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A Banach-Dieudonné theorem for the space of

bounded continuous functions on a separable

metric space with the strict topology

Richard Kraaij 1

May 27, 2016

Abstract

Let X be a separable metric space and let β be the strict topology
on the space of bounded continuous functions on X, which has the space
of τ -additive Borel measures as a continuous dual space. We prove a
Banach-Dieudonné type result for the space of bounded continuous func-
tions equipped with β: the finest locally convex topology on the dual
space that coincides with the weak topology on all weakly compact sets is
a k-space. As a consequence, the space of bounded continuous functions
with the strict topology is hypercomplete and a Pták space. Additionally,
the closed graph, inverse mapping and open mapping theorems holds for
linear maps between space of this type.

Mathematics Subject Classifications (2010). 46E10 (primary); 46E27
(secondary)
Key words. Banach-Dieudonne theorem; space of bounded continu-
ous functions; strict topology; closed graph theorem;

1 Introduction and main result

Let (E, t) be a locally convex space. Denote by E′ the continuous dual space of
(E, t) and denote by σ = σ(E′, E) the weak topology on E′. We consider the
following additional topologies on E′:

• σf , the finest topology coinciding with σ on all t-equi-continuous sets in
E′.

• σlf , the finest locally convex topology coinciding with σ on all t-equi-
continuous sets in E′.

• t◦ the polar topology of t defined on E′. t◦ is defined in the following way.
Let N be the collection of all t pre-compact sets in E. A pre-compact set,
is a set that is compact in the completion of (E, t). Then the topology t◦

on E′ is generated by all seminorms of the type

pN (µ) := sup
f∈N
|〈f, µ〉| N ∈ N .

1Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628
CD Delft, The Netherlands, E-mail: r.c.kraaij@tudelft.nl.
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The Banach-Dieudonné theorem for locally convex spaces is the following, see
Theorems 21.10.1 and 21.9.8 in [8].

Theorem 1.1 (Banach-Dieudonné). Let (E, t) be a metrizable locally convex
space, then the topologies σf and t◦ on (E, t)′ coincide. If (E, t) is complete,
these topologies also coincide with σlf .

The Banach-Dieudonné theorem is of interest in combination with the closed
graph theorem. For the discussion of closed graph theorems, we need some
additional definitions. Considering a locally convex space (E, t), we say that

(a) E′ satisfies the Krein-Smulian property if every σf closed absolutely convex
subset of E′ is σ closed;

(b) (E, t) is a Pták space if every σf closed linear subspace of E′ is σ closed;

(c) (E, t) is a infra Pták space if every σ dense σf closed linear subspace of E′

equals E′.

Infra-Pták spaces are sometimes also called Br complete and Pták spaces are
also known as B complete or fully complete. Finally, a result of [6] shows that
the Krein-Smulian property for E′ is equivalent to hypercompleteness of E: the
completeness of the space of absolutely convex closed neighbourhoods of 0 in
(E, t) equipped with the Hausdorff uniformity.
Clearly, we have that E hypercomplete implies E Pták implies E infra Pták.
Additionally, if E is a infra Pták space, then it is complete by 34.2.1 in [9]. See
also Chapter 7 in [2] for more properties of Pták spaces.
We have the following straightforward result, using that the absolutely convex
closed sets agree for all locally convex topologies that give the same dual.

Proposition 1.2. If σlf and σf coincide on E′, then E is hypercomplete and
infra Pták.

This last property connects the Banach-Dieudonné theorem to the closed graph
theorem.

Theorem 1.3 (Closed graph theorem, cf. 34.6.9 in [9]). Every closed linear
map of a barrelled space E to an infra-Pták space F is continuous.

This result is well known for maps between Fréchet spaces. In the context of
this paper, note that this result also follows from Theorem 1.1, Proposition 1.2
and the fact that Fréchet spaces are barrelled.

In this paper, we study the space of bounded and continuous functions on a
separable metric space X equipped with the strict topology β. For the definition
and a study of the properties of β, see [11]. The study of the strict topology is
motivated by the fact that it is a ‘correct’ generalization of the supremum norm
topology on Cb(X) from the setting where X is compact to the setting that X is
non-compact. Most importantly, for the strict topology, the dual space equals
the space Mτ (X) of τ -additive Borel measures on X. A Borel measure µ is
called τ -additive if for any increasing net {Uα}α of open sets, we have

lim
α
|µ|(Uα) = |µ| (∪αUα) .
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In the case that X is metrizable by a complete separable metric, the space of τ
additive Borel measures equals the space of Radon measures. Additionally, in
this setting (Cb(X), β) satisfies the Stone-Weierstrass theorem, cf. [4], and the
Arzela-Ascoli theorem.

