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robot-assisted gait training in people with
neurological disorders
Simone S. Fricke1* , Cristina Bayón1, Herman van der Kooij1,2 and Edwin H. F. van Asseldonk1

Abstract

Background: In clinical practice, therapists choose the amount of assistance for robot-assisted training. This can
result in outcomes that are influenced by subjective decisions and tuning of training parameters can be
time-consuming. Therefore, various algorithms to automatically tune the assistance have been developed. However,
the assistance applied by these algorithms has not been directly compared to manually-tuned assistance yet. In this
study, we focused on subtask-based assistance and compared automatically-tuned (AT) robotic assistance with
manually-tuned (MT) robotic assistance.

Methods: Ten people with neurological disorders (six stroke, four spinal cord injury) walked in the LOPES II gait
trainer with AT and MT assistance. In both cases, assistance was adjusted separately for various subtasks of walking (in
this study defined as control of: weight shift, lateral foot placement, trailing and leading limb angle, prepositioning,
stability during stance, foot clearance). For the MT approach, robotic assistance was tuned by an experienced
therapist and for the AT approach an algorithm that adjusted the assistance based on performances for the different
subtasks was used. Time needed to tune the assistance, assistance levels and deviations from reference trajectories
were compared between both approaches. In addition, participants evaluated safety, comfort, effect and amount of
assistance for the AT and MT approach.

Results: For the AT algorithm, stable assistance levels were reached quicker than for the MT approach. Considerable
differences in the assistance per subtask provided by the two approaches were found. The amount of assistance was
more often higher for the MT approach than for the AT approach. Despite this, the largest deviations from the
reference trajectories were found for the MT algorithm. Participants did not clearly prefer one approach over the other
regarding safety, comfort, effect and amount of assistance.

Conclusion: Automatic tuning had the following advantages compared to manual tuning: quicker tuning of the
assistance, lower assistance levels, separate tuning of each subtask and good performance for all subtasks. Future
clinical trials need to show whether these apparent advantages result in better clinical outcomes.
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Background
Robot-assisted gait training (RAGT) is a promising tech-
nique for rehabilitation after neurological disorders such
as stroke or spinal cord injury (SCI). RAGT can be used
to provide intensive, repetitive and task-specific train-
ing, while it also contributes to reduce physical load for
therapists [1]. Reviews of previous studies have shown that
RAGT can increase the likelihood that people walk inde-
pendently after stroke, and that it is most effective in the
acute phase after stroke/SCI and in the most impaired
patients [2, 3]. However, those results should be handled
with some care as differences in patient groups, robotic
gait trainers, protocol guidelines and control algorithms
can largely affect the outcomes [2, 4].
Regarding protocol guidelines and control algorithms,

it has to be considered that the amount of assistance
that the robotic gait trainers provide to the users is
often manually tuned by therapists or cannot be changed
[5–7]. Therapists mainly base their decisions on visual
assessments of the patient, which means that training out-
comes can be influenced by subjective decisions. Some
studies address this issue by defining guidelines on how
to set the assistance [6–9]. However, these guidelines are
often not really specific and require experienced thera-
pists to adjust training parameters.
Therapists might have difficulties while tuning the assis-

tance for RAGT compared to manually assisted gait train-
ing (where therapists use their hands to move patient’s
legs) due to two main reasons. First, in RAGT, therapists
cannot directly feel the assistance that is being applied,
and have to rely on other feedback (e.g. visual assess-
ment of the patient) to choose the best assistance for
the patient’s needs. Second, the large number of param-
eters to tune the provided amount/timing of assistance
[10], makes it difficult and time-consuming to manually
change them while observing the patient [4]. Therefore,
manually-tuned controllers that are currently used for
therapy have their limitations in tailoring therapy to the
patients’ needs.
To objectively and quickly tune the robotic assistance

and to promote active participation of the patient, various
algorithms that automatically adjust the amount of robotic
assistance for lower limbs [11–21] or upper limbs [22–26]
have been developed. Some of these algorithms gradually
adapt the assistance based on an error compared to a ref-
erence trajectory and a forgetting factor [13, 14, 16, 21].
Others use reference trajectories (e.g. for the hip and knee
angle during walking) with an (adaptive) virtual tunnel
around these trajectories [11, 12, 25]. Forces are applied by
the device to prevent that the user moves out of the tun-
nel (i.e. too large deviations of joint angles compared to
the reference trajectories). Most of these algorithms can
tune the robotic assistance automatically and quickly at a
joint level for each percentage of the gait cycle. However,

they do not explicitly consider the different subtasks of
walking (in this study defined as control of: weight shift,
lateral foot placement, trailing and leading limb angle,
prepositioning, stability during stance, foot clearance)
[10, 27–30].
We previously developed an algorithm that is focused

on these functional subtasks of gait and automatically
tunes the amount of robotic assistance for each subtask
based on the user’s performance during walking [15, 31].
This algorithm is designed to tune the assistance in a sim-
ilar way as therapists would like to tune robotic assistance:
judging which subtasks of gait are affected and applying
assistance for these subtasks [32].
So far, automatically-tuned (AT) algorithms havemainly

been evaluated in single sessions (e.g. effect on kinemat-
ics or EMG) [12, 16] or studies with a low number of
participants [11, 33] while various larger clinical studies
compared manually-tuned (MT) RAGT to conventional
physical therapy [2]. As far as we know, the amount of
robotic assistance applied by an AT algorithm has not
been compared yet to the settings that a therapist would
use and it is unknown how these two approaches affect
rehabilitation in people with neurological disorders.
In the present, exploratory study, as a first step in

