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Notation

x Data point
X Matrix of data points
𝑖 Time index
x 𝑖th data point
𝑗 Feature index
x 𝑗th feature, often 𝑗th time series
x , 𝑗th feature value of x
𝑛 Number of data points
𝑑 Number of features, time series
𝑑 × 𝑛 Dimensionality of matrix with 𝑑 rows (time series) and 𝑛 columns (data points)
ℝ Real-valued 𝑑-dimensional object
f ∶ ℝ → ℝ Function f mapping object from ℝ to ℝ
f(x) Output of f given x
w Projection vector
W Projection matrix
W Transpose ofW
W Inverse ofW
I Identity matrix
R Random projection matrix
𝑟 Entry of R
x Projection of x
x̂ Reconstruction of x
ℰ Reconstruction error
𝑘 Number of projection vectors, projection dimensionality
𝑝 Length of sliding window
𝜆 Forgetting factor, parameter used by the baseline
𝑚 Number of predictors, parameter used by the proposed method
‖x‖ Euclidean norm of x
‖x− y‖ Squared Euclidean distance between data points x and y
𝜀 Distorted Euclidean distance
𝑂 Outlier score
𝜃 Threshold on outlier scores
𝜇 Mean of a vector
𝜎 Standard deviation
𝒩 Reference to the Normal probability distribution
𝒰 Reference to the Uniform probability distribution
sin Sine function
cos Cosine function
𝐴 Amplitude of sinusoidal function
𝐶 Offset of sinusoidal function
𝜑 Phase of sinusoidal function
𝑁 Noise term
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1
Introduction

If someone were to ask you to identify a banking scam within millions of transactions from an ordinary
bank account, you would probably think that it should not be too hard. You would just have to develop
some kind of computer program that compares the regular transactions made in the past to trace a
deviation produced by the scam. But distinguishing this ‘outlier’ by comparing all previous transactions
would be very time consuming, also for computers.

In this banking scenario the outliers correspond to all the data points that in some sense significantly
deviate from all previously observed, expected or ‘normal’ financial behaviour. However, you are asked
to trace those outliers not just for one banking account, but for all of them. And not just once a year or
once a month, but continuously! Therefore, the objective of this computer program would be to process
all incoming transactions one by one (online) as efficiently and accurately as possible.

You can imagine that detecting outliers is not just useful for the safety of your banking account. It is
useful for an endless spectrum of fields, varying from scientific to commercial practices. In the medical
field you could think of supporting diagnostic procedures, but it can also be deployed to prevent digital
systems from cyber attacks.

The common objective of outlier detectionmethods is to classify all significantly deviating data points
as belonging to the ‘class’ of outliers as good as possible, while classifying all normal data points to
the other class. With the use of unsupervised outlier detection methods it is possible to do so without
inspecting a large set of historic data first. In this thesis, we propose a method that is more efficient
than what has been recently proposed.

The following chapter will cover the necessary background information on unsupervised online out-
lier detection inmultivariate time series, and the challenges associated with it. We also discussmethods
developed with the objective to solve this problem, and explain the essence of the method we propose
in order to do it more efficiently. Finally, we provide an outline of the remainder of this thesis.

1.1. Online outlier detection in multivariate time series
When outlier detection methods are deployed to observe a system over time, it is desired to obtain a
final decision on the most probable class (outlier or normal) of the incoming data points in real-time.
That means that a label should be assigned to each incoming data point preferably before the next one
arrives. This is due to the potentially high costs associated with a delayed decision. Outlier detection
in real-time is called online outlier detection, but is also known as streaming outlier detection [20].

Within this context, we consider the incoming data stream X = x ,x , ...,x to exhibit temporal
relations between succeeding data points. We focus on these relations explicitly by interpreting the
observed feature over time. Such temporal features are called time series, where we refer to multiple
time series as multivariate time series. Each x ∈ X is then a 𝑑-dimensional valued vector. Often it
is not tractable to keep all data points in memory to use for outlier detection purposes. Hopefully, the
assumed relations between successive data points x and x , and among the 𝑑 time series, enable
us to infer a model that describes the overall system behaviour well. However, time series are often
characterized by dynamically changing behaviour. This means that we need to learn a model online
which, in turn, should adapt well to changes in the dynamics of the time series [6].

1



2 1. Introduction

We define our problem context further as online outlier detection in an unsupervised fashion. Unsu-
pervised detection systems do not require labelled data points in order to be deployed, while supervised
methods do. Supervisedmethods, for example, learn classification rules or parameter settings (referred
to as training) from labelled data after which the trained model is deployed on unseen data. For online
detection systems it is often simply too time consuming to incorporate such information [6]. As the
structure of the data is unknown on forehand and no manual parameter adaptations can be conducted
while the system is running, unsupervised online outlier detection methods are preferred to be not too
sensitive to parameters. Yet, most methods are [5].

Having discussed the primary conditions that constitute our problem context, figure 1.1 illustrates
the general process of unsupervised online outlier detection in multivariate time series. 𝑂 refers to the
output of a method which can be either a discrete label (normal or outlier), or a continuous outlier score
indicating the ‘outlierness’ of the input data point x .

b

b

INPUT: xi

OUTLIER
DETECTION
METHOD

OUTPUT: Oi

Oi ∈ {0, 1}
or

Oi ∈ [0, 1]
xi

Figure 1.1 General process of online outlier detection in multivariate time series.

1.2. The complexity of finding outliers in multivariate time series
Beside the restrictions of online and unsupervised learning systems, finding outliers in multivariate time
series is a challenging task already. A first challenge is to have an idea of what should be regarded as an
outlier before the respective system is deployed. The behaviour considered normal might change over
time, where also outliers might not have been observed before and possibly vary heavily. Besides, what
should be regarded as normal behaviour and thus as outliers, depends on the context of the application.
In general, finding outliers in time series translates to detecting sudden unexpected changes, hence
outliers in time series can be described as (sequences of) data points that exhibit a lack in temporal
continuity [5].

In general, we can distinguish three categories of outliers: global point outliers, contextual point
outliers and collective outliers [13]. Global point outliers are characterized by globally deviating values
given the remainder of the time series1 as shown in figure 1.2. Global point outliers can also appear
collectively forming a global collective outlier. This type is generally not harder to detect than global
point outliers and is therefore not considered separately. Outliers as illustrated in figures 1.3 and 1.4
are often more difficult to find as their feature values do occur in the remainder of the time series, and
are therefore contextual. The difference between these two types is that a collective outlier represents
a sequence of data points that should be regarded as an outlier in conjunction, while the value of the
time series does not change suddenly. A contextual point outlier is characterized by a sudden and
temporary change in feature value.
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Figure 1.2 Global point outlier.
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Figure 1.3 Contextual point outlier.
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Figure 1.4 Collective outlier.
1Figures 1.2 to 1.4 only show one time series. Yet, we focus on multivariate time series such that .



1.3. Unsupervised online methods 3

The second challenge associated with outlier detection in multivariate time series is to deal with the
effect of the high dimensionality of the data points. Having more features describing each incoming
data point might seem to yield a higher chance of observing data points that deviate significantly from
what is considered normal. However, having more data at your disposal does not automatically mean
that outliers can be separated better from normal data points. At some point, the dimensionality of a
data set introduces problems which is often referred to as the curse of dimensionality.

One problem is that the norms of data points in a data set X of high dimensionality 𝑑, for example,
tend to approach the same value as the number of features goes to infinity [37]. This means there is
little variance between data points in X if we look at the ratio between the norms of the data points in
X and the norm of the mean of X. As a consequence, the largest distance between a pair of two data
points in X approaches the smallest pair-wise distance [9]. This concentration of distances makes the
difference between outlier scores associated with outliers and normal data points vanish.

Another downside is the computational burden induced by processing high-dimensional data points.
The main cause of computational issues lies in the search space imposed by an increasing dimension-
ality. That is, outliers are often characterized by deviating values in a subspace rather than in the full
feature space. The consequence is that algorithms often search for meaningful subspaces in which
outliers can be discriminated. An increase in the number of features 𝑑, therefore, implies an exponen-
tial growing search space [37]. Going through all (2 −1) possible subsets for 𝑑 features is considered
not tractable if 𝑑 is high.

Table 1.1 summarizes the challenges associated with each characteristic of outlier detection in
multivariate time series in an online and unsupervised manner.

Table 1.1 Challenges associated with our task.

Characteristic Challenge

Online classification [5, 6]

The algorithm must assign label 𝑂 to data point x before re-
ceiving x .
The algorithm should only exploit a limited history of the data
to infer its model, and not require storage of the entire stream.
The algorithm should run unsupervised, i.e. without the need
of labelling data points or manually adapting parameters.
The detection performance should be not too sensitive to the
(fixed) parameters.

Outlier detection in
The analyst should have an idea of the expected, normal be-
haviour, and of the outliers desired to detect.

time series [13] The algorithm should be able to detect contextual outliers be-
sides global outliers.

High-dimensional data [37]

The algorithm should be able to find outliers in high-
dimensional data.
Algorithms should scale well in computational complexity with
increasing numbers of time series 𝑑 and data points 𝑛.

1.3. Unsupervised online methods
As a consequence of the diverse challenges as described, many approaches to unsupervised online
outlier detection in multivariate time series exist. In this section we discuss a few recently proposed
methods, which can be categorized in proximity-based and model-based methods. The application
considered and the outliers expected, often make a certain method more suitable than others. For a
discussion of existing methods in relation to common applications of online outlier detection in time
series we refer to the surveys by Gupta et al. [20] and Chandola et al. [13].



4 1. Introduction

1.3.1. Related methods
Proximity-based methods examine the spatial proximity of data points to discriminate data points that
significantly deviate from the proximity of the majority of data points. The proximity of an incoming data
point is mostly reflected by a distance or density measure in context of its preceding data points. A
recently developed density-based method is Loda, short for light-weight online detector of anomalies2
[32]. Loda projects the incoming data point into 𝑘 random 1-dimensional subspaces and maintains 𝑘
histograms with 𝑏 bins to approximate a probability density function. The average of the log probability
approximated by these 𝑘 histograms, is assigned to the data point as its outlier score. The histograms
are constantly updated as new data points come in.

A distance-based method suitable for online outlier detection in high-dimensional data streams is
LEAP [12]. LEAP slides a window of size 𝑝 over the data stream and computes the distance of an
incoming data point x to data points within this window. It does so until there is minimal yet enough
evidence that x is not an outlier. If the minimal evidence threshold is not exceeded, the entire neigh-
bourhood of the data point is evaluated. This minimal evidence threshold is based on the distance
between the incoming data point and a few prototype data points in its surrounding window. Such
prototypes are selected over time, which implies that the total reference set evolves over time. A data
point is flagged as an outlier if its distance to the prototypes, or to all data points in the current window
exceed a threshold.

Model-based outlier detection methods describe the expected behaviour of the multivariate time
series with a model. Various options exist for modelling the data online and use the resulting model
to generate binary labels or outlier scores for incoming data points. Recently, Ahmad et al. [6] pro-
posed an unsupervisedmethod that models the data online using Hierarchical Temporal Memory (HTM)
networks. Such networks encode data points in a lower-dimensional subspace and represent it as a
sparse binary vector. A so-called sequence memory component models the temporal patterns from
these binary vectors and generates predictions for upcoming data points. A more detailed explanation
of HTM networks can be found in [15]. Ahmad et al. use this technique to infer outlier scores from the
distribution of historic prediction errors generated by the HTM network.

A different model-based approach, principal component analysis (PCA), also represents the 𝑑 time
series in a lower-dimensional subspace. It does so by linearly projecting the data into directions in
which most of the variance in the data is captured [25]. After projecting the data into this optimized
subspace, the lower-dimensional representation is reconstructed to the original dimensionality 𝑑. The
outliers are then hopefully not explained by the principal components, such that the distance between
the original data points and their reconstructions yields a discriminative outlier measure. A well-known
method to approximate the principal components unsupervised and online is SPIRIT [31]. SPIRIT is
considered to be a tractable and effective method for online outlier detection in multivariate time series
[5]. As it has strong similarities with the method we propose, we explain this method in more detail in
chapter 2.

The methods discussed in this section are suitable for unsupervised online outlier detection in mul-
tivariate time series and considerably effective. Still, we think there is a promising direction left unex-
plored that introduces methods to solve this problem in a more efficient manner.

1.3.2. The proposed method in a nutshell
In this thesis we attempt to address the challenges as listed in table 1.1 with only one method: random
projections. The proposed random projection method projects or maps data points of high dimension-
ality 𝑑 into a random 𝑘-dimensional subspace. If our mapping function f satisfies certain conditions, we
are guaranteed that the obtained lower dimensional representation preserves the pair-wise Euclidean
distances in our data stream X up to some error [24]. The obtained 𝑘-dimensional representation of a
data point at time step 𝑖, x , is reconstructed back into the original dimensionality 𝑑. This reconstructed
data point x̂ then functions as a model of the original data point x . As this method does not update
any projection directions or optimize mapping functions on the data, it is an efficient method.

The first proposed use of this method interprets the squared Euclidean distance between x and x̂
as the outlier score 𝑂 as in equation (1.1).

2The term anomalies is considered to refer to the same concept as outliers.



1.4. Outline of this thesis 5

𝑂 = ( √∑(x , − x̂ , ) ) =∑(x , − x̂ , ) (1.1)

Throughout the remainder of this thesis we represent this distance as ‖x − x̂ ‖ . The conversion from
this continuous score to a discrete label is considered beyond the scope of this thesis as the level of
outlierness corresponding to an ‘actual’ outlier likely depends on the system being observed.

Contextual outliers are particularly hard to detect with our method using this outlier measure. There-
fore, we present an additional interpretation of the reconstructions obtained from random projections
that enables detecting contextual outliers as well. This alternative is based on 2 distinct runs of the
random projection method with different values for the number of projection vectors 𝑘. We take the
difference between the two obtained reconstructions as indicator of the outlierness at time step 𝑖. This
method is explained in more detail in chapter 4.

Projecting the data into random directions implies the projection is not optimized on the data at
hand, and is therefore called data-independent. Beside its benefits for the runtime performance, a
data-independent method also makes theoretical analysis of its properties possible. For example, the
lower bound on the projection dimensionality 𝑘 only depends on the number of data points 𝑛, the
choice for random mapping f and maximum distortion 𝜀. This enables full control over the quality of the
lower-dimensional representation as we can choose f and an acceptable distortion 𝜀. In chapter 3 we
thoroughly explain the random projection method.

The question we focus on throughout this thesis is: can we leverage random projections in an
online and unsupervised reconstruction-basedmethod in order to find outliers in multivariate time series
effectively though more efficiently, and if so, to what extent? In particular, we investigate if and to what
extent the method we propose defeats the challenges as summarized in table 1.1.

