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This paper presents a multi-step DEM calibration procedure for cohesive solid materials, incorporating
feasibility in finding a non-empty solution space and definiteness in capturing bulk responses indepen-
dently of calibration targets. Our procedure follows four steps: (I) feasibility; (II) screening of DEM vari-
ables; (III) surrogate modeling-based optimization; and (IV) verification. Both types of input parameter,
continuous (e.g. coefficient of static friction) and categorical (e.g. contact module), can be used in our cal-
ibration procedure. The cohesive and stress-history-dependent behavior of a moist iron ore sample is
replicated using experimental data from four different laboratory tests, such as a ring shear test. This
results in a high number of bulk responses (i.e. � 4) as calibration targets in combination with a high
number of significant DEM input variables (i.e. > 2) in the calibration procedure. Coefficient of static fric-
tion, surface energy, and particle shear modulus are found to be the most significant continuous variables
for the simulated processes. The optimal DEM parameter set and its definiteness are verified using 20 dif-
ferent bulk response values. The multi-step optimization framework thus can be used to calibrate mate-
rial models when both a high number of input variables (i.e. > 2) and a high number of calibration targets
(i.e. � 4) are involved.
� 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder
Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

To simulate, design, and optimize processes and equipment for
handling bulk solids, such as iron ore and coal, the discrete element
method (DEM) is a suitable computational method. However, DEM
simulations can only predict bulk level responses (e.g. shear
strength) accurately if their input parameters are selected
appropriately. To select the input parameters with confidence,
the common procedure is to calibrate and to validate DEM
simulations [1–4]. The calibration can be done by finding an
optimal combination set of DEM input parameters that replicates
the captured bulk response [5].

Over the past decade, reliable DEM calibration procedures have
been developed to model free-flowing bulk solids, such as iron ore
pellets [1], glass beads [6], sinter ore [7], sand [8,9], and gravel
[10,11]. By setting multiple targets for the DEM calibration, more
than a single bulk response can be considered. This prevents the
‘‘ambiguous parameter combinations” problem in the DEM calibra-
tion procedure, which is discussed in detail in [11]. For example, to
calibrate DEM input variables for simulating iron pellets in interac-
tion with ship unloader grabs, Lommen et al. [1] considered at least
three different calibration targets. They replicated the static angle
of repose using the ledge and free-cone methods; the penetration
resistance of iron pellets was also replicated, using a wedge pene-
tration test setup.

In general, DEM calibration is performed following the generic
procedure shown in Fig. 1. To find an optimal combination of
DEM input parameters that satisfies multiple calibration targets,
optimization methods can offer a solution. Various optimization
methods have already been applied to calibrate the continuous type
of DEM variables successfully [6,7,10,12]. Continuous DEM
variables are numerical variables that have an infinite number of
values between any two values [13]. For example, the coefficient
of static friction is an important continuous DEM variable during
calibration [5]. Richter et al. [10] concluded that surrogate
modeling-based optimization methods are most promising for
DEM calibration when continuous variables are included.

Categorical-type DEM variables have not yet been included in
the calibration procedure when optimization methods are used.
Categorical variables are finite numbers of groups or categories
that might not have a logical order [13]. For example, shape of par-
ticles is a DEM categorical variable that plays an important role
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Fig. 1. Main components of a generic DEM calibration procedure.
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during calibration [14]. One can use design of experiments (DoE)
methods to include categorical variables in the DEM calibration
procedure. However, a high number of simulations might have to
be run with no guarantee of finding an optimal set of DEM input
parameters [10]. Additionally, iron ore fines and other similar bulk
solids (e.g. coal) have an irregular distribution of particle shape
[15] as well as fine particle sizes [16]. Modeling accurate particle
shapes and sizes for cohesive bulk solids in DEM simulations thus
leads to a computation time that is generally impractical for study-
ing industrial bulk handling processes, such as flow in silo [16].

Furthermore, selecting an appropriate contact model from the
available options is an important challenge in the DEM calibration.
Applying optimization methods without choosing a proper contact
model might, for example, lead to an empty solution space or inad-
equacy in meeting macroscopic bulk behaviors other than the
selected calibration targets [7]. A contact model generally includes
multiple modules to calculate forces and torques between ele-
ments (e.g. particles). Fig. 2 schematically illustrates a contact
spring-damper system between two particles, a and b. Here, three
main modules are identified: contact force in the normal direction
is denoted by fN, while fT and sR represent force in the tangential
direction and rotational torque respectively. Contact modules can
Fig. 2. A contact spring-damper system between two particles, including normal,
tangential, and rotational directions.
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be selected independently of each other. For instance, a rolling fric-
tion module can be implemented in various ways to determine
rotational torque between two particles [1,17,18]. Therefore, each
module of the contact model can be considered as a categorical
variable in DEM calibration.

By contrast with free-flowing materials, cohesive bulk solids
such as moist iron ore fines usually show a stress-history-
dependent and cohesive behavior [19]. Their bulk responses, such
as shear strength, bulk density, and penetration resistance, depend
on the history of applied normal pressure on the bulk specimen
[19–21]. Thiss stress-history-dependent and cohesive behavior
can be simulated by using contact models based on an elasto-
plastic adhesive spring [20,22-25]. Orefice and Khinast [25] used
a multi-stage sequential DEM calibration procedure to model cohe-
sive bulk solids using a linear elasto-plastic adhesive model; the
calibration was done by replicating a specific bulk response at each
stage, starting with the angle of repose (measured using the funnel
test) as the first calibration target. Three continuous DEM variables
were included during the calibration; other DEM input parameters,
continuous and categorical, needed to be kept constant during
their calibration procedure. The multi-stage sequential calibration
procedure might fail to meet the following criteria.

– Feasibility. Replicating all the selected bulk responses can be
infeasible using chosen values for the input parameters that
are constant during the calibration, such as a specific contact
module. Therefore, considering the necessity of including mul-
tiple calibration targets, the calibration procedure can lead to
an empty solution space for one or more than one of the calibra-
tion targets.

– Definiteness or avoiding ‘‘ambiguous parameter combinations”
[11]. To meet this criterion, a bulk response independent of
the calibration targets needs to be simulated successfully using
the calibrated set of DEM input parameters. Additionally, prop-
erly selecting all modules of the DEM contact model is a prereq-
uisite. Otherwise, the calibrated set of input parameters might
fail to capture a bulk response different than the selected cali-
bration targets.