The space (Cb(X), β) is not barrelled unless X is compact, see Theorem 4.8
of [11] so Theorem 1.3 does not apply for this class of spaces. Thus, the following
closed graph theorem by Kalton is of interest, as it puts more restrictions on
the spaces serving as a range, relaxing the conditions on the spaces allowed as
a domain.

Theorem 1.4 (Kalton’s closed graph theorem, Theorem 2.4 in [5], Theorem
34.11.6 in [9]). Every closed linear map from a Mackey space E with weakly
sequentially complete dual E′ into a transseparable infra-Pták space F is con-
tinuous.

Remark 1.5. Note that this result is normally stated for separable infra-Pták
space F . In the proof of Kalton’s closed graph theorem 34.11.6 in [9], separabil-
ity is only used to obtain that weakly compact sets of the dual E′ are metrizable.
This property, however, is equivalent to transseparability by Lemma 1 in [10].

A class of spaces, more general than the class of Fréchet spaces, satisfying the
conditions for both the range and the domain space in Kalton’s closed graph
theorem, would be an interesting class of spaces to study. In this paper, we show
that (Cb(X), β), for a separable metric space X belongs to this class. In partic-
ular, the main result in this paper is that (Cb(X), β) satisfies the conclusions of
the Banach-Dieudonné theorem.
First, we introduce an auxiliary result and the definition of a k-space.

Proposition 1.6. (Cb(X), β) is a strong Mackey space. In other words, β is a
Mackey topology and the weakly compact sets in Mτ (X) and the weakly closed
β equi-continuous sets coincide.

Proof. This follows by Theorem 5.6 in [11], Corollary 6.3.5 and Proposition
7.2.2(iv) in [1].

This result is relevant in view of the defining properties of σf . We say that
a topological space (Y, t) is a k-space if a set A ⊆ Y is t-closed if and only if
A ∩K is t-closed for all t-compact sets K ⊆ Y . The strongest topology on Y
coinciding on t-compact sets with the original topology t is denoted by kt and
is called the k-ification of t. The closed sets of kt are the sets A in Y such that
A ∩K is t-closed in Y for all t-compact sets K ⊆ Y .
We see that for a strong Mackey space E, σf = kσ on E′.

The main result of this paper is that (Cb(X), β) also satisfies the conclusion of
the Banach-Dieudonné theorem.

Theorem 1.7. Let X be a separable and metrizable space. Consider the space
(Cb(X), β), where β is the strict topology. Then σlf , σf , kσ and β◦ coincide on
Mτ (X).

In view of Kalton’s closed graph theorem, we mention two additional relevant
results, that will be proven below.

3



Lemma 1.8. Let X be a separable and metrizable space. Then (Cb(X), β) is
transseparable.

Lemma 1.9. Let X be separable and metrizable, then the dual Mτ (X) of
(Cb(X), β) is weakly sequentially complete.

As a consequence of Theorem 1.7 and Lemma’s 1.8 and 1.9, (Cb(X), β) satisfies
both the conditions to serve as a range, and as a domain in Kalton’s closed
graph theorem. We have the following important corollaries.

Corollary 1.10 (Closed graph theorem). Let X,Y be separable and metrizable
spaces, then a closed linear map from (Cb(X), β) to (Cb(Y ), β) is continuous.

Corollary 1.11 (Inverse mapping theorem). Let X,Y be separable and metriz-
able spaces. Let T : (Cb(X), β) → (Cb(Y ), β) be a bijective continuous linear
map. Then T−1 : (Cb(Y ), β)→ (Cb(X), β) is continuous.

Corollary 1.12 (Open mapping theorem). Let X,Y be separable and metrizable
spaces. Let T : (Cb(X), β)→ (Cb(Y ), β) be a surjective continuous linear map.
Then T is open.

2 Identifying the finest topology coinciding with
σ on all β equi-continuous sets

Denote by Mτ,+(X) the subset of non-negative τ -additive Borel measures on
X and denote by σ+ the restriction of σ to Mτ,+(X). Consider the map{

q :Mτ,+(X)×Mτ,+(X)→Mτ (X)

q(µ, ν) = µ− ν.

