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Abstract—In this work, we evaluate autoscaling solutions for
stream processing engines. Although autoscaling has become a
mainstream subject of research in the last decade, the database
research community has yet to evaluate different autoscaling
techniques under a proper benchmarking setting and evalua-
tion framework. As a result, every newly proposed autoscaling
solution only performs a shallow performance evaluation and
comparison against existing solutions. In this paper, we evaluate
autoscaling solutions by employing two streaming queries and a
dynamic workload that follows a cosinus pattern. Our experi-
ments reveal that current autoscaling techniques fail to account
for generated lag due to rescaling or underprovisioning and
cannot efficiently handle practical scenarios of intensely dynamic
workloads.

Index Terms—autoscaling, stream processing

I. INTRODUCTION

In previous decades, data processing was mainly taking
place in dedicated clusters of fixed resources. However, in the
cloud, resources are not fixed, while different pricing schemes
provide incentives for the dynamic provision of resources.
In addition, the inclusion of spot instances allows for better
utilization of idle resources with cost-saving incentives.

Most of the widely adopted stream processing engines
(SPEs) were originally developed for deployment on clusters
of fixed resources. As a result, these SPEs provide limited au-
toscaling capabilities and require substantial operational effort
to adapt to changes in needs and workloads. An operations
team has to always monitor the performance of the deployed
system or application, estimate the required resources, de-
cide whether to scale or not and perform the actual scaling
manually. This process is time-consuming and can lead to
slow reactions to workload changes with serious performance
implications.

To provide automated solutions, specialized autoscalers
have been developed, in order to equip SPEs with the missing
self-managing capabilities. However, it remains unclear how
these autoscalers perform in different practical scenarios, and
under a proper comparison framework. We argue that without
a principled and configurable experimental analysis, it is
doubtful that these autoscalers will have the desired impact
on modern stream processing engines.

In this paper, we report on the first step towards a principled
and configurable framework that will allow for a comprehen-
sive experimental analysis of autoscalers for SPEs. In short,
the contributions of this paper go as follows:
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Fig. 1. MAPE loop for stream processing autoscaling

o We stress the importance of extensive experimental eval-
uation of autoscalers for stream processing.

o We reproduce state-of-the-art autoscalers for stream pro-
cessing under a common framework.

¢ We present our preliminary experimental results over two
NEXmark queries and a heavily dynamic workload.

II. BACKGROUND
A. Autoscaling Process

The process of autoscaling resembles the MAPE loop from
control theory. As depicted in Figure 1, the first step includes
monitoring of a stream processing job and acquiring all the
metrics needed both for the evaluation of its performance
and for deciding on performing rescaling actions. After these
metrics are collected, the analysis step takes place where we
evaluate the current state of the job and calculate the job’s
needs to adhere to the enforced SLOs. The outcome of the
analysis is then used from the planning step to decide on the
proper rescaling actions. The goal is to satisfy the calculated
needs while minimizing the resources employed. The last step
is executing the devised plan. Responsible for retrieving the
metrics is usually either the monitoring API of the SPE or
any applicable monitoring tool, while execution usually falls
on the SPE and its rescaling mechanism. The analysis and
planning steps are handled from the autoscaler.

B. Common notions

Before discussing the selected autoscalers and the experi-
mental results we discuss a few notions that we deem neces-
sary for understanding what follows.

Task Managers & Operators. In this paper we use Apache
Flink as our SPE. We choose Flink among other SPEs since
it is the current state-of-the-art and the most widely adopted
system in production, and it provides all the expected by the
autoscalers mechanisms. A task manager is the fundamental
processing unit of Apache Flink. By default, a task manager
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runs multiple operators that share its resources. However, for
this paper, we have configured Flink to isolate operators and
assign a single operator to each task manager.

Back pressure. Back pressure is a rate control mechanism
employed by many SPEs. When an operator cannot handle
the input rate, the system uses the back pressure mechanism
to regulate the output rate of the upstream operator. The
backpressure can be propagated up to the source operator.

Lag & Latency. Lag is defined as the number of unprocessed
records waiting in the input queue or the operator buffers.
Latency is defined as the time a record spends in the input
queue until the SPE ingests it.