1.4. Outline of this thesis
In this chapter, we have formulated the problem context and explained the challenges it imposes.
We also provided an overview of related methods to conduct online outlier detection in multivariate
time series, and briefly explained the proposed method. The remainder of this thesis is organized as
follows. First, we explain the general approach of reconstruction-based outlier detection in more detail
in chapter 2. We proceed in chapter 3 with the formulation of the proposed random projection method.
An analysis of this method on synthetic data follows in chapter 4. Chapter 5 presents the results of
experiments conducted with real-world time series data, where we also explore the applicability of the
random projection method on non-temporal data sets. We conclude this thesis in chapter 6 with an
overview of the key findings and conclusions, and suggestions for future work.



2
Reconstruction-based outlier detection

We explore the applicability of random projections in a reconstruction-based outlier detection method.
To that end, this chapter elaborates on reconstruction-based outlier detection in section 2.1 and zooms
in on two such approaches in section 2.2. In section 2.3 we explain one method in detail as it is taken
as a baseline for comparisons. We conclude with summarizing the open challenges that are taken as
objectives for our method in section 2.4.

2.1. Mappings, reconstructions and outlier scores
In practice, classes might be better distinguishable in a high-dimensional feature space if the underly-
ing data of interest is oriented in a subspace of lower dimensionality than it is originally [9]. Hence, it is
assumed we can capture, or model, the data in a lower-dimensional representation and find a suitable
way to reconstruct this model to a higher-dimensional representation. This reconstruction then hope-
fully approximates the normal behaviour in the original dimensionality such that outliers significantly
deviate from it. We can obtain a 𝑘-dimensional representation by

x = f(x) (2.1)

with mapping function f ∶ ℝ → ℝ (𝑘 ≪ 𝑑) and x a vector of size 𝑑 × 1. Then, this mapping x of size
𝑘 × 1 can be reconstructed to its original dimensionality 𝑑 using

x̂ = g(x ) (2.2)

with g ∶ ℝ → ℝ . Hopefully, reconstruction x̂ represents x as if it belongs to the class of normal data
points. If x actually belongs to the class of outliers, x and x̂ would significantly differ from each other.
This difference can be taken as the outlier score such that large differences represent the outliers. We
could, for instance, take the squared Euclidean distance between the reconstruction and the original
data point such that

𝑂 = ‖x− x̂‖ . (2.3)

The squared Euclidean distance between x and x̂ emphasizes large differences between x and
x̂. Therefore, this distance measure is considered an appropriate indicator of the outlierness of x. To
obtain a final label of x, a threshold 𝜃 is needed. Data points associated with outlier scores exceeding
that threshold, i.e. 𝑂 > 𝜃, are labelled as outliers. Evidently, it depends on the application itself and
the desired balance between false and true detections what to take for 𝜃. Therefore we do not focus
on finding a procedure to derive 𝜃.

Fitting this general reconstruction-based approach within the context of online outlier detection
methods for multivariate time series, we can illustrate the detection procedure as in figure 2.1.

6



2.2. Reconstruction-based outlier detection methods 7

INPUT: xi

RECONSTRUCTION-BASED
OUTLIER DETECTION

OUTPUT: Oi

Oi = ‖xi − x̂i‖
2

b

b

b

PROJECTION: x′

i

b

b

RECONSTRUCTION: x̂i

f(xi) g(x′

i
)

xi

x′

i x̂i

Figure 2.1 General process of reconstruction-based unsupervised online outlier detection in multivariate time series.

2.2. Reconstruction-based outlier detection methods
A well-known reconstruction-based outlier detection approach, principal component analysis (PCA),
learns a linear projection in 𝑘 orthogonal directions that together capture a large fraction of the variance
in the data. Alternative artificial neural networks (ANN) can be used, which typically result in nonlinear
functions f and g that explicitly minimize the mean squared error.

2.2.1. Principal component analysis
The basic assumption of PCA, is that our 𝑑 features likely exhibit linear correlations among each other
[5]. If so, we can represent the original 𝑑-dimensional feature space using only 𝑘 uncorrelated variables
where 𝑘 ≪ 𝑑. In general, if X exhibits substantial correlations among the different time series, the first
principal components will already explain most of the variation in the original time series [25]. The last
components will then explain the directions in which only little variation exists and, therefore, probably
align well with the outliers we look for.

Outliers in time series are not necessarily characterized by extreme values in any of the original
features. Instead, using principal component analysis we can also find outliers that do not conform
with the temporal pattern of the remainder of the data. Logically, the analyst is in charge of making an
educated guess of the amount of variance needed to explain. Therefore, the number of components 𝑘
needed to capture the principal temporal patterns should be estimated properly on forehand such that
the outliers in X are not modelled too.

Starting from this intuition, PCA obtains the 𝑘 principal projection directions by concentrating on an
orthonormal linear subspace that maximizes the variance explained in the data. More specifically, it
optimizes the 𝑘 projection directions such that they align with the 𝑘 (ordered) largest eigenvalues of
the covariance matrix of X. For a detailed overview of possible optimization procedures to obtain the
projection with PCA, we refer to the work of Jolliffe [25].

Figure 2.2 illustrates how projecting three data points {x ∶ 𝑖 = 1, 2, 3} in the first principal direction
(right), retains the most variance in a 1-dimensional subspace compared to projecting simply on the y-
or x-axis (respectively left and center).

bb

b

bb

b

bb

b

x2 x3

x1

x3 x3

x2 x2

x1 x1

Figure 2.2 Geometric visualization of projections onto the y-axis (left), x-axis (center) and principal direction (right).



8 2. Reconstruction-based outlier detection

However, in this particular 2-dimensional case, taking the first principal direction as a model for
reconstruction to the original dimensionality might not yield a good base for discriminating outliers.
That is, from this projection we expect a good reconstruction of the data point x , which could be
considered an outlier looking at x and x only. This example reflects the main risk of the PCA-based
reconstruction method for outlier detection: if the outliers can be separated well from the principal
components used to model the principal behaviour, we can reconstruct our outliers properly resulting
in low reconstruction errors and thus low outlier scores. The latter is obviously not what we wish for.

Clearly, if we extend this example to a feature space with 𝑑 ≫ 2, it is crucial to choose the number
of projection vectors 𝑘 carefully in order to make PCA not fit to the outliers. Obtaining a proper 𝑘-
dimensional representation, then, hopefully enables us to separate the outliers by concentrating at
data points with the highest reconstruction errors.

As PCA results in linear projections of the data, f and g represent simple matrix multiplications. The
projection x of x is obtained from a simple multiplication with all 𝑘 principal coefficient vectors w ∈W,
i.e.

x =W x (2.4)

where W is called the principal coefficient matrix of size 𝑘 × 𝑑. Then the projected data point x can
easily be reconstructed to its original dimensionality 𝑑 using

x̂ =W x (2.5)

taking the transpose W instead of the inverse W . We can reconstruct x accurately this way, as all
w ∈W are orthogonal to each other and have unit length. That is, we have

W W = I (2.6)

with I the identity matrix, which is a sufficient condition for accurate reconstruction1 using W . Outlier
scores can be computed as in equation (2.3). A method to conduct approximate principal component
analysis online and unsupervised is discussed in section 2.3.

2.2.2. Artificial neural networks
In some cases, it is infeasible to accurately represent the normal behaviour in a linear lower-dimensional
subspace. For those cases, we can resort to nonlinear mappings of the data instead. The objective is
to learn a nonlinear function f ∶ ℝ → ℝ such that, in turn, the data can be reconstructed by a function
g ∶ ℝ → ℝ . These functions are usually obtained by training an artificial neural network (ANN) on
data such that the combination of the two minimize, for example, the mean squared error as in equation
(2.7).

min
f, g

1
𝑑 ∑(x − g(f(x ))) (2.7)

ANN’s are inspired on biological processes taking place in brains to learn representing and repro-
ducing real-world phenomena accurately. Each neuron, or node, in an ANN typically processes its
received input (the initial input, or the output of a previous layer) and transmits it to a node in the next
layer. Eventually, the ANN is trained to approximate the input by learning its underlying characteristics.
Well-known approaches that learn functions f and g this way, are autoencoder networks [23] and the
multi-layer perceptron [30].

For unsupervised online outlier detection in time series, a recently proposed method combines
autoencoders with the principle of variational inference [34]. This principle relates to replacing the
lower-dimensional encoding x of x, and corresponding decoding x̂, with approximations of posterior
distributions represented by stochastic variables. The parameters of these stochastic variables are,
in turn, learned by recurrent neural networks which capture the temporal dynamics of the time series
online.

1In case the first components explain the majority of the variance in the data.
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2.3. Baseline: online principal component approximation
Though the data at hand might be structured nonlinearly, in this thesis we focus on linear projections
of the data. Therefore, we compare the obtained performances to a method approximating the (linear)
principal coefficient vectors online, called SPIRIT [31]. Instead of learning the coefficient vectorsw ∈W
offline, SPIRIT updatesW each time step 𝑖 to approximate the optimal 𝑘 orthogonal directions in which
the explained variance ismaximized. Algorithm 1 gives a detailed insight of how the 𝑘 coefficient vectors
are updated over time2.

In short, the 𝑘 vectors are updated proportionally to the reconstruction error (step 7) associated with
the projection x onto the 𝑘 projection vectors at time step 𝑖 (step 5). The impact of each incoming data
point on the updated projection vectors is controlled by a so-called forgetting factor 𝜆 (steps 6 and 8).
If 𝜆 is close to 1, recent data points have less significant effect on the updates. This way, temporal
relations are tracked over time. A suitable range for 𝜆 to make SPIRIT generalize well to a broad range
of applications is [0.96, 0.98] [31].

Algorithm 1 TrackW
1: Initialize 𝑘 coefficient vectors w to unit vectors s.t. w = [10⋯0], w = [010⋯0], etc.
2: Initialize x̃ as x
3: Initialize 𝑑 to a small value between 0 and 1
4: for 1 ≤ 𝑗 ≤ 𝑘 do
5: Project x̃ on w by 𝑥 = w x̃
6: Update 𝑑 ← 𝜆𝑑 + (𝑥 ) {Energy ∝ 𝑗th eigenvalue of X X }
7: Set e = x̃ − 𝑥 w
8: Update w ← w + 𝑥 e {Update principal coefficients estimate}

9: x̃ ← x̃ − 𝑥 w
10: end for

Figure 2.3 illustrates the procedure of updating the principal projection directions as soon as a new
data point arrives.
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Figure 2.3 Update procedure of the first estimated principal coefficient vector w for new data point x (in red).

Algorithm 2 describes the full procedure of how SPIRIT detects outliers in multivariate time series.
Aside from the projection directions, the number of vectors needed to explain the amount of variance
as requested by the analyst is updated over time as well3. SPIRIT takes the bounds reflecting the
desired variance to retain as input, which are referred to as 𝑓 ̂ being the lower variance bound and
𝐹 ̂ as the upper variance bound. The variance explained with the 𝑘 projection vectors at time step 𝑖
are estimated (step 8), and compared with the provided variance bounds. If the estimated explained
variance is lower than these bounds, an additional projection vector is added (9 to 11). If the estimated
explained variance is higher than these bounds, the last vector is removed (steps 12 to 14).
2Algorithm 1 represents only the update of the projection vectors of the actual algorithm of SPIRIT.
3Technically, the explained variance is estimated. Therefore, this estimated variance is referred to as the ‘retained energy’ of the

coefficient vectors w ∈W denoted by .
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Algorithm 2 SPIRIT
1: Initialize 𝑘 ← 1, 𝐸 ← 0 and Ê ← 0
2: for x ∈ X do
3: Project x onW by x =W x
4: Set 𝑂 = ‖x −W x ‖
5: Update w ∈W for 1 ≤ 𝑗 ≤ 𝑘 by starting at step 2 of algorithm 1
6: Set 𝐸 ← ( ) ‖x ‖

7: Update Ê ←
( )Ê (x , ) for 1 ≤ 𝑗 ≤ 𝑘

8: Estimate retained energy �̂� ← ∑ Ê

9: if �̂� < 𝑓 ̂ 𝐸 then
10: Set 𝑘 ← 𝑘 + 1 and Ê ← 0
11: add w toW by starting at step 1 of algorithm 1
12: else if �̂� > 𝐹 ̂ 𝐸 then
13: Set 𝑘 ← 𝑘 − 1
14: discard w and Ê
15: end if
16: end for

The computational complexity of algorithm 2 (for each time step 𝑖) is expressed as 𝒪(𝑘𝑑) [31]. This
means that its runtime mainly depends linearly on the number of components needed to explain the
desired fraction of variance between 𝑓 ̂ and 𝐹 ̂ , and the number of data points 𝑛. However, though not
explicitly included in algorithm 2, the implementation of the algorithm distributed by the authors includes
an orthogonalization procedure to obtain an orthonormal W after step 5. Experiments ran without the
Gram-Schmidt orthogonalization procedure pointed out we indeed need a strictly orthonormal projec-
tion basis W to obtain a good performance for outlier detection purposes. Unfortunately, the need for
orthogonalizingW results in a runtime of 𝒪(𝑘 𝑑) which might be costly if 𝑑 or 𝑘 is high.

Despite the need of orthogonalizing the projection vectors, we selected SPIRIT as a baseline as it is
considered tractable for online outlier detection in multivariate time series [5]. Additionally, it runs online
without the need for a training phase (supervision). Finally, though not directly a motivation for using
SPIRIT as a baseline, taking a linear reconstruction-based method as a baseline makes the intuition
behind and understanding of our proposed method easier.

2.4. Open challenges
In this chapter we discussed reconstruction-based outlier detection and identified a few vulnerabilities
of such methods, in particular of SPIRIT. Now it is time to make those vulnerabilities more explicit, as
they directly led us to the formulation of the objectives of our method.

In figure 2.2, we illustrated a projection of three data points aligned with the principal direction of
those data points. In situations like this one, we would reconstruct our outliers accurately which is
the undesired result of using the reconstruction from lower-dimensional representations for outlier de-
tection. If we would know the appropriate number of projection vectors to explain the variance of the
normal behaviour only, without fitting to the outliers as well, we can count on a good detection perfor-
mance. However, it is hard to determine variance bounds that generalize well to unseen data streams.
Besides, SPIRIT is supposed to run unsupervised, making it impossible to adjust these bounds online.
This last resort would also not help for cases where the system behaviour is non-stationary, as one has
to adjust these bounds constantly. In general online unsupervised (reconstruction-based) methods for
outlier detection are sensitive to parameter settings [5], introducing the objective to find a method that
defeats that challenge for unsupervised online outlier detection.