For example, the ‘‘definiteness” criterion has been focused on in
the automated calibration procedure developed by [26], which is
based on a genetic algorithm to replicate stress-history-
dependent and cohesive behavior of bulk solids in the ring shear
test. By introducing cohesive forces as well as elasto-plastic stiff-
ness into the DEM calibration procedure, the number of DEM input
variables and the number of required bulk responses increase
[25,27–29]. For that reason, the abovementioned criteria become
important in developing a reliable calibration procedure to simu-
late cohesive and stress-history-dependent behavior of bulk solids.
As yet, however, no literature has addressed how to ensure that
both criteria, feasibility and definiteness, are met in a DEM calibra-
tion procedure considering both continuous and categorical DEM
input variables. Additionally, calibrating DEM input parameters is
still a challenge when a high number (i.e. > 2) of variables in com-
bination with a high number of bulk responses (i.e. > 2) is involved.

In this paper, we develop a reliable multi-step DEM calibration
procedure to capture the cohesive and stress-history-dependent
behavior of bulk solids. In each step of the calibration procedure,
the variables space is narrowed down to be further optimized in
the next step. The first step uses a feasibility analysis, based on
Latin hypercube design (LHD), to choose a suitable contact model
by efficiently searching for a non-empty solution space. This
ensures that the calibration procedure meets the ‘‘feasibility” crite-
rion. The second step screens the significant DEM variables to
quantify their influence on the selected bulk responses. This allows
us to find an optimal combination of DEM input variables in the
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third step by applying a surrogate modeling-based optimization
method. In the third step, we use a different set of calibration tar-
gets, compared to the first and second steps, to consider the ‘‘def-
initeness” criterion. The final step is to verify the adequacy of the
optimal combination in replicating the cohesive and stress-
history-dependent behavior for several bulk responses, such as
bulk density, shear strength, and penetration resistance.

2. Materials and methods

2.1. DEM calibration procedure: a multi-step optimization framework

In general, a calibration procedure aims at identifying an opti-
mal combination of DEM input parameters, X� ¼ x�1; � � � ; x�Ns, that
leads to simulated bulk responses, Y

0 ¼ y0
1; � � � ; y

0
Ny, adequately sim-

ilar to responses captured in physical laboratory or in-situ tests,
Y ¼ y1; � � � ; yNy [5]. Ns is the number of DEM input parameters
and Ny the number of calibration targets. Bulk responses such as
bulk density and shear strength thus need to be determined first,
using appropriate physical tests. This allows us to set calibration
targets and to quantify the difference in bulk responses between
simulated and physically determined values. To ensure that feasi-
bility and definiteness criteria are satisfied for multiple calibration
targets, a multi-step DEM calibration procedure considering cate-
gorical input parameters is proposed in Fig. 3. The following four
steps are included: (I) feasibility; (II) screening of DEM variables;
(III) surrogate modeling-based optimization; and (IV) verification.

To apply surrogate modeling-based optimization, the parame-
ter space needs to be searched effectively to be able to approxi-

mate Y
0
. Accordingly, F(X) maps relationships between new

calibration targets, Y = y1, . . ., yMy, and (significant) DEM variables.
Although the full factorial design can be used to create multi-
variate samples, all the possible combinations between significant
DEM variables must be included. This leads to a high number of
simulations needing to be done. Fractional factorial designs, such
as Taguchi [30], Placket-Burmann [31], and Box Behnken [32]
designs, can be used to generate multi-variate samples required
for surrogate modeling without the need to create all the possible
combinations of variables. For example, if a full factorial design is
used for 4 input variables having 3 levels each, that leads to
34 = 81 combinations to run. Using the Taguchi (orthogonal)
method, a fractional factorial design can be created by running
only 9 or 27 possible combinations.

The accuracy of the surrogate model is evaluated using the coef-
ficient of determination, R2. This coefficient quantifies the surro-
gate model accuracy in representing variability of values
obtained from DEM simulations. To ensure that the surrogate
model converges to a verifiable X*, a minimum R2 value of 0.75 is
considered to be met for all calibration targets. Otherwise, more
samples are used to train the surrogate model.

Next, the response optimizer searches for an optimal combina-
tion of input variables, X*, that jointly meets a set of calibration tar-
gets, Y. To find X* using the surrogate model, we use the response
optimizer toolbox available in Minitab [33].

The mean of absolute relative differences is used to quantify
error in the verification step. If y and y’ represent measured bulk
responses in the experiment and the simulation, respectively, then
|e|mean is determined according to Eq. (1) for a number of bulk
responses, Ne. In the current study, an |e|mean � 10% is considered
an acceptable outcome during verification.

jejmean ¼
XNe

k¼1

100
yk � y0k

yk

����
���� ð1Þ
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Therefore, in each step of the calibration procedure the vari-
ables space is narrowed down to be further optimized in the next
step. In the final step, a verified parameter set is found by checking
|e|mean.

2.2. DEM calibration targets: Y

In this study, DEM calibration targets are set to values reported
from our comprehensive measurements campaign on cohesive
iron ores [19]. Bulk property variability of cohesive iron ores has
been characterized using the following laboratory tests:

(A) Schulze ring shear test;
(B) ledge angle of repose; and,
(C) consolidation-penetration test.

Additionally, three influencing parameters related to bulk prop-
erties were varied in the laboratory tests: (1) iron ore sample; (2)
moisture content, denoted by MC; and (3) vertical consolidation
pressure, denoted by r. The results obtained in the laboratory tests
listed above (A, B, and C) are used in the current study to set DEM
calibration targets. During the calibration procedure, two out of
three influencing parameters, MC and r, are considered as sources
of possible bulk property variability. Below we describe character-
istics of the selected bulk solid sample as well the measured bulk
responses.

2.2.1. Bulk solid sample
The bulk solid sample is a sinter feed type of iron ore from the

Carajas mines, one of the largest iron ore resources on earth [34].
The average density of the particles is 4500 kg/m3

, with a standard
deviation of 125 kg/m3. The median particle size, d50, is equal to
0.88 mm [35]. The dry-based moisture content was determined
according to the method described in [36], in which the sample is
dried using a ventilated oven. This resulted in MC = 8.7%. An over-
view of measured properties of the sample is presented in Table 1.

2.2.2. Measured bulk responses
Table 2 displays physically measured bulk responses of the

sample using the ring shear and ledge angle of repose tests when
rpre � 20 kPa and DMC = ±2%. Pre-consolidation or pre-shear stress,
rpre, is a normal confining pressure that is applied initially. In the
ring shear test, for example, a normal confining pressure of
20 kPa is applied initially during the pre-shear stage, and next a
normal confining pressure of 2 kPa (rshear) is applied. Fig. 4 shows
the results of shear stress measurements in the ring shear test,
including one pre-shear stage and one shearing stage. In general,
rshear is smaller than rpre, which allows us to investigate a stress-
history-dependent bulk response, such as shear strength in the
case of shear tests. The ledge angle of repose test has been con-
ducted under no pre-consolidation stress, which represents the
free-surface flow of bulk solids under gravity force. Maximum
and minimum values of physically measured bulk responses are
shown under DMC, up to ± 2%, compared to its as-received condi-
tion. By considering the maximum and minimummeasured values
of bulk responses, extreme values can be included in the feasibility
evaluation step of the DEM calibration procedure. In other words,
the feasibility is evaluated for a range of bulk response values.