getting more insight into the effect of MT and AT
robotic assistance, we compare two different approaches
for tuning robotic assistance by using the LOPES II gait
trainer [10]: (1) subtask-based assistance set by an expe-
rienced therapist (manually-tuned, MT); and (2) subtask-
based assistance set by our above-mentioned algorithm
(automatically-tuned, AT) [15, 31]. By performing this
comparison, we expect to answer the following ques-
tions: (1) How is the assistance tuned by the MT and AT
approaches? (e.g. how long does it take to tune the assis-
tance?); (2)Which final assistance levels are chosen for the
MT and AT approach?; (3) How do these assistance levels
affect deviations from the reference trajectories at specific
evaluation points for each subtask (e.g. maximal hip and
knee flexion)?; (4) Do the participants prefer one of the
approaches over the other one regarding safety, comfort,
effect and amount assistance?
The results from this study give more insight into how

the two approaches, AT and MT assistance, affect RAGT
and may be used to further optimize robot-based rehabil-
itation of patients with neurological disorders.

Methods
Participants
Six stroke survivors and four people with incomplete SCI,
all in the chronic phase (>6 months after injury), partic-
ipated in this study (7 male, age 53 ±17 years, weight 78
±12 kg, height 1.76 ±0.12 m). An overview of the partic-
ipants’ characteristics can be found in Table 1. Inclusion
criteria used in this study were (1) age>18 years, (2) a
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Table 1 Overview of participant characteristics, clinical scores and settings for LOPES II

ID Gender Age Time post
stroke/SCI
(years)

More
affected
leg

Level SCI 10MWT
(km/h)

Assistive
device(s) used
during 10MWT

FAC FMA MI Walking
speed in
LOPES II
(km/h)

Toe-lifter in
LOPES II

Str1 m 53 1 r n.a. 1.9 cane, AFO 4 13 28 1.5 Yes

Str2 f 63 5 l n.a. 2.1 cane 5 33 83 2.0 No

Str3 m 60 2 l n.a. 2.4 cane, AFO 5 19 42 1.5 Yes

Str4 m 33 10 r n.a. 3.1 none 5 25 67 1.4 No

Str5 m 74 4 r n.a. 4.1 none 5 31 91 1.7 No

Str6 f 74 6 r n.a. 3.0 none 5 24 58 1.5 No

SCI1 f 45 8 l T9 2.8 walker 5 n.a. n.a. 1.3 No

SCI2 m 25 3 l L3 n.a. n.a. 0 n.a. n.a. 1.5 Yes

SCI3 m 63 6 r T12 0.8 walker, AFO 3 n.a. n.a. 1.0 Yes

SCI4 m 41 1 r L3 2.9 none 5 n.a. n.a. 2.0 No

ID: identification code used for each specific participant, 10MWT: 10 meter walking test, FAC: functional ambulation scale, FMA: Fugl-Meyer assessment (lower extremity), MI:
Motricity index (lower extremity), AFO: ankle foot orthosis, Str..: participants with stroke, SCI..: participants with SCI

stable medical condition, (3) a physical condition which
allowed for 3 min of supported walking, (4) sufficient cog-
nitive abilities to follow the instructions and report any
discomfort, (5) time since stroke/SCI>6 months. People
with other orthopedic or neurological disorders or cardiac
conditions that could be affected by physical load were
excluded.
The experiments were approved by the local medical

ethical committee (METC Twente) in accordance with the
guidelines of the Declaration of Helsinki. All participants
received oral and written information about the exper-
iments and gave written informed consent prior to the
start of the experiments.

Robotic gait trainer
LOPES II (LOwer extremity Powered ExoSkeleton II)
was used to evaluate the AT and MT approach in this
study. LOPES II is a gait trainer consisting of push-pull
rods which are attached to the pelvis and lower limbs
of the user [10]. LOPES II can provide assistance for
eight degrees of freedom (DOFs) (pelvis front/back, pelvis
left/right, hip flexion/extension, hip abduction/adduction
and knee flexion/extension) while the user is walking on
an instrumented treadmill. LOPES II is an admittance-
controlled device and the amount of robotic assistance
can be set from minimal impedance (transparent mode,
minimizing interaction forces between the device and
human) to full assistance (mimicking position control).
When applying assistance, LOPES II can move the user
along different reference trajectories. The reference tra-
jectories are defined for each DOF and are based on a data
set from healthy elderly subjects [34]. The exact amount
of force/torque that is applied to move the user along the
reference trajectories depends on: (1) deviations from the

reference trajectories and (2) stiffness K of virtual springs
with equilibrium positions on the reference trajectories.
This virtual spring stiffness K can be calculated with the
following equation for each DOF (j) and each instant (i in
%) of the gait cycle: Kj,i = Kmax,j

(
Gj,i
100

)2
. Kmax,j is a maxi-

mal stiffness that is defined for each DOF of LOPES II (see
[10]) and Gj,i is the desired assistance that is either MT or
AT in this study.More details about the design and control
of LOPES II can be found in [10].

Subtask-based assistance
The gait cycle was divided into various subtasks that are
relevant for walking [10] (see Table 2 for an overview
of the subtasks). Specific assistance profiles were used to
assist when needed only at the portion of the gait cycle
corresponding to each specific subtask (see Table 2). The
subtask-based assistance could be adjusted individually,
and separately for each leg. For example, left hip flex-
ion could be assisted during swing to improve the leading
limb angle on that side, while all other subtasks were in
minimal impedance mode. As previously indicated, the
assistance for each subtask was either chosen by a ther-
apist (MT) or automatically calculated by the algorithm
described below.

