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Preface
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experience and even a can of chips with everyone. This brings me to the first person I would like to
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I would also like to thank Andreas Wiegand, my Thesis supervisor and future director from Astos
Solutions. He trustedme, a master student with no working experience, to collaborate with his company
on developing this Master Thesis project. He also had the patience to teach me and support me along
the way every time I needed help. It was very reassuring to have this support, especially during Corona
times, when it could have been easy to lose focus.

Of course, I could never forget my friends, all of them. From the very old to the newest ones. But
I would especially like to mention Marc and Irene, which have been by my side during every important
moment, every tough deadline and every celebration afterwards, and I have no doubt they will continue
to be there whatever may come our way.

Finally, I would like to express my sincerest gratitude to my family. To my parents, who have sup­
ported all my projects since the first moment. To my siblings, all three of them, who I know will be at
this same moment very soon. And also to my grandmother, with her mailings both digital and physical,
which made me feel home a little closer.

Thank you very much to all of you. I hope you enjoy this work as much as I have done.

J. Tatay Sanguesa
Delft, June 2021
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Abstract
The aim of this investigation is to improve the first stage of mission analysis on trajectories in the Circular
Restricted Three­Body Problem (CR3BP). This will be achieved by developing a versatile tool that can
optimize any transfer in the CR3BP in terms of ΔV and time­of­flight. Hence, the output will not be
a single solution, but a Pareto front with multiple non­dominated solutions that range in duration and
propellant consumption, such that the user can easily identify the one that better suits his/her particular
mission requirements.

The tool considers three types of arcs: direct transfers, manifold trajectories and flyby arcs which
can be combined in any way to connect the departure and destination orbits. These can be defined as
Keplerian orbits or CR3BP periodic solutions, including Lyapunov, Halo orbits or NRHOs. This is done
in a very intuitive way thanks to the careful selection of design variables. Therefore the developed tool
can be used by designers that do not have a large amount of experience solving trajectory optimization
problems in the CR3BP.

In order to demonstrate the capabilities of the tool, two specific transfers were optimized. In both
cases, the Pareto front is obtained with the combination of optimal solutions that include direct transfers,
and manifold and flyby arcs. First, a LEO to 𝐿2 Halo orbit with 𝐴𝑧 = 2000 km was selected to compare
the results obtained by the software with those from literature. The tool not only obtained more results
than the previous research, but the solutions found were also improved in terms of ΔV and time of
flight. The second transfer was a GTO to lunar Gateway NRHO trajectory, which was chosen to show
the applications of this study to problems of high scientific and industrial interest in present times, as
well as to prove the versatility of the algorithm. Again, the results are better than the ones found in
literature, if only by the number of different solutions that are obtained. Moreover, these results can
easily be exported into a higher­fidelity software such as ASTOS.
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1
Introduction

This chapter contains the introduction to this investigation. First, a background on space exploration
and the upcoming lunar activities is shown. Then, the objectives of this study are described. Finally, a
quick outline of the following chapters is presented.

1.1. Background
The Earth and the Moon region in space offers a unique dynamical environment in the near­by part
of the universe. As the mass ratio of both primaries is relatively large when compared to other known
planet­moon systems, the motion of a spacecraft in the Earth­Moon proximity can be heavily influenced
simultaneously by both bodies. Hence, the Circular Restricted Three­Body Problem (CR3BP) can
be especially effective and a powerful formulation for mission design in this region. By making use
of multiple gravity fields at the same time, the CR3BP reflects more accurately the actual dynamical
environment and also smooths a transition to higher­fidelity models. Hence, the trajectories identified
during this initial design phase, are a suitable initial guess for the final trajectories computation, as they
retain most of their characteristics. The CR3BP also offers the possibility of very cheap transfers, as
the gravitational pull of both bodies can be considered to favor the transfer, rather than as perturbations
that need to be corrected.

Besides the mathematical advantages and challenges that the CR3BP presents, the Moon being
the body closest to planet Earth is a fact that has not been ignored through history. From astronomers
who tried to explain the motion of the Moon by observing it since early times, to the culmination of
the space race in 1969 with the Apollo 11 lunar landing, the proximity of the Moon has made it an ob­
ject of interest throughout human history. Although humans last walked on the Moon surface in 1972,
the interest in manned lunar missions has been renewed in recent times. Orbits in the vicinity of the
Earth­Moon equilibrium points have also garnered interest in the last few years. Mainly, because their
orbital characteristics offer applications as both scientific observation and communications network to
support human facilities on the Moon surface. The pinnacle of these missions will most likely be the
Artemis program developed by the National Aeronautics and Space Administration (NASA) whosemain
achievement is to develop an orbital outpost around the Moon that provides vital support for a sustain­
able, long­term human return to the lunar surface, as well as a staging point for deep space exploration
[55]. This outpost, known as the lunar Gateway will set a new chapter in humanity’s exploration history.

In the same way as early explorers that sailed far from their home countries to satisfy their curiosity
about an unknown world, humanity is now starting to explore other planets. Human exploration of Mars
has become a strong possibility to come in the following decades, but for now, the focus is placed on
the Moon, and that is where this investigation will place its focus on as well. In the next section, the
main research objectives are presented and summarized into a single research question.

1



2 1. Introduction

1.2. Research Objectives
The aim of this work is to develop a tool that can improve the space exploration process. To do so, the
mission analysis task regarding trajectory optimization in the CR3BP was studied and several potential
advancements were observed.

Firstly, most of the previous work in the field considers the propellant consumption (usually repre­
sented by the ΔV) to be the only relevant objective in mission analysis, and thus focus on minimizing
this ΔV. Nevertheless, there are other relevant objectives in trajectory optimization: at the very least,
the time of flight should also be considered. Hence, this investigation will approach transfer optimiza­
tion in the CR3BP from a multi­objective perspective, rather than a single­objective one. The aim of
the tool, then, is not to obtain a single solution, but rather provide the mission analyst with a converged
set of optimal solutions, with different ΔV and TOF values, such that the user can decide which of them
better satisfies the requirements. This also restricts the usefulness of the tool to the first stages of the
mission analysis process, where it is preferable to obtain a first approach result of a large number of
solutions, rather than a very detailed single solution.

Another problem that was identified is that most of the work is focused on finding optimal results for
a single trajectory, in some cases a very specific one, such as the transfer from a LEO to the Gateway
orbit. Although this is understandable given the relevance of such transfers, a versatile tool where the
user could easily change any of the transfer characteristics and adapt it to his or her own problem would
be a clear improvement for the mission analysis process. Therefore, the flexibility of the tool and its
capability of adapting to all transfers within the CR3BP problem became the second objective.

Also, it was recognized that the tool output should be compatible with higher­fidelity tools, such
that the optimal trajectories obtained by the algorithm that were selected by the mission analyst, could
be easily studied more in depth. Thus, the next objective is to make the tool compatible with more
advanced software.

Finally, in an attempt to reach a wider range of users, it was decided to add a last objective: to
construct an intuitive tool such that the user would not need to have a large prior knowledge nor be a
specialist in the CR3BP.

These objectives can be summarized in the following research question:

Is there a user­intuitive way to optimize a wide range of trajectories in the CR3BP model
from a multi­objective perspective?

This question can be split in a series of subquestions:

How will the tool be user­intuitive?

What constitutes a wide­range of trajectories in the CR3BP? Is this limited to departure and
destination orbits options, or also to transfer arcs?

Which multi­objective algorithm is best suited to solve this problem?

1.3. Project Outline
In order to answer the previous research question, several steps were followed. The present report was
made to summarize the procedure and conclusions of the investigation. It is organized in the following
way:

• Chapter 2 summarizes the state of the CR3BP trajectory optimization in the literature. This in­
cludes a brief historical review from the first mathematical descriptions of such problem, to re­
markable space missions that took place in recent years; both in the Earth­Moon CR3BP and in
other systems. Also, the ASTOS software is introduced, as this advanced software will be used
to further investigate the solutions obtained.

• Chapter 3 provides a complete description of the background knowledge required to under­
stand the trajectory optimization concepts exposed. This includes the assumptions, geometry
and equations of motion in the CR3BP and ephemeris physical model, as well as the coordinate
transformation calculations between them. Moreover, a discussion on multi­objective optimiza­
tion and optimization algorithms is given here.
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• Chapter 4 lists the different orbits that have been included into the tool capabilities. These range
from Keplerian orbits, to CR3BP periodic solutions, including Lyapunov, Halo orbits and NRHOs.

• Once the orbits have been defined, Chapter 5, describes the different trajectory arcs that can be
employed to connect such orbits. Three possibilities are investigated in detail: direct transfers,
manifold solutions, and flyby transfers.

• Chapter 6 presents the optimization problem and explains how to define the characteristics of
the transfer that will be optimized. This is done with input files. Then, the output files are shown,
describing how the information is received by the user, and how can it be exported into external
tools such as ASTOS.

• Chapter 7 explains the inner workings of the developed software, mainly focusing on the design
variables and the relations between them. Furthermore, it also describes the optimization process
as a whole.

• Once the entire procedure followed has been explained, Chapter 8 consists of the verification
and validation of the different parts of the tool. In the end, it reproduces a result from literature to
prove that the tool functions correctly.

• After the tool is verified and validated, Chapters 9 and 10 present the results for the selected
trajectory problems. This includes a multi­objective optimization with the corresponding Pareto
front, and a deeper analysis on the most promising solutions.

• Finally, Chapter 11 contains the conclusions of the investigation and a set of recommendations
for future work.





2
Heritage

This chapter summarizes the scientific development evolution with regard to the CR3BP as well as its
current state. Firstly, the general development of the model is described, since the seventeenth century
until the latest advances. Secondly, a review of the principal space missions that have made used of
the CR3BP, both for scientific and for industrial purposes, is presented. Moreover, a separate section is
dedicated to the particular applications of this model in the Earth­Moon system, especially with respect
to the Gateway project. Finally, the ASTOS software is introduced, summarizing its history and listing
its capabilities.

2.1. History of the CR3BP
The CR3BP has been of interest to the scientific community for several centuries. It was first exam­
ined by Newton in the Principia Mathematica (1687) [41], where he also stated his Law of Gravitation.
However, the general three­body problem was first formally stated by Euler in 1727. He recognized its
complexity and was able to identify the three collinear equilibrium solutions after formulating the prob­
lem in a rotating frame. Lagrange followed this work and was able to find the location of the triangular
equilibrium points in 1772. Since then, the libration points have also been known as Lagrangian points.

Figure 2.1: Newton’s Principia Mathematica (left) [41] and Les Méthodes Nouvelles de la Mécanique Celeste by Poincare (right)
[51].

Further renowned mathematicians have had their contributions to the development of the CR3BP,
its formulation and solutions. Jacobi [2] found an integral of motion for Euler’s problem formulation,
which is named after him (Jacobi constant). Hill showed in 1878 that this constant can be used to show
restricted regions in the CR3BP, the Zero Velocity Curves (ZVCs). Poincaré proved that the Jacobi
integral is the only integral of motion of the system, and introduced in Les Méthodes Nouvelles de la
Mécanique Celeste [51] a new qualitative analysis for the chaotic behavior.

5
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In the 1960s and 1970s, with the space race, the CR3BP saw a great development in its theoretical
studies for mission applications. It is worth to note the work by Farquhar in 1968 [10] where he found
Halo orbits while studying the use of collinear Lagrangian points for lunar communication and station­
keeping. Also, recent decades saw the development of manifold trajectories associated with these
libration points and the periodic solutions around them, where Howell [20, 27] and Simó [65] should be
mentioned. In 1967, Szebehely published the book Theory of Orbits [66], compiling all the information
available at the time regarding the CR3BP.

However, it has only been during the last decades, especially due to the improvement in numerical
integration and computing power, that these types of motions have been fully understood for all kinds
of dynamical systems, as explained in [69]. These advances have enabled the use of the CR3BP
model to develop several space missions, past and future, which will be discussed in the next section.
Nowadays, the CR3BP is mainly used in the initial stages of mission design, as the accuracy require­
ments of most missions demand higher fidelity models. Nonetheless, there is ongoing investigation in
alternative three­body models, such as the Elliptical Restricted Three­Body Problem (ER3BP), which
are not constrained by so many assumptions.

2.2. Representative Missions
One of the main advantages of the CR3BP with respect to the two­body model, is the existence of
equilibrium solutions called libration points (see Chapter 3). In principle, they allow the spacecraft to
maintain the same relative position with respect to two bodies with hardly any stationkeeping cost. As
would be expected, these locations have attracted scientific interest in the last years because they
offer great advantages as scientific observation posts and as part of a bigger communications network
between the two bodies, for instance the Earth and the Moon. In the following paragraphs, a collection
of the most important missions to and around libration points is presented.

The ISEE­3 spacecraft [11] launched in 1978 was the first spacecraft that used a libration point as
mission destination, as it was delivered to the vicinity of the Sun­Earth 𝐿1. Besides visiting a comet for
the first time, its main objective was to study the interaction between Earth’s magnetic field and solar
wind, as part of a joint effort between ESA and NASA. There have been four other missions deployed
to the Sun­Earth 𝐿1 point since the ISEE­3 mission, whose purpose has also been to study the Sun’s
composition, solar wind and space weather, among other topics. They are WIND [12], SOHO [53],
ACE [63], and DSCOVR [3].

Figure 2.2: Genesis trajectory as viewed in the Sun­Earth rotating frame. [19]
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Nevertheless, there exist other spacecraft that have been sent to different Lagrangian points over
the last decades or will be in the near future. One of the most notable examples is the James Webb
Space Telescope (JWST) [30], successor of the Hubble Space Telescope. By being located around
the Sun­Earth 𝐿2 point, it will be able to look into outer space without any obstruction from the Earth
or the Sun. Other missions that have been deployed to the Sun­Earth 𝐿2 point are MAP [29] and the
Gaia mission [8].

Finally it is important to mention the Genesis mission [27], as it not only had an 𝐿1 Lissajous orbit as
its destination, but it also employed a heteroclinic transfer by traveling to 𝐿2 before returning to Earth.
This, apart from reducing the propellant cost, enabled a daytime recovery of the capsule.

Overall, it can be seen that the applications of the three­body dynamics are numerous. Advan­
tages range from reducing transfer costs to increasing launch and return windows, or facilitating the
achievement of mission objectives.

2.3. Earth­Moon Three­Body Problem
Although the majority of the CR3BP related missions have been performed in the Sun­Earth system,
NASA has recently proposed to build a new platform for space, Earth and lunar science: the Gateway.
This station will also be used as a staging point for missions to the Moon surface and beyond cis­lunar
space [71], and as a testing site for deep­space technologies [16]. An illustration of the Gateway space
station can be seen in Figure 2.3.

Figure 2.3: Illustration of the lunar Gateway [39].

All of these applications translate in a great variety of potential transfers from the Gateway to other
orbits and viceversa. This has lead to a great development in the Earth­Moon CR3BP theory and
research, as the number of missions planned within this system has increased significantly. In this
section, the transfers of major scientific and industrial interest are presented, as they embody the key
trajectories that the developed tool should be able to compute and optimize.

The main trajectory of interest is be the transfer from Earth to the Gateway orbit. Starting in 2023,
the first two modules, the Power and Propulsion Element (PPE) and the Habitation and Logistics Out­
post (HALO), of the Lunar Gateway will be launched, followed by a great number of missions, including
crewed ones. Hence, it logically follows that the next key trajectory needed would be the return trajec­
tory from the Gateway to the Earth. Nonetheless, as the Gateway will be a scientific platform and a
staging point for lunar surface missions, transfers from the NRHO to all sorts of orbits in the CR3BP will
be required. These may include, among others, Low Lunar Orbits (LLOs), Distant Retrograde Orbits
(DROs), Halo and Lyapunov orbits, and Lissajous orbits. Of course, the return trajectories from these
to the Gateway are also required. Trajectories to other destinations, such as Mars, are not considered
in the current research.



8 2. Heritage

A brief look at literature shows that transfers from Earth to the Gateway are, by far, the most studied
topic, followed by transfers from the Gateway to the lunar surface [31, 72]. However, few papers study
the return trajectory from the NRHO, with the majority focusing on other destination orbits, such as
LLOs, or referring to the Theorem of Image Trajectories [33, 34]. Nevertheless, although optimal return
trajectories can be obtained as the mirror image of the optimal departure trajectory, it must be reminded
that there is no single optimum in space travel, as the ΔV and time of flight requirements may differ.
Finally, missions from the Gateway orbit to other CR3BP orbits, such as Lissajous, have barely been
studied, as they are also the least significant for industry.

