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ABSTRACT

Plastic waste transported to oceans through canals and rivers becomes increasingly chal-
lenging to retrieve and harmful to ecosystems. Catching systems designed by Noria Sus-
tainable Innovators can be used to capture the plastics as close to their source as possi-
ble. Deciding the best locations to place these systems is a difficult task, which is why
a model for location optimization of catching systems for plastic waste removal from
waterways is designed in this thesis: the Plastic Waste Flow Capturing Location Model
(PW-FCLM).

In this model, the plastic waste flow through a network of waterways is represented as
a Markov chain, using environmental data as inputs to estimate the initial probabilities
and transition probabilities of plastic waste in the network. The PW-FCLM extends an
existing Markov Decision Process-based Flow Capturing Location Model by incorporat-
ing various types of catching systems, considering sensitive areas, and specifying orien-
tations for the systems. The equivalence of the linearized version of the extended model
is demonstrated, a proof of NP-hardness of the problem is given and a greedy heuristic
is presented as an alternative solution method.

A sensitivity analysis on the different types of input parameters is performed, and the
runtimes for different problem sizes and solution methods are tested for case studies of
Delft and Groningen in the Netherlands. The model is most sensitive to changes in the
distance between the nodes in the network and to the probability of getting stuck due to
water vegetation. For budgets up to B = 2 and problem sizes up to n = 375 nodes, the
exact optimal solution can be found efficiently without a commercial solver license. For
larger problem sizes or a higher budget, the heuristic appears to be a more appropriate
solution method.

For future research, it is recommended to further study the influence of the distance
between the nodes on the optimal solution and to investigate the plastic flow represen-
tation in the Markov chain further. Exploring the model’s application to larger areas,
such as provinces or countries, would be beneficial. The real-life effectiveness of placing
catching systems at the optimal locations suggested by the model, depends on the accu-
racy of the input parameters. In this thesis, the values of the input parameters are pri-
marily based on estimations of experts. It would be beneficial for the user of the model
to further validate the values of the input parameters through experiments.

IX





1
INTRODUCTION

Plastic waste pollution is an emerging issue (Borrelle et al., 2020). Once plastic waste
leaves land and enters water, it becomes increasingly difficult to retrieve it, causing
it to harm surrounding ecosystems, to degrade into microplastics and sequentially
often to enter food chains (Wagner et al., 2014). It has been shown that a significant
amount of the plastics is transported to the ocean via canals and rivers (Meijer et al.,
2021). This provides an opportunity of catching the waste closer to the source in
these canals and rivers.

Noria Sustainable Innovators tackles this problem by performing research on the
location and flow of plastic waste in local waterways and removing the plastic waste
using catching systems that they developed. However, to put these catching systems
to their best use, it is important to identify which locations are the best positions to
place them. The goal is to remove as much plastic waste from the water as possible;
that means trying to find the locations where most plastics can be caught by the
systems. Therefore, the goal of this thesis is to design an optimization model to
facilitate decision making of the locations of plastic waste catching systems, in order
to catch as much plastic waste as possible.

A model in which locations are chosen to capture moving flow along its way was
presented in literature: the Flow Capturing Location Model (FCLM) (Berman et al.,
1992). There are two versions of this model; a path-based (Berman et al., 1992) and
a Markov Decision Process (MDP-)based (Berman et al., 1995c) approach. There is
a lack of availability of data on exact flow paths of plastic waste. However, it is
feasible to make well-founded estimates of the probability that plastic waste starts
at a location, transitions to locations in different directions and ends at a location,
based on geographic data. Therefore, the MDP-based FCLM is used as a foundation
and is adjusted to design a new model in this thesis that takes all aspects of plastic
waste capturing into account: the Plastic Waste Flow Capturing Location Model
(PW-FCLM).

Previous research on waste removal from water and on the mathematics of location
optimization models is presented in Chapter 2. The technical background of previous
work at Noria and mathematical background of the FCLM is shown in Chapter 3.

1
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2 1. INTRODUCTION

A problem description and a model formulation for the PW-FCLM are shown in
Chapter 4. A linearization of the PW-FCLM, an analysis of the complexity of the
model and a greedy heuristic are shown in Chapter 5. The processing of geographic
data into input parameters is explained in Chapter 6. The computational results of
a sensitivity analysis of the input parameters is shown in Chapter 7, together with
results on the runtime and performance of open source and commercial solvers
compared to the greedy heuristic. A discussion of the results and recommendations
for further improvements of the model are given in Chapter 8. The final conclusions
of the thesis are presented in Chapter 9.



2
LITERATURE RESEARCH

In this chapter, an overview of previous research from literature is presented. This
includes research on optimization of waste removal from water in Section 2.1, but
also research on mathematical models for location optimization in other settings
that are interesting in the scope of this thesis in Section 2.2.

2.1 WASTE REMOVAL FROM WATER
Several efforts have been made in different circumstances for location optimization
of waste removal from water. The first was done by Sherman and Sebille (2016). The
movement of marine microplastics was modeled and local optimization methods
were used to determine favorable locations for placing a passive catching system
using floating barriers (referred to as a "sink"). Ocean drift trajectories were mapped
onto a 1◦×1◦ grid with seasonal transition matrices and the amount of waste
released in each grid cell along the coast was modeled to be proportional to the
amount of mismanaged waste in the country and the population density. As a
second scenario, the net primary production measured by satellite observations was
considered as a measure of the size of ecosystems. The model was run in the first
scenario to maximize removal of microplastics mass, and in the second scenario
to minimize overlap between microplastics and the ecosystems, thereby minimizing
total impact on ecosystems.

The initial solution of the placement of 29 sinks used as imput to their model
was based on coordinates with the maximum cumulative plastic mass flux after
a decade. Then, the locations were moved randomly from the initial solution to
a new location in a 30◦×30◦ neighborhood and then to the optimal cell within
a 5◦×5◦ neighborhood of this new location. The results of this method showed
that according to the model, it is more beneficial to place the sinks closer to the
shore than placing them in the middle of the Great Pacific Garbage Patch, which
is one of the largest accumulation zones of marine plastics (Lebreton et al., 2018).
This indicates that it is worth investigating in this thesis, whether it is more bene-
ficial to catch the plastic waste close to the source, or closer to accumulating hotspots.

3
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More recently, network theory has been used to identify optimal locations for
plastic debris cleanup (Ypma et al., 2022). A transition matrix is constructed from
Lagrangian simulation of plastic flow between several positions along the shore of
the Galapagos Marine Reserve islands. The matrix is used to generate a network with
transition probabilities on the edges and several network centrality measures of this
network are considered to find which centrality measures can be used to optimize for
maximum waste removal. Overall, it seems that a positive Source-Sink Index, which
shows if a node is a net sink (instead of a net source) of plastics, provides the highest
benefit in terms of the amount of plastics removed. The Retention Rate (percentage
of particles for which the sink node is the same as the source node), PRi n centrality
(the importance of the node in comparison to neighbors on incoming edges) and
the betweenness centrality (whether nodes lie on many shortest paths between other
nodes) are also shown to be good indicators of effective cleanup location nodes.
A significant difference between the case study and this thesis is that shore/beach
cleanup with land-based nodes is considered instead of cleanup in the water.

Additionally, other types of ocean cleanup aside from plastic waste cleanup have
been researched and show useful techniques for plastic waste cleanup. Oil spill
cleanup response in the Gulf of Mexico has been optimized using a Mixed Integer
Linear Program (MILP) model that minimizes costs while meeting a minimum
volume of oil cleanup goal (Grubesic et al., 2017). In this research, day to day
drift of the spilled oil is modeled and Navy Coastal Ocean Model American Seas
(AmSEAS) ocean data was used as oil transport data. The optimal response using
vessels that move from different coastal harbors to the spill sites is calculated for
each day. The model was solved to optimality using Python with the Gurobi solver.
The use of vessels and a daily varying response is different from removing waste
using a stationary catching system that remains in the same location for a period of
time. However, the setup of the MILP was used as an inspiration to create a MILP
formulation of the problem in this thesis as presented in Section 4.2.

A more dynamical optimization model for oil spill response operations was
presented by You and Leyffer (2011), where three different types of cleanup methods
(mechanical cleanup, in-situ burning and chemical dispersants) are considered in a
cost-minimizing objective function. The changing area of oil slick was modeled by
numerically solving differential equations which are integrated into a mixed integer
non-linear optimization model. An approximate MILP is formed to create an initial
solution that is used to find an approximate solution to the non-linear non-convex
problem.

2.2 SIMILAR MATHEMATICAL PROBLEMS

Restricting to existing ocean and river cleanup research would be a limitation to
this research. Essentially, the problem is about capturing flows (of pieces of plastic
waste) in discrete locations in a (water) network. There are several traditional
location allocation models where distance to locations is minimized and coverage of
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the locations is maximized. However, generally these models concern node-based
demand. In literature, this problem is called the "Maximal Covering Location
Problem/Model" (MCLP/MCLM) (Church and ReVelle, 1974). In this model, demand
at a node is considered covered when the node lies within a certain distance from a
located facility. A well known application of this model is the ambulance location
problem, where demand by patients is covered when the ambulance is located
within a certain distance/time from the patient (Brotcorne et al., 2003).

However, demand in networks is not always located at nodes. In the case of
plastic waste in waterways, the plastic is moving along the arcs of the network.
This is mathematically equivalent to the "Flow Capturing Location Problem/Model"
(FCLP/FCLM) that has been widely researched in the past 30 years for purposes
where demand is not expressed at the nodes of a network, but rather intercepted
on pre-planned paths. This is the case with for example fuel stations, banking
machines, billboards or security checkpoints (Hodgson et al., 1996).

Different versions of this FCLM together with solution methods and applications
from literature are summarized in this section. Deterministic versions of the
FCLM are summarized in Section 2.2.1 and stochastic versions in Section 2.2.2.
Mathematical details that are important for the development of the model in this
thesis are further elaborated on in Section 3.2.

2.2.1 DETERMINISTIC FLOW CAPTURING LOCATION MODEL

The FCLM was first introduced independently by Hodgson (1990) and Berman et al.
(1992). The basic idea is that the flow on a network G(V ,E) with vertices V and
edges E is defined along paths from the set P of nonzero flow paths on the network
arcs. The flow fp on a path p ∈ P is considered captured when there is at least one
node on the path p where a facility is located. There is a fixed number of facilities
m that are located on the nodes of the network and the objective function is to
maximize the total amount of captured flow. When there is more than one facility
on a path p, the flow on this path fp is only counted as captured once. The MILP
formulation of this model is equivalent to the Maximal Coverage Location Model
and both are NP-hard (nondeterministic polynomial time) problems (Berman et al.,
1992).

A greedy heuristic is proposed by Berman et al. (1992) and a worst case bound
is proven. The greedy algorithm consists of sequentially placing a facility at the
node which intercepts the maximum amount of flow, after which the intercepted
flow is removed. A new facility is placed at the node which intercepts the
maximum residual flow, until m facilities are located. This method does not
guarantee finding an optimal solution, but works very intuitive and fast. A
branch-and-bound algorithm that finds the optimal solution is also proposed, where
upper bounds of partial solutions are calculated to find the maximum amount
of flow that can possibly be caught after setting one variable x j of locating a
facility at node j to zero or one. These upper bounds show if the partial
solution could be part of the optimal solution to the problem. A solution from
the greedy algorithm can be used as input to the branch-and-bound algorithm.
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Computational results on random test cases for networks of size |V | ≤ 100 of both
the greedy algorithm and the branch-and-bound algorithm are presented in the paper.

The difference between the FCLM and the MCLM lies in the constraint where
demand is considered covered/captured. In the FCLM, demand of a path is
considered captured when there is at least one facility located on a node on the
path of the flow (demand). In contrast, demand is considered covered when there
is at least one facility located on a node in the neighbourhood of a certain distance
from the demand. Considering paths instead of neighbourhoods ensures that flow
is not "cannibalized". Cannibalization is a term that Hodgson used when flow on
a path is counted as captured multiple times by different facilities which happens
when flow through a location instead of flow on a path is considered. The naive
approach of counting all flow that passes a facility in a location as captured, could
lead to effectively capturing less flow than expected, since the flow might have been
captured by another facility on its path before reaching this facility (Hodgson, 1990).

Computational results and the effect of "cannibalization" on a real-life transporta-
tion network in Edmonton, Canada are shown by Hodgson et al. (1996). The flow
on paths of the network was determined using origin-destination pairs with shortest
paths between them. The network consists of 703 nodes and 23350 flows and the
problem is solved exactly for m ∈ {1, ...,15} with a computation time of < 6 days and
using a vertex substitution heuristic (VSH) for the larger cases with m ∈ {16, ...,50} as
a benchmark. The greedy algorithm presented previously by both Hodgson (1990)
and Berman et al. (1992) was then compared to the best found solutions (exact or
VSH). On this real-life network, the solution to the greedy algorithm is never more
than 0.9 percent worse in the amount of captured flow than the best found solution
(exact or VSH). The performance of the greedy algorithm also always outperforms its
worst case performance bound shown by Berman et al. (1992). The cannibalization
effect on the network is between 10-30 percent for m > 3, which means that this
percentage of flow is not caught compared to the best found solution because flow is
counted as captured more than once in the naive solution. These results show that
the first proposals of the FCLM are promising in their performance for capturing
demand on the arcs of a network.

An improvement of the aforementioned greedy heuristic was proposed by Boccia
et al. (2009). In each iteration of this improved heuristic, not only the leftover
interceptable flow is considered but also the amount of flow already intercepted
by facilities that were located in previous iterations. When locating a new facility
makes a facility that was located during a previous iteration redundant, the previous
facility is removed during an extra step in the algorithm for the improved heuristic.
This improved heuristic was also used by Kuby et al. (2009) to locate hydrogen fuel
stations in Florida.

VARIATIONS FLOW CAPTURING LOCATION MODEL

Several variations of the FCLM were proposed for applications in different areas. For
example for the application of refueling, the range of a vehicle is taken into account
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(Kuby et al., 2009)(Wu and Sioshansi, 2017) and deviations from the pre-planned
path by customers are allowed (Berman et al., 1995a). For services where multiple
exposures to facilities on each path are beneficial, multi-counting is introduced
instead of only counting the first facility on a path as capturing. In Averbakh and
Berman (1996), the FCLM is adapted with multi-counting under the assumption that
the objective value is a nondecreasing concave function in the number of facilities
on a path. A greedy heuristic that maximizes the increase of this nondecreasing
concave objective function in each step is proposed and a worst case upper bound
is shown.

The FCLM can generally be formulated with two different possible objective
functions. One option is maximizing the amount of flow that is captured under
certain constraints including the budget, which sets a limit on the number of
facilities that can be located. The other option is to find the minimum number of
facilities that is necessary to capture (a fraction of) the total flow. Boccia et al. (2009)
refer to these two options as M1 and M2. They also present the possibility to write
the model in a "gain-oriented" way (M3). A coefficient that represents the obtainable
gain for each node on a path is included in the model. The value of this coefficient
decreases along the length of a path. Intuitively, this can be used when it is beneficial
to capture the flow as early on the path as possible, for example with drunk
drivers. A greedy heuristic, an ascent heuristic and a local search were presented
for M3. The different models and heuristics were computationally tested on ran-
dom networks. The heuristics all perform well and within a small range of each other.

2.2.2 STOCHASTIC FLOW CAPTURING LOCATION MODEL

The FCLM was first proposed in a deterministic setting, meaning that knowledge
of all paths with non-zero flows is necessary as input data. However, in most
real-life situations, these paths and their flows are not known exactly and are subject
to stochasticity. Therefore, several different approaches to include stochasticity in
the model have been proposed in literature. This includes using Markov Decision
Processes and simulations.

STOCHASTIC APPROACH USING MARKOV DECISION PROCESSES

For traffic applications, origin-destination pairs are often used as input data with
the assumption of shortest paths between origin and destination. This assumption
does not represent reality fully for traffic applications, for instance, because drivers
are more likely to take the fastest route which is not always the shortest route. The
shortest path assumption is even less appropriate for the problem of plastic waste
propagation through water, since environmental factors such as wind, water flow
and vegetation causes the plastics to move in paths that are likely not the shortest
possible between origin and destination. An alternative representation of the data
is possible using transition probabilities. This leads to a transition matrix between
nodes of the network, making the process equivalent to a Markov Decision Process
(MDP).

This MDP approach of the FCLM was proposed by Berman et al. (1995b) and
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is appropriate when exact numbers of flows on paths are unknown, but reliable
knowledge about the probability that demand flow moves from node i to node
j is known. Artificial nodes are added to the network for nodes that are a
destination for some flow in the network. Input data for the MDP model include
the transition matrix between all nodes and an initial distribution vector. The
objective function which maximizes the captured flow is now no longer a linear
function, since a matrix inversion of the transition matrix is necessary to calculate
the objective value. However, using average-reward MDP theory in (Berman et al.,
1995b) and total-reward MDP theory in (Berman et al., 1997), this non-linear model
was rewritten to an Integer Linear Programming (ILP) formulation. The equivalence
between the non-linear model and the derived ILP was also proven without MDP
theory in (Berman et al., 1995c).

A greedy heuristic (similar to the previously mentioned heuristics) with a worst
case analysis was presented for the MDP version of the FCLM (Berman et al.,
1995c). The nodes with the largest improvement of the MDP objective function were
sequentially added to the set of facilities. Nodes that become redundant in later
iterations of the heuristic are removed in a step that checks their profit margin. The
worst case bound derived in the paper is fgreedy/ fopt ≥ 1−e−1. Computational results
show that the greedy heuristic finds solution within less than 1% of the objective
value of the optimal solution for randomly generated test cases with the number of
nodes n ≤ 100 and the number of facilities m ≤ 10. For large n and m, the results
for the greedy heuristic can be obtained much faster than the exact solution can be
obtained.

The same authors presented an extension of their research in 1997 where
multi-counting of flows captured is taken into account (Berman et al., 1997). They
distinguish between two types of multi-counting. In type I models, it is assumed
that a flow visiting multiple facilities on a path increases the objective value, but the
value of the visits decays with the number of visits on the path. This type of model
is appropriate for marketing purposes such as billboards. In type II models, only the
first visit by a customer to a facility adds value to the objective function, but there
is a probability that a flow is not intercepted by a facility on its path, for example
when there is "lack of visibility" or "obscureness" of facilities.

STOCHASTIC APPROACH USING SIMULATIONS

Another way of taking the probabilistic nature of the problem into account is by
performing simulations of the demand on possible paths in the network. This has
been done in previous research using several different approaches.