Finally, we discussed that SPIRIT in practice might result in a poor computational performance.
Going from our problem formulation, we operate in high-dimensional feature spaces for which SPIRIT
might not be tractable after all. Especially for outlier detection purposes, we need W to be a strictly
orthonormal projection basis, making a costly orthogonalization procedure indispensable. Our second
objective regarding the formulated challenges in 1.1, therefore, is to improve the runtime performance
of 𝒪(𝑘 𝑑) per time step.



3
The random projection method

In this chapter we present the proposed method in detail and discuss its constructive elements. First,
we explain the central idea behind our proposal in section 3.1 and provide a brief overview of the theory
behind random projections. In section 3.2, we proceed with a study of the critical elements that together
compose the random projection method for reconstruction-based outlier detection. We conclude with
the final formulation of the method in section 3.3.

3.1. Making use of random projections
In this section we go through the main idea behind our method and discuss the lemma standing at
the basis of our hypothesis. We also explain the variants of methods to generate random projection
directions as found in the literature, and which variant we implement.

3.1.1. The idea
As already explained in the previous chapters, the PCA-based reconstruction method for outlier detec-
tion is closely related to our method. More specifically, instead of projecting the data into the principal
directions and make all computational efforts to obtain those directions online, we simply project the
data in random directions and hope for the best.

Obviously, projecting the data into random directions takes away the computational burden associ-
ated with outlier detection methods based on PCA or other data-dependent methods. Another benefi-
cial property is that we only need to set one parameter: the number of projection vectors 𝑘. With these
two properties of random projections, we attempt to address the two main shortcomings of SPIRIT in
the light of the challenges. Figure 3.1 illustrates the geometrical difference between projecting the data
into the (first) principal direction and a random direction.

bb

b

bb

b

Figure 3.1 Geometrical representation of a projection into the first principal (left) and a random direction (right).

This random model likely enables reconstruction of the outliers to some extent, but the squared
Euclidean distance between a reconstructed outlier and its original version is still assumed to be higher
than for the normal data points. Therefore, we hypothesize that a less perfect model than resulting from
the principal components might still be sufficient in order to interpret the reconstruction errors as outlier
scores. It might be the case, that we need more random projection vectors to obtain a reasonable

11
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model that approaches the model obtained by PCA-based methods. Hypothesis 1 formulates this idea
more formally.

Hypothesis 1. Replacing the 𝑘pca principal coefficient vectors with 𝑘rp random coefficient vectors,
where 𝑘pca < 𝑘rp, yields a similar model of the normal behaviour at a lower computational cost.

The principle underlying our idea is a lemma posed by Johnson and Lindenstrauss in 1984 [24].
They state that, given a data setX of size 𝑑×𝑛 there exists a linear mapping f to obtain a 𝑘-dimensional
representation of X with 𝑘 ≪ 𝑑, such that with high probability the pair-wise (squared) Euclidean dis-
tances are preserved with distortion at most 𝜀. See also lemma 1.

Lemma 1. (Johnson and Lindenstrauss [24]). Given 𝜀 > 0 and an integer 𝑛, let 𝑘 be a positive constant
𝑘 ≥ 𝒪( log(𝑛)). Then, for an arbitrary data set X of 𝑛 data points x ∈ ℝ , there exists an f : ℝ → ℝ
such that for all pairs x,y ∈ X:

(1 − 𝜀)‖x− y‖ ≤ ‖f(x) − f(y)‖ ≤ (1 + 𝜀)‖x− y‖

with probability 1 − .

Note that the projection dimensionality 𝑘 only depends on the number of data points 𝑛 in X and the
allowed distortion 𝜀, and not on the original dimensionality 𝑑. For example, if we want to represent 𝑛 =
500 data points in ℝ with at most 𝜀 = 0.1 distortion we would need 𝑘 to be approximately . log(𝑛) ≈
540 according to the bound empirically found sufficient for most variants of f by Venkatasubramanian
et al. [36]. This implies that, irrespective of the original dimensionality 𝑑, we can represent all 500 data
points in a 540-dimensional subspace while retaining the pair-wise distances properly. Obviously, this
would only make sense if 𝑑 > 540.

The topic of what we can and should use for f has been studied a lot over the past years since
dealing with high-dimensional data sets has received increasing interest as emphasized already in
chapter 1. The most important work has been devoted to finding suitable mappings that reduce the
presented lower bound on 𝑘, or to improve the computational effort associated with it.

3.1.2. Variants of f(x)
In the literature a large variation of methods can be found for obtaining a lower-dimensional represen-
tation of X using random projections, here we briefly present the most important developments. As
mapping f is linear, we define it as a random matrix R and refer to it as the random projection matrix
representing this mapping. Then, we can define f(x) by the matrix multiplication

f(x) = Rx. (3.1)

Johnson and Lindenstrauss initialized the study to random projections and proposed a first method
for obtaining R. They sampled each entry 𝑟 of R from the Gaussian distribution with 0 mean and unit
variance, i.e. 𝑟 ∼ 𝒩(0, 1). The resulting projection matrix should then be orthogonalized to meet the
conditions they found to be necessary:

• Spherical symmetry: For any orthogonal matrix X ∈ ℝ × , the entries in RX and R follow the
same distribution.

• Orthogonality: All 𝑘 projection vectors in R are orthogonal to each other.

• Normality: All 𝑘 projection vectors in R are of unit length [7].

Random projections are particularly useful if we want to avoid the computational burden of ob-
taining a qualitative lower-dimensional representation of a data set X. Instead of optimizing this lower-
dimensional representation, by making use of random projections we obtain a representation that solely
preserves pair-wise distances, yet in a more efficient manner. Therefore, the need for orthogonalizing
R is considered a bottleneck, especially if 𝑑 is high. Indyk and Motwani [22] significantly improved the
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computational complexity by drawing the entries 𝑟 of R from a normal distribution with 0 mean and
variance, which is equivalent to scaling a matrix R with 𝑟 ∼ 𝒩(0, 1) with √ . Scaling R this way makes
it orthonormal on expectation. The higher 𝑑 gets, the closer the resulting projection matrix approaches
orthonormality. Technically speaking, R is only a projection matrix if it is strictly orthogonal, which ob-
viously is not the case if it is orthogonal on expectation. For the sake of simplicity we ignore this for
the remainder of this work, and slightly abuse terminology by referring to this approximately orthogonal
linear mapping as an approximately orthogonal linear projection.

Following the desire of relaxing the necessity conditions for R as posed by Johnson and Linden-
strauss, Achlioptas [4] noticed that the spherical symmetry condition of R could be dropped as well.
Instead of sampling all entries from Gaussian distributions resulting in dense but spherical symmetric
projection matrices, we might as well sample from the simple distribution {−1,+1} where each element
is drawn equally likely. The operations needed to project X onto R then solely consist of summations
and subtractions, which speeds up the computations. Another significant contribution by Achlioptas is
the proposal of sampling the entries from a sparse distribution {−1, 0, +1}. In that case, we can store R
as a sparse matrix saving storage, where the number of operations needed to be done to project data
points would be reduced at the same time.

Several improvements and (advanced) alternatives for R followed [7, 14, 26, 27], resulting in even
lower storage requirements, less projection vectors required or mathematical operations needed. It
depends on the structure of the data set at hand whether such more efficient (possibly sparse) random
projection methods properly preserve its pair-wise distances. For example, if the data set is sparse, a
sparse random projection matrix might not properly preserve pair-wise distances [36].

3.2. Fundamental building blocks
As we do not assume a certain structure on the data stream, we simply adopted the conventional
dense Gaussian version for R with entries 𝑟 ∼ 𝒩(0, 1) which was shown to be suitable for differently
structured data sets. To bypass the expensive orthogonalization procedure, we scale our matrix as
proposed by Indyk and Motwani [22]. Even though it often is not made explicit, it is important to scale

the resulting projection with an additional factor √ if one is concerned with preserving the original
pair-wise Euclidean distances [10]. The reason behind this, is that the norms of the projections are

down-scaled to √ ‖x ‖ on expectation. To compensate for this effect, we could project x following

x = √𝑑𝑘
1
√𝑑

Rx . (3.2)

It is not hard to imagine that we could simplify this by scalingR directly with √ , which indeed seems
to be a nice short-cut. The use of this short-cut as being interchangeable with the scaling factors used
in equation (3.2) can be found scattered throughout the literature [4, 8, 18]. Aside from the literature,
this scaling method is frequently implemented by default in toolboxes such as scikit-learn [1]. We
could blindly adopt this short-cut scaling method, but the success of our reconstruction-based method
strongly coheres with the way projection matrix R is constructed. It also seems important to question
to what extent we can use a projection matrix that is only orthonormal on expectation in order to use
the cheap reconstruction method as in equation (2.5).

To evaluate these aspects of our method, we started investigating both scaling options to see if, and
how well, they preserve the pair-wise Euclidean distances compared to a strictly orthonormal projection
basis. To do so, we used a random data set of size 𝑛 = 997 by 𝑑 = 300. Figure 3.2 shows how both
scaling methods evidently result in the same distortion fraction of the pair-wise Euclidean distances.
In addition, it can be seen that this data set could be qualitatively represented in a subspace of lower
dimensionality than empirically found sufficient for most data sets as in [36]. Finally, from this figure we
can conclude that both scaling methods approach the distortion of the pair-wise distances as resulting
from the strictly orthogonal projection matrix.
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Figure 3.2 Distortion of pair-wise distances obtained by the different projection matrices and the bound on from
( log( )) [36].

However, in order to make the cheap reconstruction method as in equation (2.5) possible, the ap-
proximately orthogonal projection vectors in R must be of unit length as well. To that end, figure 3.3
shows that the average norm of the projection vectors with scaling factor √ is on expectation equal to

√ instead of 1. The norm of this projection matrix only approaches 1 if 𝑘 approaches 𝑑. This implies

that √ R √ R ≉ I with 𝑟 ∼ 𝒩(0, 1). Hence, we cannot use this short-cut in our method.
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Figure 3.3 Average norms of the projection vectors for ranging from to .

Two questions remain open ended. First, how well can we reconstruct a projected vector using the
cheap reconstruction method (taking the transpose R instead of the inverse R ) from a projection
matrix that is only orthonormal on expectation? Going from the following observations:

• the pair-wise Euclidean distances preserved are almost equal to the distances preserved using
strictly orthogonal projection vectors as shown in figure 3.2,

• the average norms of the 𝑘 projection vectors are very close to 1 for 𝑘 = 1 already, and

• the product √ R √ R approximates I closely,

it might depend on the choice for 𝑘 and the original dimensionality 𝑑, but we have confidence it will
bring the desired reconstruction results in most cases. Therefore, we will scale R with 𝑟 ∼ 𝒩(0, 1)
by the factor √ resulting in orthonormality only on expectation, but still use the cheap reconstruction
method.
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The final unanswered question is whether we should care about the norm of the projection x being

scaled down with √ on expectation? If so, at what point should we then scale it back with √ ? For
separability purposes it does not make a difference if the reconstruction approaches the original data
point or not as also noted in [18]. Yet, for our method it is an important consideration as we actually
use the difference between the reconstruction of x as well as the original data point x to derive the
outlier scores.

First, let us determine where scaling with √ would be in place. If we would scale the projection
x of x before reconstruction, we basically reconstruct a transformed version of the original projection.
For the sake of proper reconstruction, we need x to be the original projection of x . Therefore, the
reconstruction x̂ of x should be scaled instead, to obtain a reconstruction of which the norm (‖ ̂x ‖) ap-
proximates the norm of the original data point (‖x ‖). To illustrate the effect of scaling the reconstruction
back, figure 3.4 shows the difference between an example time series x , its unscaled reconstruction
and scaled reconstruction1.
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Figure 3.4 Effect of scaling the reconstruction back with √ .

As can be derived from this figure, whether back-scaling improves our model for detection purposes
is tightly associated with the type of outliers to be found in the data. Starting with global point outliers
it seems better to use the unscaled reconstruction, as we will discriminate outliers that are far from the
model by making use of the squared Euclidean distance between x and ̂x . So, in that case we do
not want our model to be closer to the original values as results from scaling the reconstructed version

back with √ . This becomes clear if we consider the time series as in figure 3.4 and imagine a global
point outlier appearing around 𝑖 = 500 (e.g. its value is around 2 instead of 1.5). Then the squared

Euclidean distance between x and √ x̂ would be smaller compared to all normal data points instead
of larger. The unscaled reconstruction does not suffer from this.

On the contrary, to find contextual outliers we want a model close to the original and hope it is
indeed very close to the original without modelling any outliers. Considering the same example at
𝑖 = 500 but instead with its value around 1 instead of 1.5. We would be better off back-scaling the
resulting reconstruction as we get a higher squared Euclidean distance between the model and the
original point for contextual outliers. As the success of back-scaling might depend on the data at hand,
we assessed its actual influence on the outlier detection performance experimentally in chapter 4.

Beside the influence of the scaling factors on the outlier detection performance, our lower-dimensional
representations and reconstructions are close to themean and average range of all time series together.
This implies that our method is sensitive to the mean and range of the input data. Hence, it is prefer-
able to estimate the mean (and possibly standard deviation) of the different time series online to correct
for this effect. As such online parameter estimations might not be accurate enough, we analysed the
performance for standardized data such that each time series has 0 mean and unit variance, and data
of which the means and ranges are approximately equal.
1The presented time series is just out of time series with random phase, amplitude, offset and noise, which causes the
misalignment between the original and its reconstructions.
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3.3. The proposed method
Altogether, the mathematical procedures to compute the projection, reconstruction and outlier score of
a data point x online are quite similar to the procedures presented in chapter 2. That is, we obtain our
projection by

x = 1
√𝑑

R x (3.3)

where R is the random coefficient matrix of size 𝑘×𝑑 with entries 𝑟 ∼ 𝒩(0, 1). Then the projected data
point x is easily reconstructed to its original dimensionality 𝑑 using

x̂ = 1
√𝑑

R x (3.4)

where R is used instead of the inverse R as we have
1
√𝑑

R
1
√𝑑

R ≈ I. (3.5)

Finally, as mentioned in the previous section, it depends on the data (and outliers) and the quality
of the projections and reconstructions if back-scaling results in a more accurate model close to the
original data point. For the sake of completeness, if one wants a reconstruction closer to the original
data point, we need to scale the reconstruction by

x̂ ← √𝑑𝑘 x̂ (3.6)

The outlier score 𝑂 is computed similarly as in equation (2.3). Each outlier score should then be
converted to an actual binary label (e.g. 0 for normal data points and 1 for outliers). To do so, a
threshold 𝜃 should be set such that if 𝑂 ≤ 𝜃 the corresponding data point is labelled as normal else
as an outlier. Eventually, we want 𝜃 to minimize the error between all the predicted and actual labels2.
Algorithm 3 presents the final algorithm we propose.