Given the foreseeable demand and the amount of available research that can be used to compare
the results obtained, it has been decided to focus this research towards transfers within the most re­
markable orbits in the CR3BP, which include Lyapunov and Halo orbits (including NRHOs), as well as
Keplerian orbits.

2.4. ASTOS Software
To conclude this chapter, the ASTOS software will be introduced. ASTOS stands for Analysis, Simu­
lation and Trajectory Optimization Software for Space Applications, and as its acronym indicates, it is
a commercial software used for space mission and trajectory optimization [13, 70]. Its development
started at the Deutsches Zentrum für Luft­ und Raumfahrt (DLR) and continued at the University of
Stuttgart, before becoming further developed under an independent company, Astos Solutions GmbH.

The main strength that ASTOS has is its multi­purpose capability, which enables it to provide solu­
tions for the whole space project life­cycle. Among its wide range of supported scenarios, some include
launch and re­entry safety analysis, multi­disciplinary trajectory optimization, operational life­time pre­
diction, etc.

Regarding this project, ASTOS was the tool selected to improve the capabilities of the developed
software and overcome the limitations of the CR3BP assumptions. Therefore, not only the resulting
trajectory is valid in the CR3BP system, but the output is designed such that it is completely compatible
with an ASTOS scenario. In this way, after a multiple­shooting algorithm converts the CR3BP trajectory
into a higher­fidelity model, with the specifications that the user decides, a refined optimization can take
place inside ASTOS, improving not only the validity of the results, but also easily adding other objectives
such as minimizing eclipse or coverage time.

Moreover, the trajectory analysis can go another step further and include amore accurate propulsive
model such as continuous thrust, or analyze the maneuvers necessary for guidance, navigation and
control.

Overall, being able to combine the results with ASTOS does not limit the results obtained to the
theoretical CR3BP, but rather provides a very accurate initial guess for further optimization and study
in a higher fidelity model.

It is important to be noted, however, that the tool has been developed completely independently
from the ASTOS software, which can be used for more detailed follow­up studies.



3
Theoretical Background

This chapter presents the main theoretical knowledge required to understand the calculations per­
formed by the optimizing tool. First, the CR3BP model is presented, its accuracy is analyzed and
further alternatives are presented. The next section deals with differential corrections methods that are
used throughout the project. Finally, the last section discusses the optimization algorithms employed.

3.1. Circular Restricted Three­Body Problem
In this first section, the physical model that will be used throughout the thesis is described. First, the
assumptions required and the reference frames used are shown. Then, the physical model is further
explored to look for equilibrium and periodic solutions and analyze their stability.

3.1.1. Equations of Motion
The CR3BP studies the motion of a body with negligible mass 𝑚3 in the gravity well formed by the two
primaries with mass 𝑚1 and 𝑚2. These massive bodies move in circular orbits around their common
barycenter. As this problem is circular, the orbits of the primaries have constant angular velocity. It is
also restricted because the spacecraft does not influence the motion of the primaries. Moreover, all
bodies are assumed to be perfectly symmetric and with uniform density, so they can be approximated
as point masses.

Putting together all these conditions the CR3BP is analyzed. In order to build a coordinate system,
some considerations are made. First, the magnitudes are nondimensionalized with respect to some
relevant quantities in the problem. Table 3.1 summarizes the main physical quantities (mass, distance
and time) that are used in the Earth­Moon CR3BP system. All quantities have been obtained from the
Jet Propulsion Laboratory (JPL) ephemeris database [54]. These transformations give the universal
gravitational constant 𝐺 a dimensionless value of one.

• The distance unit is the distance between the primaries.

• The angular velocity of the relative motion of the primaries is assumed to be one. Hence, the
orbital period of the primaries motion is 2𝜋.

• The mass unit is the sum of the two primaries’ masses. A dimensionless parameter 𝜇 is obtained
as 𝑚2/(𝑚1 +𝑚2), such that 𝑚2 = 𝜇 and 𝑚1 = 1 − 𝜇.

Secondly, a rotating reference frame is chosen to represent the CR3BP. The angular rotation rate
of the system 𝑛 is set to one and the primaries are fixed on the 𝑋­axis. The origin is defined at the
barycenter of the massive bodies. The 𝑋𝑌­plane is defined as the orbital plane of the primaries, with
the 𝑌­axis being perpendicular to 𝑋. Finally the 𝑍­axis is perpendicular to the orbital plane, and aligned
with the angular momentum vector of the system. Figure 3.1 represents the reference frame described.
Here note that 𝜇 is not only the mass ratio, but also the distance from the first primary (Earth) to the
barycenter.

9
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Value Units Dimensionless Value
Earth Gravitational Parameter 398600.4356 km3/s2 0.9878494
Moon Gravitational Parameter 4902.801 km3/s2 0.0121506
Earth Radius 6378.1363 km 0.0165924
Moon Radius 1738.0 km 0.0045213
Earth­Moon Distance 384400.0 km 1.0
Earth­Moon Sidereal Period 27.32166 days 2𝜋
Earth­Moon Angular Velocity 0.21277 rad/day 1.0

Table 3.1: Earth­Moon CR3BP Physical Parameters [54].

Figure 3.1: Geometry of the problem, the sidereal (𝑋; 𝑌 ) and the synodic (𝑥; 𝑦) reference frames. [17]

Using elementary mechanics, the three second­order differential equations that govern the motion
of the third body can be found. They are shown in Equation (3.2). For a full derivation and explanation
of the equations of motion please refer to Szebehely, 1967 [66].

𝑥̈ − 2𝑦̇ = Ω𝑥
𝑦̈ + 2𝑥̇ = Ω𝑦
𝑧̈ = Ω𝑧

(3.1)

where the subscripts denote partial derivatives of the function:

Ω(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2
2 + 1 − 𝜇𝑟1

+ 𝜇
𝑟2

(3.2)

and:
𝑟21 = (𝑥 + 𝜇)2 + 𝑦2 + 𝑧2
𝑟22 = (𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2

(3.3)

As this is a non­inertial coordinate system, note that some apparent forces show up, namely the
centrifugal (first term) and Coriolis potential (second term). This system will have only one integral of
motion: the Jacobi constant, which is given by Equation (3.4).

𝐶 = 2Ω(𝑥, 𝑦, 𝑧) − (𝑥̇2 + 𝑦̇2 + 𝑧̇2) (3.4)

Since (𝑥̇2 + 𝑦̇2 + 𝑧̇2) ≥ 0, the Jacobi constant determines some forbidden regions in the CR3BP
space which are known as ZVCs or Hill surfaces.
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3.1.2. Libration Points
The accelerations, gravitational and apparent, cancel each other in five different points, known as
Lagrangian points. In order to obtain their coordinates, the following steps can be followed.

Substituting velocity and acceleration coordinates by zero in the equations of motion yields the result
∇Ω = 0. Deriving the gradient of the potential in Equation (3.5) it can be seen from the third equation
that 𝑧𝑒𝑞 = 0. Hence, the equilibrium solutions will lie in the orbital plane of the primaries.

𝜕Ω
𝜕𝑥 = −

(1 − 𝜇) (𝑥𝑒𝑞 + 𝜇)
𝑟31𝑒𝑞

−
𝜇 (𝑥𝑒𝑞 − 1 + 𝜇)

𝑟32𝑒𝑞
+ 𝑥𝑒𝑞 = 0

𝜕Ω
𝜕𝑦 = −

(1 − 𝜇)𝑦𝑒𝑞
𝑟31𝑒𝑞

−
𝜇𝑦𝑒𝑞
𝑟32𝑒𝑞

+ 𝑦𝑒𝑞 = 0

𝜕Ω
𝜕𝑧 = −

(1 − 𝜇)𝑧𝑒𝑞
𝑟31𝑒𝑞

−
𝜇𝑧𝑒𝑞
𝑟32𝑒𝑞

= 0

(3.5)

Moreover, it can be recognized that there will be some solutions for which 𝑦𝑒𝑞 = 0. In fact, a
fifth­order polynomial appears, although after iterative solving, only three solutions are real. These
equilibrium solutions are known as the collinear libration points, as they all lie on the 𝑥­axis. The
collinear libration points were first identified by Euler in 1765 [66]. Today, by convention 𝐿1 is located
between the primaries, 𝐿2 is situated beyond the second primary and 𝐿3 appears to the left of the first
primary. See Figure 3.2 for reference.

The remaining two libration points are known as triangular points, and were first discovered by
Lagrange in 1772 [66]. They can be found by setting 𝑟1 = 𝑟2 = 1 and they appear at the vertex of two
equilateral triangles with the primaries, hence the name.

Figure 3.2: Lagrangian Points in a general CR3BP system. [17]

3.1.3. Stability
The stability properties of the Lagrangian points can be analyzed by linearizing the equations of motion
around them. This gives place to six eigenvalues, whose real part is of interest. If at least one 𝑅𝑒𝜆 > 0,
the equilibrium solution will be unstable. For 𝐿1, 𝐿2 and 𝐿3, one has one positive eigenvalue, one
negative eigenvalue and two pure imaginary conjugate eigenvalue pairs [47]. However, 𝐿3 has slow
dynamics and a mild instability [14]. On the other hand, 𝐿4 and 𝐿5 are stable, as all eigenvalues have a
negative real part. Figure 3.3 shows the gravitational well around the Lagrangian points, although with
inverse signs, hence the peaks correspond to stable equilibria. It can be seen that 𝐿4 and 𝐿5 are at the
highest points, hence being stable, contrary to the co­linear points.
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Figure 3.3: Lagrangian points stability well. [73]

Opposite to what it may seem, it is the instability properties that will be key for this study, as they may
result in natural, cheaper ways towards or from the equilibrium points, as well as lead to the existence
of periodic solutions around them. Hence, the Lagrangian points on which the study will focus are 𝐿1
and 𝐿2. Moreover, these libration points are associated to low energy levels (high values of the Jacobi
constant), as Hill curves open earlier for these points, allowing motion around them with less propellant
consumption.

3.2. Ephemeris Model
While the assumptions of the CR3BP are precise enough for several applications, such as the general
dynamic behavior of a system, actual missions require higher­fidelity models to better simulate the
trajectory dynamics. Although such level of accuracy is out of the scope of the tool to be developed,
it may be interesting to have a more accurate dynamical system to compare the results against and
check the accuracy of the CR3BP model. Therefore, the tool’s output is also intended to serve as an
appropriate initial guess for higher­fidelity optimization tools, such as the ASTOS software.

3.2.1. Perturbations and Model Accuracy
Reviewing the assumptions made in the CR3BP model, it can be stated that the accuracy limitations
come from these main sources:

• Lunar Eccentricity. Although aCircular Restricted Three­Body Problem is being considered, the
Moon’s orbit is actually slightly eccentric (𝑒 = 0.05490 [54]). This can cause significant differences
in the results and justifies the use of other models such as the ER3BP.

• External Bodies Gravitational Influence. The Sun is the main perturbing body in this section.
Depending on the application and time of flight, the gravitational forces of other bodies, like Jupiter
or Mars, may affect the trajectory results considerably.

• Solar Radiation Pressure. Especially depending on the design of the spacecraft, the radia­
tion pressure from the Sun can have a considerable effect and deviate the spacecraft from its
determined course.

• Gravitational Irregularities. The gravity field of the primaries may also have an effect if the
designed orbits are close to any of the primaries for a long period of time. This is especially the
case for Earth orbits and LLOs.

• Atmospheric Drag. Due to the lack of an atmosphere around the Moon, this consideration is
only necessary for LEOs. Hence, it will not be important in most of the applications.
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The effect of the main perturbing forces has been studied in Pavlak et al. [49] by analyzing the
𝑍­amplitude difference between the CR3BP solution and the higher­fidelity models on a 200 day prop­
agation of the ARTEMIS P2 mission trajectory [74]. Figure 3.4 represents the difference between the
nominal and perturbed CR3BP trajectories and the same propagation with an Earth­Moon point mass
model (blue) and with an Earth­Moon­Sun model (red). As can be seen, neglecting the lunar eccen­
tricity affects the position results in the order of 1000 km, whereas the Sun has an accuracy impact in
the order of 100 km.

Figure 3.4: Effect of lunar eccentricity (blue) and lunar eccentricity and solar gravity (red) on z­amplitude. (a) Reference and (b)
perturbed reference. [49]

The effect of the Solar Radiation Pressure was also studied in [49], although it is considerably less
important than the previous two for this application. Figure 3.5 shows the difference between the Earth­
Moon­Sun model z­amplitude time history and that of the same model with Solar Radiation Pressure
(SRP). As can be seen, the difference is just in the order of kilometers.

Figure 3.5: Effect of SRP on z­amplitude evolution. (a) Reference trajectory and (b) perturbed trajectory. [49]

3.2.2. Equations of Motion
Most of the inaccuracies can be minimized, as proposed by [48], by using an 𝑁−𝑏𝑜𝑑𝑦 propagator with
the JPL DE405 planetary ephemerides values [54], which locate the positions of any celestial body
during the simulation. The 𝑁 − 𝑏𝑜𝑑𝑦 dynamics are determined by Equation (3.6). Here the motion of
the body of interest (𝑖) is represented in an inertial reference frame centered in one of the bodies (𝑞)
and subject to the gravitational pull of 𝑚𝑞 and external bodies 𝑗.

𝑟′′𝑞𝑖 +
𝐺̃ (𝑚𝑖 +𝑚𝑞)

𝑟3𝑞𝑖
𝑟𝑞𝑖 = 𝐺̃

𝑛

∑
𝑗=1
𝑗≠𝑖,𝑞

𝑚𝑗 (
𝑟𝑖𝑗
𝑟3𝑖𝑗
−
𝑟𝑞𝑗
𝑟3𝑞𝑗
) +∑𝑎𝑝𝑒𝑟𝑡 (3.6)

The precision of this model is further improved if additional force models, such as solar radiation
pressure and gravity harmonics, are incorporated. Thus, these additional forces are considered in the
last summation term of Equation (3.6). As this project was performed together with Astos Solutions
GmbH, it has been possible to make use of the ASTOS software [13, 70] to obtain this higher­fidelity
model to improve the accuracy of the resulting trajectories in a further stage.
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3.3. Coordinate Frame Transformation
Transformations between different coordinate frames are often required when computing and visu­
alizing trajectories in multi­body systems. For example, additional insight can be gained by plotting
solutions from a CR3BP in an inertial reference frame. Also, to consider the velocity changes be­
tween the trajectory phases and compute the ΔV, the states should be expressed in the inertial frame,
to avoid accounting for the rotating components. In addition, a CR3BP converged solution does not
usually satisfy all the requirements when it is integrated in a higher­fidelity model. In order to produce
a satisfactory propagation in the more accurate model a transformation from the barycenter rotating
frame to an inertial J2000 frame is required.

Provided that the differential equations that govern the problem are expressed in the barycentric
rotating frame, the transformation from this frame to the inertial coordinate system is detailed below.
The opposite transformation can also be computed by inverting the steps and rotation matrices.

3.3.1. From Barycentric Rotating Frame to J200 Inertial System
The first step when transforming a six­dimensional state from the barycentric rotating frame to an inertial
J2000 model is to translate the position coordinates from the barycenter to the first primary, in this case
the Earth. As the first primary is fixed in the 𝑥 − 𝑎𝑥𝑖𝑠 at the coordinate 𝑥 = −𝜇, the transformation is
trivial for the position components, as can be seen in Equation (3.7) where the subscript 𝑃𝐶 corresponds
to primary centered.

r𝑃𝐶 = r+ {
𝜇
0
0
} (3.7)

For the velocity components, however, the transformation is slightly more complex as the rotating
rate of the system must be taken into account. Equation (3.8) shows the procedure employed. In this
equation, Ω = [0 0 1] is the dimensionless rotation rate of the system, and v𝐵𝑃𝐶 is the velocity of the
barycenter with respect to the first primary.

v𝑃𝐶 = v+ v𝐵𝑃𝐶 + Ω × r = v+ Ω × r𝐵𝑃𝐶 + Ω × r = v+ Ω × r𝑃𝐶 = v+ {
−𝑦𝑃𝐶
𝑥𝑃𝐶
0

} (3.8)

Once the translation has been considered, the rotation of the state must be analyzed. To do so, the
orbital elements of the Moon are considered.Equation (3.9) shows the approximations used, obtained
from [44]. It is important to note that the quantities are expressed in degrees and that 𝑀 refers to the
mean anomaly, which needs to be transformed to the true anomaly.

