TUDelft

Encoding Finite State Automata in Agda using
coinduction

Evaluating the support for coinduction in Agda

Noky Soekarman!
Supervisor(s): Jesper Cockx', Bohdan Liesnikov!
'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Noky Soekarman
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Bohdan Liesnikov, Diomidis Spinellis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The proof assistant Agda supports coinduction, which can be used to reason about
infinite and cyclic structures. The possibilities and limitations of using coinduction in
Agda are not well known. To better understand these, I will implement Finite State
Automata and their equivalence in Agda. Finite State Automata (FSA) is an example
of a cyclic structure. FSA are an introductory model in computation theory, and can be
used text processing and hardware design. Equivalence of two FSA is used in software
and hardware verification. I created various encodings for FSA and prove equivalence
between two deterministic FSA for each of them. At the end, I compared them and
see whether they are limited by the support for coinduction in Agda.

1 Introduction

Proof assistants, such as Agda, are used to "define properties and do logical reasoning"[Geu09]
on mathematical theories. They do not automatically create proofs, "... user input is al-
ways required. But, depending on the assistant, certain tasks are automated." [Sch14]. Agda
achieves the creation of formal proofs by using dependent types and strong typing [Tea24a].
Agda also has support for coinduction, the dual to well known principle of induction.

In computer science, coinduction is used to reason about infinite structures such as infi-
nite lists and trees [KS16], but also cyclic structures such as Finite State Automata (FSA)
[Sanll]. FSA are an introductory model to the theory of computation. They make use of
concepts that are also used in the more complex models in this field. FSA themselves can be
used in various applications, from text processing to hardware design [Sip13]. An example
of an FSA would be one of an automatic door system, where the doors open when a person
is in front of it on either the front or rear side. This can be represented with the FSA in
figure 1. The door stays closed when nothing is in front or behind it, and it opens when
there is. It stays open while there is something in front or behind it, and closes again when
that is no longer the case.

Neither Front, Rear

Front, Rear

Neither

Figure 1: An example FSA for an automatic sliding door

A lot of work has already been put in the theory of Finite State Automata, but not as much
into implementing them, and little to no work in implementing them in proof assistants
such as Agda. I was able to find two implementations for Finite State Automata in Agda,
coinductive however. These two things together lead us to the following research question:
What are different ways to model Finite State Automata in Agda in a coinductive way and
how to prove equivalence for them? Equivalence is a very relevant problem, as it is used in
hardware and software verification [HR15]. I will explain the definition in chapter 3.

I will start by introducing every relevant topic that is used to answer this research question
in chapter 3. After the topic introduction, I will present the different encodings of Finite
State Automata I created in chapter 4. In the next chapter, I will show the most important
experiments run on these encodings. During the development and experiments, some prob-
lems with the Agda language have presented themselves, and will be discussed in chapter 6.
The final chapter will present the conclusions and suggestions for future work. Below is a
list of contributions that are contained within the above mentioned chapters:

e Various encodings for FSA (chapter 4).

e Notion of equivalence for deterministic FSA.

e A set of experiments and proofs performed with the created encodings (chapter 5)
e Description of limitations with coinduction in Agda (chapter 6).

The methodology used to achieve these contributions is as follows. First, research what FSA
are and what exactly has already been done, start implementing different encodings and do
some testing on them to verify whether they work, implement equivalence for these various
created encodings, compare them, and finally document why these encodings are valid and
suitable for Agda.

2 Responsible Research

This chapter is about the practice of responsible research, how reproducible the research is,
and some ethical aspects within this research.

The results of this research are fully reproducible since the full source code will be
available and the specific version of Agda will be provided as well. The source code can be
found on this' GitHub repository. The Agda version used for this research is 2.7.0.1.

For the creation of all of the code, GitHub Copilot? has been used to autocomplete lines
for me. It did not generate full solutions. An attempt was made to use ChatGPT? for code
generation when I was stuck or encountered some issues. ChatGPT gave suggestions on how
to potentially fix the problem as an output. These suggestions were not useful however. The
suggestions the AI model gave, looked like valid Agda code, but when putting it in your
solution it would not compile, not solve the original problem, or create a new problem. As a
results of this, no code presented in this paper is fully written by Al, only line autocompletion
has been used to finish a already partially written line. The autocompletion was done to
speed up the workflow.

The report writing has been solely done by myself and no AI has been involved in the
writing of the text. The only time where Al was involved was in getting the highlighted
Agda code, since it was easier to feed this to ChatGPT, than to compile it myself. It was
easier since the Agda to LaTeX compilation sometimes said that the Agda code was not
valid, while the normal type checker said that it was valid. One trick that I needed to use,
was to first give it a valid example. Without this, the accuracy of the generated LaTeX was
lower than with this trick. Some prompts to generate LaTeX from Agda code can be found
in appendix B.

Thttps://github.com/Soek02/FSA-in-Agda
2https://github.com /features/copilot
3https://chatgpt.com/

There are no other ethical issues since this research does not involve any participants,
and the results of the research does not have any ethical implications either.