Note that by the Hahn-Jordan theorem the map q is surjective.

Definition 2.1. Let T denote the quotient topology on Mτ (X) of the map q
with respect to σ+ × σ+ on Mτ,+(X)×Mτ,+(X).

The next few lemma’s will provide some key properties of T , which will lead to
the proof that T = σf .

Lemma 2.2. (Mτ (X), T ) is a k-space.

Proof. First of all, the topology σ+ is metrizable by Theorem 8.3.2 in [1].
This implies that σ2

+ is metrizable. Metrizable spaces are k-spaces by Theo-
rem 3.3.20 in [3]. Thus (Mτ (X), T ) is the quotient of a k-space which implies
that (Mτ (X), T ) is a k-space by Theorem 3.3.23 in [3].

Lemma 2.3. The topology T is stronger than σ. Both topologies have the same
compact sets and on the compact sets the topologies agree.

Proof. For f ∈ Cb(X) denote if : Mτ (X) → R defined by if (µ) =
∫
fdµ.

As T is the final topology under the map q, if is continuous if and only if
if ◦ q : Mτ,+(X) ×Mτ,+(X) → R is continuous. This, however, is clear as
if ◦ q(µ, ν) =

∫
fd(µ− ν) and the definition of the weak topology onMτ,+(X).
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σ is the weakest topology making all if continuous, which implies that σ ⊆ T .

For the second statement, note first that as σ ⊆ T , the first has more compact
sets. Thus, suppose that K ⊆ Mτ (X) is σ compact. By Proposition 1.6 K
is β equi-continuous, so by Theorem 6.1 (c) in [11], K ⊆ K1 − K2, where
K1,K2 ⊆Mτ,+(X) and where K1,K2 are σ+ and hence σ compact. It follows
that q(K1,K2) is T compact. As K is a closed subset of q(K1,K2), it is T
compact. We conclude that the σ and T compact sets coincide.

Let K be a T and σ compact set. As the identity map i : K → K is T to σ
continuous, it maps compacts to compacts. As all closed sets are compact, i is
homeomorphic, which implies that σ and T coincide on the compact sets.

Proposition 2.4. T is the finest topology that coincides with σ on all σ compact
sets. In particular, we find that T = σf .

Proof. By Lemma 2.2, T is a k-space. By Lemma 2.3 the compact sets for σ
and T coincide. It follows that T = kσ = σf .

We prove an additional lemma that will yield transseparability of (Cb(X), β),
before moving on to the study of the quotient topology T .

Lemma 2.5. The σ, or equivalently, T compact sets inMτ (X) are metrizable.

Proof. Let K be a σ compact set in Mτ (X). In the proof of Lemma 2.3, we
saw that K ⊆ q(K1,K2), where K1,K2 are compact sets of the metrizable space
Mτ,+(X). As q is a continuous map, we find that q(K1,K2) and hence K is
metrizable by Lemma 1.2 in [5] or 34.11.2 in [9].

2.1 (Mτ (X), T ) is a locally convex space.

This section will focus on proving that the topology T onMτ (X) turnsMτ (X)
into a locally convex space. Given the identification T = kσ = σf obtained in
Propositions 1.6 and 2.4, this is the main ingredient for the proof of Theorem
1.7. Indeed, for a general locally convex space the topology σf is in general not
a vector space topology, cf. Section 2 in [7].

Proposition 2.6. (Mτ (X), T ) is a locally convex space.

The proof of the proposition relies on two lemma’s.

Lemma 2.7. The map q : (Mτ,+(X)2, σ2
+)→ (Mτ (X), T ) is an open map.

Proof. Before we start proving that the map q is open, we start with two aux-
iliary steps.
Step 1. We first prove that the map ⊕ : (M2

τ,+(X) × Mτ (X), σ2
+ × σ) →

(M2
τ (X), σ2), defined by ⊕(µ, ν, ρ) = (µ+ ρ, ν + ρ) is open.

It suffices to show that ⊕(V ) is open for V in a basis for σ2 × σ by Theorem
1.1.14 in [3]. Hence, choose A and B be open for σ+ and C open for σ. Set
U := ⊕(A × B × C). Choose (µ, ν) ∈ U . We prove that there exists an open
neighbourhood of (µ, ν) contained in U . As (µ, ν) ∈ U = ⊕(A×B×C), we find
µ0 ∈ A, ν0 ∈ B and ρ0 ∈ C such that µ = µ0 + ρ0 and ν = ν0 + ρ0.
As σ is the topology of a topological vector space, the sets µ0 + C and ν0 + C
are open for σ. Thus, the set H := (µ0 + C) × (ν0 + C) is open for σ2. By
construction (µ, ν) ∈ H, and additionally, H ⊆ U = ⊕(A×B × C).
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We conclude that ⊕ is an open map.