Algorithm 3 RP
Input data point x of size 𝑑 × 1
Input number of projection vectors 𝑘
1: if 𝑖 = 1 then
2: Generate R of size 𝑘 × 𝑑 with entries 𝑟 ∼ 𝒩(0, 1)
3: end if
4: Project x on R by x = √ R x
5: Reconstruct x to x̂ = √ R x
6: if approximate norm preservation is desired then

7: Scale reconstruction back x̂ = √ x̂
8: end if
9: 𝑂 = ‖x − x̂ ‖
Output outlier score 𝑂

To deploy the RP method for outlier detection in multivariate time series, we just need to generate
R once at the start of the stream X. From there, we only need 2 matrix-vector multiplications resulting
in a runtime of 𝒪(𝑘𝑑) per data point as well. Though it seems close to 𝒪(𝑘 𝑑), it depends quadratically
on 𝑘 and the constant hidden in this upper bound associated with SPIRIT is higher. If we consider,
for instance, algorithms 2 and 1 it becomes clear that SPIRIT conducts more matrix-vector multiplica-
tions to update the principal coefficient matrix W than needed with the RP method. In chapter 4 we
experimentally explored the behaviour of the runtime of SPIRIT for varying values of 𝑑 and 𝑘.

2Misclassified outliers might be more costly than misclassified normal data points or vice versa, therefore actually optimizes
the weighted balance between these two. This is explained in chapter 4.



4
Analysis

In this chapter we analyse the performance of the RP method for online outlier detection in multivariate
time series. We explain the analysis setup in section 4.1, after which we providemore insight in the inner
working of the RPmethod in section 4.2. In section 4.3 we analyse the method under varying parameter
settings. We also investigate the influence of back-scaling for different types of outliers. In section
4.4 we explain how we use the method in a slightly different manner, and analyse its performance
accordingly. Section 4.5 presents the performances under fixed parameter settings to assess both
uses of the method in online mode. Section 4.6 concludes with a summary of the key findings.

4.1. Analysis setup
In this thesis, we focus on the task of online unsupervised outlier detection in multivariate time series.
We discussed the most important challenges imposed by this task in table 1.1. The central objective of
this analysis is to assess the applicability of the proposed method given these challenges. To that end,
we translated them into a set of evaluation criteria which we, in turn, linked to measurable performance
metrics to guide this analysis and the real-world experiments following in chapter 5. This translation is
presented in table 4.1.

In the remainder of this section we explain the synthetic data and performance metrics used for the
analysis. Obviously, a method can be optimized such that it evaluates very well given one criterion, but
performs horrible given another. Therefore, we make up a qualitative comparative judgement on the
criteria all together in section 4.6.

Table 4.1 Evaluation criteria for this analysis and the real-world experiments in chapter 5.

Challenge Evaluation criterion Performance metric

The algorithm must assign label 𝑂 Time needed to process data points Runtime performance.to data point x before receiving x
The algorithm should only need a limited Dependence on history of stream Number of preceding
history of the data to infer its model data points 𝑝 needed.
The algorithm should run unsupervised Amount of prior information needed Number of parameters.
The detection performance should not be Sensitivity of detection performance to Detection performance.too sensitive to the (fixed) parameters parameters

The analyst should have an idea Generalizability of performances to Stability of detection and
of the data and outliers at hand (un)standardized and different data sets runtime performance.
The algorithm should be able to detect Generalizability of performances to Stability of detection
global and contextual outliers different outlier types performance.

The algorithm should be able to find Influence of 𝑑 and 𝑛 on detection Scalability of detection
outliers in high-dimensional data performance performance.
Algorithms should scale in computational Influence of 𝑑 on runtime performance Scalability of runtime
complexity with increasing 𝑑 performance.
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4.1.1. Data
As limited qualitative labelled data sets are available that fully meet the conditions of the considered
problem context, we turned to artificial data sets for the in-depth analysis of our method. An assessment
of the RP method on real-world data follows in chapter 5. We kept the structure in our data simple by
generating just 60 time series of length 981 from sinusoidal functions each with a different phase (sine
or cosine), additional random misalignment (𝜑), amplitude (𝐴) and offset (𝐶). We also added a time-
depending noise term 𝑁 to avoid smooth time series. The specific function underlying each time series
in our artificial data set is as follows

x(𝑡) = {
𝐴 sin(𝑡 + 𝜑) + 𝐶 + 𝑁 with probability

𝐴 cos(𝑡 + 𝜑) + 𝐶 + 𝑁 with probability ,
(4.1)

with 𝑡 from 1 to 50 with an interval of 0.05, 𝐴 ∼ 𝒰(1, 3), 𝜑 ∼ 𝒩(0, 1), 𝐶 ∼ 𝒰(0, 1) and 𝑁 ∼ 𝒩(0, 0.05).
From this point onwards, we refer to each time step 𝑡 with integer values 𝑖 from 1 to 981. Like in
many real-world applications, the distinct time series have a different range and not necessarily 0
mean. Online procedures are available to standardize the time series to 0 mean with unit variance, of
which a common method is discussed in section 4.4. In practice such online methods do not perfectly
standardize the data over the entire stream. Therefore, to analyse the random projection method in
a realistic setting we introduced the offset term 𝐶. The analysis results with standardized data are
presented and discussed in the appendix A.

We created 3 distinct copies of the resulting 60×981 clean data set and injected each data set with
either global point outliers, contextual point outliers or contextual collective outliers. First, we randomly
sampled 6 distinct subsets of 12 (out of 60) time series, where we injected 1 of the 3 outlier types in
each pair of 2 subsets. The global point outliers were created by multiplying 6 random sequences of 3
data points with an arbitrary large factor of 1.5, i.e. {x̃ , = 1.5 x , ∶ 𝑖 = 1, 2, 3} with 𝑗 the time series from
the respective subset. The contextual point outliers were obtained by multiplying 6 random sequences
of 3 data points with a small enough factor of 0.1, i.e. {x̃ , = 0.1 x , ∶ 𝑖 = 1, 2, 3}. The collective outliers
were obtained by replacing 4 random sequences of 15 data points with the values at the first time step
of that time series 𝑗, i.e. {x̃ , = x , ∶ 𝑖 = 1, 2, ..., 15}. The outlier characteristics are summarized in table
4.2.

Table 4.2 Summary of the outliers in the synthetic time series.

Outlier type # responsive # outlying Feature value
time series data points of time series 𝑗

Global point 2 subsets of 12 6 ⋅ 3 = 18 x̃ , = 1.5 x ,
Contextual point 2 subsets of 12 6 ⋅ 3 = 18 x̃ , = 0.1 x ,
Contextual collective 2 subsets of 12 4 ⋅ 15 = 45 x̃ , = x ,

Parts of 3 of the 60 resulting time series with the different outlier types are shown in figures 4.1
to 4.3. Clearly, we have correlating and stationary time series what might be different in real-world
applications. In chapter 5 we assess and compare the performances on (more) realistic data.
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For outlier detection in multivariate time series a sliding window is often implemented to not only look
at a single data point x to derive its outlier score, but look at x given its history of length 𝑝. This way
we might be better in detecting interruptions of the temporal continuity exhibited in stream X. Applying
a sliding window, therefore, particularly benefits commonly used methods to detect contextual outliers.
A sliding window can be established by just concatenating each x ∈ ℝ with its 𝑝 previous values
x ,x , ...,x resulting in x ∈ ℝ ⋅ . Technically this translates to classifying sequences of 𝑝 data
points instead of single data points, but as the window slides only 1 step further we can interpret this
as classifying x given its previous 𝑝 values. Each window x ∈ ℝ ⋅ is labelled as outlier if at least one
of the data points x , ...x ∈ ℝ is an outlier. We end up with (𝑛 − 𝑝 + 1) data points in each data set.

For this analysis we considered window lengths of 1, 5, 10 and 15, where 𝑝 = 1 reflects the original
data set where no sliding window is implemented and we classify the single data points. In short, we
obtained data sets of sizes as in table 4.3.

Table 4.3 Dimensionality of data sets with sliding windows.

Original Window length 𝑝 Resulting
dimensionality dimensionality

60 × 981
1 60 × 981
5 300 × 977
10 600 × 972
15 900 × 967

4.1.2. Performance metrics
Runtime performance
Even though we already provided the upper bounds for the runtime complexity of the methods we
also investigated their runtime in practice. This enables us to investigate the runtime behaviour of the
algorithms for different settings of the parameters. We do not interpret the actual time that it takes to
run the algorithms as that depends on machine configurations and is not in our interest, we merely use
it as a mean to see how methods compare to each other. For all experiments we measured the time it
takes before a method has computed the outlier scores for all x ∈ X. We used built-in functions tic
and toc of Matlab which measure the wall-clock runtime time, i.e. the actual time it takes to execute
all operations between commands tic and toc.

Number of parameters and preceding data points needed
The amount of prior information incorporated in a method is preferred to be minimal in order to make it
generalize well to an unseen (and dynamically changing) data stream. The more parameters a method
has, the more prior information is needed or guesses have to be made by the analyst to set them prop-
erly. Hence, the number of parameters needed to deploy a method seemed to be a good indicator of
the prior information consumed by it. Altogether, this could make a method suffer from poor generaliz-
ability. The number of parameters might however be a bit more nuanced than just being a number. If
the analyst has a good idea about a suitable parameter setting before running the system, the number
of parameters might not be as critical after all. The impact of this performance metric also strongly
coheres with the sensitivity of the detection performance to the parameters.

The number of historic data points needed to process the current data point, if needed at all, by an
online method is also considered an important metric. Beside the possible effect on the runtime, it also
requires memory storage which is intended to be minimized. As already explained, we created data
sets to imitate a sliding window in a data stream. The length 𝑝 of such a sliding window directly reflects
the number of historic data points used. Methods that need a large value for 𝑝 are less in favour than
methods that only need little or no history of a data stream.

Detection performance
To assess outlier detection methods it is important to realize we are dealing with imbalanced classes.
That is, the class of outliers is often much smaller than the class of normal data points. In class-
imbalanced situations just taking the ratio of correctly classified data points out of the entire stream
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does not reflect the detection performance of the method if we want to detect outliers. For example,
if we have a classification problem with 95 normal data points and 5 outliers, classifying all outliers as
normal data points already results in an accuracy of 95%. But in that case, we ignore all the outliers
we actually wanted to detect with the outlier detection method.

Instead of simply counting each misclassified data point regardless of whether it is an outlier or
normal data point, we separate these counts and refer to outliers as ‘positives’ and the normal data
points as ‘negatives’. Then, a correctly classified outlier is a true positive (TP) and a normal data point
classified as an outlier a false positive (FP). Correctly classified normal data points are referred to as
true negatives (TN) and outliers classified as being normal as false negatives (FN). Eventually we want
to find a balance between the number of TP’s, FP’s, TN’s and FN’s. For outlier detection methods
important metrics that reflect this balance are the True Positive Rate (TPR) and False Positive Rate
(FPR) as in equation (4.2).

TPR = TP
P , FPR = FP

N (4.2)

The TPR reflects the fraction of true detections, i.e. the correctly labelled outliers, over the full
number of outliers present in the data. The FPR reflects the fraction of false detections, i.e. the incor-
rectly labelled normal data points, over the full number of normal data points in the data. The trade-off
between these two metrics is found interesting for outlier detection [37]. As we do not implement a
threshold method, our method does not output a final label 0 for normal data points and 1 for outliers.
To that end, we use the Receiver Operating Characteristic (ROC) to inspect the possible balances be-
tween the TPR and FPR. The ROC curve computes this balance for all possible thresholds given the
outlier scores assigned to the data points. An example of an ROC curve is given in figure 4.4. Each
point on this curve represents a possible balance between the TPR and FPR associated with a fixed
value for the threshold 𝜃.
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Figure 4.4 Example Receiver Operating Characteristic (ROC) curve.

Ideally we would have a TPR of 1 against an FPR of 0, so we favour methods that result in curves
that are closest to the upper left corner. However, for different applications, a different balance between
these two criteria is desired. As we do not focus on a particular application and so we do not have a
specific desire for this balance, we prefer a neutral comparison metric to compare different ROC curves.
The Area Under this (ROC) Curve (AUC) provides us the means to do this and also makes numeric
comparison easier. The AUC is said to reflect the probability of a randomly selected pair of data points,
of which each belongs to the opposite class, will be correctly classified in the sense that the outlier
is assigned with a higher probability of being an outlier and vice versa [21]. Therefore, the AUC also
enables interpretation of the ROC curves.

The disadvantage of evaluating the detection performance of our online methods with the ROC and
corresponding AUC, is that each operating point is based on the same threshold for all outlier scores
and thus data points. This possibly yields a biased reflection of the actual detection performance [29].
That is, the actual threshold is not learned from all outlier scores on forehand and would probably be
adaptive in our problem context. A commonly used threshold is the 3𝜎-rule which assumes outliers to
have scores of 3 standard deviations from the mean outlier score [37].
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4.2. The inner working of the RP method
In chapter 3 we presented two reconstructions (with and without back-scaling factor √ ), and the
corresponding original time series. This example was chosen to illustrate the effect of back-scaling, but
only reflects the inner working of our method to a limited extent. Before we continue with analysing the
performance of the proposed method, we first present a more thorough explanation of what it actually
does. We do so for the original time series with means close to 0, and their standardized versions which
have exactly 0 mean and unit variance. Furthermore, we deployed the method without back-scaling,
as we have taken the data set with global point outliers for this example.

Figures 4.5 to 4.8 illustrate the entire procedure of the RP method from original time series to the
derivation of outlier scores. All figures at the left correspond to the unstandardized time series, where
the right-hand side corresponds to the standardized time series. Starting with the original input in figure
4.5, note that instead of all 60 time series we only show a subset of 12 which were injected with global
point outliers to avoid occlusion. Yet the RP method was deployed with all 60 time series of length 981
as input.
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Figure 4.5 Original unstandardized (left) and standardized (right) subset of time series.

Each of these 981 60-dimensional data points are then projected one by one onto a 𝑘-dimensional
projection basis, where for visualization purposes we have set 𝑘 to 1 for this example. Figure 4.6 shows
the resulting 1D projection of the 60D time series.
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Figure 4.6 Projections of the D unstandardized (left) and standardized (right) time series to D.