3 Background

In this chapter, the two necessary pieces of background information will be presented. Firstly
a description and definition will be given for Finite State Automata. Secondly, there will be
a description on how to use coinduction in Agda with some examples.

3.1 Finite State Automata

The following section summarizes the concept of Finite State Automata described by Sipser
[Sip13, chapter 1.1-1.2].

Finite State Automata are used to decide regular languages; they do this by consuming
one element at a time from the input. A Finite State Automaton consists of states and
transitions between those states. Each state can either be accepting or rejecting, and ev-
ery state needs to have transitions for each element in the alphabet. When consuming an
element, the automaton follows the corresponding transition to end up in a new state. If
there are no more elements to be consumed, the automaton accepts if the current state is
accepting, else it rejects. A more formal definition would be:

A finite (state) automaton is a 5-tuple (Q, X, J, qo, F), where
e (Q is a finite set of states.

e Y is a finite set of symbols called the alphabet.

§:Q x X — @ is the transition function.

qo € @ is the start state.

e F C (@ is the set of accept states. In a visual representation, these states will have a
double border.

There are two types of Finite State Automata, a deterministic one and a nondeterministic
one. A Deterministic Finite State Automaton always needs to have exactly one transition
for each element of the alphabet to a state for every state. A nondeterministic Finite State
Automaton can have multiple transitions for one element; the automaton nondeterministi-
cally chooses the transition which leads to the accept state. It can also have no transitions
for the element. A way to model this, is whenever an element does not have a transition,
it goes to a so called trap state, where all transitions originating from it lead back to itself.
Finally, it can also have transitions which do not consume any elements, it nondeterministi-
cally chooses if this transition should be taken to reach the accepting state. Such a transition
is denoted with an e and is called an epsilon transition.

The formal definition of a nondeterministic Finite State Automaton is almost the same the
deterministic one, except that the transition function is different. The transition function
now looks as follows:

e §:Q x 3. — P(Q) is the transition function. Where X, is ¥ U {e} and where P(Q) is
the powerset of Q.

Equality of two Finite State Automata is defined as them having the same language. This
means that for every possible combination of elements of the alphabet, they need to have
the same acceptance.

3.2 Coinduction In Agda

This section will explain how coinduction can be used in Agda. The Agda proof assistant
allows you to create coinductive structures such as infinite lists or streams. There are three
ways to construct such structures in Agda, namely using Musical, Guarded or Sized style.
I will not discuss Sized style, as this deemed itself beyond the scope.

To understand what coinduction is and how it works in Agda, we first need to know the very
basics of Agda and coinduction. Agda is a functional programming language which makes
use of dependent types, a simple example would be the Vec n type. This type has an extra
parameter n to specify the length of the vector. This n can now be used to verify whether
the given vector actually has the specified length. Agda is also a total language, this means
that "... a program e of type T will always terminate with a value in 7. No runtime error
can occur, and no nonterminating programs can be written (unless explicitly requested by
the programmer)." [Tea24a|. Coinduction is used to reason about infinite structures, such
as infinite lists for example. To get values from these infinite structures, these datatypes
need to have an observer or destructor present. The simplest example of these are the head
and tail operators for streams. You can either get the value at the start of the stream with
the head operator, or get the whole stream except the first element with the tail operator.
A code example of this can be seen in figure 2. To get a notion of equality, bisimilarity can
be used. Bisimilarity for infinite lists means that the values at the head of the two lists must
be equal, and that their tails must again be bisimilar. [KS16]

I will now discuss the different styles of coinduction in Agda. The Musical style has three
important Unicode characters to define certain behaviour, which are the infinity symbol
(c0), the sharp symbol (#), and the flat symbol (b). The oo symbol can be used to create
a new type that indicates that the value has not been computed yet, "The type coA can
be seen as a suspended computation of type A." [Tea24b]. To create such a value of type
you can use the # operator, and to force the computation of such a type you can use the
b operator. When using the Musical style, you need to manually think about where you
need to delay and force the types to satisfy Agda. The official signature of both of those
operators from the Agda docs is the following:

:V {a} {A: Set a} 2 A=A
b : V {a} {A : Set a} 200 A —= A

An example using the Musical style is the Streams data type from the standard Agda library
is below in figure 2.

data Stream (A : Set a) : Set a where
i (z: A) (zs: oo (Stream A)) — Stream A

head : Stream A — A
head (z : zs) =z

tail : Stream A — Stream A
tail (z : zs) =b s

repeat : {A : Set} — A — Stream A

repeat a = a : £ (repeat a)

Figure 2: Streams in Agda using the Musical style

In this example, you can see the co symbol in the definition, the b symbol for computing the
tail of a stream, and the # symbol in the repeat function to make sure the function does
not go on until eternity. This style is not recommended any more, the next style, Guarded,
is the recommended way to do coinduction in Agda.