𝑖 = 5.1453964
Ω = 330.393098 − 0.05295376 ∗ 𝑇
𝜔 = 78.314065 + 0.16435724 ∗ 𝑇
𝑀 = 131.275374 + 13.06499299 ∗ 𝑇

(3.9)

In the previous equation 𝑇 refers to the date when the trajectory takes place and is obtained as seen
in Equation (3.10).

𝑇 = 𝐽𝐷 − 2454465.5 (3.10)

where 𝐽𝐷 is the Julian date in days.
Once the Keplerian angles have been obtained, a rotation matrix is built by composing different

rotations as shown in Equation (3.11). Note that as all ephemeris are defined with respect to the
ecliptic, a rotation by the obliquity of the ecliptic (𝜙) has to be added.

𝑅 = [𝑅𝑍(−𝜔 − 𝜃) × 𝑅𝑋(𝑖) × 𝑅𝑍(Ω) × 𝑅𝑋(𝜙)]𝑇 (3.11)

Finally, the position and velocity coordinates with respect to the first primary (r𝑃𝐶 ,v𝑃𝐶 are multiplied
by the rotationmatrix and the result is dimensionalized using the characteristic quantities of the problem.

If instead of a single point, a whole trajectory solution were to be transformed, the result should be
discretized and these steps should be repeated for each point.
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In case that the inertial coordinate system uses a higher­fidelity model, this solution should be re­
converged with a single or multiple­shooting strategy using the desired differential equations. This
process is out of the scope of this work, but it is important to mention it as this is the method employed
by ASTOS to load the trajectory.

3.4. Optimization Methods
In this chapter several optimization strategies that have been used in previous work to tackle the CR3BP
trajectory optimization are described. First, a comparison between gradient­based and global search
methods is presented, including the advantages and disadvantages of each technique. Then, a brief
section is included justifying the need for multi­objective optimization. Finally, the MIDACO software is
described, as it will be the main optimizer used in this work.

3.4.1. Gradient­Based Methods
The first group of optimization algorithms to be described is gradient­based methods. As indicated
by its name, these algorithms are based on the either the analytical or the numerically approximated
derivatives of the objective function to find the optimal combination of variables. The particular use of
the gradient, Jacobian or Hessian matrices will depend on the order of the method and the number of
design variables.

The main advantage of gradient­based methods is that given a sufficiently accurate initial guess,
the algorithm will converge to the global optimum. Nonetheless, this optimum is not a single point in a
multi­objective problem, but rather a whole region, so several initial guesses would be required.

Moreover, there are other issues with respect to gradient­based algorithms. First, thesemethods are
not suited to optimizemulti­modal functions (those with a large number of local minima) or discontinuous
functions. As can be seen in Figure 3.6, this is usually not the case in space trajectory optimization
applications. Although the figure represents a two­body model trajectory optimization problem, it can
serve as an example for this application.
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Figure 3.6: Earth­centered two­body transfer design space. [67]
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Moreover, gradient­based algorithms would require a good initial guess in order to converge to the
global optimum and not get stuck in any of the various local minima. However, this is far from ideal
as the tool is intended to be designed such that the user can obtain a range of optimal trajectories
without any prior knowledge about the solution. Also, the fact that a range of solutions is delivered
is not compatible with the existence of only one initial guess, but rather several would be required for
each solution in the Pareto front.

3.4.2. Global Search Algorithms
On the other hand there is the family of global search algorithms. Instead of finding the optimal solution
by making use of derivatives, these methods try different variable combinations and refine their search
space in the successive iterations. Often, they mimic nature and its behavior, such as ant communi­
cation based on pheromones (ant colony optimizer), Darwinism (genetic algorithm), or bird movement
(particle swarm optimization), among multiple other options. In this way, their search becomes more
efficient than a Monte Carlo simulation or grid search.

For optimizing trajectories in the CR3BP, these algorithms have been used many times [1, 4, 26,
35, 40, 50], as they are more advantageous than gradient­based methods. In the first place, they can
easily work with discontinuities, multi­modal functions and non­linearities, so they are not affected by
the characteristics of the design space or the objective function. In addition, although an initial guess
is sometimes required by some methods, the algorithm will still look in the whole design space, so it is
not very determinant.

On the other hand, global search algorithms also have disadvantages. The principal one is that they
do not offer a guarantee that the global optimum will be located. It is required to run the optimization
with multiple series of quasi­random numbers (imitated by the so=called seed number), to compensate
for the random process. Although this increases the confidence on the results, identification of the
global optimum is never guaranteed. Moreover, this also translates into a considerable computational
time increase when compared to the alternative.

A usual compromise between bothmethods, that is often used in optimization problems, is to employ
the global search algorithm to find a feasible solution expected to be close to the global optimum, and
that can be used by a gradient­based method as an initial guess. In principle, the objective here is to
build the tool with a global search method so that the solution can be refined in the ASTOS software
with a gradient­based algorithm. Refinement with a gradient­based method will not be a part of this
work, although it can be studied depending on the time constraints.

3.4.3. Multi­objective Optimization
Multi­objective optimization is a field of study where the design variables result in two or more objective
functions. Thus, the optimal solution defines the best trade­off between competing objectives [9], and
is composed of a group of optimal solutions, rather than a single point. Equation (3.12) shows a multi­
objective problem described mathematically, where x represents the design variables, 𝑓 the objective
functions, and ℎ and 𝑔 the equality and inequality constraints, respectively.

min /max 𝑓𝑚(x), 𝑚 = 1, 2, ..., 𝑀
subject to 𝑔𝑗(x) ≥ 0, 𝑗 = 1, 2, ..., 𝐽
ℎ𝑘(x) = 0, 𝑘 = 1, 2, ..., 𝐾
𝑥(𝐿)𝑖 ≤ 𝑥𝑖 ≤ 𝑥(𝑈)𝑖 , 𝑖 = 1, 2, ..., 𝑁

(3.12)

It is important to define another concept with respect to multi­objective optimization: the concept of
dominance. A solution will be dominant over another solution if it is strictly better (more optimal) than
the other solution. This may not always be the case, as a solution with higher propellant consumption
but lower time of flight can be better suited for the mission than another with opposite characteristics.
In general, a solution 𝑥1 will dominate over another solution 𝑥2 if 𝑥1 is no worse than 𝑥2 in all objectives
and 𝑥1 is strictly better than 𝑥2 in at least one objective [6].

In order to build the Pareto front with all the non­dominated solutions, several options exist. The
simpler choices consist of constraining one objective except one and performing a single optimization
on the other one. This process is repeated for several values of the constrained objective to build the
Pareto front. This approach is known as 𝜀­constraint method. Another option is using a weighted sum
of the individual objectives and changing the weights to obtain different solutions. Nevertheless, these
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Figure 3.7: Example of a general Pareto front [62]

approaches increase the number of function evaluations considerably, as every optimization returns
only one single point on the Pareto front. Hence, to reduce computational time, it is best to consider
built­in multi­objective algorithms.

It is also important to mention that multi­objective optimization, although not always considered, is
a key concept when developing a trajectory optimization tool, as mission designers take into account
considerable objectives when selecting a space transfer. At the very least, propellant consumption and
time of flight should be considered, although other objectives such as eclipse time, coverage or number
of maneuvers can also be important for some missions.

On the other hand, only few papers appear to provide the full Pareto front when computing optimal
trajectories in the CR3BP [1, 24, 68], and even a smaller quantity of them are considering manifold
transfers to the gateway orbit. In fact, not a single reference of multi­objective optimization specifically
focused on lunar Gateway trajectories was found. This makes the current research a unique contribu­
tion to the general knowledge on such transfer.

3.4.4. MIDACO Software
As previously introduced, the MIDACO software [60] will be the optimizer used in this work. MIDACO
was developed by Martin Schlueter and is a very capable program that can be applied to problems with
continuous and/or discrete variables. It supports all kinds of constraints and can solve optimization
problems with thousands of variables and over one hundred objectives.

Its acronym, MIDACO stands for Mixed Integer Distributed Ant Colony Optimization, because it
solves multi­objective problems with an Ant Colony Optimization (ACO) [58] extended evolutionary
algorithm. The ACO algorithm employed by MIDACO is based on multi­kernel Gaussian Probabil­
ity Density Functions (PDFs), that produce samples of individuals (also called ants or iterates). For
integer design variables, a discretized version of the PDF is applied. The constraint­handling inside
MIDACO is done by means of the Oracle Penalty Method [57] which is an advanced self­adaptive
method developed for global search algorithms.

However, the feature that makes this algorithm best suited for this problem is its built­in multi­
objective capability. For these problems, MIDACO employs the novel Utopia Nadir­Balance concept
[61] , which was developed specifically for multi­objective problems that appeared in aerospace appli­
cations. This concept is especially suited for problems with four or more objectives, and hence is ideal
to improve the tool in the future by adding other objectives such as coverage time and eclipses.





4
Orbits and Periodic Solutions in the

CR3BP
An orbit is defined as the ”path of a body revolving around an attracting centre of mass” [43]. However,
this definition only holds for the two­body problem, where there is only one attracting body and the
spacecraft follows the Kepler laws and the conic equation. In the CR3BP, however, when switching
from an inertial to a barycentric rotating frame, other orbits appear. The spacecraft can orbit not only
each of the primaries, but also the Lagrangian points.

In this chapter, the main orbits and periodic solutions that can be found in the CR3BP are described
and analyzed. The focus is placed on closed orbits. In particular, this chapter discusses the following
main characteristics of each orbit: what do they orbit around, how are their constructed, their periodicity
conditions in the CR3BP, and their stability properties. Also, plots for each type of orbit are included to
facilitate the properties explanation.

4.1. Keplerian Orbits
As said, Keplerian orbits are those trajectories that arise in the two­body problem, which follow the
conic equation. There exist three kinds of conics: ellipses, parabolas and hyperbolas, circular orbits
being a special case of elliptical conics. This report will focus mainly on elliptical orbits, as they are
closed conics and have considerably more applications. Keplerian orbits are often characterized using
the Keplerian elements, as they are physically more intuitive than Cartesian coordinates. This set of
variables is able to determine the concrete size, shape and orientation of the orbit in space, as well
as the particular position of the spacecraft along the orbit. The list of Keplerian elements is shown in
Table 4.1, whereas Figure 4.1 shows a visual representation.

Symbol Name Units
𝑎 Semi­major axis km
𝑒 Eccentricity ­
𝑖 Inclination ∘

Ω Right Ascension of the Ascending Node ∘

𝜔 Argument of Periapsis ∘

𝜃 True Anomaly ∘

Table 4.1: Keplerian Elements. Figure 4.1: Keplerian Elements [64].
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Although Keplerian elements offer an intuitive representation of the spacecraft state in space, the
information is often needed to be expressed in Cartesian coordinates, especially for propagation and
coordinate transformation purposes. Hence, it has become a common engineering problem to establish
a transformation between them. Due to the extensive literature on the topic [69], the mathematics
involved are not exposed here.

It is important to note, however, that the simple transformation mentioned is not enough, as the
CR3BP uses a barycentric rotating frame rather than a inertial, primary­centered one. Therefore, a
coordinate transformation, such as the one explained in Section 3.3, must take place. It is important to
note that due to the change in reference frame, elliptical orbits do not maintain the same representation
in space after each revolution, mainly because the origin is not the primary, but the barycenter of the
system, and because the frame is rotating. This does not apply to circular orbits (𝑒 = 0), such as LEO
and GEO because the system rotation does not affect the representation of a circle.

4.1.1. Earth Orbits
Earth orbits are very important as they determine the parking orbit for most mission scenarios. More­
over, they can also be used as the destination orbit for missions that return samples or humans. In this
work three main orbits will be studied: Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), and
Geostationary Transfer Orbit (GTO), as they are the most common parking orbits used in space mis­
sions. Due to the variety of definitions for these orbits, Table 4.2 summarizes the Keplerian parameters
of the orbit that will be used for every case. As can be seen, the GTO is the elliptical orbit connecting
the LEO and the GEOs. Note that the orientation angles for LEO and GTO are not fixed, as they can
become design variables in order to further improve the solutions. Furthermore, the true anomaly (𝜃)
is omitted as there is no restriction to the position inside the orbit. The choice of the 200 km altitude
LEO was made to more accurately compare the results with those of the literature.

Semi­major
axis (𝑎) [km]

Eccentricity
(𝑒) [­]

Inclination
(𝑖) [∘]

RAAN
(Ω) [∘]

Argument of
Periapsis (𝜔) [∘]

LEO 6578.1 0.0 0­180 0­360 0­360
GEO 42164.0 0.0 0.0 0.0 0.0
GTO 24367.5 0.73033754 0­180 0­360 0­360

Table 4.2: Earth Orbits Keplerian Parameters.

4.1.2. Moon Orbits
As for the previous section, the smaller primary of the system, in this case the Moon, may also have
spacecraft orbiting around itself. These orbits may be of interest as intermediate steps towards lunar
surface operations or for closer lunar observation missions. The focus of this work will be on the Low
Lunar Orbit (LLO).

LLOs have a maximum altitude of around 300 km above the Moon surface and their orbital period
is usually about two hours. These characteristics suit them perfectly for lunar observation missions,
due to the close surface proximity. However, gravitational perturbations due to the Moon irregularities
make them very unstable, with only a limited number of inclinations available for long­term missions.
As they are very close to the Moon, the two­body model assumption holds, and they can be defined
by means of Keplerian elements. As explained in the previous section, to build them in the barycentric
rotating frame, a coordinate transformation must take place.

As a representation of a lunar landing at the poles, a 100 km altitude, circular and polar (𝑖 = 90∘)
LLO will be the objective of this investigation. This choice enables a comparison with previous literature
results [72]. Table 4.3 summarizes the Keplerian elements used.

4.2. CR3BP Periodic Solutions
Being able to orbit the Lagrangian points is very beneficial for mission design. First, because it allows
to maintain the scientific and observation advantages that Lagrangian points themselves have, without
limiting the number of satellites that are present at a Lagrangian point, nor requiring an extreme level
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Semi­major
axis (𝑎) [km]

Eccentricity
(𝑒) [­]

Inclination
(𝑖) [∘]

RAAN
(Ω) [∘]

Argument of
Periapsis (𝜔) [∘]

LLO 1837.1 0.0 90.0 0.0 0.0

Table 4.3: Lunar Orbits Keplerian Parameters.

of precision in position and velocity both at the arrival and during the maintenance and station­keeping.
Secondly, because these orbits may offer unique characteristics that make them more suitable for the
mission requirements than the Lagrangian points themselves. And, thirdly, because the existence of
periodic orbits around the equilibrium points increases the transfer possibilities when traveling to or
from them, as will be explained in Chapter 5.

This section will focus on the most remarkable periodic solution families: Lyapunov and Halo orbits.
Their main properties and characteristics, as well as the strategy developed to compute them is pre­
sented. For a more thorough description of this and other periodic orbit families around the collinear
Lagrangian points, the reader is referred to [18].

4.2.1. Lyapunov Orbits
The simplest example of periodic orbits in the CR3BP are Lyapunov orbits. The main characteristic
that defines them is that they are planar, i.e. contained in the plane of the primaries. An example of a
Lyapunov orbit family with varying values of the Jacobi constant can be found in Figure 4.2. The most
common parameters to describe a planar Lyapunov orbit are 𝐴𝑥, Jacobi constant, period and 𝐴𝑦.

Figure 4.2: Lyapunov orbit around 𝐿1 in the Sun­Earth system. [37]
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4.2.2. Halo Orbits
Halo orbits are perhaps the most known periodic solutions in the CR3BP. Discovered by Farquhar in
his 1968 thesis [10], their main characteristic that distinguishes these orbits from the planar Lyapunov
family, is their out­of­plane motion. When the 𝑍­amplitude (𝐴𝑧) is greater than a critical value, it can
make the in­plane and out­of­plane frequencies match. 𝐴𝑧 also becomes a parameter used for the
continuation schemes, together with the Lyapunov parameters of 𝐴𝑥, Jacobi constant, period and 𝐴𝑦.
The use of other parameters such as periapsis and apoapsis radius, and stability index is discussed in
the next section.