Wu and Sioshansi (2017) developed a stochastic version of the FCLM that they
refer to as the SFCLM. The SFCLM uses two stages and they apply the model to
electric vehicle refueling. In the first stage, a number of charging locations is placed
by maximizing the objective function using the expected number of vehicles that
can be captured. This expected value cannot be directly computed, and therefore,
a sample-average approximation (SAA) of the expected captured flow is used. In
the second stage, the actual number of captured vehicles is calculated using FCLM
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subproblems of the samples from the SAA-method. This second stage is used
to include uncertainty in the flow instead of only taking the expected value into
account. For each subproblem, optimality cuts are derived from the dual and these
cuts are iteratively added to the first stage problem. The first stage problem is solved
again with the added optimality cuts and it is checked whether the solution of the
expected value objective function is an overestimation of true second-stage objective
function values. If this is the case, then more cuts are added, otherwise the algorithm
terminates. The authors refer to these two stages as an L-shaped SAA problem,
which is solved using a branch-and-cut solution method. They compared their
stochastic model to a deterministic model where the EV flows are set equal to their
expected values and show that the stochastic model outperforms the deterministic
model when the maximum number of facilities that can be located is small.

A very similar two stage stochastic model that is solved by an L-shaped method
is suggested by Tan and Lin (2014). Again, optimal locations are decided in the
first stage based on the expected value of captured flow, and in the second stage
uncertainty is included using different scenarios.

Yang et al. (2008) used the Hurwicz rule to incorporate stochastic flow in the
FCLM. The Hurwicz rule is used to balance between flow scenarios under extremely
optimistic and extremely pessimistic values of the stochastic flow. The FCLM with
the Hurwicz rule is then solved using a "hybrid intelligent algorithm" that combines
stochastic simulation, greedy search and a genetic algorithm. The first chromosomes
for the initial population of the genetic algorithm are generated by performing
the greedy heuristic as proposed in Berman et al. (1992) on randomly sampled
simulations of the flow on the network, together with randomly located facilities as
chromosomes. The chromosomes are used to calculate the objective function of
the FCLM with the Hurwicz rule, which is then used to calculate the fitness of the
chromosomes. Then, a fixed number of new generations in the genetic algorithm is
generated by using selection (based on the fitness), crossover and mutation of the
population. This hybrid intelligent algorithm is applied to a random graph on a grid
with flows generated by a normal distribution.





3
TECHNICAL BACKGROUND

In this chapter, technical background from previous projects at Noria is presented,
together with the mathematical details of the Flow Capturing Location Model
(FCLM). Based on the literature research presented in Chapter 2, the FCLM seems
very suitable to model the location optimization of plastic waste catching systems.
Therefore, the mathematical model formulation of the path-based and MDP-based
FCLM are introduced.

3.1 PREVIOUS WORK AT NORIA
Since 2018, the company "Noria Sustainable Innovators" (Noria) has been working
on catching plastic waste from local waterways. Projects in different regions with
several clients have been carried out using their "3R-method": Research, Remove,
Reduce. For the "Research" phase of their services, they have developed ways to
measure the location of plastic debris using GPS tracking and AI-assisted camera
monitoring. Furthermore, they developed a model in QGIS that predicts locations
where plastics will likely accumulate: the hotspot prediction model. Using the
insights from this research, they "Remove" plastic waste using several catching
systems that Noria developed. The caught plastic is then analysed to find out more
about the origin of the plastics to try to "Reduce" plastic waste coming from this
source in the future. In this section, the model and the different catching systems
that Noria developed are described.

3.1.1 HOTSPOT PREDICTION MODEL

As part of the "Research" phase, a hotspot prediction model was developed to predict
locations where plastic accumulates because it gets stuck. The model is based on
a manual GIS-method that consists of three steps. The first step is to consider all
potential sources of plastic waste. Examples of sources are restaurants, recreational
sites, public wastebins and marketplaces. Then, it is calculated whether plastics
from these sources could get stuck based on wind direction, water flow direction,
geometry of the water and shore type. For some areas, Noria has observed that
routes traveled by plastics are mostly influenced by the wind. This information

11
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was gathered by interviewing local experts and testing with objects marked by GPS
sensors. Water flow caused by tides or pumping stations seemed to have little
impact in these areas. Therefore, water flow is often omitted in the model. Finally,
locations where plastics could likely get stuck are considered. This is based on shore
type, vegetation and sharp corners.

Noria converted these three manual steps into an automatic QGIS model with two
steps. In step 1, the model calculates all potential hotspot locations where plastics
could likely get stuck based on water geometry and wind directions. In step 2,
all extra factors in the surrounding that could result in these locations to become
a hotspot are considered. The number of surrounding factors that influence each
location is used to calculate a percentage that shows how likely this location is a
hotspot. A visualization of the hotspot prediction model is shown in Figure 3.1.

The model has a different outcome for each wind direction. Therefore, the model
is run using 8 wind directions to see all potential hotspots in an area under different
circumstances. Using this method in the area of Delft, the Netherlands, 50-60% of
the predicted hotspots were true positives. During the validation of the model, the
average wind direction of the past 12 hours was used as input. To find out how long
it takes for the plastics to travel a certain distance, further analysis of the trajectory
of the plastics for each wind direction and wind strength should be considered,
possibly using objects marked by GPS-sensors.

West wind
Polluter (source)
Vegetation
Hotspot

Wind direction Geometry

NECESSARY

One/more factors Hotspot

+ =+
or
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or
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++

++
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Figure 3.1: Visualization of the QGIS hotspot prediction model designed by Noria.

3.1.2 CATCHING SYSTEMS

There are two types of catching systems that Noria uses to catch floating plastic
waste from the water: active and passive catching systems. The active catching
system uses electric power to catch plastic with a moving element in the system.
The passive catching system does not need any power and uses no movement to
catch plastics.

The active catching system "CirCleaner" was developed by Noria and is shown



3.1 PREVIOUS WORK AT NORIA

3

13

in Figure 3.2. It has the shape of a wheel with 5 metal shovels that scoop up the
plastics during the rotation and lift them into the container in the hollow axis of the
wheel. The container has a 0.65m3 capacity and is emptied manually from the side.
Emptying the CirCleaner happens once every 2 weeks at a location with an average
amount of plastic flow. The wheel and container are covered with a cap, such that
plastics cannot be blown out of the container by strong winds. The CirCleaner has
a diameter of 3.5 meters and rotates against the direction of the incoming plastic
flow. The rotation uses gear drive that can be powered using an outlet from shore or
using solar energy. The CirCleaner rotates slowly with approximately 0.2 rotations
per minute, such that the water flow is interrupted as little as possible and plastic is
not being pushed out of the system.

(a) (b)

Figure 3.2: Front and side view of Noria’s CirCleaner.

A passive system "CanalCleaner" was also developed recently. The system is a
floating cage covered by a wooden raft with an opening on one side and is shown
in Figure 3.3a. Plastics enter the opening of the CanalCleaner when the water flow
direction is towards the opening of the system. When plastics enter the opening of
the passive system, they enter a cage with a capacity of 3.7m2 for plastics floating on
the water surface. The height of the cage above the water surface is approximately
30cm. Plastic waste in the water generally does not stick out high above the water
surface. The plastic is not lifted from the water by the CanalCleaner, but is floating in
the water inside the cage under the wooden raft. To ensure that the plastics do not
float back out of the system when the flow direction of the water changes, trapping
arms are built inside the cage to prevent movement back towards the opening of the
catching system. The trapping arms are built such that plastics can easily flow into
the system but get caught in the arms if they are flowing out of the system.

Floating lines are attached to both active and passive systems to guide plastics to
the opening of the system from a larger width than the width of the system. This
allows for blocking the flow of plastics past a certain location as much as possible.
Red and orange floating lines can be seen in Figure 3.2 and Figure 3.3b and yellow
floating lines in Figure 3.3a. The length of the floating lines can be adjusted for each
location and are installed such that they guide as much plastic as possible to the
opening of the system without blocking ship routes.

The CirCleaner can store more plastic waste than the CanalCleaner, since it lifts
the plastics from the water into a separate compartment and is not limited by the
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(a) (b)

Figure 3.3: Front view of Noria’s CanalCleaner. In Delft on the left image and in Amsterdam
after Kingsday on the right image.

surface where plastics float in the water in the CanalCleaner. Therefore, the passive
system should be manually emptied more often than the active system if the plastic
flux is the same. In practice, the CirCleaner is chosen when a location has a very
high amount of plastic flow, because the storage capacity of the CirCleaner can be
increased more easily. Furthermore, there is a small probability that plastics that
were initially caught by the passive system flow back out of the system, since they
are not lifted from the water. Therefore the probability that a piece of plastic is
caught by the CanalCleaner is slightly lower than the probability that a piece of
plastic is caught by the CirCleaner. Finally, when there is a strong influence of tides
on the water flow, the passive system is less suitable. However, the passive system is
cheaper to purchase than the active system. The exact values of variables of the two
types of catching systems that are used in the final model are reported in Chapter 6.

3.2 MATHEMATICAL BACKGROUND FCLM
In this section, we discuss two versions of the FCLM: the FCLM on a network with
flows on paths and the Markov Decision Process (MDP) approach to the FCLM with
transition probabilities for the flow. These two different models are referred to as
the "path-based FCLM" and "MDP-based FCLM" from now on. In Chapter 4, the
two models are adjusted to fit the problem of this thesis.

3.2.1 PATH-BASED FCLM
In the path-based FCLM on a network G(V ,E), the set P of all nonzero flow paths
and the amount of flow fp on each path p ∈ P is known. The set of nodes on the
path p ∈ P is denoted as Np . The set of nodes I ⊆ V on the network represents
possible locations for the facilities. A binary decision variable xi is introduced for
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each location i ∈ I :

xi =
{

1 if a facility is placed at location i ∈ I ,

0 otherwise.
(3.1)

A second binary decision variable yp is introduced for each path p ∈ P :

yp =
{

1 if at least one facility is located on path p ∈ P ,

0 otherwise.
(3.2)

The path-based FCLM formulation as presented in Berman et al. (1992) is shown
in Model (3.3). The model maximizes the amount of flow that is captured under
Constraint (3.3b), which ensures that a maximum number of m facilities is placed.
Constraint (3.3c) ensures that a path is only considered as captured (yp = 1) if there
is at least one catching system placed on the path.

maximize
∑

p∈P
fp yp (3.3a)

subject to
∑
i∈I

xi ≤ m, (3.3b)∑
i∈Np

xi ≥ yp , ∀p ∈ P, (3.3c)

xi ∈ {0,1}, ∀i ∈ I , (3.3d)

yp ∈ {0,1}, ∀p ∈ P. (3.3e)

Table 3.1: Notation of Model (3.3).

Notation Description
Set
P set of non-zero flow paths on the network
I set of locations where a catching system could be located
Np set of locations that are on the path p ∈ P
Decision variables
xi 1 if a catching system is placed at location i ∈ I , 0 otherwise
yp 1 if at least one catching system is placed on path p ∈ P , 0 otherwise
Input parameters
fp amount of plastic flow on path p ∈ P
m number of facilities

3.2.2 MDP-BASED FCLM
The Markov Decision Process (MDP) approach of the FCLM is based on Berman
et al. (1995c). In this case, a transition matrix is used as input to the model instead
of the set of paths P and their flows fp .
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Let V = {1, ...,n} be the set of nodes on the network where the flow travels. The
decision variable xi is introduced, which indicates whether a facility is placed at
location i ∈ V (xi = 1) or not (xi = 0). This is the same definition as the decision
variable in Equation (3.1), which was used in the path-based FCLM shown in Model
(3.3). We refer to the n-dimensional binary vector x as the "location vector".

The flow paths are now represented by probabilities to start in a location, transition
probabilities to move between locations i ∈ V and j ∈ V and probabilities to end
the path in a location. Let b be the initial distribution factor, such that bi gives
the fraction of the total amount of flow that starts at node i ∈ V . A common sink
node "0" is added to the model such that flow that arrives at the final node of its
path can be directed to this sink node. An artificial sink node "n +1" is also added
to direct the intercepted flow to this node. These two extra nodes thus represent
a state where flow has ended its path, either by reaching the end of the path, or
by being captured. The nodes 0 and n +1 are the absorbing states of this Markov
chain. This means that once the system enters these states, the system will return
to that state infinitely often with probability 1. The other nodes i ∈V = {1, ...,n} are
transient states, which means that once the system enters that state, the system
will return to that state only finitely often with probability 1 (Kemeny and Snell, 1960).

The initial probabilities of starting in the sink node or the artificial node are equal
to zero, b0 = 0,bn+1 = 0. Let qi j represent the probability that flow moves from node
i ∈V to node j ∈V ∪ {0} when there are no facilities in the network. The probability
qi 0 corresponds to the probability that flow ends in node i ∈V . Then, we know that∑n

j=0 qi j = 1, ∀i ∈V .

The transition probabilities ti j between nodes i , j ∈ V ∪ {0,n +1} are introduced
when there are facilities in the network. These transition probabilities are based on
the locations of the placed facilities x , the effectivity of the facilities and on the
transition probabilities qi j when there are no facilities in the network.

First of all, we set t00 = 1 and t0i = 0,∀i ∈ V ∪ {n +1}, since flow that reaches the
destination state 0 cannot transition back into the network or to the intercepted
state n +1. For node n +1 that represents the intercepted state, we set tn+1,n+1 = 1
and tn+1,i = 0,∀i ∈V ∪ {0}, since intercepted flow also cannot transition back into the
network. This defines the first and last row of the (n +2)× (n +2) Markov transition
matrix T +(x) given in Equation (3.5) that describes the Markov chain. The remaining
entries of this transition matrix are dependent on the choice of locations where
catching systems are placed, denoted by x .

The model uses a factor βi that indicates which fraction of the flow through
node i ∈ V is captured when there is a facility in location i ∈ V , thus representing
the capturing effectivity of the facility. Intuitively, the transition probabilities ti j (x)
to move from node i ∈V to node j ∈V ∪ {0} given the location vector of the placed
facilities are equal to qi j when no facility is located in node i ∈V (xi = 0). However,
if it is decided that there is a facility placed in node i ∈V (xi = 1), then ti j (x) is not
equal to qi j . In this case, the flow is either intercepted with probability βi , and
thus, transitions from node i ∈V to node n +1, or it is not intercepted with proba-
bility 1−βi and moves further in the network according to transition probabilities qi j .
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Similar to the path-based FCLM, facility locations can only be placed on the
nodes of the network. In the path-based FCLM, this assumption is without loss
of generality, however, in the MDP approach, this is not the case. An example is
shown by Berman et al. (1997). The example is shown in Figure 3.4. We have a
network with n nodes, for which b1 = 1,bi = 0 for i = 2,3, ...,n and q12 = 1, q2i = 1

n−2
for i = 3,4, ...,n. Suppose that we are allowed to place 3 catching systems (m = 3),
and βi =β< 1 for all i ∈V , which means that a facility does not catch 100% of the
flow that passes the facility. Then, the optimal locations for facilities are nodes i = 1
and i = 2 and a facility on the edge (1,2) as long as n ≥ 4. It is assumed in this thesis
that facilities can only be located at the nodes of the network, similar to previous
research on the MDP-based FCLM.

Figure 3.4: Example where optimal locations are not on nodes but also on edges (Berman
et al., 1997). The initial probability bi of each node i ∈V is shown on the right of each node.
The transition probability of each edge qi j is shown next to each edge (i , j ).

The location vector x and the factors βi define the rest of the entries of the
(n +2)× (n +2) Markov transition matrix T +(x) as follows:

ti j (x) = (1−βi xi )qi j ∀i ∈V , j ∈V ∪ {0},
ti ,n+1(x) =βi xi ∀i ∈V.

(3.4)

The transition matrix can be decomposed as follows:

T +(x) =
 1, 0, . . . ,0 0

t0 T (x) tn+1(x)
0, 0, . . . ,0 1

 , (3.5)

where t0 is a column vector containing the transition probabilities to go from a state
i ∈V to state 0, and tn+1 is a column vector containing the transition probabilities
to go from a state i ∈V to the captured state n +1. These two column vectors show
the transition probabilities from transient states to the two absorbing states of the
Markov chain. The entries of the matrix T (x) are the transition probabilities within
the set of transient states i ∈V .

According to Markov chain techniques, the probability of reaching node j = n +1
(i.e. the flow is captured) is the hitting probability of reaching the state j = n +1
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from the initial distribution. The hitting probability hi j is defined as the probability
of ever reaching state j starting from initial state i and can be calculated with the
following equation:

hi j =
{

1 if i = j ,∑
k∈V ti k (x)hk j otherwise.

(3.6)

Using Equation (3.6), we can derive the following matrix equation to calculate the
hitting probability h = [h1,n+1,h2,n+1, . . . ,hn,n+1]T from any initial node i ∈ V to the
recurrent captured state n +1:

h̃ =


h1,n+1

h2,n+1
...

hn,n+1

hn+1,n+1

=
[

T (x) tn+1(x)
0, . . . ,0 1

]


h1,n+1

h2,n+1
...

hn,n+1

hn+1,n+1

 (3.7)

Using the fact that hn+1,n+1 = 1, we obtain the following equation for h:

h = T (x)h + tn+1(x). (3.8)

The solution to this equation is h = [I −T (x)]−1tn+1(x). By taking the inner product
with the initial distribution vector b, we find the proportion of the total flow in the
Markov chain that ends up in state n +1 when starting from this initial distribution:
bT [I −T (x)]−1tn+1(x).

The objective function of the MDP-based FCLM is to maximize this quantity
under the same constraints as in Section 3.2.1. The objective function of the model
proposed by Berman et al. (1995c) also takes revenue and cost of facilities into
account. The input parameter r is the expected value of revenue when all the
flow in the network is captured. The input parameter ci gives the costs that are
associated with placing a facility in location i ∈V . This value includes set-up costs
and fixed operating costs of a facility at each location. This leads to the mixed
integer Non-Linear Program (NLP1) in Model (3.9):

(NLP1)

maximize r bT [I −T (x)]−1tn+1(x)− ∑
i∈V

ci xi (3.9a)

subject to
∑
i∈V

xi ≤ m, (3.9b)

xi ∈ {0,1},∀i ∈V. (3.9c)
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Table 3.2: Notation of Model (3.9).

Notation Description
Set
V set of locations where a catching system could be located
Decision variables
xi 1 if a catching system is placed at location i ∈V , 0 otherwise
Input parameters
r expected value of revenue when all the flow in the network is captured
b initial distribution vector of plastics
T (x) transition matrix between states i ∈V , j ∈V ∪ {0}
tn+1(x) transition vector between states i ∈V , j = n +1
ci all costs associated with placing a facility at location i ∈V
m maximum number of facilities

The following linear Mixed Integer Program (MIP1) can be derived from nonlinear
Model (3.9) using total-reward Markov Decision Processes (Berman et al., 1997). The
extra decision variables vi 1 and vi 2 are introduced for all i ∈V in the formulation of
this equivalent linear model.

