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1
Introduction

The rapid proliferation of artificial intelligence (AI) models in recent years has dramatically expanded the capabilities

of autonomous systems across domains. This progress, however, comes with escalating computational and energy

demands: modern deep learning models require substantial computing power (and thus energy) for both training

and inference. As AI is deployed from cloud datacenters to edge devices, there is a growing imperative to develop

energy-efficient computing methods that can deliver real-time performance under tight power budgets. This challenge

is especially pronounced in embedded platforms and robotics, where on-board resources are limited and efficiency is

paramount [2].

One promising approach to address these challenges is neuromorphic computing, a biologically inspired approach

that emulates the brain’s energy-efficient information processing. Neuromorphic systems often rely on spiking neural

networks (SNNs) as their computational backbone. In an SNN, neurons communicate via discrete spikes (analogous

to the action potentials in biological neurons) and operate asynchronously, updating only when events (spikes) occur.

This event-driven processing enables high concurrency and can drastically reduce power consumption, since inactive

neurons draw virtually no compute energy. These characteristics make SNNs highly attractive for energy-efficient,

low-latency control tasks, especially when deployed on specialised neuromorphic hardware designed for spike-based

computation (e.g. Intel’s Loihi chip [3]). By harnessing sparse and timed neural activity, neuromorphic platforms

aim to provide the intelligence of deep neural networks at a fraction of the energy cost.

Despite their potential, spiking neural networks have seen limited use in closed-loop control of complex robots.

Prior studies have explored SNNs in areas like vision processing and simple motor tasks, but applications to high-speed

continuous control remain scarce [4]. In particular, achieving agile flight control with SNNs is an open challenge:

the fast dynamics of a quadcopter require rapid, precise control outputs, and training an SNN to meet these demands

involves handling spatio-temporal gradient propagation in learning. Recent advances in gradient-based learning for

SNNs (e.g. surrogate gradient methods) are beginning to overcome these hurdles, allowing SNNs to be trained with

deep reinforcement learning techniques [4, 5]. These developments set the stage for investigating SNN controllers in

demanding real-time control scenarios.

High-speed quadcopter flight is an excellent test-bed for energy-efficient, real-time control due to its strict

constraints on latency and power. Micro aerial vehicles (MAVs) like racing quadcopters must run their control

loops at high frequency (hundreds of updates per second) on weight- and power-constrained hardware. The onboard

computer and battery supply are limited, so any viable controller must utilize computational resources efficiently. At

the same time, the controller must react within a few milliseconds to rapidly changing dynamics to maintain stability

and performance. Traditionally, quadcopter control is handled by cascaded PID controllers, but there is growing

interest in end-to-end learned controllers that can directly map sensor inputs to motor commands. In fact, recent

work has demonstrated that deep neural network policies can achieve expert-level agility in quadcopter flight. For

example, Ferede et al. trained an end-to-end artificial neural network (ANN) controller that learns to race a quadcopter

through gates in minimum time, outperforming a classical control pipeline in both simulation and hardware tests

[6]. Similarly, other researchers have shown that deep reinforcement learning can produce high-performance drone

racing controllers [7]. These successes with ANN-based controllers inspire the central objective of this thesis:

To develop and evaluate a spiking neural network controller for high-speed quadcopter flight, with a focus on

spiking network design, training methodology, and benchmarking against ANN baselines in terms of control

performance and stability

1



The primary objective of this research is to develop and evaluate a spiking neural network controller for high-

speed quadcopter flight using reinforcement learning techniques. In pursuit of this goal, we design a fully spiking

actor–critic neural network (policy network) and train it end-to-end with Proximal Policy Optimization (PPO) [8].

The SNN controller is composed of leaky integrate-and-fire (LIF) neurons and is trained with surrogate gradient

descent to handle the non-differentiable spike activations. To generate continuous control outputs from binary spikes,

we employ a spike-rate decoding approach: the network’s spike activity is averaged over short integration windows

to produce smooth motor command signals. Importantly, the SNN architecture is carefully aligned with a comparable

ANN baseline controller (in network depth and layer sizes) to enable a fair performance comparison. We focus

on a challenging task of agile quadcopter navigation (a timed gate-to-gate flight task) and train the SNN policy in

simulation. The trained controller is then deployed on a physical quadcopter to assess real-world performance, closing

the loop from simulation to hardware.