The principal sinusoidal behaviour can be clearly seen in both projections. We can also still see
reflections of the outliers in the resulting projections at for instance 𝑖 ≈ 500. The obtained projections
are reconstructed to what is shown in figure 4.7. Logically, the reconstructed time series all are in-phase
with the 1D projection. This causes the original time series and their reconstructions to be out-of-phase,
resulting in misalignment. Again, to avoid occlusion figure 4.7 only shows a subset of 12 time series
out of the 60 input time series.
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Figure 4.7 Reconstructions of unstandardized (left) and standardized (right) subset of time series.

The consequence of our misaligned reconstructions can be clearly recognized in the obtained out-
lier scores as shown in figure 4.8. Also note that the means of the reconstructed unstandardized time
series are closer to 0 than the means of the original time series, while the means of the reconstructed
standardized time series remain 0. Due to the larger difference in mean and range between an unstan-
dardized time series and its reconstruction, we might be unlucky and not find the global point outliers
at 𝑖 ≈ {170, 330, 570}, as shown at the left-hand side of figure 4.8. If we standardize the data we do not
suffer from this as shown at the right.

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

Figure 4.8 Outlier scores of unscaled (left) and scaled (right) time series.

For contextual point and collective outliers we have exactly the same results up to the outlier scores.
That is, due to the contextualness of these outlier types, the original time series at those time steps are
likely closer to the reconstructed data points, as explained in chapter 3. Back-scaling in some cases
resolves this problem, but certainly not always as will become clear in section 4.3. Finally, it is important
to realize that the RP method relies on the correlation among the different time series. To that end, the
RP method does not find outliers that cause all time series to show significant deviations considering
their normal behaviours. This certainly is a limitation of the method.

4.3. A bird’s-eye view
In this section we focus on the behaviour of the detection and runtime performances of the RP method
and its baseline SPIRIT under varying parameter settings. We investigated these behavioural proper-
ties for the 3 different outlier types, window lengths 𝑝 = {1, 5, 10, 15}, and for the number of projection
vectors 𝑘 from 1 to 25. For SPIRIT we have the forgetting factor 𝜆 as additional parameter which we
have set to 0.97 being within the typical range of [0.96, 0.98] [31]. We also used these experiments to

determine the influence of back-scaling with factor √ on the detection performance. Therefore, we
ran all experiments in this section with both versions of the RP method: with and without back-scaling.
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Figure 4.9 Detection performances of global point outliers with from to and { , , , }.

Starting with figure 4.9, we present the detection performances for global point outliers. It becomes
clear that the AUC of SPIRIT is very sensitive to the number of projection vectors (𝑘) used, as expected.
SPIRIT yields a clear peak in AUC at 𝑘 = 3 where the AUC is 1 regardless of the sliding window size,
which translates to a 100% chance of correctly labelling a randomly selected pair of a normal data point
and an outlier. Yet the AUC drops at a high rate after adding more projection vectors. Considering the
performance without a sliding window (𝑝 = 1), the AUC even drops from 1 to 0.1 between 𝑘 = 3 and
𝑘 = 5 which implies that the 4th and 5th principal components align well with the outliers. The detection
performance of the RP method with and without back-scaling is relatively insensitive to the number
of projection vectors 𝑘 and results in an AUC around 0.9 irrespective of 𝑘. The RP method without
back-scaling reaches an AUC slightly higher and more stable than with back-scaling, as was expected.
The RP method basically benefits from the power of the squared Euclidean distance to emphasize very
large reconstruction errors (from outliers) in contrast to ‘just’ large reconstruction errors (corresponding
to normal data points).

Clearly, the advantage of stability is therefore on behalf of the random projection methods. If we
would know on forehand what a proper 𝑘 would be for the entire stream, SPIRIT has potential to yield
a very high AUC. Unfortunately it is often unknown what to expect, where the behaviour of systems is
likely not as stable as our synthetic sinusoidal time series. Even if we could make an educated guess to
what a sufficient value for 𝑘 might be, if reality deviates a little from our guess we might completely miss
the principal behaviour or reconstruct our outliers better. Implementing SPIRIT with a sliding window
makes the performance less sensitive to 𝑘, which might be sufficient to get a generally well performing
method. The RP method does not benefit from a window, and even makes it perform worse.

Though we only based our expectations regarding the effects of back-scaling on loose reasoning,
scaling x̂ back to approximate the data point its original norm results in a less stable and often worse
performance compared to its not back-scaled counterpart. Another difference between the two variants
of the RP method we would like to emphasize, is that the AUC of the method without back-scaling
slightly decreases whenmore projection vectors are added in contrast to its scaled version. Throughout
all (preliminary) experiments with this method, we remarkably found that for the RP method without
back-scaling taking 𝑘 = 1 on average performs better than taking 𝑘 = 2 or 𝑘 = 3, etcetera, regardless
of the data at hand. We elaborate on this observation in more detail in section 4.4.
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When it comes to comparing runtime performances, the proposed method outperforms SPIRIT
heavily. Figure 4.10 shows the runtime performances associated with the discussed detections. We
are confirmed that even for 𝑘 = 1 SPIRIT runs twice as slow as the random projection method. This
reveals the difference in the hidden constants behind the upper bounds on the computational complexity
of the RP method and SPIRIT. That is, for 𝑘 = 1 we have no influence of the quadratic factor on the
runtime of SPIRIT, yet its runtime is twice as high as from the RP method. Therefore, its upper bound
is closer to 𝒪(2𝑘 𝑑) compared to 𝒪(𝑘𝑑) of the RP method.
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Figure 4.10 Runtime performances of global point outliers with from to and { , , , }.

From figure 4.11 (left) it becomes clear that the RP method is less successful for finding contextual
outliers. For contextual point outliers (left) it even results in stable AUC’s around 0.3, making it perform
worse than random guessing the labels of a randomly selected pair of a normal data point and an
outlier. Contextual collective outliers (right) are only detected a little better than random guessing. The
remaining patterns compared to SPIRIT are quite similar to the observations made previously.
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Figure 4.11 Detection performances of contextual point and collective outliers with from to for .

This poor performance is a direct consequence of the feature values of such outliers, which in
most cases are closer to the reconstructed model than the remainder of the data points. This effect is
illustrated in figure 4.12 for the reconstruction with the RP method with and without back-scaling, where
we used 15 projection vectors and no sliding window. In this example the outliers are also reconstructed
relatively good which is an undesired outcome as well.
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Figure 4.12 Reconstruction of a time series with contextual outliers with projection vectors.

The squared Euclidean distances between the reconstructions of outliers and their original values
are then typically smaller, resulting in reconstruction errors lower than or equal to the reconstruction
errors of normal data points. Back-scaling does play an important role for finding contextual outliers as
the model behaviour is then more often closer to the original behaviour, as can be derived from figure
4.12 as well. However, scaling the reconstructed data point back does not significantly improve the
detections which becomes clear from the AUC’s in figure 4.11.

The detection performances associated with window lengths 𝑝 = {5, 10, 15} can be found in ap-
pendix A. From these experiments, we found that a sliding window only helps a little for the detection of
contextual outliers. Yet we need a window length 𝑝 of approximately 15 data points to obtain an AUC
around 0.5 for contextual point outliers. As the runtime performances are independent of the type of
outliers in the data, the runtime performances are similar to what has been shown in figure 4.10 and
therefore are not presented.

With or without back-scaling and adopting a sliding window or not, deriving outlier scores from re-
constructions from random projections does not have a high potential for contextual outliers.

In short, we observed the following from this analysis:

• The RP method performs competitive AUC-wise when the outliers are global, but SPIRIT is more
successful in finding outliers of all three types.

• The RP method without back-scaling results in a less accurate model of the original data but
yields a more stable performance for all outlier types. The back-scaled version, however, is
slightly better at detecting contextual outliers.

• The detection performance of the RP method is stable for varying number of projection vectors 𝑘
and often obtains its optimal performance for 𝑘 = 1. Therefore, taking 𝑘 = 1 would be a generally
safe option making this method parameter-free.

• The detection performance of SPIRIT is highly sensitive to the number of projection vectors 𝑘.
• The RP method does not benefit from a window and by default does not exploit temporal relations
over time.

• SPIRIT benefits from a window as it reduces its sensitivity of the detection performance to 𝑘.
• The runtime of the RP method is low and only linearly depending on 𝑘.
• SPIRIT is tractable if the data is highly correlated or low dimensional due to the low number of
projection vectors needed in those cases. If more vectors are needed to explain the desired
variance, this method becomes expensive as its runtime quadratically depends on 𝑘.

Two observations are particularly interesting: the RP method yields very poor results for contextual
outliers, but reaches its optimal operating point for 𝑘 = 1. In the next section we elaborate more on
these conclusions.
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4.4. Detecting contextual outliers
Contextual outliers are most often misclassified if we assign outlier scores as in algorithm 3. This is
caused by the feature values of such outliers, which are closer to the values of the reconstructed data
point. This results in a lower reconstruction error than for normal data points, hence resulting in AUC’s
lower than 0.5. Missing them can be critical for outlier detection in multivariate time series as contextual
outliers might appear in the data.

One solution to detect the contextual point outliers more accurately is by taking the inverse of the
outlier scores ( ) such that the labels are reversed. Doing so would not significantly affect the runtime
performance. However, it would obviously not be effective for finding global point outliers, or contextual
collective outliers for which the AUC’s then will be lower than 0.5. We could take the maximum of the
combination of the original outlier scores and their inverses instead. Unfortunately, we would not get
an AUC higher than around 1 − 0.3 = 0.7 this way for contextual point outliers.

Another observation was that we often detect outliers better with only one projection vector than
when we use multiple, regardless of the type of outliers. That is, the RP method yields on average its
optimal AUC with 𝑘 = 1 and therefore is higher than with 𝑘 = 1 + Δ. Recall, that we assign outlier
scores directly from reconstruction errors. Linking this to our observation, it can be concluded that we
can separate outliers from normal data points worse by their reconstruction errors, when we increase
the number of projection vectors 𝑘. This would imply that the outliers are reconstructed better at a
faster rate than normal data points are after adding a random projection vector to the projection matrix.
This brings us to the formulation of hypothesis 2.

Hypothesis 2. For 𝑘, Δ > 0, let X be an arbitrary data set of size 𝑑 × 𝑛 with sufficiently correlated
features. Then with high probability we have for all x ∈ X:

|ℰ ,normal − ℰ ,normal| < |ℰ ,outlier − ℰ ,outlier|

with ℰ ,x the reconstruction error of data point x obtained with the RP method.

Though it would be interesting to formally prove hypothesis 2, in this thesis we focus on exploiting
it to find contextual outliers besides global outliers. But, how can we do this? Going back to the
fundamental objective of outlier detection methods, we aim at assigning higher outlier scores to outliers
than to normal data points. Such a relation between normal data points and outliers follows directly
from our hypothesis. If hypothesis 2 holds and we compute the outlier scores as

𝑂 ← |‖x − x̂ ‖ − ‖x − x̂ ‖ |, (4.3)

we would get higher outlier scores for outliers than for normal data points.
Unfortunately, this introduces two drawbacks. First, we might end up projecting in such a way that we
reconstruct our outliers better which happens with an unknown probability. To avoid these occurrences
we can rely on taking the maximum of 𝑚 distinct predictions for 𝑂 . Sadly, this introduces a parameter,
𝑚 the number of predictors and increases the runtime.

Second, the resulting reconstruction errors are likely in a different range. This issue can be resolved
by standardizing the reconstruction errors obtained with 𝑘 and 𝑘+Δ projection vectors. By standardizing
the outlier scores of the predictors, they get 0mean and unit variance. It is not tractable to keep a large
window of the stream in memory to compute the mean and standard deviation at each time step 𝑖,
which also would introduce this window length as an additional parameter. Therefore, we only track a
few scalars estimating these statistics following equations (4.4) to (4.6), for which thorough derivations
can be found in [17].

𝜇 = 𝜇 + z − 𝜇
𝑖 (4.4)

𝑆 = 𝑆 + (z − 𝜇 ) (z − 𝜇 ) (4.5)

𝜎 = √𝑆𝑖 (4.6)
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Note, that these equations only reflect the estimation of the mean and standard deviation of one
outlier score vector z over time. However, we also need to standardize the set of𝑚 predictions for each
data point over time (Ostand, ), so we have 𝑚 such means and standard deviations for this set over
time. We refer to the low-cost online standardization procedure as stand(z ). The resulting adjusted
interpretation of outlier scores generated by the RP method is summarized in algorithm 4. We refer to
this interpretation as ΔRP.

Algorithm 4 ΔRP
Input data point x of size 𝑑 × 1
Input number of predictors 𝑚
1: Initialize set of predictors Ostand, as ∅
2: for 𝑗 in 𝑚 predictors do
3: 𝑂 , ← RP(x , 𝑘 = 1)
4: 𝑂 , ← RP(x , 𝑘 = 2)
5: Add stand(|stand(𝑂 , ) − stand(𝑂 , )|) to Ostand,
6: end for
7: 𝑂 =max{Ostand, }
Output outlier score 𝑂

As we are particularly interested in the detection performance of ΔRP with respect to contextual
outliers, we illustrate the inner working of this method bymeans of the data with contextual point outliers.
Again, we only show a subset of 12 time series instead of all 60 time series to avoid occlusion. Figure
4.13 shows the time series we focus on throughout this example in the context of these 12 time series.
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Figure 4.13 Original subset of time series with contextual outliers.

The original 60 time series are then projected once into 1 and once into 2 random directions with
the default RP method as formulated in algorithm 3. Figure 4.14 shows the resulting 1D (left) and 2D
projection (right). The figure corresponding to the projection with 𝑘 = 2 (right) illustrates how projecting
the data into two approximately orthogonal directions likely yields a better reconstruction of the outliers
than when projecting in only 1 random direction.
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Figure 4.14 Projections of RP with (left) and (right).
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Figure 4.15 (left) shows what happens when we reconstruct the projections from the 1D and 2D
projections. Despite the misalignment caused by the distinct random directions, it becomes clear that
the reconstruction of the outlier around 𝑖 = 500 with 𝑘 = 2 is much closer to the original data point
compared to 𝑘 = 1 which shows a high peak around 𝑖 = 500. This in turn results in a larger absolute
difference between the two reconstructions of the outlier obtained with 𝑘 = 1 and 𝑘 = 2 than between
the reconstructions of the normal data points surrounding this outlier (right).
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Figure 4.15 Example reconstructions of time series with and (left) and corresponding absolute difference (right).

As we have one (other) parameter to set for ΔRP,𝑚 the number of predictors for 𝑂 , we can observe
its performance for𝑚 from 1 to 25 against SPIRIT for which we observe its performance for the number
of projection vectors 𝑘 from 1 to 25 as well. This analysis has also been conducted on the standardized
data of which the results are presented and discussed in appendix A. Figure 4.16 shows the results of
the experiments for detecting global point outliers.
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Figure 4.16 Detection and runtime performances of global point outliers with and from to for { , , , }.