According to the Mohr-Coulomb equation, the shear strength of
bulk material ss is often approximated by Eq. (2) [37]:

ss ¼ c þ rntanðuÞ ð2Þ
where tan(u) indicates the angle of internal friction. c is the shear
strength of the bulk material when rn ¼ 0, thus it denotes the
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Fig. 3. Main steps of the DEM calibration procedure considering feasibility and definiteness criteria.

Table 1
Measured properties of the cohesive iron ore sample, based on [19].

Property Symbol Unit Average value

Dry-based moisture content MC % 8.7
Particle density qp kg/m3 4500
Median particle diameter d50 mm 0.88

M. Javad Mohajeri, C. van Rhee and D.L. Schott Advanced Powder Technology 32 (2021) 1532–1548
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cohesion of the bulk material. Eq. (2) suggests that increasing the
normal stress rn , decreases the contribution of c to the shear
strength. Additionally, increasing rn results in a higher contribution
of particle-particle friction to shear strength.

The wall friction was also determined in [19]; this was done
using the ring shear test by applying small adjustments according



Table 2
Physically measured bulk responses with DMC up to ±2% when rpre � 20 kPa, based on [19].

Test Bulk response Symbol Unit Minimum Value Maximum value

Ring shear Shear strength in pre-shear stage spre=20 kPa 16.5 19.4
Shear strength in shearing stage s2:20 kPa 4.2 5.6
Bulk density in the loose condition qb,0 kg/m3 1803 1840
Bulk density after pre-shear of 20 kPa qb,20 kg/m3 2400 2580

Ledge angle of repose Angle of repose (rpre = 0 kPa) aM � 63 84

Fig. 4. Schematic shear stress measurements in ring shear test, including pre-shear
and shearing stages.
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to [38]. The test was done with a rpre equal to 20 kPa and then the
wall friction was measured for eight different levels of rshear

between 2 and 17 kPa. The wall friction measurements resulted
in a wall yield locus with an average wall friction angle of 19�
and a negligible adhesion strength of 0.1 kPa.

Table 3 displays measured bulk responses of the sample using
the consolidation-penetration test when rpre � 65 kPa and
DMC = 0%. This test procedure is designed to represent the penetra-
tion resistance of iron ore cargoes during ship unloading when
grabs are being used [39]. To consider the stress-history depen-
dency, two levels of rpre are included in the calibration procedure,
equal to 65 and 300 kPa, respectively. As the first bulk response
parameter, accumulative penetration resistance [J] on the wedge-
shaped penetration tool is determined by integrating the reaction
force over penetration depth [40]. The secondary measured bulk
response in the test is the bulk density after removing rpre. For
example, after removing rpre of 300 kPa, the bulk density was mea-
sured according to the procedure described in [39], which for this
sample was equal to 2807 kg/m3 on average for three test
iterations.

Therefore, bulk property variability of the cohesive iron ore
sample has been determined under variation of confining pressure
as well as moisture content. This provides a comprehensive set of
measurement data to be used in the DEM calibration procedure (il-
lustrated in Fig. 3).
2.3. Contact modules in normal and tangential directions: elasto-
plastic adhesive

The EDEM (v2020) software package is used to create and run
simulations. To capture the stress-history-dependent bulk
Table 3
Physically measured bulk responses when rpre � 65 kPa, based on [19].

Test Bulk response

Consolidation-penetration Accumulative penetration resistance at 80 mm depth w
Accumulative penetration resistance at 70 mm depth w
Bulk density after applying rpre = 65 kPa
Bulk density after applying rpre = 300 kPa
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responses as well as cohesive forces, an elasto-plastic adhesive
contact model built into the software package is used. This is for-
mulated in [41] under the name Edinburgh Elasto-Plastic Adhesive
(EEPA). For details, refer to [41] or [20,26,42]. This model has been
used successfully by [20,26] to simulate bulk responses of cohesive
bulk solids.

A schematic diagram of the EEPA contact spring for the normal
direction of f-d (force-overlap) is provided in Fig. 5. The contact
spring consists of three main spring-based parts during loading
and unloading, as well as a constant pull-off force, f0.

Part 1. The contact starts with the loading part, with spring stiff-
ness of k1, when the distance between the centers of two approach-
ing particles is smaller the sum of their radiuses. The non-linear
mode of the contact module is used in the current study by setting
the slope exponent value to 1.5.

Part 2. By reducing the contact force, unloading commences;
during this process, the plastic deformation is replicated by switch-
ing the spring stiffness to k2. The plasticity ratio, kP, determines the
ratio between k2 and k1.

Part 3. As unloading continues, a minimum attractive (adhesive)
force is reached that is denoted by fmin. The limit is determined
using Eq. (3) [41].

f min ¼ 3
2
� p � Dc � a ð3Þ

where Dc and a are surface adhesion energy [J/m2] and contact
radius [m], respectively. If the unloading of the contact spring con-
tinues, the f � d follows the adhesive path with stiffness of �kadh. In
this study, an exponent value equal to 1.5 is used for d in part 3,
which is similar to the slope exponent value used in part 1. There-
fore, during the calibration procedure the adhesion path (part 3) can
be controlled by adjusting f0 and Dc as DEM input variables. The
tangential stiffness of the contact model is varied as a multiplier,
kt,mult, of the initial loading stiffness.

2.4. Simulation setups

DEM simulation setups are created representing the physical
laboratory tests in the geometry scale of 1:1.

(A) Ring shear test

The ring shear test device used in [19] to characterize the shear
strength of the iron ore sample is the same as the device used in
our earlier study [26]. For that reason, the same simulation setup
and procedure is applied in this study. Fig. 6a and b illustrate
components of the ring shear test in laboratory and simulation
Symbol Unit Average Value Standard deviation

hen rpre = 65 kPa W80,65 J 108 7
hen rpre = 300 kPa W70,300 J 121 5

qb,65 kg/m3 2668 65
qb,300 kg/m3 2807 14



Fig. 5. Non-linear mode of normal contact spring in EEPA model, based on [43].
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environments, respectively. In the simulation setup, we use cylin-
drical periodic boundaries to simulate a quarter of the shear cell
(Fig. 6b). This allows us to reduce the computation time by 50%
with no undesirable influence on the simulation accuracy [26].

