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Abstract:
The Delft University of Technology (’TU Delft’) developed a real-time distributed system for scientific
and educational purposes. Because of the high level of expertise required to learn from- and work in a
real-time environment, TU Delft created a middleware layer, DUECA (Delft University Environment
for Communication and Activation), and a simulation-specific addition framework: DUSIME (Delft
University SIMulation Environment). A common practice is embedding the numerical optimization
tool in an aircraft model and retrieving the starting conditions, referred to as the initial trim set.

Setting up such an embedded tool for every aircraft model is very labor-intensive. For over 20 years,
these issues have limited the overall user experience in DUECA. Hence, the research created an

independent, generic, User-commanded, Sequential Quadratic Program (SQP) module capable of
solving the aircraft trim problem in DUECA. The trim module works by a user selecting a desired

steady-state aircraft trajectory through a Graphic User Interface (GUI) and then commands the trim
module to search for the set of initial trim conditions. The advised flight trajectory found so far by
minimizing the DASMAT trim problem are the straight-and-level descending, pull-up, and turning

flight. The calculated initial trim sets allow the starting up of an aircraft simulation in a steady-state,
stable enough such that a pilot can take over manual control.

July 19, 2022



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Aircraft Trim Problem 5
2.1 Generic Trim Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Assumptions and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 General Steady-State Trim Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Problem Exploration and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Algorithm Selection 12
3.1 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Proven Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Candidate Algorithm Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Working Principle, Candidate Methods, and Features . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Iteration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 Objective Modelling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 First-Order Derivative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.4 Second-Order Derivative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.5 Step methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Sequential Quadratic Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.2 Objective Modeling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.3 First-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.4 Second-Order Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.5 The Damped-BFGS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.6 The SR1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.7 Step Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.8 Lagrange Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.9 Penalty Updating Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.10 Projected Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.11 Second-Order Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 SQP Trust-Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 Cauchy Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 SQP Line Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.1 Step Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Aircraft Trim Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 Concluding SQP-framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9.1 Trust-Region Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9.2 Line Search Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Implementation and Verification Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Benchmark Problems 37
4.1 Benchmark Problem Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Implementation and Settings for DASMAT . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Experimental Setup and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Safeguards and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Important Limitations on Benchmark Results . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Aircraft Trim Implementation Limitations . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Results of Popular Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Results of Aerospace Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Discussion 45

6 Conclusion 47



7 Recommendations 49

Bibliography 50

Appendix A: Popular Benchmark Problems 53

Appendix B: Example Problem 56

Appendix C: SQP Architecture 57

Appendix D: Flowcharts 58

Appendix E: Float vs Double 61



1 Introduction

1.1 Background

Real-time distributed systems are used worldwide and find many applications. Real-time systems not only
depend on correct computation results, but also on the time needed for these results to be computed.
The distribution of such systems is necessary for fault tolerance, data processing of actuators, using
sensors at specific locations, and performance issues. One application where these system properties are
convenient is in flight simulation systems.

The Delft University of Technology (’TU Delft’) adopted real-time distributed systems for scientific and
educational purposes. Because of the high level of expertise required to learn from- and work in a
real-time environment, TU Delft created a middleware layer, DUECA (Delft University Environment
for Communication and Activation), and a simulation-specific addition framework: DUSIME (Delft
University SIMulation Environment). DUECA is established to support and develop real-time distributed
processes by hiding the complex network and synchronization of computation processes. DUECA offers
users services DUECA base, DUECA configure, DUECA creation, DUECA control. The DUECA base
service level is accessible for modules written in C++ and provides the following. Ensuring unique
naming, assigning identity, and registry is one base level service. Providing a communication network
and activation are other base level services. Communication between (possibly) distributed devices flows
through ’CHANNELS’. A channel is defined by its possibly distributed property and has predefined
types of data. The channel communication types are either an event, a type of data that refreshes
once triggered, or stream data, that is refreshed regularly. DUECA provides activation execution that
does not require a global schedule where modules in a fixed order. Instead, modules describe activation
conditions that determine when to schedule a module. To provide User-friendly control of dynamic
systems in DUECA, the developers created the top layer DUSIME [39].

DUSIME provides capabilities that are required for real-time simulating. DUSIME acts as a simulation
state machine that controls the DUSIME classes HardwareModule and SimulationModule. The class
HardwareModule controls the simulation states Down, Neutral, Calibrate and Active, essential for control
hardware systems such as the motion or control loading system of the SIMONA research simulator. The
class SimulationModule controls the simulation states HoldCurrent, Advance, and CalculateInco. The
simulation state HoldCurrent assures maintaining the current states and Advance allows time steps by
the dynamic model. During both phases, a set of starting points for which a dynamic model starts
in a steady-state condition referred to as initial trim conditions are required. The simulation state
CalculateInco is intended to find initial trim conditions by solving the aircraft trim problem for some
user-defined conditions. This initial trim condition is the simulation model’s starting point, enabling
the computation of all other model-dependent outputs. Currently, the SimluationModule does support
facilities for calculating initial conditions, but isn’t linked to the real-time environment and is only
available for a limited number of dynamic models. This means most initial trim conditions of the dynamic
models are labor-intensive predetermined sets of initial trim conditions which limit the DUECA/DUSIME
starting capability. By extending the DUECA/DUSIME software and creating an independent generic
initial trim module based on an extensive literature study, the environment is extended in such a way
that a user can select the initial conditions that are desired for flight simulations through an interface
[39].

In literature, the aircraft trim problem is solved in a number of ways. Baghdadi et al. [5] solves the
problem using a bifurcation method. Millidere et al. [35] solves the problem using a Newton-step method.
Marco, Duke, and Berndt [32] solve the problem more analytical. Baghdadi et al. [5] points out a common
way to solve the aircraft trim problem is using Sequential Quadratic Programming (SQP) where the other
two solve the problem using a Newton-step using for Millidere et al. [35] a line-search framework. Marco,
Duke, and Berndt [32] used the DirectSearch C++ library to obtain all results given their research.
The common, logical, and safe option is using one of these guidelines to fill the research gap which is
implementing a trim module for all dynamic models in DUECA. The paper of Millidere et al. [35] shows
that it’s possible to trim an aircraft using basic methods.
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The novelty of the current study is creating a facility in DUECA that not only trims regular aircraft,
but also other models. An additional novelty is the implementation of a generic solver in a real-time dis-
tributed environment. This further increases the demand for a facility in general. Within the constraints
of a master thesis project, the research gap will be (partially) filled. The focus of this research is on
creating an independent, generic, User-commanded, numerical optimization module capable of solving
the aircraft trim problem in DUECA. If this is satisfied, the model can be used in follow-up research to
also solve other dynamic models in DUECA. Making the trim module is not only an urgent need for the
DUECA, but also of scientific importance.

1.2 Problem Definition

The generic trim routines are not available in the framework of DUECA/DUSIME. This missing feature
causes users to derive and submit their own initial trim conditions for their specific dynamic models. This
is a lacking feature in the framework starting capability, therefore overall user experience is compromised.
Most simulations implemented in the current environment hold a few initial conditions and can be
extended to many possible equilibrium points. The aim of the project is to extend the fixed set of
equilibrium points for any simulation model in DUECA by making starting conditions selectable. By
creating an independent generic scientifically substantiated initial trim module based and establishing a
user interface for selecting initial conditions, DUECA’s initial performance and user experience will be
increased, making the environment more complete. Hence, the problem definition is defined as:

How can an independent generic trim module in DUECA use numerical optimization to
find user-defined steady-state aircraft conditions that are selectable through a graphic user
interface?

The project aims to increase the initial capabilities of DUECA by allowing the user to select/customize
their preferred initial condition. The research goal is to develop an optimization module in DUECA that
is capable of finding steady-state initial conditions for aircraft models based on user preferences that are
selected through a graphic user interface. Based on the found research gap and objective, the aim is
divided into several sub-aims and defined below.

• Section 2 gathers input in the field of aircraft mechanics and dynamics regarding popular aircraft
parameters and their representations, common flight scenarios, and aircraft model complexity.

• Section 3 gathers input in the field of numerical optimization regarding best practices for defining
and solving such a problem.

• Section 3 develops candidate numerical optimization algorithms that are capable of solving generic
aircraft models subjected to their predefined flight scenario and parameters settings.

• Section 4 performs a case study on the performance of the implemented algorithm by solving
relevant benchmark functions and comparing results with similar optimization strategies.

The desired research sub-aims are achieved by completing all sub-goals. The sub-goals are reflected in
the subsidiary questions.

1. What generic parameter settings define a common steady-state trim condition for the aircraft trim
problem?
1.1. What generic parameter quantification defines general steady-state flight for the aircraft trim

problem?
1.2. What generic parameter settings and formulations concerning common spatial representations

define general trim conditions?
2. What numerical optimization methods are effective at solving the aircraft trim problem indepen-

dently?
2.1. What are industry best practices for solving the aircraft trim problem in the field of numerical

optimization?
2.2. What practical and relevant optimization algorithms solve the aircraft trim problem?
2.3. Which of these methods provides a safe structure such that as algorithm complexity increases

the performance increases but is capable of operating at any intermediate complexity step?
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3. How do different numerical optimization features perform on aircraft trim problem and benchmark
problems?
3.1. What algorithm from two: iteration frameworks, step methods, first derivative approaches,

and second derivative approaches solves the aircraft trim problem the most robust, accurate,
and fastest?

3.2. What constraints and objective function is necessary, and do any other features prove deter-
minate to achieve a successful algorithm outcome?

The generic trim module will operate independently. DUECA’s base service makes it possible to create
modules that communicate through CHANNELS. The goal is to create a numerical algorithm in one
Module, and a Graphic User Interface in another module that both connects to an executable simulation
model. The user fills in the flight setting using the GUI, then presses a start trim button. After pressing
start, the GUI transforms necessary parameters, then sends it off to the minimization algorithm for its
first iteration xk. The trim module dictates the execution of the Blackbox aircraft model. In the Black-
box model, only read/write code is appended, necessary for communication. When the minimization
algorithm finds a solution that is lower than a set tolerance, then a solution presents to the user. Figure
1 visualizes the flow of data.
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Start Trim Button
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Figure 1: Flowchart for the independent generic trim routine in DUECA
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Section 2 describes the generic aircraft trim problem definition. This section then works toward param-
eter settings suggestions necessary to efficiently find a specific type of trim condition. A specific type
of trim condition allows steady-state motion of an aircraft following a specific flight trajectory. This
trajectory is also referred to as a flight maneuver, in a steady-state condition. The GUI module uses
these suggesting settings to develop a visual design, create the static Parameter Transformation layer
settings, and dynamic transformation equations inside the trim algorithm. Section 3 explores proven
numerical optimization methods and their performance criteria, then describes an algorithm that is ca-
pable of solving the aircraft trim problem. Section 4 finds appropriate benchmark problems, after which
the information provided in section 2 and 3 is used to solve selected popular benchmark and aircraft
trim problems. Near the end of section 4 a more optimal algorithm form is provided. Discussable steps
and results are described in Section 5. The conclusion of the results and progress made so far is given in
section 6.

4



2 Aircraft Trim Problem

This section solves the aircraft trim problem and describes the process step by step. The generic trim
problem is formulated and describes what aircraft motion quantities define a valid generic trim problem
solution.

2.1 Generic Trim Problem

Before establishing a generic trim module, a generic description for aircraft behavior has to be created.
In general, a generic aircraft state system can be expressed by the implicit system below [16, 17, 32, 41]

g(ẋ, x, u) = 0 (2.1)

Here, x defines the aircraft state vector; The vector g contains ns scalar nonlinear functions gi describing
6-DOF aircraft state equations projected in a reference frame; and the column vector u contains nc
control variables [32]. Generally, the system of equations Eq. (2.1) is implicit. This means a set of
gi equations or a single ns scalar equations contains a component of the vector ẋ state variable time
derivatives. The state time derivatives that cannot explicitly be written as separate quantities [32]. Many
system states for simulating aircraft states are available. There are distinctions made between system
states as follows [16, 17, 32, 41]:

x = [xTd , x
T
k ]

T (2.2)

Here, the aircraft state column vector x expresses a kinematic column state vector xk and a dynamic
column state vector xd. Common kinematic and dynamic state parameters are xk = [x, y, z, (ϕ, θ, ψ) ∨
(q1, q2, q3, q4), ...]

T and xd = [(V, α, β)∨ (u, v, w), p, q, r, ...]T . Here, the kinematic state variables describe
the position x, y, z and the angles (ϕ, θ, ψ) ∨ (q1, q2, q3, q4) of the aircraft’s center of mass with respect
to an inertial frame of reference. The dynamic state variables (V, α, β) ∨ (u, v, w) describe translational
velocity, and (p, q, r) formulates rotational velocity of the aircraft’s center of gravities. Both kinematic
and dynamic state vectors must include subsystem state variables when present in a specific aircraft. If
a specific aircraft includes a propulsion system and/or aerodynamic control surface actuator or another
system that expresses its motion by dynamic state variables, Then a user must add the dynamic state
variables to the appropriate vector. System of equations Eq. (2.1) describes a control vector u that
defines a row-column of control inputs. The control inputs may consist of aerodynamic control surfaces
and engine manipulators. The number of control states depends on the type of aircraft. An example of
a minimum conventional aircraft configuration’s input arrangement gives the following:

u⃗ = [δT , δe, δa, δr, · · ·]T (2.3)

Here, δT describes the throttle settings; δe the angular deflection of the elevator; δa the angular deflection
of the ailerons and δr the angular deflection of the rudder. Important to note is that most inputs are
constrained within a certain interval. A classical concept in the field of nonlinear system theory, in this
case, a generic trim module of any airplane model given by Eq. (2.1), is finding an equilibrium point or
also referred to as a trim point. For an autonomous process where the system input is not dependent
on external control inputs, the time-invariant system trim point state vector x⃗eq as a particular set of
solutions for x⃗ which satisfies the equation below [17, 25, 32]

g(0, x⃗eq, u⃗eq) = 0⃗ with ˙⃗xeq ≡ 0 and u⃗eq = (0 or u⃗0). (2.4)

Here, u⃗eq defines the control settings to ensure a steady state. The vector ˙⃗xeq must be selected appro-
priately. Selecting ˙⃗x from Eq. (2.2) and setting ˙⃗xeq = ˙⃗x = 0⃗ corresponds to a generalized idea of rest of
a system. This limits the trim application to an aircraft in standstill on the ground optimization only.
The appropriate form suggests the generalized idea of equilibrium where ˙⃗xd = ˙⃗xeq = 0⃗. Dynamic systems
in equilibrium allow rotational and translational motion, making flight possible. The content of x⃗eq and
u⃗eq is selected such that a numerical optimizer manipulates the variables x⃗eq and u⃗eq resulting in system
equilibrium. Table 1 describes motion requirements and all possible generic trim problem solutions.
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Accelerations ⇒ u̇, ẇ, ẇ (or V̇ , α̇, β̇) ≡ ṗ, q̇, ṙ (or ˙pB , ˙qB , ˙rB) ≡ 0
Linear velocities ⇒ u, v, w (orV, α, β) = predefined constant value

Angular velocities ⇒ p, q, r (or pB , qB , rB) = predefined constant value
Aircraft controls ⇒ δT , δe, δa, δr = predefined constant value

Table 1: Valid motion and control values that solve the generic trim problem.

The system achieves steady-state flight if the dynamic state derivatives (ṗ, q̇, ṙ) and (u̇, v̇, ẇ) or (V̇ , α̇, β̇)
are zero. This allows predefining the dynamic state variables (p, q, r) and (u, v, w) or (V, α, β) constant
or zero. Table 1 shows acceptable aircraft motion quantities that provide a valid solution to the generic
trim problem. The next step formulates assumptions and defines a strategy in Section 2.2 such that
Section 2.3 can specify steady-state flight maneuvers.

2.2 Assumptions and Strategy

Reducing the complexity of the aircraft trim problem is common practice. Marco, Duke, and Berndt
[32] describe that when the unsteady aerodynamic α̇ and β̇ rate dependencies are completely general,
the implicit system of equations Eq. (2.1) contains equations of unsteady motion. The trim condition
must derive from equilibrium. During this state of equilibrium, the dynamic state derivatives α̇ = β̇ = 0
or u̇ = v̇ = ẇ = 0. This makes the following explicit state equation sufficient for solving the aircraft trim
problem [32]:

ẋ = f(x, u) (2.5)

Here, each separate function in the set f = [f1, f2, · · · , fn]T explicitly describes one state derivative per
equation. Although all equations are valid for trimming, not all relations can be used. Relations that
contain aircraft model-specific parameters are unusable. The aircraft model-specific parameters, such as
mass or gravity, may vary per aircraft model, where the generic trim module must work for all aircraft
models. Because aircraft-specific state equations are unusable, a numerical routine must model the state
equations that contain aircraft-specific parameters. The explicit state equations that rely only on state
transformations are usable.

Assumptions are often necessary when searching for trim conditions because the trajectories that de-
scribe true equilibrium are very limited. Marco, Duke, and Berndt [32] describes that it’s considered
satisfactory to assume flat-Earth equations for control system design, therefore also for finding trim
conditions. This assumption allows the wing-level horizontal flight and constant altitude turning flight
trim conditions. Marco, Duke, and Berndt [32] also describes neglecting changes in atmospheric density.
Combining the flat-Earth assumption and neglecting changes in atmospheric density allow for wing-level
climb/descending flight and climbing/descending turning flight [32]. The types of trim condition de-
scribed in the current and Section 2.3 may only result in transitory conditions. Imposing constraining
equations on the flight conditions results in trajectory-specific trim conditions for the aircraft trim prob-
lem. Generally, implementing constraining equations leads to specific types of acceptable trim conditions
in simulation or linearization programs [32].

The trim algorithm Eq. (2.5) describes 12 explicit equations of motion. The 12 functions return a set of
kinematic state derivatives ẋk, and a set of dynamic state derivatives ẋd. The sets of state derivatives are
a function of kinematic state variables xk, dynamic state variables xd and control settings u. The trim
algorithm only uses the aircraft dynamic model for execution and doesn’t solve the differential equation
to provide a propagation step in time. Therefore, the trim algorithm only needs the set of dynamic state
derivatives for calculating a state and input combination that provides generic trim. If a solver finds a
condition where ẋd = 0 using xd, ẋk, xk, and u without any other constraining criteria, the user ends
up finding a random steady-state flight condition. This is because finding the condition ẋd = 0 using
all states and input has infinitely many solutions. By targeting user-defined state quantities, using state
transformations, and imposing state constraints, the trim module is capable of finding the user-specified
trim condition. In general, the following procedure ensures trajectory-specific trim.