(MIP1)

maximize r
∑
i∈V

βi vi 2 −
∑
i∈V

ci xi (3.10a)

subject to vi 1 + vi 2 −
∑
j∈V

q j i v j 1 −
∑
j∈V

(1−β j )q j i v j 2 = bi , ∀i ∈V , (3.10b)∑
i∈V

xi ≤ m, (3.10c)

vi 1 ≤ Mi 1 (1−xi ) , ∀i ∈V , (3.10d)

vi 2 ≤ Mi 2xi , ∀i ∈V , (3.10e)

vi 1, vi 2 ≥ 0, xi ∈ {0,1}, ∀i ∈V. (3.10f)

Constraints (3.10d), and (3.10e) are big-M constraints that ensure that vi 1 = 0 when
xi = 1 and vi 2 = 0 when xi = 0. The values Mi 1 and Mi 2 are included to ensure that
the constraints are as tight as possible to make it easier to solve MIP1. First, we
show the equivalence between NLP1 and MIP1. Then, the interpretation of the extra
decision variables vi 1 and vi 2 and the values of Mi 1 and Mi 2 are shown.

Let v1 = [v11, ..., vn1] and v2 = [v12, ..., vn2], then Theorem 1 shows the equivalence
between Model (3.9) and Model (3.10) (Berman et al., 1995c):

Theorem 1.

(a) If (x∗, v∗
1 , v∗

2 ) is an optimal solution to MIP1 then x∗ is an optimal solution to
NLP1.

(b) If x∗ is an optimal solution to NLP1, then there exist vectors v∗
1 , v∗

2 such that
(x∗, v∗

1 , v∗
2 ) is an optimal solution to MIP1.
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(c) The optimal values of MIP1 and NLP1 are identical.

Proof. This is proven in two parts.

1. Every feasible solution x of problem NLP1 has a unique feasible solution
(x , v1, v2) to MIP1.

2. The objective functions of NLP1 and MIP1 are equivalent.

Part 1: Suppose we have a location matrix x . This uniquely defines the entries of v1

and v2 because of Constraints (3.10b), (3.10d), and (3.10e). For n of the 2n entries of
vi 1 and vi 2, we know that they are zero because of Constraints (3.10d) and (3.10e):

vi 1 = 0, ∀i ∈V when xi = 1, because of Constraint (3.10d),

vi 2 = 0, ∀i ∈V when xi = 0, because of Constraint (3.10e).

We can write a new auxiliary vector z filled with the remaining n entries of v1 and
v2 that have not been set to zero so far:

zi (x) =
{

vi 1 if xi = 0,

vi 2 if xi = 1.

The vector z can be used to write the n constraints from (3.10b) as the following
equation:

zT [I −T (x)] = bT .

The matrix [I −T (x)]−1 is also referred to as the fundamental matrix (Kemeny and
Snell, 1960). Since T (x) is the transition matrix between the transient states of our
absorbing Markov chain, we know that T (x)n tends to the zero matrix as n →∞.
Therefore, we know that the inverse [I −T (x)]−1 is well defined and

zT = bT [I −T (x)]−1 (3.11)

defines the remaining n nonzero values of v1 and v2 uniquely.
Part 2: Using the definition of tn+1(x) and (3.11), we can see that the objective

functions are equivalent as shown in the following equation:

bT [I −T (x)]−1tn+1(x) = bT [I −T (x)]−1[β1x1, . . . ,βn xn]T

(3.11)= zT [β1x1, . . . ,βn xn]T = ∑
i∈V

βi xi zi =
∑
i∈V

βi vi 2(x)

The last step of the equation follows from the fact that the entries zi where xi ̸= 0
are equal to vi 2.

Statements (a), (b), and (c) of the theorem follow directly from part 1 and 2 of the
proof.

From Equation (3.11), we can see that

vi 1 =
{(

bT [I −T (x)]−1
)

i if xi = 0,

0 if xi = 1,
(3.12)
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and

vi 2 =
{

0 if xi = 0(
bT [I −T (x)]−1

)
i if xi = 1.

(3.13)

As explained by Berman et al. (1995c), vi 1 is the expected number of visits to node
i ∈V prior to interception by some facility or reaching the destination node 0. This
can be seen from the fact that according to Markov chain theory, the fundamental
matrix [I −T (x)]−1 gives the expected number of visits to transient state j ∈V from
transient state i ∈V before hitting an absorbing state (state 0 or n +1).

vi 2 is the expected number of visits to a facility node i ∈V . The probability of being
intercepted in node i ∈V is zero when there is no facility in the node (xi = 0). When
there is a facility in node i ∈V , we can see that vi 2 is equal to the expected number
of visits to the facility node. We can also see this from the equivalence between the
objective functions of NLP1 and MIP1: bT [I −T (x)]−1tn+1(x) =∑

i∈V βi vi 2. The left
hand side is equal to the proportion of flow that is caught, calculated by the hitting
probability of state n +1 from initial distribution b. Since βi is the proportion of
flow in a node i ∈ V that is intercepted when there is a facility, we know that vi 2

should thus be equal to the expected number of visits of flow through this node to
make sure that the right hand side of this equation is equal to the left hand side.

Given these interpretations of the variables, it becomes apparent that Mi 1 is the
maximum expected number of visits to node i ∈ V (under any location vector x),
and Mi 2 is the maximum expected number of visits to a facilitiy node i ∈ V . The
values of Mi 1 and Mi 2 can be computed directly. The maximum expected number
of visits to a node i ∈V is reached when there are no facilities in the network. In
that case, x = 0 and T (x) = T where the entries Ti j equal qi j for i , j ∈V , since there
are no facilities in the network. Therefore,

Mi 1 =
(
bT [I −T ]−1)

i . (3.14)

The maximum number of visits to a facility node i ∈ V that can be intercepted
is reached when there is a facility in location i ∈ V (xi = 1), but there are
no other facilities in the network (x j = 0,∀ j ∈ V \ {i }). In that case, using
Bi = diag[1, ...,1, (1−βi ),1, ...,1] ∈Rn×n , we have T (x) = Bi T and

Mi 2 =
(
bT [I −Bi T ]−1)

i . (3.15)





4
PROBLEM FORMULATION

In this chapter, the problem description and model formulation of the problem
of locating plastic waste catching systems in water as introduced in Chapter 1
are further specified. Previous research described in Chapter 2 shows that two
mathematical models seem most appropriate to model the problem; a path-based
and an MDP-based approach of the Flow Capturing Location Model.

The main difference between the two models is the representation of the flow that
is captured. For the path-based FCLM, the flow is represented by a set of nonzero
flow paths P and the amount of flow fp on each path p ∈ P . For the MDP-based
FCLM, the flow is represented by a transition matrix T that contains transition
probabilities between the nodes in the network. Together with an initial distribution
b, this transition matrix is a probabilistic representation of the flow in the area.
The flow that is captured in the model in this thesis is plastic waste flow in local
waterways. Theoretically, pieces of plastic waste travel on distinct paths that could
be represented by flow paths, however, practically it is impossible to track all pieces
of plastic waste in a certain area from the start to the end of their paths. It is much
more realistic to calculate and estimate the probability that a piece of plastic waste
enters the water, moves from one place to another and gets stuck at a location. This
is why the MDP-based FCLM is chosen and adjusted in this chapter to model the
Plastic Waste Flow Capturing Location Problem (PW-FCLP).

4.1 PROBLEM DESCRIPTION
The objective of the PW-FCLP is to catch as much plastic waste as possible in a
water network, which is done by intercepting plastic waste in the water with a
catching system. The water network is represented by a graph G(V ,E). The nodes
V are the set of locations where catching systems could possibly be placed. The
model should then decide whether a catching system is placed at location i ∈ V
or not. Let bi be the probability that flow starts in location i ∈ V and let qi j

be the transition probability that plastic waste travels between locations i , j ∈ V ,
where qi 0 = 1−∑

j∈V qi j is the probability that plastic gets stuck at a node i ∈ V .
The proportion of flow passing each location can then be calculated using Markov
chain theory. When we put a limit m on the number of catching locations, the
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optimization problem is to find the locations where to place catching systems such
that the caught flow is maximized.

In Chapter 2, it was mentioned that different objective functions are used in
previous research. As mentioned in Boccia et al. (2009), it is also possible to
minimize the number of catching systems such that at least a predefined fraction of
the total flow is captured. Since Noria works on projects with clients who generally
have a maximum budget for the catching systems, it is more suitable to maximize
the amount of flow that is captured under constraints that limit the number of
catching systems that can be placed.

This is the simplest form of the problem, however, there are several other factors
that should be incorporated in the model to make it more realistic.

First of all, there is a set K of different types of catching systems that could
be placed in each location. These are the types of catching systems presented in
Section 3.1.2. At most one system of one type can be placed at each location. Some
locations in local waterways might not be suitable for all types of catching systems
because of the geometry of the water or ship routes. These locations should be
considered in the model such that the solution does not contain a catching system
of a certain type that cannot be placed in its suggested location.

Secondly, placing a catching system of type k ∈ K at location i ∈V , does not mean
that all plastic flow passing this location is caught. Intuitively, one can imagine that
a certain catching system can block only 80% of the width of a canal at a certain
location, because boats should still be able to pass the system. Furthermore, the
effectivity of the floating lines should be taken into account, since plastic could
be going under the lines to pass the system when there are waves. The catching
systems designed by Noria can only catch floating plastics, which is why submerged
plastics are not considered in the model. For each location and each catching
system, a parameter βi k can be defined as an input for the model such that βi k

gives the probability that a piece of plastic floating by location i ∈V is caught by a
catching system of type k ∈ K when placed at location i ∈V . We refer to this factor
βi k as the "catching probability" of the catching system of type k ∈ K in location
i ∈ V . The catching probability also takes the probability that plastics escape the
catching system into account. It is assumed in this research that the catching
systems can always be emptied before they are full, therefore, the capacity of the
catching systems is not a limiting factor.

Since waves that influence the effectivity of the floating lines are actually related
to passing ships or stormy weather, we could argue that this variable should be
stochastic in our model. However, it was decided to take the average probability that
a passing piece of plastic is caught and to leave out the variability of this probability
in our model. The catching probability can be used to calculate the proportion of
plastics that is caught when encountering a catching system. In this way, we make
sure that a piece of plastic is counted as caught at most once, by one catching system.

Noria’s technology is generally used by organizations that have a fixed budget for
plastic waste cleanup. Therefore, costs ci k of each type of catching system k ∈ K for
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each location i ∈V and a budget B should be taken into account in the model, such
that the sum of the costs of all placed catching systems is less than or equal to
the budget of the client. In case there is no budget, B =∞, it is useful to include
a weight w in the model that introduces a tradeoff between catching more plastic
flow and paying fewer costs. If there is a finite budget B , then this weight could still
be introduced with a small value of w to make sure that the model does not decide
to place an extra catching system if the gain in the amount of plastics that is caught
by this extra system is small compared to the costs of the extra system.

Furthermore, it is extra beneficial when the plastics are caught as early on their
paths as possible to minimize their degradation into microplastics and minimize
their impact on animals in the ecosystem. There might also be sensitive areas in the
water network that need to be extra protected against plastic waste. For example,
it could be important to catch plastic before it moves from local rivers and canals
into the sea or ocean. It could also be important to prevent plastics from moving
between areas with different responsible municipalities or water boards. An impact
factor αi can be included in the model that is high for sensitive areas and low for
less sensitive areas. Uncaught plastic flow in the network at each location i ∈ V is
multiplied by this factor αi and is subtracted from the objective function. In this
way, the objective function is higher when more plastics are caught in sensitive
areas. If the impact factor is larger than zero but has the same value for all locations
i ∈V , this ensures that the plastics are caught as early as possible on their paths.

Finally, the probabilities qi j of plastics transitioning between nodes i , j ∈ V and
the probabilities bi of starting or qi 0 of getting stuck in a node i ∈V are not exactly
known. There is little data available on the flow of plastics in most areas. Noria uses
GPS tracking of plastics, AI camera’s for counting plastics and the aforementioned
Static Hotspot Prediction Model with publicly available environmental data to
investigate the flow and accumulation of plastics in several areas. Translating this
data into the input probabilities that represent the plastic flow is a challenge, but
very important for the real life performance of the model. The focus of this
thesis is to formulate and solve a mathematical model to find the optimal solution.
Therefore, data gathering and processing is of secondary importance for the scope
of this thesis. A description of the processing of the data into the input parameters
bi , qi j ,αi ,βi k , w,ci k , and B is given in Chapter 6.

Furthermore, the influence of uncertainty of these impact parameters due to
variations over time and dependence on environmental factors on the outcome of
the model is investigated in a sensitivity analysis, explained in Section 7.1.

4.2 MODEL FORMULATION

In this section, the aforementioned aspects of the problem are translated into a
mathematical model with decision variables, constraints and an objective function.
The Flow Capturing Location Model as presented in Section 2.2 and Section 3.2 is
used to design a new version of the model based on Markov Decision Processes,
which uses transition probabilities for the plastics between locations in the water
network as input. The new model is called the Plastic Waste Flow Capturing Location
Model (PW-FCLM).
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4.2.1 ORIENTATION OF THE CATCHING SYSTEM

In Section 3.1.2, it is shown that the catching systems designed by Noria all have
an opening on one side where the plastics can enter the system. This means
that when plastic flows arrive in a location i ∈V coming from different angles, we
cannot assume that all this flow is in the correct direction to be captured by the
catching system. To ensure that this is addressed in the model, we add extra nodes
and use directed edges instead of undirected edges. This means that we double
the nodes that are on straight water segments of the network with directed edges
between them. Half of the nodes represent catching systems oriented with their
opening in one direction, the other half has its opening in the other direction.
It is unlikely that catching systems are placed at intersections where the flow is
coming from three or more directions, since it is usually not possible to block a
large part of the waterway with floating lines at intersections because boats need to
be able to turn there. Therefore, it is not necessary to add extra nodes at intersections.

Figure 4.1: Visualization of the importance of the orientation of the catching system.

The problem is visualised in Figure 4.1. Red nodes represent locations where a
catching system is placed. On the left of the figure, we see that when a catching
system is placed on a flow path (green), it seems that the flow is captured. In
most versions of the FCLM this is not a problem, because in applications such as
refueling stations it is usually quite easy for a car to change direction to enter the
station, no matter its orientation. In the middle of the figure, we see six different
possible paths for the plastic waste flow on this same segment. On the right of the
figure, we see that the red and purple paths would actually not be caught by the
system if the opening of the system is oriented as shown.

Note that it is possible for plastics to turn around, for example when the wind
changes. When a piece of plastic turns around after reaching node i ∈ V , it is
important to take into account that this plastic is caught when the orientation of the
catching system is correct for the incoming direction of the plastic (such as shown
in the cyan blue path). This is because we saw in Section 3.1.2 that both passive and
active catching systems are designed to trap the plastics, even when the direction
of the plastic flow changes after they are caught. When plastic reaches node i ∈V
from the closed side of the catching system and then turns around, it should not be
considered caught by the model (such as shown in the purple path). However, when
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the plastic passes the system from the "wrong direction" but then turns around to
enter the opening of the system, it should be considered caught (such as shown
in the dark green path). Plastics traveling the dark blue path are also considered
caught, since they only turn around after being caught by the system.

This problem is solved by adjusting the network by doubling the nodes and adding
the directed edges as shown in Figure 4.2 on the left. The orientation of the catching
system corresponding to each node is shown on each side. In the two visualizations
on the right of Figure 4.2, we can see that this works because the light green,
cyan blue, dark green paths and dark blue paths go through the red node with
the catching system and are considered caught. The red and purple paths do not
go through a facility node and are not considered caught. This is shown for both
possible orientations of the catching systems.

Figure 4.2: Visualization adjusting the network to take the orientation of the catching system
into account.

4.2.2 MDP-BASED FCLM
In the problem description in Section 4.1, more parameters are introduced than
in the basic MDP-based FCLM shown in Model (3.10) presented by Berman et al.
(1995c). These parameters are introduced to take all aspects of the location
optimization problem of plastic waste catching systems into account. This includes
the possibility of several types of catching systems k ∈ K , impact factors for sensitive
areas αi , the effectivity of the catching systems βi k , a weight w to trade off the
amount of plastics caught with the costs, costs of catching systems ci k and total
budget B . These aspects lead to the following adjustments to Model (3.10) presented
by Berman et al. (1995c).

Let V = {1, ...,n} be the set of nodes on the network where the plastic waste travels
and the locations where a catching system could be placed. Since the goal is to
catch as much plastic waste from the water network as possible by placing catching
systems, the model should decide in which locations i ∈V a catching system of type
k ∈ K needs to be placed. Therefore, a binary decision variable with a double index
is introduced:

xi k =
{

1 if a catching system of type k ∈ K is placed at location i ∈V ,

0 otherwise.
(4.1)

The constraint: ∑
k∈K

xi k ≤ 1, ∀i ∈V , (4.2)
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is added to ensure that only 1 catching system of 1 type is allowed to be placed in
each location.

The difference with the original model by Berman et al. (1995c) is the extra index
k ∈ K which is added to the decision variable to include the possibility of placing
different types of catching systems. To account for locations i ∈V where a catching
system of type k ∈ K cannot be placed, we add the following constraints:

xi k = 0, ∀k ∈ K \Ki , i ∈V , (4.3)

where Ki ⊆ K is the set of catching systems that can be placed in location i ∈V . In
Section 4.2.1, it was mentioned that catching systems are not placed at intersections
due to the orientation of the catching systems. Therefore, Ki =; for the nodes i ∈V
that are intersections.

Let b be the initial distribution factor, such that bi gives the fraction of the total
amount of plastic waste that starts at node i ∈V . Similar to the model proposed by
Berman et al. (1995c), a common sink node "0" is added to the model, such that
plastics that do not travel further in the network can be directed to this sink node.
An artificial sink node "n +1" is also added to direct the captured flow of plastics to
this node. Intuitively, in the case of location optimization of plastic waste catching
systems, this means that plastics that are stuck somewhere in the water (e.g. in
a corner, vegetation or a boathouse) reach state 0. Plastics that are caught by a
catching system reach state n +1. The nodes 0 and n +1 are the absorbing states of
the Markov chain, and the nodes i ∈V are the transient states.

The initial probability of plastic waste starting in the sink node b0 or the artificial
node bn+1 is equal to zero. Let qi j represent the probability that plastic waste
travels from node i ∈ V to node j ∈ V ∪ {0} when there are no catching systems in
the network. The probability qi 0 corresponds to the probability that plastic waste
gets stuck in node i ∈V . We know that

∑n
j=0 qi j = 1, ∀i ∈V .

The transition probabilities qi j of plastics moving from location i ∈ V to j ∈ V
when there are no catching systems are determined from data using wind and
geometry of the water. The probability qi 0 that plastic waste gets stuck in node i ∈V
is based on surrounding factors such as corners, bridges, vegetation or boats. The
details of how these parameters are determined are given in Chapter 6.