(B) Ledge angle of repose test

A ledge test method, according to [1], for measuring the static
angle of repose, aM, of the cohesive iron ore sample was used in
[19]. The test setup and its procedure are also referred to by other
names in literature, such as ‘‘shear box” [44] and ‘‘rectangular con-
tainer test” [8]. Fig. 7a and b show the test box dimensions, includ-
ing the slope formed after failure, in laboratory and simulation
environments, respectively. The container is 250 mm high, but it
has been filled only to the flap opening’s height at 200 mm. After
opening the flap, the bulk solid can thus flow out from the con-
tainer. Once a static angle of repose is created, aM is quantified
by applying the linear regression technique to fit a line on the slope
of bulk surface.

(C) Uni-axial consolidation-penetration test

Fig. 8 shows three main components of the consolidation-
penetration test: a container, a lid, and a wedge-shaped
Fig. 6. Components of the Schulze ring shear test: a) laborato
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penetration tool. The lid’s surface area is equal to the container’s
sectional area. The wedge-shaped tool is 200 mm long, which
allows it to create a plane contact with particles.

The procedure of the simulated consolidation-penetration test
is illustrated in Fig. 9.

– First, the container is filled with DEM particles. A stable situa-
tion is reached when the maximum velocity of the particles is
smaller 0.1 mm/s.

– Second, the lid is moved downward with a constant velocity of
10 mm/s to create a consolidated situation. This is continued
until the desired pressure on the lid is reached (i.e. 65 and
300 kPa).

– Third, the sample is unloaded by moving the lid upward with a
velocity of 10 mm/s.

– Finally, the wedge-shaped tool is moved downward with a
velocity of 10 mm/s, similar to the laboratory test procedure
[19].

2.5. Initial sampling strategy for step I (Feasibility) using LHD

The initial sampling aims at evaluating the feasibility of captur-
ing calibration targets using selected DEM input constants and
variables. This allows us to select a suitable solution, including
levels of categorical variables and constants. Two simulation set-
ups, ring shear and ledge angle of repose tests, are used in step I,
feasibility. This means that the shear flow in two different test set-
ups is simulated for rpre of up to 20 kPa. Three different bulk
responses, spre=20, s2;20, and aM (angle of repose), are analyzed using
DEM simulations for various combinations of input parameters.

During a calibration procedure, DEM input parameters,
X ¼ x1; � � � ; xNs, are divided into two groups: input variables and
constants. Level input variables are varied in a range to meet cali-
bration targets (Fig. 1). Levels of DEM input constants are chosen
based on available literature, if applicable; otherwise, their level
is selected based on rational assumptions, as recommended by
[25], or by the direct measurement method, as discussed in [5].
For example, modeling the actual shape and size distribution of a
cohesive iron ore sample leads to a computational time that is
impractical [45,46]. For that reason, a simplified representation
of particle shape and size can be used to develop a DEM simulation
of cohesive iron ore. This technique has been applied successfully
by [20,26,47] to model bulk solids that have fine particles with
irregular shape distribution.
ry shear cell RST-01.01 type M [38]; b) simulation setup.



Fig. 7. The ledge test box to determine angle of repose including dimensions: a) laboratory environment [19], side view; b) simulation environment, cross-sectional view.

Fig. 8. Dimensions of the consolidation-penetration test, based on [39]: a)
container and lid; b) wedge-shaped penetration tool.
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Nevertheless, the rotational torque between particles needs to
be considered; according to [48], two options are possible: (a)
introducing a certain level of non-sphericity in particle shape;
and/or (b) suppressing the rotational freedom of particles. In this
study, option (b) is applied, as – compared to using multi-
spherical particles – it does not have a negative influence on the
computational time. The rotational freedom of particles can be
suppressed artificially by either introducing a rolling friction mod-
ule [17] or restricting the rotation of the particles [1,26,49]. Both
techniques are included as a categorical variable in step I, feasibil-
ity. The rolling friction module is implemented according to [18].
This implementation was classified as ‘‘rolling model C” by [17],
so we refer to the rolling friction module as RC in this article.
Restricting the rotation of particles is done by applying a counter-
balance torque in each time-step necessary to prevent rotational
movement. This leads to an increase in the particles’ resistance
to rotational torque. Restricting the rotation of particles has been
used successfully to resemble realistic material behavior
[1,24,40,48]. Additionally, the number of input variables is reduced
because, when using the restricted rotation (RR) technique, rolling
friction coefficient does not play a role in rotational torque.

2.5.1. DEM input variables when RC option is used
Table 4 displays DEM input variables when the RC option, roll-

ing friction module C, is used. Based on the available literature, the
coefficient of static friction between particles, ms,p-p, is probably the
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most influential parameter on the internal shear strength of bulk
solids [7,14,28,50-60]. Coefficient of rolling friction is also usually
considered as an influential variable on shear flow [5]. To calibrate
the shear flow of cohesive bulk solids, [61] found that a range of 0.2
to 1.0 is reasonable for coefficients of static friction and rolling fric-
tion when rolling model C is used. Particle shear modulus determi-
nes the stiffness of the contact spring. Therefore, G, particle shear
modulus, is included as a continuous DEM variable in our investi-
gation. A range between 2.5 and 10 MPa is used for G, which covers
values used by other researchers modeling cohesive bulk solids
using the same elasto-plastic contact model [20,26].

Constant pull-off force (f0) and surface energy (Dc) are included
in the calibration to control the magnitude of adhesive forces in the
contact spring. f0 is varied between �0.0005 and �0.005 N, and Dc
between 5 and 50 J/m2. These ranges are expected to be sufficient
to capture a realistic shear flow based on the DEM calibration done
in [26].

2.5.2. DEM input variables when RR option is used
Table 5 displays DEM input variables when the RR option, rota-

tion restricted, is used. First, based on our simulation results
reported in [26], the ranges of coefficient of static friction and sur-
face energy are changed, compared to the values in Table 4. By
restricting the rotation of particles, their mobility decreases and
so lower restrictive forces (e.g. cohesive and friction) can be used
during the calibration procedure, compared to the case when the
RC option is used. The coefficient of static friction is varied between
0.2 and 0.4, while the surface energy variation is between 2.5 and
25 J/m2. Second, ranges of other input variables are similar to the
case when the RC option is used.