Over the last decades, Halo orbits have been the objective of several missions as commented in
Chapter 2, due to their unique conditions to satisfy scientific and operational mission requirements.
Figure 4.3 represents the Earth­Moon southern 𝐿2 Halo orbit family. As can be seen in the figure,
the Halo orbit family bifurcates from the planar Lyapunov orbit into the three­dimensional space. It is
important to mention that a symmetrical family of Halo orbits exists, which bifurcates to the positive 𝑍
direction and conforms the northern family. This same behavior is repeated for Halo orbits around the
𝐿1 point.

In the following sections, the procedure followed to build an accurate Halo orbit initial guess, obtain
the whole family, and get the precise member that fulfills a given requirement, for instance its period,
is explained.

Figure 4.3: Earth­Moon 𝐿2 southern Halo orbit family. [7]
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4.2.3. Near­Rectilinear Halo Orbits
A special type of Halo orbits family that has gained special interest over the last years is the Near­
Rectilinear Halo Orbit (NRHO) family. It comprises the portion of Halo orbits closer to the smaller
primary, as seen in Figure 4.4. An example of NRHOs inside the southern 𝐿2 Halo family can be seen
in the leftmost region of Figure 4.3.

Figure 4.4: 𝐿1 and 𝐿2 Earth­Moon Northern and southern NRHOs. [7]

The boundary between the Halo and NRHO orbits is determined by their stability properties. The
stability index 𝜈, represented in Equation (4.1), characterizes this family. As shown by Figure 4.5, low
perilune radius have stability indices close to unity, meaning that the periodic orbit is almost stable.
On the contrary, nearly­planar Halo orbits can reach stability indices of several hundreds. This higher
stability property of NRHOs is very useful for long­term missions, such as the Gateway station which
will be built on an 𝐿2 NRHO in 2024 [25] and which is the main target trajectory of this investigation.
When building NRHOs, the periapsis radius is another parameter that can be used in continuation
schemes. In fact, this investigation has shown that periapsis radius is the only parameter that can fully
characterize Halo orbits in general. Stability indices are not recommended as they do not always offer
a unique solution, as it can be seen in Figure 4.5. The same occurs with the other parameters.

𝜈 = 1
2 (𝜆max +

1
𝜆max

) (4.1)

4.2.4. Initial Guess Formulation
In order to obtain a Lyapunov orbit, a single­shooting strategy given a reasonable initial guess can be
developed as proposed in [4, 32]. In this case, the initial guess can be the Lagrangian point state with a
small perturbation in the 𝑥­position and the 𝑦­velocity, as the motion will be planar. An initial guess can
also be obtained from the literature or from a linear approximation as explained by Richardson [52].

Hence, consider an initial state vector 𝑥⃗0 = [𝑥0 0 0 0 𝑦̇0 0]𝑇 that lies on the 𝑥­axis and whose
velocity is perpendicular to the 𝑥𝑧𝑍­plane. According to the Mirror Theorem [56], symmetry will be
guaranteed by constraining a second perpendicular crossing on the 𝑥𝑧­plane. Hence, by using a single­
shooting strategy, the trajectory will return to the converged initial condition, producing a periodic orbit.
Figure 4.6 shows the initial guess (red) and the converged planar 𝐿2 Lyapunov trajectory.

In order to obtain the perpendicular crossing the free variables are Δ𝑥⃗ = [Δ𝑥 Δ𝑦̇ Δ𝑡], whereas the
constraints are 𝑥⃗𝑐 = [𝑥𝑐 0 0 0 𝑦̇𝑐 0], leaving 𝑥𝑐 and 𝑦̇𝑐 unconstrained. Using a Taylor first­order
expansion of the flow of the perturbed state (𝑥⃗0+Δ𝑥⃗) at time 𝑡0+𝑇/2 (𝑥⃗𝑇/2), where 𝑇 would be the orbit
full period, as shown in Equation (4.2).
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Figure 4.5: 𝐿1 and 𝐿2 Earth­Moon Halo stability indices vs. perilune radius [7]. NRHOs constitute the region with low stability
indices.

Figure 4.6: Initial guess (red) and converged solution (blue) in a perpendicular crossing differential corrections scheme for an
Earth­Moon 𝐿2 Lyapunov orbit [32].
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Φ(𝑥⃗0 + Δ𝑥⃗, 𝑇/2 + Δ𝑡) = 𝑥⃗𝑇/2 + [
𝜕𝑥⃗𝑇/2
𝜕𝑥⃗ ] ⋅ Δ𝑥⃗ +

𝜕𝑥⃗𝑇/2
𝜕𝑡 ⋅ Δ𝑡 (4.2)

Noting that [𝜕𝑥⃗𝑇/2𝜕𝑥⃗ ] is the State Transition Matrix (STM), called Monodromy Matrix (𝑀) for periodic
solutions, and considering the free variables and constraints the system of equations can be reduced
to the expression shown in Equation (4.3).
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(4.3)

which can be reduced to Equation (4.4), considering that the motion is planar and the constraint
values are known.

𝑚21Δ𝑥 +𝑚25Δ𝑦̇ + 𝑓2Δ𝑡 = 0
𝑚41Δ𝑥 +𝑚45Δ𝑦̇ + 𝑓4Δ𝑡 = −𝑥̇𝑇/2

(4.4)

As shown in Equation (4.4), there are two equations for three unknowns. Hence, one must parame­
trize the solution in terms of one of the variables. It is common practice [4] to fix the value of Δ𝑥 to zero
and parametrize in terms of the 𝑥­amplitude of the Lyapunov orbit, although other options are possible,
depending on the parameter that guides the continuation algorithm.

To compute Halo orbits, the same strategy explained for planar Lyapunov orbits can be used. How­
ever, it is noted that due to the out­of­plane motion some differences arise.

First, it is important to distinguish between northern and southern families, which are just mirror
images of one another, but whose characteristics change depending on which region of the smaller
primary is the periapsis located, for instance. Moreover, it is important to note that having out­of­plane
motion translates in one additional unknown Δ𝑧, but also one additional equation, as the velocity in the
𝑍­direction is also constrained to zero and there is three­dimensional motion. Hence, the system of
Equation (4.4) is rewritten to Equation (4.5). The initial guess is obtained from a planar Lyapunov orbit
with a slight out­of­plane perturbation, or from a Richardson approximation [52]. In this work the latter
approach was used.

𝑚21Δ𝑥 +𝑚23Δ𝑧 +𝑚25Δ𝑦̇ + 𝑓2Δ𝑡 = 0
𝑚41Δ𝑥 +𝑚43Δ𝑧 +𝑚45Δ𝑦̇ + 𝑓4Δ𝑡 = −𝑥̇𝑇/2
𝑚61Δ𝑥 +𝑚63Δ𝑧 +𝑚65Δ𝑦̇ + 𝑓6Δ𝑡 = −𝑧̇𝑇/2

(4.5)

The parametrization, in this case, can be done in terms of 𝑥, 𝑧, or the period, depending on the
parameter that has been chosen to perform the continuation algorithm.

4.2.5. Family Continuation
The idea from the initial guess differential correction process is to obtain only one periodic solution, even
though it will probably not fulfill the requirements of the orbit. Then, there are two strategies to compute
the whole family of periodic solutions by applying a continuation method. The two most common meth­
ods of orbit continuation are natural parameter continuation and pseudo­arclength continuation. The
idea behind both methods is to vary the initial guess supplied to the single­shooting algorithm slightly,
so that it converges to another periodic solution until the solution whose characteristics are desired is
found.

Natural parameter continuation is simpler to implement, however it can yield computational issues
when the slope of the chosen parameter 𝑝 becomes too steep. Hence, smaller variations of 𝑝 will be
needed, increasing the computational time [32].

Moreover, it is important to understand how the different Halo orbit families evolve, as the parameter
chosen for the continuation algorithm will depend on the precise family of interest. As seen in Table 4.4,
𝐿1 Halo orbits have a monotonically decreasing 𝑧0 (in absolute value), hence this family should be
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computed using a 𝑧­continuation scheme. However, Table 4.5 shows that in the 𝐿2 family is 𝑥0 the
parameter with monotonic behavior, thus implying that an 𝑥­continuation method should be employed
here.

Table 4.4: Initial Conditions for the 𝐿1 Halo Orbits [75] Table 4.5: Initial Conditions for the 𝐿2 Halo Orbits [75]

On the contrary, pseudo­arclength continuation uses the nullspace of the Jacobian matrix from the
previous periodic solution to build the initial guess in the direction tangent to the slope of the family,
hence better adapting to the curve. Figure 4.7 shows how the initial guess from each of the continuation
schemes is obtained. Themost common parameters to describe a planar Lyapunov orbit are 𝐴𝑥, Jacobi
constant, period and 𝐴𝑦. However, its implementation is not so intuitive. Nonetheless, this will be the
approach followed.

Figure 4.7: (a) Natural parameter continuation and (b) pseudo­arclength continuation schemes. [32]



5
Transfers in the CR3BP

In Chapter 4 the main orbits and periodic solutions that are of interest in the CR3BP, were presented.
In this chapter, how to travel from one of these orbits to another one will be discussed, together with
the kinds of transfers that are used in the CR3BP, the main characteristics of each of them in terms of
flight time and propellant consumption, and the strategies to compute them.

5.1. Direct Transfers
To begin with, direct transfers will be discussed. They are referred as direct because the trajectory
is performed directly, not using any stability feature of the CR3BP. At a minimum, two impulses are
required to make a direct transfer: one that departs the initial orbit, and a second one with which the
spacecraft is inserted into the destination orbit. Nevertheless, three­ or four­impulse transfers are also
possible, and may be of interest in some occasions. In this investigation, however, only two­impulse
direct transfers will be studied. Figure 5.1 shows an example of a direct transfer profile from an Earth
LEO to a Moon 𝐿1 and 𝐿2 Halo orbit in the barycentric rotating reference frame.

Figure 5.1: Profile for a simple direct transfer from Earth to a lunar libration orbit about either the Earth–Moon 𝐿1 or 𝐿2 point. [46]

Regarding the trajectory objectives, optimal LEO­to­Halo direct transfers are usually characterized
by short time of flights (3­10 days) and higher propellant consumption (3600­4100m/s) than other trans­
fer alternatives [36]. Thus, they are commonly used in crewed missions, such as the Apollo missions
in the 1960s space race. Furthermore, the two­body solution can also be used as an initial guess for
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the refined CR3BP optimal solution if the optimizer requires one, as there are several similarities be­
tween the two models. Unfortunately, this is only the case between Keplerian orbits, as other periodic
solutions such as Lyapunov or Halo orbits cannot be obtained from a two­body model.

The main advantage of direct transfers, apart from their low time of flight, is that they can connect
any two states in space, as they do not make use of the dynamic features of the CR3BP. Thus, it is
common to combine this arc with other methods. This concept will be further studied in the following
sections.

5.1.1. Lambert’s Problem
To compute direct transfers, the most practical way is by means of Lambert’s Problem. With this
method, a transfer arc can be built with only the initial and final state as inputs, as well as the time
of flight. Although it has an analytic solution in the two­body problem [23], the CR3BP requires an itera­
tive procedure to solve it. The idea described in [4], is to propagate an initial guess 𝑥 = [𝑥0 𝑦0 𝑧0 𝑥̇0 𝑦̇0 𝑧̇0]
during the specified time of flight 𝑡 so that the desired final position is reached. Using the difference
between the propagated and desired position, the initial velocity is corrected with a first­order Taylor
approximation as shown in Equation (5.1). The process is repeated until the algorithm converges to
the desired accuracy.

X𝑗+1 = X𝑗 − DF (X𝑗)
−1

F (X𝑗) (5.1)

where DF(X) is the Jacobian matrix.
In essence, it is a fixed­time single­shooting strategy with three free variables (𝑥̇0 𝑦̇0 𝑧̇0) and three

constraints (𝑥𝑓 𝑦𝑓 𝑧𝑓). However, the CR3BP is known to be a chaotic system in which the sensitivity
to initial conditions is high. Experience has shown that the single­shooting strategy has difficulty con­
verging, especially when the trajectory gets close to any of the primaries. Hence, a multiple­shooting
method was used.

The idea behind multiple­shooting is to discretize the transfer arc into 𝑛 patch points, and integrate
multiple segments. In this way, each arc is propagated over a shorter time and the linear approximation
becomes less sensitive. However, the problem also becomes more complex as constraints need to be
applied at the segment intersections. In order to simplify the approach, continuity constraints between
all patch points were introduced, such that no intermediate maneuver is required and the trajectory
is continuous. The end point maintains the same constraints as the single­shooting case. Figure 5.2
shows the general framework for a multiple­shooting method.

Figure 5.2: General multiple­shooting diagram [48].

In the fixed­time multiple­shooting the free variables are the initial velocity components plus the
states on the intermediate patch points which can be stacked in the free variables vector 𝑋 as shown
in Equation (5.2), of dimensions (6𝑛 − 3) × 1, where 𝑛 is the number of arcs.
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X =

⎧
⎪

⎨
⎪
⎩

𝑥̇0
𝑦̇0
𝑧̇0
x1
⋮

x𝑛−1

⎫
⎪

⎬
⎪
⎭

(5.2)

The constraints are used to ensure the continuity of the trajectory (x𝑡𝑖 = x𝑖+1) and the connection
of the final state with the required position, forming the (6𝑛 − 3) × 1 constraint vector F(X) that can be
seen in Equation (5.3).

F(X) =

⎧
⎪

⎨
⎪
⎩

x𝑡0 − x1
⋮

x𝑡𝑛−2 − x𝑛−1
𝑥𝑛 − 𝑥𝑓
𝑦𝑛 − 𝑦𝑓
𝑧𝑛 − 𝑧𝑓

⎫
⎪

⎬
⎪
⎭

= 0 (5.3)

These expressions are used together with the algorithm of Equation (5.1) until the tolerance re­
quirements are met. It is important to note that the Jacobian matrix DF(X) is often sparse, which offers
many numerical advantages when computing its inverse.

5.2. Manifold Transfers
Manifold transfers, apart from the equilibrium solutions and the periodic orbits around them, are one of
the most beneficial features that arise after switching from a two­body to a three­body model. Before
discussing deeply these transfers, the concept of manifold will be explained in detail.

5.2.1. Definition
Recall from Chapter 3, where the Lagrangian points were presented and their stability properties were
defined, that 𝐿4 and 𝐿5 were deemed stable, as the linearization of the equations of motion yielded
eigenvalues with only a negative real part, whereas the co­linear libration points were unstable, as they
presented at least one eigenvalue with a positive real part. However, the instability of 𝐿3 was mild [14],
hence its associated dynamics slow and was left out of further analysis in this work. 𝐿1 and 𝐿2 are the
the focus of this project and will be used to explain the concept of manifolds.

As explained in Chapter 4, periodic solutions around Lagrangian points are obtained by perturbing
the state in the direction of the eigenvector associated with the pure imaginary eigenvalues, responsible
of the periodic motion dynamics. However, perturbing the state in the direction of the other eigenvec­
tors, those corresponding to eigenvalues with negative and positive real parts, will result in stable and
unstable manifolds, respectively. This is shown in Equation (5.4).

x𝑠0 = x0 ± 𝑑v𝑠 x𝑢0 = x0 ± 𝑑v𝑢 (5.4)

Superscripts 𝑠,𝑢 represent the stable and unstable branches and parameter 𝑑, the amount of per­
turbation imposed. x0 is the initial state (position and velocity) and v is the associated eigenvector. As
can be seen, the ± sign indicates that two branches emerge from each point.

By perturbing in the direction of the stable eigenvector and propagating backwards in time, the
stable manifold branch is found. If the spacecraft is located in any point of that branch (with the cor­
responding position and velocity), by means of the dynamics of the system, the Lagrangian point will
be reached with almost no arrival maneuver. Conversely, the unstable manifold is obtained when the
unstable eigenvector is slightly perturbed. From here, the vicinity of the equilibrium point can be left
with virtually no propellant consumption. Figure 5.3 shows the one­dimensional1 stable and unstable
manifolds associated to the 𝐿1 point of the Sun­Earth system after a dimensionless perturbation of
10−5 was applied. As it can be seen, the manifolds are closer to the Earth (located at coordinates

1Note that one­dimensional does not refer to the spatial coordinates in which the manifold extends, but rather the mathematical
entity from which it is formed, a point.
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Figure 5.3: 1D Manifolds associated to the 𝐿1 point of the Sun­Earth system after a 10−5 perturbation.