The transition probabilities ti j between nodes i , j ∈ V ∪ {0,n +1} are introduced
when there are catching systems in the network. These transition probabilities are
based on the locations of the placed catching systems x , the effectivity of the
catching systems βi k and on the transition probabilities qi j when there are no
catching systems in the network.

As described in Section 3.2.2, we set t00 = 1 and t0i = 0, for all i ∈V ∪ {n +1}. For
node n+1, which represents the captured state, we set tn+1,n+1 = 1 and tn+1,i = 0, for
all i ∈V ∪ {0}, since we assume that plastics that are caught by the catching system
cannot escape from these systems. If it is physically possible for a piece of plastic to
escape from a catching system, this probability is included in the effectivity of the
catching system βi k .
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This defines the first and last row and the first column of the (n +2)× (n +2)
Markov transition matrix T +(x) that describes the Markov chain. The remaining
entries of this transition matrix are dependent on the choice of locations where
catching systems are placed. This is indicated by the n ×|K |-dimensional binary
"location matrix" x . The (n +2)× (n +2) Markov transition matrix T +(x) is defined
by the location matrix x similarly to Equations (3.4), however, we also sum over the
possible types of catching systems k ∈ K for each entry i , j ∈V :

ti j (x) = (
1−∑

k∈K βi k xi k
)

qi j ∀i ∈V , j ∈V ∪ {0},
ti ,n+1(x) =∑

k∈K βi k xi k ∀i ∈V.
(4.4)

Note that Constraints (4.2) ensure that only one catching system could be placed in
each location, such that at most one βi k xi k term should remain in these sums.

The transition matrix is decomposed as follows:

T +(x) =
 1, 0, . . . ,0 0

t0 T (x) tn+1(x)
0, 0, . . . ,0 1

 . (4.5)

Again, the column vectors t0 and tn+1 represent the probability that plastic waste
flow gets stuck or is captured, which are transition probabilities from transient states
to the two absorbing states of the Markov chain. The entries of the matrix T (x) are
the transition probabilities within the set of transient states i ∈V , which means that
plastic is still moving around in the network.

The hitting probability h = [h1,n+1,h2,n+1, . . . ,hn,n+1]T of reaching state n +1 from
any initial state i ∈V is given by h = [I −T (x)]−1tn+1(x) as shown in Section 3.2.2. By
taking the inner product with the initial distribution vector b, we find the proportion
of the total flow in the Markov chain that ends up in state n +1 when starting from
this initial distribution: bT [I −T (x)]−1tn+1(x). This is the proportion of the total flow
of plastics that is caught by placing the catching systems according to x , which is
maximized in the objective function of the model.

To make sure that the total costs do not exceed the total budget B for the area,
the following constraint is included in the model:∑

i∈V

∑
k∈K

ci k xi k ≤ B. (4.6)

This constraint replaces Constraint (3.9b), which limits the number of placed
facilities in Model (3.9). The new constraint in (4.6) takes different costs for different
types of catching systems into account.

Furthermore, a term −w
∑

i∈V
∑

k∈K ci k xi k can be added to the objective function
with the weight w that introduces a tradeoff between catching more plastic flow and
paying fewer costs. This replaces the use of the variables r and ci for revenue and
costs of facilities in the objective function of the model proposed in Berman et al.
(1995c).

Finally, the impact factor αi is included in the model by multiplying this by the
uncaught flow in the network and subtracting this term from the objective function.
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From Markov Chain theory, it follows that
(
bT [I −T (x)]−1

)
i is the expected number

of visits to a state i ∈ V (Kemeny and Snell, 1960). Therefore, we know that for a
location i ∈V with no catching systems (

∑
k∈K xi k = 0), the uncaught remaining flow

is equal to
(
bT [I −T (x)]−1

)
i . For a location i ∈V with a catching system of type k ∈ K

(xi k = 1), the uncaught remaining flow is equal to (1−βi k )
(
bT [I −T (x)]−1

)
i . This

leads to a term −∑
i∈V αi (1−∑

k∈K βi k xi k )
(
bT [I −T (x)]−1

)
i in the objective function

to take the sensitive areas into account.

The mixed integer Non-Linear Program (NLP2) containing all our extra variables
and constraints is shown in Model (4.7) below.

(NLP2)

maximize bT [I −T (x)]−1tn+1(x)−w
∑
i∈V

∑
k∈K

ci k xi k (4.7a)

− ∑
i∈V

αi

(
1− ∑

k∈K
βi k xi k

)(
bT [I −T (x)]−1)

i

subject to
∑

k∈K
xi k ≤ 1, ∀i ∈V , (4.7b)

xi k = 0, ∀i ∈V ,k ∈ K \Ki , (4.7c)∑
i∈V

∑
k∈K

ci k xi k ≤ B , (4.7d)

xi k ∈ {0,1}, ∀i ∈V ,k ∈ K . (4.7e)

Table 4.1: Notation of Model (4.7).

Notation Description
Set
V set of locations where plastic travels
Ki set of types of catching systems that could be chosen at location i ∈V
K set of all possible catching systems
Decision variables
xi k 1 if a catching system of type k ∈ K is placed at location i ∈V , 0 otherwise
Input parameters
b initial distribution vector of plastics
T (x) transition matrix between states i ∈V , j ∈V ∪ {0}
tn+1(x) transition vector between states i ∈V , j = n +1
w weight that balances costs vs catching more plastics
ci k cost of placing catching system of type k ∈ K in location i ∈V
B total budget for the area to place catching systems
αi impact factor for sensitive areas
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SOLUTION METHODS

In this chapter, the non-linear model from Chapter 4 is linearized to the final version
of the PW-FCLM. The linearization of the objective function allows it to be solved
exactly using existing MILP solvers. Then, we show that the PW-FCLM is NP-hard.
Therefore, a greedy heuristic is also presented as an alternative solution method.

5.1 LINEARIZATION OF THE MODEL
The following linear model can be derived from our non-linear Model (4.7):

(MIP2)

maximize
∑
i∈V

∑
k∈K

βi k vi k2 −w
∑
i∈V

∑
k∈K

ci k xi k −
∑
i∈V

αi vi 1 −
∑
i∈V

αi
∑

k∈K
(1−βi k )vi k2 (5.1a)

subject to vi 1 +
∑

k∈K
vi k2 −

∑
j∈I

q j i v j 1 −
∑
j∈V

∑
k∈K

(1−β j k )q j i v j k2 = bi , ∀i ∈V , (5.1b)

vi 1 ≤ Mi 1

(
1− ∑

k∈K
xi k

)
, ∀i ∈V , (5.1c)

vi k2 ≤ Mi k2xi k , ∀i ∈V ,k ∈ K , (5.1d)∑
k∈K

xi k ≤ 1, i ∈V , (5.1e)

xi k = 0, ∀k ∈ K \Ki , i ∈V , (5.1f)∑
i∈V

∑
k∈K

ci k xi k ≤ B , (5.1g)

vi 1, vi k2 ≥ 0. ∀i ∈V ,k ∈ K , (5.1h)

xi k ∈ {0,1}, ∀i ∈V ,k ∈ K . (5.1i)

There are several differences with the original model by Berman et al. (1995c)
shown in Model (3.10), such as the extra index k ∈ K in the variables xi k , the
extra terms in the objective function for sensitive areas and the extra constraints
in (5.1f) for locations i ∈ V where no catching systems of type k ∈ K are allowed.
Another important difference with the original model are the extra variables vi k2
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and parameters Mi k2 for the different types of catching systems k ∈ K .

Let v1 = [v11, ..., vn1] and v2 ∈ RN×|K | be such that (v2)i k = vi k2, then Theorem 2
shows the equivalence between Model (4.7) and Model (5.1). The proof is very similar
to the proof of Theorem 1, except for some details regarding the terms containing
the impact factor αi and the extra variables xi k and vi k2 and the parameters Mi k2.

Theorem 2.

(a) If (x∗, v∗
1 , v∗

2 ) is an optimal solution to MIP2 then x∗ is an optimal solution to
NLP2.

(b) If x∗ is an optimal solution to NLP2, then there exist vectors v∗
1 , v∗

2 such that
(x∗, v∗

1 , v∗
2 ) is an optimal solution to MIP1.

(c) The optimal values of MIP2 and NLP2 are identical.

Proof. We prove this in two parts.

1. Every feasible solution x of problem NLP2 has a unique feasible solution
(x , v1, v2) to MIP2.

2. The objective functions of NLP2 and MIP2 are equivalent.

Part 1: Suppose we have a location matrix x . This uniquely defines the entries of v1

and v2 because of Constraints (5.1b), (5.1c), and (5.1d). For the following entries, we
know that they are zero because of Constraints (5.1c) and (5.1d):

vi 1 = 0,∀i ∈V when
∑

k∈K
xi k = 1, because of Constraint (5.1c),

vi k2 = 0,∀i ∈V , k ∈ K when xi k = 0, because of Constraint (5.1d).

This means that the entries vi 1 are zero when there is a facility of some type k ∈ K in
location i ∈V , and the entries vi k2 are zero when there is no catching system of type
k ∈ K in location i ∈V . We can write a new auxiliary vector z with the remaining n
entries of v1 and v2 that have not been set to zero so far:

zi (x) =
{

vi 1 if
∑

k∈K xi k = 0,

vi k2 if xi k = 1.

This means that an entry of zi is equal to vi 1 when there is no catching system
in location i ∈ V , and equal to vi k2 if there is a catching system of type k ∈ K in
location i ∈V . The vector z can be used to write the n constraints from (5.1b) as
the following equation:

zT [I −T (x)] = bT .

Since the matrix T (x) is substochastic, the inverse [I −T (x)]−1 is well defined and
therefore

zT = bT [I −T (x)]−1 (5.2)
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defines the remaining n nonzero values of v1 and v2 uniquely.
Part 2: Using the definition of tn+1(x) and Equation (5.2), we can see that the first

terms of the objective functions are equivalent as shown in the following equation:

bT [I −T (x)]−1tn+1(x) = bT [I −T (x)]−1

[ ∑
k∈K

β1k x1k , . . . ,
∑

k∈K
βnk xnk

]T

(5.2)= zT

[ ∑
k∈K

β1k x1k , . . . ,
∑

k∈K
βnk xnk

]T

= ∑
i∈V

∑
k∈K

βi k xi k zi =
∑
i∈V

∑
k∈K

βi k vi k2

The last step of the equation follows from the fact that the entries zi where xi k ̸= 0
are equal to vi k2.

For the terms of the objective functions containing the impact factor αi , we use
that

vi 1 =
{(

bT [I −T (x)]−1
)

i if
∑

k∈K xi k = 0,

0 if
∑

k∈K xi k = 1,
(5.3)

and

vi k2 =
{

0 if xi k = 0(
bT [I −T (x)]−1

)
i if xi k = 1,

(5.4)

which follows from Equation (5.2). Then, we can see that for all i ∈V :

αi (1− ∑
k∈K

βi k xi k )
(
bT [I −T (x)]−1)

i ={
αi vi 1 if

∑
k∈K xi k = 0

αi (1−βi k )vi k2 for k ∈ K where xi k = 1, if
∑

k∈K xi k = 1.
(5.5)

Statements (a), (b), and (c) of the theorem follow directly from these two parts of
the proof.

The interpretation of the decision variables vi 1 and vi k2 and the values of Mi 1

and Mi k2 is similar to the interpretation given in Section 3.2.2. vi 1 is the expected
number of visits to node i ∈V prior to interception by some facility or reaching the
destination node 0. vi k2 is the expected number of visits to a facility node i ∈V with
a catching system of type k ∈ K .

Again, Mi 1 is the maximum expected number of visits to node i ∈ V (under any
location vector x), and Mi k2 is the maximum expected number of visits to facility
node i ∈V with a catching system of type k ∈ K . The values of Mi 1 and Mi k2 can
be computed directly. The maximum expected number of visits to a node i ∈V is
reached when there are no facilities in the network (x = 0 and T (x) = T ). Therefore,

Mi 1 =
(
bT [I −T ]−1)

i . (5.6)

The maximum expected number of visits to facility node i ∈V with a catching system
of type k ∈ K is reached when there is a catching system of type k ∈ K in location i ∈V
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(xi k = 1), but there are no other facilities in the network (
∑

k∈K x j k = 0,∀ j ∈V \{i }). In
that case, using Bi k = diag[1, ...,1, (1−βi k ),1, ...,1] ∈Rn×n , we have T (x) = Bi k T and

Mi k2 =
(
bT [I −Bi k T ]−1)

i . (5.7)

There are three different parts in the objective function of Model (5.1) that
represent the three different objectives:

1. catching as much plastic waste as possible,

2. spending a proportional amount of money per extra amount of plastic flow
that is caught with each additional catching system,

3. catching the plastics as early as possible in the total area and catching them
before entering a sensitive area or as early as possible if they enter the sensitive
area.

We can split up the objective function of Model (5.1) into three parts:

f (x) = ∑
i∈V

∑
k∈K

βi k vi k2︸ ︷︷ ︸
f1(x)

−w
∑
i∈V

∑
k∈K

ci k xi k︸ ︷︷ ︸
f2(x)

− ∑
i∈V

αi vi 1 −
∑
i∈V

αi
∑

k∈K
(1−βi k )vi k2︸ ︷︷ ︸

f3(x)

. (5.8)

We can clearly distinguish the three objectives in the three parts of the objective
function, f1(x), f2(x) and f3(x). Note that these terms only depend on x in this
notation, since it was shown in Part 1 of the proof of Theorem 2 that there is a
unique solution v1 and v2 for each location matrix x .

The first part, f1(x), is equal to the total proportion of plastic flow that is caught,
the second part, f2(x), is a trade-off term for costs and the third part, f3(x), is
the trade-off for the leftover flow in the sensitive areas. To properly trade-off the
different objectives contained in the objective function, the values of the parameters
w and αi for each location i ∈V should be chosen based on practical wishes of the
user of the model. This is discussed in Section 6.3.

5.2 COMPLEXITY ANALYSIS

It is mentioned in Berman et al. (1992) that the path-based FCLM is NP-hard,
because the formulation of the path-based FCLM is identical to the formulation of
the Maximal Coverage Location Model (MCLM). For the MDP-based FCLM proposed
by Berman et al. (1995c), no complexity proof was presented in the literature.
Since the formulation of the MDP-based FCLM has a different structure than the
path-based FCLM and the MCLM, the complexity proof is not trivial. Therefore,
we show NP-hardness of our version of the MDP-based FCLM in Model (5.1) by
providing a polynomial time reduction from the knapsack problem.
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First of all, the knapsack problem is as follows:

maximize
n∑

i=1
gi yi (5.9a)

subject to
n∑

i=1
si yi ≤W, (5.9b)

yi ∈ {0,1}, ∀i ∈ {1, ...,n}, (5.9c)

where gi are the profits of the n possible items and si are the weights or sizes of the
possible items that should fit within the maximum capacity W of the knapsack.

The decision problem form of the knapsack problem is: does a feasible solution y
exists such that the objective value of the solution is at least l ?

The decision problem form of Model (5.1) is: does a feasible solution (x , v1, v2)
exist such that the objective value of the solution is at least l ′?

The decision problem form of Model (5.1) (MIP2) is denoted by D-MIP2.

Theorem 3. D-MIP2 is NP-complete.

Proof. We prove this in three parts.

1. D-MIP2 is in NP.

2. There exists a polynomial time reduction Q(·) from an instance I of the
knapsack problem to an instance Q(I ) of D-MIP2.

3. For each instance I of the knapsack problem, I is a yes-instance of the
knapsack problem if and only if Q(I ) is a yes-instance of D-MIP2.

Part 1: Given a certificate x , there is a unique feasible solution (x , v1, v2) as
shown in Theorem 2. It was shown that the values vi 1 and vi k2, for all i ∈ V
and k ∈ K can be calculated using Equation (5.3) and Equation (5.4), which takes
polynomial time since the transition matrix T (x) can be computed from x in
polynomial time and the inverse matrix bT [I −T (x)]−1 can also be computed in
polynomial time. Then, given all values xi , vi 1 and vi k2, for all i ∈ V and
k ∈ K , it takes polynomial time to calculate whether the instance is a yes-instance:∑

i∈V
∑

k∈K βi k vi k2 −w
∑

i∈V
∑

k∈K ci k xi k −
∑

i∈V αi vi 1 −∑
i∈V αi

∑
k∈K (1−βi k )vi k2 ≥ l ′.

Part 2: Given an instance I = (g ∈ Rn+, s ∈ Rn+,W ∈ R+) of the knapsack problem, a
polynomial time reduction to an instance Q(I ) of D-MIP2 is given as follows. We set
the sets V and K to V = {1, ...,n} and K = {1, ...,n}. In addition, we set

w = 0, αi = 0, ∀i ∈V , βi k = 1, ∀i ∈V , k ∈ K ,

qi j = 0, ∀i , j ∈V , k ∈ K , qi 0 = 1, ∀i ∈V.

This means that T = 0, Mi 1 = bi and Mi k2 = bi . The knapsack problem with
profits gi has the same solution as the knapsack problem with normalized profits
g̃i = gi /

∑n
i=1 gi . In our polynomial time reduction, we set bi = g̃i . Then, we set

Ki = {i }, for all i ∈V , such that xi k = 0, for all i ̸= k. Finally, we set ci k = sk , for all
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i ∈V and k ∈ K and set B =W . The knapsack decision problem with parameter l is
now reduced to D-MIP2 with parameter l ′ = l /

∑n
i=1 gi .

Part 3: If I is a yes-instance of the knapsack decision problem, then there
exists a solution y such that

∑n
i=1 gi yi ≥ l . If we set xi i = yi , this defines

a unique solution (x , v1, v2). The solution is feasible, because x satisfies the
constraints

∑
k∈K xi k = xi i ≤ 1 and

∑
i∈V

∑
k∈K ci k xi k = ∑

i∈V si xi i = ∑
i∈V si yi ≤ W = B

and the unique solution (x , v1, v2) is feasible as shown in Theorem 2. Using
Equation (5.4), we find that vi k2 = 0 if xi k = 0, and vi k2 = bi if xi k = 1. Note
that we do not have to determine vi 1 since αi = 0 for all i ∈ V in the
objective function. Then, we can see that the objective function of Q(I )
becomes

∑
i∈V

∑
k∈K vi k2 = ∑

i∈V vi i 2 = ∑
i∈V bi xi i = ∑n

i=1 g̃i yi ≥ l /
∑n

i=1 gi = l ′, so Q(I )
is a yes-instance of D-MIP2.