The Guarded style works by creating a record with the "coinductive" keyword added to
it. Lets first look at the streams example again, but now in Guarded style.

record Stream (A : Set a) : Set a where

coinductive
constructor _:: repeat : {A : Set} — A — Stream A
field repeat z .head = z

head : A repeat = .tail = repeat x

tail : Stream A

As you might see, the creation of a stream is different from the Musical style. Instead of
directly concatenating the head to the tail of the stream, we now define them separately.
The example results in an infinite stream of the given value. It starts by defining the head,
which is just z, and then it defines the tail to be itself again. This method of defining the
head and tail is called copattern matching [Tea24b].

3.3 Properties to prove

In this section, I will mention the properties I will be proving with the created encodings
for FSA and why they are important or necessary. There will also be a mention of other
considered properties.

3.3.1 Running input

The first property that I will be implementing will be running input on the automaton.
The automaton then should be able to receive input and give a boolean output whether the
input is in the language of the automaton or not. This is a necessary property to have to

be able to prove equivalence, as the definition for equivalence is based on whether the input
is accepted or not.

3.3.2 Equivalence

The second property I will be proving and implementing is equivalence for two automata. I
will be doing this with bisimulation. The bisimulation will be performed on the individual
states, rather than the full automaton. For two states to be bisimilar, they need to have
the same acceptance, and for every transition, the resulting states should be bisimilar again.
This property is chosen as equivalence is a relevant problem as described in section 1, the
introduction.

3.3.3 Other considered properties

Other properties that were considered were operations such as concatenation and unification.
This was left out since this was not the main goal of the research, and because of time
constraints with the already existing properties. Another property that was considered, was
conversion from an NFA to a DFA. However, this presented some complications and was
therefore left out. The complications are presented in section 5.3.

4 Encodings

This chapter contains all the different encodings I came up with for Finite State Automata.
The first section will be about Deterministic Finite State Automata, and the second section
will be about the nondeterministic variant.

4.1 Deterministic Finite State Automata

This section will contain the different encodings for Deterministic Finite State Automata in
different styles of representing coinductive structures in Agda. All the encodings will encode
a single state, and some way to move from the current state to a next state.

4.1.1 Function transition

This version of a DFA has a state encoded with a name, a boolean if the state is accepting,
and a function that receives a Symbol as an input and gives the next state as an output.
The guarded variant encapsulates this in a coinductive record type. It is made coinductive
using the built-in keyword ’'coinductive’. Below you will find the code for this variant.

data Symbol : Set where record DFAState : Set where
a : Symbol coinductive
b : Symbol field

name : String
isAccepting : Bool
transition : Symbol — DFAState

The variant that makes use of the musical style for coinduction in Agda works slightly
different. This makes use of a custom data type instead of a record. The data type only has
a single constructor which takes in three parameters, a string type for the name, a boolean
whether the state is accepting, and the transition function.

data DFAState : Set where
state : String — Bool — (Symbol — oo DFAState) — DFAState

As you might notice, there now is an oo in the transition function. This is to denote that
the next state has a delayed type, so it is not computed yet. This is to make sure that there
will be no infinite recursion when creating new states.

Note that the Symbol datatype only has two constructors in this example. This can be
expanded to any finite amount to represent the alphabet of the DFA.

4.1.2 List transition

A DFA can also be encoded with a lookup list as the transition, instead of using a function.
The list consists of pairs where the first element is a Symbol, and the second element is a
state. Below is the Guarded style of this version.

record DFAState : Set where
coinductive
field
name : String
isAccepting : Bool
transition : List (Symbol x DFAState)

And here is the Musical style of this version.

data DFAState : Set where
state : Bool — List (Symbol x (co DFAState)) — DFAState

4.2 Nondeterministic Finite State Automata

This section will contain an encoding for an NFA it will have the same structure as the
DFA with the list as the transition. The encoding is in the Guarded style and can be found
below.

record NFAState : Set where
coinductive
field
name : String
isAccepting : Bool
transition : List ((Maybe Symbol) x NFAState)

The change that makes this suitable for an NFA, is the addition of the Maybe datatype.
This allows epsilon transitions to exists. This list also allows for multiple transitions for a
single element of the alphabet.

4.3 Equivalence

To get a notion of equivalence for these encodings, I made use of bisimulation. For two
states to be bisimilar, they need to have the same acceptence, and for every transition the
resulting states should be bisimilar again. Below is a notion of bismilarity for the first DFA
encoding that uses the Guarded style. For the other encodings it looks very similar, the
code for them can be found in the github repository mentioned in chapter 2.

record 7 (dI : DFAState) (d2 : DFAState) : Set where
coinductive
field
accept : d1 .isAccepting = d2 .isAccepting
transition : V (¢ : Symbol) — = (d1 .transition ¢) (d2 .transition ¢)

Using this notion of bisimilarity, I also created the following record type:

record =~ (dI d2 : DFAState) : Set where
coinductive
field
equivLanguage : V (s : List Symbol) — accepts s dI = accepts s d2

This record states that two (input) states have the same language, iff for all inputs, they
have the same acceptance. This should only be used with the start state of an FSA, since
this is where the initial input is "inserted". I also created a method that transforms a
notion of bisimilarity, to this new record. So if two start states are bisimilar, then they will
have the same language. This works because the states are bisimilar if they have the same
acceptance, and if for all characters, the transitions lead to bisimilar states again. So for
every element of the input, the acceptance of the states is goes through, will be the same.

