.4 and show why our protocol does not
work for odd dimensions in Section 5.5. First, we start with a description of our protocol.

5.1. Description of the Protocol
Alice and Bob want to entangle their qudit registers that consist of N energy levels. Here N needs to be
even, but not necessarily a power of 2. If N = 2d ,d ∈ R, the state shared by Alice and Bob in case of
success can be written as d Bell pairs. They execute the following steps:

1. Alice and Bob start with a superposition of their N energy levels:

|ψ⟩= 1√
N

N−1

∑
k=0

|k⟩ . (5.1)

2. Entangle each mode |k⟩ with the presence of a photon in the k-th time-bin as described in Section
4.5 and 4.6:

|ψ⟩in =
1√
N

N−1

∑
k=0

|k⟩ |k⟩ph . (5.2)

3. The N −2 ancillary photons are prepared in the entangled state from Eq. (5.14) according to the
protocol described in Section 5.6.

4. The photons from Alice and Bob and N − 2 ancillary photons go to a middle station where
they undergo a Bell state measurement. The Bell state measurement is implemented with an
N-dimensional quantum Fourier transform as described in Section 4.4 and N photon detectors.

35
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5. The middle station classically sends the detection pattern to Alice and Bob.
6. If all photons are measured in different time-bins, the time-bin information has been removed the

protocol has succeeded. In this case, either Alice or Bob applies the outcome-dependent local
unitary operation U(d0,d1, ...,dN−1) from Eq. (5.19). Otherwise, the protocol is repeated.

The high-level scheme is the same as in the all-modes protocol so the overview in Figure 4.1 is also
relevant here.

5.2. Generating 4-Dimensional Entanglement
Before we go to the proof in arbitrary dimensions we consider an example in 4 dimensions. We show
the set-up in Figure 5.1. Alice and Bob both have two qubits that they want to entangle simultaneously.
Together with two ancillary photons x0 and x1 they arrive at the middle station. The quantum Fourier
transform is implemented with 4 beam splitters and one phase shifter. Afterwards, the photons are
measured by photon detectors 0,1,2,3.

Alice Bob

photon

splitter

shift

beam 

phase

50:50

detectors

i

i i

Figure 5.1: Generating 4-dimensional entanglement, or equivalently two Bell pairs, between Alice and Bob with the
tailored protocol. The quantum Fourier transform is implemented with 4 beam splitters and a phase shifter.

Alice and Bob start with step 1: they both entangle the four modes of their qubits with a photonic
qudit in four time-bins:

|ψ⟩= 1
2
(|00⟩ |0⟩+ |01⟩ |1⟩+ |10⟩ |2⟩+ |11⟩ |3⟩) . (5.3)

Every first ket |i′⟩ corresponds to the two-qubit state written in binary and the second ket |i⟩ corre-
sponds to a photon in the i-th time-bin. Since our goal is to achieve four-dimensional entanglement, the
Schmidt rank of the final state is S = 4. According to the proof of Calsamiglia [12] we need four initial
particles as we also see in Figure 5.1. We already have two photons coming from Alice and Bob, so we
need two ancillary photons x0 and x1.
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From Eq. (5.14) we see that there are multiple states to choose for the ancillary photons. For the
sake of this example, we choose the following state:

|anc⟩= 1√
2

(
|01⟩x0x1

+ |23⟩x0x1

)
. (5.4)

|ψ⟩ABabx0x1
=

1√
2 ·4

(
|00⟩A |0⟩a + |01⟩A |1⟩a + |10⟩A |2⟩a + |11⟩A |3⟩a

)
⊗
(
|00⟩B |0⟩b + |01⟩B |1⟩b + |10⟩B |2⟩b + |11⟩B |3⟩b

)
⊗
(
|01⟩x0x1

+ |23⟩x0x1

)
.

(5.5)

Here, we indicate Alice and Bob’s spin qubits with subscript A and B, the photons from Alice and Bob’s
side with a and b and the ancillary photons with x0 and x1. The protocol succeeds if all photons are
measured in different time-bins and it does not matter at which detector these photons are measured.
Thus, we write the projection of photons a,b,x0 and x1 in terms of (d1,d2,d3,d4) ∈ {0,1,2,3}4 where
each di corresponds to the output port at which a photon in time-bin i is measured. We apply the
quantum Fourier transform to the photon detections and we arrive at a useful expression in the basis
before the interferometer:

⟨P|abx0x1
= ⟨0|d1

⟨1|d2
⟨2|d3

⟨3|d4
QFT

=
1
24

(
⟨0|a +ωd1 ⟨0|b +ω2d1 ⟨0|x1

+ω3d1 ⟨0|x2

)
⊗
(
⟨1|a +ωd2 ⟨1|b +ω2d2 ⟨1|x1

+ω3d2 ⟨1|x2

)
⊗
(
⟨2|a +ωd3 ⟨2|b +ω2d3 ⟨2|x1

+ω3d3 ⟨2|x2

)
⊗
(
⟨3|a +ωd4 ⟨3|b +ω2d4 ⟨3|x1

+ω3d4 ⟨3|x2

)
=

1
24

(
ωd2+2d3+3d4 ⟨0123|+ωd2+2d4+3d3 ⟨0132|+ωd3+2d2+3d4 ⟨0213|+ωd3+2d4+3d2 ⟨0231|+ωd4+2d2+3d3 ⟨0312|