Conversely, if Q(I ) is a yes-instance of D-MIP2, then there exists a
solution (x , v1, v2) such that

∑
i∈V

∑
k∈K vi k2 ≥ l ′. Then, the solution yi = xi i

is feasible because
∑n

i=1 si yi = ∑n
i=1 ci i xi i = ∑

i∈V
∑

k∈K ci k xi k ≤ B = W . For the

objective value, we know that
∑n

i=1 gi yi =∑n
i=1

(∑n
j=1 g j

)
g̃i yi =

(∑n
i=1 gi

)·(∑i∈V bi xi i
)=(∑n

i=1 gi
) · (∑i∈V

∑
k∈K vi k2

) ≥ (∑n
i=1 gi

) · l ′ = l , so I is a yes-instance of the knapsack
decision problem.

From the three parts of the proof, it follows that D-MIP2 is NP-complete.

5.3 GREEDY HEURISTIC
A simple greedy heuristic was presented in Berman et al. (1995c). In this greedy
heuristic, the catching system with the highest increase in objective value is added
in each iteration of the heuristic until there is no more budget for new catching
systems. This heuristic was slightly adjusted to take the different types of catching
systems in the new version of the model into account.

In each step p ∈ {1,2, ...} of the heuristic, we place one extra catching system. We
do this by calculating for each location i ∈ V where no catching system has been
placed and for each type of catching system k ∈ Ki that is allowed in this location,
what the objective function would be if catching system k ∈ Ki is placed at location
i ∈V . Note that we only calculate this for catching systems that can still be added
within the budget. When calculating the objective function, we use the objective
function in the non-linear form of Model (4.7):

f (x) = bT [I −T (x)]−1tn+1(x)︸ ︷︷ ︸
f1(x)

−w
∑
i∈V

∑
k∈K

ci k xi k︸ ︷︷ ︸
f2(x)

− ∑
i∈V

αi

(
1− ∑

k∈K
βi k xi k

)(
bT [I −T (x)]−1)

i︸ ︷︷ ︸
f3(x)

.

(5.10)
This is equivalent to the objective function of the linear model, but the variables vi 1

and vi k2 are substituted for their corresponding value that we can calculate using
x . We choose the catching system with the highest increase in parts f1 and f3 of
the objective function per unit of cost of this catching system and add this to the
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solution. Note that we leave out part f2 of the objective function to ensure that we
are not accounting for the costs ci k twice. This ensures that we do not choose the
most expensive catching system (the active system) because it has a higher catching
probability, if it is possible to catch more plastics by placing several less expensive
catching systems (passive systems) within the budget.

The pseudocode of the greedy heuristic is as follows:

Algorithm 1: Greedy heuristic PW-FCLM

Result: xp

p = 0
costs0 = 0
A0 =; (set of catching system locations)
x0 = 0

(
solution matrix, xp ∈ {0,1}n×K

)
while ∃i ∈ N \Ap ,k ∈ Ki such that costsp + ci k ≤ B , f (xp +ei ,k ) ≥ f (xp ) do

ip ,kp = argmaxi∈N \Ap ,k∈Ki

(
f1(xp+ei ,k )− f3(xp+ei ,k )− f1(xp )− f3(xp )

ci k

)
xp+1 = xp +eip ,kp

costsp+1 = costsp + cip ,kp

Ap+1 = Ap ∪ {ip }
p = p +1

end

where f (xp ) is the objective value of the model given the solution xp , and ei ,k is a
matrix of size n ×K with a one in entry i ,k and zeros in all other entries. Adding
a new catching system to the solution corresponds to adding ei ,k to the current
solution xp . We use the set Ap to keep track of the locations where a catching
system has already been placed.





6
DATA

In this chapter, the preprocessing of data that is used as input to the model is
explained. This is separated into three categories of data that are used in the model:
network data, flow data and MILP parameters. The network data regards setting
up the graph with nodes and edges. The flow data includes all the surrounding
factors that influence the flow of plastics. The MILP parameters are the predefined
parameters in Model (5.1). The model is applied to the water network of Delft,
the Netherlands, but the input data is generated in an automated and general way,
such that it can easily be applied to other locations. The data is loaded into QGIS,
an open-source Geographic Information System, and is processed using available
QGIS plugins and self-written Python scripts. Finally, the variations on the input
parameters to create new scenarios for a sensitivity analysis are described.

6.1 NETWORK DATA
The network G(V ,E) on which the model is applied, is based on the water network
of the area where the problem is solved. First of all, the waterways become the edges
E of the network. This is achieved by using available data from Open Street Map to
import the water network as a line layer. The line network is naturally divided into
edges by the nodes that are located at intersections and locations where a waterway
changes its direction. The canals in Open Street Map are very detailed, with small
changes in direction of the waterway indicated by a new line separated by a node.
Therefore, the second step is to simplify the network using a QGIS processing
algorithm called "Simplify" with its tolerance setting set to 20. The algorithm creates
geometries with the same features but fewer vertices, such that the distance of the
simplified geometries compared to the detailed geometries is less than the tolerance
setting of 20 meters. The tolerance setting could be adjusted for different areas to
which the model is applied, depending on the size of the area and the level of detail
of the waterways. After using this QGIS processing algorithm, some small manual
changes are necessary to ensure that a few unnecessary vertices are deleted and the
remaining vertices are moved. The result should be a layer with as few vertices left
as possible and with edges representing the waterways close enough judged by eye.
This should lead to a network with nodes only located at intersections and positions

39
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where the water changes direction clearly, as shown in Figure 6.1.

(a) (b)

Figure 6.1: The detailed version of the waterways in Delft from Open Street Map is shown
on the left with the nodes of the line layer shown in white. On the right, the simplified
version of the waterways with fewer nodes (in red) is shown.

The nodes V on the graph represent possible locations where catching systems
could be located. Therefore, longer straight segments of the water are separated
into more nodes for potential catching systems locations. The maximum distance
between two nodes dmax is a parameter that can be adjusted to balance the solution
space of the model with the preciseness of the locations that are suggested to place
a catching system. It is estimated by Noria that a maximum distance of 100m
between two possible catching system gives an accurate enough solution. The exact
location where the catching system is placed can then be chosen within 100m of
the solutions based on practical preferences. However, it is also tested if varying
the value of dmax influences the solution and objective value of optimal locations
suggested by the model. This is further explained in Section 7.1. A Python script
interpolates extra nodes on straight segments of the network such that the nodes on
a straight segment are equally distributed at a distance of at most dmax from each
other. The addition of extra nodes on straight segments is shown in Figure 6.2a. The
angle of the direction of each edge with respect to north is saved as an attribute of
the QGIS line layer such that it can be used to calculate transition probabilities for
the plastic flow. Finally, a Python script is used to double the nodes on the straight
segments to take the orientation of the systems into account and extra edges are
added between the double nodes (as explained in Section 4.2.1). The final network
with the double nodes and directed edges is shown in Figure 6.2b.
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(a) (b)

(c)

Figure 6.2: In (a), extra nodes (in orange) are added at equal distances less than dmax
to separate the larger water segments and to consider more locations to place a catching
system. Then, the nodes are doubled to take the two possible orientations into account.
Extra edges are added between the double nodes to direct the plastic flow to the correctly
oriented catching systems. The final network is shown in (b) and a zoomed in version to see
the double nodes and directed edges is shown in (c).

6.2 FLOW DATA

When the nodes and edges of the network are established, the next step is to find
the flow of plastics on the network. A Markov chain representation of the plastic
flow is made. The initial distribution and a transition matrix are necessary to define
this Markov chain. To define the full transition matrix of the plastic flow, we need
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transition probabilities along the edges between nodes, the probability to get stuck
in a node and the probability to be caught by a catching system in a node.

6.2.1 INITIAL PROBABILITY

The initial distribution b is based on sources in the surroundings. Sources are
restaurants, public recreational sites such as benches or playgrounds, and markets.
The number of sources within a maximum distance rsour ces of the nodes is used to
decide what fraction of the total flow should start at each node. It is estimated that
the sources influence plastic waste in an area of radius 100m around their location,
therefore rsour ces = 100. The sources are available in GIS and provided by Noria from
previous research projects. For each node, the total number of sources within a
radius of rsour ces of a node are counted in the vector b and then b is normalized,
such that bi represents the probability of plastic waste starting in the node i ∈V .

6.2.2 TRANSITION PROBABILITY

The transition probabilities qi j between nodes i , j ∈V are dependent on wind and
water geometry. Wind data from the Royal Netherlands Meteorological Institute
(KNMI) from the year 2022 is used to calculate the probability distribution of wind
in each possible direction. Data from the KNMI weather station (number 344) in
Rotterdam was used for the model of Delft, since this is the closest weather station.
Previous research from Noria suggests that the wind has the most influence on
the direction in which plastics move in the water. The direction in which the
plastics move could also be influenced by turbulent and local winds in different
directions than the global wind measured in Rotterdam, due to buildings or other
height differences in the surroundings. Furthermore, the water flow direction could
be different from the global wind direction due to tides, pumping stations, altitude
differences, boats or water turbulence. Since GPS measurements done by Noria seem
to suggest that the wind has the most influence and there is no data available on
the other surrounding factors, it is assumed in this thesis that the wind direction on
the water geometry decides in which direction the plastics move. The influence of
this assumption on the solution of the model is tested in the sensitivity analysis as
explained in Section 7.1.

For each node i ∈V , the probability that the plastic moves from this node to each
of the following nodes j ∈ V along the edge (i , j ) ∈ E is calculated by counting on
how many days of the year the wind direction is closest to the direction of the edge.
To do this, we use the angle of the edges with respect to north and the angle of the
wind direction with respect to north. If there are two outgoing edges of the node
i ∈ V for which the wind direction of a certain day is within 5 degrees from the
direction of the bisector of these two edges, then we count that plastic travels on
both edges on that day. An example is shown in Figure 6.3. By normalizing the
number of days counted for each edge, the transition probabilities are determined.

6.2.3 PROBABILITY OF GETTING STUCK

There is also a probability qi 0 that a piece of plastic gets stuck in a certain node.
The plastic that gets stuck is directed to the sink node "0" that was added to the
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Figure 6.3: Visualisation of how the wind direction is used to calculate the transition
probability along an edge. The orange arrows indicate the three outgoing edges (1,2), (1,3)
and (1,4) of node 1. The red dashed lines are the bisectors of the three edges. If the wind
direction is within ±5◦ of the bisector (the blue coloured range of wind directions), both
edges are counted to have plastic flow due to this wind direction on that day. For example,
if the wind direction is within the range 45−55◦ on a certain day, the plastics can travel
along both edges (1,2) and (1,3) on that day.

model, as explained in Section 4.2.2. We assume that pieces of plastics get stuck at
dead ends, sharp corners, docked boats (such as houseboats) and at places with
shore vegetation or water vegetation. To each of these factors, we assign a certain
probability of getting stuck.

DEAD ENDS

The probability of getting stuck due to dead ends is denoted by qd
i 0. The probability

that the wind is blowing in the direction of the dead end is calculated in the
transition matrix. We assume that half of the plastics that are moving into the
direction of the dead end get stuck, and the other half is allowed to move back
when the wind direction is away from the dead end. Therefore, the probability that
plastics get stuck at a dead end i ∈V is qd

i 0 = q j i ·0.5 for ( j , i ) ∈ E .

SHARP CORNERS

The probability of getting stuck due to sharp corners is denoted by qc
i 0. The

probability that passing plastics get stuck in a certain corner is calculated for each
corner separately. Then, the probability of getting stuck at a certain node due to the
sharp corners that are close to the node is calculated from these probabilities.

The direction and size of each corner is calculated from the geometry of the water
polygon layer in QGIS using a Python script. If the size of the corner is less than
110 degrees, the corner is considered sharp enough for plastics to get stuck, as
observed in field experiments done by Noria. The probability that the wind direction
is blowing into this corner is then calculated by taking the proportion of days of the
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year 2022 that the wind was blowing into the corner. This probability is multiplied
by 0.5 to calculate the probability of getting stuck in this particular corner, since it
is assumed that half of the plastics get stuck in the corner, and the other half is
allowed to flow back when the wind direction changes (similar to the dead ends).

To calculate the probability of getting stuck at a node i ∈V due to sharp corners,
the complements of the probabilities of getting stuck at each of the sharp corners at
a distance less than 0.5dmax of the node are multiplied and subtracted from 1. For
example, if there are three sharp corners near node i ∈V , the probability of getting
stuck due to sharp corners is calculated as follows: qc

i 0 = 1− (1−qc1
i 0 )(1−qc2

i 0 )(1−qc3
i 0 ).

BOATS

The probability of getting stuck due to docked boats is denoted by qb
i 0. Based on

experience at Noria, we estimate that the probability of getting stuck at docked boats
is qb

i 0 = 0.3. A layer of houseboats is available in QGIS. If there are houseboats within

a distance less than 0.5dmax of the node i ∈V , we set qb
i 0 = 0.3.

VEGETATION

We distinguish between a probability of getting stuck due to shore vegetation q s
i 0

and water vegetation q w
i 0.

Shore vegetation grows more quickly in spring and summer than in winter, but it
is present throughout the whole year. A line layer of the shore types is available,
which indicates whether the shore is made of wall or vegetation. If there is shore
vegetation within a distance less than 0.5dmax of the node i ∈ V , we set q s

i 0 = 0.3,
which is estimated based on experience at Noria.

Wall or vegetation are the only two types of shore present in Delft, however, in
some parts of Groningen there is a rubble stone shore. This could be added in the
future as a third shore type to extend the model.

Water vegetation (such as water lilies or duckweed) is only present between the
months april-september, which is half of the year. When there is water vegetation,
plastics hardly move from their position. Therefore, a probability of 0.9 of getting
stuck due to water vegetation is estimated based on experience at Noria. A polygon
layer of the canals in which water vegetation is present is available in QGIS. For this
area, we set q w

i 0 = 0.45 as water vegetation is only present half of the year.

These factors are considered independently: if a piece of plastic encounters one of
the factors, there is a probability to get stuck. If it does not get stuck, it continues
and encounters other factors that could lead to getting stuck. Therefore, the total
probability of getting stuck at each node due to any of these factors is calculated
by taking the product of the complements of the probabilities for each factor and
subtracting this from 1:

qi 0 = 1− (1−qd
i 0)(1−qc

i 0)(1−qb
i 0)(1−q s

i 0)(1−q w
i 0). (6.1)

An example for the calculation of the probability to get stuck in a node i ∈V due to
several different factors is shown in Figure 6.4.
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Figure 6.4: Example calculation of the probability of getting stuck due to several different
factors together.

6.2.4 CATCHING PROBABILITY

If a catching system is placed in location i ∈V , we need to calculate the probability
that the plastic can be caught by a catching system in this location. To calculate this
catching probability, the width of the canal wcanal

i and the maximum allowed boat

width wmaxboat
i at each location i ∈V are necessary. Subtracting the maximum boat

width from the width of the canal gives the width of the canal that can be blocked
by the floating lines of the catching system. This is divided by the width of the canal
to obtain a percentage that can be blocked, and then multiplied by the accuracy of
the type of catching system ak to find the catching probability βi k of a catching
system of type k ∈ K in location i ∈V as follows:

βi k = wcanal
i −wmaxboat

i

wcanal
i

·ak . (6.2)

The width of the canals at each location i ∈V is calculated automatically in QGIS
with a Python script. Note that we do not need to know the catching probability
at intersections, because in our model we assume that we do not place catching
systems at intersections due to the orientation of the opening of the catching system.
For each node that is not an intersection, a line perpendicular to the canal is created
and clipped by the polygon layer. The length of the remaining line segment is saved
as an attribute. The maximum boat width at each location is different for different
types of regions in the water network. In the case of Delft, there is a larger waterway
where container vessels can sail. These boats are up to 10m wide and should be
able to pass from both ways, which is why all nodes on the waterway "Schie" have a
maximum boat width of 21m. The canals and bridges in the city center are smaller
and boats do not need to be able to pass simultaneously from both ways. The
maximum boat width for this area is set to 4m.

Noria offers two types of catching systems as mentioned in Section 3.1.2. Type
k = 1 is the active catching system, which has accuracy a1 = 0.98 and type k = 2 is
the passive catching system, which has accuracy a2 = 0.85. The accuracy of the
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passive systems is lower because plastics are not lifted from the water by the system
and might not always be fully trapped by the system, or plastics could have trouble
entering the system if the system is very full.

6.3 MILP PARAMETERS

Finally, there are 4 different types of input parameters for the PW-FCLM in Model
(5.1) that still need to be defined: the cost ci k of placing a catching system of type
k ∈ K , the total budget B for the area to place catching systems, the weight w that
balances costs with catching more plastics and the impact factor αi of location i ∈V
for sensitive areas. These are defined based on expert knowledge at Noria from
previous research and projects.

The model is tested using fixed costs for the two types of catching systems
that Noria offers and a variable budget to test a realistic budget for a variety of
possible clients. The costs are not expressed in a specific unit or currency, but as a
representative ratio compared to the other type of catching system and the budget.
In our tests of the model, we set the costs of each type of catching system equal
for all locations i ∈V . The active catching system has costs ci 1 = 1 and the passive
catching system has cost ci 2 = 0.2 for all i ∈V . The costs of the system in the model
are the total costs of placing the catching system. These include purchase costs
together with an estimation of the operating costs.

The total budget is varied between B ∈ [0.2,4]. Since the accuracy of the passive
catching systems a2 is almost as high as the accuracy of the active catching
systems a1 while the costs of passive catching systems are much lower, we expect
that the optimal solutions to the tests of the PW-FCLM contain only passive
catching systems. That means that for B = 4, 20 passive catching systems are
placed. In practice, there are other reasons why active catching systems are
more suitable than passive catching systems, as explained in Section 3.1.2. For
locations i ∈V where this is the case, it is possible to set xi 2 = 0 with Constraint (5.1f).

The factors αi , i ∈V and w should be chosen to properly reflect the wishes of the
user of the model in the trade-off between the different objectives, based on the
following interpretation of these trade-off terms.

6.3.1 TRADE-OFF TERM FOR COSTS

When we fix αi = 0 for all i ∈V , the trade-off term for costs in the objective function,
f2(x), ensures that an extra catching system is only placed when the amount of
extra flow that is caught per extra unit of cost is larger than w . We can see
this from the following derivations. By setting αi = 0, the objective function is
f (x) = f1(x)− f2(x) = f1(x)−w f̃2(x), where f̃2(x) =∑

i∈V
∑

k∈K ci k xi k is a term that is
equal to the total costs of the solution x .

If we compare the objective value of an optimal solution x∗ with a different



6.3 MILP PARAMETERS

6

47

solution x , we see that the following inequalities hold:

f (x∗) ≥ f (x), (6.3)

f1(x∗)−w f̃2(x∗) ≥ f1(x)−w f̃2(x), (6.4)

f1(x∗)− f1(x)

f̃2(x∗)− f̃2(x)
= ∆caught flow(x∗−x)

∆costs(x∗−x)
≥ w. (6.5)

We distinguish between the following four cases of Equation (6.5):

• The numerator and the denominator are both positive. In this case, w is
important since in x∗ more flow is caught with a higher cost. Then, the
fraction is logically bounded from below by w .