Extensive simulation and flight experiments demonstrate that the spiking controller can match and surpass the

performance of its ANN counterpart. In simulation trials, the SNN policy achieves higher reward scores and exhibits

greater robustness (fewer crashes or failures) compared to the baseline ANN, despite both being trained to the same

performance criteria. More notably, in real-world high-speed flight tests, the SNN controller outperforms the ANN

baseline, particularly in terms of robustness and control performance. The SNN-driven quadcopter achieves higher

average velocities and successfully clears more gates within a fixed time horizon, all while leveraging the inherent

efficiency of spike-based computation. These results indicate that neuromorphic control policies can not only reach

the level of conventional neural controllers but can even provide advantages in resilience and potentially energy

usage, a promising step toward energy-efficient, AI-driven flight.

Thesis outline. The remainder of this thesis is structured as follows: Chapter 2 provides background on quadcopter

dynamics, reinforcement learning for control, and the fundamentals of neuromorphic computing and spiking neural

networks. Chapter 3 details the design of the spiking neural network controller and the experimental setup, including

the task formulation, network architecture, PPO training procedure, and techniques such as spike decoding and domain

randomization used to enhance robustness. Chapter 4 presents the results of simulation experiments, comparing

the performance of the SNN controller against the ANN baseline under various conditions. Chapter 5 describes

the real-world flight tests carried out to validate the SNN controller on an actual quadcopter, and it analyzes the

controller’s latency and flight performance. Finally, Chapter 6 concludes the thesis by summarizing the main findings,

addressing the research questions, and discussing avenues for future work in neuromorphic agile flight control.
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Spiking Neural Networks for High-Speed Continuous
Quadcopter Control Using Proximal Policy Optimization

M.F. van Breukelen Castillo *

Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

ABSTRACT

We present the first demonstration of a fully spik-
ing actor-critic neural network policy, trained via
Proximal Policy Optimization (PPO), for continu-
ous control of an agile high-speed quadcopter in
a gate-based navigation task. The spiking neural
network (SNN) controller employs Leaky Integrate-
and-Fire neurons with surrogate gradient training
and spike-rate decoding over multiple integration
cycles, and it is benchmarked against a comparable
artificial neural network (ANN) controller in both
simulation and real-world flight tests. Results show
that despite being trained to the same reward level,
the SNN achieves superior performance in simula-
tion, achieving higher episode rewards, greater ro-
bustness and reduced crash rate. Additionally, in
12-second real-world trials, the SNN outperforms
the ANN, attaining a higher average reward (70.63
vs 59.77), greater mean velocity (7.94 vs 6.99 m/s),
and more gates cleared (46.33 vs 40.67). An anal-
ysis of the spike integration cycle count reveals a
clear trade-off: lower cycle counts (fewer integra-
tion steps per control update) reduce control out-
put resolution and hinder learning, whereas higher
cycle counts improve smoothness but increase in-
ference latency. Moderate cycle counts (5 or 8)
provide the best balance, yielding high rewards,
smoother outputs, and low execution time overhead.
These findings represent a key step forward for neu-
romorphic control in embedded autonomous sys-
tems, demonstrating that SNN-based policies can
outperform conventional ANN controllers in high-
speed, agile robotic tasks.

1 INTRODUCTION

Over the past two decades, the rise of machine learning and
artificial intelligence has dramatically expanded the capabilities
of autonomous systems. From smartphones and self-driving ve-
hicles to large language models, intelligent computation is in-
creasingly integrated into everyday life. However, this progress
comes at a cost: modern deep learning models are energy-
intensive, requiring substantial compute resources for both train-
ing and inference. As neural networks become more prevalent,
there is a growing need for energy-efficient models that can de-
liver competitive real-time performance, especially in embedded
systems. This challenge is particularly present in micro aerial
vehicles (MAVs), which demand fast, low-latency control under

*Code=https://github.com/michael2992/msc_spiking_
quadcopter_control

strict power and hardware constraints. High-performance tasks
such as drone racing or agile navigation push the limits of on-
board computation, as controllers must operate at high update
frequencies on lightweight, battery-powered platforms. While
conventional artificial neural networks (ANNs) have demon-
strated strong control capabilities [1, 2], their poor energy ef-
ficiency remains a significant limitation.

Spiking Neural Networks (SNNs) have emerged as a promis-
ing alternative. Inspired by the sparse, event-driven signalling of
biological neurons, SNNs operate asynchronously through bi-
nary spikes, enabling low-power computation with minimal la-
tency. These properties make SNNs particularly attractive for
real-time control on embedded platforms, especially when de-
ployed on neuromorphic hardware such as Intel’s Loihi [3].

