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Abstract. Three-dimensional numerical calculations of laminar vortex shedding behind a
linearly tapered circular cylinder with taper ratio 75:1 have been carried out at a Reynolds
number 131 (based on the large diameter and the uniform inflow velocity) using a Finite
Volume code. Computations were performed on a staggered-Cartesian grid and a direct
forcing Immersed Boundary Method (IBM) was used to transform the boundary condition
at the solid surface into internal boundary conditions at the nodes of the Cartesian grid.
Results showed a pattern of discrete oblique shedding cells, which included both vortex
dislocation and vortex splitting. The local Strouhal number versus local Reynolds number
curve showed excellent qualitative agreement with the experimental results reported by
Piccirillo and Van Atta in 1993. However, quantitative deviations exist between the two
techniques. Numerical noise (oscillations) was observed along the span in the steady flow
calculation with Reynolds number 40, the reason for which has to be further investigated.
The overall computational performance of the IBM proved to be very promising when
compared to the boundary fitted or unstructured grid solvers.

1 INTRODUCTION

Three-dimensional (3-D) vortex shedding may occur in the wake of a circular cylinder
for three fundamentally different reasons: i) the vortex dynamics in the wake may be
intrinsically three-dimensional, ii) the inflow may be non-uniform, and iii) the cylinder
geometry may itself be non-uniform. In the present paper we focus on the latter category,
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i.e. on the three-dimensionalisation induced by a spanwise variation of the cylinder diam-
eter. Tapered cylinders are basically truncated cones and are of great practical relevance
(e.g., oil-platform legs, chimneys and light houses). They offer a geometrically simple
configuration with complex flow physics in the near wake. Depending on the taper ratio
(RT = l/(d2 − d1); where l is the length of the circular cylinder and d2 and d1 denote
the diameter of its wide and narrow ends, respectively) the variation of local Reynolds
number along the span of the cylinder may produce a range of distinct flow-regimes (e.g.,
steady wake, laminar unsteady wake and turbulent wake) exist side by side in the same
geometry.

Until recently, the majority of numerical calculations of the flow over tapered cylinders
were performed using boundary-fitted grids (Jespersen & Levit1 and Vallès et al.2 have
performed calculations in the laminar unsteady wake regime) but solvers for curvilinear
or unstructured grids are less efficient than Cartesian solvers in terms of computational
time and memory requirements11. Recently Parnaudeau et al.3,4 have performed turbulent
flow calculations using a direct forcing Immersed Boundary Method (IBM). However their
Reynolds number Re2 (based on the large diameter d2 and the uniform inflow velocity U)
was in another range compared to the present investigation. Vallès et al.2 have carried out
flow calculations for two different RT (75:1 and 100:1) and in the Re2 range 131-178. They
found that the numerical results compared surprisingly well with the extensive laboratory
experiments reported by Piccirillo & Van Atta5. However, the predicted variation of local
Strouhal number (Stlocal = fsdlocal/U ; where fs is the shedding frequency) versus local
Reynolds number (Relocal = Udlocal/ν) did not match the curve fit St = 0.195 − 5.0/Re
deduced from the laboratory experiments5. In the present study we used a direct forcing
IBM6,7 to clarify some deviations between the simulations and the experiments. A detailed
investigation of numerical noise level and its origin was carried out by studying steady-flow
over the cylinder at Re2 = 40.

2 FLOW CONFIGURATION AND PARAMETERS

The computational domain was as shown in figure 1. All dimensions were normalised
by the diameter at the wide end (d2 = 1). The normalised diameter at the narrow end
was d1 = 0.556 and the length of the cylinder was l = 33.461. The taper ratio of the
cylinder was defined as,

RT =
l

(d2 − d1)
= 75 : 1 (1)

and was the same in both cases considered. The Reynolds number based on the uniform
inflow velocity (U = 1) and the diameters at wide, narrow and center-span (dcs = 0.778)
of the cylinder for both laminar unsteady wake and steady wake flow were as shown in
Table 1. The kinematic viscosity was therefore different in the two cases. The Reynolds
numbers were well below 190 at which the intrinsic ‘mode A’ instability is known to occur
in otherwise two-dimensional configurations.
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Figure 1: Computational domain (not to scale)

Case Re2 Re1 Recs

Laminar unsteady wake 131 72.83 101.91
Steady wake 40 22.24 31.12

Table 1: Reynolds number

3 NUMERICAL METHOD

3.1 Instantaneous equations of motion

All fluid motions of Newtonian fluids (where the continuum approximation is valid) are
governed by a system of dynamical equations, namely the Navier Stokes (N-S) equations.
For incompressible flows, the N-S equations reduce to,

∂ũj

∂x̃j

= 0 (2)

[

∂ũi

∂t
+ ũj

∂ũi

∂xj

]

= −
1

ρ

∂p̃

∂xi

+ ν
∂2ũi

∂xj∂xj

(3)

where, ũi = ũi(~x, t), is a function of space ~x and time t and ν and ρ denote the kinematic
viscosity and the density of the fluid.