2.5.3. DEM input constants
Table 6 presents other DEM input parameters that are kept con-

stant during initial sampling for step I, feasibility. Particle density
is set to 4500 kg/m3, similar to the measured value (Table 1). As
discussed earlier, the representation of particles’ shape and size
is simplified. Spherical particles are used and the mean particle
diameter value is set to 4 mm including a normal particle size dis-
tribution with a standard deviation of 0.1. In addition to a reason-
able computation time when spherical particles are used, the
coarse graining principles for the elasto-plastic adhesive contact
model [46] can be applied during the calibration procedure to fur-
ther minimize the computation time. For example, the ledge angle



Fig. 9. Procedure of the consolidation-penetration simulation: a) particle generation; b) loading using lid; c) unloading; d) penetration.

Table 4
DEM input variables to model interaction between particles when RC option is used.

Input variable Symbol Unit Range

Coefficient of static friction ls,p-p – [0.2 1.0]
Coefficient of rolling friction lr,p-p – [0.2 1.0]
Particle shear modulus G MPa [2.5 10]
Constant pull-off force �f0 N [0.5 5] e�3
Surface energy Dc J/m2 [550]
Contact plasticity ratio kP – [0.05 0.9]

Table 5
DEM input variables to model interaction between particles when RR option is used.

Input variable Symbol Unit Range

Coefficient of static friction ls,p-p – [0.2 0.4]
Particle shear modulus G MPa [2.5 10]
Constant pull-off force �f0 N [0.5 5] e�3
Surface energy Dc J/m2 [2.5 25]
Contact plasticity ratio kP – [0.05 0.9]

Table 6
DEM input constants.

Particle and geometry input parameter Symbol Unit Value

Poisson’s ratio t – 0.25
Particle density qp kg/

m3
4500

Mean particle diameter at the reference
particle scale (SP = 1)

dp mm 4

Particle shape Wp – single sphere
Coefficient of restitution, particle–

particle
Cr,p-p – 0.01

Normal and tangential contact modules,
particle-particle

fN,p-p and
fT,p-p

– EEPA

Slope exponent n – 1.5
Tensile exponent vp-p – 1.5
Tangential stiffness multiplier kt,mult. – 0.4
Normal and tangential contact modules,

particle-wall
fN,p-w and
fT,p-w

– Hertz-Mindlin
(no-slip)

Sliding friction coefficient, particle-wall ms,p-w – 0.37
Coefficient of restitution, particle-wall Cr,p-w – 0.01
Time step Dt s 1.2e�5
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of repose simulations are done using coarse grained particles with
a scaling factor of SP = 2.25, as per [46]. Constant pull-off force and
surface energy are scaled with factors of SP2 and SP to maintain com-
parable bulk responses with the unscaled simulation. For further
details of particle scaling rules, please refer to [46].
1539
The tangential stiffness multiplier, kt,mult., is recommended as
2/3 [62] for non-linear elastic contact springs. According to [63],
to maintain simultaneous harmonic oscillatory positions between
normal and tangential elastic springs, a value of 2/7 is
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recommended. However, no recommendation was found in litera-
ture to select kt,mult. when a non-linear elasto-plastic normal spring
is used. For that reason, a range of kt,mult. bounded to 0.2 to 1 was
used in the ledge angle of repose simulation. Within this range,
no significant influence on the simulation stability and simulated
bulk responses were found, and therefore kt,mult. is set to 0.4.

As suggested by [26], if a negligible adhesion strength is mea-
sured in the wall friction test, the Hertz-Mindlin (no-slip) contact
model [64] can be used to describe interaction between particles
and geometry. The sliding friction coefficient between particles
and wall geometry, ms,p-w, is therefore determined directly by Eq.
(4), which results in ms,p-w = 0.37 for the measured average angle
of the wall yield locus ux of 19�(Section 2.2). The rolling friction
coefficient between particles and wall geometry has a negligible
influence on simulated shear stress [65], and therefore mr,p-w is
set to 0.5.

ls;p�w ¼ tanðuxÞ ð4Þ
2.5.4. Initial samples
Using design of experiments (DoE) techniques, parameter

spaces – including their levels and possible combinations – can
be searched effectively using a minimum number of sampling
points. A Latin hypercube design (LHD) is constructed in such a
Fig. 10. Forty different samples for RR option at SP = 1, are
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way that each of the parameters is divided into p equal levels,
where p is the number of samples. Based on the UP criterion
[66], the location of levels for each parameter is randomly, simul-
taneously, and evenly distributed over the parameter spaces, main-
taining a maximized distance between each point. The LHD is
constructed according to the algorithm developed in [67], which
satisfies the UP criterion for up to 6 parameters. This allows us to
include up to 6 DEM input parameters in a feasibility evaluation.

Fig. 10 displays levels of the 5 continuous DEM input variables
at SP = 1 when the RR option, restricted rotation, is used. Forty dif-
ferent samples are created using the LHD to simulate ring shear
and ledge angle of repose tests. Similarly, using the LHD, 40 differ-
ent samples are created for the 6 continuous DEM input variables
(based on Table 4) at SP = 1 when the RC option, rolling friction
module C, is used.

In total, 160 simulations are run during step I, feasibility, which
cover 2 categorical variables and 6 continuous variables.

3. Results

In this section, first the simulation results of the initial samples
(step I) are presented. Then a feasible solution is chosen to con-
tinue the calibration procedure when executing its next steps.
Additionally, new samples are created at the beginning of each
new step to meet its specific objective.
created using Latin hypercube design for 5 variables.
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Step I: feasibility

Fig. 11 displays the simulation results of the 40 initial samples
when the RC option, rolling friction module C, is used. Three differ-
ent bulk responses are quantified:

– shear stress in the pre-shear stage, spre=20;
– shear stress in the shearing stage, s2:20; and,
– average angle of repose in the ledge test, aM.

Thus, Ny is equal to 3 in step I, feasibility evaluation. Simulation
results are also compared with the maximum and minimum values
that were measured in the laboratory environment (shown in
Table 2). For example, sexp.max and sexp.min are shown using blue
and red dashed lines respectively.

Using the RC option, a range of spre=20 bounded to 6.2 and
12.3 kPa is captured. This shows that the 40 samples created using
LHD could vary spre=20 by around 100%. The maximum simulated
spre=20, 12.3 kPa, is around 25% lower than sexp.min. This means that
simulating a comparable spre=20 is probably infeasible using the RC
option. To confirm whether this conclusion is limited to the
selected ranges of the 6 DEM input variables, additional simula-
tions using extreme values of DEM input variables are conducted.
Extreme values are selected outside the selected ranges shown in
Table 4. For example, using sample 32, which produced
spre=20 = 12.3 kPa, an additional sample is created by increasing
particle shear modulus, G, to 100 MPa. This leads to only a marginal
increase in simulated spre=20. Even though the angle of repose, aM, is
simulated in a range of 43� to 90�, simulating comparable bulk
responses is infeasible in the ring shear test. Therefore, according
to Fig. 11 we can conclude that an empty solution space is reached
when the RC option is used.