[1,0], approximately) than the Lagrangian points. This can reduce time of flight and ΔV consumption
considerably.

In the same way as libration points, some periodic solutions such as Lyapunov or Halo orbits also
have stable and unstable manifolds. However, in this case they are two­dimensional manifolds as
the orbit are mathematically one dimension higher than the equilibrium point. In Figure 5.4, it can be
seen how the manifold shape resembles that of a tube, hence it is usual to call orbit manifold, ”manifold
tubes”. To obtain onemanifold arc, one simply perturbs a particular point of the Halo orbit in the direction
of the desired monodromy matrix eigenvector (stable or unstable). The monodromy matrix is the state
transition matrix after one revolution. In the next section, the strategies on how to use these manifold
structures to compute and integrate efficient transfers will be explained.

5.2.2. Transfers
Depending on the stability properties of the arrival and departure orbits, manifold transfer strategies
change considerably. Because they only appear on unstable orbits, one must realize that this kind of
transfer will not be possible for two stable orbits, such as two Keplerian orbits.

On the other hand, if the parking orbit were stable and the arrival orbit unstable, the idea would be
to connect the departure orbit to one stable manifold of the arrival orbit. This would be the case, for
instance, when traveling from the Earth to theGateway orbit. In the opposite trajectory, from an unstable
to a stable orbit, the objective would be to place the spacecraft on an unstable manifold branch that
approaches the destination orbit.

Finally, if both orbits were unstable it could be possible to locate the spacecraft on the departure
orbit unstable manifold and try to get close not to the destination orbit, but to any stable manifold branch
that originates from it. If both orbits have the same Jacobi constant it could be possible to switch from
one manifold to the other without any ΔV consumption [45].

Even though it would be ideal that the manifold tube intersected the opposite orbit from which it
comes from, this is almost never the case. Therefore, a Lamber­arc direct transfer is usually added to
connect the gap between the orbit and the manifold, as shown in Figure 5.5. It is important to note that
when adding a connecting arc, ending the manifold closer to the Earth does not necessarily offer any
improvement, and this extra constraint may reduce the optimality of the solutions found.

In conclusion, manifold transfers are critically defined by the manifold arc. In order to have a com­
plete definition of the orbit point that is being perturbed, the dimensionless amount of perturbation, and
the propagation time of the manifold are the variables required.
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Figure 5.4: 2D Manifold tubes associated to a 𝐿2 Halo orbit in the Sun­Jupiter system. [4]

Figure 5.5: Earth­Moon Halo Sample Manifold Trajectory. [4]
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However, manifold arcs just guarantee that the last maneuver will be zero, which despite poten­
tially beneficial to minimize the overall ΔV consumption, is a sub­optimal approach. Hence, following
previous work [36], a better approach is to consider the manifold arc as an initial guess that can be
slightly perturbed, such that even though the final maneuver will become greater than zero, the overall
propellant consumption is decreased. Nonetheless, whereas Mingtao et al. [36] perturb the manifold to
ensure a flyby passing at the Moon, this work will simply introduce the velocity perturbation components
as design variables, without imposing any restrictions on the trajectory transfer.

5.3. Transfers Including Lunar Flybys
Flyby maneuvers are often used in interplanetary travel to reduce themission ΔV consumption by taking
advantage of the gravitational pull of massive bodies. Some authors [36] have found that this concept
also provides lower ΔV trajectories in the Earth­Moon CR3BP. Although the manifold approach does
not exclude flybys as a possibility, is it often beneficial for global search methods if the search space
is reduced around the optimal solutions. Therefore, a different approach will also be studied, in which
flybys are included as a requirement.

Mingtao et al. [36] propose an approach where the manifold is perturbed to ensure a flyby. However,
this constraints the design space in excess, causing that some potentially optimal solutions are missed
by the optimizer. Hence, this investigation will use a different approach by which the flyby point will
be set around the Moon using spherical coordinates of radial distance (𝑟), polar angle (𝜃) and azimuth
(𝜙), as represented by Figure 5.6. This point is then connected to the parking orbit and the destination
orbit by means of two Lambert arcs.

Although the flyby will be more effective the closer to the Moon the point is chosen, it is important
to establish a minimum safety distance from the lunar surface to avoid complications and maintain the
gravitational model assumptions as valid. Hence, a limit of 100 km altitude will be set, coinciding with
the literature results which will be used for comparison, and arguing that the flyby will be a brief instant,
so the possible gravitational harmonics will not affect the transfer considerably. The polar (0­180∘) and
azimuthal (0­360∘) angles are not restricted.

Figure 5.6: Spherical coordinates representation [5].
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5.4. Selected Transfers
After the different kinds of transfer arcs have been defined, this section summarizes the possibilities
discussed and presents the trajectories that will be studied in the results chapters.

Regarding the transfer possibilities, three main categories should be considered: direct, manifold
and flyby transfers. Although direct transfers are available for all trajectories, independently of the
parking and destination orbit characteristics, this is not the case for manifold transfers. Flyby transfers
are in principle possible regardless of the orbit characteristics, nevertheless, there may be some cases
where they do not offer a clear advantage. An example could be a LEO to LLO transfer.

Moreover, as manifold transfers require an additional Lambert arc to connect to the other arcs, it is
possible to study direct and manifold transfers simultaneously, by allowing the manifold arc propagation
time variable to have a value of zero. In this case, the transfer would effectively become direct. Hence,
for the given problems only two optimization runs need to be performed: one for the direct/manifold
case, and one for the flyby scenario.

In order to show the capabilities of the developed program, two trajectories will be analyzed. First,
a 200 km altitude LEO to an 𝐿2 southern Halo orbit with 𝐴𝑧 of 2000 km is chosen. This transfer was
selected because there exists previous research [4, 36] to compare the results obtained and discuss
whether this work presents any improvement to the body of science. Secondly, a GTO to a 9:2 period
resonant NRHO will be studied. The destination orbit coincides with the one proposed for the Gateway
concept [25]. Here, the choice was made to show the applications of the tool to problems of great
scientific and industrial interest, as this transfer is expected to become very popular in the coming
years.





6
Optimization Problem

This chapter describes the general characteristics of the optimization problem. Then, the input files
are presented, showing how intuitive is for the user to work with the tool and set up the optimization
problem. Finally, the output files are described, which tell the user about the optimization process status
and contain final results, including the Pareto front and the trajectory files.

6.1. Objectives and Constraints
As explained in Chapter 3, an optimization problem consists of minimizing a set of objective functions,
subject to a series of constraints, by finding the combination of design variables that achieves said
optimum. In this case, the objectives consist on the overall ΔV of the trajectory, as a measure of the
propellant consumption, and the total time of flight. Although these are the main objectives that appear
when dealing with trajectory optimization, other objectives are possible, such as eclipse or coverage
time. However, those objectives are out of the scope of this study.

Hence, the aim of the tool is to provide a converged Pareto front containing as many optimal solu­
tions as possible, so as to give the mission analyst several options to decide upon the trajectory that
best fits the requirements.

Regarding the constraints, the user only needs to specify the maximum ΔV and TOF desired, which
will set the bounds of the Pareto front and limit the design space. There exist other constraints, such as
the distance with respect to primaries, which needs to be over a certain threshold to ensure the safety
of the mission, but also to maintain the validity of the physical model assumptions.

6.2. Input files
This section summarizes the input files that are employed by the user to declare the trajectory condi­
tions. There are two input files required: the initialSettings.txt file, with the run­general settings and the
initialGuess.txt file, which defines the variables design space.

6.2.1. initialSettings.txt
The run settings are defined with the initialSettings.txt file, an example of which can be seen in Fig­
ure 6.1. The settings can be divided in four sections: general trajectory settings, optimizer parameters,
parking orbit definition and destination orbit description.

The first section includes the trajectory string (here KLMP) which determines the orbits and arcs
that will be used to build the trajectory. In this case, the transfer will start from a Keplerian orbit (K), use
a Lambert arc (L) to join the manifold (M) and end at a periodic solution orbit (P), particularly a Halo
orbit. However other combinations would be possible such as a direct transfer between a Halo and a
Lyapunov orbit (PLP), for instance. Chapter 7 will explain this in further detail. A name for each arc is
added, as well the transfer Julian date, useful for the transformation to inertial coordinates. Finally, the
maxTOF (in days) and maxDV (in km/s) constraints that bound the Pareto front are set.

35
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Figure 6.1: Initial settings file example.

The second section contains the optimizer settings, which include the random seed number, and
the stopping criteria. The optim parameter defines whether this will be a multi­objective run (optim
= 0) or a single­objective refinement (optim = 1), the differences of which will be described in the
next chapter. Regarding the stopping criteria, the user can choose between a maximum number of
function evaluations, a maximum running time (in minutes), or an algorithmic approach which will end
the optimization after a certain number of function evaluations do not provide an improved result.

The third section describes the parking orbit, in this case a Keplerian orbit, hence the semi­major
axis (in km) and the eccentricity parameters are required. The rest of the Keplerian elements are
considered design variables, and are allowed to vary. Nonetheless, they can also be fixed to a desired
value by limiting the bounds.

Regarding the destination orbit, which is a periodic solution, the last section defines its characteris­
tics. First, the orbit type is described, including the kind of orbit (HALO or LYAPUNOV), the Lagrangian
point that it orbits (L1 or L2) and, for the Halo orbits, the family (NORTHERN or SOUTHERN). Then,
the parameter used to specify the particular orbit inside the family is declared, as well as its value. The
characteristics of both types of orbits will be further explained in Chapter 7.

It is important to mention that all parameters need to be separated from its description by a tabulator.

6.2.2. initialGuess.txt
Regarding the description of the design variable space, it is important to note that the variables will
change depending on the trajectory that is desired. Therefore, each transfer arc (Keplerian orbits,
Lambert arcs, invariant manifolds and periodic solutions) will have a different set of variables associated
to them. A summary of the design variables for each arc together with a description, range and the
units employed can be seen in Chapter 7.

As the tool purpose is to obtain as many optimal solutions as possible, one might consider leaving
the variable bounds as open as possible. However, a wide design space implies the algorithm will have
more trouble finding the optimal solutions. Therefore, it is recommended to set the variable bounds as
tight as possible without losing any potential optimal solution. Furthermore, not only the lower and upper
bounds are required, but also an initial guess must be provided. Although the quality of this guess is
not very important for the multi­objective run, it is recommended to use a Pareto­optimal solution in the
single­objective refinement run to reduce the convergence time.

6.3. Output Files
Once the user input files have been described, the files used by the optimizer to communicate the
optimization state and the final result are presented.
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6.3.1. MIDACO_SCREEN.txt and MIDACO_SOLUTION.txt
These files are generated by MIDACO to convey the state of the optimization process and, for this
tool, are updated every 50 iterations. As the printing command introduces some overhead processes
that increase the computational cost, this value was chosen so that an update is provided every 2­10
minutes, depending on the application.

Figure 6.2 shows an example of theSCREEN andSOLUTION files. The former contains a summary
of the optimizing parameters that are being used, including the stopping criteria. Moreover, it shows
the optimization evolution and can give the user an idea of when the optimization has converged. At
the end of the optimization process, the best solution is printed too. The SOLUTION file, on the other
hand, prints the best solution found by the algorithm as soon as an improvement is made, including
the detailed value of the design variables, objectives and constraints. This is an important feature as it
gives the user the chance to access the full solution already during run time and adds security in case
an optimization run gets interrupted for some reason. This is another novel and useful feature that has
not been encountered in any other optimization tool.

Figure 6.2: MIDACO SCREEN and SOLUTION file examples [59].

6.3.2. MIDACO_PARETOFRONT.txt
The MIDACO_PARETOFRONT.txt is the first output file that already gives very valuable information to
the user, as it contains the set of non­dominated solutions that conform the optimal result of the multi­
objective optimization. In essence, it is the main output of this tool as it will contain all the possibilities
from which the mission analyst should choose.

It is also updated every 50 iterations, and in order to provide a more user­friendly visualization of
the results, the PlotTool executable is included. It is used to graphically illustrate the Pareto front data.
For more information on the functionality of this tool, the user is referred to [59].

6.3.3. MIDACO_HISTORY.txt
The final output file generated by MIDACO is the HISTORY file. This document provides a complete
history of all function evaluations tried by the search algorithm. This output is very useful for debugging
purposes, but also to double check that the Pareto front provided by MIDACO did not miss any optimal
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solution. This can be very important, as two different trajectories could present the same ΔV and TOF
values.

6.3.4. Trajectory Output Files
Besides the optimization process files generated by MIDACO, once the user has selected a single
solution from the Pareto front to perform a more detailed analysis on it, the trajectory files associated
with it are created. These files can then be plotted with an external program, or be imported into the
ASTOS software for further analysis. The set of output files include:

• ini_traj.txt: Consists of the full trajectory expressed in the inertial J2000 such that it can be
imported into ASTOS.

• Variables.xml: Set of additional variables such as the Julian date or the ΔV components for each
phase. It is also required by ASTOS to load the trajectory.

• Barycentric rotating trajectory files: Separate files for each trajectory arc which have the name
that was set in the initialSettings.txt file (see Figure 6.1). These files can be plotted using an
external program such as the Matplotlib library.
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Internal Code Structure

In previous chapters, the individual elements that conform the developed tool have been described
in detail. This chapter will explain how all of these elements have been put together in the code and
how they interact within each other to perform the trajectory calculation and optimization. Moreover,
an in­depth description of the different design variables is presented.

7.1. Programming Architecture
The tool that is being presented here was developed in the Java programming language using an
object­oriented model. It is completely functional as a standalone application, although its output is
best intended to be use in combination with the ASTOS software. In this section, the main reasons that
justify these choices will be presented.

7.1.1. Programming Language
Although there exist numerous programming languages that would have been suitable for this work,
such as MATLAB, Python, Java or C++, it was finally decided that Java would be the chosen language.
The main reason was the compatibility that this programming language has with the commercial soft­
ware ASTOS, with which this tool is expected to merge in the future. In fact, the use of this programming
language was a requirement from Astos Solutions GmbH, the company that has been supervising this
master thesis.

The use of Java has the advantage of being computationally faster than most of the alternatives,
especially MATLAB and Python. This is very important in the case of global search optimization algo­
rithms where a multitude of function evaluations is performed. Another advantage of choosing Java
has to do with its object­oriented programming capabilities, which will be further commented in the next
section.

Regarding the disadvantages, one could mention the low experience and familiarity with Java prior
to this work, which was greatly solved during the internship period. Also, the lack of existing orbital
mechanics libraries such as Pykep and Pygmo [22], which are present in Python, should be mentioned
here.

7.1.2. Programming Paradigm
Another important element to consider regarding the programming aspects of this work is the program­
ming paradigm. In this case, it was decided to use an object­oriented approach in order to increase the
flexibility of the tool so that it can be employed to optimize all kinds of trajectories within the CR3BP.

Object­Oriented Programming (OOP) bases the code in ”objects” that share some information or
functions. In Java, objects are known as classes. It is important to mention two object types present in
this tool: departure/destination objects, and the intermediate arc objects. The idea is that any trajectory
will be defined by a departure object, a series of (or one) intermediate arc objects, and a destination
object. However, depending on the transfer characteristics, the particular class of each of those objects
will differ. Thanks to OOP, the user will only need to select which objects compose the trajectory and
the tool will dynamically change the variables and function logic associated with them.
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In addition, OOP also results in a much more organized and structured code, making it easier to
add new functionalities (for instance, new periodic solutions) or for debugging purposes, as it improves
the code readability. In the next sections, the particularities of each object types are explained.

7.2. Departure and Destination Objects
The first group consists of departure and destination objects. The main difference with respect to
the next group is that these classes require some kind of information from the user to define them,
and this information will be constant during the whole optimization. However, other attributes may be
varied by the optimizer. Furthermore, these objects are self sufficient, meaning that they do not require
interaction with other objects to be completely defined. The aim of these objects is to return a state in
the barycentric rotating frame, so that it can be used by the intermediate arc objects.