bisim_to_equiv: V{d1d2} — dI 7 d2 — dI ~; d2
bisim to equiv {d1} {d2} bisim = record { equivLanguage = \ s — bisim-eq d1 d2 s bisim}
where
bisim-eq : V (d1 d2: DFAState) (s: List Symbol) — d1 ~ d2 — accepts s dI = accepts s d2
bisim-eq d1 d2 [] bisim = bisim .accept
bisim-eq d1 d2 (x :: xs) bisim = bisim-eq (d .transition z) (d2 .transition z) zs (bisim .transition)

5 Experiments

This chapter is about the experiments I performed using the encodings described in the
previous chapter. The first set of experiments is running some input on the Finite State
Automata, the second set of experiments is to try and prove equivalence using bisimilarity.
After the experiments I will explain the limitations of the encodings and shortly compare
them.

5.1 Running input

This subsection describes the steps that were needed to run input on each encoding. The
general overview of the required steps is below.

e Define a method that takes in a state and the current input

e Define a method that correctly transitions from the current state to the next state
based on the given input

e Define a method that combines these two, it receives a starting state and the input,
and it outputs whether the input is accepted or not

e Create the states together with their transitions

5.1.1 Function transition

For the first encoding that has the Symbol datatype and the function with the (Symbol —
DF AState) signature, these were all relatively straightforward. To start with the Guarded
style, there are only two methods needed for this.

runDFA : DFAState — List Symbol — DFAState
runDFA s [] = s
runDFA s (z :: xs) = runDFA (s .transition z) zs

accepts : List Symbol — DFAState — Bool
accepts input startDFAState = (runDFA startDFAState input) .isAccepting

The Musical style is very similar in terms of methods, the exact code can be found in ap-
pendix A.

The runDF A method goes over the input symbols one by one, gives the first symbol to
the current state’s transition function and gets the resulting state. It recursively calls the
method again with that state and the remaining input.

To create states for the Guarded style, use the copattern notation with suffix. To cre-
ate states for the Musical style, make use of the special operators to get the right types
according to the definition.

5.1.2 List transition

For the other encoding with the transitions in a list, the methods are slightly different to be
able to lookup the correct state.

Guarded:

getFromList : Symbol — List (Symbol x DFAState) — DFAState
getFromlList e [| = q_ reject
getFromList e ((z , y) :: @s) = if x == e then y else getFromList e zs

runDFA : DFAState — List Symbol — DFAState
runDFA s [] = s
runDFA s (z @ xs) = runDFA (getFromList z (s .transition)) s

accepts : List Symbol — DFAState — Bool
accepts input startState = (runDFA startState input) .isAccepting

The methods to achieve the same in Musical style are very similar, if you wan to look at
them, you can find them in appendix A.

The runDF A and accepts method still have the same function as before, there are some
extra methods to accommodate for the difference in how the transitions are stored. If the
definition of the transition list is not according to the definition of a DFA given earlier, so
the list does not contain a transition for every element of the alphabet, it goes to a reject
state. This state is rejecting and can only transition to itself regardless of the current input.

5.1.3 NFA

This subsection describes how input can be run on the encoding for the NFA. This was not
as straight forward as the DFA encodings, this is due to the nondeterminism. Below is the
most important code that was needed to run input on an NFA. The other methods that are
needed are:

o statelnList: Check whether a given state is in the given list.

o getEpsilonStates: Gets the states which are reachable from the given state by only
using a single epsilon transition.

{-# TERMINATING #-}
getReachableStates : NFAState — List NFAState — List NFAState
getReachableStates currentState visitedStates = if statelnList currentState visitedStates then [|
else
let
new VisitedStates = currentState :: visitedStates
epsilonStates = getEpsilonStates (currentState .transition)
in
currentState :: concatMap (A s — getReachableStates s newVisitedStates) epsilonStates

getUniqueStates : List NFAState — List NFAState
getUniqueStates [| = []
getUniqueStates (z :: xs) = if statelnList = zs then getUniqueStates xs else z :: getUniqueStates xs

runNFA : NFAState — List Char — Bool
runNFA currentState [| = currentState .isAccepting
runNFA currentState (c :: ¢s) =
let
reachable = getUniqueStates (getReachableStates currentState | |)
nextStates = getUniqueStates (concatMap (A s — getFromListWithoutEpsilon ¢ (s .transition)) reachable)
finalStates = getUniqueStates (concatMap (A s — getReachableStates s [|) nextStates)
in

any (A s — runNFA s ¢s) finalStates

10

5.2 Equality

This section is about showing equivalence for the created DFA encodings using bisimilarity.
To start, I present an example where I show equivalence for a DFA to itself, and after that
a more complicated example where the DFA’s have the same language, but do not have the
same structure.

5.2.1 DFA

This subsection shows how bisimilarity is used to show equivalence of two DFA’s. First the
function version will be presented, and afterwards the list version.