Manually-tuned (MT) assistance
A graphical user interface (GUI) was used by an expe-
rienced physical therapist to set the amount of robotic
assistance [10] (see Fig. 1). The GUI consisted of one
main tab and one tab for each subtask. The subtask-based
assistance could be adjusted individually with a minimal
change of 10% by using a slider in the respective tab of
the GUI. In addition, assistance levels for (all) subtasks
could be coupled and the assistance levels for all coupled
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Table 2 Overview of subtasks

Subtask (affected DOF:
evaluation point(s))

Reference and measured
trajectories, evaluation
points

Stiffness profile, reference
trajectory

Calculation of error
Lower and
upper bound

Weight shift (lateral
pelvis position: minimal
and maximal position)

Perr = max(|Pref ,e1 − Pmeas,e1|,
|Pref ,e2 − Pmeas,e2|)

2.50cm
4.17cm

Lateral foot placement
(hip abduction angle:
angle at 100% of gait
cycle)

θerr =| θref ,e1 − θmeas,e1 | 1.15deg.
1.91deg.

Leading limb angle (hip
flexion angle: maximal
angle)

θerr = θref ,e1 − θmeas,e1
2.15deg.
3.58 deg.

Trailing limb angle (hip
flexion angle: minimal
angle)

θerr = θmeas,e1 − θref ,e1
1.75deg.
2.92deg.

Prepositioning (knee
flexion angle: angle at
100% of gait cycle)

θerr = θmeas,e1 − θref ,e1
4.29deg.
7.16deg.

Stability during stance
(knee flexion angle:
maximal angle between
10 and 40% of gait cycle)

θerr =| θref ,e1 − θmeas,e1 | 4.30deg.
7.16deg.

Foot clearance (knee
flexion angle: maximal
angle)

θerr = θref ,e1 − θmeas,e1
4.52deg.
7.54deg.

Reference (black dotted lines) andmeasured (orange lines) positions and joint angles (Pref , Pref , θref , θref), assistance profiles (K) and evaluation points (e.g. Pref,e1) that were used
to calculate the error are shown. Each figure shows one gait cycle starting with left heel strike at 0%. Weight shift to the right side, abduction and flexion angles are defined
positive. The lower and upper bound are thresholds for adjusting the assistance based on the calculated error with the AT algorithm. If the error was lower than the lower
bound, assistance was decreased. An error larger than the upper bound led to an increase in assistance and in other cases the assistance remained constant (see also Fig. 1)

subtasks could be changed simultaneously by using a
slider in the main tab of the GUI. To assist in tuning and
show the immediate effects of changing assistance levels,
visual feedback about the performance was provided for
each subtask in the respective tab of the GUI (e.g. maximal
knee flexion was shown for the foot clearance subtask, see
Fig. 1). In this study, the same therapist, who was experi-
enced in using LOPES II, tuned the amount of assistance
for all experiments. The therapist got the instruction to
set the assistance to a level that he would have used to
train the patient. We decided not to give him more spe-
cific instructions as we were interested in which levels a
therapist would choose without receiving any additional
instructions.

Automatically-tuned (AT) assistance
The AT algorithm adjusted the amount of assistance
based on the user’s performance [15, 31] (see Fig. 1).
Specific evaluation points were defined for each subtask
of walking (see Table 2). The reference and measured

joint angles were determined for each evaluation point
and the error was calculated as defined in Table 2. For
some subtasks (foot clearance, trailing and leading limb
angle, prepositioning), we assumed that exceeding the ref-
erence trajectory would not be detrimental. For example,
we allowed maximum knee flexion larger than the ref-
erence gait pattern for the foot clearance subtask as too
much knee flexion during swing is not typically found in
people with stroke or SCI. In addition, the reference tra-
jectories that were used in LOPES II are based on average
trajectories of healthy individuals and might not exactly
fit the needs of the user (with stroke or SCI). Allowing
more knee flexion during swing (more foot clearance)
than the reference pattern is safer as the feet will less
likely hit the ground prematurely in the swing phase. For
the same subtask, a knee flexion smaller than the refer-
ence pattern was penalized. For other subtasks (weight
shift, stability during stance, lateral foot placement), we
calculated the absolute error since an error in both direc-
tions might have negative consequences in people with
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Fig. 1 Overview of assistance tuning. The assistance was either AT based on the error between reference and measured trajectories or MT by a
therapist. In this figure only an example for the foot clearance subtask is shown, however, the algorithm was applied to all subtasks shown in Table 2
simultaneously. For the AT algorithm, based on the error, every three steps, the assistance was either increased (if error>upper bound, see Table 2),
decreased (if error<lower bound) or kept constant (other cases) by scaling the amplitude of the assistance profile (K) shown on the right. For the MT
approach, the therapist could change the assistance (amplitude of the assistance profile K on the right) for each subtask by using graphical sliders.
Feedback for the therapist was also shown to assist the therapist in tuning the assistance. As shown in this figure, the therapist got feedback about
the maximal knee angle for the foot clearance subtask. The purple bars represented the maximal knee flexion angles for the previous three steps of
the less impaired leg, while the blue bars represented the maximum knee flexion angles for the more impaired leg. The green line indicated the
maximal knee flexion angle for the reference trajectory

neurological disorders. For example, during stance phase
(subtask: stability during stance), both, knee hyperexten-
sion or toomuch knee flexion, can be found in people with
neurological disorders [35].
Lower and upper bounds were defined for the subtask-

based assistance based on the variability in the evaluation
points in healthy participants walking in LOPES II in
minimal impedance mode (see Table 2) [15]. After three
steps, the average error per subtask and side was calcu-
lated to adjust the amount of robotic assistance for each
subtask and side separately. The subtask-based assistance
was increased by 10% if the average error was larger than
the upper bound (see Fig. 1), as the user needed more
assistance to stay closer to the reference trajectory. If the
average error was lower than the lower bound, the amount
of assistance was decreased by 10% to prevent that the
user only relied on the assistance and to promote active
participation. If the error was in between the lower and
upper bound, the robotic assistance was kept constant.