The easiest way to understand this concept is to think of a LEO departure: its Keplerian elements
will need to be defined by the user, whereas the true anomaly (or other angles) will remain free for the
optimizer to find the best trajectory. Additionally, the state coordinates associated with a particular set
of Keplerian elements can be completely defined independently of what the rest of the trajectory looks
like.

After analyzing the most common transfers in the CR3BP, three different classes were defined:
independent states, Keplerian orbits and periodic solutions.

7.2.1. Independent State Class
The simplest way to achieve the purpose would be if the user specified the six coordinates (three
position, three velocity) that compose the state as the translation would be straightforward.

Furthermore, a propagation time design variable is added, as it could be the case that the user
does not require the first (or last) maneuver to be performed at the precise state, but rather has the
spacecraft in a given situation and wants to reach another position from there after some time.

Nonetheless, this would hardly ever be useful for the majority of cases, as the barycentric coordi­
nates are not a physically intuitive way of describing states. Additionally, the simplicity of this class also
denies the possibility of having a manifold arc associated with it.

In conclusion, the state class does not seem very useful but it was included for completion purposes,
so that every possibility is considered. Tables 7.1 and 7.2 summarize the class attributes.

Symbol Description Range Units
𝑥 Position along the x­axis in the barycentric rotating frame ­ ­
𝑦 Position along the y­axis in the barycentric rotating frame ­ ­
𝑧 Position along the z­axis in the barycentric rotating frame ­ ­
𝑥̇ Velocity along the x­axis in the barycentric rotating frame ­ ­
𝑦̇ Velocity along the y­axis in the barycentric rotating frame ­ ­
𝑧̇ Velocity along the z­axis in the barycentric rotating frame ­ ­

Table 7.1: Independent State Class Fixed Parameters.

Symbol Description Range Units
𝑇𝑂𝐹0,𝑓 Propagation time until/since the first/last maneuver 0... max TOF days

Table 7.2: Independent State Class Variable Parameters.

7.2.2. Keplerian Orbits Class
As introduced in Chapter 4, the second kind of departure and destination objects are Keplerian orbits.
These orbits arise from the two­body problem and can be expressed by means of the six Keplerian
elements. The first five elements describe a conic solution in space, its size, shape and orientation.
The sixth one represents the position of the spacecraft within the conic at a given time.

As this tool is intended to be used in mission design scenarios, it was decided that only the semi­
major axis and eccentricity would be set as fixed parameters, together with the selection of the primary
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at the center of the orbit. On the other hand, the Keplerian parameters that define the orientation of the
orbit are kept as free variables, such that the optimizer can vary them to find better solutions. However,
the user can always restrict their bounds not to allow such freedom.

Tables 7.3 and 7.4 summarize the class attributes. It is important to note that, in principle, only
elliptical Keplerian orbits are being considered for this work. Also, as these orbits are solutions of the
two­body model, they will have no manifold arcs associated to them.

Symbol Description Range Units
𝑚𝑖 Primary around which the Keplerian orbit is computed 1,2 ­
𝑎 Semi­major axis of the Keplerian orbit 0... km
𝑒 Eccentricity of the Keplerian orbit 0...1 ­

Table 7.3: Keplerian Orbit Class Fixed Parameters.

Symbol Description Range Units
𝑖 Inclination of the Keplerian orbit 0...180 ∘

Ω Right ascension of the ascending node of the Keplerian orbit 0...360 ∘

𝜔 Argument of the periapsis of the Keplerian orbit 0...360 ∘

𝜃 True anomaly at which the maneuver takes place 0...360 ∘

Table 7.4: Keplerian Orbit Class Variable Parameters.

7.2.3. CR3BP Periodic Solutions Class
Finally, there is the case of periodic orbits of the CR3BP. At first glance, it may seem difficult to put
together all these orbits in one category, but they do share numerous characteristics.

First, the precise type of periodic orbit must be defined. Therefore, an orbit type variable is created.
The orbit variable is a string of the form LYAPUNOV­LAGRANGIAN for Lyapunov orbits and HALO­
LAGRANGIAN­FAMILY for Halo orbits and NRHOs. In this string, LAGRANGIAN should be substituted
by the Lagrangian point around which the periodic solution orbits (L1 for 𝐿1 and L2 for 𝐿2). Furthermore,
in the Halo cases, FAMILY should be substituted by NORTHERN or SOUTHERN depending on the
desired choice.

Although this concept may seem slightly confusing, the orbit type is expressed in this way because
not all periodic solutions need a FAMILY value, or even a LAGRANGIAN value (for instance DROs).
Hence, in an attempt to advance for future versions this representation was chosen.

Once the periodic orbit family has been defined by means of the previous variable, the individual
member of the family that satisfies the user requirements needs to be selected. In order to define these
characteristics a periodic orbit calculator tool was created, as explained in Chapter 4. Now, the user
will first input the parameter name that will be used to define the family member on a string variable,
and then will introduce the desired parameter value in a variable of type double. The relation between
the variables input name and value units can be found in Table 7.5.

Input Description Units
Az* Out­of­plane orbit amplitude km
Ax Orbit amplitude in the x­direction km
Ay Orbit amplitude in the y­direction km

Period Time taken to perform a full revolution days
Jacobi Value of the orbit’s associated Jacobi constant ­

Stability Index* Stability index of the orbit (see Chapter 4) ­
Periapsis Minimum distance with respect to smaller primary’s center km
Apoapsis Maximum distance with respect to smaller primary’s center km

Table 7.5: CR3BP Periodic Orbit Defining Parameters.

* not available for Lyapunov orbits
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With respect to free variables, an equivalent to Keplerian orbit’s true anomaly was defined. In this
case, it is a normalized orbit period value starting from the y­axis crossing with positive velocity and
following in the direction of motion. Tables 7.6 and 7.7 summarize the attributes listed.

Symbol Description Range Units
­ Orbit type description ­ ­
­ Periodic orbit defining parameter name Table 7.5 ­
­ Periodic orbit defining parameter value ­ Table 7.5

Table 7.6: CR3BP Periodic Solutions Class Fixed Parameters.

Symbol Description Range Units
𝑝 Periodic orbit point at which the maneuver takes place 0.0...1.0 ­

Table 7.7: CR3BP Periodic Solutions Class Variable Parameters.

7.3. Intermediate Arc Objects
The second group of objects worth discussing are intermediate arc objects. The members of this group
have no fixed attributes as they have no user restrictions. Another shared characteristic is that they are
not completely independent, as they require other objects’ information in order to compute their initial
and final state.

Their function is to provide a link between the departure and destination objects, be it with a single
arc, direct transfer, or with a series of connecting phases, as is the case with manifold or flyby transfers.
Here, the main objective is to obtain the initial and final state of each arc, in order to later compute the
velocity differences between phases and calculate the total ΔV. In this section, the variables required
to define each of this classes will be explained.

7.3.1. Lambert’s Arc Class
Lambert arcs behave as linking phases between all the other classes, including other intermediate
arcs. Their aim is to ensure that the full trajectory is continuous from the position viewpoint. In order to
achieve this, they require that all the other objects have been completely defined in previous steps.

This is because they make use of the final and initial state information of surrounding objects and
apply a fixed­time multiple­shooting method to fulfill continuity, as described in Chapter 5. The only
variable required for this is the arc’s time of flight. Although technically this variable could get as high
as the maximum TOF, it is generally more convenient to use lower bounds, as Lambert arcs will only
be relevant for direct transfers or for linking intermediate arcs, both situations of considerably shorter
duration than a full transfer. In this way, the optimization effort is also reduced. Table 7.8 summarizes
the design variables.

Symbol Description Range Units
𝑇𝑂𝐹𝐿 Lambert’s arc time of flight 0...𝑚𝑎𝑥𝑇𝑂𝐹 days

Table 7.8: Lambert’s Arc Class Design Variables.

7.3.2. Manifold Arc Class
As introduced in Chapters 3 and 5, manifolds are three­body dynamic features that are present in un­
stable periodic solutions of the CR3BP. As such, they can only be present when the departure and/or
destination objects consist of a periodic orbit solution. The choice between stable and unstable man­
ifolds is performed automatically by the program by looking at whether the associated periodic orbit
corresponds to the destination or departure object, respectively.



7.3. Intermediate Arc Objects 43

To completely define a manifold arc three variables are needed. First, because periodic orbit mani­
folds are two­dimensional (in the mathematical definition), a single element of the whole manifold tube
needs to be chosen. This is achieved by selecting the periodic orbit point which will be perturbed to
obtain the manifold. This orbit point, however, will be taken from the periodic orbit design variables
(see Table 7.7), hence reducing one variable.

Secondly, the dimensionless perturbation magnitude to be applied to this point is requested. This
perturbation should be small, to satisfy the linear approximations. Therefore, values between 10−2 and
10−5 are usually selected. Due to the exponential distribution of this variable, the log10 values of the
perturbation are chosen as the actual design variables, rather than the perturbation magnitude itself.
Finally, the last design variable corresponding to this class is the propagation time of the arc, expressed
in days. Remember that this propagation will be backwards for stable orbits. However, as explained in
Chapter 5, the approach chosen will not use ”pure” manifolds, but rather a perturbation to the velocity
components will be added to minimize the overall ΔV, not just the last maneuver. Hence, three more
design variables are added, one for each velocity component.

Table 7.9 summarizes the design variables of the manifold arc.

Symbol Description Range Units
Δ log10 value of the manifold dimensionless perturbation magnitude −5.0... − 2.0 ­
Δ𝑣𝑥 Manifold velocity perturbation in the 𝑋­axis −Δ𝑣𝑥 ... + Δ𝑣𝑥 m/s
Δ𝑣𝑦 Manifold velocity perturbation in the 𝑌­axis −Δ𝑣𝑦 ... + Δ𝑣𝑦 m/s
Δ𝑣𝑧 Manifold velocity perturbation in the 𝑍­axis −Δ𝑣𝑧 ... + Δ𝑣𝑧 m/s
𝑇𝑂𝐹𝑀 Manifold arc time of flight 0...𝑚𝑎𝑥𝑇𝑂𝐹 days

Table 7.9: Manifold Arc Class Design Variables.

7.3.3. Flyby Arc Class
The last intermediate arc class type is the flyby transfer arc. As explained in Chapter 5, flybys will be
computed by defining a point around the Moon using spherical coordinates (𝑟, 𝜃, 𝜙) and connecting it
to the parking and destination orbits with a Lambert arc.

The Lambert arc connecting the flyby point to the parking orbit can be declared as a Lambert arc
class by itself, but the second connecting transfer will require some extra variables. These are the com­
bination of the flyby point (𝑟, 𝜃, 𝜙) and the Lambert arc design variables (TOF). Table 7.10 summarizes
the design variables used for this arc class.

Symbol Description Range Units
𝑟 Altitude at which the flyby takes place 100.0...1000.0 km
𝜃 Polar angle that defines the inclination of the flyby 0.0...180.0 ∘

𝜙 Azimuth angle that defines the flyby point 0.0...360.0 ∘

𝑇𝑂𝐹𝐹 Flyby arc time of flight 0...𝑚𝑎𝑥𝑇𝑂𝐹 days

Table 7.10: Flyby Arc Class Design Variables.

As can be seen, depending on the trajectory the design variables will vary. This is all managed inter­
nally by the tool in order to increase its versatility and be able to solve almost any trajectory optimization
problem in the CR3BP.

The user only needs to define the trajectory string in the initialSettings.txt file and set the proper
variable bounds inside the initialGuess.txt file. An example of the file for a manifold trajectory can be
seen in Figure 7.1, whereas Figure 7.2 shows the setting for a flyby transfer.

Figure 7.1: initialGuess.txt example for a KLMP transfer.
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Figure 7.2: initialGuess.txt example for a KLFP transfer.

7.4. Program Running Workflow
Now that all objects and design variables have been defined, the program workflow will be explained.
A top­down approach will be followed, starting from the full optimization and then diving into the steps
that take place on each function evaluation.

7.4.1. Full Optimization Workflow
There are two main actions when performing an optimization with this tool. These actions try to achieve
different outcomes, however, they also share some behavior. In the first place, the optimization settings
and the fixed departure and destination variables are loaded, together with the initial guess and design
variable bounds. Then, the MIDACO object is created with the corresponding configuration and the
optimization starts. This avoids repeating the costly process of reading the settings from an external
file for every evaluation and improves the efficiency of the optimization.

With respect to the first phase of the optimization, a multi­objective run takes place in order to obtain
the Pareto front. The objective in this phase is to obtain the largest number of optimal solutions and
populate the Pareto front. To do so, rather than the Pareto front file provided by MIDACO it is interesting
to perform a Pareto filter through all the MIDACO History file, to ensure that no optimal solution was
lost. Moreover, given the random nature of global search algorithms, it is strongly recommended to
perform several runs with different seed numbers, at least three, and then combine the results in a
single Pareto front.

Once the number of optimal solutions is satisfactory, the mission designer should decide which
optimal solution from those in the Pareto front best suits his/her mission requirements. Then, this
solution is placed as the initial guess for the next phase: the single­objective refinement solution. In
this phase, it is very important to also modify the maximum TOF value, otherwise the optimizer will
potentially find an optimal trajectory in an undesired region of the Pareto front. This is because in the
second phase the optimization is performed with a single objective: ΔV.

Once this optimization is converged, which should not take more than a few iterations given the high
accuracy of the initial guess provided, several output files are created. These files are compatible with
the ASTOS software and must be imported into a prepared scenario such that the trajectory is loaded
into ASTOS and further analysis is performed.

A visual representation of this whole process is shown in Figure 7.3.

Figure 7.3: Full optimization workflow schematic.

7.4.2. Single Function Evaluation
During any of the optimization runs, several thousands of function evaluations take place with different
combinations of variables to try and find the optimal combination. In this section, the steps that take
place in every iteration are discussed. In order to show the full capabilities, a KLMP/KLFP trajectory
has been used.

Having the constant information from the orbits loaded, MIDACO sets the values for the design
variables of the current iteration and the tool computes the states associated with the departure and
destination objects (K and P). This is the first step because this information will never depend on any
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other object, unlike intermediate arc objects.
The second object to compute its information are manifold objects (M) and flybys (F), if necessary.

This is possible because the periodic orbit object was already created in the previous step, so all the
information is available to obtain said arcs.

Finally, Lambert arcs (L) are established to connect all previous phases, ensuring continuity within
the trajectory. This needs to be the last step as the initial and final state of the Lambert arc must come
from the previous phases.

Once all arcs have been computed, each phase initial and final states is transformed to the inertial
reference frame so that the velocity difference with respect to the next phase can be computed. Then,
the total ΔV is obtained by adding the norm of the velocity changes. The time of flight is obtained by
adding the duration of the intermediate arc phases. The departure/destination duration is not counted
towards the transfer TOF, but it is used in the output files for plotting purposes.





8
Verification and Validation

8.1. Orbit Calculation
As discussed in Chapter 4, two types of orbits are used in this investigation as departure/destination
points: Keplerian orbits and periodic solutions. In this section, the validation and verification for both
calculations will be presented.

8.1.1. Keplerian Elements Transformation
The transformation from Keplerian elements to inertial coordinates was not discussed in this investiga­
tion, as it is a trivial problem in two­body dynamics and the user was referred to the literature. However,
it is important that the code written for this tool is verified. Hence, two sample problems from previous
studies were reproduced. The aim in both examples is to transform from the Keplerian elements to
inertial coordinates, as this is also the transformation applied in the software.

Input Values Literature Result Code Output
a = 6787746.891 [m] x = ­2700816.14 [m] x = ­2700816.139434747 [m]
e = 0.000731104 [­] y = ­3314092.80 [m] y = ­3314092.801019180 [m]
i = 51.68714486 [deg] z = 5266346.42 [m] z = 5266346.420678317 [m]
Ω = 127.5486706 [deg] 𝑣𝑥 = 5168.606550 [m/s] 𝑣𝑥 = 5168.606551641139 [m/s]
𝜔 = 74.21987137 [deg] 𝑣𝑦 = ­5597.546618 [m/s] 𝑣𝑦 = ­5597.546615322460 [m/s]
M = 24.06608426 [deg] 𝑣𝑧 = ­868.878445 [m/s] 𝑣𝑧 = ­868.87844519267 [m/s]

Table 8.1: International Space Station on June 12, 2014, 12:00:00 hrs [38].