+ωd4+2d3+3d2 ⟨0321|+ωd1+2d3+3d4 ⟨1023|+ωd1+2d4+3d3 ⟨1032|+ωd3+2d1+3d4 ⟨1203|+ωd3+2d4+3d1 ⟨1230|

+ωd4+2d1+3d3 ⟨1302|+ωd4+2d3+3d1 ⟨1320|+ωd1+2d2+3d4 ⟨2013|+ωd1+2d4+3d2 ⟨2031|+ωd2+2d1+3d4 ⟨2103|

+ωd2+2d4+3d1 ⟨2130|+ωd4+2d1+3d2 ⟨2301|+ωd4+2d2+3d1 ⟨2310|+ωd1+2d2+3d3 ⟨3012|+ωd1+2d3+3d2 ⟨3021|

+ωd2+2d1+3d3 ⟨3102|+ωd2+2d3+3d1 ⟨3120|+ωd3+2d1+3d2 ⟨3201|+ωd3+2d2+3d1 ⟨3210|
)

abx0x1

.

(5.6)

Here, we only keep the terms that are physically possible in our protocol: a,b,x0 and x1 all correspond
to exactly one photon, so we neglect the terms that don’t satisfy this condition. Now we consider the
ancillary photons as part of the Bell state measurement by applying the projection of Eq. (5.6) to the
state of the ancillary photons. We find the projection of the photons coming from Alice and Bob ⟨P|ab :

⟨P|ab = ⟨P|abx0x1
|anc⟩= 1√

2 ·26

(
ωd4+2d1+3d2 ⟨23|ab +ωd3+2d1+3d2 ⟨32|ab +ωd2+2d3+3d4 ⟨01|ab +ωd1+2d3+3d4 ⟨10|ab

)
.

(5.7)

The modes in the projection from Eq. (5.6) contains all permutations of the time-bins. Thus, each mode
|i j⟩x1x2

in the ancilla state yields two non-zero terms in the projection from Eq. (5.7): ⟨kl|ab and ⟨lk|ab
where i ̸= j ̸= k ̸= l.

Finally, we apply the projection from Eq. (5.7) to the state of Alice and Bob’s qubits and photons
from Eq. (5.5) to find the state of the spin qubits:

|ψ⟩out = ⟨P|ab |ψ⟩ABab =
1√

2 ·26

(
ωd4+2d1+3d2 |10⟩A |11⟩B +ωd3+2d1+3d2 |11⟩A |10⟩B

+ωd2+2d3+3d4 |00⟩A |01⟩B +ωd1+2d3+3d4 |01⟩A |00⟩B

)
.

(5.8)
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This is almost the entangled state we want except for the phases in front of the modes. These phases are
defined by the output ports where the photons are detected. Thus, we can apply the following unitary
U(d1,d2,d3,d4) on either Alice’s qubits or Bob’s qubits conditional on the corresponding output ports:

U(d1,d2,d3,d4) = ω−d1−2d3−3d4 |00⟩⟨00|+ω−d2−2d3−3d4 |01⟩⟨01|+ω−d3−2d1−3d2 |10⟩⟨10|+ω−d4−2d1−3d2 |11⟩⟨11| .
(5.9)

We arrive at the final Bell state:

|Ψ⟩4D = IA ⊗UB(d1,d2,d3,d4) |ψ⟩out =
1√

2 ·26
(|10⟩A |11⟩B + |11⟩A |10⟩B + |00⟩A |01⟩B + |01⟩A |00⟩B)

=
1√

2 ·25

(
1
2
(|00⟩AB + |11⟩AB)⊗ (|01⟩AB + |10⟩AB)

)
.

(5.10)

Here, the subscript 4D indicates a four-dimensional Bell state and we chose to apply the unitary opera-
tion on Bob’s side. The Bell state can be written as the product of two two-dimensional Bell states and
we have successfully created two entangled pairs simultaneously.

Success Probability
We calculate the success probability of one successful detection pattern by squaring the constant in

front of the two Bell states from Eq. (5.10): p1 =
∣∣∣ 1√

2·25

∣∣∣2. The unitary operation from Eq. (5.9) can
be applied for all combinations of output ports that click, the only requirement is that the photons are
in all-different time-bins. Thus, the number of successful detection patterns is 44 and each successful
detection pattern occurs with the same probability p1. The total probability of success for this protocol
in four dimensions is:

psucc =

∣∣∣∣ 1√
2 ·25

∣∣∣∣2 ·44 =
1
23 . (5.11)

5.3. Proof for Arbitrary Even Dimensions
In this section we present the proof of our protocol and in the next section we will consider the four-
dimensional case. The aim of the protocol is to herald an N-dimensional entangled state |Ψ⟩ND between
Alice and Bob:

|Ψ⟩ND =
1√
N

N
2 −1

∑
j=0

(
|c jb j⟩AB + |b jc j⟩AB

)
(c j,b j) ∈ {0,1, ...,N −1}2 ∧ ci ̸= c j ̸= bi ̸= b j ∀ i, j .