The system is reduced by first deciding a target trajectory, then assigning values to a set of state variables
and control quantities. For a rectilinear trajectory example, the flight specifics create a set of initial values
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giving ξ1 = [V, h, γ, ψw, γ̇w = 0]T . Constraining the flight to achieve the rectilinear trajectory, a set of
derived state quantities gives ξ2 = [p = 0, q = 0, r = 0]. The remaining set becomes the set of trim
algorithm’s manipulating variables, containing state and control variables ξ = [ϕ, θ, ψ, δT , δe, δa, δr]

T .
The vectors ξ1 and ξ2 are different subsets of [xT , uT ]T , resulting in the remaining set ξ of [xT , uT ]T . In
general, the trim equations of motion considers the following set of state equations:

fn(ξ) = 0, for n = 1, . . . , 6. (2.6)

Here, the set of functions fn(ξ) with respect to some unknown set of variables ξ. Marco, Duke, and
Berndt [32] refers to the vector ξ as trim controls. The next section formulates the types of trajectories
and suggests parameter settings for achieving them.

2.3 General Steady-State Trim Conditions

In this section, Table 2 displays suggestions on trim settings. In a Graphic-User-Interface (GUI) a user
chooses a flight trajectory and quantifies values for the specific parameters in the form (·)0. Targets for
parameters in a back-end program ensure that the minimization algorithm searches for the trajectory
the user desires. The Target Initial Parameters (TIP) describes the user and back-end set of target
parameters. The trim algorithm uses the target numeric values to initialize the search. An optimization
algorithm minimizes a cost function f by changing its variables that are subjected to constraining
equations given by the Parameter Constraints (PC). From now, the Trim Control Parameters (TCP)
refers to the content of the vector ξ⃗ that the trim algorithm uses to search for steady-state. An explanation
of the Derived Parameters (DP) starts under table 2. In conclusion, the goal is finding the user custom
TIP resulting in the trim condition f(ẋd(ξ))→ 0 using the TCP set ξ subjected to the set of PC c(ξ) = 0.

(a) Generic asymmetric condition that visualizes with
red lines the variable trim attitudes α, β, ϕ, θ, ψ with
γ(α, β, ϕ, θ) for the straight-and-level flight condition
[32]. Determining quantities for straight ψw and level

γ = 0 flight. (b) Straight Crabbing Flight with no climb angle that
directs north [32].

Figure 2: The steady-state straight-and-level and straight crabbing flight condition.
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(a) The wings-level in pull-up trim condition valid at
one instantaneous moment in time [32]. Determining

quantities for wings-level ϕ = 0, and pull-up
θ̇W = positive non-zero flight.

(b) The steady-state coordinated and level turning
flight condition [32]. Determining quantities for

coordinated β = 0, level γ = 0, and turning
ψ̇W = non-zero flight.

Figure 3: The steady-state pull-up and coordinated turning flight condition [32].

The definition of a generic aircraft trim condition is ẋd = 0, but a specific type of trim maneuver
also satisfies PCs set by TIPs. Common aircraft initial type of trim maneuver are straight flight and
straight-and-level flight, push-over/pull-up, and steady-state turning flight. Straight flight is a steady-
state condition where an aircraft moves along a straight line with a given heading and flight path angle.
In addition, straight-and-level flight is a maneuver where this flight path angle and body roll angle is zero.
Pull-over/pull-up flight is a maneuver that starts straight-and-level, then a positive flight path angular
velocity γ̇w > 0 defines a pull-up and a negative γ̇w < 0 defines a push-over. In both cases, only allowing
change in the vertical plane. Steady-state coordinated and level turning flight defines a maneuver where
the flight path angle γ = 0 is zero, the load factor n > 1, and only allowing movement in the horizontal
plane. However, fewer restricting choices for the turning flight maneuver are possible. Advised state
settings for the maneuvers are summarized below w.r.t. the common aircraft state parameters.
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Straight flight [10, 32, 43]
TIP V = V0, h = h0, γ = γ0 and p = q = r = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

TCP ξ⃗ = [α, β, ϕ, θ, ψ, δT , δe, δa, δr]
T

Straight and level flight [32, 43]
TIP V = V0, h = h0, γ = ϕ = p = q = r = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

TCP ξ⃗ = [α, β, θ, ψ, δT , δe, δa, δr]
T

push-over/pull-up flight [10, 32, 43, 44]
TIP V = V0, h = h0,γ̇ = γ̇0, and γ = ϕ = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

DP ϕw = tan−1 cosα sin β sin θ+cos β cos θ sinϕ+sinα sin β cos θ cosϕ
sinα cos θ cosϕ+sinα sinϕpq

r

 =

 cosα cosβ − cosα sinβ − sinα
sinβ cosβ 0

sinα cosβ − sinα sinβ cosα

 1 0 − sin γ
0 cosϕw cos γ sinϕw
0 − sinϕw cos γ cosϕw

ϕ̇w = 0
γ̇ = γ̇0
ψ̇w = 0


TCP ξ⃗ = [α, β, ϕ, θ, ψ, δT , δe, δa, δr]

T

Steady-State Turn [16, 32, 43, 44]
TIP V = V0, h = h0, ψ̇w = ψ̇w0

, γ = γ0, and ϕ̇w = γ̇ = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

DP ±ϕw = tan−1
[
(n2−cos2 γ)

1
2

cos γ

]
ϕw = tan−1 cosα sin β sin θ+cos β cos θ sinϕ+sinα sin β cos θ cosϕ

sinα cos θ cosϕ+sinα sinϕpq
r

 =

 cosα cosβ − cosα sinβ − sinα
sinβ cosβ 0

sinα cosβ − sinα sinβ cosα

 1 0 − sin γ
0 cosϕw cos γ sinϕw
0 − sinϕw cos γ cosϕw

 ϕ̇w = 0
γ̇ = 0

ψ̇w = ˙ψw0


TCP ξ⃗ = [α, β, ϕ, θ, ψ, δT , δe, δa, δr]

T

Minimizing f(ξ) −→ 0

Table 2: Advised Steady-state settings for the given maneuver

Achieving a trim maneuver requires additional dynamic system information by formulating PCs. When
a user desires a target for a certain parameter (e.g., flight path angle γ0 = 0), that is not explicitly
part of the equations of motion it writes. Then the trim algorithm introduces the flight path angle as
a PC. More general, Primary parameters are fundamental parameters to a simulation model and their
numerical value must be known when evaluating a dynamic model. Secondary parameters are parameters
that are combinations of primary parameters and not essential for model computing. The trim algorithm
achieves the target quantity γ0 = 0 by minimizing the difference between an expression of the secondary
parameter γ as a function of the primary parameters, α, β, ϕ, θ as given in Eq. (2.7). An example PC
that achieves the target the user desires may have the form c(ξ)1 = |γ0 − γ(α, β, ϕ, θ)|= 0. PCs that
derive p, q, r or alternatively quaternion derivative components q̇1, q̇2, q̇3, q̇4 as a function of kinematic
state variables, kinematic state derivatives, control input, and/or load factor makes sense from a user’s
perspective, as these are interpretable parameters. An additional advantage is implementing PCs directly
in the trim module reduces data flow between modules. Implementing PCs directly doesn’t come without
a consequence.

γ = sin−1(cosα cosβ sin θ− sinβ sinϕ cos θ− sinα cosβ cosϕ cos θ) ∨ γ = θ−α ⇐⇒ γ, ϕ = 0 (2.7)

ϕW = tan−1 cosα sinβ sin θ + cosβ cos θ sinϕ+ sinα sinβ cos θ cosϕ

sinα cos θ cosϕ+ sinα sinϕ
(2.8)

Consider the following example that sets up the steady-state turning flight condition. Enforcing this
maneuver requires PCs on the kinematic state variables ϕ̇ = ψ̇ = 0. The goal is using the transformation
of Eq. (2.11) to derive values for (p, q, r). Consider the following set of five subsidiary parameters
ϕw, θw, ϕ̇w, θ̇w = γ, ψ̇w, that Eq. (2.11) uses, for achieving this goal. Here, θ̇w = γ already have a PC,
leaving 4 free variable to target, derive or constrain. This set must find dependencies using PCs as a
function of primary state variables or a targeting values that a user assigns. Otherwise, more variables
than equations exist, making it less likely for the algorithm to find a solution. Secondly, the solution
may become unrealistic because there exists a relation in the literature, but the trim modules don’t
describe the dependency. Two approaches consider a more and less user-friendly approach. The more
user-friendly approach introduces an interpretable parameter, such as load factor n, which a user must
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assign a target value to. The load factor and PC γ derive ϕw by solve for Eq. (2.10a). The trim module
must use ϕw to solve Eq. (2.10b) and derive ψ̇w. Now, the assumptions Eq. (2.10a) uses are that all
forces in z direction come from lift only. This focuses the trim module to select a value for the gravitation
acceleration that Eq. (2.10b) uses. Equation (2.8) increases complexity and makes the target parameter
less interpretable ψ̇w = ψ̇w0 , but makes fewer assumptions.

 1 0 − sin θ
0 cosϕ sinϕ
0 − sinϕ cosϕ cos θ

ϕ̇θ̇
ψ̇

 =

pq
r

 −→ 1

2


−q2 −q3 −q4
q1 −q4 q3
q4 q1 −q2
q3 q2 q1


pq
r

 =


q̇1
q̇2
q̇3
q̇4

 (2.9)

± ϕW = tan−1
[ (n2 − cos2 γ)

1
2

cos γ

]
(2.10a)

ψ̇W =
g

V
tanϕW (2.10b)

 cosα cosβ − cosα sinβ − sinα
sinβ cosβ 0

sinα cosβ − sinα sinβ cosα

 1 0 − sinϕw
0 cos γ cosϕw sin γ
0 − sin γ cosϕw cos γ

ϕ̇wγ̇
ψ̇w

 =

pq
r

 (2.11)

The derived parameters set (DP) is the last set of parameter abbreviations. In general, the derived
parameter set is necessary for secondary parameters that undergo a primary parameter conversion such
that the (TIP) and/or (PC) connects to the simulation model.

2.4 Problem Exploration and Strategy

The problem size affects the aircraft trim problem size to some extent. First, the typical size and a
specific number of variables in aircraft models are discussed, after which the effect of size on solving is
presented. The work of Duke, Antoniewicz, and Krambeer [17] gives a very complete view of the general-
ized equations of motion and complexity regarding the aircraft trim problem and is highly recommended.

Stevens, Lewis, and Johnson [44], Hess [23], and Cook [11] describe 6 degrees of freedom (DOF) aircraft
models that work with 12 state variables and 4 input variables. The 12 state variables describe the
translational and rotational information of an aircraft’s rigid body in three-dimensional space. The
four input variables consist of the flight control surface and drive-train/engine manipulators. Peters
and Barwey [42] describe a rotorcraft model that serves in their research as a demonstration program.
The program consists of a fuselage, a four-bladed main rotor, a four-bladed tail rotor, inflow, and an
engine/drive-train system that count of 12, 16, 8, 4, 0-4/0-2 state variables respectively. Dependent
on the complexity of the drive-train and engine, the model consists of 40 to 46 system states. The
DASMAT model contains 18 groups, resulting in using up to a total of 240 variables to simulate a 6DOF
aircraft model [45]. The work of Guimarães Neto et al. [21] formulates flexible flight dynamics that
uses (6+n)-DOF and is only valid for small deformations. Resulting in a 6+n problem subjected to
n-6 constraints using n = 120 in the FEM model for the elastic degree of freedom. Cooke et al. [12]
presents a quaternion based 6DOF aircraft model containing 14 state variables and 2 necessary quaternion
constraining equations. Two necessary quaternion constraining equations ensure that the quaternion and
quaternion derivative magnitude remains equal to 1. Holzapfel, Sturhan, and Sachs [25] apply for all
components, except the flight simulating system, an implicit nonlinear first-order state-space model for
plant dynamics modelling. This low-cost PC-based flight simulator executes in pseudo real-time using
Microsoft Windows that incorporates a template-based trimming approach.

As explained in section 2.3, a trim algorithm finds a trim condition by minimizing the dynamic state
derivatives using the kinematic state-, dynamic state- and control input variables. The state variables
consist of the translational and rational positions and velocities of an aircraft’s center of gravity and
its engine model if included. The flight control surfaces and engine controls make up the list of input

10



variables. A trim algorithm minimizes the dynamic state derivatives of the aircraft’s rigid body and its
engine model [45]. But more dynamic states are possible, as described in Stevens, Lewis, and Johnson
[44] (p. 191) where leading-edge flap actuator dynamics are additionally considered when trimming the
F16 model. Chen [9] defines its aircraft model in steady-state when the control derivatives: lateral,
collective, longitudinal, and directional control displacements are zero [9].

When minimizing an optimization problem, the problem should be a fully determined system. This
means that there are as many independent relations as variables. The problem may also be under-
determined, meaning fewer independent relations than variables. The trim algorithm must therefore
have at least as many TCP, as dynamic state derivatives plus the secondary parameter-based constraint
equations. Resulting in a trim problem size of at least 6 variables using the models given by presented
by Stevens, Lewis, and Johnson [44], Hess [23], Cook [11]. The DASMAT trim problem minimizes 6
body acceleration states, 4 engine acceleration states, and 1 constraint, resulting in 11 equations. Under
realistic flight conditions, the DASMAT model preferably uses 11 states trim control parameters to solve
the problem. Creating a determined problem can still have more than one solution. As Marco, Duke,
and Berndt [32] mention, if a trim goal is satisfied by some non-zero sideslip, combinations of non-zero
rudder and aileron deflection may also be possible. Also, the opposite sign of the found parameters is a
possibility. Choosing the search-space carefully cancels out their possibilities.
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3 Algorithm Selection

The field of numerical optimization contains a large variety of techniques for solving complex problems. In
this study, a framework is required that solves the aircraft trim problem. Here, an optimization algorithm
optimizes a multi-objective function by manipulating its variables while considering the constraints.
Before selecting a candidate numerical optimization framework, defining a set of demands is essential.
The research scope describes the demands that narrow down the algorithm selection. The preliminary
research viewed many candidate numerical frameworks. Constrained by the time limit of the master thesis
phase and noticing in section 1.1 that basic method are capable of solving the aircraft trim problem,
results in the following choice. The candidate numerical optimization framework must be capable of
solving a basic aircraft trim problem at a basic level of algorithm complexity. As the algorithm becomes
more complex, it must be capable of solving a more complex aircraft trim problem. This research
considers an algorithm only a candidate if it’s capable of working at a basic and more advanced level of
complexity. This guarantees some working algorithm implementation at the end of this research.

3.1 Performance Indicators

The research goal of solving the aircraft trim problem is to find a close-to equilibrium condition that
allows users to take over manual control. The upcoming definitions formulate general performance
indicators.

• A robust algorithm performs satisfactorily on a wide spectrum of problems within its class while
starting from a reasonable initial guess,

• An efficient algorithm minimizes excessive computing time and memory,
• An accurate algorithm finds a solution with precision without being too error sensitive which

includes the effect of arithmetic rounding errors that occur during iterations on computers.

From the general numerical optimization definitions [38], a more trim problem-oriented description fol-
lows. Accuracy determines the closeness to equilibrium of the found initial condition. A high order
of accuracy allows a user more time to construct a mental image and manually take over control of
the simulation. Robustness assures that the algorithm performs well on aircraft with low and high
maneuverability, but also on stable and unstable aircraft. Translating in being capable of trimming
small single-engine and large multi-engine airplanes, but also rotorcraft and fighter aircraft. An efficient
algorithm finds a solution while minimizing time and storage. The research considers robustness the
most important and efficiency more important than accuracy. The definition of robustness describes the
research goal without further explanation. Efficiency reduces pressure on the simulating environment
and reduces the time a user waits on the desired initial condition. A high level of accuracy is important,
but finding a quasi-equilibrium that allows users to take over manual control is not pushing numerical
bounds.

3.2 Proven Numerical Methods

As mentioned in section 1.1, Baghdadi et al. [5] solves the aircraft trim problem using a bifurcation
method. Millidere et al. [35] solves the problem using the Newton-Raphson method. Marco, Duke, and
Berndt [32] used the DirectSearch C++ library. Using DirectSearch was their only choice as it minimizes
the effort spent on coding. Thus, the experience reported in the literature would suggest using a Newton-
based method for these problems. Stevens, Lewis, and Johnson [44] finds solutions to their trim problems
using the fminsearch function in Matlab that essentially uses Nelder and Mead Simplex algorithm. The
paper of Peters and Barwey [41] describes a general theory of rotorcraft trim appended with control
augmentation. The trim routine uses a type of Newton-Raphson method.

Mastinu and Plöchl [33] explain different optimization techniques that are capable of solving automotive
systems. Here, the efficiency and accuracy of uniformly distributed sequences, evolutionary strategies,
and sequential quadratic programming techniques are visualized. In chapter 5.4 of Van Kampen [46] a 6
DOF F-16 model is trimmed using an Interval Algorithm (IA) and a SQP algorithm. The trim algorithm

12



minimizes the objective function using 7 TCP. Both algorithms are capable of finding the solution to the
problem presented. The author concludes that the IA is guaranteed to find the global solution to a given
problem, but is 200 times slower in finding a solution than the SQP method. A preliminary research
inspected earlier used numerical solvers and found that the SQP had very appealing properties. Nocedal
and Wright [38] referred to the SQP approach as a very effective method for solving nonlinear constrained
optimization problems. The approach shows its strength when solving significant nonlinearities in its
constraints, and allows a build-up process. The SQP approach can be constructed by starting with a
basic unconstrained minimizing algorithm based on a type of Newton method. After assembling the
basic algorithm, features are added that convert the unconstrained solver to a more complex constrained
optimization algorithm.

3.3 Candidate Algorithm Framework

Based on the findings and considering the requirements, the SQP approach is a good choice as an
optimization approach. The algorithm’s basic form, choosing a type of Newton method, must be capable
of solving a basic aircraft trim problem. The simplified aircraft model available in DUECA and familiar
to the researcher is the aircraft model described by Hess [23]. For this research, the more complex model
available in DUECA is the DASMAT aircraft model [45]. Section 4.6 provides a detailed description of
both aircraft models. Again, The SQP approach emphasizes its feature selection first on robustness, then
efficiency, and finally accuracy. The goal is to create a generic trim module which shares the description
of robustness. But if only robustness was the goal, then the IA proposed by Van Kampen [46] that
guarantees to find the global solution might suit better. The IA was 200 times slower on 7 variables,
which may become worse when solving the DASMAT trim problem that contains at least 10 variables.
The work of Peters and Barwey [42] solves the rotorcraft trim and stability problem using the Newton-
Raphson method that led to 90+ state variables and took 360 minutes. Adding speed by including
efficiency is therefore of great importance. Keeping these goals in mind, the next section explains the
general numerical algorithm working principles and feature selection of Newton-type SQP algorithms.