III. AUTOSCALERS

There is plenty of research done in autoscaling for cloud
computing [6], however, only a handful of the existing so-
lutions can be applied or target stream processing. In this
paper, we select for evaluation the state-of-the-art DS2 [5]
and Dhalion [3], as the most cited and easily deployable
solutions. We also consider DRS [4] and the solution from
Varga et al. [8]. However, DRS requires metrics that are not
natively supported by Flink and, as a queue-based model, it is
not easily applicable for different queries. On the other hand,
Vargas does not support per-operator autoscaling and it is not
easily extensible to do so. Finally, we selected the Horizontal
Pod Autoscaler [2] as both a simple baseline and an applied
solution from a commercial product.

A. Dhalion

Dhalion [3] is a framework that provides self-regulating ca-
pabilities to underlying stream processing systems that employ
a backpressure mechanism to perform rate control. It utilizes
user-defined policies to handle performance issues related to
different underlying causes, such as load skew, slow instances,
and provisioning. In this work, we are only interested in its
proposed policy for autoscaling. The policy distinguishes two
cases: the overprovisioning and the underprovisioning case.

Overprovisioning. For an operator of a running job to be
considered overprovisioned, two conditions must hold: (a)
there is no backpressure anywhere in the pipeline, and (b)
the input queue of the operator has a length of almost zero.
For each operator considered overprovisioned, new parallelism
is calculated using a provided scale down factor. At the end
of the monitoring iteration, a rescaling operation is triggered,
and the overprovisioned operators are scaled down.

Underprovisioning. If there is any backpressure along the
pipeline the job is considered to be in an unhealthy state
and underprovisioned. To resolve the issue, the first step is
to identify the operator which is the root of the backpressure.
Then a scale up factor is calculated for this operator based
on the amount of time the job managed to process the input
normally and the amount of time backpressure occurred over
the monitoring window. More precisely, the scale up factor is
provided by the following formula:

backpressuredIime,,,

scaleUpFactor = (D)

normal ProcessingTime.,,
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where w; is the current monitoring window.

Since we consider Kafka as our source we also need to
scale up/down Flink’s KafkaSource operators. Since there is
no backpressure information available for these operators we
decided to use the increase of lag in Kafka as an indicator of
backpressure caused by the KafkaSource operators. The scale
up factor for these operators is calculated as:

pendingRecordsRate,,,

2

scaleUpFactorics = consumedRecordsRate,,,
where pendingRecordsRate is the average lag increase per
second and consumedRecordsRate is the average number of
records consumed per second over the monitoring window w;.

We gather the needed metrics using the monitoring API of
Flink and Prometheus. Since Flink does not report the input
queue size of each individual operator we use the percentage
of input buffers used to decide on the lag in the input queues.

The only tunable parameter for Dhalion is the scale down
factor that is user-provided.

B. DS2

In contrast to Dhalion which scales each operator indepen-
dently, DS2 [5] attempts to combine the scaling of all operators
in a single step by leveraging the topology of the streaming
query. To do so, it introduces the notions of useful time, true
processing rate, and true output rate. Useful Time is the time
spent by an operator in (de)serializing and processing records.
True processing rate is the number of records an operator
processes per unit of useful time, while true output rate is
the number of records an operator outputs per unit of useful
time. Based on these notions, DS2 calculates progressively the
optimal parallelism of each operator o; as follows:

> true output rate of upstream operators
OP,, =

avg(true processing rate) of o; ®)

In this work, in order to calculate the optimal parallelism for
the KafkaSource operators, we use the rate at which records
are written to Kafka as the true output rate of the upstream
operators. In addition, we extend DS2 with a user-provided
overprovisioning factor in order to help DS2 to handle noisy
spikes and the lag accumulated due to scaling actions. This is
also the only tunable parameter of DS2.