Fig. 12 displays the simulation results of the 40 initial samples
when the RR option, rotation restricted, is used. The same list of
Fig. 11. Shear strength and angle of repose values captured in 40 samples w
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bulk responses as in Fig. 11 analyzed here, and therefore the feasi-
bility is evaluated for Ny = 3.

First, a range of spre=20 bounded to 13.9 and 26.6 kPa is simu-
lated; this covers both sexp.max and sexp.min. Second, a range of
s2:20 bounded to 2.5 to 6.5 kPa is simulated. This range covers both
sexp.max and sexp.min. Third, a range of aM bounded to 60�and 90�is
simulated; this covers the maximum and minimum values mea-
sured in the laboratory environment. Therefore, according to
Fig. 12, a non-empty solution space is reached when the RR option
is used. However, no sample satisfies all three calibration targets
jointly. For example, sample 39 seems to be an optimal parameter
set, however the simulated bulk responses compared to
sexp,max(pre=20), sexp,max(2:20) and aexp,max have errors, |e|, of 1.13%,
22.53% and 5.88% respectively. By establishing mathematical
relationships between input variables and each calibration target,
such errors can be minimized. For that reason, the RR option is
used in the next steps as a feasible solution to be optimized further.

Step II: significant DEM variables

A one-variable-at-a-time (OVAT) technique is used to create
samples that allow us to investigate the direct effect of each
DEM variable, xj, on simulated bulk responses by running a limited
number of simulations.

Table 7 displays the samples created for this step, including 6
DEM input variables at the reference particle scale (SP = 1), when
the RR option is used. This results in 60 samples in total, to be sim-
ulated in the ring shear and ledge angle of repose tests. When one
variable is changed, the others are maintained at the displayed ref-
erence values. Reference values are based on one of the samples
that was used in step I. In addition to 5 DEM input variables that
were included in step I, the tangential stiffness multiplier, kt,mult.,
is also varied in this step. This allows us to check whether kt,mult.

has any significant influence on the selected bulk responses.
hen RC option is used: a) spre=20; b) s2:20; c) ledge angle of repose (aM).



Fig. 12. Shear strength and angle of repose values captured in 40 samples when RR option is used: a) spre=20; b) s2:20; c) ledge angle of repose (aM).

Table 7
Sampling for step II, finding significant DEM variables.

Variable Unit Reference value Low Step High

ms,p-p – 0.3 0.1 increase by 0.1 1.0
G MPa 7.5 1 multiply by 2 1024
kP – 0.2 0 increase by 0.1 0.99
�f0 N 1e�3 0 increase by 0.5 e-3 5E�3
Dc J/m2 5 0 increase by 2.5 and 5 25
kt,mult. – 0.4 0.2 increase by 0.2 1.0
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A similar list of bulk responses including spre=20, s2:20, and aM is
analyzed in step II. Furthermore, larger ranges for the DEM input
variables, compared to the previous step, are used to create sam-
ples. This allows us to run a comprehensive sensitivity analysis
showing relationships between the DEM input variables and the
selected bulk responses.

Fig. 13 displays isolated effects of the 6 DEM input variables at
SP = 2.25 on the simulated angle of repose. Since the ledge test box
is performed in a rectangular container (as shown in Fig. 7), aM
would be always equal or smaller than 90�. By varying coefficient
of static friction, the maximum possible angle of repose, aM = 90�,
being reached when ms,p-p � 0.6. As expected based on the Mohr-
Coulomb theory (Eq. (2)), there is a positive strong correlation
between ms,p-p and aM , as shown in Fig. 13a. A higher particle–par-
ticle friction results in a higher shear strength when normal pres-
sure and cohesion strength are constant. By contrast, there is a
negative correlation between G and aM, as can be seen in
Fig. 13b. By increasing G from 1 to 128 MPa, aM decreases by
around 20�. By increasing G, a lower contact overlap, d, is created.
This is expected to result in lower forces in the adhesive branch
of the contact spring (part III). Increasing G to higher values has
negligible influence on aM. The ledge angle of repose simulations
using kP equal to 0 and 0.99 result in unstable simulations, in
which the stable situation (as discussed in Section 2.4) is not
reached. As shown in Fig. 13c, by increasing kP from 0.1 to 0.5,
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aM decreases by around 20�, and further increasing kP has a negligi-
ble influence on aM. There is a strong positive correlation between
Dc and aM, showing a non-linear trend near the extreme values
(Fig. 13e). According to the Mohr-Coulomb theory (Eq. (2)), a
higher cohesion strength results in a higher shear strength.

Constant pull-off force and tangential stiffness multiplier are
found to have negligible effects on aM in the investigated range,
as shown in Fig. 13d and f, respectively. Coefficient of static fric-
tion, particle shear modulus, surface energy, and plasticity ratio
are significant DEM variables influencing the angle of repose.

Fig. 14 displays the results of the OVAT-based sensitivity analy-
sis for simulated spre=20. There is a strong positive correlation
between ms,p-p and spre=20. According to the Mohr-Coulomb theory
(Eq. (2)), the higher angle of internal friction of bulk material
results in a higher shear strength when normal pressure and cohe-
sion strength are constant. A linear trend seems to exist between
these two parameters. The other 5 DEM input variables, compared
to ms,p-p, have a weaker influence on spre=20. Particle shear modulus
and surface energy have positive correlation values with spre=20.
The surface energy contributes in the cohesion strength of bulk
material (denoted by c in Eq. (2)), thus contributing in the shear
strength too.

Fig. 15 displays the results of the OVAT-based sensitivity analy-
sis for simulated s2:20. Coefficient of static friction has a strong pos-
itive correlation with s2:20, similar to its correlation with spre=20.



Fig. 13. Isolated effects of 6 DEM input variables at SP = 2.25 on the average angle of repose: a) coefficient of static friction; b) particle shear modulus; c) contact plasticity
ratio; d) constant pull-off force; e) surface energy; f) tangential stiffness multiplier.
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The surface energy plays a more important role in s2:20, compared
to spre=20. Increasing surface energy,Dc, from 0 to 25 J/m2 causes an
increase of more than 200% in s2:20. According to the Mohr-
Coulomb theory (Eq. (2)), at relatively low vertical pressure values,
the cohesion strength, c, has a higher contribution to the shear
strength, compared to shear flow at high vertical pressure values.
As expected, based on the results of the ledge of repose simula-
tions, G has a negative correlation with s2:20. This is probably due
a lower normal overlap created in the contact spring by increasing
the value of G. Contact plasticity ratio, kp, also has some level of
influence on s2:20, but not in a predictive manner.