Experimental procedures
Each participant took part in two sessions (familiariza-
tion and experimental session) on two different days. The

familiarization session was used to gather information
about the participants (e.g. clinical scores) and practice
walking in LOPES II. The experiments to compare AT
and MT assistance were performed in the experimental
session.
In the familiarization session, clinical tests (10 meter

walking test (10MWT), Functional Ambulation Category
(FAC), Fugl-Meyer assessment (FMA), Motricity index
(MI)) were administered by a therapist. After this, partic-
ipants’ upper and lower leg lengths and pelvis width was
measured and adjusted in the software and hardware set-
tings of LOPES II. Participants were strapped into LOPES
II and toe-lifters were attached if participants dragged
their toes along the ground during the swing phase. Par-
ticipants with stroke, if needed, only used a toe-lifter on
the more impaired side while participants with SCI used
toe-lifters for both feet. Walking speed and, if needed,
partial body weight support (PBWS) was set to a comfort-
able value based on the feedback from the participant and
therapist (see Table 1). To get used to walking in LOPES
II, participants walked at least two times, for three min-
utes in the device in this familiarization session. The first
time, the assistance was set manually while the second
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time the AT algorithm was used to allow the user to expe-
rience both approaches. Participants were allowed to use
the handrails of LOPES II during both sessions.
In the experimental session, the same settings (walk-

ing speed, PBWS, toe-lifters) as in the familiarization
session were used to assess the AT and MT approach.
Each participant performed four trials: MTvar, MTconst,
ATvar and ATconst (var: variable assistance during the
trial, const: constant assistance, as described below and in
Table 3). Half of the participants started with MT assis-
tance (MTvar, MTconst) and the other half started with AT
assistance (ATvar, ATconst). Between the different trials,
participants could take breaks. If needed, a break could
be taken during MTvar. If ATconst or MTconst was get-
ting too exhausting for the participants, they could stop
after less than three minutes. For both approaches, par-
ticipants with a FAC score larger than 3, started at 30% of
robotic assistance (following our clinical partner’s advise),
all other participants started at 100% assistance for all
subtasks.
In MTvar, the therapist set the amount of assistance

using the GUI. While tuning the assistance, the therapist
was able to visually assess the gait pattern and to get ver-
bal feedback from the participant by talking to him/her.
The therapist also received visual feedback about the per-
formance for each subtask in the GUI. The therapist could
take as much time as needed to set the robotic assistance
to a final level that he/she would use for a training session
with the specific participant. Subsequently, in MTconst,
the assistance was kept constant at the final assistance
levels that the physical therapist had chosen in MTvar.
Participants walked for three minutes with these settings.
In ATvar, participants walked for three minutes with

the adaptive AT algorithm, which automatically adjusted
the amount of robotic assistance based on users’ perfor-
mance as explained in the previous section. After three
minutes, LOPES II was stopped. Subsequently, in ATconst,
participants walked for three minutes while keeping the

Table 3 Overview of the trials of the experimental session

Trial
name

Duration Assistance

MTvar As much as thera-
pist needed

Manually tuning assistance (thera-
pist), variable (var) assistance during
the trial

MTconst 3 min Constant (const) at level that thera-
pist chose

ATvar 3 min Automatically tuning assistance,
variable (var) assistance during the
trial

ATconst 3 min Constant (const) at level of last 15
steps of ATvar

Each participant took part in all trials. Half of the participants started with the MT
trials, while the other half started with the AT trials

subtask-based assistance constant at the average assis-
tance levels calculated with the last 15 steps of ATvar
(rounded to the nearest tens).

Outcomemeasures
To analyze differences between the AT and MT approach,
we focused on different aspects that are described in
this section: assistance tuning, final amount of assistance,
errors at final amount of assistance, PBWS and ques-
tionnaires that were filled in by the participants and the
therapist.

Assistance tuning
The time at which a stable assistance level was reached,
was determined for each participant and each subtask
for ATvar and MTvar. The AT algorithm might change
the assistance by 10% every three steps, never reaching
a completely stable level. Therefore, it was defined that
a stable level was reached when no changes larger than
10%, compared to the final assistance level of the trial,
occurred. A two-sidedWilcoxon signed rank test was used
to evaluate differences in the time that was needed to tune
the assistance. A p-value lower than 0.05 was considered
significant.

Final assistance levels
The applied robotic assistance was compared between
ATconst andMTconst for each participant and each subtask
of walking.

Errors for final assistance levels
The average error (difference between reference and mea-
sured trajectory) for ATconst and MTconst was calculated
for each participant and subtask. In the results section
we focus on the errors above the upper bounds (negative
effects on participant’s gait), which are defined in Table 2.

Partial body weight support
Participants were allowed to use the handrails during
walking andmight have varied the amount of force applied
to the handrails to support their own weight. To make
sure that there were no large differences in the amount
of PBWS between the MT and AT trials, the average
PBWS was calculated by using the vertical forces mea-
sured with the force sensors under the walking surface of
the treadmill.

Questionnaires
Participants’ preferences: Participants filled out a self-
administered paper-based questionnaire about the trials
with MT and AT assistance. The questionnaire contained
the following four questions that were evaluated, for each
approach, on a scale from 1 to 5 (1 being very unsatisfied
and 5 being very satisfied):
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How satisfied are you with ...

1 ...the safety experienced in the robot (do you feel
safe)?

2 ...the comfort during walking in the robot (assistance
or resistance)?

3 ...the effect of assistance on walking in the robot?
4 ...the amount of assistance given by the robot?

Average scores and standard deviations were calculated
for each question that participants filled in.