Step 2. Denote G := ⊕−1(Mτ,+(X)2) and by ⊕r : G→Mτ,+(X)2 the restric-
tion of ⊕ to the inverse image of Mτ,+(X)2. If we equip G with the subspace
topology inherited from (M2

τ,+(X)×Mτ (X), σ2
+ × σ), the map ⊕r is open by

Proposition 2.1.4 in [3] by the openness of ⊕.

Step 3: The proof that q is open.
Let V be an arbitrary open set in (Mτ,+(X)2, σ2

+). As a consequence, V ×
Mτ (X) is open in (M2

τ,+(X)×Mτ (X), σ2
+× σ). By definition of the subspace

topology, (V ×Mτ (X)) ∩ G is open for the subspace topology on G. By the
openness of ⊕r, we conclude that V̂ := ⊕r((V × Mτ (X)) ∩ G) is open in
(Mτ,+(X)2, σ2

+).

As ⊕r((V ×Mτ (X)) ∩G) = ⊕(V ×Mτ (X)) ∩Mτ,+(X)2, we find that

V̂ =
{

(µ, ν) ∈Mτ,+(X)2
∣∣∃ρ ∈Mτ (X) : (µ− ρ, ν − ρ) ∈ V

}
=
{

(µ, ν) ∈Mτ,+(X)2
∣∣∃ρ ∈Mτ (X) : (µ+ ρ, ν + ρ) ∈ V

}
.

Thus, we see that V̂ = q−1(q(V )). As V̂ is open and q is a quotient map, we
obtain that q(V ) is open.

Lemma 2.8. The map q2 : (Mτ,+(X)4, σ4
+) → (Mτ (X)2, T 2), defined as the

product of q times q, i.e.

q2(ν+1 , ν
−
1 , ν

+
2 , ν

−
2 ) = (ν+1 − ν

−
1 , ν

+
2 − ν

−
2 ),

is an open map. As a consequence, T 2 is the quotient topology of σ4
+ under q2.

Proof. By Proposition 2.3.29 in [3] the product of open surjective maps is open.
Thus, q2 is open as a consequence of Lemma 2.7. An open surjective map is
always a quotient map by Corollary 2.4.8 in [3].

Proof of Proposition 2.6. We start by proving that (Mτ (X) ×Mτ (X), T 2) →
(Mτ (X), T ) defined by +(ν1, ν2) = ν1+ν2 is continuous. Consider the following
spaces and maps:

(Mτ (X)×Mτ (X), T 2) (Mτ (X), T )

(Mτ,+(X)4, σ4) (Mτ,+(X)2, σ2
+)

+

q2

+2

q

q and + are the quotient and sum maps defined above. q2 was introduced in
Lemma 2.8 and +2 is defined as

+2(ν+1 , ν
−
1 , ν

+
2 , ν

−
2 ) = (ν+1 + ν+2 , ν

−
1 + ν−2 ).

Note that the diagram commutes, i.e. q ◦+2 = + ◦ q2.
Fix an open set U in (Mτ (X), T ), we prove that +−1(U) is T 2 open inMτ (X)×
Mτ (X). By construction, q is continuous. Also, +2 is continuous as it is the
restriction of the addition map on a locally convex space. We obtain that
V := +−12 (q−1(U)) = (q2)−1(+−1(U)) is σ4

+ open. By Lemma 2.8 q2 is a
quotient map, which implies that +−1(U) is T 2 open. We conclude that + :
(Mτ (X)2, T 2)→ (Mτ (X), T ) is continuous.
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We proceed by proving that the scalar multiplication map m : (Mτ (X)×R, T ×
t) → (Mτ (X), T ) defined by m(µ, α) = αµ is continuous. Here, t denotes the
usual topology on R. Consider the following diagram:

(Mτ (X)× R, T × t) (Mτ (X), T )

(Mτ,+(X)2 × R, σ2
+ × t) (Mτ (X)2, σ2

+)

m

q × I

m2

q

Here, I : R→ R denotes the identity map and m2 :Mτ,+(X)2×R→M2
τ,+(X)

is defined by

m2(µ1, µ2, α)


(−αµ2,−αµ1) if α < 0

(0, 0) if α = 0

(αµ1, αµ2) if α > 0.