• The numerator is positive and the denominator is negative. In this case, both
terms f1(x∗) and f̃2(x∗) positively influence the objective value of solution x∗
compared to solutions x , because it means that more flow is caught with less
costs. Therefore, w is not necessary in this case.

• The numerator is negative and the denominator is positive, which means less
flow is caught for optimal solution x∗ with higher cost. This is not possible
when (6.3) holds, therefore the situation does not exist.

• The numerator is negative and the denominator is negative. In this case, the
inequality sign is flipped and the fraction is bounded from above by w .

Therefore, the value of w should be equal to the minimum proportion of the total
amount of plastics moving in the area that the user of the model wants to catch per
unit of cost. In that way, the objective value increases when a new catching system
of type k ∈ Ki is placed at a location i ∈ V if the extra flow that is caught by the
catching system at this location is larger than the minimum amount of plastic flow
that we want to catch with the extra costs of the new catching system (wci k xi k ).
The objective value decreases when an extra catching system does not catch enough
extra plastic compared to its extra costs. Therefore, such an extra catching system
would not be in an optimal solution of the model in this case.

The value w = 0.005 is chosen in the tests of the model, such that an extra active
catching system of type k = 1 should catch at least 0.5 percent extra of the total
amount of plastic in the area and an extra passive catching system of type k = 2
should catch at least 0.1 percent extra of the total amount of plastic in the area.

6.3.2 TRADE-OFF TERM FOR SENSITIVE AREAS

To study the interpretation of the impact factor in the third part of the objective
function, f3(x), we leave out the second term f2(x) for the trade-off with costs
by setting w = 0. Furthermore, we assume that the impact factor is equal to
αi = α for all i ∈ Vs ⊆ V , where Vs is the set of nodes in the sensitive area, and
αi = 0 in all other nodes i ∈ V \Vs . Then, the objective function can be written as
f (x) = f1(x)− f3(x) = f1(x)−α f̃3(x), where f̃3(x) =∑

i∈Vs vi 1 −∑
i∈Vs

∑
k∈K (1−βi k )vi k2 is

a term that is equal to the number of visits of plastic flow in the sensitive area Vs ,
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given solution x . Note that while the flow caught is always less than or equal to 1
(since the model expresses flow in the proportion of the total flow), the number of
visits of plastic flow in the sensitive area can be larger than 1 because most plastics
can visit several nodes before getting stuck or caught by a catching system.

We compare the objective value of an optimal solution x∗ with a different solution
x+ which corresponds to the optimal solution of the model with the same inputs
except α+

i = 0 for all i ∈V . Then, we know that the total amount of flow caught with
solution x∗ is lower than or equal to the total amount of flow caught with solution
x+, f1(x∗) ≤ f1(x+). We also know that the total number of visits of flow in the
sensitive area with solution x∗ is lower than or equal to the total number of visits of
flow in the sensitive area with solution x+, f̃3(x∗) ≤ f̃3(x+).

If we compare the objective value of an optimal solution x∗ with a different
solution x− which corresponds to the optimal solution of the model with the
same inputs except α−

i ≥ αi for all i ∈ V , then, we know that the total amount
of flow caught with solution x∗ is higher than or equal to the total amount of
flow caught with solution x−, f1(x∗) ≥ f1(x−). We also know that the total number
of visits of flow in the sensitive area with solution x∗ is higher than or equal to
the total number of visits of flow in the sensitive area with solution x−, f̃3(x∗) ≥ f̃3(x−).

By comparing an optimal solution x∗ to the solutions x+ and x−, we find that:

f1(x∗)−α f̃3(x∗) ≥ f1(x+)−α f̃3(x+), (6.6)

f1(x∗)− f1(x+)

f̃3(x∗)− f̃3(x+)
= ∆total flow caught(x∗−x+)

∆flow visits in sensitive area(x∗−x+)
≤α. (6.7)

Note that the sign of the inequality is flipped, because f̃3(x∗)− f̃3(x+) is negative.
The bound is positive because the numerator and denominator are both negative.
The impact factor α should be chosen equal to the maximum amount of total flow
caught that the user of the model is willing to "trade" per unit of fewer flow visits in
the sensitive area.

Using similar reasoning, we find the following inequality for f (x∗) ≥ f (x−):

f1(x∗)− f1(x−)

f̃3(x∗)− f̃3(x−)
= ∆total flow caught(x∗−x−)

∆flow visits in sensitive area(x∗−x−)
≥α. (6.8)

This means that solution x∗ is better than solution x− if the amount of extra
flow that is caught in total is at least α per unit of extra flow visits in the sensitive area.

In the following, we study three ways of using the impact factor in the model:
catching the plastics as early as possible in the whole area, a sensitive area in the
city center and a sensitive node at the edge of the study area.

CATCHING PLASTICS EARLY IN THE WHOLE AREA

To ensure that plastics are caught as early on their paths as possible, we set αi to
a small positive value for all i ∈ V . It was shown in Section 5.1 that βi k Mi k2 is
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the maximum amount of flow that can be caught in location i ∈V with a catching
system of type k ∈ K . Therefore, if we choose α= mini∈V ,k∈Kβi k Mi k2, we ensure that
the objective function is not dominated by the term f3(x). In that case, the model
only considers catching the plastics early in the case of tiebreakers, but does not
choose to catch plastics as early as possible when it means that less plastic is caught
in total. If we choose α= maxi∈V ,k∈Kβi k Mi k2, we expect that part f3 of the objective
function starts to dominate, which means that less flow is caught in total. It is also
interesting to explore intermediate values of α, for example the mean of βi k Mi k2 for
all i ∈ I and k ∈ K .

The effect of setting the impact factor αi =α to a small positive value for all i ∈V
is tested for

α ∈{0,mini∈V ,k∈Kβi k Mi k2,
1

|V ||K |
∑

i∈V ,k∈K
βi k Mi k2,0.5 ·maxi∈V ,k∈Kβi k Mi k2,

maxi∈V ,k∈Kβi k Mi k2} = {0,0.00003,0.005,0.022,0.044}

and plotted in Figure 6.5. The total flow caught is plotted for each value of α for
several budgets, the total number of visits of flow in the sensitive area is plotted,
and it is verified whether Equation (6.7) and Equation (6.8) hold. From the two plots
at the top of Figure 6.5, we see that the total flow caught does not decrease a lot
for α= 0.5 ·maxi∈V ,k∈Kβi k Mi k2, while the total flow in the sensitive area decreases
visibly for most budgets. Therefore, it is chosen to set αi = 0.5 ·maxi∈V ,k∈Kβi k Mi k2

for all i ∈V in the model to catch plastics as early as possible. We can also verify
from the bottom two plots in Figure 6.5 that Equation (6.7) and Equation (6.8) hold
except from dividing by almost zero for B = 2, α= 0.5 ·maxi∈V ,k∈Kβi k Mi k2.
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Figure 6.5: Flow caught and flow left in sensitive area plotted on the left and right top, for
different small values of αi at all nodes for catching early. ∆ total flow caught / ∆ flow visits
in sensitive area is plotted compared to solution x+ (corresponding to the optimal solution
for the case α+

i = 0) on the left bottom and to solution x− (corresponding to the optimal
solution for the case where α−

i = 0.044) on the right bottom. Using the purple dotted line
y = x, we verify that Equation (6.7) holds on the left bottom plot and that Equation (6.8)
holds on the right bottom plot.

SENSITIVE AREA

To test for a sensitive area, we set αi to a higher value for nodes in the city center
of Delft. In Figure 6.6, the total flow caught is plotted for several budgets, the
total number of visits of flow in the sensitive area is plotted, and it is verified that
Equation (6.7) and Equation (6.8) hold for αi ∈ {0.5,0.7,0.9} for i ∈ Vs where Vs are
the nodes in the city center of Delft. We see one exception in the right bottom plot
for B = 1 and αi = 0.7 due to a division by almost zero.

SENSITIVE NODE AT THE EDGE OF THE AREA

It was also tested how the model responds when αi ∈ {1,2,3} for the most northern
node in the area of Delft, to reflect the case where it is important that the plastic
flow does not leave the area towards the North Sea. In Figure 6.7, the total flow
caught is plotted for several budgets, the total number of visits of flow in the
sensitive area is plotted, and it is verified that Equation (6.7) and Equation (6.8) hold
for αi ∈ {1,2,3} for the most northern node in the area of Delft.

In all computational results shown in Chapter 7, we only use the impact factor for
catching early.
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Figure 6.6: Flow caught and flow left in sensitive area plotted on the left and right top, for
different values of αi for a sensitive area Vs in the city center. ∆ total flow caught / ∆ flow
visits in sensitive area is plotted compared to solution x+ (corresponding to the optimal
solution for the case α+

i = 0) on the left bottom and to solution x− (corresponding to the
optimal solution for the case where α−

i = 0.9 for all i ∈Vs ) on the right bottom. Using the
purple dotted line y = x, we verify that Equation (6.7) holds on the left bottom plot and that
Equation (6.8) holds on the right bottom plot.
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Figure 6.7: Flow caught and flow left in sensitive area plotted on the left and right top, for
values of αi at a sensitive node at the edge of the area. ∆ total flow caught / ∆ flow visits
in sensitive area is plotted compared to solution x+ (corresponding to the optimal solution
for the case α+

i = 0) on the left bottom and to solution x− (corresponding to the optimal
solution for the case where α−

i = 3 for the sensitive node) on the right bottom. Using the
purple dotted line y = x, we verify that Equation (6.7) holds on the left bottom plot and that
Equation (6.8) holds on the right bottom plot.
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6.4 SCENARIOS FOR SENSITIVITY ANALYSIS
After designing the PW-FCLM in Model (5.1) and pre-processing all the data as
input, it is valuable to perform a sensitivity analysis to check which input parameters
largely influence the solution and the corresponding amount of plastic flow that
is caught. For the sensitivity analysis, six different types of input parameters are
adjusted:

1. The distance between nodes dmax , which directly influences the number of
nodes n.

2. The impact factor αi for i ∈ V for catching early and sensitive areas. The
variations of αi and the corresponding results are shown in Section 6.3.2.

3. The initial distribution b.

4. The transition probabilities qi j for i , j ∈V due to the wind.

5. The probability of getting stuck qi 0 for all i ∈V , due to the five different factors
that influence this probability: dead ends qd

i 0, sharp corners qc
i 0, docked boats

qb
i 0, shore vegetation q s

i 0 and water vegetation q w
i 0.

6. The catching probability and accuracy of different types of catching systems
βi k for i ∈V ,k ∈ Ki .

For each type of input parameters, we describe how the input is changed to create
new scenarios for the sensitivity analysis.

6.4.1 NUMBER OF NODES

It was estimated that a distance of dmax = 100 between the possible locations as
a solution is practical. However, it was also tested whether putting the nodes
closer or further apart together resulted in a very different solution to the model.
Therefore, we compared the base scenario with dmax = 100 with new scenarios with
dmax ∈ {50, 75, 125, 150}. Note that the steps in Section 6.1 and Section 6.2 need to be
repeated fully to create these new scenarios, because a new network with a different
distance between the nodes needs to be set up, and the transition probabilities need
to be calculated for different locations. For the remaining types of input parameters,
it is not necessary to repeat all steps in Section 6.1 and Section 6.2. It suffices to
change only the vector of the corresponding input parameter.

6.4.2 INITIAL DISTRIBUTION

The initial distribution of the base scenario as calculated according to the method
explained in Section 6.2.1 is varied to obtain 4 new scenarios. We create 3 new
scenarios where b from the base scenario is perturbed in each location with a
random variation of ±10%,±20% or ±30% compared to the base scenario. For
example, if we perturb the base scenario with 10%, we generate a random vector
of length n using the numpy package in Python, where each entry of the random
vector has a value of 1.1 or 0.9, each with probability 0.5. We multiply this random
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vector entry-wise with the initial distribution vector b from the base scenario and
normalize this to obtain the initial distribution vector for the new scenario. The
average result of 10 runs for each new scenario is plotted in the sensitivity analysis.
We also test the scenario where the initial distribution is uniform: bi = 1/n for all
i ∈V .

6.4.3 TRANSITION PROBABILITIES

The transition probabilities of the base scenario are based on the wind directions
measured during the year 2022, at a KNMI weather station closest to the test area,
as explained in Section 6.2.2. To test the sensitivity of the model to wind data
from different years, we test 3 new scenarios where the transition probabilities are
calculated based on wind directions from the years 2020, 2021 and 2023. We also test
one scenario where the transition probabilities to move in each possible direction
from each node are uniform.

6.4.4 PROBABILITY OF GETTING STUCK

For the probability of getting stuck, we vary the probabilities of the five individual
factors that influence the probability of getting stuck separately. The probability
of getting stuck at each node i ∈ V for the new scenario is then calculated using
Equation (6.1), where one of the factors is changed and the other four factors are
equal to the base scenario. We test each factor separately to test how sensitive
the model is to the probabilities that we assigned to each factor as explained in
Section 6.2.3, since it is possible for the user of the model to change these values.

GETTING STUCK DUE TO DEAD ENDS

In the base scenario, the probability of getting stuck due to dead ends qd
i 0 is

calculated based on the wind directions compared to the direction of the dead
end, as explained in Section 6.2.3. We vary qd

i 0 with the following percentages:
−20%,−10%,+10%,+20%. That means, we create four new scenarios where the
probability of getting stuck due to dead ends is equal to qd

i 0 ·0.8, qd
i 0 ·0.9, qd

i 0 ·1.1 and

qd
i 0 ·1.2.

GETTING STUCK DUE TO SHARP CORNERS

In the base scenario, the probability of getting stuck due to sharp corners qc
i 0 is

calculated based on the wind directions compared to the geometries of the sharp
corners as explained in Section 6.2.3. We vary the qc

i 0 with the following percentages:
−20%,−10%,+10%,+20%. That means, we create four new scenarios where the
probability of getting stuck due to dead ends is equal to qc

i 0 ·0.8, qc
i 0 ·0.9, qc

i 0 ·1.1 and
qc

i 0 ·1.2.

GETTING STUCK DUE TO DOCKED BOATS

In the base scenario, the probability of getting stuck due to docked boats qb
i 0 equals

0.3 when there are docked boats near node i ∈V . We test the new scenarios where
we set qb

i 0 ∈ {0.1, 0.2, 0.4, 0.5} when there are docked boats near node i ∈V . If there
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are no docked boats near node i ∈V , qb
i 0 equals 0 in both the base scenario and the

new scenario.

GETTING STUCK DUE SHORE VEGETATION

In the base scenario, the probability of getting stuck due to shore vegetation q s
i 0

equals 0.3 when there is shore vegetation near node i ∈V . We test the new scenarios
where we set q s

i 0 ∈ {0.1, 0.2, 0.4, 0.5} when there is shore vegetation near node i ∈V . If
there is no shore vegetation near node i ∈V , q s

i 0 equals 0 in both the base scenario
and the new scenario.

GETTING STUCK DUE WATER VEGETATION

In the base scenario, the probability of getting stuck due to water vegetation q w
i 0

equals 0.45 if there is water vegetation near node i ∈V . We test the new scenarios
q w

i 0 ∈ {0, 0.05, 0.3, 0.6, 0.9} when there is water vegetation near node i ∈ V . If there
is no water vegetation near node i ∈ V , q w

i 0 = 0 in both the base scenario and the
new scenario. The scenario q w

i 0 equals 0 corresponds to the scenario in winter when
there is no water vegetation, and the scenario q w

i 0 = 0.9 corresponds to summer.

6.4.5 CATCHING PROBABILITIES AND ACCURACY

In the base scenario, the accuracy of the type 2 (passive) catching systems a2 is
0.85 compared to a1 = 0.98. Since the price difference is ci 1 = 1 and ci 2 = 0.2 for
all i ∈V , we expect to reach a break-even point of the accuracy compared to costs
(ak /ci k ) for the active and passive catching system if we set a2 = 0.98∗0.2 = 0.196.
If the accuracy of type 2 catching systems a2 is below this break-even point, we
expect that the optimal solution to the model contains active catching systems if the
budget allows it. If a2 > 0.196, we expect that the optimal solution to the model
contains active systems. Therefore, we vary a2 ∈ {0.096, 0.196, 0.296, 0.396} and test
whether the solution contains only passive catching systems or also active catching
systems. When varying a2, we recalculate βi k for all i ∈V ,k ∈ K accordingly and use
this as an input to the model.

The results of the sensitivity analysis with these new scenarios are shown and
discussed in Section 7.1.





7
COMPUTATIONAL RESULTS

In this chapter, the computational results of the thesis are given. First of all, we
present a sensitivity analysis of six different types of input parameters. Then, an
analysis of the computational runtime is shown. Runtimes of different solution
methods and different problem sizes are tested for different budgets, to provide an
advice for the user of the model which problem sizes and budgets can be solved
efficiently. Finally, a case study of a single run of the model is presented.

Experiments were run on a computer with an Intel Core i9-9900K processor
running at 3.60GHz with 16.0 GB of RAM. The code of the PW-FCLM and all results
is available on Github.

7.1 SENSITIVITY ANALYSIS
In this section, the results from the different new scenarios for the sensitivity analysis
are shown and discussed. We vary 6 types of input parameters to create the new
scenarios as explained in Section 6.4. The goal of the sensitivity analysis is to find
out which inputs largely influence the solution of the model. It is important that
the data for these input parameters accurately represent reality to ensure that the
optimal solution we find is in fact optimal for the most realistic scenario. The results
are plotted for the study area of Delft, the Netherlands. Based on these results,
the sensitivity analysis for several types of input parameters is also performed on
a second study area in Groningen, the Netherlands, to see if the sensitivity varies
when the environment of the study area is different.

To test the sensitivity of each type of input parameters, we compare a new scenario
to a "base scenario". This base scenario has the input parameters as explained in
Chapter 6. In each new scenario, we vary one type of input parameters and leave
the rest fixed at the base scenario values. To compare the optimal solution of the
new scenario to the optimal solution of the base scenario, we look at two different
measures: the distance between the solutions and the relative difference between
the flow caught with the solution to the base scenario when used in the new
scenario and the optimal flow caught in the new scenario with perfect knowledge.
To illustrate this, we show how a base scenario (in green) and a new scenario (in
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pink) are compared using an example in Figure 7.1.

(a) (b)

Figure 7.1: The optimal solution of the base scenario (green crosses) and the optimal
solution of the new scenario (pink crosses) are shown. In Figure 7.1a, the distances between
the two solutions are shown. In Figure 7.1b, the input flow in the base scenario (in green)
and new scenario (in pink) is also shown. Note that Figure 7.1b is zoomed in on a part of
Figure 7.1a. The input flow in the new scenario is different because b, qi j , qi 0 or βi k are
different in the new scenario. We can see that we can catch less pink flow when we use the
green catching systems than when we use the pink catching systems.