Comparing these performances with the results as shown in figure 4.9, it can be concluded that ΔRP
yields, on average, a better detection performance than following the RP method as in algorithm 3. For
this data set we do need a relatively large number of predictors to approach the optimal performance
of SPIRIT. However, ΔRP likely outperforms SPIRIT when deployed in online mode as the accurate
number of projection vectors 𝑘 is unknown on forehand, while SPIRIT its detection performance is very
sensitive to 𝑘 and thus to the variance bounds.

Similar to the previous observations, the RP-based methods perform best without a window as its
optimal performance is, again, achieved for 𝑝 = 1. The performance of ΔRP can be considered more
sensitive than RP as it depends on 𝑚 what AUC is achieved. However, if we would take 𝑚 ≥ 5 we
would at least have an AUC of approximately 0.95 on average with a relatively small standard deviation,
while the performance of SPIRIT can be deteriorated if unlucky guesses for its parameters are made.
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The key point of our interest is the performance of ΔRP regarding contextual outliers. The detection
performances of the experiments for contextual point and collective outliers are shown in figure 4.17.
Since the sizes of the data sets are the same, the runtime performances are comparable to what is
already presented in figure 4.16.
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Figure 4.17 Detection performances of contextual point and collective outliers with and from to for { , , , }.

We can conclude that the random projection method detects contextual outliers much better when
comparing the outlier scores from runs with RP for 𝑘 = 1 and 𝑘 = 2 than the RP method. Only for the
contextual outliers we possibly need a larger set of predictors to approach the optimal performance of
SPIRIT. However, it is less sensitive to the number of predictors 𝑚 than SPIRIT is to the number of
projection vectors 𝑘.

4.5. RP and ΔRP in online mode
The experiments presented so far led to interesting observations regarding the potential and parameter-
sensitivity of the RP method, ΔRP and SPIRIT. In this section, we focus on the online performance
of these methods under realistic and fixed parameters. This analysis has also been conducted for
standardized data of which the results are presented and discussed in appendix A.

To observe the performance of the methods in online mode, we deploy SPIRIT in its adaptive mode
which approximates the number of principal components needed to explain most of the variance online.
This requires lower and upper bounds with respect to the explained variance that guide this online
adaptation of the number of components. For adaptive SPIRIT, we followed the suggestions from the
original paper [31] for 𝑓 ̂ and 𝐹 ̂ . The suggested bounds also resulted in a relatively good detection
performance while not being too tight and, therefore, biased towards the data sets. The RP method is
deployed with 1 projection vector, 𝑘 = 1, and for ΔRP we present the results for 𝑚 = 5 to ensure it has
a competitive runtime performance compared to SPIRIT. We did not apply a sliding window such that
𝑝 = 1 for all three methods. Table 4.4 summarizes these parameter settings.

Table 4.4 Parameter settings for the analysis in online mode.

Method Parameter Value

SPIRIT 𝜆 0.97
[𝑓 ̂ , 𝐹 ̂ ] [0.95, 0.98]

RP 𝑘 1
ΔRP 𝑚 5

Table 4.5 shows the results for the methods under these fixed parameter settings for the different
types of outliers. The presented results are averaged over 50 runs with distinct random projection
matrices. Bold numbers reflect the on average significantly better performances than the opponent(s)
according to the t-statistic1 [35].
1Technically we do not have a standard deviation for SPIRIT as it is a deterministic method, therefore, we took a negligible small
standard deviation to compute the t-statistic.
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Table 4.5 Online performances under fixed parameters.

Method
Global point Contextual point Contextual collective

AUC Runtime AUC Runtime AUC Runtime

SPIRIT 0.79 0.30(±0.1) 0.55 0.28(±0.07) 0.58 0.25(±0.06)
RP 0.90(±0.01) 0.01(±0.00) 0.28(±0.01) 0.02(±0.01) 0.57(±0.01) 0.02(±0.01)
ΔRP 0.95(±0.05) 0.21(±0.06) 0.71(±0.16) 0.21(±0.07) 0.71(±0.09) 0.22(±0.04)

From this table it can be concluded that all three methods detect the contextual point outliers worse
compared to the global point outliers, while PCA-based models in theory should be less sensitive to
such differences. Therefore, it seems likely that this is the consequence of outliers that are actually
harder to detect irrespective of the difference in global and contextual outliers. Aside from that, it
becomes clear that the default RP method is extremely fast compared to the other methods, while ΔRP
significantly improves over SPIRIT regarding the runtime as well. ΔRP outperforms both opponents
when it comes to the detection performance regardless of the outlier type.

The resulting balances between the TPR and FPR corresponding to the AUC’s in table 4.5 are
represented by the ROC curves in figure 4.18. It can be seen that ΔRP provides the more desirable
operating points for all types of outliers. That is, ΔRP yields on average a better balance between the
TPR and FPR for all possible thresholds as based on the outlier scores it generated. However, despite
the significantly lower AUC of SPIRIT, it does provide a comparable operating point for global point
outliers (left) if an FPR of 0.10 would be acceptable. The contextual outliers are harder to find for all
methods, though ΔRP and SPIRIT do a better job than the RP method.
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Figure 4.18 ROC curves of RP, RP and SPIRIT for the three general outlier types.

4.6. Conclusions
In this chapter we started with an analysis of the RP method and its performance in the context of unsu-
pervised online outlier detection in multivariate time series. To provide a more thorough understanding
of the method, we first showed what actually happens under the hood of the RP method. After gaining
these insights we focused, in particular, on the performance in the light of the challenges imposed by
our problem context as summarized in table 4.1. To that end, we started with a bird’s-eye view of the RP
method in comparison to the baseline SPIRIT to determine the effects of the number of projection vec-
tors 𝑘. As the RP method has difficulties with finding contextual outliers, we adopted a slightly different
interpretation (referred to as ΔRP) of the outlier scores which is explained in section 4.4. The effective-
ness of ΔRP for finding contextual outliers has been evaluated accordingly. Finally, we analysed the
performance of the methods when deployed in online mode with fixed parameter settings.

In table 4.6 we provide a qualitative comparison given the evaluation criteria as presented in 1.1
based on the observations we made in this analysis. We assigned a ‘+’ (plus) in case a method
was evaluated as best compared to its opponents given a criterion. A ‘−’ (minus) is assigned if its
performance was not as good as the best method, or a ‘/’ (slash) in case the experiments with real-
world data are considered necessary to come to a conclusion.

Starting with the runtime performance, the RP method logically appeared to be significantly faster
than ΔRP and SPIRIT. This is mainly because ΔRP runs the RP method 2𝑚 times, making the default
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Table 4.6 Evaluation based on the analysis.

Evaluation criterion RP ΔRP SPIRIT
Time needed to process data points + − −
Dependence on history of stream + + −
Amount of prior information needed + − −
Sensitivity of detection performance to parameters + − −
Generalizability of performances to different data sets / / /
Generalizability of performances to different outlier types − + −
Influence of 𝑑 and 𝑛 on detection performance / / /
Influence of 𝑑 on runtime performance + + −

RP method always be the better choice with regard to runtime performance. SPIRIT would be a good
choice in case the time series are strongly correlated such that only a few principal coefficient vectors
have to be estimated.

Considering the amount of history consumed by a method, adding a sliding window makes SPIRIT
its detection performance less sensitive to its parameters. The RP-based methods only benefit a little
from a window for contextual outliers. SPIRIT incorporates an additional parameter, forgetting factor 𝜆,
which influences the adaptiveness of the principal coefficient vectors towards the more recent or early
history of the data stream. The RP method does not exploit temporal relations by default.

The performance of SPIRIT also relies on the estimated explained variance bounds 𝑓 ̂ (lower) and
𝐹 ̂ (upper), making the number of parameters 2 in total. Throughout the analysis it turned out that the
detection and runtime performances are both sensitive to particularly the variance bounds. This sen-
sitivity also made SPIRIT perform not as good as ΔRP when we analysed the detection performances
under fixed parameters in online mode. The default RP method seemed to be parameter-free as it per-
forms best with a single projection vector (𝑘 = 1) for the different outlier types. Increasing the number
of projection vectors 𝑘 for the default RP method only decreases the detection performance a little.
ΔRP relies on 1 parameter, the number of predictors𝑚 used to derive an outlier score. Its performance
increases smoothly proportionally to the number of predictors 𝑚 used. The influence of 𝑚 on the AUC
is higher than 𝑘 for the RP method.

The evaluation regarding the generalizability of the performances of the methods to differently struc-
tured data sets is left open as the analysis was conducted with just one data set. We did observe that
the detection performance of the methods are sensitive to the mean and range of the data (see ap-
pendix A). However, we are also interested in the stability of the performance given different data sets.
This is assessed in chapter 5.

We did get a sufficient impression of the generalizability of the methods with respect to the different
types of outliers. From the bird’s-eye view of the detection performance it became clear that SPIRIT
has potential to yield a good AUC for all outlier types. Yet its detection performance suffers from its
sensitivity to the parameters. If the analyst has a reasonable understanding of the proper values for
the variance bounds to capture the principal behaviour of the time series, SPIRIT might outperform
the proposed methods. If the analyst cannot rely on such assumptions, ΔRP will be the better choice,
where the default RP method only detects global point outliers well.

Finally, we are also interested in the scalability of the RP-based methods towards high-dimensional
data sets. So far, the detection performance of the methods seemed relatively insensitive to the di-
mensionality of the data. The experiments in chapter 5 with differently sized data sets should point out
whether the dimensionality has significant impact on the detection performance. When it comes to the
runtime performance, we know by the analytical runtime bounds already that the RP-based methods
scale better to high 𝑑 than SPIRIT. That is, the runtime of SPIRIT depends quadratically on 𝑘 which for
SPIRIT is only low if the time series are sufficiently correlated.
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Experiments

In this chapter we put both analysed methods (RP and ΔRP) at work by detecting outliers in multi-
variate time series considerably more realistic than synthetically generated from sinusoidal functions.
In section 5.1 we discuss the data, performance metrics and parameter settings we used to do so.
The results are presented in section 5.2. We also examine the applicability of the RP-based methods
on non-temporal data streams by using (non-temporal) data sets commonly used for benchmarking
unsupervised (offline) outlier detection methods. The results of these experiments are presented and
discussed in section 5.3. We conclude this chapter with the key findings and final remarks.

5.1. Experimental setup
In chapter 4 we already got a good impression of the effectiveness of the methods with regard to the
challenges imposed by the task of unsupervised online outlier detection in multivariate time series. Yet
two evaluation criteria derived from these challenges were left open by the analysis. First, we want
to assess the methods on realistic data and evaluate to what extent their performances depend on
the structure of the data. Second, we want to determine the influence of 𝑑 and 𝑛 on the detection
performance. In this chapter we focus mostly on those two criteria.

5.1.1. Data
To assess the performance of RP, ΔRP and the considered baseline SPIRIT in a real-world context,
we used a data set that consists of multiple time series generated by 24 sensors measuring one water
treatment plant (at the same time) [19]. Other data sets commonly used for benchmarking outlier
detection in time series such as the YahooWeb Scope data set [3] and an outlier-version of the IntelLab
data set [16] were not suitable due to the uncorrelated nature of the time series or a limited number of
time series, respectively.

The water treatment plant data is originally created for research to cyber attack prevention. Unfor-
tunately, the provided labellings were not aligned with the actual outliers due to a delay between the
attack and the actual disruption of the system. Luckily, an attack-free version can be found online as
well enabling us to inject the general types of outliers we focused on throughout this thesis ourselves.

The data set consists of 𝑛 = 496.800 data points and 𝑑 = 24 time series from sensor readings
that measured different parts of the water treatment plant1. We used the readings of 4 sensors that
measured the same system component, and therefore are sufficiently correlated. We extracted only a
fraction of 20.000 data points from this data set and downsampled the result to a data set of 2.000 data
points.

The 4 time series do not have 0 mean and the ranges of the time series highly differ from each
other. As SPIRIT maximizes the variance in the data to derive the principal coefficient vectors, and the
reconstructions resulting from random projections are sensitive to the mean of the data, we standard-
ized the data first. This is done by subtracting the mean of each 𝑗th time series (𝜇 ) from each time
series value x , and divide the result by its standard deviation (𝜎 ) as in equation (5.1).

1The data set also provides actuator readings which were excluded from the data.

32
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x̃ =
x − 𝜇
𝜎 (5.1)

We injected outliers following similar procedures as in table 4.2. However, instead of sampling
sequences of 3 data points we now inject outliers by sequences of 11 data points. For the global point
outliers, we added 3𝜎 to the feature values which should reflect a global outlier [37]. It is hard to
actually supervise the ‘contextualness’ of the outliers, therefore we flipped the sign of the data points
assuming the resulting values are within the 3𝜎 range from the mean. In figure 5.1 an impression of
the 4 clean time series is given (left), and the result with outliers (right). Note that the actual mean of
each time series is 0 but to avoid occlusion we separated them in this figure.
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Figure 5.1 The time series used from the water treatment plant data set, original (left) and with outliers (right).

Alternatively, a scattermatrix showing all pairwise scatter plots of these 4 time series can be found
in appendix B.

5.1.2. Performance metrics and parameters
For the evaluation on real-world data, we used the same performancemetrics as in the previous chapter
aside from the number of parameters and preceding data points needed. We left those metrics aside,
as we do not focus on criteria of which those metrics are the performance indicators. Besides, the
evaluation of the methods with respect to the number of parameters and preceding data points needed
are not expected to change much on real-world data. So, we evaluate the method on its detection and
runtime performance, with the Area Under the ROC Curve (AUC) and the wall-clock runtime using tic
and toc commands in Matlab respectively.

For ΔRP we kept the parameter 𝑚 (the number of predictors) low to ensure a low runtime perfor-
mance. For SPIRIT we slightly explored a range of parameter settings to determine its potential to some
extent. However, we kept our exploration of the variance bounds within a sensible range close to the
range of [0.95, 0.98] as suggested in [31]. Table 5.1 presents the parameter settings used throughout
the experiments with real-world data.

Table 5.1 Parameter settings for the real-world experiments.

Method Parameter Value

SPIRIT 𝜆 0.97
[𝑓 ̂ , 𝐹 ̂ ] [0.85, 0.95]

RP 𝑘 1
ΔRP 𝑚 4
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5.2. Results with water treatment plant data
The results of our experiments on the water treatment plant data are presented in table 5.2. The
results were averaged over 50 runs with distinct random projection matrices. Again, results that are
significantly better than the opponent(s) according to the t-statistic are made bold.