3.4 Working Principle, Candidate Methods, and Features

The basic process of Newton-type methods and SQP approaches share many common steps. As all
numerical optimization algorithms do, they work iteratively. During an iteration, evaluating the objective
function and its constraints is part of most processes. The algorithm uses the information to construct a
local model that approximates the actual problem. The local model consists of the problem’s objective
and constraint cost at the evaluating point, first-order derivative information, and sometimes second-
order derivative information. After constructing the local model, a local optimization takes place to
approximate the best step. Consideration of taking the step depends on the iteration method. Regardless
if a method is taking the step or not, the decision will lead to the next iteration that repeats this cycle.
No matter the order of execution and other deciding factors, the following points are present in a SQP
Newton-type framework:

• Iteration methods available are Trust-region (T) and Line-search (L);
• Objective modeling subjected to constraint may use penalty methods, filtering, merit functions, or

the augmented Lagrangian.
• First-order derivatives exploration is possible using finite differences;
• Second-order derivatives information gathering may use finite differences, Quasi-Newton methods,

or least-squares methods;
• Step methods may execute Newton step methods, least-square methods, or conjugate gradient

methods.

3.4.1 Iteration Methods
In general, iterative methods in numeric optimizations consist of two categories: trust-region methods
and line search methods. Trust-region methods start an iteration with a fixed maximum step length,
then find the optimal step direction. Line search methods start the iteration by first determining its step
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direction, then reducing its step length. Figure 4 illustrates this process, where the trust-region step is
constrained, and the line search step is the solution to the subproblem mk.

Figure 4: Line search and trust-region iteration method [37]. A graphical explanation of both iteration
methods. Here, the ’full’ step of the line search method and the constrained trust-region method step

are visible.

Besides this difference, line search commonly uses a first-order prediction model while trust-region uses
a second-order prediction model and is constrained to a maximum step length. The second-order model
and maximum step length constraint make it possible for the trust-region method to handle an indefinite
Hessian. This may make trust-region methods more reliable. At the same time, adding the trust-region
constraint increases computational complexity and may cause an infeasible subproblem. Both line search
and trust-region algorithms have their trade-offs. Implementing and undergoing numerical experiments
is therefore the only possible way of finding their robustness and efficiency performance indicators.

The specific condition and steps that are crucial for making the algorithm converge define the section
3.5.

3.4.2 Objective Modelling Methods
Measuring the progress of a SQP algorithm towards the objective solution requires constant monitoring.
A common way to track progress is by constructing a merit function. Candidate objective modelling
functions are the penalty and augmented Lagrangian merit functions. Depending on the change of a
merit function’s magnitude and line-search or trust-region conditions, A step accepts or declines, making
iterating possible. Popular penalty functions are the ℓ1, ℓ2, and ℓ∞-norm functions. Other popular merit
functions are the Fletcher augmented Lagrangian and (standard) Augmented Lagrangian function. The
advantage of the ℓ1 function is that the functions are easy to extend. Work well on problems that
contain complementarity constraints and may serve as a safeguard when other merit functions fail. The
augmented Lagrangian function is popular because of its simplicity but is more difficult to extend. They
incorporate the Lagrangian parameter into the merit function and requiring more computational effort
[6, 38], but may lead to faster converging speed [2]. The penalty functions are candidates because of their
easy implementation. They must be safeguarded against an unrealistically high penalty for achieving
the level of robustness required.

3.4.3 First-Order Derivative Methods
The first-order derivative describes gradient information essential for modelling the objective gradient
behavior. Using the model proves useful when evaluating the next attempt in the neighborhood of an
evaluation point. To provide a trim module that is generally applicable, the involvement of the trim mod-
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ule in the aircraft models must be kept to a minimum. Besides minimum involvement, aircraft models
may use data tables, analytical formulas, or any other representation to model aircraft behavior in some
frame of reference. Therefore, using some analytical set of state equation derivatives to model all aircraft
is not possible. Instead, the algorithm uses finite difference methods to approximate and gather first-
order derivative information. In general, finite difference methods approximate the first-order derivative
at some point by using a Taylor expansion up to the desired accuracy. The finite difference methods in
this research are the forward Euler (E) and central difference (C) formulas. Both methods can increase
their accuracy and robustness by implementing a Richardson Extrapolation method. Increasing robust-
ness is also possible when implementing a second-order Lagrange interpolation polynomial. Richardson’s
extrapolation techniques make non-optimal step-size disturbances less influential when considering more
evaluation points, while Lagrange interpolation performs well on unequally spaced data within the in-
terpolation region as explained e.d. by Chapra and Canale [7] in Chapter 23. Because the generic
application is the main focus, obtaining derivatives with Lagrange interpolation assistance is preferable.
Richardson’s extrapolation techniques will obtain more accuracy, but less robustness when dealing with
unequally spaced data. As an addition to forward Euler and central difference, a second-order Lagrange
interpolation polynomial implementation when extending the algorithmic complexity.

According to Nocedal and Wright [38] (p. 197), the accuracy of central difference is less impressive in
practice, but it may still increase performance near the solution [38]. If assuming the optimal choice for
finite difference step size under conditions given by Chapra and Canale, Nocedal and Wright [8, 38], the
error becomes (E) u1/3 and (C) u2/3 with u = (1/2)53, assuming a well-scaled problem. Calculating the
optimal step size is not part of the research scope, but the error will affect the algorithm’s performance.
The more accurate (C) requires two additional function evaluations per variable against the more efficient
(E) which uses one additional function evaluation per variable. The robustness of these techniques is
limiting and depends on the finite differences between optimal step size (h) methods and aircraft model
data spacing.

3.4.4 Second-Order Derivative Methods
The second-order derivative matrix, known as the Hessian, models the changes in gradient. Constructing
the Hessian has advantages for small to medium size problems. A major advantage of constructing a
Hessian is being able to implement second-order optimality conditions in an algorithm. Optimality
conditions, see Section ??, may use the Hessian to verify and/or recognize a solution. A second major
advantage is accelerating the search process. Implementing the Hessian increases the convergence rate
near the solution compared to steepest descent methods dramatically, especially when solving difficult
problems [38]. However, there exists more than one method to construct the Hessian. Constructing the
Hessian is possible using finite differences, Quasi-Newton updating formulas, or least-squares techniques.
Finite difference techniques can construct a Hessian accurately but are also inefficient. The trim module
allows little involvement in dynamic models, making finite differences an obvious choice when using a
Newton method. Yet again, efficiency is higher rated than accuracy, resulting in more suitable choices
in the Quasi-Newton class or the least-squares class.

Quasi-Newton methods (QN) use gradient information to construct and update a Hessian approximation.
They are proven to be practical and very effective for small to medium size problems. QN methods have
a lower arithmetic cost than Newton’s methods, are practically robust, and may achieve a super-linear
convergence rate. Mixed approaches exist that construct a second-order derivative (Hessian) approximate
matrix such are the BFGS, SR1, and the DFP, a mixed method called the Broyden class, see Nocedal
and Wright [38] Chapter 6. The BFGS methods are one of the most effective classes because of their
self-correcting properties. This guaranteed a positive semi-definite Hessian update if the initial BFGS
matrix is positive semi-definite. The damped-BFGS is more effective at maintaining its update well-
defined than a regular BFGS method. According to Nocedal and Wright [37] (p. 541), many SQP
programs implement the damped-BFGS updating formula and perform well on many problems. This
makes the damped-BFGS method a more favorable candidate feature than the unmodified BFGS method.
The SR1 algorithm is less robust than BFGS methods and requires more safeguards, especially when
combining this method with a line search method. The SR1 update formula is still useful for its cheap
and efficient computation, and often reassembling the actual Hessian is more accurate than the BFGS
updating formula. The effectiveness of Quasi-Newton methods is well-understood and proven by [1, 13,
15, 26, 27, 38, 40] and many others.
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Least-square routines are in practice very effective solvers for nonlinear problems. They usually require
only the evaluation of the Jacobian of a given problem and can retrieve first-order and approximated
second-order derivative information. This process is fundamental in the Gauss-Newton (GN) line search
method. The Levenberg-Marquardt method applies a similar process to a trust-region routine which
copes with (GN)’s main weakness, which is its behavior its Jacobian becomes near rank-deficient. Local
convergence of these techniques may become superlinear in the neighborhood of the solution [38].

3.4.5 Step methods
Conjugate gradient (CG) methods use conjugate sets to find solutions to general linear and nonlinear
problems. In the CG inexact Newton class, the trust-region CG-Steihaug and line search Newton–CG
are candidate step methods. Both candidate step methods are able of solving a constrained optimization
problem by incorporating projected conjugate gradient (PCG). A second addition to both step methods,
the residual minimizer proposed by Gould, Hribar, and Nocedal [19], which removes significant rounding
errors during iteratively solving. Al these considerations make the step method very robust. The step
method is capable of handling an indefinite Jacobian or Hessian matrix, solving unconstrained and
constrained problems, and reducing rounding errors. Other candidate step methods for trust-region are
the Cauchy-point, the Dogleg Method, and the Two-Dimensional Subspace Minimization. The line-search
frame uses the Armijo backtracking condition to control step length [38].

(a) Dogleg step method minimizing a problem
subjected to a trust-region constraint [37]

(b) Minimizing the objective function in the null-space
of the constraints [37]

Figure 5: The steady-state straight-and-level and straight crabbing flight condition.

3.4.6 Summary
Selecting the methods and features emphasizes the performance indicator in the order of first robustness,
then efficiency, and finally accuracy. Besides the performance indicators, practicality of implementation,
proven aircraft trim numerical methods, and extendability in the level of complexity were leading factors
during the preselecting stage. The trim product up until now uses the SQP framework, containing the
following methods and features.

• Iteration methods available are Trust-region (T) and Line-search (L);
• Objective model uses ℓ1-norm for line-search methods and trust-region uses the ℓ2-norm;
• First-order derivatives approximation uses Central differences (C) and forwards Euler (E);
• Second-order derivatives use the Quasi-Newton damped-BFGS (B) or SR1 formulas (S) to construct

the Hessian matrix;
• Step methods are the Projected conjugate gradient (P) and the Dogleg method (D) that is only

available for trust-region iteration methods.

These choices define the basis of the evaluation framework. Section 3.5 describes the structuring of
execution order, necessary conditions, and considerations for SQP algorithms in general.
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3.5 Sequential Quadratic Programming Algorithm

Before going in-depth into the numerical procedure, the algorithm features are given in the following
table

Section reference Section
Lagrangian Function L(x, λ) Optimality Conditions 3.5.1

First-Order Necessary Conditions KKT Optimality Conditions 3.5.1
Gradient of the Lagrangian function ∇xL(x, λ) Optimality Conditions 3.5.1
Second-Order Necessary Conditions w∇2

xxL(x∗, λ∗)w ≥ 0 Optimality Conditions 3.5.1
Second-Order Sufficient Condition w∇2

xxL(x∗, λ∗)w > 0 Optimality Conditions 3.5.1
Auxiliary problem Eq. 3.15 Objective Modeling Methods 3.5.2
Quadratic Model Eq. 3.15 Objective Modeling Methods 3.5.2

Central Differences ∂f/∂xi First-Order Derivatives 3.5.3
Forward Euler ∂f/∂xi First-Order Derivatives 3.5.3

Jacobian of the objective J(x) First-Order Derivatives 3.5.3
Jacobian of the constraints A(x) First-Order Derivatives 3.5.3

Hessian Damped BFGS B The Damped-BFGS Method 3.5.5
Hessian SR1 B The SR1 Method 3.5.6

Lagrange/(least squares) multiplier λ Lagrange Multiplier 3.5.8
Penalty value µ Penalty Updating Strategy 3.5.9

Projected Conjugate Gradient Algorithm 1 Projected Conjugate Gradient Method 3.5.10
Second-Order Step Correction p̂k Second-Order Correction 3.5.11
Trust-region quadratic Model qµ Trust-region subproblem 3.6.1

Trust-region merit function ϕ2(x, µ) Trust-region subproblem 3.6.1
discrepancy parameter ρ Trust-region subproblem 3.6.1

Dogleg p The dogleg method 3.6.1
Trust-region pseudocode Algorithm 3 Trust-Region Pseudocode3.9.1

line search merit function ϕ1(x, µ) The Armijo Condition 3.7.1
Line search directional derivative D(ϕ1(xk;µk)) The Armijo Condition 3.7.1

Line search backtracking algorithm Algorithm 2 Backtracking 3.7.1
Line search step acceptance Condition 3.52 Line search Acceptance Condition 3.7.1

Line Search pseudocode Algorithm 4 Line Search Pseudocode 3.9.2
Generic objective function f Aircraft Trim specifications 3.8

Generic constraining functions c in Table 2 General Steady-State Trim Conditions 2.3

Table 3: The symbols, conditions and equations integrated in the SQP Algorithm

The general nonlinear objective function subjected to constraints defines the following problem,

min
x∈Ω

f(x) (3.1a)

ci(x) = 0, i ∈ E (3.1b)
ci(x) ≥ 0, i ∈ I (3.1c)

Here, f is an objective function that is subjected to constraints c both as a function of the variables
x. The goal of such a problem is finding the set of points x that results in the lowest possible value for
f and satisfies all constraints c. This set of points is called the global minimizer of the problem (3.1).
A local solution is noted as x∗ where (·)∗ indicates the minimizer and (·)∗∗ a maximizer. The imposed
constraints span the feasible region of f(x), and limit the search space for the minimizer as Eq. (3.2)
describes.

Ω = {x|ci = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I} (3.2)
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Figure 6: Geometrical representation of a constrained optimization problem [37]

3.5.1 Optimality Conditions
Regardless of the specific algorithm features, the algorithm needs mathematical conditions for checking
and verifying solution points. Two types of optimality conditions exist: Necessary and Sufficient Condi-
tions. Necessary conditions must be satisfied by any solution point. Sufficient conditions guarantees that
x∗ is, in fact, a solution [38]. The difference between the two conditions is the derivation perspective
regarding the objective function and constraints. Necessary conditions assume x∗ is a local solution,
then formulates properties of f and c. Sufficient conditions are conditions that ensure f and c are local
solutions.

Before introducing the advantages and mathematical conditions of optimality conditions, an example is
provided that explains the difference between the necessary and sufficient conditions. Consider a valley
where a local minimum must be found without depending on our eyes and ears. The valley surface area
is very smooth, free of obstacles, and safe for such experiments. We use a walking stick to poke around
and feel how the surface of the valley directly around us behaves. With our feet, we can feel the slope of
the landscape. We will start at some point xk in the valley, where the valley is our feasible search space
Ω. The first question is: How do we know that we have found a local minimum? Deriving conditions
that define the properties of a local minimum point x∗ in the search area is necessary for recognizing
if a point is or is not a local minimum. The first condition uses the information from the slope of the
surface on which we stand. We state that to consider our position a local minimum, it is necessary
that the slope of the surface on which we stand is zero ∇f(x∗) = 0. Looking critically at our initial
problem, we recognize that a local minimum in a valley is not necessarily a point. It may also be a line
or a flat region in some part of the valley. A local point that agrees with ∇f(x∗) = 0 is a saddle point,
which is not a local minimum. Providing more conditions makes our claim that we have found a local
minimum stronger. When we find a point that satisfies ∇f(x∗) = 0, we use the walking stick to feel the
surrounding. This way we can feel the slope we stand on change, giving us insight into the curvature
of the surrounding. We suppose that if x∗ is a local minimum, then it is necessary that the curvature
stays zero or positive ∇2f(x∗) ≥ 0 and ∇f(x∗) = 0 is satisfied. This makes calling a line or flat region a
local minimum possible. However, if we find ourselves in a position where ∇f(x∗) = 0 and we find that
poking around us only leads upwards ∇2f(x∗) > 0, then it’s sufficient to guarantee that position x∗ a
strict local minimum.

In the example above, the first-order optimality conditions uses function information up to the first-order
derivative. A second-order optimality condition uses information up to the second-order derivative.
The second-order necessary condition accepts more possibilities if a point satisfies ∇2f(x∗) ≥ 0 and
∇f(x∗) = 0. The second-order sufficient condition guarantees a stronger local minimum if a point
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satisfies ∇2f(x∗) > 0 and ∇f(x∗) = 0, but may not capture all points or may even fail (consider the
Hessian at x = 0 for minimization problem: minx6).

The example above has relatively straightforward optimality conditions because it’s an unconstrained
optimization problem. However, this study requires optimality conditions for a constrained optimization
problem. A common approach in constrained optimization is using the Lagrangian, which is capable of
describing the objective and constraints in one function. The general constrained optimization problem
(3.1) uses the following Lagrangian function:

L(x, λ) = f(x)−
∑

i∈E∩I
λici(x). (3.3)

Here, the Lagrangian L(x, λ) describes the objective f(x), ci(x) the constraints, and λi the Lagrange
multiplier. The set of constraint active for all feasible points x is the union of the equality constraints E
and active inequality constraints. This union set defines the Active set of constraints and is given below.

A(x) = E ∪ {i ∈ I|ci(x) = 0}. (3.4)

The first fundamental set of conditions is called the First-Order Necessary Conditions. This set of
conditions determines that x∗ is a local minimizer if the conditions hold. The necessary condition is
called first-order, as it uses gradient information about the objective and constraint functions. This set
of conditions is also known as the Karush-Kuhn-Tucker (KKT) conditions and formulates the following
statements:

∇xL(x∗, λ∗) =0, (3.5a)
ci(x

∗) =0, i ∈ E (3.5b)
ci(x

∗) ≥0, i ∈ I (3.5c)
λ∗i ≥0, i ∈ I (3.5d)

λ∗i ci(x
∗) =0, i ∈ I ∪ E . (3.5e)

Here, ∇L(x∗, λ∗) is the gradient of the Lagrangian function and λ∗ the Lagrange multiplier. The gradient
of the Lagrangian function contains derivative information for the objective function and constraints.
More specific, the active set only contains the set of equality and violated inequality constraints. Omitting
the rest i /∈ A(x∗) replacing Eq. (3.5a) by

0 = ∇xL(x∗, λ∗) = ∇f(x∗)−
∑

i∈A(x∗)

λ∗i∇ci(x∗) (3.6)

These conditions provide one of the stopping criteria of the algorithm, making it fundamental for the
numerical scheme. It also shows the role of the Lagrange multiplier λi. The Lagrange Multiplier describes
the sensitivity of the objective function value to each constraint. Each λi indicate the amount that f
is pushing or pulling on each individual ci. The work of Nocedal and Wright [38] page 342 describes a
sensitivity analysis that shows the effect of small perturbations on the Lagrange multiplier. It shows, if
λ∗i ||∇ci(x∗)|| is large, the sensitivity of the optimal value to placement of ith constraint depend on the
quantity. Small quantities show that the dependence is not too strong. If λ∗i = 0, small perturbations
to ci will result in insignificant changes of the optimal objective value. Using active constraint set A(x)
and feasible set x, the linearized feasible directions set F(x) is

F(x) =
{

d| dT∇ci(x) = 0, for all i ∈ E }
dT∇ci(x) ≥ 0, for all i ∈ A(x) ∩ I (3.7)

Here, the First-Order feasible set F(x) is a cone, shares geometric properties with the set Ω, and does
not rely on the algebraic specifications. The set F(x) does depend on the definition of the constraints.
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(a) Problem: minx1 + x2 s.t. −x21 − x22 + 2 ≥ 0
starting with and without constraints active

(Numerical Optimization page 311 [38] )

(b) The cone region that combines the objective goal
by descending in the direction −∇f and satisfies

F(x) simultaneously [37]

Figure 7: An example constrained optimization problem [37]. Figure 7a Visualizes and describes a
constrained minimization problem. Figure 7b illustrates the linearized feasible set and objective goal of

the top-left point x in figure 7a.