(5.12)

This state does not describe all high-dimensional entangled states but we use this notation since it is the
output state of our protocol, as we will see later on. Alice and Bob start with the following state:

|ψ⟩ABab =
1√
N

N−1

∑
i=0

|i⟩A |i⟩a ⊗
1√
N

N−1

∑
k=0

|k⟩B |k⟩b

=
1
N

N−1

∑
i=0

N−1

∑
k=0

|i⟩A |i⟩a |k⟩B |k⟩b .

(5.13)

Here, we indicate the state of Alice’s qudit with subscript A, the state of Bob’s qudit with B and the
photonic qudits are denoted by a and b. In the all-input modes protocol the state of the ancillary photons
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is an equal superposition state before the Bell state measurement. In the tailored protocol, the N − 2
ancillary photons x0,x1, ...,xN−1 are in the following state:

|anc⟩= 1√
N/2

N
2 −1

∑
j=0

|a j,0a j,1 . . .a j,N−3⟩x0x1... xN−3
. (5.14)

with the following constraints:

(a j,0,a j,1, ...,a j,N−3) ∈ P[0,1, ...,N −1]

a j,0,a j,1, ...,a j,N−4 ̸= c j,b j

(c j,b j) ∈ {0,1, ...,N −1}2

ci ̸= b j ̸= c j ̸= bi ∀ i, j .

(5.15)

Here, the index that we sum over appears in the third constraint as well. Each mode is a permutation
of all time-bins except for two time-bins. In each mode two time-bins are excluded and the choice for
these two time-bins is unique for each mode. Also, the two time-bins excluded in one mode need to be
different. We see later that the c j and b j eventually form the high-dimensional state Eq. (5.12). Note
that in the all-input modes protocol of Chapter 4 the state is a superposition of N(N−2)/2 terms, while
we only have N

2 terms here.

The Bell state measurement is applied with the quantum Fourier transform in N dimensions. After
the Bell state measurement, the photons have become indistinguishable and we measure them with N
photon detectors. The condition for success is to measure the photons in all different time-bins. We
look at the projection of N photons in different time-bins and apply the quantum Fourier transform to
get an expression in the basis before the Bell state measurement:

⟨P|= ⟨0|d0
⟨1|d1

. . .⟨N|dN−1
QFT =

1
NN/2

N−1

∑
t0=0

N−1

∑
t1=0

. . .
N−1

∑
tN−1=0

ω∑N−1
i=0 tidi ⟨t0t1 . . . tN−1|abx0x1... xN−1

for (t0, t1, ..., tN−1) ∈ P[0,1, ...,N −1] .

(5.16)

Again, di represents the number of the output port at which a photon in time-bin i is measured. This
expression holds for every possible detection pattern where the photons are measured in different time-
bins. The projection describes the sum of all permutations of photons in different time-bins and each
permutation has a unique phase in front. Here ω is defined as: ω = e

2πi
N .

We consider the ancillary photons as part of the interferometer by applying the projection to the an-
cillary photons and we are left with the projection of the photons a and b.

⟨P|ab = ⟨P|anc⟩= 1
√

NN ·
√

N
2

N
2 −1

∑
j=0

ωa j,0d2+a j,1d3+...+a j,N−3dN−1
(

ωc jd0+b jd1 ⟨c jb j|ab +ωb jd0+c jd1 ⟨b jc j|ab

)
.

(5.17)

Here the a j,i correspond to the terms in the state of the ancillary photons that we chose, so they are
known to us. By excluding two time-bins in the ancillary state Eq. (5.14), we are able to tailor the
projection of the photons coming from Alice and Bob such that we project into orthogonal modes. We
finally arrive at the output state of Alice and Bob by applying Eq. (5.17) to the state of Alice and Bob
and their photons Eq. (5.13):
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|ψ⟩out
AB = ⟨P|ab |ψ⟩ABab =

1
√

NN ·
√

N
2 ·N

N
2 −1

∑
j=0

ωa j,0d2+a j,1d3+...+a j,N−3dN−1
(

ωc jd0+b jd1 |c jb j⟩AB +ωb jd0+c jd1 |b jc j⟩AB

)

=

√
N

√
NN ·

√
N
2 ·N

N
2 −1

∑
j=0

ωa j,0d2+a j,1d3+...+a j,N−3dN−1

(
ωc jd0+b jd1

√
N

|c jb j⟩AB +
ωb jd0+c jd1

√
N

|b jc j⟩AB

)
.

(5.18)

The state |ψ⟩out
AB consists of the modes that we want in our final state but they still have phases. To get

rid of the phases, we apply the following unitary on Bob’s side:

U(d0,d1, ...,dN−1) =
N/2−1

∑
j=0

ω−∑N−3
i=0 a j,idi+2

(
ω−c jd0−b jd1 |b j⟩⟨b j|+ω−b jd0−c jd1 |c j⟩⟨c j|

)
. (5.19)

It does not matter if Alice or Bob applies the unitary operation but the expression of U(d0,d1, ...,dN−1)
will be slightly different if we apply it on Alice’s side: the b j and c j are switched in the bras and kets.
By applying the unitary operation we go to:

|Ψ⟩ND =
1√
N

N
2 −1

∑
j=0

(|c jb j⟩+ |b jc j⟩)

for (c j,b j) ∈ {0,1, ...,N −1}2 ∧ ci ̸= c j ̸= bi ̸= b j ∀ i, j .