Table 5.2 Performances on water treatment plant data.

Method AUC Runtime
SPIRIT 0.71 0.39(±0.1)
RP 0.82(±0.03) 0.02(±0.01)
ΔRP 0.85(±0.03) 0.31(±0.06)

For this data, the RP-based methods outperform SPIRIT considering both criteria. The simple RP
method with only 1 projection vector has a significantly better runtime performance as shown in this
table. However, it performs little worse in detecting outliers which is caused by its inability of finding
contextual outliers.

As can be seen in figure 5.2, the average ROC curves of the RP method and ΔRP are quite similar.
However, if we cannot accept a FPR higher than 0, the RP method would be a better choice as it
yields the highest TPR for FPR = 0. If a method is preferred that is able to detect more outliers while
minimizing the misclassification costs associated with flagging normal data points as outliers as well,
the choice would be the ΔRP method. SPIRIT is probably least desired unless it would be acceptable
to incorrectly classify 40% of the normal data points.
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Figure 5.2 ROC curves resulting from the experiment with the water treatment plant.

To shed light on the subtle difference in detection performance of the RP method and ΔRP, we
also ran experiments on the same data with only the global or only the contextual outliers. For this
experiment, the RP method yields an AUC of 0.99 for finding the global outliers against 0.98 for ΔRP
and 0.77 by SPIRIT. However, for the data with only contextual outliers we found an AUC of 0.65 with
the RP method while ΔRP results in an AUC of 0.71. The AUC obtained by SPIRIT was only 0.36
explaining its low overall performance of 0.71. Running PCA offline (when the principal components
are learned over the entire data stream) is much better and stable in this case, with an AUC of 0.79
for global outliers and 0.76 for contextual outliers. Finally, if we would deploy ΔRP with 𝑚 = 15, we
can reach an AUC of 0.75 for the contextual outliers, indicating its unsaturated potential for finding
contextual outliers.
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5.3. Results with non-temporal benchmark data
As a consequence of the conclusions that the proposed RP-based methods do not exploit temporal re-
lations within time series, and suitable temporal data sets are rarely available online, we also compared
our method on non-temporal data sets. Plenty of data sets frequently used for benchmarking unsuper-
vised outlier detection methods are available, which also have more features than our water treatment
plant data. As this task does not require an online method we left the online mean and variance es-
timation aside and deploy ΔRP offline but still unsupervised. This also means that we can compare
our method with methods that are not limited to online outlier detection such as the well-known Local
Outlier Factor (LOF) which is based on density estimation [11] and offline PCA.

We used 6 data sets of which the characteristics are described in table 5.3. These data sets can
be retrieved from the UCI Machine Learning repository [2] as well as the Outlier Detection Dataset
repository of Stony Brook University [33]. The data sets used for these experiments all have a clear
notion of what is considered normal and abnormal, e.g. data points correspond to healthy persons or
persons suffering from a disease (for instance breast cancer or diabetes).

Table 5.3 Non-temporal benchmark data sets for unsupervised outlier detection.

Method # data points 𝑛 # features 𝑑 # outliers
Mammography 11, 183 6 260 (2.3%)
Thyroid (Ann-) 6, 832 6 534 (7.4%)
Pima 768 8 268 (35%)
Breast Cancer Wisconsin (BCW) 683 9 239 (35%)
Arrhythmia 452 274 66 (15%)
Ionosphere 351 32 126 (36%)

For the standard RP method we used only one projection vector, i.e. 𝑘 = 1, which was observed
to yield the best performance. For ΔRP we have set the number of predictors 𝑚 to 15 as we are not
concerned with optimizing the runtime performance since we compare the performances offline. The
results corresponding to the LOF method were extracted from [28]. They deployed the density-based
LOF method with a commonly used parameter 𝑘 = 10 reflecting the number of neighbours used in
defining the local neighbourhood of each data point. We explored the performance of offline PCA with
several variance bounds on all data sets in table 5.3 and set its parameter to a sensible value of 90%.
For the reconstruction-based methods (RP, ΔRP and PCA) we standardized the data following equation
(5.1) where we excluded features 𝑗 of 𝑑 that have 𝜎 = 0.

Table 5.4 shows the results of this experiment which were averaged over 50 runs with distinct
random projection matrices. Bold scores correspond to the significantly best performance according to
the t-statistic. The detection performance of the RP method and ΔRP on unstandardized data can be
found in appendix B.

Table 5.4 Detection performances on standardized non-temporal data sets.

Dataset AUC
RP ΔRP PCA LOF

Mammography 0.88(±0.02) 0.88(±0.01) 0.76 0.67
Thyroid (Ann-) 0.67(±0.00) 0.64(±0.02) 0.49 0.72
Pima 0.65(±0.01) 0.65(±0.01) 0.57 0.49
BCW 0.95(±0.01) 0.97(±0.01) 0.89 0.37
Arrhythmia 0.77(±0.00) 0.75(±0.02) 0.63 0.73
Ionosphere 0.79(±0.00) 0.80(±0.02) 0.95 0.89

Clearly, the RP-based methods give a quite stable performance considering all data sets, as most
AUC’s are quite close to the AUC of the best scoring method on a given data set. Only for the Iono-
sphere data set, the proposed methods perform much worse than PCA and LOF. Overall seen, the
RP method and ΔRP are quite comparable in detection performance. Yet the experiments with the
unstandardized data point out that the RP method is more sensitive to standardization than ΔRP.
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5.4. Conclusions
In this chapter we exposed the methods to real-world data sets. We examined the methods on (semi-
realistic) temporal data for which they were intended. However, we also examined the generalizability
of the methods to non-temporal data streams. The reasons for doing so, is that our method actually
does not exploit any temporal relations and there is a lack of temporal data sets available that suited our
conditions. The main objective of the experiments was to evaluate the methods with regard to the two
criteria still open after the analysis. In table 5.5 we provide our conclusions with respect to those two
criteria. We assigned a ‘+’ (plus) in case a method was evaluated as best compared to its opponents
given a criterion, or a ‘−’ (minus) if its performance was not as good as the best method.

Table 5.5 Evaluation based on the experiments.

Evaluation criterion RP ΔRP SPIRIT
Generalizability of performances to different data sets − + −
Influence of 𝑑 and 𝑛 on detection performance + + +

As observed throughout the analysis and experiments, SPIRIT and the RP method are more sen-
sitive to the mean and range of the data than ΔRP. When it comes to most non-temporal data sets,
both RP-based methods outperform a well-known unsupervised outlier detection method based on the
Local Outlier Factor and offline PCA. For 4/6 non-temporal outlier detection benchmark data sets an
RP-based method performs better. In general, ΔRP has shown to yield the most stable performance
on synthetic, semi-realistic and real-world data, on temporal and non-temporal, standardized and un-
standardized data sets (appendix B).

We could not derive a clear correlation between the detection performance and the dimensionality
of the data from the analysis in chapter 4 and the experiments in this chapter. Therefore, it seems that
the analysed methods are relatively insensitive to the dimensionality of the data. The main problem
as identified in section 1.2, is that the difference between outlier scores might vanish when 𝑑 and/or
𝑛 become large [9]. But Zimek et al. [37] already found that the dimensionality might not significantly
affect outlier detection methods that compute outlier scores based on the Euclidean distance. This
statement might hold for methods that compute outlier scores from the squared Euclidean distance
as well. Therefore we also ran some small experiments with taking the squared Euclidean norm of
each data point directly as outlier score. This measure appeared to be very effective for global outliers,
but does not work for contextual outliers. Yet if one wants to find global outliers in extremely high-
dimensional data sets, the squared Euclidean distance seems already relatively insensitive to the curse
of dimensionality.
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Conclusion

In this chapter we recapitulate what has been discussed in this thesis by means of a summary in section
6.1. What we conclude from this thesis with respect to the initial research question is discussed in
section 6.2. Finally, we provide future research directions in section 6.3 by identifying limitations of the
proposed methods and conducted research, and highlighting the remaining open questions.

6.1. Summary
In this thesis we considered the task of unsupervised online outlier detection in multivariate time series.
The difficulties imposed by this task as introduced in chapter 1 can be summarized as follows.

• The algorithm should be minimally sensitive to its parameters, require limited prior information,
and label each data point before the next point is received.

• The analyst should have an idea of the structure of the data and expected outliers.
• The algorithm should be able to detect global as well as contextual outliers in time series.
• The algorithm has to scale well to high-dimensional data sets, with respect to its computational
complexity and its detection performance despite the curse of dimensionality.

These challenges motivated us to concentrate our research around the question: can we leverage
random projections in an online and unsupervised reconstruction-based method in order to find outliers
in multivariate time series effectively though more efficiently, and if so, to what extent? To that end,
in chapter 2 we first explained the theory behind reconstruction-based methods. We also discussed a
well-known online method called SPIRIT which is based on approximate principal component analysis.
This method has been adopted as a baseline method for comparison purposes.

We continued with an explanation of the proposed random projection method (RP), and finally pre-
sented its entire procedure by means of algorithm 3 in chapter 3. Its procedure basically revolves
around a projection of the time series into a lower-dimensional random subspace, from which the re-
construction is used as model of the data. Hopefully, an outlier is then poorly reconstructed such that
the squared Euclidean distance between the original data point and its reconstruction results in a higher
outlier score than for normal data points. Throughout the analysis with the RP method in chapter 4,
we found that it finds global point outliers very accurately and efficiently. And as opposed to SPIRIT, it
is relatively insensitive to its parameters. However, we also showed that it is not successful in finding
contextual outliers, which is certainly an undesired conclusion.

Fortunately, we discovered that the RP method often works better when it projects the data into a
1-dimensional subspace instead of a (1 + Δ)-dimensional subspace with Δ > 0. This implies that a
reconstruction from a 1D projection, on average, results in a more discriminative outlier measure than
a reconstruction from a 2D projection. This resulted in formulating hypothesis 2 which directly led us to
a different interpretation of the outlier scores of the RP method. This alternative interpretation resulted
in a method we call ΔRP which basically runs the RP method twice: once with 1 projection vector
and once with 2 vectors. The standardized difference between the two resulting outlier scores is then
interpreted as the final outlier score. This outlier measure appeared to be more effective for finding
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outliers in general, though increases the computational burden compared to the default RP method as
more than 1 predictions for the outlier score are needed to obtain a reliable outlier score.

The experiments with real-world data in chapter 5 showed that for realistic data structures, ΔRP
is significantly faster than its baseline SPIRIT without the loss of detection performance. It was also
shown that the RP method yields, on average, a good detection performance and is evidently the
fastest method. Yet it comes with the cost of misclassifying a larger fraction of contextual outliers
compared to ΔRP. The latter appears to be relatively insensitive to the number of predictors 𝑚, which
basically proportionally improves the certainty and accuracy of the predictions. SPIRIT needed some
exploration of its parameter settings beforehand to find a proper operating point as its performance is
highly sensitive to the parameters. Finally, we assessed the RP-based methods on non-temporal data
for which the proposed methods appeared to be successfully applicable too.

6.2. Conclusions
In chapter 1 we identified the primary challenges imposed by our problem context which we translated
to a set of evaluation criteria in section 4.1. In table 6.1 we combine the observations from the analysis
and experiments into a final evaluation of the proposed methods in comparison with SPIRIT. For each
criterion we determined which method is evaluated best and assigned a ‘+’ (plus) to that method. We
assigned a ‘−’ (minus) to the methods that perform worse on the given criterion.

Table 6.1 Final evaluation of the proposed methods against the baseline.

Evaluation criterion RP ΔRP SPIRIT
Time needed to process data points + − −
Dependence on history of stream + + −
Amount of prior information needed + − −
Sensitivity of detection performance to parameters + − −
Generalizability of performances to different data sets − + −
Generalizability of performances to different outlier types − + −
Influence of 𝑑 and 𝑛 on detection performance + + +
Influence of 𝑑 on runtime performance + + −

Considering the runtime performance of the methods analysed in this thesis, the RP method as
formulated in algorithm 3 was evidently the most efficient. Aside from that, it does not generalize well
to all types of outliers and data sets. ΔRP would therefore be a safe second choice when it comes to
runtime and detection performance.

When it comes to the dependency on the history of a data stream, none of the RP-based methods
exploit correlations between data points over time. Both methods solely rely on the correlation among
the different time series. SPIRIT does track temporal relations which is incorporated internally by a
so-called forgetting factor. Still, SPIRIT benefits from a sliding window as its detection performance
becomes less sensitive to its initial parameters. Altogether, the RP-based methods are considered
preferable with respect to their (in)dependence of the history of a data stream.

Throughout the analysis and experiments it became clear that the RP method performs best if we
deploy it with only 1 projection vector. Therefore, the RP method could be regarded as a parameter-
free method, requiring no prior information to set its only parameter: the number of projection vectors
𝑘. It also turned out to be the least sensitive to this parameter, explaining its positive evaluation with
respect to the sensitivity of the detection performance.

The analysis and experiments pointed out that ΔRP generalizes very well to all different data sets we
used. This is a very desirable property making this method suitable for a broad range of applications.
ΔRP is also the best choice when it comes to finding all outliers of the considered types: global point
outliers, contextual point outliers and contextual collective outliers. That said, ΔRP is considered the
most generally applicable method with respect to the structure of the data, and the outlier types that
can possibly be found.
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The final two criteria relate to the influence of the dimensionality of the data stream. First, we should
be able to find significantly outlying data points in a very large set of 𝑛 data points. Second, this should
also be possible for an increasing dimensionality 𝑑 of each data point. Though methods might not be
able to do so, we found that reconstruction-based methods in general do not suffer from this problem.
At least, we did not find sufficient evidence of a correlation between the dimensionality of the data
and the detection performance of a method. This observation corresponds to the statement of Zimek
et al. [37] that in particular outlier detection methods computing outlier scores based on Euclidean
distances not necessarily suffer from the curse of dimensionality. Still, the number of time series does
influence the runtime of SPIRIT more than RP-based methods, in a negative sense. This is caused by
the potentially increasing number of principal components 𝑘 needed to estimate when the number of
time series is high, where the runtime of SPIRIT depends quadratically on 𝑘.

Returning to our research question: we presented two effective and efficient methods that exploit
the reconstruction error from random projections to derive outlier scores in an online and unsupervised
manner. Besides, both RP-based methods are relatively insensitive to the parameters as opposed to
most online outlier detection methods. Yet the most efficient method (RP) is not generally applicable
as it lacks the ability to find contextual outliers, which is considered very important for outlier detection
methods. The method proposed to resolve this problem (ΔRP) is less efficient but generalizes well to
different outlier types and data sets. Still, ΔRP is in most cases more efficient than SPIRIT. If we make
up the balance given the identified challenges, ΔRP would be the overall best choice.