The first-order conditions give insight to the relation between ∇f(x) and ∇ci(x) at x∗. When the first-
order conditions are satisfied, movement of any w from F(x) results in one of two scenarios. Either the
first-order approximate increases wT∇f(x∗) > 0, or kept the same wT∇f(x∗) = 0. First-order alone
cannot determine if the function value will increase or decrease along the direction of movement. This
makes the second derivative especially convenient, as it captures curvature information of the Lagrangian
function. However, the second-order derivative requires stronger smoothness assumptions. Additionally,
it assumes that the functions f and ci in Ω are twice continuously differentiable. Here, the critical
cone definition gives more insight than directions from F(x), while λ∗ satisfies the first-order necessary
conditions (3.5a) as defined as follows:

w ∈ C(x∗, λ∗) ⇐⇒

{ ∇ci(x∗)Tw = 0, ∀i ∈ E ,
∇ci(x∗)Tw = 0, ∀i ∈ A(x∗) ∩ I with λ∗i > 0,
∇ci(x∗)Tw ≥ 0, ∀i ∈ A(x∗) ∩ I with λ∗i = 0,

(3.8)

Curvature information that the Hessian of the Lagrangian provides at the local solution x∗ are non-
negative critical directions. These directions belong in the set C(x∗, λ∗). It is a necessary condition
that if x∗ is a local solution and LICQ holds while λ∗ satisfies the KKT conditions, the Hessian of
the Lagrangian has non-negative curvature in C(x∗, λ∗). These Second-Order Necessary Conditions are
mathematically given below

w∇2
xxL(x∗, λ∗)w ≥ 0, ∀w ∈ C(x∗, λ∗). (3.9)

Under these conditions, the Hessian of the Lagrangian ∇2
xxL(x∗, λ∗) is positive semi-definite. This means

that none of the eigenvalues of ∇2
xxL(x∗, λ∗) are negative. The following conditions define the Second-

Order Sufficient Conditions: If for some x∗ ∈ Rn there exists λ∗ such that the first-order necessary
conditions (3.5) are satisfied and condition (3.11) holds, then x∗ is a strict local minimizer.

w∇2
xxL(x∗, λ∗)w > 0, ∀w ∈ C(x∗, λ∗), w ̸= 0. (3.10)

Under these conditions, the Hessian of the Lagrangian ∇2
xxL(x∗, λ∗) is positive definite. This means that

none of the eigenvalues of ∇2
xxL(x∗, λ∗) are negative or zero.

Second-order conditions may also describe conditions on alternative projections. A popular approach
is using a two-sided projection of ∇2

xxL(x∗, λ∗) onto the relating subspace of C(x∗, λ∗). When the
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multiplier λ∗ satisfies and is a unique solution of the KKT conditions and strict complementarity holds,
with A(x∗)T = [∇ci(x∗)]i∈A(x∗) and Z the full column Null space of the A(x∗) spanning C(x∗, λ∗) with
its columns which describes

C(x∗, λ∗) = {Zu|u ∈ R|A(x∗)|}. (3.11)

then restate condition (3.9) by
uTZT∇2

xxL(x∗, λ∗)Zu ≥ 0. (3.12)

and restate condition (3.11) by
uTZT∇2

xxL(x∗, λ∗)Zu > 0. (3.13)

Mathematical formulations are essential for finding the solution to the problem by taking iterative steps.
Solving the problem by iterative steps requires a local model of the objective function to obtain an
iteration step. The following part describes the objective model that the algorithm uses.

3.5.2 Objective Modeling Methods
The general nonlinear problem which is given in Eq. (3.1) requires a model to achieve the objective.
Again, the objective is finding a point x that results in the lowest value of the objective function f(x)
while satisfying all constraints c(x). A method to model the behavior is using an approximation model
valid close to the current evaluation point xk. By finding the minimizing step p of an approximation
model, new iteration points x+ p are calculated that minimize the problem (3.1) in a sequence of steps.
The quadratic program below models problem Eq. (3.1) locally.

min
p

fk +∇fTk p+
1

2
pT∇2

xxLkp (3.14a)

subjected to ∇ci(xk)T p+ ci(xk) = 0, i ∈ E (3.14b)

∇ci(xk)T p+ ci(xk) ≥ 0, i ∈ I (3.14c)

Here, the notation (·)k indicates the iteration sequence number, p indicates the iteration step, ∇fk is
the gradient and ∇2

xxLk is the Lagrangian Hessian. The matrix Ak is the Jacobian of the constraints
in Ak, as formulation (3.4) describes. This program consists of a quadratic approximation model Eq.
(3.15a) that reflects the objective function and approximation models of the constraints both near xk.
The equality and inequality constraints use the linear approximation models (3.15b) and (3.14c) to
simulation the constraint behavior. The quadratic program solves the problem sequentially using the
Equality-constrained Quadratic Programming (EQP) approach. This approach uses an active set Ak that
imposes all violated constraints as equality constraints and ignores all others. One of the algorithms of
Section 3.5.7 minimizes the quadratic problem below resulting in a new iteration step p

min
p

fk +∇fTk p+
1

2
pT∇2

xxLkp (3.15a)

subjected to Akp+ ck = rk, (3.15b)

Here, rk is the residual vector [19, 38, 49]. The minimization of the residual vector depends on the
iteration scheme. When using the line search method, this vector is minimized without step length
limitations. The trust-region iteration method must take an alternative approach because of its trust-
region constraint. The trust-region method must operate within its trust-region radius, but must also
satisfy the active constraints. Satisfying both goals might not always be possible because the minimizing
step length p is larger than the trust-region radius length ∆. Figure 8a illustrates an approach known
as the relaxation method. By making the constraint violation less severe, finding a step that satisfies
both the trust-region radius constraint and objective constraints is possible. The goal of the relaxation
method is to satisfy all constraints while using the smallest value θ. Figure ?? shows the minimization
step pk consisting of relaxation step vk and optimal objective step Zkuk while stays in the trust-region
(if using trust-region method). Section 3.5.7 elaborates what algorithm this research uses to find the
optimal step pk.
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(a) Relaxation of the linearized constraining
equation Akp+ ck = 0. Parameter θ reduces the

violation preventing trust-region radius and problem
constraining equation inconsistency [37]

(b) Minimizing both f(xk) and c(xk) simultaneously
with optimal constraining step vk and optimal

null-space projection step Zkuk, giving combining to
step pk [37]

Figure 8: Minimizing a trust-region constrained optimization problem [37].

The information provided in the previous part shows the similar and different objectives of the line search
and trust-region iteration method. Both methods search for a sequence of steps that results in a feasible
optimal point of the constrained optimization problem (3.1) by repeatedly solving a local quadratic
program (3.15). One of the differences between line search and trust-region is the step accepting criteria.
The line-search method checks if the iteration step pk from solving (3.15) meets descent conditions at
(xk + pk). The trust-region method checks the quality of its local model.

3.5.3 First-Order Derivatives
Finding the first-order derivative of a black-box aircraft model requires the evaluation of specific data
points, also called nodes. Formulas that originate from Taylor’s theorem can approximate derivative
information with finite precision. A machine can’t compute infinitesimal steps to measure a function’s
sensitivity to variable change. The computer rather perturbs a function by changing its variable with
small but finite steps. The small difference in variable results in a function value difference. Formulas
using the ratio between function value differences and finite variable differences approximate the deriva-
tive. Labeling these derivative approximation techniques as finite differences formulas. The accuracy
of the approximation depends on the step size h, truncation error, rounding error, and method of data
representation that a black-box model uses. For example, the central difference formula contains the
following errors

f ′(xi) = f(xi+1)−f(xi−1)
2h + ei+1−ei−1

2h − f ′′(ξ)
6 h2

True Finite difference Round-off Truncation
value approximation error error

(3.16)

The formulas use two nodes at some step size h away from the evaluation point to construct an approx-
imation of the derivative. This finite approximation results in a second-order accurate approximation
O(h2). Controlling the step size controls the magnitude of the round-off and truncation error. Equation
(3.16) demonstrates how the step size controls both types of errors. A relatively smaller h makes the
round-off error the dominant error, while a relatively larger h increases the truncation error. Besides
the different types of errors a finite difference strategy provides, enumerate strategies exist for fitting
derivatives. See Chapter 4.3 of Chapra and Canale [8] for more information. Besides Taylor oriented
methods, interpolation, and regression methods may also model a derivative, with each their advantages.
Approximating the derivative of continuous, smooth, equally spaced data-based models may use the
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Euler forward Eq. (3.17a) or finite differences Eq. (3.17b) formulas. Chapra and Canale [8] suggests in
Chapter 23.3 using second order Lagrange interpolation polynomial Eq. (3.17c) for approximating the
derivative of unequally spaced data-based models. If the data-based model is noisy, regression techniques
such as Vandermonde [29] or least square fit of a sinusiod [8] are recommended.

∂f

∂xi
=
f(x+ hei)− f(x)

h
+O(h) (3.17a)

∂f

∂xi
=
f(x+ hei)− f(x− hei)

2h
+O(h2) (3.17b)

∂f
∂xi

= f(xi−1)
2x−xi−xi+1

(xi−1−xi)(xi−1−xi+1)
+ f(xi)

2x−xi−1−xi+1

(xi−xi−1)(xi−xi+1)
+ f(xi+1)

2x−xi−1−xi

(xi+1−xi−1)(xi+1−xi)
(3.17c)

When considering an equally spaced step size h, the second order Lagrange interpolation formula
(3.17c) becomes the central difference formula (3.17b). Table 4 provides a summary per approximation
method the data point requirements, additional specialization, and the order of approximation error.
The regression method is excluded from this research, but Chapra and Canale [8], Khoury and Harder
[29], and Hauser [22] cover the basic concepts regarding this topic.

Method Requirements Specialization Eq. Approx. Error Ref
Euler forward Current + 1 nodes equally spaced (3.17a) O(h) [38] p. 195
Central difference 2 nodes equally spaced (3.17b) O(h2) [38] p. 196
Lagrange interpolation 3 nodes unequally spaced (3.17c) Error ≤ O(h2) [8] p. 658
Regression n nodes noisy - - [8, 22, 29]

Table 4: Summary: Numerical derivative methods

Using one of these methods makes mapping derivative information possible. The first-order derivative
information may construct a gradient vector or a Jacobian matrix. Depending on the representation of
the objective function, capturing the derivative information in a gradient vector ∇f(x) or a Jacobian
matrix J(x) is possible. Modeling of the constraints requires the use of the Jacobian of the constraints
A(x).

∇f(x) = [
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
]T , ∇c(x) = [

∂c

∂x1
,
∂c

∂x2
, . . . ,

∂c

∂xn
]T (3.18)

The gradient of the merit function and constraints is given by∇f(x) and∇c(x) in Eq. (3.18), respectively.
Both vectors are dependent on the same number of variables n in this research.

J(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn

 , A(x) =


∂c1(x)
∂x1

· · · ∂c1(x)
∂xn

...
. . .

...
∂ci(x)
∂x1

· · · ∂ci(x)
∂xn

 (3.19)

Here, J(x) and A(x) are the Jacobian matrices of the merit function and constraints, respectively. The
number of optimization parameters is given by m, and the number of constraint equations is given by
i ∈ I ∪ E .

Numerical Errors
Before implementing numerical techniques in practice, a solid understanding of the working principles
is necessary. Constructing a numerical iteration-based algorithm may result in many types of errors.
Hauser [22] states (on page 27) seven sources of errors that occur in any numerical models.

3.5.4 Second-Order Derivative
The corrected second-order derivative matrix ∇2

xxLk known as the Hessian of the Lagrangian contains
curvature information of the function f(x) corrected by the curvature information of the constraints.
This process makes it less attractive to leave the feasible space far from the solution and not attractive
to leave the feasible space close to the solution. The matrix ∇2

xxLk estimates the full Quasi-Newton
approximations, SR1 or damped-BFGS, by using the following adjustments

sk = xk+1 − xk, yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1). (3.20)
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3.5.5 The Damped-BFGS Method
The damped-BFGS method performs an unmodified BFGS update when θBk

or θHk
are equal to 1. The

damped-BFGS method performs an interpolation when θBk
∈ (0, 1) or θHk

∈ (0, 1). This interpolation
makes sure that the BFGS update remains positive definite by staying close enough to the current BFGS
approximation. If the value of θBk

or θHk
are zero, the current approximation skips updating, preventing

an indefinite matrix [14, 37, 38].
rBk

= θBk
yk + (1− θBk

)Bksk (3.21)

rHk
= θHk

sk + (1− θHk
)Hkyk (3.22)

Eq. (3.23) and (3.24) defines the parameters with θ̂ = 0.2.

θBk
=

{
1 if sTk yk ≥ θ̂sTkBksk

(1− θ̂)sTkBksk/(s
T
kBksk − sTk yk) if sTk yk < θ̂sTkBksk

(3.23)

θHk
=

{
1 if sTk yk ≥ θ̂yTkHkyk

(1− θ̂)yTkHkyk/(y
T
kHkyk − sTk yk) if sTk yk < θ̂yTkHkyk

(3.24)

Replacing the vectors (sk, yk) of the standard BFGS Hessian approximation with (sk, rBk
) gives the

damped-BFGS Hessian approximation.

(Damped BFGS) Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
rBk

rTBk

rTBk
sk

(3.25)

Substituting sk for rHk
in the standard BFGS inverse Hessian formula gives the damped-BFGS inverse

Hessian updating formula.

(Damped BFGS) Hk+1 = (I − rHk
yTk

yTk rHk

)Hk(I −
ykr

T
Hk

yTk rHk

) +
rHk

rTHk

yTk rHk

(3.26)

The parameter sk contains step information and yk contains the corrected gradient difference. The
Quasi-Newton Hessian matrices used are the SR1 and damped BFGS updating formulas. The damped
BFGS is well proven in practice and guarantees to stay positive definite when its initial choice is positive
definite. The SR1 updating formula is a good choice according to Nocedal and Wright [38] for trust-region
methods when the necessary safeguards are implemented. Both iteration methods use the SR1 updating
but correct the Hessian when the matrix is indefinite. The correction by subtracting the identity matrix
multiplied by a factor times the most negative eigenvalue from the Hessian.

3.5.6 The SR1 Method
in the formulas of BFGS and DFP the (inverse) approximation of the Hessian Bk+1 (or Hk+1) are
updated using Bk (or Hk) resulting in a rank two modification. There exist a simpler scheme to update
these matrices by using a rank-one modification. This modification produces a symmetric rank-one
modification that is known as the SR1 method. The SR1 update produces a symmetric rank-one update
that satisfies the secant equation but does not guarantee a positive definite matrix update. This part
describes the possibilities and necessary safeguards of the SR1 method. The following sources describe
the derivation of the method [37, 38]. The upcoming SR1 formula describes the Hessian approximate
that satisfies the secant equation.

(SR1) Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
(3.27)

Solving the Sherman-Morrison formula results in the inverse SR1 updating formula Hk+1 that is capable
of approximating the inverse Hessian.

(SR1) Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)T yk
(3.28)

In contrast to the BFGS method, the SR1 updating formula does not guarantee a positive definite update
Bk+1. The SR1 formula has the tendency of becoming indefinite. This property is a major drawback
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when implementing the SR1 formula in a line search framework and requires a set of safeguards. Trust-
region methods provide a framework where the SR1 method is very useful. The trust-region framework
regards the property that allows an indefinite Hessian approximation as a chief advantage. A major
disadvantage of the SR1 method is the singularity found in the denominator of Eq. (3.27) and Eq.
(3.28). The denominator can become very small or even zero in very specific situations. according to
Nocedal and Wright [38], three cases describe the denominator of both SR1 formula’s (3.27) and Eq.
(3.28).

1. If (yk − Bksk)
T sk ̸= 0, A unique one-rank update for Eq. (3.27) exist that satisfies the secant

equation;

2. If yk = Bksk, no unique one-rank update besides Bk+1 = Bk exist that satisfies the secant equation;

3. If yk ̸= Bksk and (yk − Bksk)
T sk = 0 no unique symmetric one-rank update exists that satisfies

the secant equation.

Although the rank two BFGS update formula guarantees a positive definite (non-singular) matrix, the
rank one SR1 updating formula comes with its advantages:

(i) Safeguarding the SR1 methods that prevent numerical instabilities and breaking down updating
formula is achievable using the items in list Eq. (3.29);

(ii) The SR1 formula is capable of generating matrices that are a good approximation of the true
Hessian and often more accurate than the BFGS approximation;

(iii) Constrained optimization based on a quasi-Newton method or optimization methods for partially
separable functions may not satisfy yTk sk > 0. An (inverse) Hessian approximation update using
the BFGS method is not recommended, while yTk sk > 0 is not true. Here, An Indefinite Hessian
approximation is convenient because they reflect indefiniteness in the true Hessian.

To safeguards the SR1 formula from (i), The Hessian approximation is skipped if the denominator is
very small. This safeguard ensures Eq. (3.27) is only updated if

|sTk (yk −Bksk)|≥ r||sk|| ||yk −Bksk|| (3.29)

The parameter r ∈ (0, 1) is a small number of approximately r = 10−8. If inequality (3.29) is not satisfied,
the Hessian approximation sets Bk+1 = Bk. This process is one of the major advantages when using SR1
over BFGS. The condition that safeguards to skip a step sTk (yk − Bksk) ≈ 0 occurs infrequently in the
SR1 method. This specific condition only occurs when the vectors align in a special way, and skipping
the update does not negatively affect the iteration process. In contrast, the BFGS method condition
that must be satisfied sTk yk > 0 fails easily. Because this condition fails easily, the update cannot be
skipped. Too many missing updates may degrade the Hessian approximation.