C. HPA

The Horizontal Pod Autoscaler (HPA) [2] is the default
autoscaling solution shipped with Kubernetes. As its name
implies, HPA tries to automatically scale horizontally a de-
ployment by adding or removing pods, in order to match user-
provided target values on the observed metric. The observed
metric can be either the standard average CPU/memory utiliza-
tion or any custom user-defined metric. HPA [2] attempts to
match the user-provided target value of the metric by scaling
up or down based on Equation (4).

currentMetricV alue

1

desiredPods = tPod
esiredPods = [currentPods x targetMetricV alue @
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Fig. 2. Latency results of query 1.
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Fig. 3. Number of task managers deployed over time on query 1.
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When scaling down HPA opts for a conservative approach.
It records the scaling recommendations over a stabilization
window and picks the highest recommendation as the desired
amount of resources. This way it ensures a gradual scaledown
that is not affected by fluctuations in the metric values.

HPA as a Streaming Topology Autoscaler. Since a given task
manager in the streaming topology runs on an individual pod,
HPA can be used as a basis for building a streaming topology
autoscaler, that will add or remove task managers when
required. HPA works over the task managers’ deployment of
Flink and is agnostic of the underlying operators. Thus, it
cannot be used as an autoscaler for streaming topologies out
of the box.

We now describe the changes that we applied to HPA in
order to turn it into a streaming topology autoscaler. Our own
version of HPA monitors the actual operators within a pod,
instead of the deployment of the task managers. We employ
as a metric the average CPU utilization. In what follows, we
will refer to this custom version of HPA as HPA-CPU. HPA-
CPU has two tunable parameters: the target value of the CPU
utilization and the length of the stabilization window.

IV. EXPERIMENTS
A. Experimental Setup

The experiments are conducted on a 3-node Kubernetes
cluster with AMD EPYC 7HI12 2.60GHz CPUs. On top
of this Kubernetes cluster, we have configured an Apache
Flink cluster in application mode. The JobManager instance
is provided with 1 CPU and 8GB of memory, while each
employed TaskManager consists of 1CPU and 4GB of mem-
ory. An NFS server is deployed as a persistence layer for the
Apache Flink deployment, Prometheus(https://prometheus.io/)
is used for scraping and gathering all the metrics, and an

97

Apache Kafka(https://kafka.apache.org/) deployment is used
as a source for the experiments. We cap the available resources
to 80 task managers, resulting in a maximum of 80 CPUs and
320GB of memory available for processing.

B. Queries & Workload

For the evaluation of the autoscalers, we employ queries
from the original NEXMark benchmark [7] and the extended
version provided by the Apache Beam project [1]. We use a
scalable generator that utilizes the NEXMark entity generators
to create dynamic workloads following specified patterns.

Queries. More specifically, we first evaluate the autoscalers
using Q1 of the original NEXMark benchmark [7]. QI is a
simple map query that performs a currency conversion from
U.S. dollars to Euros. We choose QI as a representative state-
less query with a simple topology and a low computational
load. In addition, we employ Q117 from the extended version
of the benchmark [1]. Q1] computes the number of bids a
user made in each active session. It represents a windowed
aggregate (count) over a session window and, therefore it
comprises a stateful complex computation task.

Workload. We choose to develop our own data generator
in order to mimic the periodic/seasonal workloads seen in
real-life deployments. We opted for a dynamic workload that
follows a cosine pattern. This cosinus workload has a mean
value of 1.2M records per second, a max-divergence of 1M,
and a period of 60 minutes. Some moderate noise of up to
100K records per second is also introduced to mimic real-
world conditions. Every experiment has a total duration of
140 minutes. Due to the length and the high input rate, we
set for each record a time-to-live of 10 minutes in our Kafka
queue to avoid saturating the storage system.

Autoscalers’ Configuration. For our experiments, we set
Dhalion’s scale down factor to 0.2, a value suggested in the
original work. We use an overprovisioning factor of 0.2 for
DS2, which we consider to be sufficient as the intention of DS2
is to avoid any overshooting of resources. We use the default
stabilization window of 5 minutes for HPA-CPU, and we
choose a target CPU utilization of 70% as the best performing
among the values tested. In addition, we employ a cooldown
window of 5 minutes after every scaling action to allow time
for the system to reach a stable state and avoid back-to-back
scaling actions due to a slow restart of the system or the lag
produced by the scaling action.