Despite the potential of drastically reduced energy consump-
tion, the use of SNNs in closed-loop robotic control has re-
mained very limited. Prior work has explored their use in visual
processing [4], neuromorphic sensing [5], and motor tasks [6],
but applications in high-speed continuous control for quadro-
tors have not been demonstrated. Reinforcement learning (RL)
provides a natural framework for this setting, and recent meth-
ods have enabled SNNs to be trained with surrogate gradients
[7, 8]. Yet these advances have largely remained confined to
low-dimensional benchmarks, and robust real-time deployment
in fast physical systems is still lacking.

Although limited overall, several recent works illustrate that
SNNs are beginning to move from theory to practice. Deep
neural networks have already shown strong control capabilities
for quadrotors [9], and first demonstrations of SNN-based flight
have appeared. Paredes-Vallés et al. implemented a spiking
vision-to-control pipeline on Intel Loihi, enabling autonomous
drone flight at 200 Hz with microjoule-level inference cost [10].
Stroobants et al. realized end-to-end spiking attitude control on
a Crazyflie, achieving near-conventional performance at 500 Hz
[11]. At the algorithmic level, Xu et al. proposed a proxy-target
framework that stabilizes training for continuous control bench-
marks [12]. These studies demonstrate the promise of neuro-
morphic approaches, but none address the challenge of learn-
ing high-speed, continuous quadrotor control directly with fully
spiking networks.

In this work, we present the first implementation of a fully
spiking actor-critic network trained using Proximal Policy Op-
timization (PPO) for continuous quadcopter control in a high-
speed gate navigation task. The network is composed of Leaky
Integrate-and-Fire (LIF) neurons and trained end-to-end using
surrogate gradient descent. To convert sparse spike activity into
smooth control signals, we employ spike-rate decoding over
multiple integration cycles. The SNN architecture is carefully
matched in structure and size to an ANN baseline [13], to en-
sure a fair and meaningful comparison.

Our results show that the SNN not only achieves superior



performance in simulation but also outperforms the ANN
in real-world flight tests, demonstrating higher robustness,
increased average velocity, and traversing more gates within
a 12 second interval. We further evaluate the impact of
spike-integration cycles on control performance and system
latency. This work bridges the gap between neuromorphic
computing and high-performance reinforcement learning,
offering a foundation for deploying SNN-based control poli-
cies on energy-constrained aerial robots. The code for the
training, simulation, and flight data analysis for the project
is available at: https://github.com/michael2992/
msc_spiking_quadcopter_control, and the videos
of the real flight tests are available at: https://drive.
google.com/drive/folders/1uGINGe71wu0Hrh0_
ZBDAHMIO-s6B5qd3?usp=drive_link.

2 METHODOLOGY

This section outlines the quadcopter model, simulation en-
vironment, reinforcement learning framework and spiking net-
work adaptations used for developing and evaluating the SNN
controller. Our approach builds directly on the environment and
task setup from [14] and [13], but is distinct in that it focuses
exclusively on the 5-inch quadcopter platform with a focus on
training the spiking actor-critic policy.

2.1 Quadcopter Model
We adopt the parametric quadcopter dynamics model from

[13] defined in continuous time. The state vector x and input
vector u are defined as:

x = [p,v,λ,Ω,ω]T , u = [u1, u2, u3, u4]
T∈ [0, 1]

4 (1)

Here, p ∈ R3 is position, v ∈ R3 is velocity, λ ∈ R3 repre-
sents Euler angles, Ω ∈ R3 the body rates, and ωi the propeller
speeds in rad/s. The control input u ∈ [0, 1]4 represents the nor-
malized motor commands. The equations of motion are given
by:

ṗ = v, v̇ = ge3 +R(λ)F (2)

λ̇ = Q(λ)Ω, Ω̇ = M (3)

ω̇i =
ωci − ωi

τ
(4)

Where R(λ) is the rotation matrix and Q(λ) the transforma-
tion matrices from body rates to Euler angle derivatives. The
motor steady-state response is modelled as:

ωci = (ωmax − ωmin)
√
klu2i + (1− kl)ui + ωmin (5)

The specific thrust force F and moment M acting on the
body are given by:

F =

[
−

4∑
i=1

kxv
B
x ωi, −

4∑
i=1

kyv
B
y ωi, −

4∑
i=1

kωω
2
i

]T

(6)

M =


−kp1ω2

1 − kp2ω
2
2 + kp3ω

2
3 + kp4ω

2
4

−kq1ω2
1 + kq2ω

2
2 − kq3ω

2
3 + kq4ω

2
4

−kr1ω1 + kr2ω2 + kr3ω3 − kr4ω4+
. . .− kr5ω1 + kr6ω2 + kr7ω3 − kr8ω4

 (7)

All parameters k∗, ωmin, and ωmax are identified for the 5-
inch drone following [13].