(5.20)

Alice and Bob have arrived at an N-dimensional entangled state!

5.4. Success Probability
The probability of one successful detection pattern is the square of the constant from Eq. (5.18):∣∣∣∣ √

N√
NN
√

N
2 ·N

∣∣∣∣2. We have shown that the combination of output ports that click does not matter, thus

each photon can be detected in each of the N output ports. Since there are N photons, this leads to NN

successful detection patterns. The total success probability scales with dimension as

psucc =

∣∣∣∣∣∣
√

N
√

NN
√

N
2 ·N

∣∣∣∣∣∣
2

·NN =
2

N2 . (5.21)

5.5. Example for Odd Dimensions
To show that our protocol does not create a high-dimensional state for odd dimensions, we consider the
case where N = 5. The Schmidt rank of the state |Ψ⟩5D we want is S = 5. This state could look like:

|Ψ⟩5D =
1√
5
(|00⟩+ |11⟩+ |22⟩+ |33⟩+ |44⟩)AB . (5.22)

According to Calsamiglia’s theorem [12] we need at least 5 initial particles. Since we have two photons
coming from Alice and Bob, we need three ancillary photons. The joint state of Alice, Bob and their
photons a and b looks like:

|ψ⟩ABab =
1
5
(|0⟩A |0⟩a + |1⟩A |1⟩a + |2⟩A |2⟩a + |3⟩A |3⟩a + |4⟩A |4⟩a)

⊗(|0⟩B |0⟩b + |1⟩B |1⟩b + |2⟩B |2⟩b + |3⟩B |3⟩b + |4⟩B |4⟩b) .
(5.23)
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The projection of the 5 photons in all different time-bins in the basis before the interferometer is:

⟨P|= ⟨0|d0
⟨1|d1

⟨2|d2
⟨3|d3

⟨4|d4
QFT

=
1√
55

N−1

∑
t0=0

N−1

∑
t1=0

. . .
N−1

∑
t4=0

ω t0d0+t1d1+t2d2+t3d3+t4d4 ⟨t0t1...t4|

for (t0, t1, ..., t4) ∈ P[0,1,2,3,4] .

(5.24)

Here, (d0,d1, ...,d4) ∈ {0,1,2,3,4}5 where the 0,1,2,3,4 correspond to the output ports. All combina-
tions of output ports are possible here as long as all photons are measured in different time-bins. The
time-bins correspond to ti. To execute the tailored protocol, we should prepare the ancilla photons in
the state:

|anc⟩= 1√
3
(|a0,0a0,1a0,2⟩+ |a1,0a1,1a1,2⟩+ |a2,0a2,1a2,2⟩)

for {ai,0,ai,1,ai,3} ∈ P[0,1,2,3,4] ∀ i = 0,1,2

∧ a0,0,a0,1,a0,2 ̸= b0,c0

∧ a1,0,a1,1,a1,2 ̸= b1,c1

∧ a2,0,a2,1,a2,2 ̸= b2,c2

∧ {b0,c0,b1,c1,b2} ∈ P[0,1,2,3,4] .

(5.25)

From Section 5.3 we know that each mode should contain a permutation of three time-bins and exclude
two time-bins. The time-bins that are excluded in each mode should be unique. However, since there
are 5 time-bins and we need to exclude 6 time-bins that are not equal to each other (b0,c0,b1,c1,b2 and
c2) this is not possible. Thus there is too much overlap in the modes since two exclusion parameters
are the same.

Suppose c2 is equal to b0. We apply the projection of Eq. (5.24) to the state of the ancillary photons in
Eq. (5.25) to find the projection of photons a and b:

⟨P|ab = ⟨P|anc⟩= 1√
55
√

3

(
ωb0d0+c0d1+a0,0d2+a0,1d3+a0,2d4 ⟨b0c0|+ωc0d0+b0d1+a0,0d2+a0,1d3+a0,2d4 ⟨c0b0|

+ωb1d0+c1d1+a1,0d2+a1,1d3+a1,2d4 ⟨b1c1|+ωc1d0+b1d1+a1,0d2+a1,1d3+a1,2d4 ⟨c1b1|

+ωb2d0+c2d1+a2,0d2+a2,1d3+a2,2d4 ⟨b2c2|+ωc2d0+b2d1+a2,0d2+a2,1d3+a2,2d4 ⟨c2b2|
)

ab
.

(5.26)

Finally, we apply the above projection of a and b to the state Alice and Bob start with from Eq. (5.23):

⟨Pab|ψ⟩ABab =
1

5 ·
√

55
√

3

(
ωb0d0+c0d1+a0,0d2+a0,1d3+a0,2d4 |b0c0⟩AB +ωc0d0+b0d1+a0,0d2+a0,1d3+a0,2d4 |c0b0⟩AB

+ωb1d0+c1d1+a1,0d2+a1,1d3+a1,2d4 |b1c1⟩AB +ωc1d0+b1d1+a1,0d2+a1,1d3+a1,2d4 |c1b1⟩AB

+ωb2d0+c2d1+a2,0d2+a2,1d3+a2,2d4 |b2c2⟩AB +ωc2d0+b2d1+a2,0d2+a2,1d3+a2,2d4 |c2b2⟩AB

)
.