Therapist: To get more insight into how the therapist
was choosing the assistance provided by LOPES II, the
therapist filled in a short questionnaire with the following
two questions:

1 Which settings did you adjust and why?
2 Are you satisfied with the result? Why (not)? (For

example, were there things that you could not
change in the way you wanted?)

In this paper, only the most common answers are
reported and we do not focus on specific answers that
were only given for a small number of participants.

Results
All participants were able to perform the protocol and
walk with the AT and MT algorithm. However, for SCI2,
ATconst was stopped after two minutes (instead of three
minutes) as the participant was getting too exhausted.

Assistance tuning
On average, a stable assistance level for MTvar (difference
to final level <10% for all subtasks) was reached after
279 ±120 sec. For ATvar, a stable level was reached more
quickly (after 110 ±54 sec.). The Wilcoxon signed rank

test indicated that this difference between the MT and AT
approach was significant (Z=-3.60, p=0.006).
For the AT approach, in the beginning of the trial, the

assistance for each subtask was changed every three steps
until it approached its final stable level (changes of maxi-
mal 10%). In contrast to this, the therapist (MT approach)
often focused on decreasing the assistance for all subtasks
simultaneously (i.e. coupling all subtasks in the GUI) and
then increasing the assistance for (one to four) specific
subtasks. As an example, Fig. 2 shows these differences in
tuning the assistance for the hip and knee flexion of one
participant (SCI3).

Final assistance levels
Large differences in the assistance levels that were applied
in ATconst and MTconst were found for both legs and the
weight shift subtask (see Fig. 3 for the more impaired
leg and Fig. 4 for the less impaired leg). The weight shift
subtask is shown in both figures (Figs. 3 and 4, grey
background), however, it is considered separately in the
text below.
Figure 5 shows an example of the differences in assis-

tance levels and the resulting joint trajectories for the knee
and hip joints of Str5.

More impaired leg
For both approaches, AT and MT assistance, a higher
assistance was applied for up to 4 specific subtasks of the
more impaired leg in each participant, while less (MT)
or no (AT) assistance was applied for other subtasks (see
Fig. 3). Per participant, the therapist (MT approach) tuned
0 to 3 specific subtasks separately for the more impaired
leg (see light blue bars in Fig. 3) while all other subtasks
were (simultaneously) set to the same assistance level
(dark blue bars). In 12 of the 60 cases (the term ’cases’
means subtasks for all participants (e.g. for the more

Fig. 2 Assistance levels while tuning the assistance in SCI3. Assistance levels for all subtasks of the more impaired leg and weight shift are shown for
ATvar and MTvar of participant SCI3. The subfigure with grey background shows the measured PBWS (provided by LOPES II and use of the handrails
by the participant)
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Fig. 3 Assistance and errors for ATconst andMTconst for themore impaired leg (white background) and weight shift (grey background). Each polar plot
shows the results for one participant. The distribution of the subtasks is the same for all polar plots (see Str1). The results for MTconst are split up into
subtasks that were separately tuned by the therapist in a specific participant (light blue) and subtasks that were not separately tuned (dark blue). The
bars represent the amount of assistance that the participants received for each specific subtask. The circles outside of the polar plots represent the
size of the error that was found for each specific subtask (see legend for scale). Only errors above the upper bound (as defined in Table 2) are shown

impaired leg: 6 subtasks times 10 participants results in
60 cases)), the assistance for the more impaired leg was
tuned separately by the therapist (see Table 4). In 11 of
these 12 separately-tuned cases, the assistance was higher
for MTconst compared to ATconst and for 1 of these 12
separately-tuned cases the same assistance was applied for
both approaches. Also, for 33 of the 48 cases that were not
tuned separately by the MT approach the assistance was
higher in MTconst compared to ATconst.
Remarkably, for ATconst, the most impaired partici-

pants (SCI2 and SCI3) did not receive much assistance
(max. 40%) while these participants received at least 50%
assistance for each subtask in MTconst (Fig. 3). These
participants could probably walk with the low levels of
assistance in ATconst due to the high levels of PBWS that

were used (see Fig. 6). Although the same PBWS levels
were applied for MTconst for SCI2 and SCI3 (and other
participants, see Fig. 6), considerable differences were
found for the assistance levels (Fig. 3). A possible reason
for this is that the therapist was biased towards higher
assistance levels due to the large impairments (i.e. low
clinical scores) of SCI2 and SCI3 (Table 1). In addition, the
therapist only knew the amount of PBWS provided by the
system and he did not know the exact amount of PBWS
as participants were using the hand rails for additional
PBWS (see Fig. 6).

Less impaired leg
For the less impaired leg, deviations from the reference
trajectories were such that ATconst resulted in assistance
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Fig. 4 Assistance and errors for ATconst and MTconst for the less impaired leg (white background) and weight shift (grey background). Each polar plot
shows the results for one participant. The distribution of the subtasks is the same for all polar plots (see Str1). The results for MTconst are split up into
subtasks that were separately tuned by the therapist in a specific participant (light blue) and subtasks that were not separately tuned (dark blue). The
bars represent the amount of assistance that the participants received for each specific subtask. The circles outside of the polar plots represent the
size of the error that was found for each specific subtask (see legend for scale). Only errors above the upper bound (as defined in Table 2) are shown

for up to 3 specific subtasks in each participant while
the remaining subtasks did not receive any assistance (see
Fig. 4). In contrast to this, with MTconst the assistance
was not tuned separately in 58 of the 60 cases for the less
impaired leg. For these 58 cases, the assistance applied by
the MT approach was higher than the assistance applied
by the AT approach in 34 cases (see Table 4).