C. Preliminary Experimental Results

Query 1 (Q1). After some dry runs, we provide a starting
parallelism of 5 for each operator for Q7 in order to ensure that
the system starts with close to optimal resources and to avoid
spending time adjusting to the starting load. In terms of latency
(fig. 2), HPA-CPU greatly outperforms both Dhalion and DS2.
It manages to retain a very low average latency throughout
the experiment(table I). The few spikes of latency in fig. 2 are
due to the rescaling actions that take place. DS2 and Dhalion
manage to keep a low level of latency while the input rate was
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Fig. 4. Latency results of query 11.
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low but failed to adapt when the input rate was increasing. For
Dhalion this is a result of scaling a single operator per scaling
action, while for DS2 is a result of the inability to handle
the lag accumulated from backpressure during the cooldown
period and the rescaling action. In terms of resource usage
(fig. 3), DS2 assigns on average fewer resources than HPA-
CPU and Dhalion, and significantly fewer resources when
the system operates under high input rates (table I). These
differences in the assigned resources also justify why HPA-
CPU achieves a better performance in terms of latency. In
terms of rescaling actions, DS2 triggers the least rescaling
actions since it is more stable and avoids triggering a rescaling
action when is not necessary as we can see in Figure 3 for
low input rates.

Query 11 (Q11). Similarly, we start the execution of Q11
with a parallelism of 10 for each operator. Q/] consists
of heavier computational workload; fact that reflects on the
results. In terms of latency (fig. 4), none of the autoscalers
manages to scale the system well enough to handle high input
rates. HPA-CPU and Dhalion manage to keep latency low for
lower input rates, while DS2 fails. Again the main reason
for this behavior of DS2 is that the lag that exists in the
Kafka queue is not considered when calculating the required
parallelism. In terms of resource usage (fig. 5), DS2 and HPA-
CPU assign a significantly lower amount of resources, while
Dhalion recommends on average 8-9 more task managers and
reaches a maximum number of task managers that is higher
than the rest by 20 units. For Dhalion, this is mostly attributed
to the excessive scaling of the source operator due to the
scaleUpFactorgg. DS2 has a slightly better performance
than HPA-CPU as it recommends on average one less task
manager. In terms of scaling actions (table I), all autoscalers
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TABLE I
SUMMARY OF RESULTS FOR THE FULL DURATION OF THE EXPERIMENTS.
Quer; Aut ler Rescaling TaskManager: Latency(s)
uery utoscale Actions askManagers atency(s
Max | Avg Max | Avg
ol Dhalion 27 30 13.2 254.4 68.3
DS2 23 15 94 137.6 39.4
HPA-CPU 26 21 11.4 71.3 6.4
Q11 Dhalion 27 51 22.8 432.5 | 130.7
DS2 26 30 13.2 636.6 | 284.1
HPA-CPU 26 34 14.2 466.3 178.0

showed the same performance.

Summary of Findings. Surprisingly, HPA-CPU has the better
overall performance for both queries. Although it recommends
slightly more task managers than DS2 across the experiments,
it achieves low latency results for the simple map query
(Q1) and similar to Dhalion latency for the window aggre-
gate (Q11), while recommending on average 8 fewer task
managers. It is evident that DS2 recommends resources that
follow the same pattern as the input rate, however, it does
not account for lag; hence, the bad performance. Dhalion has
the worst performance among the autoscalers both in terms
of resources and latency. Of course, these performance results
depend heavily on parameter tuning, the deployment decisions
of the underlying system, and our design decisions to allow
all the autoscalers to work on an end-to-end basis under
real-world assumptions. We try to tune fairly the autoscalers
and the underlying system and we intend to better explore
parameter tuning and deployment properties in future work.

V. CONCLUSION

In this paper, we point out the lack of significant compar-
ison between existing solutions proposed for autoscaling in
stream processing, and the need for an extensive experimental
evaluation to identify the best-performing existing solutions
and the biggest challenges remaining unsolved. We showcase
the preliminary results of such an experimental evaluation
of autoscalers using a dynamic workload and two NEXMark
queries. Surprisingly, in contrast to existing literature, a simple
CPU usage-based solution outperforms state-of-the-art solu-
tions. Using these experiments, we argue that an efficient
solution should take into account the impact in terms of
generated lag of the rescaling actions and the existing lag when
recommending optimal parallelism for the current load.
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