(5.27)

After applying the unitary operation U(d0,d1, ...,d4) as defined by Eq. (5.19), Alice and Bob share the
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state:

|Ψ⟩out =
1

5 ·
√

55
√

3

(
|b0c0⟩AB + |c0b0⟩AB + |b1c1⟩AB + |c1b1⟩AB + |b2c2⟩AB + |c2b2⟩AB

)
=

1

5 ·
√

55
√

3

(
|b0c0⟩AB + |c0b0⟩AB + |b1c1⟩AB + |c1b1⟩AB + |b2b0⟩AB + |b0b2⟩AB

)
=

1

5 ·
√

55
√

3

(
|b0⟩A ⊗ (|c0⟩+ |b2⟩)B +(|c0⟩+ |b2⟩)A ⊗|b0⟩B + |b1c1⟩AB + |c1b1⟩AB

)
.

(5.28)

In the second step of the above calculation, we substitute b0 for c2 and we see that the Schmidt rank
can at most be S = 4. This extends to all odd dimensions Nodd: the protocol with entangled ancillary
photons yields a state with Schmidt rank S = Nodd −1 instead of S = Nodd. Thus, the tailored protocol
can not generate Nodd-dimensional entangled states.

5.6. Algorithm to Create the Tailored State
Executing the tailored protocol in N dimensions requires N−2 ancillary photons. To create the state of
the ancillary photons from Eq. (5.14), we consider the 6-dimensional tailored protocol. We want the 4
ancillary photonic qudits to be in the state:

|anc⟩= 1√
3
(|0123⟩+ |2345⟩+ |4501⟩) . (5.29)

Here, in each mode |i0i1i2i3⟩ the i0, i1, i2, i3 represent the time-bins of the photon and the position inside
the ket represents the spatial mode 0,1,2,3: each spatial mode contains one photon. We can choose
other states for the ancillary photons, but for the sake of this example we choose this state. We do
require that there is no overlap in the time-bins of all spatial modes. If we have two modes |i0i1i2i3⟩
and |i4i5i6i7⟩, we require that i0 ̸= i4 ∧ i1 ̸= i5 ∧ i2 ̸= i6 ∧ i3 ̸= i7.

Figure 5.2: Creating the state of the ancillary photonic qudits for the 6-dimensional tailored protocol. Photons are emitted
by exciting the target emitter controlled on qubits c0 and c1. Optical switches (black rectangles) route the photons to the

correct spatial mode and the delay lines ensure that the photons are in the correct time-bins.

We start with two control qubits that we indicate with subscript c0,c1 and one target qubit t that is
a quantum emitter with |0⟩ as the optically active ground state as we visualize in Figure 5.2. Since we
need a superposition of three modes, we start in the state:

1√
3
(|00⟩+ |01⟩+ |10⟩)c0c1

⊗|1⟩t . (5.30)

Now we build up the state from Eq. (5.29) by applying bit flips to the quantum emitter, controlled by
the modes of the control qubits.
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After each controlled bit flip of the quantum emitter, we excite the quantum emitter such that it de-
cays radiatively and apply the same controlled operation again to bring the quantum emitter back to the
dark state |1⟩t . Since we use these steps often in the protocol below, let us call this the emission of a
photon controlled on |i j⟩c0c1

.

1. We first emit a photon controlled on mode |00⟩c0c1
We use an optical switch to route this photon

to spatial mode 0. The joint state of the control qubits, target qubit and photons in spatial modes
is:

1√
3
(|00⟩ |0vvv⟩+ |01⟩ |vvvv⟩+ |10⟩ |vvvv⟩)c0c1

⊗|1⟩t . (5.31)

Here, |v⟩ indicates the absence of photons in that spatial mode.
2. After time ∆t we flip the quantum emitter controlled on |10⟩c0c1

and route the photon to spatial
mode 3. Since spatial mode 0 is delayed by a delay loop with time ∆t, the state is:

1√
3
(|00⟩ |0vvv⟩+ |01⟩ |vvvv⟩+ |10⟩ |vv0v⟩)c0c1

⊗|1⟩t . (5.32)

3. After time ∆t we emit a photon controlled on mode |01⟩c0c1
and route this to spatial mode 0.

Again after time ∆t we emit a photon controlled on mode |00⟩c0c1
and route this to spatial mode

2. Since spatial mode 0 contains a delay loop, both emitted photons in this step are in the same
time-bin 1 so the state is:

1√
3
(|00⟩ |01vv⟩+ |01⟩ |vvvv⟩+ |10⟩ |vv01⟩)c0c1

⊗|1⟩t . (5.33)

4. After time ∆t we emit a photon controlled on mode |01⟩c0c1
and route this to spatial mode 0.

Again after ∆t we emit a photon controlled on |00⟩c0c1
and route this to spatial mode 3. Since

spatial mode 0 is delayed by ∆t, the state is:

1√
3
(|00⟩ |012v⟩+ |01⟩ |2vvv⟩+ |10⟩ |vv01⟩)c0c1

⊗|1⟩t . (5.34)

We continue to build up the ancillary state in this way until we arrive at:

1√
3

(
|00⟩c0c1

|0123⟩+ |01⟩c0c1
|2345⟩+ |10⟩c0c1

|4501⟩
)
⊗|1⟩t . (5.35)

We can neglect the state of the target qubit since it is not entangled with the state of the photonic qudits.
We measure the control qubits in the right basis to remove the entanglement with the photonic qudits.
Finally we arrive at Eq. (5.29).