3.2 Numerical schemes, the solver and the grid

The governing equations were solved in 3-D space and time using a Finite Volume
code8,9. The code uses staggered Cartesian grid arrangement. Time marching was carried
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out using a 3rd order explicit Runge-Kutta scheme for the momentum equations and an
iterative SIP (Strongly Implicit Procedure) solver10 for the Poisson equation. Spatial
discretization was carried out using a 2nd order central-differencing scheme. In all the
computations we employed non-equidistant Cartesian grids in X-Z plane. Equidistant
grid points were used in Y-direction. As an example a fine mesh of 3.3x106 grid points is
shown in Figure 2. In grid generation care was taken to have a sufficient number of grid
points upstream of the cylinder, in order to capture the Hiemenz-like boundary layer14 at
the stagnation point. The boundary layer thickness δ was given by,

δ =
1.2d
√

Red

(4)

where, d is the local diameter at any span-wise position and Red is the Reynolds number
based on d. The boundary layer thickness δ for both unsteady and steady cases was
estimated as shown in Table 2.

Case δ2 δ1
Laminar unsteady wake 0.10484 0.07808

Steady wake 0.18973 0.14147

Table 2: Hiemenz boundary layer thickness in the stagnation zone

3.3 Boundary conditions

Boundary conditions were as shown in Table 3. A uniform inflow velocity profile U = 1
was fixed at the inlet. Convective and diffusive fluxes were set to zero on both sides and
top and bottom (see figure 1). At the outflow, Neumann boundary condition was used for
velocities and pressure was set to zero. The no-slip boundary condition on the cylinder
body was implemented by using a direct forcing IBM which will be discussed in the
following section.

Face Boundary condition

Inflow U = 1;V = W = 0; ∂P/∂X = 0
Side walls V = 0; ∂U/∂Y = ∂W/∂Y = ∂P/∂Y = 0

Top and Bottom walls W = 0; ∂U/∂Z = ∂V/∂Z = ∂P/∂Z = 0
Outflow ∂U/∂X = ∂V/∂X = ∂W/∂X = 0;P = 0

Table 3: Boundary conditions

4 IMMERSED BOUNDARY METHOD

In the present computation we used a direct forcing IBM6,7 to transform the boundary
condition at the solid cylindrical surface into internal boundary conditions at the nodes of
the Cartesian grid. The forcing is called direct because the boundary condition remains
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Figure 2: Mesh in X-Z plane: 3.3x106 grid points in total ([NX x NY x NZ] = [150 x 200 x 110])

the same at each time step regardless of the characteristic frequencies of the flow (see
Iaccarino & Verzicco12 and Mittal & Iaccarino13 for an extensive review of different IBMs).
Direct forcing is practically the same as enforcing the boundary condition within the
flow. When the boundary does not coincide with Cartesian grid points, an interpolation
is required. Thus the accuracy of IBM depends on the interpolation technique, the order
of interpolation and the direction of interpolation. In this section we discuss the blocking
algorithm and the interpolation technique used.

4.1 Blocking algorithm

The cylinder surface to be immersed in the Cartesian mesh was represented by a mesh
consisting of triangles. The blocking of the Cartesian cells intersected by these triangles
was carried out as follows:
i) The intersection points of triangle surface and the coordinate line passing through the
pressure cell center were identified. The pressure cells containing those intersection points
were blocked, as shown in Figure 3.
ii) In the second sweep all the pressure cells within the blocked surface were blocked.
iii) Finally all the velocity cells corresponding to blocked pressure cells were blocked.
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Figure 3: 1-Dimensional stencil configuration for interpolation in x-direction

All these blocked cells were marked inactive and were excluded from certain steps in the
time-marching algorithm (e.g., convergence check).