To start, I am going to show bisimilarity for a DFA to itself. The DFA I am going to
use is the following;:
b b

a

start *>

a
The proof for this in Agda:

mutual
q0_bisim_qg0: q0 ™ q0
g0 bisim g0 .accept = refl
q0_bisim g0 .transition a = q1_bisim_ql
q0_bisim _qO .transition b = q0_ bisim _q0

gl bisim ql:ql " ql

gl bisim ql .accept = refl

ql bisim_ql .transition a = q0_bisim _q0
gl bisim _ql .transition b = q1_bisim _ql

A second, and more interesting example from the course slides of the "Languages and Au-
tomata" course from the Wellesley College is as follows [Turl10].

(a) DFA Dy

Figure 5: Two DFA’s that accept the same language

11

To show that these two DFA’s are bisimilar, we need to show that every state in the first
one, is bisimilar to a state in the other one. The pairings used for this are presented in the
table below:

Table 1: Pairings for bisimilar states in D and Do

State from D; | Bisimilar states in Dy
K Q, S

L R

M T,U

To prove this in Agda, we need to create a bisimilarity record for each pair presented in
table 1. Similar to the earlier example, first define the acceptance in the record, and then for
every symbol specify the next bisimilarity record. The code for the proof that K is bisimilar
to Q is bellow, this will give an intuition on how to this for other states.

k bisim q .accept = refl
k bisim q .transition a =1 _bisim_r
k bisim _q .transition b = m_ bisim_t

The transition field of the bisimilarity should only be defined for a and b in this case, since
those are the only two symbols that occur in the DFA’s. For the symbol «a it is defined as
the bisimilarity between L and R, since those are the states that are next when reading an
a from K and Q.

Initially the list version had the Character datatype, this caused problems when trying
to prove equivalence for two DFA’s. That is why it now has the Symbol datatype. A more
detailed explanation will be given in section 6.2. After this change, I was able to prove
equivalence for two DFA’s just like the other version with the function as transition.

5.3 Limitations

This section will be about the limitations that these encodings have, and how to work with
these limitations.

5.3.1 DFA

Both of the encodings for the DFA only encode a single state. When actually using these
encodings, you need to be mindful of this, since running the input from the wrong state
most likely influences the output. Therefore, the runDF A method should only be called on
the start state. For proving equivalence, you should keep the same limitation in mind. It
does not make sense to prove equivalence for anything else but the start state.

A problem exists with the first encoding, that uses a function as the transition, when trying
to compare two DFA’s with different alphabets. You then need to alter them such that their
transition functions are defined for every element of the union of their alphabets. Only then
can you try and prove bisimilarity for them.

12

The second encoding with the list as the transition, has the limitation that there needs
to exist a predefined reject state. This is needed for Agda to verify that the method to
get the next state, always returns a state, even when the symbol that you are looking for
might not be in the transition list. Another issue with this one is that the transition list is
not forcing you to explicitly define a next state for every symbol. In that case the symbol
would go the reject state. One might argue that this is still a valid DFA, since it still has
a transition for every symbol. A second issue is that the transition list can be ill defined in
the way that there can exist multiple entries for the same symbol. This does not lead to
nondeterminism however, because of the way the next state is picked. It will always get the
first entry from the list.

Some of these limitations could potentially be solved by creating a wrapper structure for the
whole DFA, which would include all states, the starting state and maybe even the alphabet
of the DFA. This however, would not add any extra functionality over the current solution.
With the current solution, the user needs to be a bit more careful when creating and using
the states.

5.3.2 NFA

The NFA encoding does not have a notion of bisimilarity at this point, this is harder than
initially expected due to the presence of epsilon transition. At first I wanted to avoid these
transitions by converting the NFA to a DFA and use the notion of bismilarity for DFAs.
The implementation of this conversion is not working due to the fact that Agda only has
immutable variables, and following the procedure described by Sipser [Sip13], it needs some
mutability to my current understanding. There is however, a paper by Bonchi and Pous
[BP13] to check for NFA equivalence with bisimulation.

Another limitation is that you need to define the states such that they all have a unique
name. This is because the name of the state is used to check whether the state has already
been visited when checking for reachable states with epsilon transitions.

5.4 Comparing versions

The two biggest differences between these two encodings is how they transition from one
function to another and what input they accept. When using a function to transition from
one state to another, you ensure that every transition leads to exactly one state. If you use
the transition list, you can have multiple entries in the list for the same symbol which may
point to different states.

A benefit of using a list over a function, is that you can iterate over the list to get the
alphabet of the DFA if you don’t know it beforehand. This is assuming the state is properly

defined and thus has a transition for every element of the input alphabet.

There is no difference in functionality between the Guarded and Musical style for both
encodings, the only difference is how you should create instances.

13

6 Encountered problems in Agda

This chapter describes the problems that I encountered when experimenting that are related
to Agda and not the encodings itself.