Input Values Literature Result Code Output
a = 7096137.00 [m] x = 3126974.99 [m] x = 3126974.985462390 [m]
e = 0.0011219 [­] y = ­6374445.74 [m] y = ­6374445.736050989 [m]
i = 92.0316 [deg] z = 28673.59 [m] z = 28673.587563790 [m]
Ω = 296.1384 [deg] 𝑣𝑥 = ­254.91197 [m/s] 𝑣𝑥 = ­254.911973692548 [m/s]
𝜔 = 120.6878 [deg] 𝑣𝑦 = ­83.30107 [m/s] 𝑣𝑦 = ­83.301071263987 [m/s]
M = 239.6546 [deg] 𝑣𝑧 = 7485.70674 [m/s] 𝑣𝑧 = 7485.706737958623 [m/s]

Table 8.2: Cryosat­2 on June 13, 2014, 14:59:21 hrs [42].

As can be seen in Tables 8.1 and 8.2, the values obtained by the software are identical to the results
offered by the literature to the highest accuracy. This confirms the validation and verification of the Ke­
plerian elements to inertial coordinates transformation. The transformation from the inertial coordinates
to the barycentric rotating frame has also been verified by direct comparison with the ASTOS software,
which being a commercial software can be used as a reliable source.
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8.1.2. Periodic Orbits in the CR3BP
In order to verify the periodic orbit constructor described in Chapter 4, again some examples from
literature will be used. In this case, nonetheless, the aim will be to compare the initial state values of
several examples of Halo orbits with the parameter values that define them, for instance, the Jacobi
constant or the period. To do so, the work by Zimovan [75] will be employed. The comparison between
the literature results and the code output can be seen in Table 8.3 for 𝐿1 Halo orbits and in Table 8.4
for solutions around the 𝐿2 point. Please note that the data is in dimensionless values and the last
columns represents the absolute difference between both values.

Parameter Literature Result Code Output Difference
JC 3.1743 3.17430085 8.50⋅10−7

Period 2.7430553931 2.74303483 2.05⋅10−5
𝑥0 0.8233901862 0.8233904445 2.58⋅10−7
𝑧0 ­0.0029876370 ­0.002934718497 5.29⋅10−5
𝑦̇0 0.1264751431 0.12642521 4.99⋅10−5

JC 3.0427 3.0427920527 9.21⋅10−5
Period 2.7462016488 2.746222909036 2.13⋅10−5
𝑥0 0.8368126154 0.8367920794209 2.05⋅10−5
𝑧0 ­0.1474695518 ­0.147394718497 7.48⋅10−5
𝑦̇0 0.2560040701 0.2559581128 4.60⋅10−5

JC 2.9989 2.9988853496 1.47⋅10−5
Period 2.0945289103 2.0945929136074093 6.40⋅10−5
𝑥0 0.8827711645 0.88276570758 5.46⋅10−6
𝑧0 ­0.1942766955 ­0.194274718497 1.98⋅10−6
𝑦̇0 0.2187424072 0.218752435046 1.00⋅10−5

Table 8.3: Initial Conditions for the 𝐿1 Halo Orbits [75].

Parameter Literature Result Code Output Difference
JC 3.1521 3.152094574 5.43⋅10−6

Period 3.4154433338 3.41548563275 4.23⋅10−5
𝑥0 1.1808881373 1.180893165535 5.03⋅10−6
𝑧0 ­0.0032736457 ­0.00335250641 7.89⋅10−5
𝑦̇0 ­0.1559184478 ­0.1558883411 3.01⋅10−5

JC 3.0807 3.0807912545 9.13⋅10−5
Period 3.2266000495 3.22662814977 2.81⋅10−5
𝑥0 1.1542349115 1.154278155535 4.32⋅10−5
𝑧0 ­0.1379744940 ­0.1378827411675 9.17⋅10−5
𝑦̇0 ­0.2147411949 ­0.21470208965 3.91⋅10−5

JC 3.0236 3.0236078555 7.86⋅10−6
Period 1.9311168544 1.9311542998 3.74⋅10−5
𝑥0 1.0526805665 1.052683155534 2.59⋅10−6
𝑧0 ­0.1972878310 ­0.1972886777215 8.47⋅10−7
𝑦̇0 ­0.1609628828 ­0.16096700785 4.13⋅10−6

Table 8.4: Initial Conditions for the 𝐿2 Halo Orbits [75].

As can be seen from Tables 8.3 and 8.4, all results are found within an absolute tolerance of
1.0⋅10−4, which would transfer to the order of 100 km for the position values. Considering that the
aim of this tool is to provide a first approximation to the trajectory optimization problem, it can be con­
firmed that the periodic calculator has been verified and validated for the proposed application. This
also validates the physical model differential equations, as it would have not been possible to obtain
these results if an error was present in that section of the code.
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8.2. Trajectory Calculation
After some intermediate steps of the software have been verified, the whole trajectory optimizer will
be validated. In order to do so, the results from Mingtao et al. [36] will be reproduced. This will be
achieved by selecting one of their solutions as initial guess together with narrow variable bounds in
those variables which are known. However, as the approach differs, some variables are unknown and
thus were left with wide bounds.

To also assess the validity of the optimizer, the solution with lowest ΔV was chosen and a single­
objective optimization process was started. The algorithm required a few hundreds of iterations before
finding similarly enough results.

Figure 8.1: Transfer validation result.

Parameter Literature Results Software Output Difference [%]
Total ΔV [m/s] 3311.43 3328.47 0.51
ΔV1 [m/s] 3116.20 3016.89 3.00
ΔV2 [m/s] 193.30 305.42 3.39
ΔV3 [m/s] 1.92 6.32 0.13

Total TOF [days] 16.43 16.41 0.12
TOF1 [days] 5.70 5.69 0.06
TOF2 [days] 10.73 10.72 0.06

Table 8.5: Initial Conditions for the 𝐿2 Halo Orbits [75].

The characteristics of this solution can be found in Table 8.5.
The closest solution to the 3.31 km/s result of Mingtao et al. had a total ΔV of 3.33 km/s, which

represents less than a 1% difference. When analyzing the individual ΔV values for each phase, differ­
ences of up to 3% are found. Regarding the time of flight, differences are negligible as this information
was a priori and was included when setting the optimization, albeit with a slight range to account for
possible rounding errors. Figure 8.1 shows theMIDACO_SOLUTION.txt output from the optimizer with
the combination of design variables values that lead to the desired trajectory. It is interesting to note
how some variables bounds are active, as if the optimization results could be improved if these bounds
were widened. A further study with respect to this aspect will be performed in the next chapter. Please
note that the relative differences are performed with respect to the total ΔV and TOF.

Overall, it can be concluded that the tool is able to find the optimal solutions from the literature within
a reasonable tolerance limit. In the next chapters, whether the results can be improved will be studied,
as well as optimizing other trajectories in order to prove the versatility of the developed tool.
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Transfer Scenario 1: LEO to 𝐿2 Halo

orbit

In the previous chapters, all the details regarding the present investigation have been explained. After
the theory has beenmade clear and the implementation has been validated and verified (see Chapter 8)
the tool will be used to solve two different scenarios. This chapter will present the results regarding the
optimization of a trajectory from a 200 km altitude LEO to a southern Halo orbit around the 𝐿2 point,
characterized by an 𝐴𝑧 value of 2000 km. The aim is to be able to compare the solutions obtained to
those available in literature [4, 15, 24, 36] and to see if the developed work can improve those results
in terms of ΔV or time of flight.

9.1. Trajectory Description
As has been said, the trajectory to be optimized starts at a 200 km altitude LEO. This is a very common
starting point for space missions, as launchers are often optimized for this configuration given the
quantity of Earth observation missions that are launched every year. It is important to note that the
overall ΔV results obtained will depend greatly on the LEO altitude. As such, it is not possible to
effectively compare two results which start at different altitudes as the major part of the ΔV is used to
escape the Earth’s influence, which is greater the closer to Earth the spacecraft is located. Thus, the
value of 200 km altitude was selected, as it coincides with several results of literature with which the
solution obtained will be compared. Moreover, the LEO has been constrained to be a circular orbit
(𝑒 = 0.0) but the orientation parameters (𝑖, Ω, 𝜔) have been left with open bounds, as has been the
case in the other references, as so has the true anomaly (𝜃).

Regarding the destination orbit, an 𝐿2 southern halo orbit has been chosen, as this is by far the most
studied transfer in the CR3BP literature. The particular member of the family was defined with an 𝐴𝑧
of 2000 km. This choice was also made looking at the literature, as most authors have found solutions
for orbits in the 1000 to 8000 km range. Although the difference can be significant for the mission
applications, with respect to the total ΔV and time of flight results are normally within a 5% difference.
Having this in mind, the results for closer Halo orbits will be also used to compare the results obtained.

Figure 9.1 shows the initialSettings.txt files for the multi­objective run of the manifold transfer (left)
and the flyby case (right). As can be seen, the only difference is in the trajectory string and in the name
of the phases. However, it is important to note that the random number seed is also changed in each
of the optimization runs with each configuration, to analyze the robustness of the optimizer and obtain
more certain results.

In the next sections, a multi­objective run will be performed for two different trajectory configurations,
resulting in a converged Pareto front with a set of optimal solutions. From those, a result will be selected,
a refinement run will be performed and a detail visualization of the trajectory characteristics will be
shown, both from ASTOS and from an independent plotting tool that was developed with Matplotlib
[21].
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Figure 9.1: Case scenario 1 initialSettings.txt file for the manifold (left) and the flyby case (right).

9.2. Multiobjective Optimization Results
As explained in Chapter 7, the first step in the optimization process is to perform the multi­objective run
in order to obtain the Pareto front with the collection of optimal solutions. To do so, four optimization
runs, each with one pseudo­random seed number will be used. The seed numbers used are 107, 468,
569 and 823. This was done to compensate for the random heuristics of the global search algorithm.

Moreover, two different configurations will be tested. First, the manifold transfer will be analyzed,
then a trajectory where a lunar flyby is ensure will be tested, and finally the best results of the ten runs
will be summarized in a common Pareto front.

9.2.1. Manifold Case
After the initial settings have been defined as seen in Figure 9.1, only the design variable bounds
need to be selected before starting the optimization. Figure 9.2 shows this selection for the manifold
configuration. As can be seen, the Keplerian angles are left with open bounds as the orbit is not
restricted to be planar nor have any other predefined inclination.

The Lambert arc is restricted to a TOF between 1 and 10 days, and themanifold arc can be extended
up to 20 days. It also has a lower bound of 0.01 days is set to account for the possibility of a direct
transfer. Moreover, the velocity perturbation values are set to ±100 m/s to allow for more maneuvers
that can minimize the ΔV for any given TOF.

Figure 9.2: initialGuess.txt file for the case scenario 1 manifold configuration.

The four optimization runs took an average of 10 hours to obtain the converged results that can be
seen in Figure 9.3. As can be appreciated, in this time they came up with around a dozen solutions
each. It can also be observed the importance of running multiple seed numbers, as the results vary
considerably depending on the seed number used, especially for shorter transfers. However, there was
also one run (seed number 107) which was unable to reproduce the results from Mingtao et al. [36].

Figure 9.4 shows the combination of the best solutions of each of the seed number runs. It is clear
that this approach is an intuitive way of showing multiple results such that the user can easily choose
the solution that best fits the mission requirements.
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Figure 9.3: Pareto front including all runs for the case scenario 1 manifold configuration.

Figure 9.4: Case scenario 1 manifold configuration combined Pareto front.
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9.2.2. Flyby Case
With respect to the flyby configuration, slightly different variable bounds were selected. As can be seen
in Figure 9.5, the Keplerian elements and Lambert arc maintain exactly the same bounds. For the flyby
arc, the time of flight has the same bounds as the manifold arc, but the rest of the variables differ. The
altitude is limited to 100 km from the Moon surface, in order to have comparable results to those from
literature. The polar and azimuth angles have completely open bounds. This is the same case for the
Halo orbit point selected for the insertion.

Figure 9.5: initialGuess.txt file for the case scenario 1 flyby configuration.

In this case, the four optimization runs took slightly longer computational time to converge, aver­
aging 12 hours. The results from the four runs can be seen in Figure 9.6. Two things can be clearly
appreciated. First, the results from the four runs are more similar than in the manifold case. This means
that the robustness of this approach is greater than the manifold solution, and hence, the impact of the
pseudo­random seed is lower, at least for the trajectory problem analyzed. However there are still no­
table differences between the runs, and using multiple seed numbers is still recommended. In second
place, the results obtained are considerably better than with the manifold approach, as faster transfers
with lower ΔV have been obtained. The results from the four runs are combined and filtered, creating
a Pareto front which is shown in Figure 9.7.

Figure 9.6: Pareto front including all runs for the case scenario 1 flyby configuration.

After combining the results from the manifold and the flyby approach in Figure 9.8, it is clear that
the flyby configuration has improved the results of the manifold scenario. Mingtao et al. results have
also been added for comparison. The minimum ΔV solution requires 3.26 km/s for the full transfer and
only 8 days, versus 3.33 km/s and 16.5 days for the manifold approach. This will be the result used for
further analysis, as it is the solution with the lowest ΔV and the time of flight would still be considered
low for most applications.
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Figure 9.7: Case scenario 1 flyby configuration combined Pareto front.

Figure 9.8: Case scenario 1 final Pareto front results
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9.3. Refined Solution
For the refined solution, one particular result from the multi­objective optimization is selected as the
initial guess. As commented previously, the ΔV = 3.26 km/s and TOF = 8 days is chosen. This is done
to increase the convergence speed of the single­objective optimization. The rest of the parameters are
maintained unchanged, except for the optim value in the initialSettings.txt file (see Figure 9.1), which is
changed to 1. After another four runs, each with a different random seed number, the single­objective
optimizer was able to improve the result found by the multi­objective run by around 2.15% moving from
3.26 km/s to 3.19 km/s. The time of flight was also reduced to 7.75 days.

Table 9.1 shows a compilation of literature results for the selected transfer. As can be seen, the
refined solution of 3.19 km/s and 7.75 days improves the majority of prior results, however some ex­
ceptions must be discussed. First, Mingtao et al. [36] found a 6.68­day trajectory which is shorter than
the presented solution. Nonetheless, the Pareto front in Figure 9.8 shows a 6­day solution which re­
quires only 3.38 km/s in total. Moreover, Zazzera et al. [4] came up with very low ΔV solutions, of 3.15
and 3.12 km/s respectively but the time of flight values were out of the bounds of the design scenario.
Overall, it can be affirmed that the results obtained improve those of the literature for this transfer.

Reference ΔV Lit. [km/s] TOF Lit. [days]
3.19 7.75

Current Work 3.38 6.00
3.42 5.75

3.31 16.43
Mingtao [36] 3.36 9.72

3.44 6.68

3.15 123.1
Zazzera [4] 3.12 77.4

3.44 42.8

Gordon [45] 3.44 20

Kokou [24] 3.21 35

Table 9.1: Comparison of obtained solutions with literature results.
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Figure 9.9: Solution trajectory in the barycentric rotating frame XY projection.
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This newly optimized trajectory solution is shown in Figures 9.9 to 9.12. Figure 9.9 shows the
𝑥𝑦­projection of the transfer in the barycentric rotation frame. This plot has been obtained with an
independent tool. This same tool was used to obtain Figure 9.10. It is important to note that the axes
in Figure 9.10 are not to scale.

Figure 9.10: Solution trajectory in the barycentric rotating frame 3D projection.

Although the independent tool is useful to obtain a general idea on how the trajectory can be rep­
resented in space, exporting the result into ASTOS offers other advantages. As can be seen in Fig­
ure 9.11, the same trajectory plots can be obtained.

Figure 9.11: Solution trajectory in the barycentric rotating frame as viewed in ASTOS.
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However, other interesting results such as the inertial representation of the trajectory seen in Fig­
ure 9.12.

Figure 9.12: Solution trajectory in the inertial J2000 frame as viewed in ASTOS.
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Transfer Scenario 2: GTO to Gateway

NRHO
Whereas Chapter 9 used a transfer problem where multiple solutions were available from literature, this
chapter will optimize a trajectory from a GTO to an 𝐿2 9:2 period­resonant NRHO, which corresponds
to the orbit that will be used by the lunar Gateway. The objective is to show the versatility of the tool
developed, and how intuitive it is to set a new optimization problem. In the same way, the capabilities of
the software are presented, proving that it is not limited to circular or planar orbits but that it is completely
flexible to adapt to the user needs, without any loss in the accuracy of the results.