In Figure 7.1a, we see the optimal solution of the base scenario in green and the
optimal solution of the new scenario in pink. The solution shows which locations
are the optimal locations to place the catching systems. The distance between the
chosen locations in the two solutions is calculated by first making a minimum
weight perfect matching between the two solutions, where the weights are equal to
the geographic distance between two locations. Then, we determine the distances
between the matched locations of the two solutions as shown in Figure 7.1a. We
plot the maximum distance between the solutions, which is 400 in this example,
and the mean distance between the solutions, which is 500/3 in this example. This
allows us to see if the catching systems of the optimal solution for the new scenario
are placed far away from the catching systems of the optimal solution for the base
scenario, without having to plot them on the map for all scenarios. We chose to
consider absolute distance and not the distance of the shortest path via the network,
since it is more efficient to calculate and provides enough information.

In Figure 7.1b, an example is shown of different input flow in the base scenario
(in green) and in the new scenario (in pink). The flow in a new scenario is different
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because we change the variables b, qi j , qi 0 or βi k , which changes the transition
probabilities. The pink crosses represent the optimal solution of the new scenario.
The flow caught in the new scenario with perfect information is equal to f new

1 (xnew).
Note that the total flow caught, determined by function f1 in the objective function,
has the superscript "new" because this also changes when the plastic flow changes
in the new scenario. xnew corresponds to the location vector of the pink crosses,
which is the optimal solution for the considered new scenario. f new

1 (xnew) is equal
to how much of the flow in the new scenario (the pink flow in Figure 7.1b) is caught
using the solution xnew. In the visualization, this is equal to how much pink flow can
be caught using the pink catching system locations. The flow caught with the base
scenario optimal solution xbase (the green crosses) in the new scenario is equal to
f new

1 (xbase). In the visualization, this is equal to how much pink flow can be caught
using the green catching system locations. We can see that this is not optimal, since
one of the green catching systems is in a location where there is no pink flow.

We plot the relative difference between the flow caught with the base scenario
optimal solution when used in the new scenario, compared to the optimal flow

caught in the new scenario with perfect knowledge:
f new

1 (xbase)− f new
1 (xnew)

f new
1 (xnew) . We use only

part f1 of the objective function, corresponding to the total flow caught, because
it allows us to calculate relative differences more easily. The objective value can
be negative when αi is large enough, which makes it difficult to calculate relative
differences for the whole objective function. It is more insightful to plot the relative
differences because the total amount of flow caught differs for different budgets.
Relative differences are also more interesting because the absolute differences are
proportions of the total flow, which seem like small numbers while they can be
relatively large compared to the total proportion that is caught.

Showing these two measures allows us to see from the plot how different the
locations are in the optimal solution to the base scenario and in new perturbed
scenarios, but also whether using the optimal solution to the base scenario in a new
scenario would result in a much lower caught flow than the optimum of the new
scenario.

All instances for the sensitivity analysis are solved with the Gurobi solver using
an academic license. Due to limited time for computational tests, the solver was
terminated after 3600 seconds, which is why some scenarios were tested with lower
budgets than others.

7.1.1 NUMBER OF NODES

We first compared the base scenario with dmax = 100 with new scenarios with
dmax ∈ {50, 75, 125, 150}. We chose dmax = 100 based on expert knowledge. The
results are plotted in Figure 7.2.

The solution to the base scenario is far from optimal in the new scenarios (> 15%
for all budgets in the new scenario with dmax = 50 and > 30% from optimal for the
lowest budgets B ∈ {0.2, 0.4} which are most realistic for clients). Therefore, it was
decided to change the number of nodes in the base scenario. From some tests, it
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Figure 7.2: Sensitivity analysis of the distance between nodes dmax compared to a base
scenario with dmax = 100. On the left, the maximum distance between the locations of the
solutions are plotted as a line and the mean distance is plotted as a cross. The relative
differences in flow caught compared to perfect information are plotted on the right. The
legend is the same for both plots.

seemed that dmax = 60 was more suitable as a base scenario.
The results from a comparison of the base scenario with dmax = 60 with new

scenarios with dmax ∈ {30, 40, 50, 70, 80, 90, 100} are plotted in Figure 7.3. The
solutions to the base scenario are now < 20% from optimal for all budgets compared
to new scenarios with a smaller distance between the nodes (dmax ∈ {30,40}).
Therefore, the base scenario was adapted to dmax = 60 in the rest of the sensitivity
analysis.

It seems that the main reason why the distance between the number of nodes
is important, is because nodes located at wider locations of the waterways have a
higher catching probability. This means that a location where the waterway is slightly
wider is optimal in scenarios with a small distance between the nodes, while there
is no node in this precise location in the scenarios with a larger distance between
the nodes. Therefore, the level of detail of the network with dmax = 100 was too low.

In Section 3.2.2 we explained that the optimal locations of flow capturing facilities
could be on edges instead of nodes for some instances of the MDP-based FCLM.
Adding extra nodes to the network is similar to having the possibility to place
facilities on edges, which could lead to an optimal location that was not available
with fewer nodes in the network.
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Figure 7.3: Sensitivity analysis of the distance between nodes dmax compared to a base
scenario with dmax = 60. On the left, the maximum distance between the locations of the
solutions are plotted as a line and the mean distance is plotted as a cross. The relative
differences in flow caught compared to perfect information are plotted on the right. The
legend is the same for both plots.

7.1.2 CHOOSING THE IMPACT FACTOR

In Section 6.3.2, the influence of choosing different values for the impact factor
is shown for dmax = 100. Since we changed the distance between the nodes to
dmax = 60, we show the total flow caught and the number of visits of flow in the
sensitive area for different values of αi for the new network. Again, we show three
different cases: catching the plastics as early as possible, a sensitive area or a
sensitive node at the edge of the area.

In Figure 7.4, we show the results of tests for several small positive values of αi

for all i ∈V for catching early. This is initially tested for α calculated using βi k and
Mi k2 in the same way as in Section 6.3.2:

α ∈{0,mini∈V ,k∈Kβi k Mi k2,
1

|V ||K |
∑

i∈V ,k∈K
βi k Mi k2,0.5 ·maxi∈V ,k∈Kβi k Mi k2,

maxi∈V ,k∈Kβi k Mi k2} = {0,0.00002,0.004,0.023,0.046}

Since we see that the total flow caught already decreases by 1% between
α= 1

|V ||K |
∑

i∈V ,k∈K βi k Mi k2 ≈ 0.004 and α= 0.5 ·maxi∈V ,k∈Kβi k Mi k2 ≈ 0.023 for budget
B = 1.2, we also test α = 0.25 · maxi∈V ,k∈Kβi k Mi k2 ≈ 0.011. It seems that
α= 0.25 ·maxi∈V ,k∈Kβi k Mi k2 ≈ 0.011 is the most appropriate choice for catching early,
since we see a clear decrease in the flow left in the sensitive area and only a small
decrease in the total flow caught for this value of αi .
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Figure 7.4: Total flow caught and flow left in entire study area, plotted against different small
values of αi at all nodes for catching early. The legend is the same for both plots.

In Figure 7.5, we show the results for tests with αi ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for all
nodes i in the city center of Delft. We added extra tests with αi ∈ {0.1, 0.3} that we
did not do for the case with dmax = 100 in Section 6.3.2. This is because the total
flow in the sensitive area already decreased strongly with αi = 0.5 for some budgets.

Figure 7.5: Total flow caught and flow left in the sensitive area, against different values of αi
at the nodes in the city center of Delft. The legend is the same for both plots.

In Figure 7.6, we show the results for tests with αi ∈ {1, 2, 3, 4, 5, 6} for the most
northern node in the area of Delft. We added extra tests with αi ∈ {4, 5, 6} that
we did not do for the case with dmax = 100 in Section 6.3.2. This is because the
total flow in the sensitive area did not decrease for budgets B = 0.4,0.8,1.2 for lower αi .
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Figure 7.6: Total flow caught and flow left in the sensitive area, against different values of αi
at a node at the edge of the area. The legend is the same for both plots.

From the tests for these three cases of using the impact factor, we see that it
depends on the instance how much a certain value of αi influences the total flow
caught and the total flow left in the sensitive area. When using the model, it is
advised to plot the total flow caught and the total flow left in the sensitive area for
different values of αi for the chosen budget B before choosing the final value of αi .
The rest of the sensitivity analysis is run with an impact factor for catching early
equal to α= 0.25 ·maxi∈V ,k∈Kβi k Mi k2 ≈ 0.011 for all i ∈V .

7.1.3 INITIAL DISTRIBUTION

To test the sensitivity of the model to the initial distribution, the initial probability
from the base scenario is manipulated entry-wise by ±10%, ±20% and ±30%. A
uniform initial probability is also tested. The results of these four new scenarios are
plotted in Figure 7.7.

Even though the distance between the solutions of the new scenarios compared
to the base scenario is quite large for some budgets, the model does not seem very
sensitive to small perturbations of ±10%,±20% and ±30% of the initial distribution
b. When using a uniform distribution as the initial distribution, the model is slightly
more sensitive, however, the flow caught with the base scenario is never less than
90% of the flow caught with perfect information.

7.1.4 TRANSITION PROBABILITIES

To test the sensitivity of the model to different wind data input, we compare the
base scenario of wind directions from the year 2022 to wind directions data from
the years 2020, 2021 and 2023. We also compare the base scenario to turbulent
wind with a uniform probability to transition from each node to its neighbours. The
results of these four new scenarios for the transition probabilities are plotted in
Figure 7.8.
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Figure 7.7: Sensitivity analysis of the initial distribution b. On the left, the maximum
distance between the locations of the solutions are plotted as a line and the mean distance
is plotted as a cross. The relative differences in flow caught compared to perfect information
are plotted on the right. The legend is the same for both plots.

Figure 7.8: Sensitivity analysis of the transition probabilities qi j with data of wind directions
from different years. On the left, the maximum distance between the locations of the
solutions are plotted as a line and the mean distance is plotted as a cross. The relative
differences in flow caught compared to perfect information are plotted on the right. The
legend is the same for both plots.

Again, the distance between the solutions of the new scenarios compared to the
base scenario is quite large for some budgets, but the model does not seem very
sensitive to wind input data from different years. For budget B = 0.4 and years
2020 or 2021 as wind data, the flow caught with the base scenario is approximately
10% less than the amount of flow caught with perfect information. When using
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turbulent wind, the model is slightly more sensitive for most budgets, however, the
flow caught with the base scenario is never less than 85% of the flow caught with
perfect information.

7.1.5 PROBABILITY OF GETTING STUCK

GETTING STUCK DUE TO DEAD ENDS

The probability of getting stuck due to dead ends qd
i 0 is varied with the following

percentages: −20%,−10%,+10%,+20%. The results of these four new scenarios are
shown in Figure 7.9. Even though there are a few scenarios and budgets where the
distance between the optimal solution of the new scenario and the solution of the
base scenario is large, the relative difference in flow caught compared to perfect
information is very small. The model does not seem sensitive to changes in the
probability of getting stuck due to dead ends.

Figure 7.9: Sensitivity analysis of getting stuck due to dead ends qd
i 0. On the left, the

maximum distance between the locations of the solutions are plotted as a line and the mean
distance is plotted as a cross. The relative differences in flow caught compared to perfect
information are plotted on the right. The legend is the same for both plots.

GETTING STUCK DUE TO SHARP CORNERS

The probability of getting stuck due to sharp corners qc
i 0 is varied with the following

percentages: −20%,−10%,+10%,+20%. The results of these four new scenarios are
shown in Figure 7.10. Even though there are a few scenarios and budgets where the
distance between the optimal solution of the new scenario and the solution of the
base scenario is large, the relative difference in flow caught compared to perfect
information is very small. The model does not seem sensitive to changes in the
probability of getting stuck due to sharp corners.
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Figure 7.10: Sensitivity analysis of getting stuck due to sharp corners qc
i 0. On the left, the

maximum distance between the locations of the solutions are plotted as a line and the mean
distance is plotted as a cross. The relative differences in flow caught compared to perfect
information are plotted on the right. The legend is the same for both plots.

GETTING STUCK DUE TO DOCKED BOATS

We vary the probability of getting stuck due to docked boats to qb
i 0 ∈ {0.1, 0.2, 0.4, 0.5}

compared to the base scenario qb
i 0 = 0.3. The results of these four new scenarios are

shown in Figure 7.11. Even though there are a few scenarios and budgets where the
distance between the optimal solution of the new scenario and the solution of the
base scenario is large, the relative difference in flow caught compared to perfect
information is very small. The model does not seem sensitive to changes in the
probability of getting stuck due to docked boats.

GETTING STUCK DUE SHORE VEGETATION

We vary the probability of getting stuck due to shore vegetation to q s
i 0 ∈ {0.1,0.2,0.4,0.5}

compared to the base scenario q s
i 0 = 0.3. The results of these four new scenarios are

shown in Figure 7.12. The catching system locations in the optimal solution of the
new scenario and the optimal solution of the base scenario are exactly the same.
Therefore, the relative difference in flow caught compared to perfect information is
zero. The model is not sensitive to changes in the probability of getting stuck due to
shore vegetation. This could be because there are few locations in Delft with shore
vegetation.
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Figure 7.11: Sensitivity analysis of getting stuck due to docked boats qb
i 0. On the left, the

maximum distance between the locations of the solutions are plotted as a line and the mean
distance is plotted as a cross. The relative differences in flow caught compared to perfect
information are plotted on the right. The legend is the same for both plots.

Figure 7.12: Sensitivity analysis of getting stuck due to shore vegetation q s
i 0. On the left, the

maximum distance between the locations of the solutions are plotted as a line and the mean
distance is plotted as a cross. The relative differences in flow caught compared to perfect
information are plotted on the right. The legend is the same for both plots.

GETTING STUCK DUE WATER VEGETATION

We vary the probability of getting stuck due to water vegetation to q w
i 0 ∈

{0, 0.05, 0.3, 0.6, 0.9} compared to the base scenario q s
i 0 = 0.45. The results of these

four new scenarios are shown in Figure 7.13. The model does not seem sensitive
to increases in the probability of getting stuck due to water vegetation, however,
decreasing the probability of getting stuck due to water vegetation to a probability
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close to zero is very sensitive. This is likely because the water vegetation is the main
reason why the plastics get stuck in Delft, since q w

i 0 = 0.45 is the highest contributing
factor of plastics getting stuck of all five factors and there is a lot of water vegetation
in Delft. When q w

i 0 = 0, plastics are able to move and spread out in the area a lot
more, which could explain why the solution and the caught flow is a lot different.
The runtime of the Gurobi solver was a lot longer for the new scenario with q w

i 0 = 0,
which is why it was only tested up until a budget of B = 1.4.

Figure 7.13: Sensitivity analysis of getting stuck due to water vegetation qw
i 0. On the left, the

maximum distance between the locations of the solutions are plotted as a line and the mean
distance is plotted as a cross. The relative differences in flow caught compared to perfect
information are plotted on the right. The legend is the same for both plots.

7.1.6 CATCHING PROBABILITIES AND ACCURACY

We vary the accuracy of the passive catching systems to a2 ∈ {0.096, 0.196, 0.296, 0.396}
and plot the number of type k = 1 and type k = 2 catching systems in a stacked bar
chart for each value of a2 and each budget, as shown in Figure 7.14. We expect
to see active catching systems (type 1) when the budget allows it for a2 below
the break-even point a2 < 0.196. This is the case for a2 = 0.096 as expected. For
a2 = 0.196 (exactly on the break-even point) we see that no active catching systems
are in the optimal solution for B = 1 and only one instead of two active catching
systems for B = 2. This could be caused by the trade-off term with the costs f2.
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Figure 7.14: Stacked bar chart of the number of catching systems of type 1 and 2 for
different values of a2 and different budgets B .

7.1.7 GRONINGEN

For the most sensitive types of input parameters we plot the relative difference of flow
caught compared to perfect knowledge for Delft and Groningen next to each other
to compare the sensitivity under different environmental conditions. In particular,
we show the senstivity analysis for Delft and Groningen together for the number of
nodes, the initial probability and the transition probability due to wind, because
these were sensitive input parameters for Delft. The maximum distance between
the nodes and the value of the impact factor for catching early for Groningen were
chosen the same way as Delft: dmax = 60 and αi = 0.25 ·maxi∈V ,k∈Kβi k Mi k2.

In Figure 7.15, we see that the model is more sensitive to variations in the
distance between the nodes. When looking at the map, it seems that this is also
because the nodes are in different locations where the waterways are much wider
for some values of dmax . We see in Figure 7.16 that the model is equally sensitive
to small perturbations of the initial distribution b, but is more sensitive when the
initial distribution is uniform in Groningen. This could be explained by the fact that
the initial distribution of Groningen differs more from a uniform distribution than
the initial distribution of Delft, due to the different distributions of sources in the
areas. In Figure 7.17, we see that the model is equally sensitive to different years or
turbulent wind as an input.
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Figure 7.15: Comparison of the sensitivity analysis of the distance between the nodes dmax ,
for Delft on the left and Groningen on the right. For both cities, the relative differences in
flow caught compared to perfect information are plotted. The legend is the same for both
plots.

Figure 7.16: Comparison of the sensitivity analysis of the initial distribution b, for Delft on
the left and Groningen on the right. For both cities, the relative differences in flow caught
compared to perfect information are plotted. The legend is the same for both plots.
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Figure 7.17: Comparison of the sensitivity analysis of the transition probabilities qi j due to
wind, for Delft on the left and Groningen on the right. For both cities, the relative differences
in flow caught compared to perfect information are plotted. The legend is the same for both
plots.
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We also plot the stuck probability due to docked boats and the stuck probability
due to shore vegetation, because there are more houseboats in Groningen and there
is more shore vegetation. Note that the limits of the y-axis are different for these
plots compared to the plots of the more sensitive types of input parameters. This is
done such that we can see the difference between Delft and Groningen clearly for
these less sensitive types of input parameters. From Figure 7.18 and Figure 7.19,
we see that the model is more sensitive to changes in the probability of getting
stuck due to docked boats or shore vegetation when there are more docked boats
or there is more shore vegetation in the area. However, the total amount of flow
caught in these new scenarios is still more than 92% of the flow caught with perfect
information.

Figure 7.18: Comparison of the sensitivity analysis of the probability of getting stuck due to
boats qb

i 0, for Delft on the left and Groningen on the right. For both cities, the relative
differences in flow caught compared to perfect information are plotted. The legend is the
same for both plots.
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Figure 7.19: Comparison of the sensitivity analysis of the probability of getting stuck due to
shore vegetation q s

i 0, for Delft on the left and Groningen on the right. For both cities, the
relative differences in flow caught compared to perfect information are plotted. The legend
is the same for both plots.