6.1 Problems with NFA

The biggest problem that I encountered was to get all the reachable states by just using
epsilon transitions. To be able to do this I need to keep track of the already visited nodes
so that there would not be any loops when visiting the states. This did not satisfy the Agda
termination checker, that is why the method is annotated with the TERMINATING flag.
This forces the termination checker to skip this method and mark it as terminating. The
flag is needed, because Agda does not know there are only finite amount of states. This
method is however terminating if you define your NFA properly, such that it has a finite
amount of states. Worst case scenario all the states will be reachable and also loop back to
state where you initially called the method on. Then it will terminate because the state is
already in the visited list. The resulting list most likely has duplicates in them, this is why
there is method to filter out the duplicates. It does this by checking if the state at the start
of the list also occurs in the tail of the list. It compares states by their name, so it is really
important that you define states with unique names!

A more general statement of this problem is that the termination checker does not "see"
the use of an extra data structure to keep track of termination, in this case the visited list.
Agda only checks for structural recursion, "This means that we require recursive calls to be
on a (strict) subexpression of the argument ..." [Tea24c|. In other words, the input to the
recursive calls needs to be smaller than the input of the function which makes the recursive
call.

6.2 General Agda problems

The problem that was most obvious when researching Agda itself, creating the encodings,
and experimenting with the encodings, was the incompleteness of official documentation
and examples. Especially for coinduction this was a problem, since the page about it only
contained some basic examples. The page is mainly about the Guarded style, as this is the
recommended way according to the same page. However, it lacks and explanation on why
this the recommended style. There is a short section at the bottom for the Musical style,
but this again lacks why this is not recommended anymore.

Another problem was the usefulness of the error messages. These would tell you the lo-
cation where in your code the error occured, but the actual description was not always clear
to what the exact problem was. An example of this would be the problem that occurred
when proving equivalence for the list DFA. The error message was as follows:

q_reject 1=
if
Relation . Nullary . Decidable.Core.isYes
(Relation . Nullary . Decidable . Core.map’ Data.Char. Properties .AR==
Data.Char. Properties .~ reflexive
(Relation.Nullary . Decidable.Core.map’
(Data.Nat. Properties .=’== 97 (toN c))

14

(Data.Nat. Properties .==" 97 (toN c))
((97 Agda.Builtin.Nat.== toN c¢)
Relation . Nullary . Decidable. Core. because
Relation . Nullary . Reflects . T—reflects
(97 Agda.Builtin.Nat.== toN c))))
then ql else getFromList ¢ (('b’ , q0) == [])
of type DFAState
when checking that the expression q_ reject bisim q reject has type
getFromList ¢ (g0 .transition) ~ getFromList ¢ (q0 .transition)

This only said that the transition did not ultimately lead to the ¢ reject ~ q_reject type.
It did not say that the bisimilarity should be defined for every character.

I encountered this specific error message when trying to prove bisimilarity for two DFA’s
that are encoded using the list transition. Initially, I had the list transition as a list of
pairs with Characters and States. Since the error message did not help me in resolving the
problem, I tried to narrow it down. So I changed from the Char datatype to the Symbol
datatype I created myself. This resolved the issue since I could now define the transition
for the bisimilarity record for every symbol. This also learned me that you need to cannot
match more than one character with the underscore in these types of proof. An example
would example the left example in the code below, where the alphabet is still just a and b,
but they both go to the same state. However, the example on the right is not allowed. Since
only one character is matched with the underscore, namely the b.

q0_bisim g0 .accept = refl

q0_bisim_q0 .accept = refl q0_bisim_q0 .transition a = q1_bisim_q1
q0_bisim_qO .transition = ql bisim_ql q0_bisim_q0 .transition = ql bisim ql
(a) Not allowed (b) Allowed

7 Conclusions and Future Work

The main research question was to implement FSA in Agda using coinduction and prove
their equivalence. Various encodings for DFA’s have been made that accomplishes this goal,
they can all receive input and run them, and they are able to be used to prove equivalence
between them. An encoding for an NFA is also presented, this one however, can only run
input and cannot be used to prove equivalence between two NFA.

The encodings I created are both in the Guarded and Musical style. I found no difference in
functionality between those two. Since Guarded is the recommended way to do coinduction
in Agda, I also recommend to use the Guarded versions of the encodings. Since they are
easier to work with, because you do not need to think about when to delay and force certain
computations.

Future work could look into the third method of coinduction in Agda, Sized types, to see
whether or not this opens more possibilities. Future work in terms of functionality, could
be to prove equivalence for the NFA encoding, but also operations or conversions on the
created encodings. Examples of operations are: Unification, intersection, concatenation etc.
Conversion would mainly be from an NFA to a DFA. A starting point for NFA equivalence
could be the paper from Bonchi and Pous about NFA equivalence with bisimulations up to
congruence [BP13].

15

References

[BP13)]

[Geu09]

[HR15]

[Iva20]

[KS16]

[San11]
[Sch14]
[Sip13]
[Tea24al
[Tea24b]
[Tea24c|
[Tej12]

[Turl0]

Filippo Bonchi and Damien Pous. “Checking NFA equivalence with bisimulations
up to congruence”. In: Proceedings of the 40th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (Jan. 2013), pp. 457-468.
DOI: 10.1145/2429069.2429124.