Note that, using this definition of m2, the diagram above commutes. It is
straightforward to verify that m2 is a σ2

+ × t to σ2
+ continuous map as σ is

the restriction of the topology of a topological vector space. By the Whitehead
theorem, Theorem 3.3.7 in [3], the map q × I is a quotient map. We obtain, as
above, that m is continuous.

The continuity of + and m yield that (Mτ (X), T ) is a topological vector space.
To prove that the space is locally convex, we prove that T has a basis of open
convex sets for 0.
Let U ⊆Mτ (X) be open and such that 0 ∈ U , we prove that there is an open
convex subset U0 ⊆ U such that 0 ∈ U0.

Because q : (Mτ,+(X)2, σ2
+)→ (Mτ (X), T ) is continuous, the set q−1(U) is σ2

+

open. Additionally, q−1(U) contains (0, 0). By construction of σ+, there exists
a σ2 open set V ⊆Mτ (X)2 that contains (0, 0) and such that

V ∩Mτ,+(X)2 = q−1(U).

Because (Mτ (X)2, σ2) is locally convex, we can find a σ2 open convex neigh-
bourhood V0 ⊆ V of 0. By Lemma 2.7 q is open, additionally it is linear on its
domain, thus we find that

U0 := q(V0 ∩Mτ,+(X)2) ⊆ U

is T open and convex. By construction, U0 contains 0.
We conclude that (Mτ (X), T ) is a locally convex space.

2.2 The proof of Theorem 1.7 and its corollaries

We finalize with the proof of our main result and its consequences.

Proof of Theorem 1.7. We already noted that kσ = σf by Proposition 1.6.
By Proposition 2.4, we find T = σf . By Proposition 2.6 T is locally convex.
As σlf is the strongest locally convex topology coinciding with σ on all weakly
compact sets, we conclude by Proposition 2.6 that σlf = σl.

By Proposition 1.2 the space (Cb(X), β) is hypercomplete, and thus, complete.
It follows by 21.9.8 in [8] that σlf = β◦.
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Proof of Lemma 1.8. As the σ compact sets are metrizable by Lemma 2.5, we
find that (Cb(X), β) is transseperable by Lemma 1 in [10].

Proof of Lemma 1.9. The lemma follows immediately from Theorem 8.7.1 in [1].
A second proof can be given using the theory of Mazur spaces.

β is the Mackey topology on (Cb(X), β) by Proposition 1.6, we find Mτ (X) is
weakly sequentially complete by Theorem 8.1 in [11], Theorem 7.4 in [13] and
Propositions 4.3 and 4.4 in [12].

Proof of Corollary 1.10. By Theorem 1.7 and 1.2, we obtain that (Cb(Y ), β) is
an infra-Pták space. By Lemma 1.8 (Cb(X), β) is transseparable and by Lemma
1.9 Mτ (X) is weakly sequentially complete.
The result, thus, follows from Kalton’s closed graph theorem 1.4.

Proof of Corollary 1.11. Let X,Y be seperably metrizable spaces. Let T :
(Cb(X), β) → (Cb(Y ), β) be a bijective continuous linear map. We prove that
T−1 : (Cb(Y ), β)→ (Cb(X), β) is continuous.
The graph of a continuous map is always closed. Therefore, the graph of T−1

is also closed. The result follows now from the closed graph theorem.

Proof of Corollary 1.12. Let X,Y be seperably metrizable spaces. Let T :
(Cb(X), β)→ (Cb(Y ), β) be a surjective continuous linear map. We prove that
T is open.
First, note that the quotient map π : (Cb(X), β) → (Cb(X)/ker T, βπ) is open,
where βπ is the quotient topology obtained from β, see 15.4.2 [8]. The map
T factors into Tπ ◦ π, where Tπ is a bijective continuous linear map from
(Cb(X)/ker T, βπ) to (Cb(Y ), β).
We show that Tπ is an open map. We can apply the inverse mapping theorem
to Tπ as (Cb(X)/ker T, βπ) is a Pták space by 34.3.2 in [9]. Additionally, it is
transseparable as it is the uniformly continuous image of a transseparable space.
It follows that T−1π is continuous and that Tπ is open.
We find that the composition T = Tπ ◦ π is open as it is the composition of two
open maps.
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