3.5.7 Step Method
The quadratic function that Eq. (3.15) formulates models of the objective locally. The solution to this
problem is still unknown. However, the optimality conditions describe what an algorithm must look for.
First, the algorithm defines a local model using the first- and second-order approximation techniques,
then the optimality conditions test the candidate solution. More specifically, the algorithm accepts the
candidate solution when the solution of the local quadratic problem satisfies the first-order-necessary
conditions (see Eq. (3.5)), and Second-Order Necessary Conditions or satisfies only the Second-Order
Sufficient Conditions. The sequential quadratic program solves problems in a sequence to construct an
ideal step. However, finding the ideal step is too arbitrary. The goal is to find a step that satisfies the
optimality conditions, which have many forms. This is why this section describes multiple-step methods.
The main step methods are the dogleg step method for the trust-region framework and the projected
conjugate gradient method for the line-search and the trust-region framework. Both frameworks incor-
porate the least square step method to find the Lagrange multiplier in 3.5.8 and second-order-correction
step in 3.5.11. Section 3.5.9 describes the penalty updating strategy that puts more weight on finding
the constraint step method.
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3.5.8 Lagrange Multiplier
In optimization, two methods exist for identifying the Lagrange multiplier. Procedures can derive the
parameter directly, or a routine may estimate the Lagrange multiplier. Each method has its advantages
and disadvantages. The trim module uses an estimation of the Lagrange multiplier using a least-squares
approximation. The literature commonly refers to the least-squares estimation of the Lagrange multi-
plier as the least-squares multiplier. The Least-squares multiplier approximates the Lagrange multiplier
equation using the smallest euclidean norm.

λ̂k+1 = (AkA
T
k )

−1Ak∇fk, (3.30a)

min
λ
||∇xL(xk, λ)||22 = ||∇fk −AT

k λ||22. (3.30b)

here, Ak is the Jacobian matrix of the constraints and has full row rank. Equation (3.30a) calculates the
least-squares multiplier that satisfies the first-order optimality condition.

3.5.9 Penalty Updating Strategy
One method of minimizing the constraint violation is introducing a penalty parameter. The penalty
parameter artificially increases the magnitude of the constraint violation. This makes the algorithm
effective at avoiding the infeasible search space, as it will result in a significant increase in objective value.
Following this analogy too literally might suggest that starting with a large penalty function might be
favorable. Figure 7a illustrates minimizing both objective and constraint functions simultaneously may
be more advantageous than minimizing first the constraint than the objective separately. Working with
a large penalty value may result in an ill-defined problem, as small changes in constraint violation may
result in a large perturbation of the solution. An adaptive penalty function is therefore a more effective
strategy. Equation (3.31) formulates a quadratic model that agrees with both trust-region and line search
for computing an adaptive penalty value.

µ ≥ ∇fT
k pk+(σ/2)pT

k ∇2
xxLkpk

(1−ρ)||ck||1 σ =

{
1 if pTk∇2

xxLkpk > 0,
0 Otherwise (3.31)

If the step direction agrees with the secondary sufficient condition, a quadratic model computes the
penalty value. Otherwise, a linear model computes the penalty value [38](p. 543).

3.5.10 Projected Conjugate Gradient Method
The projected conjugate gradient method is a robust type of step-generating algorithm. This approach
implicitly computes a step direction using an orthogonal null-space matrix Z. Ill-conditioning of A or
poor estimations of its null-space Z do not affect this method [38]. The main difference between a
conventional conjugate gradient method and the projected CG method lay in the usage of the residual.
Both approaches start solving the model (3.15) resulting in some residual vector r. The conjugate
gradient approach iteratively minimizes the negative residual along a conjugate search direction. This
search direction is unconstrained and may result in a constraint violation. The projected conjugate
gradient approach uses a projection matrix to project the residual into the null-space of the constraints,
then minimizes along this projected conjugate search direction.
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Algorithm 1: Step method: Projected Conjugate Gradient
Result: Set computation of pk that minimizes subproblem _ in the nullspace of the constraints

1 Choose H = {I or diag(|Gii|) or G or other choice}
2 Calculate the positive semi-definite matrix Wzz = ZTHZ
3 Solve Ax = b and find initial point x ;
4 Compute r = Hx+ c, find y⃗ that minimizes ||r −AT y||G−1 than set r ←− r −AT y;
5 Compute P = Z(Wzz)

−1ZT , g = Pr, and set p = −g
6 Repeat until convergence test is satisfied
7 while ϵ > |rT g − rTPr| do
8 α←− rT g/pTHp
9 x←− x+ αp

10 r+ ←− r + αHp
11 g+ ←− Pr+
12 β ←− (r+)T g+/rT g
13 p←− −g+ + βp

14 g ←− g+ and find y that satisfies ||r+ −AT y||G−1

15 r ←− r+ −AT y

16 end

3.5.11 Second-Order Correction
Executing the PCG and dogleg routine solves the local model described in Eq. (3.15) giving the local
minimization step pk. The next line search xk+1 = xk +αpk or for trust-region xk+1 = xk + pk iteration
point is checked by its acceptation criteria and accepted if satisfied. The acceptation criteria per iteration
method are explained in section 3.7 and 3.6 respectively. Updating the active set in an iterative process
for finding the solution to the subproblem might be expensive for large or complex problems. Here,
the active set is determined at the current point, and a solution to this current point is found using
the approximated model. If an increase in the norm of the constraints is detected, a secondary step
correction is executed to avoid the Maratos effect, as explained in Nocedal and Wright [38] chapter 15.5.

p̂k = −AT
k (AkA

T
k )

−1c(xk + pk). (3.32)

3.6 SQP Trust-Region

Starting from some iteration point xk, the trust-region algorithm trusts its quadratic model up to some
distance ∆k. The trust-region iteration step length ||pk|| may therefore only search for an optimum that
is not larger than the trust-region radius ||∆k||. This not only limits the step length p, but also alters
the step direction of p. The additional step length constraint that the trust-region method adds to the
auxiliary subproblem (3.15) is ||p||2≤ ∆k forming the subproblem below.

min
v

||Akv + ck||22 (3.33a)

subjected to ||p||2≤ 0.8∆k (3.33b)

3.6.1 Cauchy Point Methods
The Cauchy point is a steepest descent-based method and computes a step direction that contains
sufficient reduction. The Cauchy point method can find global minima, but it performs poorly even if it
computes an ideal step length. In Figure 10a illustrates the Cauchy point step direction pck. The Cauchy
point calculation is based on a first-order approximation, meaning it is a steepest descent-based search
method. These kinds of search methods can find global minima but perform poorly even if the ideal
step length is calculated. Variations of these methods have been developed over the years, and some are
described in this section.
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(a) Cauchy point method [38]
(b) Dogleg approximation vs optimal trajectory [38]

Figure 9: Acceptable intervals visualized where desired values for step length α satisfy the inequalities
and a combined procedure define the fundamental Wolfe condition [27, 38]

The Dogleg Method
Figure 10b visualizes a different approach based on the Cauchy point method. The method here is called
the dogleg method, named after its distinctive shape. The most appropriate application is a Newton-
dogleg method that searches for an optimum step of a convex objective function. Other problems that
consist of an indefinite Hessian are solvable using the dogleg method, but applying a dogleg method
makes not much point. The full step pB that the dogleg method uses is not the unconstrained minimizer
of the model. Methods that are more capable to cope with such problems are two-dimensional subspace
minimization [38].

For this reason, the procedure switches from dogleg to two-dimensional subspace method when the
Second-Order-Sufficient conditions don’t hold. Two-dimensional subspace minimization executes when
the B is indefinite but requires an estimate of the most negative eigenvalue of B. If the eigenvalues of B
are negative, the following subspace for (3.34).

span[g, (B + αI)−1g], for some α ∈ (−λl,−2λl] (3.34)

Here, λl defines the most negative eigenvalues of B and α is used to make the B positive definite. The
flexible interval allows numerical procedures, like the Lanczos method, to find a value for α.

(a) Dogleg method using an indefinite matrix (b) Dogleg method switching to the two-dimensional
subspace method when the Hessian becomes indefinite

Figure 10: Finding the minimum of the unconstrained optimization problem:
f(x, y) = 20(1− e−0.2

√
0.5(x2+y2))

The minimization scheme of the characteristic subproblem (3.33a) depends on the outcome of the second-
order-sufficient condition. If the second-order-sufficient conditions don’t hold, the scheme searches for a
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solution in a two-dimensional subspace according to Eq. (3.34). When the condition holds, the dogleg
solves the below given sequence to obtain pU and pB .

pU = − gT g

gTBg
g (3.35)

pB = −Hg (3.36)

Assembling the dogleg trajectory uses the combination of the two steps pU and pB according to the
magnitude of the parameter τ . The optimal magnitude of τ defines the following step problem as a
function of τ formulating p(τ). The function p(τ) describes the following condition:

p(τ) =

{
τpU , 0 ≤ τ ≤ 1,
pU + (τ − 1)(pB − pU ), 1 ≤ τ ≤ 2.

(3.37)

When the trust-region uses the ball-shaped trust-region constraint, the quadratic condition below must
hold. Solving the quadratic equation derives the parameter τ which concludes the dogleg.

||pU + (τ − 1)(pB − pU )||2= ∆2 (3.38)

Besides the ball-shape constraint, the box-shape trust-region is a popular choice. The box-shape limits
the length of the elements in a vector instead of limiting the length of the vector.

Trust-Region Subproblem
The SQP trust-region algorithm has an additional trust-radius constraint imposed on the problem.
Satisfying both the set of constraints imposed on the problem and the trust-region radius constraint is
not always possible. Figure 8a illustrates the complications that arrive from having both constraints
active, and the solution the relaxation strategy offers. The relaxation method artificially reduces the
constraint violation, avoiding inconsistent constraints. Besides minimizing the relaxed constraint set, a
sequential subproblem solver can minimize the objective while considering the trust-region constraint.
Figure 8b illustrates this process. The relaxation vector rk is the smallest residual for the below-given
subproblem:

min
v

||Akv + ck||22 (3.39a)

subjected to ||v||2≤ 0.8∆k (3.39b)
rk =Akvk + ck (3.39c)

The subproblem is solved by selecting the smallest Euclidean norm that is found by the least-squares
approximation. The parameter vector vk is used as starting point for the Dogleg and Projected CG
method. After calculating the initial step, the local quadratic model given by Eq. (3.40) solved iteratively.

qµ = fk +∇fTk p+
1

2
pT∇2

xxLp+ µ||ck +Akp||2 (3.40)

Solving the quadratic model qµ results in a step that is checked to ensure if the local quadratic model
provides a satisfactory accuracy. The merit function used by this algorithm is given by Eq. (3.41).

φ2(x, µ) = f(x) + µ||c(x)||2 (3.41)

Here, φ2(·) contains the quadratic sum of the dynamic derivative xd represented by f(x) and ||c(x)||2
computes the norm of the constraints. The accuracy of the local function is tested by Eq. (3.42).

ρ =
aredk
predk

=
φ2(xk, µ)− φ2(xk + pk, µ)

qµ(0)− qµ(pk)
(3.42)

Here, ρ quantifies the agreement between the actual reduction aredk and the predicted reduction predk.
If ρ is small or negative, the local model is of poor quality, resulting in a reduction of the trust-region. A
poor local model may cause a rejection of the iteration step. A ratio of ρ = 1 quantifies a good agreement
between the actual and predicted reduction. A good agreement may lead to an increase in trust-region
radius.
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3.7 SQP Line Search

Line search method first obtain a step direction pk by executing a program that minimizes a local model.
The algorithm then determines how far to step in this search direction by solving the scalar length α. If
the set of conditions agree at some candidate point xk +αpk, then the algorithms accepts the candidate
point, and the iteration point xk+αpk becomes the next iteration point xk+1. Equation (3.43) describes
this procedure mathematically

xk+1 = xk + αkpk (3.43)

The parameter αk is a positive value and defined as the step length αk ∈ (0, 1]. A line search method
success depends on the step length α and search direction pk. Both parameters can be found using
multiple methods, and dependent on the application, one method is more effective than the other. Most
line search minimization schemes contain conditions that only accept the step αpk if a new point xk+αpk
is a descending direction such that f(xk +αpk) < f(xk). In a way, the parameters pk and αk contribute
a major part to the success of the line search methods. Considering this knowledge in line with the
methods of previous sections, the upcoming part presents conditions that identify acceptation criteria
for a candidate point xk + αpk.

3.7.1 Step Length
The goal is to find a step length α along the descending direction pk that reduces f substantially.
However, identifying the quantity α that results in significant reduction may require too much time.
Defining the computation process that finds an adequate step length αk results in a trade-off between
ideal step length and computation time. Effective methods for finding the step length do not necessarily
find a step length near the minimizer of some model, but rather focus on a step length that delivers an
adequate reduction of f . Meaning the line search algorithm searches for some α that satisfies:

f(xk + αkpk) < f(xk) α ∈ (0, 1]. (3.44)

This statement alone does not confine the problem enough such that it promotes efficient convergence
to the minimizer of f at some point x∗. This statement only enforces a reduction constraint on the
algorithm. Many choices for α exist and only considering the condition (3.44) as figure 11a illustrates.
These figures show the many possible choices of α for some model ϕ(α) the next iteration point xk+αpk.
Again, as figure 11a illustrates, many points exist where the condition (3.44) is true. Only considering
condition (3.44) may lead to many iterations resulting in slow convergence, as figure 11b demonstrates.

(a) The ideal length is the global minimizer [38] (b) Insufficient reduction of f [38]

Figure 11: Step length identification and minimization using line search algorithms

The Armijo Condition
The Armijo condition describes a statement that accepts the step length α if the step αpk results in
sufficient reduction of f . The condition accepts the step length α, if the candidate objective value
f(xk+k) is less or equal than a reduction prediction. The inequality below defines the Armijo condition

f(xk + αpk) ≤ f(xk) + c1α∇fTk pk. (3.45)

From inspecting the above presented inequality, it is clear that this condition uses local information of
f . The condition restricts possible choices of α using the weight c1 and directional derivative ∇fTk pk.
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The search directional pk along the gradient ∇fk predicts descent of one point. Involving all possible
choices α creates a line from starting point α = 0 up to α = 1. The weight c1 controls the slope of the
line α∇fTk pk. Using a linear form ϕ(α) = f(xk +αpk) and l(α) = f(xk)+ c1α∇fTk pk, acceptable α exist
when ϕ(α) ≤ l(α). Figure 12a reveals how the Armijo condition affects the set of acceptable choices of
α. According to Nocedal and Wright [38], typical values for c1 are small which may approximately be
c1 = 10−4 [38].

(a) regions for l(α) that satisfy Eq. (3.46) [38] (b) regions for l(α) that satisfy Eq. (3.46) [38]

Figure 12: Acceptable intervals visualized where desired values for step length α satisfy the inequalities
and a combined procedure define the fundamental Wolfe condition [27, 38]

The Armijo condition, that Eq. (3.46) describes, formulates a usable condition for unconstrained min-
imization methods. In essence, the armijo condition describes sufficient reduction of the next iteration
point. The algorithm that this research employs uses the following Armijo condition:

ϕ(xk + αpk;µk) ≤ ϕ(xk;µk) + c1αD(ϕ(xk;µk)). (3.46)

Here, D is the directional derivative of ϕ(xk;µk). For more information regarding the directional deriva-
tive, see Numerical optimization theorem 18.2 page 541 and page 628 [38].

φ1(x, µ) = f(x) + µ||c(x)||1 (3.47)

D(φ1(x, µ)) = ∇fT (x)p− µ||c(x)||1 (3.48)

Curvature Condition
To promote a more effective scheme, another inequality is introduced that evaluates a gradient-based
condition. A curvature condition is defined by the following inequality

∇f(xk + αpk)
T pk ≥ c2∇fTk pk (3.49)

Where c2 is a constant between c2 ∈ (c1, 1) and according to [27, 38] this value is in practical application
commonly set to c2 = 0.9 when pk is based on a (quasi)-Newton methods or c2 = 0.1 for a nonlinear
conjugate gradient method. This inequality is satisfied when the directional derivative of the next
iteration is larger than the current directional derivative. This seems strange because it might indicate
that finding a minimization suggests searching for a steeper slope as where the slope at x∗ is flat. Because
of the negative directional derivative ∇fTk pk < 0, larger states a more positive directional derivative. A
sequence of less negative directional derivatives results in finding a local minimizer, global minimizer, or
stationary. When this inequality can no longer be satisfied, the line search terminates, indicating one of
these points.

Wolfe Condition
Using both inequalities (3.46) and (3.49) defines the wolfe conditions and is a effective approach when
searching for a candidate step length α. The Wolfe Condition regarding ϕ(xk;µ) becomes

ϕ(xk + αpk;µk) ≤ ϕ(xk;µk) + c1αDϕ(xk;µk) (3.50a)
D(ϕ(xk + αpk;µk)) ≥ c2αD(ϕ(xk;µk)). (3.50b)
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where (0 ≤ c1 ≤ c2 ≤ 1). As can be observed in 15, the interval of choosing a alpha candidate still allows
some movement across a minimizes or stationary point of ϕ(α) because larger slopes are accepted. The
set of inequalities known as the strong Wolfe condition restricts this behavior by imposing a change in
the gradient inequality, which states:

ϕ(xk + αpk;µk) ≤ ϕ(xk;µk) + c1αDϕ(xk;µk) (3.51a)
|D(ϕ(xk + αpk;µk))|≥ c2αD(ϕ(xk;µk)). (3.51b)

Backtracking
A method that are proven competitive uses besides the Armijo inequality (3.46) without the curvature
inequality (3.49). By introducing a new parameter ρ ∈ (0, 1), the search direction is made more adaptive.
An initial trial step length α = α̂ > 0 is executed where condition (3.46) is tested. If the condition is
false, a procedure changes the step length according to α = αρ which makes the step smaller and tests
the condition again until the condition is true. A typical backtracking algorithm takes the form:

Algorithm 2: Backtracking [2, 27, 38]
1 Set αk ← 1, ρ ∈ (0, 1), c1 ∈ (0, 1)
2 while ϕ(xk + αkpk;µk) > ϕ(xk;µk) + c1αDϕ(xk;µk) do
3 αk ← αkρ
4 end
5 Terminate with αk

The used variant is a modified variant compared to [38]

Line Search Acceptance Condition
In contrast to the trust-region algorithm that makes its step decision based on first and second derivative
information guarded by its trust-region, line search only checks for sufficient reduction based on the first
derivative. Without including a filter, secondary step correction, Lagrangian strategy, or large enough
penalty value, the algorithm may find a solution in the infeasible region. A cost value at this point
may be more attractive with additional constraint cost than a feasible point without a penalty. Because
the secondary correction step is less accurate for large steps and the Lagrangian is approximated, an
additional constraint is employed based on observations. Nocedal and Wright [38] on page 545 presents
the pseudocode for a SQP line search algorithm. It is suggested that the penalty parameter µ is chosen
such that inequality (3.31) holds. Far from the solution with the parameter µ working with inequalities
constraint converted to equality constraints valid for some reasonable distance from the current point,
a line search could make such a large step that is of the actual objective function outside the feasible
region becomes attractive. Normally, the Armijo condition is appended with a condition that demands
some (absolute) gradient reduction defined by the (strong) Wolfe condition, which may prevent this from
happening. Because this scheme uses finite differences to calculate the gradient including this condition
for every backtracking value of α, is very expensive. Executing a second-order correction step to prevent
this from happening was not recommended, as it is only valid for a small step near the solution. Based
on parameters already compute during the evaluation of the Armijo condition, the Armijo condition was
appended with an additional condition that allows change in the constraint value c(xk + αpk) resulting
in θ||c(xk +αpk)||> ||c(xk)||. This hard constraint is appended with a softening in the Armijo condition,
resulting in f(xk + αpk) ≤ f(xk) + µ|c(xk)|+ηα(∇fTk pk − µ ∗ |c(xk)|) defining the new condition to be

θ||c(xk + αpk)||> ||c(xk)|| and f(xk + αpk) ≤ f(xk)(1/θ)µ|c(xk)|+ηα(∇fTk pk − µ ∗ |c(xk)|)
θ ∈ (0, 1).