H. Geuvers. “Proof assistants: History, ideas and future”. In: Sadhana 34.1 (Feb.
2009), pp. 3-25. DOIL: 10.1007/s12046-009-0001-5.

Thomas A. Henzinger and Jean-Frangois Raskin. “The equivalence problem for
finite automata”. In: Communications of the ACM 58.2 (Jan. 2015), pp. 86—86.
DOI: 10.1145/2701001.

Desislav Nikolaev Ivanov. “Formalization of Regular Languages in Agda”. PhD
thesis. UNIVERSIT ‘A DEGLI STUDI DI TORINO, 2020.

Dexter Kozen and Alexandra Silva. “Practical coinduction”. In: Mathematical
Structures in Computer Science 27.7 (Feb. 2016), pp. 1132-1152. po1: 10.1017/
s0960129515000493.

Davide Sangiorgi. Introduction to bisimulation and Coinduction. Cambridge Uni-
versity Press, 2011.

Patrick Schnider. 2014. URL: https://people. inf.ethz.ch/~fukudak/lect/
mssemi/reports/09_rep_PatrickSchnider.pdf.

Michael Sipser. Introduction to the theory of computation Michael Sipser. Cenga-
gae Learning, 2013.

The Agda Team. 2024. URL: https://agda.readthedocs.io/en/v2.7.0.1/
getting-started/what-is-agda.html.

The Agda Team. 2024. URL: https://agda.readthedocs.io/en/v2.7.0.1/
language/coinduction.html.

The Agda Team. 2024. URL: https://agda.readthedocs.io/en/v2.7.0.1/
language/termination-checking.html.

blob/master/dfa.agda.

Franklyn Turbak. DFA Operations (Revised). Course slides, CS235: Computation,
Wellesley College. 2010. URL: https://cs.wellesley.edu/ cs235/£alli10/
lectures/14_DFA_operations_revised_2.pdf.

16

A Agda code

Musical style for the function transition version:

getFromList : Symbol — List (Symbol x (oo DFAState)) — oo DFAState
getFromList e [| = q_ reject
getFromList e ((z , y) = as) = if x == e then y else getFromList e zs

transition : DFAState — Symbol — DFAState
transition (state zs) ¢ = b (getFromList ¢ xs)

runDFA : DFAState — List Symbol — DFAState
runDFA s [] = s
runDFA s (z :: xs) = runDFA (transition s z) xs

stateAccepts : DFAState — Bool
stateAccepts (state accept) = accept

accepts : List Symbol — DFAState — Bool
accepts input startState = stateAccepts (runDFA startState input)

Musical style for list transition version:

getFromList : Symbol — List (Symbol x (co DFAState)) — oo DFAState
getFromList e [| = q_reject
getFromlList e ((z , y) = xs) = if ¥ == e then y else getFromList e zs

transition : DFAState — Symbol — DFAState
transition (state zs) ¢ = b (getFromList ¢ xs)

runDFA : DFAState — List Symbol — DFAState
runDFA s [] = s
runDFA s (z :: xs) = runDFA (transition s) zs

stateAccepts : DFAState — Bool
stateAccepts (state accept) = accept

accepts : List Symbol — DFAState — Bool
accepts input startState = stateAccepts (runDFA startState input)

B LLM prompts

In this appendix I will present some of the LLM prompts used during this project.

Prompt 1:

17

If T have this piece of Agda Code:

data Symbol : Set where
a : Symbol
b : Symbol

record DFAState : Set where
coinductive
field
name : String
isAccepting : Bool
transition : Symbol — DFAState

It gets translated to latex in the following way:

\begin{code}%

\ >[0]\ AgdaKeyword{data }\ AgdaSpace{}%
\AgdaDatatype{Symbol}\ AgdaSpace{}%

\ AgdaSymbol {:}\ AgdaSpace{}%
\AgdaPrimitive{Set }\ AgdaSpace{}%
\AgdaKeyword{ where \<%

N\

\ >[0]]@{}1@{\ Agdalndent{0}}|%

\ >[2]\ AgdalnductiveConstructor{a}\ AgdaSpace{}%
\ AgdaSymbol {:}\ AgdaSpace{}%
\AgdaDatatype{Symbol}\<%

N\

%o

\ >[2]\ AgdalnductiveConstructor{b}\ AgdaSpace{}%
\ AgdaSymbol {:}\ AgdaSpace{}%
\AgdaDatatype{Symbol}\<%

N\

%

\\ [\ AgdaEmptyExtraSkip|%

\ >[0]\ AgdaKeyword{record }\ AgdaSpace{}%

\ AgdaRecord {DFAState } \ AgdaSpace{}%

\ AgdaSymbol{:}\ AgdaSpace{}%
\AgdaPrimitive{Set }\ AgdaSpace{}%
\AgdaKeyword{ where \<%