10.1. Trajectory Description
As said, the trajectory to be optimized starts at a GTO. The precise definition of the shape of the orbit,
which can be seen in Figure 10.1, consists of a semi­major axis of 24239 km and an eccentricity of
0.726845. This is obtained from calculating an intersecting arc between a LEO and a GEO. GTOs are
often considered as suitable parking orbits when the destination trajectory is a GEO, but also for space
exploration missions. As in the previous example, the orientation angles are left unrestricted, except
for a maximum inclination of 35∘.

With respect to the destination orbit, the future lunar Gateway orbit was selected. Orbiting the
𝐿2 point in a 9:2 resonant NRHO, the Gateway is expected to become an outpost for many future
missions, thus bringing a large amount of attention. In order to define it for the tool, its characteristics
are introduced in the initialSettings.txt file as shown in Figure 10.1. In this case it is identified by a
period of 6.56 days.

Figure 10.1 shows the initialSettings.txt files for the multi­objective run of the manifold transfer (left)
and the flyby case (right). As can be seen, the only difference is in the trajectory string and in the
name of the phases. Once again, four multi­objective runs with different random seed numbers (107,
468, 569, 823) will be performed with each configuration (manifold and flyby), resulting in a converged
Pareto front with a set of optimal solutions. From those, a result will be selected, a refinement run will
be performed and a detail visualization of the trajectory characteristics will be shown, both from ASTOS
and from an independent plotting tool that was developed with Matplotlib [21].

10.2. Multi­objective Optimization Results
This section contains the results of the eight optimization runs, four random seed numbers for each of
the two configurations. After a brief discussion on the individual Pareto fronts for each approach, the
solutions are merged on the final multi­objective optimization result, from where a trajectory is chosen
for further investigation.

10.2.1. Manifold Case
Before starting the optimization and as the initial settings have been already set, as seen in Figure 10.1,
the design variable bounds need to be chosen. For the manifold configuration, this selection is shown
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Figure 10.1: Case scenario 1 initialSettings.txt file for the manifold (left) and the flyby case (right).

in Figure 10.2. As in the previous case, the Keplerian angles are left with open bounds as the orbit is
not restricted to any particular inclination.

Figure 10.2: initialGuess.txt file for the case scenario 2 manifold configuration.

The Lambert arc is again restricted to a time of flight between 1 and 10 days, and the manifold arc,
between 0.01 and 20 days to consider a direct transfer scenario. Regarding the velocity perturbation
values, ±1000 m/s were considered, but the results did not improve with the wider range. Thus, they
will not be included in this section. Finally the bounds were set to±100m/s to allow for more maneuvers
that can minimize the ΔV for any given TOF.

The four optimization runs with the different seed numbers took 8 hours to obtain the converged
results that can be seen in Figure 10.3 as an average. The computational time was around 20% shorter
than in the previous transfer, which can be explained because the GTO is further away from the Earth,
which reduces the sensitivity of the trajectory and improves the integration time. Hence, the running
times shown should serve as a guidance for future calculations, but they will depend on the optimization
problems and the computational power of the computer used.

As can be appreciated, in this simulation the different seed numbers provided very much the same
results, except for seed number 569, which does not appear in the right­hand side of the Pareto front.
Nonetheless, it is still a good practice to run several seed numbers, as it is not clear beforehand whether
the results will be affected.

Figure 10.4 shows the combination of the best solutions of each of the seed number runs. If this
was the full solution, it could be interesting to analyze further the 8­day transfer, as the improvement
in ΔV seems negligible compared to the increase in time of flight. The lowest ΔV result takes 17 days,
which is more than doubling the duration, while it only saves around 7% of propellant, from 1.62 km/s
to 1.51 km/s, approximately.

In the next section, it will be seen whether the flyby approach is able to improve the results shown
in Figure 10.4 as was the case in Chapter 9, or if by the contrary, in this case the manifold configuration
was a better suited approach to solve the problem.
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Figure 10.3: Pareto front including all runs for the case scenario 2 manifold configuration.

Figure 10.4: Case scenario 2 manifold configuration combined Pareto front.
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10.2.2. Flyby Case
With respect to the flyby configuration, the variable bounds were slightly different. The Lambert arc,
Keplerian angles and Halo orbit point maintain exactly the same bounds. For the flyby arc, the time
of flight bounds are identical to the manifold arc, but the rest of the variables differ. The altitude is
again limited to 100 km to have comparable results to those from the literature while keeping a margin
of safety from the Moon surface. However, the maximum bound is extended to 3000 km, as it was
seen during the optimization process that widening the range of this variable improved the optimization
results. The polar and azimuth angles have completely open bounds.

Figure 10.5: initialGuess.txt file for the case scenario 2 flyby configuration.

In this case, the four optimization runs took again an average of 8 hours. The results from the four
runs can be seen in Figure 10.6. It can be clearly noticed how the results from the four runs are more
diverse than in the manifold case. This means that the robustness of this approach is lower than the
manifold solution, and hence, the impact of the pseudo­random seed is higher, at least for the trajectory
problem analyzed. This is the reason why using multiple seed numbers is still recommended.

The results from the four runs were combined and a dominance filter was applied, creating a Pareto
front which is shown in Figure 10.7. In this case, it is not so clear whether the results from the flyby
configuration considerably improve those of the manifold approach, especially for lower TOFs.

Figure 10.6: Pareto front including all runs for the case scenario 2 flyby configuration.

After combining the results from the both configurations in Figure 10.8, it is clear that the flyby
configuration improves the results of the manifold scenario for longer TOFs. The minimum ΔV solution
requires 1.12 km/s for the full transfer and only 6.25 days, versus 1.51 km/s and 16.5 days for the
manifold approach. However, for shorter duration transfers the manifold configuration obtained better
results. Investigating the solutions it is found that they mostly consist of direct transfers. In all cases
the manifold arc duration is lower than six hours.
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Figure 10.7: Case scenario 2 flyby configuration combined Pareto front.

Figure 10.8: Case scenario 2 final Pareto front results.
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10.3. Refined Solution
For the refined solution, the chosen result from the multi­objective optimization was the 4.5­days long
transfer, with a ΔV consumption of 1.64 km/s. Although this was not the lowest ΔV solution, it has a
very good compromise between time of flight and propellant consumption, reaching the desired orbit
in 50% less time than the minimum ΔV result.

To increase the convergence speed of the single­objective optimization, the obtained result was
set as the initial guess. In the initialSettings.txt file, the optim value is changed to 1. Moreover, the
maximum time of flight limit (maxTOF) is set to 4.5 days. This is done to avoid the optimizer finding a
better solution in terms of ΔV by increasing the time of flight. The design variable bounds are kept as
they were, except for the Lambert and manifold upper TOF limit, which is set to 4,5 days to reduce the
search space and improve the speed.

After another four runs, each with a different random seed number, the lowest ΔV solution was
selected. The single­objective optimizer was able to improve the result found by the multi­objective run
from an initial result of 1.64 km/s to a final solution of 1.56 km/s of total ΔV, which equals a reduction
of around 5%. The time of flight remained unchanged, at 4.5 days.

In this case, the selected transfer did not have as many previous solutions available as in Chapter 9.
Zazzera et al. [4] studied transfers from a GTO in the CR3BP and their results are shown in Table 10.1.
Nevertheless, the destination orbit of these solutions is a southern 𝐿2 Halo orbit with 𝐴𝑧 1000 and 8000
km. Hence the results are not entirely comparable, but can be used to have an approximate idea on
the values expected. It can be seen that the minimum ΔV solution obtained (1.12 km/s) is within a 10%
margin from these results, albeit the time of flight is considerably less. Therefore, the results found are
more suitable for manned missions to the Gateway orbit, whereas Zazzera et al. results could be used
for cargo missions.

Reference ΔV Lit. [km/s] TOF Lit. [days]
Current work 1.12 6.25

0.99 123.1
Zazzera [4] 0.95 77.4

1.04 42.8

Table 10.1: Comparison of obtained solutions with literature results
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Figure 10.9: Solution trajectory in the barycentric rotating frame XY projection.
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Using the same independent plotting tool introduced in the previous chapter, the 𝑥𝑦­projection of
the transfer in the barycentric rotation frame can be obtained and is shown in Figure 10.9. The three­
dimensional view, with unscaled axes, is shown in Figure 10.10. It is noticeable how in neither of these
two figures the manifold arc is shown, provided that the solution is a direct transfer, as commented.

Figure 10.10: Solution trajectory in the barycentric rotating frame 3D projection.

When exporting the result into ASTOS the same trajectory plot in the barycentric rotating frame can
be obtained, as seen in Figure 10.11.

Figure 10.11: Solution trajectory in the barycentric rotating frame as viewed in ASTOS.

The inertial representation of the trajectory can also be obtained, as seen in Figure 10.12. It can be
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noted how the NRHO has a large out­of­plane component that has its peak at the periselene.

Figure 10.12: Solution trajectory in the inertial J2000 frame as viewed in ASTOS.

In order to test the sensitivity of the solution found, different optimization runs were performed with
the selected trajectory as initial guess, but changing the departure date by intervals of 6 hours. The
results obtained can be seen in Table 10.2. As it appears, although there are some changes in the ΔV
obtained, a trajectory with similar characteristics could be achieved if the launch window is modified.

Δ Initial Date [hours] ΔV [km/s] TOF [days]

0 1.56 4.50

+6 1.58 4.50
+12 1.62 4.46
­6 1.60 4.49
­12 1.64 4.48

Table 10.2: Trajectory initial date sensitivity analysis



11
Conclusions and Recommendations

In the final chapter of this report a brief summary of the whole investigation will be presented, empha­
sizing its most important aspects and reflecting on the knowledge acquired. Furthermore, the research
question formulated in Chapter 1 will be recovered to see the extent to which a satisfactory answer was
found. Finally, a series of recommendations will be suggested for a future work of this particular area,
providing useful ideas for the development of this project.

11.1. Summary
The advantages of this tool compared to the alternatives available in the literature are its versatility and
flexibility. Thanks to these features, the user is able to optimize the main trajectories in the CR3BP
regardless of the initial and destination orbits. Moreover, the various transfer arc approaches (direct,
manifold and flyby) enable different configurations that can be combined to find other optimal solutions.
Finally, the multi­objective optimization approach is key to provide the user with a range of solutions
such that the compromise between requirements is satisfactorily achieved.

The most relevant factor for the success of this study was the careful selection of design variables. It
was very important to choose the transfer configurations such that the design space was not restricted
and the global search optimizer could analyze it on its entirety. This was especially important given the
multi­objective nature of the project, as the approaches that might be suitable for low ΔV transfers, may
not coincide with shorter solutions, and viceversa.

Another crucial decision to increase the design space was to opt for a multiple­shooting strategy
inside the Lambert arc calculator. In this way, the sensitivity of the integrator was reduced, obtaining
more converged solutions and allowing the global search optimizer to have more information and thus,
find optimal solutions with a lower number of iterations. However, this also increased the computational
time of each function evaluation.

Moreover, it was a main requirement that the tool was intuitive such that users without a large knowl­
edge on the CR3BP or trajectory optimization are able to make use of it and get a first impression of
the transfer requirements for their mission. As an example Tharshan [28] used a beta version of the
tool developed in this investigation to compute transfers from Earth (both GEO and GTO) to Halo or­
bits around the lunar 𝐿2 as one of the stages of a sun­shielding mission investigation. To achieve this
user­friendliness, the tool was set up such that the user was required to introduce the least amount of
information possible, without losing the generality of the optimization capabilities. Input files initialSet­
tings.txt and initialGuess.txt are the result of this process.

The decision of choosing a global search algorithm as the optimization method was especially suited
for this multi­objective problem. As the design space was analyzed in all regions regardless of the
number of objectives, the global search algorithm came with a wider range of solutions without requiring
a significant increase of function evaluations with respect to a single­objective approach.

Besides obtaining a wider range of solutions than the previous literature, the results achieved were
also better in terms of ΔV and mission duration, as seen in Chapters 9 and 10. This improvement was
mainly due to the lack of restrictions in the design space and the tool’s ability of trying different transfer
configurations simultaneously. This aspect can be considered a complete success with regard to the
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tool evaluation.
The results also show how the manifold approach resulted in a sub­optimal configuration, as the

aim is to minimize the overall ΔV, rather than the final maneuver. The flyby approach, on the other
hand, provided outstanding results, especially regarding the low mission’s duration. This makes them
very suitable for manned missions. The improvement with respect to Mingtao et al. [36] was mainly
due to the flyby arc not being restricted to start from a manifold, thanks to which more possibilities could
be analyzed.

In addition, the possibility of exporting the results into a higher­fidelity resource such as the ASTOS
software is an added value which allows to easily perform a more accurate analysis of the characteris­
tics of the selected transfer.

Finally, the only aspect that could be questioned is the large computational time cost of this software.
10 hours can appear as a very large time for a first stage tool in the mission analysis process. However,
this was expected when the global search optimizer was selected. Secondly, it must be noted that
several seeds can be running in parallel, which greatly reduces the computational effort. Finally, the
effect of the running time is mitigated by the fact that after the optimization process, not only one but
several optimal solutions are obtained, which brings down the effective time cost per solution.

11.2. Research Question
Before judging whether the research objectives of this investigation have been fulfilled, the research
question and sub­questions are recalled.

Is there a user­intuitive way to optimize a wide range of trajectories in the CR3BP model
from a multi­objective perspective?

How will the tool be user­intuitive?

What constitutes a wide­range of trajectories in the CR3BP? Is this limited to departure and
destination orbits options, or also to transfer arcs?

Which multi­objective algorithm is best suited to solve this problem?

As it has been proven throughout the project, it is perfectly possible to design such said tool, how­
ever, some aspects need to be discussed in a deeper way. The analysis of whether the question
has been successfully answered in this study will be broken down in three paragraphs: intuitiveness,
trajectories and optimization results.

Regarding the intuitiveness of the developed tool, the use of the initialSettings.txt and initialGuess.txt
input files effectively allows the user to introduce the transfer characteristics in a simple way. Moreover,
the output files (Pareto front, optimization process state and trajectory data) are very easily understand­
able and with the additional plotting tools, a visual representation is readily available. Overall it can be
said that the tool presents a high level of user­friendliness, although there are some improvements that
can be made which will be described in the next section.

With respect to the trajectories of the CR3BP the tool is able to connect Keplerian orbits, and any
kind of Lyapunov, Halo orbits or CR3BP in any combination possible. Although this is not an extensive
list of all the periodic solutions available in the CR3BP it is more than enough to satisfy a large portion
of the missions of scientific and industrial interest of the present days.

Finally, as far as the optimization results are concerned, the tool developed has been able to provide
more and better solutions than those available in literature. As such, this aspect can be considered a
complete success.

Overall, it can be concluded that the research objectives that were set for this investigation have
been met. Nonetheless, there is always room for improvement, and some good ideas related to this
topic will be discussed in the next section.

11.3. Future Work Recommendations
This section contains some suggestions which are intended to improve different aspects of the devel­
oped tool.

In order to increase the user­friendliness of the program, it could be interesting to create a Graph­
ical User Interface (GUI) such that the design variables are automatically updated depending on the
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trajectory configuration used. Moreover, the refinement run could be started by an interactive selection
of the region of the Pareto front that is of interest for the user, rather than by setting a new optimization
case manually. Finally, the whole tool could be integrated inside ASTOS such that the solution does
not need to be exported into the software, but the mission analyst is ready to continue the optimization
with the selected trajectory.

Another improvement is expanding the set of periodic solutions that can be introduced as destination
or parking orbits. Although Lyapunov, Halo orbits and NRHOs account for the majority of the exploration
missions in recent years, other orbits such as DROs or quasi­periodic solutions such as Lissajous orbits
could be suitable for future analysis.

Finally, in order to reduce the computational cost of the tool, other optimization algorithms could be
studied. As MIDACO treats the objective and constraint functions as a black­box, the code can easily
be moved into a different solver.

Finally, a suggestion that could be employed to tackle other type of problems is to include the initial
date as one of the design variables. This would be useful to study the launch window options and
create pork­chop plots of the trajectory options.
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