In general, to execute the N-dimensional tailored protocol, we need N − 2 ancillary photons in the
state Eq. (5.14). The protocol that we outlined above can be extended to create this state for the N-
dimensional protocol. The state now consists of a superposition of N

2 modes, so we need ⌈log
(N

2

)
⌉

control qubits, one target qubit that is a quantum emitter and N − 1 optical switches. We require that
all modes in the ancillary state that we choose satisfy the following condition:

i0 ̸= j0 ∧ i1 ̸= j1 ∧ iN−2 ̸= jN−2 ∀ |i0i1 . . . iN−2⟩ , | j0 j1 . . . iN−2⟩ . (5.36)

This ensures that we never have to route a photon to the multiple spatial modes and thus we generate
photons after each other and apply in total N−2

2 delay lines.



6
Comparison of the Protocols

In this thesis, we aimed to generate entangled pairs, and in general herald N-dimensional entanglement,
by using higher dimensions to reduce the entangled qubits’ memory times. The main problem is per-
forming an efficient Bell state measurement in N dimensions and this has been studied in the context
of quantum teleportation. We proposed two protocols that each implement the Bell state measurement
and outperform the existing protocols in terms of hardware requirements and average fidelities: the pro-
tocol with all input modes from Chapter 4 and the tailored protocol from Chapter 5. In this chapter, we
compare how our proposed protocols perform on average fidelity, hardware requirements and success
probabilities. We compare our protocols against the permutation protocol from Zhang et al. [48] and a
protocol that uses photonic qubits e.g. the two-photon entanglement protocol. We simulate the effect
of dephasing and amplitude damping during the generation of multiple qubit pairs with Monte Carlo
simulations and we end with recommendations for future research.

6.1. Average Fidelity
In schemes such as the single and two-photon entanglement protocol, the protocol can be executed in
parallel in order to generate multiple entangled pairs: the pairs that have been generated successfully
are stored during the memory time while the other pairs are being generated. During the memory time,
the entangled qubits suffer from dephasing and amplitude damping. To examine the quality of the
generated entangled pairs in a more realistic way, we simulate the effects of dephasing and amplitude
damping. For more details, see Appendix A.

We simulate the average fidelity for the generation of 2, 3 and 4 and 5 entangled pairs for high-
dimensional entanglement protocols versus the two-photon entanglement protocol and we show the
results in Figure 6.1 for increasing distances. Since the high-dimensional entanglement protocols entan-
gle the qudit registers with a photonic qudit, they are denoted in the legend as ’qudit’. The two-photon
protocol heralds one entangled pair by entangling the qubit register with a photonic qubit and is thus
indicated with ’qubit’. We assume that the time of local operations is negligible, for example pulses
to generate photon-qudit entanglement as described in Section 4.6. We also assume a dephasing time
Tp = 5 ms and for amplitude damping we assume a relaxation time of T1 = 10 ms for the memory qubits
[35][47]. Note that if the coherence time of the memory qubits becomes very long Tcoh ≫ TgeneL/Latt

the high-dimensional protocols will not offer a significant advantage. However, this requires coherence
times that scale exponentially with distance.

44
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(a) Two generated Bell pairs.
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(b) Three generated Bell pairs.
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(c) Four generated Bell pairs.
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(d) Five generated Bell pairs.

Figure 6.1: Average fidelities for the generation of 2 (a), 3 (b), 4 (c) and 5 (d) entangled qubit pairs versus distance for the
two-photon entanglement protocol (indicated with ’qubit’) and high-dimensional entanglement protocols (’qudit’). Here we
take into account effects of transmission loss of the photons, dephasing and amplitude damping of the qubit register during
the generation of all pairs. Note that for large distances, the high-dimensional protocols generate entangled pairs with much

higher fidelity than the two-photon protocol.

As the distance increases, the transmission loss increases exponentially according to Eq. (2.9) and
thus the expected memory time of the two-photon entanglement protocol increases exponentially. Thus,
we expect the fidelity of protocols that use photonic qubits to decrease faster than the average fidelity
of qubit pairs heralded with the high-dimensional protocols. In Figure 6.1 we indeed see that high-
dimensional protocols always outperform the two-photon entanglement protocol. For increasing dis-
tances, the qudit protocols are able to achieve average fidelities that are higher than F = 0.95.