(3.52)

This condition is implemented in all results provided in chapter 4.

3.8 Aircraft Trim Specifications

The objective function that describes the aircraft trim problem minimizes the squared sum of the dynamic
state derivatives and its constraints. Here, only the objective function is without its constraints is
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considered. Equation (3.53) describes the objective mathematically.

f = ẋTdWẋd (3.53)

Where f describes the cost function, the set of states ẋd describes all dynamic state derivatives, and
the matrix W is a diagonal non-negatief weight matrix. For now, let’s consider the aircraft dynamic
state derivatives ẋd = [V̇ , α̇, β̇, ṗ, q̇, ṙ] first. The function is rather simple, but varies per aircraft trim
problem and maneuver. The authors McFarland [34] explain that the weight must be according to the
magnitude of influence they have [34]. The body acceleration units they use are ft/s2 and rad/s2 with
the weights on the diagonal W = [1, 0.1, 0.1, 0.1, 0.1, 0.1] respectively (page 9, Eq. 15). The work of
Van der Linden [45] uses the diagonal weights W = [5, 5, 5, 1, 2, 10] regarding the body acceleration
units m/s2, rad/s2, rad/s [45]. The author Stevens, Lewis, and Johnson [44] illustrates on page 191 a
6-DOF F16 model that uses weights [1, 100, 100, 10, 10, 10] for ft/s2, rad/s2, rad/s. The authors state
that the weights are uncritical, which makes sense as they can reduce the cost function to 10−10 or
lower. However, this reports finds that for less significant trim accuracy, scaling may be critical. The
work of Friedman and Rand [18] describes that the stopping criteria of

√
u̇2 + v̇2 + ẇ2 < 0.001 m/s2

and
√
ṗ2 + q̇2 + ṙ2 < 0.001 rad/s2 guarantees adequate trim for rotorcraft configurations. Because this

research searches a solutions that are steady-state enough such that a pilot can take over manual control,
these bounds (

√
u̇2 + v̇2 + ẇ2 < 0.001 m/s2 and

√
ṗ2 + q̇2 + ṙ2 < 0.001 rad/s2) are considered by this

study.

3.9 Concluding SQP-framework

Combining all theory provided in this chapter results in a pseudocode regarding the trust-region and line
search method. In the following, a summary briefly describes the role and placing of each theoretical
subpart, after which the pseudocodes are introduced.

The optimality conditions verify solutions on several levels in the algorithm, as it checks if a candidate
point indeed is a local solution. In other words, do the candidate settings solve the aircraft trim problem.
Secondly, it checks if all solutions of the local models, problems, and subproblems are valid for the sake
of computing steps.
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3.9.1 Trust-Region Pseudocode

Algorithm 3: Sequential quadratic programming: Trust-region Pseudo-code
Result: The steady-state parameter set x∗ that satisfy constraint set c

1 Set: ϵ > 0, η ∈ (0, 0.5) and γ ∈ (0, 1) ;
2 Choose starting point x0, initialize active set A0 and set Hessian approximation B0 ←− I;
3 Calculate c0, f0, A0, ∇f0 and approximate λ̂0 by using equation 3.30a ;
4 for k = 1, 2, . . . do
5 if ||fk −AT

k λ̂k||∞> ϵ and ||ck||∞> ϵ then
6 Stop with approximate solution xk ;
7 end
8 Calculate pk by projected CG or dogleg method ;
9 Choose µk to satisfy 3.31 ;

10 if ||ck+1||> ||ck|| and ||fk+1||> ||fk|| then
11 Invoke secondary step correction p̂k by 3.32 ;
12 Set pk ←− pk + p̂k ;
13 end
14 Evaluate ∇f(xk + pk) ;
15 Run trust-region updating algorithm to obtain ∆k+1 ;
16 if ρk > η then
17 Set xk+1 ←− xk + pk ;
18 else
19 Set xk+1 ←− xk ;
20 end
21 Set Ak+1 then evaluate ck+1 ←− c(xk+1), Ak+1 ←− A(xk+1),
22 and approximate λ̂k+1 by using equation 3.30a ;
23 Set sk ←− pk and evaluate yk ←− ∇L(xk + pk, λ̂k+1)−∇L(xk, λ̂k+1)
24 to obtain Bk+1 by updating Bk using a quasi-Newton formula ;
25 Set ∇fk+1 ←− ∇f(xk+1), ∇Lk+1 ←− ∇L(xk + pk, λ̂k+1) ;
26 end
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3.9.2 Line Search Pseudocode

Algorithm 4: Sequential quadratic programming: Line-search Pseudo-code
Result: The steady-state parameter set x∗ that satisfy constraint set c

1 Set: ϵ > 0, η ∈ (0, 0.5), θ ∈ [0.9, 1] and γ ∈ (0, 1) ;
2 Choose starting point x0, initialize active set A0 and set Hessian approximation B0 ←− I;
3 Calculate c0, f0, A0, ∇f0 and approximate λ̂0 by using equation 3.30a ;
4 for k = 1, 2, . . . do
5 if ||fk −AT

k λ̂k||∞> ϵ and ||ck||∞> ϵ then
6 Stop with approximate solution xk ;
7 end
8 Calculate pk by projected conjugate gradient method (or any other) ;
9 Choose µk to satisfy 3.31 ;

10 while θc(xk + αpk) > ck and f(xk + αpk) > fk + ηα(∇fTk pk − µck) do
11 Set: α←− γα ;
12 end
13 if ||c(xk + αpk)||> ||ck|| and ||f(xk + αpk)||> ||fk|| then
14 Invoke secondary step correction p̂k by 3.32 ;
15 Set pk ←− αpk + p̂k ;
16 else
17 Set pk ←− αpk ;
18 end
19 Set xk+1 ←− xk + pk and α←− 1;
20 Set Ak+1 then Evaluate ck+1, fk+1, Ak+1, ∇fk+1

21 and approximate λ̂k+1 by using equation 3.30a ;
22 Set sk ←− pk and evaluate yk ←− ∇L(xk + pk, λ̂k+1)−∇L(xk, λ̂k+1) ;
23 Obtain Bk+1 by updating Bk using a quasi-Newton formula ;
24 end

3.10 Implementation and Verification Process

Implementing the mathematics requires some C++ template library able to execute vectors, matrices,
numerical solvers, linear algebra operations, and more advanced relevant algorithms. The EIGEN tem-
plate library satisfies the implementation needs for this thesis. Other libraries may suit better, but
finding the optimal library is outside of the scope of this project. Many numerical optimization projects
use the EIGEN library and functionality. Advanced numerical computation extensions implement Eigen
and make use of their open-source policy. Relevant extensions that use Eigen are IFOPT [48], Cpp-
NumericalSolvers [47] referred to by Nocedal and Wright [38], Google’s Ceres [4], and many others see
[20].

Re-implementing existing parts of existing libraries was considered but was found not to be a practical
solution. The trust-region and line-search pseudocodes in section 3.5 are straightforward to implement.
The algorithm only requires functions that EIGEN supports, and doesn’t require parts of existing li-
braries. Using parts of existing libraries will most definitely increase the performance of the algorithm.
However, it will increase the complexity or make it impossible to verify the result at each development
stage. During the development of the trim module, multiple platforms were involved. The development
process set implementation targets involving the development platforms: Python, DUECA and Matlab
Simulink.

The first stage of development constructs a trust-region and line-search minimization implementation
in Python. Testing and verifying the working principle and outcome of the basic implementation uses
literature findings. More specifically, the python script minimizes the Rosenbrock problem and com-
pares iteration steps and results to the findings of Nocedal and Wright [38]. When iteration steps and
minimization results agree with the literature, the next development stage starts.
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The second stage constructs the same basic minimization scheme in DUECA. When the results agree
with the literature findings and Python script, the next development stage starts. The next development
stage adds a function that reassembles basic helicopter dynamics in python and DUECA. The python
script and DUECA implementation both minimize the helicopter dynamics, targeting the straight and
level flight condition. A Matlab Simulink and DUECA implementation of the helicopter model verifies
the straight and level flight initial condition.

The third stage detaches the dependencies of all problems in DUECA making the basic trim module
generic capable of executing through a Graphic User Interface (GUI). The basic generic trim module
again finds the straight and level flight condition and compares the result to previous steady-state results.

The fourth stage upgrades the basic trim module to a SQP trim module and verifies the results. In the
final development stage, the independent generic trim module connects to the DASMAT aircraft model
and solves the aircraft trim problem in multiple steady-state conditions selectable through a GUI.

The techniques of interest that Eigen provides are the dense (matrix) decompositions. Eigen provides an
overview of benchmark results1 of Eigen-specific generic linear algebra decomposition information2. The
least-squares multiplier Eq. (3.30a) and the secondary correction step correction both use the least-square
operation that the Eigen library provides. All functions that the algorithm uses influence the robustness,
efficiency, and accuracy of the algorithm. The choice of Eigen decomposition must stay in line with
these performance indicators, therefore the choice must be first the most robust, then the most efficient,
then the most accurate. To achieve sufficient this, two choices influence the performance indicators.
The form of the least-squares equation that a decomposition solves, and the type of decomposition that
executes the least-squares operation. The first consideration is manipulating the form of the linear
system. Manipulating the form of the linear system Ax = b computes the problem by solving the
normal equation ATAx = AT b. This form reduces the problem size when the matrix Am×n, has more
rows than columns m > n, giving a more efficient but less stable and accurate result. Eigen provides
the option of computing x directly by using the least-squares solver. This procedure solves a larger
linear system, hence is less efficient but has provided more stability and accuracy. Eigen describes
direct solving the linear system using least-squares as the preferred method. Eigen argues that an ill-
conditioned matrix affects the normal equation method as ATA results in a squared condition number
and overall loses twice as many digits compared to direct least-squares or other methods3. The direct
least-squares approach provides the most control regarding the performance parameters, making it for
this study the favorite choice for small to medium problems. Eigen suggests several decomposition
methods capable of solving the least-squares problem. The compositions relevant for this research are:
the Householder and Single Value Decomposition (SVD). The HouseHolder decomposition provides three
classes. These classes from least to most reliable, time-consuming, and accurate are the HouseholderQR,
ColPivHouseHolderQR, and FullPivHouseHolderQR. According to Eigen4, the slowest but most reliable
and accurate direct least-squares solving is the Singular Value Decomposition MatrixBase::bdcSvd(). The
current implementation uses the HouseholderQR far from the solution, ColPivHouseHolderQR near the
solution, and FullPivHouseHolderQR close to the solution.

1https://eigen.tuxfamily.org/dox/group__DenseDecompositionBenchmark.html
2https://eigen.tuxfamily.org/dox/group__TopicLinearAlgebraDecompositions.html
3https://eigen.tuxfamily.org/dox/group__LeastSquares.html
4https://eigen.tuxfamily.org/dox/group__LeastSquares.html
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4 Benchmark Problems

In this section, the algorithm is tested on well-known benchmark problems presented in section 4.1 and
4.6 to assess the performance of the proposed methods on different types of problems. This process will
define the relative performance of each algorithm. The following list provides the features that make up
the upcoming algorithms:

• Iteration methods available are Trust-region (T) and Line-search (L);
• First-order derivatives are determined using Central differences (C) and forwards Euler (E);
• Second-order derivatives are approximated using the Quasi-Newton damped-BFGS (B) or SR1

formulas (S);
• Step methods are calculated by first-order, second-order Projected conjugate gradient (P), or dogleg

method. The Dogleg method (D) is only available for trust-region iteration methods, and the first-
order projected conjugate gradient can only be used with the line-search iteration method.

An algorithm based on trust-region (T), Central difference (C), damped-BFGS (B), and second-order
Projected conjugate gradient method (P) is abbreviated to TCBP. The first-order projected conjugate
gradient method requires no Hessian approximate, meaning (B) or (S) is not mentioned in the abbrevia-
tion. The candidate optimization algorithms for solving the benchmark problems are expressed by their
abbreviations below.

Algorithm abbre- iteration First-order Second-order Step
number viation framework derivative derivative method

1: TCBP Trust-region Central difference Damped-BFGS Projected conjugate gradient
2: TCBD Trust-region Central difference Damped-BFGS Dogleg
3: TCSP Trust-region Central difference SR1 Projected conjugate gradient
4: TCSD Trust-region Central difference SR1 Dogleg
5: TEBP Trust-region Euler forward Damped-BFGS Projected conjugate gradient
6: TEBD Trust-region Euler forward Damped-BFGS Dogleg
7: TESP Trust-region Euler forward SR1 Projected conjugate gradient
8: TESD Trust-region Euler forward SR1 Dogleg
9: LCBP Line search Central difference Damped-BFGS Projected conjugate gradient

10: LCSP Line search Central difference SR1 Projected conjugate gradient
11: LCP Line search Central difference Projected conjugate gradient
12: LEBP Line search Euler forward Demped BFGS Projected conjugate gradient
13: LESP Line search Euler forward SR1 Projected conjugate gradient
14: LEP Line search Euler forward Projected conjugate gradient

Table 5: SQP Algorithms

Section 4.1 explains what benchmark functions are applied to test the performance of each proposed
algorithm. Section 4.3 elaborates on the hardware and software setup during the experiments. Section
4.4 describes the algorithm’s safeguards necessary for functioning and the limitations they may bring.
Section 4.5 show how different algorithm features which table 5 abbreviates behave on the popular
benchmark selection. Section 4.6 shows the performance of different algorithm features on multiple
steady-state flight conditions. Section 4.2 formulates the aircraft trim solution settings for the DASMAT
trim problem.

4.1 Benchmark Problem Selection

The complexity of the selected benchmark problems must match the complexity of the generic trim
problem. Categorization of benchmark problems are organized and explained by Jamil and Yang [28], a
C++ test library is presented by Adorio [3]. Tested algorithms and results are gathered in the footnote5

5http://infinity77.net/global_optimization/test_functions.html#test-functions-index
http://www5.zzu.edu.cn/ecilab/Benchmark.htm
https://www.sfu.ca/~ssurjano/index.html
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for some specialized algorithms. During this research, it is observed that the majority of the aircraft
simulation models are continuous, differentiable, nonlinear, and non-convex. Therefore, the candidate
benchmark problems should be continuous, differentiable, nonlinear, and non-convex. Additional charac-
teristics that categorize function complexity are modality, separability, and dimensionality. The modality
of a candidate function describes the number of ambiguous peaks in its landscape. Multimodal indicates
that a function has one or more local solutions besides the global solution, whereas a unimodal function
only has a global solution. Separability and dimensionality control the complexity of a function. Separa-
bility gives a measure of variable relation among themselves. Separable functions are in general easy to
solve, whereas non-separable functions are not. Dimensionality influences the difficulty of a problem by
the number of variables. The search space is directly affected by the dimensions and grows exponentially
as the number of dimensions increases [28].

The benchmark problem candidate consists of functions that reassemble the generic aircraft trim problem
and gives insight to how the algorithm performs against literature findings. However, selecting a number
of generic benchmark problems that reassembles the generic aircraft trim problem proved hard to identify.
Many studies that implement routines to solve the aircraft trim problem set out the logical goal of only
solving the aircraft trim problem. Besides achieving this goal is mostly a conclusion of the research,
most trim modules aren’t generic making it very time-consuming to create, implement and experiment
on such a list of representative benchmark aircraft trim problems. This research did create a generic
trim module, making it possible to construct such a list. The list of reassembling benchmark problems
only becomes apparent after solving the problems. The trim module of this research minimizes a list of
popular benchmark problems that match the aircraft trim problem criteria. After solving the popular
problems and comparing them to the aircraft trim problem result, such a reassembling list becomes
apparent.

Considering the criteria above, table 6 lists a selection of benchmark problems. In appendix B a selection
of small to medium-sized nonlinear problems containing several nonlinear constraints made it to the list.
The problems are G1 to G13.

Abbriv Problem optimum search space constraints Dim source

ROS f105(x) =
∑n−1

i=1 [100(x
2
i − xi+1)

2 + (xi − 1)2] f(x∗) = 0 30 ≤ xi ≤ 30 N 20 & 40 & 60 [28]

POW f92(x) =
∑D−3

i=1 {(xi + 10xi+1)
2 + 5(xi+2 − xi+3)

2 +
(xi+1 − 2xi+2)

4 + 10(xi − xi+3)
4}

f(x∗) = 0 4 ≤ xi ≤ 5 N 20 & 40 & 60 [28]

PERM fPerm(x) =
∑n

k=1

{∑n
i=1(i

k + 0.5)
[(

xi

i

)k − 1
]}2

f(x∗) = 0 −n ≤ xi ≤ n N 2 & 4 & 6 [3]

Table 6: search space constrained problems

4.2 Implementation and Settings for DASMAT

This section demonstrates the parameter settings and implementation using the DASMAT aircraft trim
problem. The aircraft trim problem settings depend on available DASMAT initial conditions. If there
exist initial conditions for the steady-state flight conditions: straight, straight-and-level, straight-and-
wing level, push-over, pull-up, steady-state turning flight then the initial conditions are reproduced.
If there are no specific initial flight conditions available, the trim settings consider common use flight
conditions such as standard glides slopes or standard turn rates. Abbreviations indicate the specific
aircraft trim problem that the algorithm solves. For example, the abbreviation FL280KIAS190 indicates
an aircraft trim problem at a Flight Level (FL) of 280 traveling at a Knots Indicated Air Speed (KIAS)
of 190. If a straight-flight (S) initial condition follows a glide path of 3o, the abbreviation becomes
FL280KIAS190S3. The general form of this abbreviation is FLh0KIASV0Sγ0 which the enumeration
below explains. This construction follows an abbreviation order that indicates part 1 by FLh0, part 2
by KIASV0 and part 3 by Sγ0, but many other forms for part 3 are possible, see below.