Weight shift
The therapist (MT approach) separately changed the
assistance for the weight shift in 6 of the 10 cases
(see Figs. 3 and 4, grey background). In all of these
separately-tuned cases, the weight shift assistance was
higher for theMT approach compared to the AT approach
(see Table 4). Also, for the other 4 cases (no separate

tuning of weight shift by the therapist), the assistance was
higher for the MT approach in 3 cases.

Errors for final assistance levels
For both legs and the weight shift subtask, differences
in the amount and magnitude of errors above the upper
bound, which is the error at which assistance would be
increased by the adaptive AT algorithm (see Table 2), were
found.

More impaired leg
For the more impaired leg and MTconst, the error was
larger than the upper bound in 2 of the 12 cases that
were tuned separately by the therapist (MT approach, see
light blue dots in Fig. 3) and in 10 of the 48 cases that



Fricke et al. Journal of NeuroEngineering and Rehabilitation            (2020) 17:9 Page 10 of 15

Fig. 5 Average hip and knee flexion angles and assistance for Str5.
Average angles and assistance across ATconst and MTconst are shown
for Str5 for both legs as a function of gait cycle. The dots plotted on
the trajectories indicate the evaluation points (see also Table 2) for
the different subtasks

were not tuned separately (dark blue dots). For ATconst,
the error was larger than the upper bound in 10 of the
60 cases (orange dots). These errors for the AT algorithm
were found because the algorithm did not adapt the assis-
tance in ATconst and therefore, the assistance was not

Table 4 Comparison of final assistance levels for MT and AT

Separate tuning (MT) No separate tuning (MT)

More impaired leg 12/60 cases 48/60 cases

MT>AT assist. 11/12 33/48

MT=AT assist. 1/12 1/48

MT<AT assist. 0/12 13/48

Less impaired leg 2/60 cases 58/60 cases

MT>AT assist. 1/ 2 34/58

MT=AT assist. 0/ 2 7/58

MT<AT assist. 1/ 2 17/58

Pelvis 6/10 cases 4/10 cases

MT>AT assist. 6/ 6 3/ 4

MT=AT assist. 0/ 6 0/ 4

MT<AT assist. 0/ 6 1/ 4

Cases means subtasks for all participants (e.g. for the more impaired leg: 6 subtasks
times 10 participants results in 60 cases). The cases are split up into cases that were
tuned separately by the therapist in MTconst and cases that were not separately
tuned

Fig. 6 Partial body weight support. Average body weight support
and standard deviation (between steps) for ATconst and MTconst. The
bars show the total PBWS (from the system and the use of the
handrails). Only SCI2 and SCI3 received PBWS from the system (55%
and 46%, respectively, indicated by the horizontal grey lines). All other
PBWS is the result of using the handrails. Negative values can, for
example, be explained by parts of LOPES II that might have slightly
rested on the pelvis of the participant

automatically increased when the error was larger than
the upper bound.
Remarkably, although often less assistance was applied

for ATconst, the observed errors were much lower than for
MTconst (always <10 deg.). The largest errors of up to 20
deg. of deviation from the reference trajectory were found
for MTconst, but only in subtasks that were not separately
tuned by the therapist (e.g. stability during stance subtask
(e.g. Str2, Str4) and prepositioning (SCI4), see Fig. 3).

Less impaired leg
For the less impaired leg only two subtasks were tuned
separately by the therapist and for these subtasks the error
was lower than the upper bound. For 24% of the 58 sub-
tasks that were not tuned separately, the error was larger
than the upper bound (see dark blue dots in Fig. 4). For
ATconst, the error was larger than the upper bound in only
9 of the 60 cases (orange dots).
The largest errors (up to 18 deg. of deviation from

the reference trajectory) were found for MTconst for the
stability during stance and prepositioning subtasks (see
Fig. 4). In most cases, the errors for ATconst were much
lower. Only for one of the participants (SCI3) an error
of 10 deg. was found for the foot clearance subtask in
ATconst, while all other errors were smaller than 10 deg.

Weight shift
Resulting errors for the weight shift subtask were gener-
ally small. Separate tuning of the weight shift subtask in
MTconst always resulted in errors lower than the upper
bound (see Figs. 3 and 4). Only in one case the error was
higher than the upper bound in MTconst when the assis-
tance was not selectively tuned. The AT algorithm also
resulted in errors lower than the upper bound in all except
for one participants. The error was less than 5 cm in both
cases (MTconst and ATconst).
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Questionnaires
Participants’ preferences
Participants evaluated safety, comfort and effect and
amount of assistance on a scale with a maximum of 5.
On average, participants gave similar (high) scores for
the safety (AT: 4.5, MT: 4.4) and the effect of assistance
(AT: 4.0, MT: 3.9) (see Fig. 7). The comfort was evalu-
ated slightly better for the AT algorithm (4.0) compared
to MT assistance (3.7). In contrast to this, participants
were slightly more satisfied with the amount of assistance
given by theMT algorithm (4.5) compared to the AT algo-
rithm (4.1). The scores per participant were also checked
to see whether there were clear differences between the
two approaches in specific participants, however, the dif-
ference between AT and MT assistance was never larger
than 1 for any of the questions.

Therapist
The therapist answered in eight of the ten participants
that he/she adjusted the assistance for specific subtasks
separately. The therapist decreased the assistance for all
other subtasks to assist the most impaired subtasks, but
let the participants do as much as possible by themselves.
For four of the ten participants the therapist was satisfied
with the result. For the other participants he/she was not
satisfied with the exact effect of the assistance. Besides,
the therapist claimed that it was often difficult to see what
exactly changed (e.g. when decreasing the assistance), and
that he/she sometimes had to rely on feedback from the
participants.