6.3. Future work
From this thesis we already got a fair impression of the potential of the proposed methods. Still, we
are left with some open questions interesting to answer in the future. Starting with the limitations of
this research we think it would be interesting to experimentally assess the applicability of the methods
on more differently structured (temporal) data sets with varying outlier densities. Additionally, we did
not find enough evidence of a correlation between the detection performances and the number of time
series 𝑑 or data points 𝑛, which seems valuable to study further.

Furthermore, we did not explore the influence of the strength of the correlations between the time
series, yet this correlation is an important condition for the RP-based methods to work well. Finally, we
focused on comparing our methods to an established method which functioned as a baseline. Eval-
uating the performance of the methods against more recently introduced methods (e.g. Loda [32] as
discussed in section 1.3.1) would be valuable.

We also identified some limitations of the proposed methods RP and ΔRP, which are interesting
to look at in the future. Throughout the analysis, we concluded that both methods do not significantly
benefit from a window, nor track any temporal relations internally. Especially the default RP method
could benefit from doing so, as in its current formulation it does not detect the contextual outliers well.

The method we propose to find contextual outliers better, ΔRP, relies on the assumption that out-
liers are reconstructed relatively better compared to normal data points when the number of projection
vectors is increased. However, the random factor associated with the data projections introduces a sig-
nificant uncertainty of the detection performance, which can be compensated by increasing the number
of predictors 𝑚. For future research, it would be valuable to explore heuristics that would result in an
accurate a priori setting for 𝑚. This would make it easier to settle on the desired balance between the
detection and runtime performances before ΔRP is deployed.

Nevertheless, the most pressing question that is left unanswered is whether hypothesis 2 can be
proven formally. If so, it opens a few additional questions we would be interested in:

• What is the probability associated with this hypothesis such that it holds on expectation?

• What technicality stands at the basis of this probability, i.e. what property of the data or the
random projection matrices makes it stand or fall?

In general, we encourage theoretical analysis to prove hypothesis 2. Finally we only explored the
RP-based methods with Gaussian dense random matrices. Though, a significant body of research has
been devoted to advancing the random projection matrices with respect to the runtime performance. It
might be interesting to discover the effects of the different variants out there, as in this thesis we only
explored the tip of the iceberg.
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A
Additional analysis results

In this appendix we present results of the analysis that were left out of the body of the thesis. First
we present the analysis of the effect of different window lengths 𝑝 (1, 5, 10 and 15) on the detection
performance in section A.1. In section A.2 we present the results corresponding to the analysis on the
standardized data with the RP method and ΔRP in comparison with baseline SPIRIT.

A.1. Detection performance of RP with different window sizes
Throughout the body of this thesis we found that using a sliding window did not significantly improve
the RP method nor the considered baseline SPIRIT. This is a logical observation for the RP method
which does not take the temporal relations into account, but merely relies on the correlation among
the different time series. For SPIRIT though, one might expect that it benefits from a sliding window.
However, this specific method already incorporates a forgetting factor 𝜆 that relates to the influence
of the most recent part of the stream against its early history as explained in chapter 2. Still, the
performance of SPIRIT is slightly affected by a sliding window since the forgetting factor is only a
suboptimal solution to learn temporal relations to improve runtime performance.

For the synthetic data set we used throughout the analysis, adding a sliding windowmainly improves
the detection performance of SPIRIT regarding the sensitivity to the number of projection vectors 𝑘.
Logically, the runtime performance is much worse when we add a window. The effect of the number of
projection vectors 𝑘 on the runtime is, however, very similar to what was already shown in figure 4.10
in chapter 4. Therefore, we do not present the runtime performances for different values of 𝑝. Figure
A.1 shows the detection performances for global point outliers for the different window sizes. These
results are presented and discussed in section 4.3, but were included for the sake of completeness.
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Figure A.1 Detection performances of global point outliers with from to for { , , , }.

Figure A.2 shows the performances corresponding to the detection of contextual point outliers.
The only difference we observe here as a consequence of varying 𝑝 besides the poor performance in
general, is that the AUC of the RP method improves a little when we adopt a sliding window.
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Figure A.2 Detection performances of contextual point outliers with from to for { , , , }.

Figure A.3 shows the performances corresponding to the detection of contextual collective outliers.
Again, besides the poor performance, themain difference in behaviour is that the AUC of the RPmethod
is slightly improved when adopting a sliding window.
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Figure A.3 Detection performances of contextual collective outliers with from to for { , , , }.

A.2. RP and ΔRP on standardized data
In this section we present the results of the RP method in comparison to SPIRIT for the (offline) stan-
dardized versions of the synthetic data sets used in chapter 4. We standardized the data set X by
subtracting the mean of each 𝑗th time series (𝜇 ) from each time series value x , and divide the result
by its standard deviation (𝜎 ) as in equation (A.1).

x̃ =
x − 𝜇
𝜎 (A.1)

As the behavioural observations of the performances with different window sizes are not significantly
different from unstandardized data, we only present the results of the methods without a sliding window
(i.e. 𝑝 = 1). The runtime of the RP-based methods is completely insensitive to the mean and range of
the data, where the runtime of SPIRIT is also not affected significantly. Therefore, we did not include
the runtime performances associated with the standardized data sets.

Starting with the bird’s-eye view of the RPmethod for standardized data, figure A.4 shows the results
for the number of projection vectors 𝑘 ranging from 1 to 25.
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Figure A.4 Detection performances of all three outlier types, with standardized data with from to for .
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For global point outliers (figure A.4, left), SPIRIT already reached an AUC of 1 on unstandardized
data and therefore no significant overall improvement can be detected. However, SPIRIT now has 3
parameter settings (𝑘 = 1, 2, 3) such that the AUC is above 0.80. For the RP method we can clearly
see that the performance is much better when the data is standardized as the RP method without back-
scaling attains an AUC of 1 irrespective of the number of projection vectors 𝑘, where its version with
back-scaling approaches 1 as well for sufficient 𝑘. Indeed, we can conclude that the RP method is not
sensitive to 𝑘 in order to find global point outliers.

For contextual point outliers (figure A.4, center), especially SPIRIT improves regarding the AUC
which now is close to 1 for a larger range of the number of projection vectors 𝑘. That said, the RP
method does not benefit from standardized data for finding contextual point outliers. A remarkable dif-
ference in the detection performances can be derived with respect to the contextual collective outliers
(figure A.4, right). The RP method and baseline SPIRIT both perform worse for finding contextual col-
lective outliers. While the RP methods (with and without back-scaling) obtained stable AUC’s around
0.6 and SPIRIT (at most) 0.9, both optimal performances drop to 0.45 and 0.73, respectively.

Figure A.5 shows the detection performances of ΔRP for different numbers of predictors 𝑚 in com-
parison with SPIRIT with different values for 𝑘.
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Figure A.5 Detection performances of all three outlier types, with standardized data with and from to for .

Similar to the RP method, ΔRP finds global point outliers (left) very accurately, approaching an AUC
of 1. In contrast to the RPmethod, however, it also successfully detectsmost contextual point outliers as
well (center). Besides, it reaches an acceptable AUC with slightly less predictors than when the data
is not standardized. For example, to obtain an AUC of approximately 0.90 ΔRP requires around 15
predictors (𝑚 = 15) when the data is not standardized. If standardization is possible, it attains an AUC
of 0.90 with around 12 predictors (𝑚 = 12). When it comes to the detection performance regarding
contextual collective outliers (right), a similar observation can be made as for the RP method and
SPIRIT. That is, finding contextual collective outliers apparently is harder when the data is standardized.

We also present the results of the methods when they are deployed in online mode on the stan-
dardized data. We used the same parameter settings as in table 4.4 which are presented again in table
A.1.

Table A.1 Parameter settings for the analysis in online mode.

Method Parameter Value

SPIRIT 𝜆 0.97
[𝑓 ̂ , 𝐹 ̂ ] [0.95, 0.98]

RP 𝑘 1
ΔRP 𝑚 5

In table A.2 we present the results of the methods when deployed with these settings on the stan-
dardized data. For the sake of easy comparison, we also provide the results on the unstandardized
data in table A.3 as already presented in chapter 4. All results were averaged over 50 runs with distinct
random projection matrices. Results that are significantly better than the opponent(s) according to the
t-statistic are made bold.
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Table A.2 Online performances under fixed parameters on standardized data.

Method
Global point Contextual point Contextual collective

AUC Runtime AUC Runtime AUC Runtime

SPIRIT 0.67 0.23(±0.07) 0.99 0.19(±0.06) 0.65 0.22(±0.06)
RP 1.00(±0.00) 0.01(±0.01) 0.35(±0.01) 0.01(±0.00) 0.41(±0.01) 0.01(±0.00)
ΔRP 0.95(±0.04) 0.20(±0.1) 0.78(±0.11) 0.20(±0.03) 0.64(±0.1) 0.22(±0.07)

Table A.3 Online performances under fixed parameters on unstandardized data.

Method
Global point Contextual point Contextual collective

AUC Runtime AUC Runtime AUC Runtime

SPIRIT 0.79 0.30(±0.1) 0.55 0.28(±0.07) 0.58 0.25(±0.06)
RP 0.90(±0.01) 0.01(±0.00) 0.28(±0.01) 0.02(±0.01) 0.57(±0.01) 0.02(±0.01)
ΔRP 0.95(±0.05) 0.21(±0.06) 0.71(±0.16) 0.21(±0.07) 0.71(±0.09) 0.22(±0.04)

In contrast to SPIRIT, RP perfectly finds the global point outliers as a consequence of the power of
the squared Euclidean distance [37]. Yet its performance with regard to the contextual outlier types is
not competitive with SPIRIT and ΔRP. The latter for that matter is competitive with the best performing
method for global point (RP) and contextual collective outliers (SPIRIT), yet not close to the AUC of
0.99 obtained with SPIRIT for finding contextual point outliers.

SPIRIT finds the contextual point outliers very well as its AUC is 0.99 compared to an AUC of 0.55
for the unstandardized data. This complies with the observation from figures A.4 and A.5 that SPIRIT
is less sensitive to the value for the number of projection vectors 𝑘 when the data is standardized. That
is, it obtains an AUC around 1 for 𝑘 ranging from 2 to 6 instead of for only one value for 𝑘 as the case
with unstandardized data.

Concerning the runtime performances, the RP method evidently outperforms ΔRP and SPIRIT. In
contrast to the experiments with unstandardized data, there is no significant difference between SPIRIT
and ΔRP, which shows that the runtime of SPIRIT depends on the mean and range of the data as well.
That SPIRIT is sensitive to the mean and range of the data can also be concluded from the larger
differences between the performances on unstandardized and standardized data compared to the RP
method and ΔRP. This holds for the runtime as well detection performance.

The ROC curves in figure A.6 show the balance between the TPR and FPR corresponding to the
presented AUC’s in table A.2. It becomes more clear how ΔRP is much more stable considering the
detection performance. That is, it yields a reasonable to good performance irrespective of the outlier
type, where the default RP method still only finds global outliers and SPIRIT is only significantly (much)
better in finding contextual point outliers.
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Figure A.6 ROC curves of RP, RP and SPIRIT for the three general outlier types in the standardized data.



B
Additional experiments results

In this appendix we present and discuss additional material supporting the experiments in chapter 5.
First we present an additional visualization of the water treatment plant data in section B.1. In section
B.2 we present the results corresponding to the experiments with the unstandardized non-temporal
data sets.

B.1. Visualization of water treatment plant data
Figure B.1 shows all the pairwise scatter plots of the time series x versus x from the water treatment
plant data. This plot therefore shows the data points in a feature space leaving the time component
aside. The normal data points are plotted in black and the outliers in red. The diagonal shows the
univariate distribution of each time series x separately.
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Figure B.1 Pairwise scatter matrix with normal data points (black) and outliers (red).

Clearly, the red points that are not close to any black points correspond to the global outliers. Red
points surrounded with black points correspond to the contextual outliers.
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B.2. Results with unstandardized non-temporal data sets
Table B.2 presents the results obtained with the RP and ΔRP method on the unstandardized non-
temporal benchmark data sets as used in section 5.3. In this table we only replaced the results of
the RP and ΔRP method as no information about the deployed preprocessing procedure for the LOF
method was available and we already know PCA heavily relies on the range of the data. For the sake
of easy comparison, we also provide the table with standardized data in table B.1 as already presented
in section 5.3. All results were averaged over 50 runs with distinct random projection matrices. Results
that are significantly better than the opponent(s) according to the t-statistic are made bold.

Table B.1 Detection performances on unstandardized non-temporal data.

Dataset AUC

RP ΔRP PCA LOF

Mammography 0.89(±0.01) 0.87(±0.03) 0.76 0.67
Thyroid (Ann-) 0.54(±0.01) 0.62(±0.03) 0.49 0.72
Pima 0.71(±0.02) 0.77(±0.01) 0.57 0.49
BCW1 1.00(±0.00) 0.99(±0.00) 0.89 0.37
Arrhythmia 0.57(±0.00) 0.73(±0.03) 0.63 0.73
Ionosphere 0.58(±0.01) 0.69(±0.01) 0.95 0.89

Table B.2 Detection performances on standardized non-temporal data.

Dataset AUC

RP ΔRP PCA LOF

Mammography 0.88(±0.02) 0.88(±0.01) 0.76 0.67
Thyroid (Ann-) 0.67(±0.00) 0.64(±0.02) 0.49 0.72
Pima 0.65(±0.01) 0.65(±0.01) 0.57 0.49
BCW 0.95(±0.01) 0.97(±0.01) 0.89 0.37
Arrhythmia 0.77(±0.00) 0.75(±0.02) 0.63 0.73
Ionosphere 0.79(±0.00) 0.80(±0.02) 0.95 0.89

These two tables show large differences between the AUC’s on unstandardized (table B.1) and
standardized data (table B.2). This likely is the consequence of the original (unstandardized) data
which is not close to having 0 mean and unit variance, which was the case for the synthetic data in the
analysis. Concerning the Mammography and BCW data sets, the detection performances of the RP
method and ΔRP are quite similar. When we look at Thyroid (Ann-), Arrhythmia and Ionosphere we
can see how the RP method is more sensitive to the range and mean of the data, as its AUC drops
significantly when the data is unstandardized. More specifically, the AUC of the RP method drops from
0.67 to 0.54 on Thyroid, from 0.77 to 0.57 on Arrhythmia, and from 0.79 to 0.58 on Ionosphere, while we
observe smaller differences in AUC for ΔRP. For the Pima data set both methods perform significantly
better when the data is left unstandardized. Going from these observations, we can say that ΔRP is
less sensitive to the range and mean of the data than the RP method.
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