1. (FLh0) Flight Level
2. (KIASV0) Knots Indicated Air Speed

http://www.benchmarkfcns.xyz/fcns
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
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3. (Sγ0) Straight-flight or (SLγ0) straight-and-level-flight or (POγ̇0)/(PUγ̇0) push-over/pull-up or
(Tψ̇wGγ0) steady-state Turning flight

Table 2 in section 2.3 describes general settings for specific initial conditions. Table 7 describes the
specific DASMAT aircraft trim conditions using the abbreviations, and Table 2

Straight flight: FL70KIAS200G3
TIP h = 70, Vkias = 200, γ0 = 3o and p = q = r = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

c(ξ)1 γ − γ0
TCP ξ⃗ = [α, β, ϕ, θ, ψ, δT , δe, δa, δr]

T

Straight and level flight: FL280KIAS190WLG0
TIP h = 280, Vkias = 190, γ0 = ϕ = p = q = r = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

c(ξ)1 γ − γ0
TCP ξ⃗ = [α, β, θ, ψ, δT , δe, δa, δr]

T

pull-up flight: FL200KIAS200PU3G0
TIP h = 200, Vkias = 200, γ̇0 = 3, and γ = ϕ = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

DP ϕw = tan−1 cosα sin β sin θ+cos β cos θ sinϕ+sinα sin β cos θ cosϕ
sinα cos θ cosϕ+sinα sinϕpq

r

 =

 cosα cosβ − cosα sinβ − sinα
sinβ cosβ 0

sinα cosβ − sinα sinβ cosα

 1 0 − sin γ
0 cosϕw cos γ sinϕw
0 − sinϕw cos γ cosϕw

ϕ̇w = 0
γ̇ = γ̇0
ψ̇w = 0


c(ξ) [γ − γ0, p− pDP , q − qDP , r − rDP ]

TCP ξ⃗ = [p, q, r, α, β, ϕ, θ, ψ, δT , δe, δa, δr]
T

Coordinated Turning flight: FL100KIAS250T3G0
TIP h = 100, Vkias = 250, ψ̇w = 3o, γ0 = 0, and ϕ̇w = γ̇ = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

DP ±ϕw = tan−1
[
(n2−cos2 γ)

1
2

cos γ

]
ϕw = tan−1 cosα sin β sin θ+cos β cos θ sinϕ+sinα sin β cos θ cosϕ

sinα cos θ cosϕ+sinα sinϕpq
r

 =

 cosα cosβ − cosα sinβ − sinα
sinβ cosβ 0

sinα cosβ − sinα sinβ cosα

 1 0 − sin γ
0 cosϕw cos γ sinϕw
0 − sinϕw cos γ cosϕw

 ϕ̇w = 0
γ̇ = 0

ψ̇w = ˙ψw0


TCP ξ⃗ = [p, q, r, α, β, ϕ, θ, ψ, δT , δe, δa, δr]

T

Descending Turning Flight: FL70KIAS200T3G3
TIP h = 70, Vkias = 200, ψ̇w = 3o, γ0 = 3o, and ϕ̇w = γ̇ = 0
PC γ = sin−1(cosα cosβ sin θ − sinβ sinϕ cos θ − sinα cosβ cosϕ cos θ)

DP ±ϕw = tan−1
[
(n2−cos2 γ)

1
2

cos γ

]
ϕw = tan−1 cosα sin β sin θ+cos β cos θ sinϕ+sinα sin β cos θ cosϕ

sinα cos θ cosϕ+sinα sinϕpq
r

 =

 cosα cosβ − cosα sinβ − sinα
sinβ cosβ 0

sinα cosβ − sinα sinβ cosα

 1 0 − sin γ
0 cosϕw cos γ sinϕw
0 − sinϕw cos γ cosϕw

 ϕ̇w = 0
γ̇ = 0

ψ̇w = ˙ψw0


TCP ξ⃗ = [p, q, r, α, β, ϕ, θ, ψ, δT , δe, δa, δr]

T

Minimizing f(ξ) −→ 0

Table 7: Test conditions that led to the results

The User selects the desired steady-state flight conditions by using the following GUI.

39



Figure 13: The trim module its Graphic User Interface in its development stage.

The GUI both controls the steady-state aircraft maneuver settings and the selection of the trim algorithm
features. The left side is dedicated to flight maneuvering selection and the right side algorithm settings
are selected. In addition to the general steady-state flight trajectories defined in Section 2.3, the GUI
allows a user to disable rudder trim, simulate engine failure, or any other input failure. If a user wants
to include a variable in the Trim Control Parameter set, then the user ensures the box labeled ’trim’
is unchecked. In the setup that figure 13 visualizes, the parameters labeled ’Roll’ is not added to the
TCP vector, but ’Pitch’ is. If a field is left empty while not added to the TCP vector, it’s added to
the TIP set and put to zero by default. This setup will find a solution to the steady-state straight and
wing-level descending flight maneuver at an altitude of 70 FL. By default, the trim module searches the
flight maneuver using the TCBP algorithm, but other combinations are selectable.

4.3 Experimental Setup and Method

The experiments are executed on a Dell XPS 15 7000 Series-7590 with a CPU: i9-9980HK (16 MB
Cache, Base 2.40 GHz, Max. Turbo 5.0 GHz, 8 cores), Disk: 1 TB M.2 PCIe NVMe SSD, Graphics:
GTX 1650 4 GB GDDR5, RAM: 32 GB DDR4-2666MHz. The Linux distribution Ubuntu 18.04 is
chosen as OS platform, the program is written in C++ and executed as a supporting module in the real-
time distributed middleware layer DUECA/DUSIME. Before starting the experiments all non-essential
background apps were closed, the laptop was set to flight mode, the laptop power adapter connection was
ensured, the 4k-OLED display is dimmed, laptop and room temperature were checked, external cooling
fans were turned on, and the cache was cleared. During the start-up of the execution program, the
dueca_run.x executor priority was increased. During the experimental execution, the room temperature
is kept as similar as possible and external cooling fans are used to cool the machine. In between problem
executions, no algorithm features are to change.

Each iteration sequence from start to finish is called a trial. In general, the trial is successful when it
finds the global minima for the given minimization problem and fails otherwise. In this research, a trial
is said to be successful if all items given below are satisfied.

1. The benchmark tolerance ϵ ≤ 10−4 or Aircraft trim problem tolerance ϵ ≤ 10−5 is satisfied for
problem gradient of the Lagrangian ||fk −AT

k λ̂k||∞≤ ϵ and constraint magnitude ||ck||∞≤ ϵ;
2. The found trial optima must be within ϵ ≤ 10−4 or ϵ ≤ 10−5 absolute accuracy of the actual generic

benchmark or aircraft trim problem solution. This logical test is described by formulation (4.1)

f(x∗)− ϵ(|f(x∗)|+f(x∗) == 0) ≤ f(x∗trial) ≤ f(x∗) + ϵ(|f(x∗)|+f(x∗) == 0) (4.1)

The trial is only stopped if one of the build-in safeguards is violated or criterion 1 is satisfied. If criterion
1 is satisfied, the trial solution is checked whether it’s a local or global solution. If criterion 2 is satisfied,
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then the trial solution is a global solution. If criteria 1 and 2 are not satisfied in some prescribed number
of iterations, the trial attempt is ended, and a new attempt is initiated at some random point in the
feasible search space.

All 14 methods are executed simultaneously for a period of 30 minutes. Starting at some pseudo-random
point in the search-space of the problem. This random seed one initiates the function srand which
selects a starting position in the search-space of the problem. The number of trial solutions is logged
and analyzed after the experiment. Criteria 1 and 2 are tested for the found trial solutions for all
algorithms and then for all problems. The algorithm that finds the most amount of global solutions in
the given time is considered the best-performing algorithm. The best performing algorithm for the given
problem becomes the benchmark algorithm, and its number of found solutions is defined as 100%. Other
algorithms are expressed relative to the best algorithm. The generic benchmark results are described in
section 4.5 and the aircraft trim problem results are visualized in section 4.6.

4.4 Safeguards and Limitations

This section describes safeguards that must be applied to prevent crashing of the algorithm under specific
conditions. These conditions include the spreading of NaNs, preventing stalls, and enforcing positive
definiteness if necessary.

The current limitations of the algorithms will reduce overall performance. The algorithm does not yet
have a restoration phase. If the algorithm stalls, a new random point initiates until the convergent
criteria are satisfied. The finite differences step size is a predetermined fixed value and is used regardless
of the magnitude of the problem. The computed value f̂(·) is equal to the summation of the actual value
f(·) and truncation error τ(·) defining f̂(x) = f(x) + τ(x). The computed value may contain a small
truncation error, but the derivative may experience a large error. This potential large error results in
an inaccurate first-order derivative approximation. The first-order derivative is used to construct the
second-order derivative, which further increases the potential error.

The Jacobian of active constraints is not yet suited with a feature that checks if the Jacobian matrix
is of full row rank. The quality of the numerical derivative matrices is not checked on their condition,
which may result in an ill-conditioned matrix. An ill-conditioned and/or not full-row ranked matrix
may result in an inaccurate local solution or even result in a local maximizer instead of a minimizer.
Positive definiteness cannot be guaranteed for the SR1 matrix, which is the common problem of using
the SR1 Quasi-Newton update formula. Multiple methods exist for forcing a positive definite Hessian
approximation. Here, positive definiteness is forced by applying Bk = Bk + αI for α ∈ (λ1, 2λ1] where
λ1 denotes the most negative eigenvalue of Bk. All SR1 algorithms use this implementation. This
adjustment is very expensive for larger problems but is worthwhile for smaller problems. Bad or ill-
conditioned matrices may reduce convergence speed near the solution. To further increase convergent
speed near the solution of the problem, an eigenvalue clustering method should be implemented.

All methods contain a calculation and application of the Lagrangian estimate according to (3.30b). the
implementation of the second-order correction method (3.32) is essential to avoid the Maratos effect and
activates when an increase in constraint cost is detected. The central difference method assembles the
constraint Jacobian matrix is offline using the set of active constraints. The finite difference methods
(C,E) make use of the fixed step size based on Nocedal and Wright [38].

4.4.1 Important Limitations on Benchmark Results
Between the popular benchmark results and aircraft trim problem results, the trim algorithm underwent
an important update. For this reason, the popular benchmark results can’t be compared with the aircraft
trim problem result. During the execution of all algorithm configurations solving different aircraft trim
problem settings, the results were very inconsistent. The trim module gave many (thousands) solutions
for one TIP configuration, but couldn’t find a single solution for a slightly different setting. After a period
of debugging, the problem became obvious. The standard .inverse() option gave rise to significant
numerical instabilities under certain conditions. These conditions are not apparent when the objective
function of the problems is only analytical formulas. ironically, these types of problems become the
implementation testing problem during the implementation process because of their ease of debugging
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and open/traceable structure. The problem does become apparent when a problem, like the DASMAT
model, uses numerical procedures, data tables, or any other complex underlying structures to calculate
a function. All algorithm combinations now implement the householder decomposition to extract an
inverse matrix or solve a least-squares problem. This implementation procedure describes the last part
of section 3.10. It describes that the algorithm selects different householder decomposition techniques
depending on the magnitude of the gradient of the Lagrangian L.

4.4.2 Aircraft Trim Implementation Limitations
Section 2.4 and Table 7 both show a set that contains the label derived parameters (DP). The goal of
the derived parameters is to directly overwrite the parameter set [p, q, r]T . This results in a smaller
problem that invokes fewer TCPs. However, imposing the DP set [p, q, r]T as constraints were the least
time-consuming approach. Creating yet another update did not fit in the time window of the graduation
period. The consequence of this implementation increases the number of arithmetic operations, resulting
in a less efficient algorithm. Another parameter that is not yet generic is the GUI parameter VKIAS . In
the current implementation, a conversion process in the trim GUI module converts the desired VKIAS
to the dynamics model usable V . In a future expansion, This precalculation may estimate the starting
point for VKIAS after which the algorithm minimizes the error by adding a TCP.

4.5 Results of Popular Benchmark Problems

All selected benchmark problems are executed regarding the conditions described in section 4.3. The
algorithm with the most global solutions becomes the benchmark algorithm for a specific benchmark
problem. The number of solutions of all other algorithms that solve the same problem is divided by
the number of solutions found by the best algorithm multiplied by 100%. This result shows the relative
performance % per algorithm. Label (All) in figure 14 sums all popular benchmark problem results, then
defines the best as ’the benchmark’ converting its score to 100%.
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Figure 14: SQP algorithm with different active features evaluating analytical benchmark problems.
Striped bars belong to the trust-region method, and line search results contain symbols.

The LCSP and LESP algorithms show the most reliable and best overall performance in the line-search
class. The LCSP and LCBP are the only feature combinations that successfully find the global minima for
all problems. This means that, for this set of problems, the feature combinations LCSP and LCBP are the
most robust. In the trust-region class, all damped-BFGS feature combinations show better performance
than the trust-region SR1 feature combinations. Figure 14 illustrates the overall performance of all
algorithms using the label ’All’. The overall performance of all results doesn’t deviate by an order of
magnitude. The overall best algorithm LCSP finds 250% more solutions than the overall worst algorithm
LCP.

4.6 Results of Aerospace Benchmark Problems

The aerospace benchmark problems consist of a helicopter model and the DASMAT model. The heli-
copter model is written in state-space format according to Mitchell et al. [36] with parameters described
in [23]. The system is derived using a body frame of reference, the state vector contains eight states and
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the input vector contains four inputs. The DASMAT model is built using Matlab Simulink and used
through its C export code. This model uses the wind frame of reference velocity components. Both mod-
els are implemented in DUECA and depend on a complex grid of communication channels and activities
handled by DUECA.

Figure 15: Performance on different types of tests.

The trust-region, damped-BFGS algorithm combinations show the best performance when solving the
aircraft trim problem. The trust-region, SR1 algorithm combinations show the worst overall performance.
This trend is also observable when inspecting the line search algorithm’s performance. The line search,
damped BFGS class performs overall better at solving the aircraft trim problem than the line search,
SR1 dependent methods. For now, the most favorable combinations for solving the aircraft trim problem
are: the TEBP, TCBP, TEBD, and TCBD algorithm combinations.
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5 Discussion

When inspecting the results that Section 4.5 illustrates, the algorithm combinations LCSP and LESP have
the best overall performance on the benchmark problems. The same cannot be said for the performance
of these algorithms on the aerospace trim problems in Section 4.6. Here, the best performing are the
trust-region, damped-BFGS algorithm combinations. However, when inspecting the results more closely,
the results in Section 4.5 and Section 4.6 do show agreement. When inspecting the content of the results
in the plot labeled ’All’ in both sections, the damped-BFGS algorithm combinations show satisfactory
performance. Important to note, and explained more thoroughly in this discussion, the results in Section
4.5 use a different inverse function than the results obtained in Section 4.6 because of numerical issues.
The performance of the SR1 algorithm seems most affected. Because the damped-BFGS updating formula
is generally more robust than the SR1 updating formula Nocedal and Wright [38], chances are that the
SR1 encountered numerical issues earlier in its iteration process. When an algorithm’s implemented
safeguard detects a numerical issue, the safeguard resets the search sequence, meaning an algorithm
starts with a cleaned memory at a new random point. Again, because the SR1 method is less stable
than the damped-BFGS method, and therefore requires more safeguards (see Section 3.5.6 and Nocedal
and Wright [38]), this worked favorably for the SR1 algorithm combinations. But in reality, the SR1
algorithm was stopped faster because it deteriorated faster, which explains the drop in performance when
a different, but more stable inverse calculator was introduced. To test this hypothesis, it’s recommended
to investigate this in a followup research. If this hypothesis holds, the damped-BFGS updating strategy
becomes the recommended Hessian updating strategy for solving the selected set of analytical benchmark
problems and the DASMAT aircraft trim problem. If no followup research tests this hypothesis, the user
is advised to select the damped-BFGS updating strategy, although all other algorithm combinations stay
available for a user to select.

The implemented trim module uses the graphic user interface (GUI) to target specific initial conditions.
Selecting an appropriate set of parameters results in a specific type of aircraft trajectory. The parameter
where the user may enter a target for, is the velocity parameter VKIAS . The relation between the Knots
indicated airspeed and the true airspeed is aircraft dependent. A generic trim module must solve for this
parameter, adding a variable to the TCP. However, this study uses a conversion to calculate the true
airspeed from the user targeting parameter VKIAS . This choice reduces the number of variables by one
and hence increases performance. However, it limits the generic property of the trim module. A future
expansion may add the parameter as a variable and may use the conversion as a starting point.

To achieve a simpler implementation, the trim module imposes the derived parameter set [p, q, r]T as a
constraint. Marco, Duke, and Berndt [32] suggest a different approach by deriving the parameter set
[p, q, r]T using the Eq. 2.11, and then updating these parameters, which is recommended for a further
improvement of the trim algorithm. The implementation now imposes the derived parameter set [p, q, r]T
as constraints. Minimizing these constraints is only possible if the parameters are part of the TCP set,
increasing its size. Although the trim module is successful at finding a solution using the larger TCP
set, it makes finding a solution unnecessarily complex.

The parameters in section 2.3 describe settings for maneuvers described in table 2 that refer to problems
presented in Eq. (2.10). The goal is to create a generic initial trim module that solves the aircraft trim
problem for user-customizable and common flight maneuvers. Implementing analytical constraints based
on aircraft parameter relations allows a direct constraint evaluation in the trim module. The direct
evaluation removes the need of sending the data from the trim module to the flight dynamics module,
executing an aircraft model with the trim module’s found parameter settings, and sending the result back
to the trim module for optimization evaluation. The direct implementation reduces the computational
cost and data traffic between the trim module and the flight dynamics module. Consequently, the generic
application is compromised in some sense. The flight path angle, wind-axis bank attitude, and parameter
set [p, q, r]T for now specifically depend on the Euler and wind angles. By only adding an additional
transformation layer between the parameter set and the constraint calculator, and creating a GUI spacial
representation selector, this problem is resolved.