4.2 Interpolation technique

In Figure 3, φ0 is the internal boundary condition value to be determined by interpo-
lation. Xr is the intersection point between the triangle and the coordinate line. φr is the
value at Xr which is known (the value on the wall). Thus by considering the neighbouring
variables φi (φ1, φ2, φ3, etc) the stencils are formed. A general stencil formulation for φ0

looks like,

φ0 = (
N

∑

i=1

αi.φi) + αr.φr (5)

where, N is the number of neighbouring cells involved in the interpolation. The inter-
polation coefficients αi and αr depend on the interpolation technique and geometry only
and therefore were computed in a preprocessing step.

In the present simulation we used least squares interpolation of 3rd order. The de-
tailed derivation of this technique was explained in Peller et al.6. Using matrix stability
analysis they studied the numerical stability of higher-order Lagrange and least squares
interpolation and concluded that least squares interpolation of 3rd order is very robust and
numerically stable. Higher-order interpolation may indeed avoid strong grid-clustering in
the wall vicinity but may not increase the accuracy of the solver (the spatial accuracy of
the solver was 2nd order as discussed in previous section). The stencil in each direction
was 1-dimensional but Tremblay et al.7 have employed weighting to account for three
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dimensionality.

5 RESULTS AND DISCUSSION

5.1 Laminar unsteady flow

The unsteady flow calculations were carried out with two different grid resolutions.
Table 4 illustrates the mesh parameters. NX, NY, and NZ correspond to the number of
grid points in X, Y, and Z directions, respectively. Similarly NUS and NDS correspond
to the number of grid points upstream the cylinder and downstream the cylinder. ∆cyl

represents the grid cell size close to the cylinder in both X and Z directions.

Case Nodes NX NY NZ NUS NDS ∆cyl

Coarse mesh 1.2x106 120 100 100 20 80 0.05
Fine mesh 3.3x106 150 200 110 20 90 0.025

Table 4: Grid parameters

The time step ∆t = 0.005 was found to assure stability and appropriate both with
respect to the CFL condition and von Neumann analysis. The coarse-mesh computations
were performed on a single processor Linux-PC (Intel P4-3.2GHz with 1GB RAM) and the
fine-mesh on 15 processors of SGI Origin 3800. A detailed comparison of computational
performance of the present simulations and that of Vallès et al.2 is shown in Table 5. A
noteworthy distinction is that Vallès et al.2 used an implicit time-stepping.

Case Computer Nodes ∆t Iterations/∆t cpu S
∆t

Coarse mesh Linux PC 1.2x106 0.005 d2/U 15 3.9
Fine mesh SGI Origin 3800 3.3x106 0.005 d2/U 15 90

Vallès et al.2 Cray T3E 0.256x106 0.1 d2/U 20 3060

Table 5: Computational performance

Flow visualization of 3-D vortex shedding could be carried out in many ways. In figure
4 and figure 5 the time evolution of the pressure along the span for both coarse mesh and
fine mesh has been plotted. The instantaneous pressure was sampled along a line parallel
to the axis of the cylinder located 2dcs downstream the axis in X-direction and 1dcs offset
in Z-direction. The offset in Z-direction was carried out to detect only one side of the
vortex street. An initial comparison between the two figures itself indicate the complex
flow structure and vortex splitting. Both figures show a nearly periodic occurence of
vortex splitting around the center span of the cylinder. However, this phenomenon of
periodic occurence of vortex cells was more evident in the coarse mesh simulation. This
could be due to the inability of the coarse mesh to capture the instabilities along the span.
It should also be noted that the vortex shedding was more oblique in the fine mesh than on
the coarse mesh. This point was further justified in figure 6, where iso-pressure contours
for the fine mesh clearly indicate the larger shedding angle compared to the coarse mesh.
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Figure 4: Time evolution of the pressure along the entire span: Coarse mesh

However further qualitative investigations were carried out by spectral analysis of pressure
time traces.