In conclusion, only one input variable, kt,mult., has a negligible
influence on the investigated bulk responses. Therefore, all the
other 5 input variables are included in the surrogate modeling-
based optimization in the next step.

Step III: surrogate modeling-based optimization

In this step, first the Taguchi method is used to create multi-
variate samples to include variations of 5 significant DEM input
variables when the RR option is used. Second, relationships
between each calibration target and the DEM input variables are
mapped to create F(X). This is done using the multiple linear
regression technique. As discussed in Section 2.1, to consider the
definiteness criterion, calibration targets are modified by excluding
the ledge angle of repose test and by including W80,65 and W70,300

measured in the consolidation-penetration test. This means that
four calibration targets are included in step III, and therefore
My = 4. Additionally, the maximum values of shear strength (shown
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in Table 2) are used as calibration targets in the simulation of a ring
shear test. Third, an optimal set of DEM input parameters is found;
these jointly satisfy the four selected calibration targets.

Table 8 presents the levels of the 5 significant DEM input vari-
ables at SP = 1 that are used to create multi-variate samples. Given
the adequate simulated bulk responses in step I, ms,p-p is bounded to
0.2 and 0.4. For the same reason, levels of G are set to 2.5, 5, and
7.5 MPa. Three levels are selected for G to capture any possible
non-linear relationship between G and the DEM calibration targets.
kp is bounded to 0.2 and 0.6. This range is expected to be enough to
capture a wide range of plasticity in the contact spring. Two other
parameters, f0 and Dc, which control cohesive forces in part III of
the contact spring, are confounded. In other words, their levels
are varied simultaneously in a way that allows us to minimize
the number of samples. Thus, 4 coded variables are used in the
Taguchi design to create samples. In total, 18 samples are created
using the Taguchi method.

As investigated in [1], the reaction force on the wedge-shaped
penetration tool is affected by the particle scaling factor. For that
reason, the consolidation-penetration simulation is calibrated only
for level of particle size (SP = 2.25), which is similar to the particle
size used in the ledge angle of repose simulations.

Next, the matrix of simulated bulk responses, [Y’], including 4
different bulk responses for 18 samples, is created. This matrix is
used to map relationships between DEM variables, X, and simu-
lated bulk responses, Y’. Details of F(X) are presented in Table 9,
including coefficients of the DEM variables in linear regressions fit-
ted on simulated bulk responses, Y’. Cte. stands for the constant
term in the regression model. Remarkably, in all the fitted linear



Fig. 14. Isolated effects of 6 DEM input variables on the shear stress in the pre-shear stage (spre=20): a) coefficient of static friction; b) particle shear modulus; c) contact
plasticity ratio; d) constant pull-off force; e) surface energy; f) tangential stiffness multiplier.
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regression models the coefficient of static friction has the highest
level of significance. Values of coefficient of determination, R2,
are also presented; in all the regression models, these are higher
than 0.75.

Therefore, the multiple linear regression model is found to be
adequate for us to continue with response optimization. If insuffi-
cient values of R2 are reached in this step of the calibration proce-
dure, either a higher number of training samples or more advanced
surrogate modeling techniques can be used.

Fig. 16 presents an optimal set of DEM input variables that
jointly satisfies four different calibration targets in step III with a
composite desirability, dcomposite, equal to 0.61. Composite desir-
ability, dcomposite, represents the geometric mean of individual
desirability values, d, as shown in Eq. (5) and Eq. (6), respectively.

dcomposite ¼ ð
YMy

i¼My

diÞ
1=n

; i 2 My ð5Þ

d ¼
f Xð Þ�y

0
min

y�y0
min

; y
0
min < f x0ð Þ < y

y
0
max�f Xð Þ
y0max�y

; y < f x0ð Þ < y
0
max

8><
>:

ð6Þ

where f Xð Þis the predicated bulk response using the linear regres-
sion, and y is the target bulk response that is measured physically.
y0
min and y0

max respectively represent the lowest and highest simu-
lated values of a specific bulk response among all samples in step
III. Each row in Fig. 16, except the top one, represents a specific sim-
ulated bulk response with its maximum possible d value obtained
1544
by finding an optimal set of DEM input variables. For example,
the last row represents the response optimization for shear strength
in the pre-shear stage, spre=20. For this bulk response, the physically
measured value, y, is equal to 19.4 kPa.

Using the mapped relationship between DEM variables and y’,
simulated bulk response, a combination of variables is found that
is predicted to lead to f(X*) = 18.7 kPa. This means that the outcome
predicted in the simulation of a ring shear test using the current
solution, shown in red, is a spre=20 equal to 18.7 kPa, with d = 0.80.
4. Verifying the calibration procedure

This section discusses verification of the calibration procedure,
step IV. First, we need to verify whether the outcome of surrogate
modeling-based optimization is adequate. This is done by running
simulations using the optimal set of DEM input parameters and
comparing simulated bulk responses to predicted values, f(X*). Sec-
ond, |e|mean is used to compare simulated bulk responses – using
the optimal set – with all the calibration targets, corresponding
to the maximum values in Table 2 and the target values in Table 3.
Third, the entire yield locus in the ring shear test, including 1 level
of rpre and 4 levels of rshear, is compared between the calibrated
simulation and experiment. Fourth, the wall friction test as an
independent bulk response is verified for various stress states.

First, ring shear and consolidation-penetration tests are simu-
lated using the optimal set found Fig. 16. In Table 10, four different
simulated bulk responses are compared with values predicted
using the surrogate-based optimization.



Fig. 15. Isolated effects of 6 DEM input variables on the shear stress in the shearing stage (s2:20): a) coefficient of static friction; b) particle shear modulus; c) contact plasticity
ratio; d) constant pull-off force; e) surface energy; f) tangential stiffness multiplier.

Table 8
Levels of DEM input variables at SP = 1 in step III: surrogate modeling-based optimization.

Coded variable Variable name (uncoded) Level

1 2 3

1 ms,p-p [–] 0.2 0.4 –
2 G [MPa] 2.5 5.0 7.5
3 kP [–] 0.2 0.4 0.6
4 �f0 [N] 0.5e�3 2.5e�3 5e�3
4 Dc [J/m2] 4 8 12

Table 9
F(X) when i 2 My; mapped relationships between DEM variables and simulated bulk responses.