Discussion
The goal of this study was to compare subtask-based
MT and AT robotic assistance during gait in people
with neurological disorders. We determined differences
while tuning the assistance, final assistance levels, errors
compared to reference trajectories and preferences of the
participants. For all of these aspects, large differences
were found between the AT and MT approach, except for
the preferences of the participants, which were similar for
both approaches.

Fig. 7 Average evaluation of the AT and MT algorithms by all
participants. The aspects safety, comfort, effect of assistance and
amount of assistance were evaluated on a scale from 1 (very
unsatisfied) to 5 (very satisfied). The average for all participants and
standard deviation between participants is shown

Possible reasons for differences between the AT andMT
approach
There might be several reasons for the large differences in
final assistance levels (and deviations from the reference
trajectories) between the two approaches that can only be
speculated on. The AT algorithm assured a good perfor-
mance for all subtasks by tuning the assistance for each
subtask separately. In contrast to this, the therapist (MT
approach) tuned a small number of subtasks separately
(the most affected ones) and aimed for a good perfor-
mance (low errors) for these subtasks. For the subtasks
that were not tuned separately, the largest errors were
found, which means that the therapist accepted larger
deviations for these subtasks. Although the therapist
could have used the GUI to see the deviations from refer-
ence trajectories for all subtasks, he/she was mainly rely-
ing on visual assessment of the gait pattern and feedback
from the participants when tuning the assistance. This
could be an indication that the therapist did not attempt to
decrease the deviations from the reference trajectories for
all subtasks, but rather tried to reach an acceptable walk-
ing pattern. In addition, the therapist might have accepted
larger deviations from reference trajectories to allow for
compensation strategies.
Another possible reason for the differences between the

AT and MT approach is that tuning all subtasks sepa-
rately could be too complicated and time-consuming for
clinical practice. The subtasks were related to common
problems after neurological disorders [36–40]. They were
chosen based on input from physical therapists and reha-
bilitation physicians who indicated that they would like to
have more possibilities to tune the assistance than in other
(commercially available) robotic gait trainers, which often
only allow to change the general assistance for the whole
gait cycle and multiple joints simultaneously [4, 32]. The
number of subtasks in the current study is relatively low (6
for each leg, and weight shift). Still, in this study, the ther-
apist focused only on a low number of subtasks (up to 4
per participant) and tuned these subtasks separately.
A last possible reason for the difference between the

AT and MT approach is that the therapist might also
have acted on the safe side, by trying to prevent possible
problems occurring with (too) low assistance levels (e.g.
stumbling, exhaustion) and therefore more often higher
assistance levels were found for the MT approach. An
indication for this could be that for the most impaired
participants the MT assistance was much higher than
needed, even for most subtasks that were not tuned
separately.

Advantages of the AT approach compared to the MT
approach
A large advantage of the AT approach is that it is not influ-
enced by subjective decisions of the therapist. However,
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there are various other factors that can be used to deter-
mine whether the AT or MT approach is better. In this
study, we focused on the time to tune the assistance,
the amount of assistance and deviations from reference
trajectories.
The time to tune the assistance is an important fac-

tor that needs to be considered for clinical application. If
the tuning takes too long, patients might not be able to
exercise at their desired assistance levels as they might
be too fatigued or the training session might end before
the desired assistance levels are reached. In our study, the
AT algorithm reached a constant assistance level more
quickly than the MT algorithm. Two studies with other
AT algorithms also have shown that stable assistance lev-
els can be reached within a similar time as in our current
study with an automatic algorithm [13, 21].
Another factor that we considered was the amount of

assistance. From literature, it is known that active par-
ticipation is an important factor in rehabilitation after
neurological disorders and applying too much assistance
might hinder recovery [4, 41–43]. There is accumulating
evidence that focusing on algorithms that tailor therapy to
the patient’s needs by only applying as much assistance as
needed, can increase training intensity and improve out-
comes of RAGT. For example, Srivastava et al. [11] and
Krishnan et al. [33] have shown that AT algorithms for
RAGT can lead to improvements in clinical scales, how-
ever, no control groups were included in these studies
to compare the AT algorithms to other approaches. Park
et al. [44] found that progressively reducing the amount of
assistance from 100% to 60% can lead to larger improve-
ments in FAC score and Berg balance scale in people with
subacute stroke compared to applying 100% assistance
during a training program of four weeks. Though the evi-
dence is still preliminary, these studies indicate that per-
sonalized and reduced robotic assistance leads to larger
improvements. In this regard, better results were obtained
for the AT algorithm in our current study: every subtask
was tuned separately and the assistance was more often
lower for the AT approach than for the MT approach.
Even though less assistance was often applied by the AT

algorithm, the largest deviations from the reference tra-
jectories were found for the MT approach. It is debatable
how closely measured trajectories need to match refer-
ence trajectories (i.e. physiological trajectories) in RAGT
as allowing compensatory mechanisms might also be ben-
eficial [21, 42]. In the current study, the AT approach
resulted in walking patterns close to the reference tra-
jectories and assistance might have been increased to
prevent compensatory strategies. In contrast to this, the
therapist could have allowed compensatory strategies by
decreasing assistance. In the future, the MT approach
might be more suitable when compensatory strategies
should be allowed, while the AT approach leads to smaller

errors in the evaluation points (i.e. more physiological gait
pattern).
Next to the factors that were analyzed in this study (time

to tune the assistance, amount of assistance and devia-
tions from reference trajectories), there are more factors
that could influence the therapeutic effect of RAGT. For
example, it is not known yet if assisting a specific sub-
task might lead to better clinical outcomes than assisting
another specific subtask. In addition to this, applying less
assistance might be more exhausting and result in shorter
training duration (although fatigue might be partly com-
pensated for by automatically increasing assistance with
the AT algorithm). It is not known yet how shorter (but
more intensive) robotic gait training sessions would affect
therapy outcomes compared to longer (less intensive)
training sessions [2].
To sum up, regarding the time to tune the assistance, the

amount of assistance and deviations from reference tra-
jectories, the AT algorithm has more advantages than the
MT approach. However, we cannot draw any decisive con-
clusions about possible clinical outcomes yet as there are
too many factors that might affect clinical outcomes.