6.2. Success Probability
The two-photon entanglement protocol has a success probability of psucc =

1
2 and generates one en-

tangled qubit pair. The high-dimensional protocols have various scalings of success probabilities with
dimension. In Table 6.1 we give an overview of success probabilities for several dimensions. The val-
ues for the permutation protocol are taken from the paper of Zhang et al. They determine their success
probabilities in a numerical way for dimensions 3 to 6, thus the success probabilities for dimensions
N = 8 and N = 16 are unknown. The success probabilities for the all-input modes protocol are calcu-
lated from Eq. 4.15. Note that this is an upper bound and that there exists no proof that this upper bound
is achieved for every dimension. The success probabilities for the tailored protocol are calculated from
Eq. (5.21), which we proved to hold for every even dimension in Section 5.3. Since this protocol only
heralds entanglement for even dimensions, the odd values do not exist as indicated with ′−′ in the table
below.
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dimension N 3 4 5 6 8 16

Luo et al. superposition ≤ 0.22 ≤ 0.09 ≤ 0.04 ≤ 0.02 ≤ 2 ·10−3 ≤ 1 ·10−6

permutation ptel 0.11 0.15 0.04 0.06 ? ?

permutation ptot 0.22 0.01 0.01 0.001 ? ?

tailored - 0.13 - 0.06 0.03 0.008

Table 6.1: Success probabilities for various dimensions of the high-dimensional entanglement protocols.

The all-input modes protocol performs the worst and the success probability quickly decreases to
very low values. The success probabilities of the permutation protocol and the tailored protocol are sim-
ilar for several dimensions. However to create the superposition of permutation modes, the permutation
protocol requires another N-dimensional Bell state measurement. This decreases the total success prob-
ability of the permutation protocol and compared to this the tailored protocol vastly outperforms the
permutation protocol. The creation of the states that are needed in the tailored protocol is deterministic,
so the total success probability is not lowered by this. Even for 16 dimensions, the tailored protocol
succeeds in approximately 1% of the attempts and with each successful run heralds log2(16) = 4 qubits
pairs.

6.3. Number of Attempts
The success probabilities of the previous section only take into account if the Bell state measurement
succeeds. In practice, the transmission loss of photons reduces the total success probability. To see
this effect, we plot the number of attempts to generate two and three entangled pairs against distance
in Figure 6.2. Here ’qubit’ indicates the two-photon entanglement protocol that is executed twice in
parallel. The simultaneous attempt to generate all qubit pairs is counted as one attempt.

(a) Two generated Bell pairs, so dimension is N = 22 = 4.
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(b) Three generated Bell pairs.

Figure 6.2: Number of attempts before two (a) and three (b) Bell pairs are generated versus distance for the two-photon
entanglement protocol (indicated with ’qubit’) and various high-dimensional entanglement protocols. Here we take into

account transmission loss of the photons.

The probability of successfully transmitting a photon decreases exponentially with distance ac-
cording to Eq. (2.9). The expected number of attempts thus increases exponentially with distance. We
indeed observe this in the figure above. Out of all protocols, the qubit protocols have the largest success
probability which lowers their number of attempts. For the high-dimensional entanglement protocols,
we use the values from Table 6.1 for dimension N = 4 and N = 8. For the permutation protocol we
have 2 options and we use the total success probability ptot, 4 = 0.01. Note that if the permutation
state that is necessary for the permutation protocol can be generated in a deterministic way, the success
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probability of ptel, 4 = 0.15 should be used and in that case the permutation protocol outperforms the
tailored protocol with respect to the number of attempts. Also, the success probability of the permuta-
tion protocol is not known for N = 8, so it is not shown in (b) of Figure 6.2. Since the total success
probability would be very low, we would expect it to perform worse than the all-input modes protocol.

6.4. Hardware Requirements
As we describe in Section 6.2, the success probabilities of the all-input modes protocol do not scale
well with dimension. The main improvement of this protocol is that the photonic qudits are encoded in
time-bins instead of spatial modes, as is done in the protocol of Luo et al. [32]. This yields a quadratic
improvement both in the number of spatial modes N required and the number of photon detectors N
necessary: from O(N2) to O(N). Also, the encoded state is more robust against bit-flip errors. The
time-bin encoding is mainly susceptible to photon loss and since we herald on the measurement of
photons this does not affect the fidelity of the entangled pairs.

The implementation of the all-input modes protocol requires one additional energy level available on
Bob’s side to implement the function from Eq. (4.9). The tailored protocol does not need this additional
energy level, but one drawback is that the tailored protocol only works for even dimensions.

The tailored protocol and permutation protocol also use photonic qudits encoded in time-bins, so they
yield the same quadratic speedup as the all-input modes protocol and robustness against errors. The
preparation of the state required for the permutation protocol, which is a superposition of N! modes,
requires a second Bell state measurement. Aside from a lower success probability, this also doubles
the number of linear optical elements necessary. The tailored protocol on the other hand requires a
much simpler state for the ancillary photons that is a superposition of N

2 modes and can be created in
a deterministic way as we describe in Section 5.6. For the creation of ancillary modes, ⌈log2(

N
2 )⌉+ 1

quantum emitters and N −2 optical switches are needed.