Y’ Bulk response Symbol Unit Coefficients in fitted linear regressions R2

Cte. ms,p-p [–] G [MPa] kp [–] Dc [J/m2]

Accumulative penetration resistance at 80 mm depth when rpre = 65 kPa W80,65 J �86.7 435 6 22 3 0.77
Accumulative penetration resistance at 70 mm depth when rpre = 300 kPa W70,300 J �111 550 1 113 4 0.80
Shear strength in shearing stage (r = 2 kPa) s2:20 kPa 259 6797 �5 �415 143 0.89
Shear strength in pre-shear stage (r = 20 kPa) spre=20 kPa 3382 41,455 171 �385 175 0.97
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The relative difference is � 10% in all cases, and therefore the
adequacy of the multiple linear regression technique together with
the response optimizer is confirmed for our DEM calibration prob-
lem. If large differences between y’ and f(X*) had been captured, a
higher number of samples or more advanced regression techniques
could have been used to minimize the relative difference.

Second, |e|mean is used to compare simulated bulk responses
– using the optimal set – with all the calibration targets,
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corresponding to the maximum values in Table 2 and the target
values in Table 3. In other words, bulk density, shear strength,
ledge angle of repose, and accumulative penetration resistance
values are verified here. Table 11 compares 9 different simu-
lated bulk responses with their target values, which were mea-
sured physically using the laboratory tests. Four parameters in
the ring shear test are compared, indicating shear strength
and bulk density.



Fig. 16. Finding an optimal set of DEM input variables that jointly satisfies calibration targets using response optimization.

Table 10
Comparing simulated bulk responses using the optimal set with predicted values of surrogate modeling-based optimization.

Test Ring shear Consolidation-penetration

Parameter spre=20 s2:20 W80,65 W70,300

Unit [kPa] [kPa] [J] [J]

y’; Simulated bulk response 19.6 4.9 115 130
f(X*); Predicted value 18.7 4.4 112 121

ej j ¼ 100 � j y
0 �f ðX� Þ

y0
| 4.6 10.0 2.6 6.9

Table 11
Verification of calibration procedure; comparing simulated bulk responses with their calibration targets.

Test Parameter Unit y’ Simulated bulk response y Target value ej j ¼ 100 � j y
0 �y
y0

| |e|mean

Ring shear spre=20 kPa 19.6 19.4 1.0 5.2
s2:20 kPa 4.9 5.6 12.5
qb,0 kg/m3 1850 1963 5.8
qb,20 kg/m3 2760 2800 1.4

Consolidation-penetration W80,65 J 115 105 9.5 4.8
W70,30 J 130 120 8.3
qb,65 kg/m3 2680 2668 0.4
qb,300 kg/m3 2830 2807 0.8

Ledge angle of repose aM � 90 84 7.1 7.1
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The shear stress in the pre-shear and shearing stages is simu-
lated with |e| equal to 1% and 12.5% respectively. Bulk density val-
ues in loose and pre-sheared conditions, qb,0 and qb,20, are
simulated with |e| equal to 5.8% and 1.4%. On average, a relative
deviation of 7% is captured in a ring shear test including four cali-
bration targets. In the consolidation-penetration test, four different
calibration targets are evaluated, including accumulative penetra-
tion resistance and bulk density values measured at two different
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pre-consolidation levels. In the consolidation-penetration test,
accumulative penetration resistance parameters, W80,65 and
W70,300, are simulated with |e| smaller than 10%. Additionally, bulk
density values at two different levels of rpre, 65 and 300 kPa, are
simulated with negligible |e| values (smaller than 1%). This con-
firms that, using the elasto-plastic adhesive contact model, the cal-
ibration procedure was successful in capturing history-dependent
behavior of the cohesive iron ore sample in terms of penetration



Fig. 17. Verification of yield locus for rpre=20.

Fig. 18. Verification of wall friction measurements.
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resistance and bulk density. Finally, the ledge angle of repose,
which was not used during the surrogate modeling-based opti-
mization, is replicated with |e| = 7.1%. Therefore, considering sim-
ulated bulk density values in four different stress states and aM,
the definiteness criterion is met using the optimal set of calibrated
parameters, X*.

Third, the entire yield locus is verified for the ring shear test
conducted with rpre=20. Fig. 17 compares the results of the ring
shear test simulation using the optimal parameter set. Comparable
shear stress values are measured in both simulation and experi-
ment, with |e|mean = 6.7%. This verifies that the calibration proce-
dure is able to replicate shear strength in various stress states
and is able to capture the non-linear yield locus.

Finally, wall friction measurements as a bulk response indepen-
dent of the calibration targets are compared in Fig. 18, including 8
different stress states. The simulated wall yield locus shows a lin-
ear trend that replicates experimental values, with |e|mean = 5.5%.
Since the Hertz-Mindlin (no-slip) contact model (without adhesive
forces) was used to model particle–wall interactions, this linear
trend could be expected. This finding is similar to the conclusion
of [26], obtained by modeling a cohesive coal sample in a wall fric-
tion test.
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5. Conclusions

This paper has successfully established a reliable and novel
DEM calibration procedure by incorporating two important crite-
ria: feasibility and definiteness. The DEM calibration procedure
was applied successfully to model cohesive and stress-history-
dependent behavior of moist iron ore based on an elasto-plastic
adhesive contact module. The definiteness of the calibrated param-
eter set has been verified using 20 different bulk response values in
four test cases, such as ring shear, consolidation-penetration, and
wall friction tests.

– The established calibration procedure can be used to calibrate
material models when a high number of DEM input variables
(e.g. 6) as well as a high number of calibration targets
(i.e. > 2) are involved.

– Both continuous and categorical variables can be used in step I,
feasibility. Using the Latin hypercube design (LHD) method, it
has been shown how a categorical DEM variable (i.e. rolling fric-
tion module) can be used during calibration.

– During the calibration procedure, significant DEM variables can
be screened using the one-variable-at-a-time (OVAT) method in
step II. For ring shear and ledge angle of repose simulations,
coefficient of static friction between particles (ls,p-p) was found
to be the most significant DEM variable. In general terms, this
outcome is consistent with findings by other researchers [5].
Particle shear modulus (G), surface energy (Dc), and contact
plasticity ratio (kP) were the other significant variables when
the elasto-plastic adhesive contact module was used.

– In the current study, we have shown that surrogate modeling-
based optimization is applicable when a high number
(i.e. � 4) of DEM input variables is involved.

– The combination of Taguchi and multiple linear regression tech-
niques was successful in the surrogate modeling-based opti-
mization, with coefficient of determination values>0.75 for all
the calibration targets.

Further research is recommended to focus on, firstly, validating
the calibrated model of the cohesive iron ore in simulating an
industrial process (e.g. ship unloader grabs) where all the bulk
responses (discussed in Section 4) play a role. Secondly, future
researchers should apply the calibration procedure established
here to other applications where high numbers of input variables
and bulk responses are present.
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