N\
\ >[0][@{}1@{\ AgdaIndent {0} }|%
\ >[2]\ AgdaKeyword{ coinductive F\<%

%
\ >[2]\ AgdaKeyword{ field }\<%

N\
\ >[2][@{}1@{\ AgdaIndent {0} }|%
\ >[4]\ AgdaField {name}\ AgdaSpace{}%

18

\AgdaSymbol{:}\ AgdaSpace{}%
\AgdaPostulate{String }\<%

A\

%o

\ >[4]\ AgdaField{isAccepting }\ AgdaSpace{}%
\AgdaSymbol{:}\ AgdaSpace{}%

\ AgdaDatatype{Bool}\<%

A\

%

\ >[4]\ AgdaField{transition }\ AgdaSpace{}%
\AgdaSymbol{:}\ AgdaSpace{}%
\AgdaDatatype{Symbol }\ AgdaSpace{}%

\ AgdaSymbol{—}\ AgdaSpace{}%

\ AgdaRecord {DFAState}\<%

N\

\>[0]\ <%

\end{code}

Can you do the same for this next piece of agda code?

record DFAState : Set where

coinductive
field
name : String

isAccepting : Bool
transition : List (Char x DFAState)

Answer to prompt 1:

Here’s how your updated Agda code would be translated into LaTeX using the agda —lat
Agda Code

record DFAState : Set where

coinductive
field
name : String

isAccepting : Bool
transition : List (Char x DFAState)

LaTeX Translation

\begin{code}%

\ >[0]\ AgdaKeyword{record }\ AgdaSpace{}%
\AgdaRecord{DFAState }\ AgdaSpace{}%

\ AgdaSymbol{:}\ AgdaSpace{}%
\AgdaPrimitive{Set }\ AgdaSpace{}%
\AgdaKeyword{ where \<%

N\

19

\ = [o][@{}1@{\ AgdaIndent {0}}]%

\ >[2]\ AgdaKeyword{ coinductive }\<%
A\

%o

\ >[2]\ AgdaKeyword{ field }\<%

N\

\ >[2]]|@{}1@{\ Agdalndent{0}}|%

\ >[4]\ AgdaField {name}\ AgdaSpace{}%

\ AgdaSymbol {:}\ AgdaSpace{}%
\AgdaPostulate{String }\<%

A\

%o

\ >[4]\ AgdaField{isAccepting }\ AgdaSpace{}%
\ AgdaSymbol {:}\ AgdaSpace{}%

\ AgdaDatatype{Bool}\<%

A\

%o

\ >[4]\ AgdaField{transition }\ AgdaSpace{}%
\ AgdaSymbol {:}\ AgdaSpace{}%
\AgdaDatatype{List }\ AgdaSpace{}%

\ AgdaSymbol {(}\ AgdaDatatype{Char}\ AgdaSpace{}%
\ AgdaSymbol{x}\ AgdaSpace{}%

\AgdaRecord {DFAState}\ AgdaSymbol{)}\ <%
\\

\=>[01\ <%

\end{code}

Let me know if you’d like the same translation for a different formatting style (e.g
Prompt 2:

Can you do it again for this piece of code please?

record NFAState : Set where

coinductive
field
name : String

isAccepting : Bool
transition : List ((Maybe Char) x NFAState)

Anser to prompt 2:

Certainly! Here’s the LaTeX translation of your Agda code for the NFAState record us:
Agda Code

record NFAState : Set where

coinductive
field
name : String

isAccepting : Bool
transition : List ((Maybe Char) x NFAState)

20

LaTeX Translation

\begin{code}%

\ >[0]\ AgdaKeyword{record }\ AgdaSpace{}%
\AgdaRecord {NFAState}\ AgdaSpace{}%
\AgdaSymbol{:}\ AgdaSpace{}%
\AgdaPrimitive{Set }\ AgdaSpace{}%
\AgdaKeyword{where}\<%

\ >[0][@{}1@{\ Agdalndent{0}}|%

\ >[2]\ AgdaKeyword{ coinductive }\<%
A\

%

\ >[2]\ AgdaKeyword{ field }\<%

W\

\ >[2][@{}1@{\ Agdalndent{0}}|%

\ >[4]\ AgdaField {name}\ AgdaSpace{}%

\ AgdaSymbol {:}\ AgdaSpace{}%
\AgdaPostulate{String }\<%

N\

%

\ >[4]\ AgdaField{isAccepting }\ AgdaSpace{}%
\ AgdaSymbol{:}\ AgdaSpace{}%
\AgdaDatatype{Bool}\<%

N

%

\ >[4]\ AgdaField{transition }\ AgdaSpace{}%
\AgdaSymbol{:}\ AgdaSpace{}%

\ AgdaDatatype{List }\ AgdaSpace{}%
\AgdaSymbol {((}\ AgdaDatatype{Maybe}\ AgdaSpace{}%
\ AgdaDatatype{Char}\ AgdaSymbol{)}\ AgdaSpace{}%
\ AgdaSymbol{x}\ AgdaSpace{}%

\ AgdaRecord {NFAState } \ AgdaSymbol{) }\ <%

W\

\>[0]\ <%

\end{code}

Let me know if you’d like this rendered as a full document snippet or adjusted for s

I used more prompts just like prompt 2, but just with different code. I’ll not be putting
those in since it would mostly be duplication, and it is clear how the Agda to LaTeX
conversion was done.

21