6.5. Summary
In this section, we have evaluated the performance of high-dimensional protocols with simulations. We
concluded that the high-dimensional entanglement protocols vastly outperform the two-photon entan-
glement protocol with respect to the average fidelity of multiple generated entangled pairs, especially
for large distances. Out of all high-dimensional protocols, the success probabilities of the tailored
protocol and the permutation protocol are the highest. However, the success probabilities of the permu-
tation protocol become much lower when the probability to create the permutation state of the ancillary
photons is taken into account. Also, the tailored protocol makes use of time-bin encoding and the state
of the ancillary photons is easier and deterministic to create than the state required for the permutation
protocol.
We conclude that:

• High-dimensional protocols can be used to increase the average fidelity of multiple heralded
entangled pairs for distances approximately L ≥ 10 km.

• Although the tailored protocol only works for even dimensions, it is the only protocol with a
polynomial scaling of the total success probability with dimension and an efficient scheme to
create the required ancillary state. This gives the best performance on the number of attempts
out of all high-dimensional entanglement protocols. Only the two-photon protocol scores better.



7
Conclusions

This research aimed to find protocols that generate entangled pairs and in general herald N-dimensional
entanglement between remote nodes with linear optics. By heralding multiple pairs at the same time,
we reduce the memory time of the register qudits. From the comparison of the previous chapter, we
conclude that for distances L ≥ 10 km the high-dimensional entanglement protocols vastly outperform
the two-photon entanglement protocol that is multiplexed in terms of average fidelities.

By changing the implementation of Luo et al. from spatial mode encodings for the photonic qudits
to a time-bin encoding in the all-input modes entanglement protocol, we improved the hardware re-
quirements to O(N) over O(N2) where N is the number of photon detectors or the number of spatial
modes. Note that N is also the dimension (number of energy levels) of the qudit register. The time-bin
encoding makes the protocol more robust to noise from the environment: it is not susceptible to bit flip
errors as other ways of encoding photons are (for example polarization). However, the upper bound
of the success probability of the all-input modes protocol decreases exponentially with dimension N:
pall-input modes ≤ N!

NN . This makes the all-input modes protocol very difficult to implement in practice.

To circumvent this we propose a novel protocol that scales polynomially with dimension instead of
exponentially: the tailored protocol has a success probability of ptailored = 2

N2 . This is comparable to
the success probabilities of the permutation protocol as proposed by Zhang et al. The main drawback
of the permutation protocol is that the ancillary photons need to be in a superposition of all permutation
modes. This state is created by another Bell state measurement on entangled qudits. The success prob-
ability of this Bell state measurement scales as N!

NN so the permutation scheme remains very difficult to
implement in practice. The ancillary state required for the tailored protocol requires a superposition
of N

2 modes that can be generated in a deterministic way, which makes it more suitable to implement
in practice. The scheme to create the state of the ancillary photons requires ⌈log2(

N
2 )⌉+ 1 quantum

emitters and N −2 optical switches.

7.1. Future Works
In this thesis, we outlined our protocols in a theoretical way, although we did take into account the main
sources of errors such as transmission loss, dephasing and amplitude damping. To better understand
the effectiveness of the tailored protocol, future works could implement the tailored protocol in prac-
tice. An example of such an experiment would be to implement the tailored protocol in 4 dimensions,
which would herald two generated qubits pairs at the same time. The theoretical success probability of
the Bell state measurement is ptailored, 4 = 0.13. In practice, there will be other losses that lower the
success probability, for example the photon collection efficiency. However, it would be interesting to

48
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look into an implementation with Rydberg atoms. The photon collection efficiency is about 60% [43]
and the Rydberg blockade could be used to implement the controlled operations to create the state of
the ancillary photons. Other quantum systems could also be considered, for example nitrogen-vacancy
centers.

Given that the difference in average fidelity of entangled pairs generated with the single or two-photon
protocol versus the tailored protocol becomes larger with distance, future work towards establishing
entanglement via satellites with the tailored protocol would also be interesting.

In the N-dimensional tailored protocol, the state of the ancillary photonic qudits is created with N −1
optical switches. While optical switches consist of linear optical elements, the phase applied in the
switch needs to change abruptly which is arguably not linear. It would be interesting to look into
creating the state of the ancillary photons without optical switches.
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A
Decoherence of the Qubit Register

We model the decoherence of the qubit register during waiting time t as a dephasing channel and an
amplitude damping channel. We use Krauss operators A0 and A1 for dephasing:

A0 =

√1+e−t/TP
2 0

0
√

1+e−t/TP
2


A1 =

√1−e−t/TP
2 0

0 −
√

1−e−t/TP
2

 (A.1)

For the amplitude damping channel we use the Krauss operators are E0 and E1:

E0 =

[
1 0
0 e−t/2T1

]
E1 =

[
0
√

1− e−t/T1

0 0

] (A.2)

We model the decoherence of ρ as:

ρ̃ = ∑
i=0,1; j=0,1

(AiE j)ρ(AiE j)
† (A.3)

We assume a dephasing time of Tp = 5 ms and for amplitude damping we assume a relaxation time
of T1 = 10 ms for the memory qubits [35][47]. For the high-dimensional entanglement protocols, the
waiting time is equal to the time it takes to run the protocol once: t = L

c . For the single photon protocol
we simulate the waiting time with a Monte Carlo simulation that averages over 10000 repetitions.
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