7.2 COMPUTATIONAL TIME

From the results of the sensitivity analysis in Section 7.1, it is clear that the model
is sensitive to the distance between the nodes dmax . If the distance between nodes
is decreased, there are more nodes that are considered as potential locations in
the model which leads to more variables xi k in the PW-FCLM. Since it was proven
in Section 5.2 that the PW-FCLP is NP-hard, we expect an exponential increase
in runtime when the number of variables in the model increases. Additionally,
we expect that the runtime exponentially increases with the budget B . Therefore,
we analyse the computational time to solve the PW-FCLM using different solution
methods as presented in Chapter 5.

We try to find the exact solution to the PW-FCLM in Model (5.1) using the Python
library PuLP with the Gurobi solver using an academic license and PuLP’s default
open source CBC solver. While performing the sensitivity analysis, the Gurobi solver
with an academic license was able to find the exact solution to the problem with
n = 308 number of nodes and a budget of B = 4 efficiently (within 15 minutes). For a
larger number of variables, n = 522, we performed the sensitivity analysis for most
new scenarios up until a budget of B = 2 within 60 minutes. However, it is expensive
for organizations that focus on catching plastic waste to purchase a license to the
commercial solver. Therefore, it is important to test the computational runtime of
the open source solver. We also tested whether an initial solution as a warm start
to the open source and commercial solver reduced the runtime. An open source
solver is significantly less efficient, therefore a slightly adjusted version of the greedy
heuristic presented by Berman et al. (1995c) is also applied to solve the problem.
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7.2.1 COMPARISON OF RUNTIMES OF DIFFERENT SOLUTION METHODS

Given the initial estimation that a maximum distance of dmax = 100 gives a sufficient
level of detail for practical use of the PW-FCLM, the number of nodes in the
network of the test area in Delft is n = 308. This is within the bounds of the
maximum problem size allowed by the Gurobi solver without an academic license.
The maximum problem size is 2000 variables and 2000 linear constraints when using
the Gurobi solver without an academic license. A realistic maximum budget of a
client is B = 2, which means that we expect a solution with 10 passive catching
systems. However, since the Gurobi solver solved the instances with a smaller
number of nodes within a few minutes, we test up to a maximum budget B = 4 in
these cases. The solver is terminated after 3600 seconds because of limited time for
these computational tests. We compare the runtimes of the Gurobi solver and the
CBC solver with a cold start and a warm start from the heuristic solution for the
instance with dmax = 100,n = 308 in Figure 7.20. We see that the Gurobi solver finds
the optimal solution to all instances with budgets up to B = 4 within 10 minutes,
while the open source solver can only solve budgets up to B = 2.6 within an hour.
The difference in runtime between the warm start and cold start is small.

Figure 7.20: Comparison of runtimes plotted against budgets for 4 different solution methods.

7.2.2 COMPARISON OF RUNTIMES OF DIFFERENT PROBLEM SIZES

Since it was estimated that a maximum distance of dmax = 50 is the largest possible
level of detail that the PW-FCLM could need, this problem size is also tested. The
runtimes for dmax ∈ {50, 75, 100, 125, 150} using the Gurobi solver with a cold start
are plotted in Figure 7.21. The solver is terminated after 12 hours for finding the
solution to each instance with a new budget. We can see that the runtime sharply
increases with the number of nodes in each instance. From these graphs, we see
that instances with n ≤ 412 and B ≤ 2 can be solved efficiently within a few hours for
both the Gurobi solver and the CBC solver, but for larger budgets or more nodes the
runtime quickly increases to over 12 hours.
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Figure 7.21: Comparison of runtimes plotted against budgets for instances with different
problem sizes due to the number of nodes for the Gurobi solver on the left and the CBC
solver on the right. The legend is the same for both plots.

7.2.3 COMPARISON OF HEURISTIC AND EXACT SOLUTION

The greedy heuristic has been tested for several different input instances and
different budgets. These input instances are based on the most sensitive scenarios
from the sensitivity analysis in Section 7.1.

Figure 7.22: Comparison of greedy heuristic and exact solution for instances with different
numbers of nodes d . The legend is the same for all three plots. The distance between the
solutions, the optimality gap and the differences in runtimes are shown.

For the instances shown in Figure 7.22, Figure 7.23, Figure 7.24 and Figure 7.25, we
can see in the middle plots that the heuristic performs within 1.5% of the optimum
objective value. We can also see that the heuristic is faster for some instances for the
higher budgets. The Gurobi solver is very efficient for these instances with n = 308
for small budgets, which is why the heuristic finds a solution with similar runtimes
compared to the Gurobi solver for budgets B ≤ 2. While the heuristic finds very close
to optimal solutions in these test instances, it is not guaranteed that this is the case
on different instances.
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Figure 7.23: Comparison of greedy heuristic and exact solution for instances with different
initial distributions with respect to the base scenario initial distribution b. The legend is the
same for all three plots. The distance between the solutions, the optimality gap and the
differences in runtimes are shown.

Figure 7.24: Comparison of greedy heuristic and exact solution for instances with different
wind direction data. The legend is the same for all three plots. The distance between the
solutions, the optimality gap and the differences in runtimes are shown.

The heuristic could be improved by adding a local search to the found solution.
However, we can see from Figure 7.22, Figure 7.24 and Figure 7.25 that the distance
between the catching systems in the optimal solution and the solution from the
heuristic can be larger than 1000 meters, which means that the local search heuristic
would have to search many options to find the optimal solution. Additionally, the
runtime of the heuristic could be improved by investigating a faster calculation of
the inverse that is necessary calculate the caught flow in the objective function when
testing the new locations and types of catching systems in each step of the heuristic.
The matrix [I −T (x)] for which we need to compute an inverse changes by one row
when we add a catching system in each step of the heuristic. The Sherman-Morrison
formula could perhaps speed up the calculations of the inverse, since we only need
the inverse of [I −T ] which we permute by vector calculations in each step instead
of computing the inverse again.
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Figure 7.25: Comparison of greedy heuristic and exact solution for instances with different
probability of getting stuck due to water vegetation. The legend is the same for all three
plots. The distance between the solutions, the optimality gap and the differences in runtimes
are shown.

7.2.4 QUALITY OF THE SOLUTIONS

We shortly investigate the quality of the found solutions of the runtime tests in
Figure 7.21 where the solver was cut off. For the following cases, the CBC solver was
cut off after 12 hours of runtime:

• n = 308(d = 100),B = 3.6,

• n = 412(d = 75),B = 2.4,

• n = 622(d = 50),B = 1.6.

The Gurobi solver was cut off after 12 hours of runtime for the instances:

• n = 412(d = 75),B = 3.6,

• n = 622(d = 50),B = 2.4.

We show the objective value after cutting off the solution and compare this to the
objective value of the heuristic solution in Table 7.1. We see that the gap between
objective values of the solutions after cutting off the solver at 12 hours is very small
for the CBC solver. The cut off solutions from the Gurobi solver have a larger gap.

Table 7.1: The objective value of the solutions from the CBC solver after cut off at 12 hours
are compared to the optimal solutions of the Gurobi solver and the heuristic solutions.

n dmax B
CBC solver objective
value after 12 hours

Gurobi solver objective
value optimal solution

heuristic solution
objective value

308 100 3.6 0.138732143 0.138732144 0.138732144
412 75 2.4 0.112281697 0.112282056 0.112281697
622 50 1.6 0.116068729 0.116068729 0.116068729
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Table 7.2: The objective value of the solutions from the Gurobi solver after cut off at 12
hours are compared to the heuristic solutions.

n d B
Gurobi solver objective
value after 12 hours

heuristic solution
objective value

412 75 3.6 0.137066623 0.131829372
622 50 2.4 0.136881322 0.131577573

From the comparison of the runtimes of these different solution methods, it seems
most suitable to use the Gurobi solver and try to keep the number of nodes at a
maximum of n ≈ 375. For this number of nodes, the Gurobi solver does not need
an academic license and instances with a budget of maximum B ≤ 2 can be solved
efficiently within a few hours. For instances with larger budgets, it seems most
suitable to use the heuristic.

7.3 CASE STUDY: DELFT
The sensitivity analysis and tests of the computational runtime of the model are
used to decide how the final model should be used. In this section, we show how a
single run of the PW-FCLM works for a case study in Delft.

First of all, the data from Chapter 6 should be pre-processed such that it can be
used as an input to the model. In Appendix A, a block diagram of all the different
types of input and their processing is shown. A manual for the pre-processing of the
data is also available.

The impact factor αi is only used for catching early in this case study, and is
equal to 0.25 ·maxi∈V ,k∈Kβi k Mi k2 for all i ∈ V . Then, we run the complete model.
A solution file is written that can be plotted on the map in QGIS, such that the
locations, types and orientations of the catching systems are shown on the map.
The proportion of the total amount of plastic flow caught by each type of catching
system is also shown by a label on the map. An example for a case study where
n = 366 (dmax = 85) with B = 0.6 is shown in Figure 7.26. The proportion of the total
amount of plastic flow through each node is shown on the map by a graduated
color. This run is from a winter scenario, where the probability of getting stuck due
to water vegetation is equal to zero for all nodes i ∈V . The other input parameters
are as described in Chapter 6.

In Figure 7.26, we see that the chosen locations are at nodes where the plastic
flow is high. The plastic flow seems highest in several nodes at intersections of the
waterways, however, it is not possible to place a catching system in these locations.
The total flow caught is equal to 0.12, which means we are catching 12% of the
plastic flow in the area.
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Figure 7.26: Example of a run of the model with n = 366 (dmax = 85) and B = 0.6 in Delft.
The catching systems in the solution are shown as half circles with their opening oriented in
the same way as the catching system should be oriented. The blue color represents a passive
catching system. The amount of plastic flow caught by the catching systems is printed on
the map next to each system. For each node, the amount of input flow through the node
(when there are no catching systems in the area) is shown by graduated colors.
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DISCUSSION

From the computational results in Chapter 7, we see that the PW-FCLM designed
in this thesis is most sensitive to the distance between the nodes dmax and the
probability of getting stuck due to water vegetation q w

i 0 when testing the model for
the study area of Delft. The initial distribution b and the transition probabilities
qi j due to the wind are slightly sensitive when comparing to a new scenario with
uniform probabilities. However, this situation seems far from reality. To verify
the input data for the initial distribution, it could be useful to do a field study
of counting the number of plastics found per location soon after a certain area
has been manually cleaned very thoroughly, such that all plastics found must have
recently entered the water. Furthermore, the correlation between the wind direction
and the movement of plastics could be further investigated by performing and
studying more GPS routes of moving plastics. While it is not the focus of this thesis,
Noria could benefit from more research to verify the probabilities we assigned to
each type of input parameters, such that the input represents reality most accurately.
Then, PW-FCLM finds the optimal locations for the most realistic scenario.

When comparing the sensitivity analysis for a different area, i.e., Groningen, the
same types of input parameters seemed most sensitive. Here, the model seemed
slightly more sensitive to the probability of getting stuck due to more houseboats
and shore vegetation. However, only a small decrease could be seen in the relative
difference of flow caught with the base scenario optimal solution compared to
perfect information.

The sensitivity of the model to the distance between the nodes dmax is most
important to further develop the PW-FCLM. The reason why the model is so sensitive
to this parameter seems to be because the nodes in the network end up in different
locations such that the waterways are slightly wider or more narrow depending on
the location. This can largely influence the catching probability of a node. While it
is true that locations where the canal is wider have a higher catching probability, it
should not depend on the chosen distance between the nodes whether the model
considers these locations. This could be mitigated by calculating the maximum
width of the waterway on the whole segment of the waterway from one node to the
next. The current way of calculating the width of the waterway using the polygon

81
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layer in QGIS does not allow us to do this, but can be developed to improve the
model.

The sensitivity of the model to the probability of getting stuck due to water
vegetation is also interesting to examine more carefully. Since this factor is the main
reason why plastics get stuck in Delft, setting this probability to a lower value means
that plastics can travel a lot further in the network, which changes the flow and the
corresponding optimal solutions for catching systems a lot. We used q w

i 0 = 0.45 to
average for the half of the year where there is a lot of water vegetation where we
expect that q w

i 0 = 0.9 and the other half of the year where we expect that q w
i 0 = 0. We

could consider expanding the model to allow for moving the catching systems to a
different location seasonally.

The Markov chain representation of the flow should be further investigated. In
this version of the model, we do not take the influence of time into account in the
plastic flow, since it does not matter exactly how long it takes for plastics to travel a
certain way for them to be caught by a catching system along the way. However,
depending on the distance between the number of nodes, plastics travel less far in
the network if the probability of getting stuck remains the same but there are more
nodes per distance of the waterways. Perhaps, the probabilities of getting stuck
should be adjusted, such that the average distance that the plastics travel does not
depend on the chosen distance between the nodes. Furthermore, it is assumed
that plastics that get stuck can not continue moving through the network later on.
While this is true for some plastics, there are also plastics that eventually continue
moving, for example when the wind direction changes. For future research, it is
recommended to find a way to incorporate this effect in the model and to perform
tests with GPS trackers to find out more about the probability that this happens.

Additionally, sharp corners, boats and shore vegetation are counted if they are
within a radius of the node that we are considering. In this thesis, it was not
investigated whether the optimal solution changes when we precisely take into
account that plastics only get stuck due to sharp corners, boats and shore vegetation
if they traveled along an edge that passed any of these factors. However, this means
that the probability of getting stuck depends on which edge the plastics traveled in
the previous step, which violates the Markov property of "memorylessness", which
means we could no longer use the MDP theory that we used to design the model.

It is important to think about which decisions are difficult to make using
human reasoning and benefit from the use of the model, and which decisions we
over-complicate by including them in the model. For example, we could argue
whether the model should make the trade-off between the two types of catching
systems. Right now, it seems that the passive system has the best accuracy compared
to its costs. The reason why an active system could be more suitable for certain
locations is when there is a large water flux, for example due to tides, or when
there is a large amount of plastics flowing by the locations. The active system
has a larger compartment to store caught plastics and can be emptied more easily.
The difference between the two types of catching systems could be included in the
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model more precisely if the capacity of the catching systems and the corresponding
expected costs for emptying the catching systems are also included.

When the model is used in a very large area, it is necessary to put the nodes at a
larger distance dmax because of the runtime of the model. It is recommended to
further explore what distance is most appropriate for larger areas such as provinces
or even countries. It is also interesting to see whether the distance between the
nodes should be the same for each type of waterway. For example, we could place
fewer nodes on a straight waterway and more nodes on more detailed waterways
or on waterways with many factors that influence the probability of getting stuck.
Furthermore, it is interesting to look into the representation of the amount of plastic
flow in the model. Currently, the flow is represented as a proportion of the total flow
in the area. However, this does not say much about the total number of pieces of
plastic or their volume or weight, while this might be interesting and more intuitive
for the user. This would especially help in choosing parameters w and αi .

For all considerations, it is important to keep in mind whether adding extra
features to the model really makes the model more realistic and accurately helps
the decision making, or if the model is being over-complicated and the runtime is
unnecessarily increased.

Finally, the results of our heuristic showed that the performance of the heuristic is
at least 98% of the optimum objective value. While it seems that the heuristic works
well for our test instances, we can not guarantee its performance on new instances
yet. A worst case performance proof of fgreedy/ fopt ≥ 1− e−1 ≈ 0.632 was shown for
a similar greedy heuristic by Berman et al. (1995c). It would be interesting to
investigate whether a worst case performance bound can be proven for our version
of the MDP-based FCLM with a greedy heuristic. Furthermore, an extension of the
heuristic might provide even better results. We noticed that a small distance between
the nodes was necessary for the tests in this thesis and the runtime was shown to
increase quickly with extra nodes. Therefore, it seems promising to focus on finding
a close to optimal solution if it decreases the runtime, especially to make the model
more suitable for larger areas.
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CONCLUSION

In this thesis, we developed a Plastic Waste Flow Capturing Location Model to find
the optimal locations to catch as much plastic waste from waterways as possible.
The plastic waste flow is represented by a Markov chain with an initial distribution
based on plastic waste sources in the surroundings, transition probabilities based on
wind directions and water geometry and a probability of getting stuck due to dead
ends, sharp corners, docked boats, shore vegetation and water vegetation. A way of
processing this data into input parameters for the Markov chain is described in this
thesis.

The existing Markov Decision Process based Flow Capturing Location Model is
extended with the possibility to have different types of catching facilities, taking
sensitive areas into account and having a specific orientation for the catching
facilities to catch flow. The equivalence of the linearized version of our extension of
the model is shown and a proof of NP-hardness of the problem is given. A greedy
heuristic is also presented.

The sensitivity analysis of the input parameters for a case study in Delft showed
that the model is most sensitive to the distance between the nodes that are
considered as possible locations and to the probability of getting stuck due to water
vegetation. The same parameters seemed most sensitive in a different study area of
Groningen.

The model seems sensitive to the distance between nodes because the nodes in
the network end up in different locations such that the waterways are slightly wider
or more narrow depending on the location, which can largely influence the catching
probability of a node. It is valuable to examine a way to mitigate this, for instance,
by calculating the width of the canal that can be blocked by the catching system
in a different way. It is also recommended to further research the Markov chain
representation of the flow, since in the current version of the model, the plastics
travel less far in the network when the distance between the nodes is decreased and
the probability of getting stuck remains the same.

When using the model for new case studies, it seems from the analysis of the
computational runtimes that it is most suitable to set the distance between the
catching systems such that n ≤ 375 for budgets B ≤ 2. This allows the user to solve
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the model exactly using the Gurobi solver without an academic license. If it is
desired to have a more detailed network with more nodes or the budget is higher,
the heuristic seems most suitable. For further research, it is recommended to study
how the model should be used on much larger regions as case studies, such as
provinces or entire countries.
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A
APPENDIX: FLOWCHART OF

PW-FCLM
An online link of the flowchart is available via Drawio. A pdf image of the flowchart
is also attached below.

waterways
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wind_directions
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final_network

init_probability

transition_probability

catching_probability

stuck_probability

final_network_nodes
coordinates

final_network_edges
angle

canal_width

max_boat_width

Green = QGIS layer (provided by Noria or publicly available)
Blue = QGIS layer created manually (from publicly available data)

Red+Orange = attributes of the QGIS layers
Bold outline = layers used as input for optimization model
Orange = attributes that are used in the optimization model

dead_ends_prob

corners_prob

sharp_corners
bisector_angle, angle_size,

wind_range_min, wind_range_max

boats_prob

shore_veg_prob

water_veg_prob

water_vegetation

shore_vegetation

houseboats

mooring spots

1. Preprocessing in QGIS

sensitive area

no catching system locations

locations and type of solution Leftover flow, caught flow

2. Optimization model in Python

Purple = MILP parameters (manually change in yaml file)
Bold outline = output of the optimization model

3. Show solution in QGIS

solution_layer
coordinates, type of system

Red = attributes of the QGIS layers
Bold outline = output layer
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