Study limitations
Deriving reference trajectories for robot-assisted gait
training is crucial but difficult. We used reference trajec-
tories that depended on walking speed and body length
[34]. However, these trajectories were collected during
treadmill walking and did not take into account that the
dynamics of the robot or PBWS could influence the gait
pattern [15]. It is still debated whether reference trajecto-
ries should be adjusted based on robot dynamics, PBWS
or other therapeutic goals. In our current study, when
using trajectories based on treadmill walking that were
not adjusted to the specific gait trainer, maximal hip flex-
ion was larger than the reference trajectory for nearly all
participants (for the AT andMT approach). Therefore, the
assistance that was applied for the leading limb angle sub-
task (mainly for the MT approach) might have impeded
motion and decreased maximal hip flexion. Having the
option to automatically (e.g. based on less impaired leg) or
manually [10] change the reference trajectories might be
useful for future training protocols.
Another limitation is that only one experienced thera-

pist tuned the assistance in this study. For example, there
might be differences in the settings that are applied by
an experienced therapist compared to an inexperienced
therapist (or compared to another experienced therapist).
To our knowledge, there are no studies that compare the
assistance that is applied by an experienced and inexpe-
rienced therapist for RAGT, especially not for LOPES II.
Still, other studies analyzed differences between therapists
for physical assistance that was applied during training.
In [45], seven therapists applied similar forces to correct
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balance in stroke survivors during overground training.
However, Galvez et al. [46] showed that the physical
assistance applied to the legs of SCI patients during body
weight supported treadmill training was different between
experienced and inexperienced therapists. It is not clear
yet what the exact reasons for the differences were and
if they would also appear for tuning of RAGT. However,
as various settings can be changed in LOPES II (six sub-
tasks per leg, and weight shift) and the therapist in the
current study was mainly relying on (subjective) visual
assessment of the gait pattern, we would expect differ-
ences between therapists, especially between novice users
and experienced therapists. Therefore, in future studies,
experiments should be performedwithmultiple therapists
(experienced and inexperienced) and/or therapists should
be taught to rely more on the objective and quantitative
feedback that is provided by the GUI as it is expected that
this will lead to lower variability between therapists.

Future directions
Instead of choosing for either AT or MT assistance, in the
future, a combined AT and MT approach might be used
to take advantage of both approaches. Some possibilities
that could be investigated in future studies are:
(1) The AT algorithm could be used to give recom-

mendations on the amount of assistance to apply while
the therapist still has to take the final decision about
which assistance levels are applied. The advantage of this
is that the therapist’s knowledge is taken into account,
he/she has control over the training, he/she can take into
account feedback from the patient and the AT algorithm
might show that the user needs more assistance on cer-
tain subtasks that the therapist might not have taken into
account otherwise. A disadvantage is that tuning of the
assistance might be slower than with an AT algorithm
alone.
(2) The assistance for all subtasks is AT, however, the

therapist could choose to tune some specific subtasks
manually if he/she does not agree with the effect of the AT
algorithm or wants to reduce specific errors even more.
This would still give the therapist some control, the ther-
apist could take into account feedback from the patient,
but it would also make the whole process quicker as the
therapist would not have to tune the exact assistance lev-
els for each subtask anymore. Besides, compared to MT
assistance alone which could be focused on a low num-
ber of subtasks, all subtasks would be tuned to the specific
needs of the patient.
(3) Another possibility would be that the therapist

chooses more discrete levels (e.g. low, medium, high)
which are each associated with a specific range of
assistance levels (e.g. low from 0-30%). Within these dis-
crete levels an AT algorithm could choose the exact
amount of assistance. In this case, the therapist would still

be able to choose a broad assistance level based on his/her
experience and feedback from the patient, and he/she is
assisted by the AT algorithm in quickly choosing the exact
level of assistance.
Although it is not known which combination would

work best, we believe that a combination of AT and MT
subtask-based assistance could be beneficial for future
RAGT as it would take into account therapist’s knowledge
and experience, it allows the patient to give feedback, but
it also simplifies tuning of the parameters compared to
MT assistance alone.
In addition, it should be investigated whether the AT

algorithm itself can be further improved. To promote
active participation of the patient, our AT algorithm
decreases the assistance when errors are small, however,
it is not known yet whether adding a forgetting factor
[14, 16] leads to even more active participation of the
patient. It might also be beneficial to automatically tune
other parameters (e.g. PBWS, walking speed) as these can
also affect the gait pattern and amount of assistance that
is applied by an AT algorithm [15].

Conclusions
We have found large differences in the assistance applied
by an automatically-tuned andmanually-tuned algorithm.
Advantages of the AT approach compared to the MT
approach were that the assistance was tuned quicker,
lower assistance levels were used (enhancing active par-
ticipation of the user), each subtask was tuned separately
and a good performance was assured for all subtasks. In
contrast to this, the MT approach focused on a limited
number of subtasks (two to four) that were tuned sepa-
rately. Future clinical trials need to show whether these
apparent advantages of the AT approach result in bet-
ter clinical outcomes. To exploit the advantages of the
AT approach (e.g. quick tuning of all subtasks) and take
into account the experience of therapists and feedback
from patients during the training, a combined approach of
manual and automatic tuning should be considered in the
future.
The results from this study can be used to develop more

extended (clinical) studies that are needed to get insight
into the long-term effect of AT and MT subtask-based
training protocols on walking function after neurological
disorders.
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