Our primary objective was to investigate the significant deviations in the Stlocal versus
Relocal curve between simulations2 and experiments5 and therefore the power spectrum
of pressure time traces were investigated. In figure 7 Piccirillo & Van Atta’s5 curve-fit
St = 0.195−5.0/Re along with Williamson & Brown’s15 universal St-Re curve for straight
uniform circular cylinders given by,

St = A +
B

√

Re
+

C

Re
(6)

where, A = 0.2850, B = −1.3897 and C = 1.8061, were plotted together with numerical
results. (Note: In Vallès et al.2 the present case corresponds to their Case B , which
accidentally was mis-labelled as Case C in their St-Re figure) Both our coarse and fine
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Figure 5: Time evolution of the pressure along the entire span: Fine mesh

mesh simulations clearly captured the distinct shedding cells with constant shedding fre-
quency and fine splitting. It should be worth to mention here that our St-Re curve was
very sensitive to the sampling time and we sampled the instantaneous pressure for nearly
300 d2/U to get reliable statistics. Even though our simulations qualitatively reproduced
what have been observed in the laboratory there still exists quantitative deviations both
from the experiments5 and the earlier simulation2. However, the trend of all computer
simulations is similar. It should be noted that the experimental curve-fit was based on the
Strouhal number values at the centre of each shedding cell (cell-center Strouhal number),
whereas all the numerical results were based on a truly local Strouhal number for each
spanwise location. In figure 8 shedding cell mid-point locations were compared with both
experiment and other numerical results. Here also significant quantitative deviations exist
between the different techniques. One possible reason could be the difference in boundary
conditions in the laboratory set-up and computer calculations. However a further step
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Figure 6: 3-dimensional iso-pressure contours. Contour level p̃ = - 0.1. (a)coarse mesh; (b)fine mesh.
The flow direction is from bottom to top.

was taken to investigate the accuracy of our present approach by simulating a steady flow
over the same configuration.

5.2 Steady flow

Steady flow calculations were performed with the same computational configuration
as above by reducing Re2 to 40. The flow was simulated only with the fine mesh. The
objective was to avoid the unsteady effects and focus only on the numerical noise (if
any). The spanwise numerical oscillations (if any) were studied by comparing the non-
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Figure 9: Non-dimensional steady wake length along the span
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Figure 10: Variation of the streamwise velocity (U) profile in the cross-stream (Z) direction at X = 4.5
and Y = 16.7 (center-span of the cylinder)

dimensional bubble or wake length (Lw/dlocal) for each spanwise position with Sucker
& Brauer’s16 empirical curve fit for straight uniform circular cylinders. The empirical
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relation was given by,

Lw

dlocal

= 0.12Relocal − 0.748 (7)

From figure 9, it is clear that small oscillations do exist in the span-wise direction even
though the trend is excellent. Our initial guess was that the oscillations were due to
the grid resolution close to the cylinder surface being some what too coarse. It should
be noted that the difference between the two radii, (d2 − d1)/2 = 0.222, was very small
compared to the length l of the cylinder. Given the grid aspect ratio restrictions, this
would mean a high demand on the mesh. This demand on the mesh refinement would in
turn lead to a grid-clustering around the cylinder. However this guess has to be further
investigated.

In figure 10 the computed laminar boundary layer profile is compared to the potential
flow calculations. From potential theory, the stream function ψ for flow past a circular
cylinder without rotation was given by (see White17),

ψ = Usinθ(r −
a2

r
) (8)

where a is the radius of the cylinder and r any distance from the axis of the cylinder.
Here θ = 90o corresponds to the Y-Z plane passing through the center of the cylinder.
Thereby the velocity component Uθ becomes,

Uθ = −
∂ψ

∂r
= −Usinθ(1 +

a2

r2
) = −(1 +

a2

r2
) (9)

The symmetry and smoothness of the flow in the boundary layer on either side of the
cylinder were well captured in the simulation. However, the numerical results do not
collapse with the irrotational velocity profile far from the cylinder, a reason for which
could be that the potential flow assumption holds good for high Reynolds number flows.
Another reason (less probable) could be that our computational box in Z-direction is
slightly too narrow.

6 CONCLUSIONS

i) The computational performance of the IBM proved to be very promising when com-
pared to the boundary fitted and unstructured grid solvers, especially the computations
on the Linux PC with 1.2x106 grid points was surprisingly fast.

ii) Complex flow structures as observed in experiments5, including vortex splitting and
vortex dislocation, were successfully reproduced using IBM.

iii) Stlocal versus Relocal curve showed excellent qualitative agreement with the experi-
ments. However, quantitative deviations exist between the two techniques. It should be
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noted that end effects were negligible in our case and the boundary conditions in the
numerical simulation and in the laboratory were therefore different.

iv) Numerical oscillations along the span were observed in the steady flow calculation,
the reason for which has to be further investigated.
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