The numerical routine has implemented some stopping criteria to prevent cycling, deterioration of the
step method, or any event that triggers stalling of the algorithm. One event that triggers stalling is
not yet having a good predictor, slack variables, and updating system for the set of active constraints.
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Resulting in switching on and off of active constraints near the solution providing the minimizing step
pk at A(x) and not at A(x∗) as mentioned in 4.4. The switching on and off only happens when the
constraints are inequality constraints. This may explain the performance failure on problems g07 and
g10, as these problems both impose a relatively large set of inequality constraints on their variables. This
missing feature may only become problematic for the aircraft trim problem when inequality conditions
are appended or solutions lie on the edge of the search space of some TCP’s. All aircraft trim tests
performed until this point didn’t find a solution close enough to the search space edge to cause this
shortcoming.

the results of the popular benchmark problems in section 4.5 use a different Eigen implementation than
the results of aerospace benchmark problems in section 4.6. All calculations in section 4.5 use the com-
putation .inverse() function to calculate important step information. However, during the execution of
the DASMAT aircraft problem, the results became inconsistent, as section 4.4.1 further elaborates. After
some debugging, it was found that the .inverse() function gave rise to numerical issues and was replaced
by householder decompositions. A simple strategy based on experimental observations for choosing the
appropriate decomposition is set to be dependent on the closeness to the stopping criteria. For a large,
small, and very small at magnitude difference from |∇fk − AT

k λ̂|∞ the less expensive HouseholderQR,
more stable ColPivHouseholderQR and the well-proven FullPivHouseholderQR decomposition was used
respectively.

The HouseholderQR decomposition may still experience numerical issues far from the solution, as non-
linearity may induce challenging conditioned matrices. This implementation accepts the numerical issues
and restarts them when they get too severe. Later implementations may develop routines to monitor the
numerical behavior of the matrices involved. By incorporating the info() function, the numerical issues
can be monitored. However, nothing can be said about the quality of the matrix itself. Ill-conditioned
matrices and large condition numbers cannot be monitored without significant computational expenses.
The SR1-based algorithms may benefit from monitoring its matrix condition, but more research is needed
to confirm this.
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6 Conclusion

The Delft University of Technology (’TU Delft’) developed a real-time distributed system for scientific
and educational purposes. Because of the high level of expertise required to learn from- and work in a
real-time environment, TU Delft created a middleware layer, DUECA (Delft University Environment for
Communication and Activation), and a simulation-specific addition framework: DUSIME (Delft Univer-
sity SIMulation Environment). Application programmers such as students or educators may develop a
complex aircraft simulation module, but must supply their models with precalculated starting conditions,
which is a labor-intensive process. A common practice is embedding the numerical optimization tool
in an aircraft model and retrieving the starting conditions, referred to as the initial trim set. Setting
up such an embedded tool for every aircraft model is also very labor-intensive. For over 20 years, these
issues have limited the overall user experience in DUECA.

Hence, the research goal is to create an independent, generic, User-commanded, numerical optimization
module capable of solving the aircraft trim problem in DUECA. This research created a generic and
independent SQP (initial trim) module that reduces embedding labor and optimization knowledge. The
module is generic such that it connects to many different aircraft models and is defined independently
for its limited involvement in aircraft models. The trim module works by a user selecting a desired
steady-state aircraft trajectory through a Graphic User Interface (GUI) and then commands the trim
module to search for the set of initial trim conditions. The trim module finds the initial trim conditions
by executing its SQP algorithm. This initial trim set allows the starting up of an aircraft simulation in
a steady-state, that is stable enough such that a pilot can take over manual control.

The stability and possible steady-state conditions depend on the parameters that define equilibrium
flight and the constraining equations. An system in motion or at rest achieves steady-state flight if the
dynamic state derivatives (ṗ, q̇, ṙ) and (u̇, v̇, ẇ) or (V̇ , α̇, β̇) are zero. This allows predefining the dynamic
state variables (p, q, r) and (u, v, w) or (V, α, β) constant or zero. Besides the dynamic state derivatives
of the aircraft’s rigid body, a trim algorithm must also minimize the engine model, the leading-edge flap
actuator dynamics, or any other component that may introduce an acceleration. If the squared sum
of the accelerations is smaller than 10−5, the steady-state flight conditions are considered sufficiently
stable. However, without a proper GUI and parameter constraints, users may find themselves solving
for random steady-state flight conditions. The GUI accepts quantities for the Flight level h, roll angle
ϕ, the knots indicated airspeed VKIAS , glide path angle γ, glide path rate γ̇ and wind-axis yaw rate
ψ̇w. Selecting quantities for these GUI parameters actives trim routines for: straight flight, straight and
wing-level flight, pull-up/push-over flight, steady-state turning flight, or any combination of these flight
conditions. The maneuver straight flight describes the steady-state movement of an aircraft in a straight
line without a body roll angle and selectable flight path angle, straight-and-level is a maneuver that
is also straight and flies parallel relative to flat earth, Push-Pull presents a user with a condition that
is ascending-descending maneuver from a straight-and-level departing instantaneous moment in time,
and steady-state turning describes an ascending, level, or descending turning flight. The underlying
transformations make it possible to connect aircraft models using wind axis of reference, body axis of
reference, or quaternion-based flight systems. The algorithm so far is successful at solving the DASMAT
aircraft trim model for the given stability. The DASMAT model is a wind-axis frame of reference derived
aircraft model that contains additional dynamic engine states. By connecting more layers of frame of
reference transformations in the future, more spatial representations can be solved.

The initial trim algorithm used during this research is a trust-region and line search Equality Constrained
approach Sequential Quadratic Programming (SQP) algorithm. This algorithm was tested on commonly
used benchmark problems in C++, where its possible weaknesses were exposed. The mathematics of the
initial trim algorithm is verified by using literature substantiated methods based on pseudocodes. The
trim algorithm is validated by simulating the found initial trim parameters and checking if it’s indeed
the appropriate flight maneuver.

The most important performance indicator of this research is the robustness of the algorithm. The
algorithm combination that has a consistent overall performance on a wide range of problems in its class
becomes the most favorable algorithm. The performance of these test features governs all combinations
of: the line search and trust-region framework, first-order derivative functions Euler forward and central
differences, the second-order derivative updating formula SR1, and the damped BFGS, the step method

47



PCG, and only for trust-region a projected dogleg method. the experiments only test for the relative
performance between the framework and features. No external results were used for comparison in this
research. External results were only used to choose the right algorithm methods, framework, and features.
Overall, the trust-region method showed to be more robust than the line search method because of its
consistent and stable performance on all benchmark test problems. The line search methods showed a
relative superior efficiency under certain circumstances. These results are in line with recommendations
found in the literature. The literature points out that the trust-region algorithm overall may be slightly
more stable, while the line search may be slightly more aggressive. The central difference method showed
better overall performance, but the first-order performance can be optimized by switching from Euler
to central difference close to the solution, as advised by [38]. This also depends on the quality of the
matrix decomposition. The PCG method turns out to be the most superior, but the derived projected
dogleg showed compatibility on smaller problems. This makes sense as the dogleg takes two leaps
towards a solution where the PCG keeps iterating until some condition is satisfied. This may be less
important for smaller problems, but more significant for larger problems. The damped BFGS algorithm
is not only more favorable according to literature, but also shows a better performance than the SR1
algorithm. Concluding its stability and guaranteeing definite properties is more important than the more
reassembling and cheaper Hessian SR1 estimation for the given set of problems and conditions.

The feature combinations successfully solve the DASMAT aircraft trim problem. The algorithms most
effective for solving the common benchmark problems are the trust-region damped BFGS algorithms.
The relative best common benchmark trust-region solver performed 28% less effectively than the best
line search algorithm. The relative best aircraft trim line search method solves 85% less effectively than
the best trust-region method. According to the data so far, the BFGS method proves overall more
robust than the SR1 updating strategy. The results of this study suggest that the trust-region method is
more robust than the line-search method. for now, the data also suggests that both trust-region BFGS
dogleg and PCG are both robust choices when implemented in an aircraft trim module. however, more
investigation is needed to assess the performance on other aircraft models.
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7 Recommendations

This section identifies a number of possible improvements over the current approach:

Reducing the number of trim control parameters: although the current implementation is capa-
ble of solving the aircraft trim problem for all maneuvers, the algorithm is not optimized when
solving the pull-up, push-down, or turning flight aircraft trim problem. More generally, the TCP set
is larger than necessary when the algorithm is solving the aircraft trim problem when (p, q, r) ̸= 0⃗.
This problem can be avoided by following the implementation method that Marco, Duke, and
Berndt [32] uses. For the current trim module implementation, this means adjusting the following.
First, the dynamic states (p, q, r) are no longer found using constraints but derived. Using the
user-defined Target Initial Parameters (TIP) (ϕ̇w, γ̇w, ψ̇w) and the kinematic state in the TCP, the
set (p, q, r) is derived and updated using Eq. 2.11 just before evaluating the aircraft model. This
way, the set of constraints, when solving the pull-up, push-down, or turning flight aircraft trim
problem, consists of 1 constraint instead of 4, and the TCP set is reduced by 3. Implementing this
recommendation will reduce the degrees of freedom and the number of constraints, which improves
the algorithm’s performance significantly.

Implementing the target initial parameter VKIAS: the current implementation calculates the user-
defined velocity parameter by using the equations formulated by Van der Linden [45] (p. 201-203).
The equations that calculate the required atmospheric parameters and velocity conversions that
result in VKIAS are not wrong, but they might be differently employed by some other dynamic
model, making this calculation DASMAT specific, not generic. If some dynamic model is capable
of calculating its own VKIAS , the parameter must be added to the list of constraints or to the list
of dynamic state derivatives. The least labor extensive solution would be adding the user-defined
VKIAS0 minus the calculated VKIAS squared making (VKIAS0 − VKIAS0)

2 to the list of dynamic
derivative constraints. The correct method would be converting the offline constraint evaluation
to an online calculation method. This way, the step method minimizes in the null-space of the
constraints, making the process a lot more effective. Secondly, the adaptive penalty value will
ensure that the difference between VKIAS0

and VKIAS is kept at a minimum without hindering the
minimization process too much. However, both methods will be successful. Using the procedure
that calculates VKIAS currently, will give minimizing the difference between (VKIAS0 − VKIAS0)

2

a warm start, making the method more effective, but by far not as effective as the correct method.

Improving the adaptive decomposition routine: the current algorithm version has an adaptive
Eigen HouseHolder decomposition procedure that switches between the least stable but fastest
decomposition HouseholderQR, the well-balanced decomposition ColPivHouseholderQR, and the
proven but slowest decomposition FullPivHouseholderQR. These decomposition template functions
are used to calculate the inverse of the Hessian or to solve a least-squares problem. Switching
between the decomposition types is based on the magnitude of the gradient of the Lagrangian
∇xL(x, λ). Selecting the current switch values that determine which decomposition type executes
the decomposition based on ∇xL(x, λ) is found using experiments. Because the decomposition
type has a significant influence on the performance of the algorithm, this feature must further be
optimized.

Indicating benchmark problems: because the popular benchmark problems and the aircraft trim
problem use another solver, the results cannot be compared. Finding a set of problems that’s
comparable to the aircraft trim problem would be a nice to have secondary research outcome.
Currently, no information can be provided as to which popular benchmark problem poses a similar
level of complexity as solving the DASMAT aircraft trim problem. A followup research should take
this opportunity to explore this uncharted field. The goal of the followup research will be searching
for a set of candidate popular benchmark problems with similar complexity levels as the aircraft
trim problem. After finding a set of problems, the performance of the current algorithms to other
studies. This process may lead to trim module updates and may help other developers to construct
a generic trim module.
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Appendix A

The G01 Function

f(x) = 5

4∑
i=1

xi − 5

4∑
i=1

x2i − 5

13∑
i=5

xi

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x11 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where 0 ≤ xi ≤ 1(i = 1, ..., 9), 0 ≤ xi ≤ 100(i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The optimum
solution is f(x∗) = −15. [30].

The G03 Function

f(x) = −(
√
n)n

n∏
i=1

xi

h(x) =

n∑
i=1

x2i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, ..., n). The optimum solution is f(x∗) = −1.00050010001000 [30,
31].

The G04 Function

f(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102 and 78 ≤ xi ≤ 102 (i = 3, 4, 5). The optimum solution is f(x∗) = −3.066553867178332e+
004 [30, 31].

The G05 Function
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f(x) = 3x1 + 0.000001x31 + 2x2 + (0.000002/3)x32

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000 sin (−x3 − 0.25) + 1000 sin (−x4 − 0.25) + 894.8− x1 = 0

h4(x) = 1000 sin (x3 − 0.25) + 1000 sin (x3 − x4 − 0.25) + 894.8− x2 = 0

h5(x) = 1000 sin (x4 − 0.25) + 1000 sin (x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55 and −0.55 ≤ x4 ≤ 0.55. The optimum solution
is f(x∗) = 5126.4967140071 [30, 31].

The G06 Function

f(x) = (x1 − 10)
3
+ (x2 − 20)

3

g1(x) = − (x1 − 5)
2 − (x2 − 5)

2
+ 100 ≤ 0

g2(x) = (x1 − 6)
2
+ (x2 − 5)

2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is f(x∗) = −6961.81387558015 [30, 31].

The G07 Function

f(x) =x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)
2

+ 4 (x4 − 5)
2
+ (x5 − 3)

2
+ 2 (x6 − 1)

2
+ 5x27

+ 7 (x8 − 11)
2
+ 2 (x9 − 10)

2
+ (x10 − 7)

2
+ 45

g1(x) =− 105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) =10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) =− 8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) =3 (x1 − 2)
2
+ 4 (x2 − 3)

2
+ 2x23 − 7x4 − 120 ≤ 0

g5(x) =5x21 + 8x2 + (x3 − 6)
2 − 2x4 − 40 ≤ 0

g6(x) =x
2
1 + 2 (x2 − 2)

2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) =0.5 (x1 − 8)
2
+ 2 (x2 − 4)

2
+ 3x25 − x6 − 30 ≤ 0

g8(x) =− 3x1 + 6x2 + 12 (x9 − 8)
2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, ..., 10). The optimum solution is f(x∗) = 24.30620906818 [30, 31].

The G08 Function

f(x) = − sin3 (2πx1) sin (2πx2)

x31 (x1 + x2)

g1(x) = x21 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)
2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10 . The optimum solution is f(x∗) = −0.0958250414180359 [30, 31].
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The G09 Function

f(x) = (x1 − 10)
2
+ 5 (x2 − 12)

2
+ x43 + 3 (x4 − 11)

2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7

g1(x) = −127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0

g4(x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 for i = 1, ..., 7. The optimum solution is f(x∗) = 680.630057374402 [30, 31].

The G10 Function

f(x) = x1 + x2 + x3

g1(x) = −1 + 0.0025 (x4 + x6) ≤ 0

g2(x) = −1 + 0.0025 (x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01 (x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3) and 10 ≤ xi ≤ 1000 (i = 4, ..., 8). The optimum
solution is f(x∗) = 7049.24802052867 [30, 31].

The G11 Function

f(x) = x21 + (x2 − 1)2

h(x) = x2 − x21 = 0

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The optimum solution is f(x∗) = 0.7499 [30, 31].

The G13 Function

f(x) = ex1x2x3x4x5

h1(x) = x21 + x22 + x23 + x24 + x25 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x31 + x32 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is f(x∗) =
0.053941514041898 [24, 31].
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Appendix B

Example Problem

Figure 16: Minimizing a constrained optimization
problem (Numerical Optimization: Example 12.1

page 308 [38])

Example problem:

minx1 + x2 s.t. x21 + x22 − 2 = 0

Defining:

f(x) = x1 + x2 and c1(x) = x21 + x22 − 2

Lagragian function:

L(x, λ) = x1 + x2 − λ1(x21 + x22 − 2)

Gradient Lagrangian function:

∇xL(x, λ) =
[
1
1

]
− λ1

[
2x1
2x2

]
=

[
0
0

]

Solution that satisfies KKT condition Eq. (3.5)

x∗ = (−1,−1)T and λ∗ = 1/2
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Appendix C

Objective Function

Unconstrained

Constrained Active
Set Methods

Merit

Penalty

Augmented
Lagrangian

Merit cost at point
of interest fk,

Constraint cost at
point of interest ck

First Order
Derivative Method

Euler (for-
ward/backward)

Central Difference

Derivative in-
formation of the

merit function ∇fk

Derivative in-
formation of the
Constraints Ak

Quasi-Newton
Second Order

Derivative Method

SR1 updat-
ing formula

BFGS updat-
ing formula

Damped-BFGS
updating formula

Full Quasi-Newton
Approach bk

or
Lagrangian
Hessian Ap-

proach ∇2
xxLk

Step Method

Line Search

Trust Region

Newton Step

Projected CG step

Dogleg Step

Cauchy point Step

Two Dimen-
sional Subspace
minimization

Minimizer of
Constraint

Subproblem pk

Perform Armijo
backtracking to

obtain Line Search
step length α
and take step

xk+1 = xk + αpk

Minimizer of
unconstraint

Subproblem pk

Evaluate trust
region model and
decide xk+1 = xk
or xk+1 = xk + pk
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Appendix D

User Inter-
face: Specify

Flight Condition

Minimization
Algorithm

Flight Path
Constraints

Evaluate Air-
craft Model:

Return States

Compute Scalar
Cost Function f

Trim Data
for Specified

Flight Condition

x⃗0

x⃗0

x⃗

ξ⃗

x⃗˙⃗x

x⃗eq

u⃗eq

Figure 17: Flowchart for a generic trim routine [43, 44]

58



GuiModule: User sets up
trim position using GUI

GUI buttonPress()
Execute Trim

Push Event on Gui-
TrimStates channel

buttonPress()
Cancel Trim

STOP PROCESS

TrimModule: Trigger
on Event GuiTrimStates

TrimModule: Trig-
ger on Event Dy-
namicTrimStates

Get GUI states

Activate Minimiza-
tion Algorithm

Calculate Cost Function Take SnapShot

Calculate derivatives,
trial steps and trial

solutions: Pushing Event
on TrimStates channel

Trigger activity cb2
on Event TrimStates

Trigger activity cb2
on Event TrimStates

Calculate ẋ and Push
Event on Dynam-

icTrimStates channel
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GuiModule: User sets up
trim position using GUI

GUI buttonPress()
Execute Trim

Push Event on Gui-
TrimStates channel

buttonPress()
Cancel Trim

STOP PROCESS

TrimModule: Trigger
on Event GuiTrimStates

TrimModule: Trig-
ger on Event Dy-
namicTrimStates

Get GUI states

Activate Minimiza-
tion Algorithm

Calculate Cost Function Take SnapShot

Calculate derivatives,
trial steps and trial

solutions: Pushing Event
on TrimStates channel

Trigger activity cb2
on Event TrimStates

Trigger activity cb2
on Event TrimStates

Calculate ẋ and Push
Event on Dynam-

icTrimStates channel
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Appendix E

Note! float and double in dco

u 99.9982
w -0.598303

theta -5.81674 (degrees)
v 0

phi 0
delta b 0
delta c 0.0854101
delta a 0
delta p 0
cost 0.0018839

iteratios 491

Table 8: Results using float

u 99.9227
w -4.01752

theta -5.8307 (degrees)
v 0

phi 0
delta b 0
delta c 0.573972
delta a 0
delta p 0
cost 9.82303e-05

iteratios 68

Table 9: Results using double
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