2.2 Reinforcement Learning Task
The control objective is to autonomously navigate a 5-inch

racing quadcopter through a sequence of 7 square gates arranged
in a figure-eight pattern. The environment state is defined as in
[14]:

xobs = [pgi , vgi , λgi ,Ω, ω, pgigi+1
, ψgi

gi+1
]T (8)

where the superscript gi denotes the reference frame of the
i-th gate. The position and orientation of the next gate are given
by pgi+1

and ψgi+1
respectively.

The reward function is adapted from [14][13] and encour-
ages forward progress while penalizing high angular velocity
and collisions:

rk =

{
−10, if collision
|pk−1 − pgk | − |pk − pgk | − c|Ω|, otherwise

Here, the subscript k represents the current timestep. The
scalar c = 0.001 controls the penalty on angular velocity mag-
nitude. A collision is triggered either by ground contact or when
the quadcopter exits the predefined bounding box (10 m x 10 m
x 7 m). Additionally, if the drone crosses a gate plane without
passing through the designated 1.5 m x 1.5 m gate (i.e. missed
the gate), the episode is also terminated. This reward encourages
stable, accurate, and efficient gate traversal.

2.3 Leaky Integrate-and-Fire Neuron
The key element of the spiking network is the Leaky

Integrate-and-Fire (LIF) neuron, a simplified yet biologically
inspired model compatible with gradient-based learning frame-
works, implemented using the snnTorch Python library [8]. LIF
neurons accumulate input over each time step and emit discrete
spikes when their membrane potential exceeds a threshold. Af-
ter spiking, the LIF neuron is soft-reset, subtracting the threshold
potential from the current membrane potential. The evolution of
the membrane potential U [t] is governed by the first-order dif-
ferential equation:

U [t+ 1] = βU [t] + I[t]− UthS[t] (9)
S[t] = H(U [t]− Uth) (10)

Here, U [t] is the membrane potential, β ∈ [0, 1) is the de-
cay constant, I[t] is the input current, Uth is the firing threshold,
and H(·) denotes the Heaviside step function. The output spike
S[t] ∈ {0, 1}, soft-resets the membrane potential by subtracting
the threshold potential, denoted by the last term in Equation 9.
Our implementation uses LIF neurons with a default threshold
of Uth = 1 and β = 0.999. The high β minimizes the leak of
membrane potential, and encourages the LIF neurons to fire ear-
lier and more frequently. This results in a stronger gradient flow
during training which promotes learning via error backpropaga-
tion [8]. This is also exploited by rate decoding the output, as
explained further in subsection 2.4.

2.4 Implementation of Spiking Neural Networks
SNNs introduce the following two key challenges when ap-

plied to gradient-based learning.



1. Spiking neurons, such as the LIF model in Equation 10,
show inherent time-dependency, maintaining an internal
membrane potential that spans multiple time steps. This
stateful property enables temporal integration but com-
plicates the design of standard feed-forward architectures
and training methods.

2. The binary, non-differentiable nature of spike outputs,
prevents the use of conventional gradient-based optimiza-
tion without modification.

To address the first challenge of handling the temporal dy-
namics, we process only the current environment state at each
forward pass, without explicitly modelling dependencies across
timesteps. This design choice follows the insight of the approach
by Ferede [14], where a purely feed-forward ANN was shown to
achieve effective control despite the absence of a recurrent struc-
ture. This approach allows us to leverage the temporal charac-
teristic of LIF neurons for the decoding of the output. We ad-
dress the problem by using a rate encoding approach common
in ANN-to-SNN conversion methods [15, 16], which we shall
refer to as cycling. With this strategy each observation state
x = xobs[t] ∈ R20 at timestep t is held constant and repeatedly
propagated for a fixed number of steps C (i.e. cycles) through
the network, consisting of three fully connected layers of LIF
neurons. During this process, each LIF neuron can accumulate
membrane potential and spike across several cycles. Each ob-
servation state x is input using standard current injection, where
the float values are directly passed to the LIF neurons. A di-
rect drawback of this cycling strategy is that we do not explicitly
use the temporal modelling capabilities of SNNs, therefore op-
erating without recurrence. Superscripts (l) ∈ {1, 2, 3} indicate
the corresponding network layer and at each cycle c, the spiking
activations are computed as:

s(1)[c] = LIF(1)(W (1)x, U (1)[c− 1]) (11)

s(2)[c] = LIF(2)(W (2)s(1)[c], U (2)[c− 1]) (12)

s(3)[c] = LIF(3)(W (3)s(2)[c], U (3)[c− 1]) (13)

The output spikes from the final layer are averaged using rate
decoding, as motivated in subsection 2.5, whereby the average
firing rate of each neuron over the amount of cycles C is com-
puted as shown below [17]:

S̄ =
1

C

C∑
c=1

s(3)[c] (14)

The decoded spike-rate vector S̄ ∈ [0, 1]N , whereN denotes
the number of neurons in the layer, is then passed to a fully con-
nected linear output layer to produce the continuous motor com-
mands û ∈ [−1, 1]4 which are then mapped to actual normalized
motor commands u ∈ [0, 1]4 :

û =WoutS̄+ bout (15)

An important consequence of rate decoding is that, since out-
put spikes are binary in each cycle, decoding over C cycles pro-
duces a quantized latent output.

s(c) ∈ {0, 1}N , S̄ ∈
{
0,

1

C
,
2

C
, . . . , 1

}N

(16)

The resolution is 1
C with exactly C + 1 possible values for the

average firing rate of each LIF neuron (e.g., C=1 : {0, 1};
C=2 : {0, 0.5, 1}; C=3 : {0, 13 ,

2
3 , 1}). This discretization pre-

cedes the continuous action mapping and limits the latent out-
put’s representational resolution to 1

C .
The second challenge, the non-differentiability of spikes, is

caused by the discontinuous nature of the Heaviside step func-
tion H(·). As its derivative δ(·) ∈ {0,∞} evaluates to zero
almost everywhere and diverges to infinity at the threshold, it
prevents the use of exact gradient-based optimization. To solve
this issue, we adopt a surrogate gradient method, wherein the
true derivative of H(·) is replaced by a smooth, differentiable
approximation during the backward pass as in [8]. Specifically,
we use the derivative of a shifted arctangent function as the sur-
rogate, adapted from [7]:

δH

δU
≈ 1

π
(
1 + (πU)

2
) (17)

This approach preserves the ability to train the network
through standard back propagation techniques while leaving the
discrete spiking behaviour untouched in the forward pass.

2.5 Spiking Neural Network Architecture
The choice to specifically use spike-rate decoding is

grounded in well-established findings from ANN-to-SNN con-
version literature. Numerous studies have shown that under rate
encoding, the firing rate of LIF neurons closely approximates
the behaviour of the ReLU activation function [15, 17, 18]. This
functional similarity has made spike-rate decoding a natural and
effective choice in many prior works as it facilitates the direct
transfer of architectures and training methods from ANNs to
SNNs with minimal modification [19, 20, 21]. This similarity
allows us to retain the structure of the baseline ANN used in
[13], and replace the ReLU activation function in the original
network with LIF neurons. Whereas the SNN cycles each input
state and uses rate decoding, while the ANN does not, the archi-
tecture of the SNN, including the number of layers and hidden
units, is otherwise unchanged from the ANN.

The resulting architecture comprises three fully connected
layers of LIF neurons, each containing 64 units as shown in
Figure 2. The identical architecture also ensures that subse-
quent benchmarking between the ANN and SNN is both fair and
meaningful.

2.6 Training procedure and randomization
We train the SNN policy using the PPO algorithm [22], im-

plemented via the Stable-Baselines3 reinforcement learning li-
brary [23]. The training setup integrates the quadcopter dynam-
ics model described in subsection 2.1, the reward function and
environment defined in subsection 2.2, and the SNN-specific
adaptations introduced in subsection 2.4.

In PPO, the policy is represented by two separate neural net-
works: the actor and the value network. In our implementation,
both networks share the same architecture, differing only in the
dimensionality of their outputs (actor: ∈ R4, value: ∈ R1). The
actor network maps a given state x to the parameters of a diago-
nal Gaussian distribution, producing a mean vector µθ(x) ∈ Rd

and a log standard deviation vector log σθ ∈ Rd, where d de-
notes the dimensionality of the action space (i.e. 4). Actions can



Figure 1: Comparative schematic showing how a LIF neuron with rate decoding over several cycles is similar to the ReLU activation
function for an example input X of 81 evenly spaced points between [-1, 1].

...

Input ∈ R20

...

Hidden ∈ R64

...

Hidden ∈ R64

...

Hidden ∈ R64

Output ∈ R4

Figure 2: Schematic of the spiking neural actor network archi-
tecture. Each hidden layer contains 64 neurons. The value net-
work is identical with the exception of the size of the output
dimension which in contrast is 1

then be obtained either deterministically, by taking the mean, or
stochastically, by sampling from the distribution. It is important
to note that for training, samples are taken stochastically:

a ∼ N
(
µθ(x),diag(σ

2
θ)
)
, (18)

where a ∈ R4 is the action vector and diag(σ2
θ) denotes a di-

agonal covariance matrix with entries σ2
θ . The value network, in

contrast, outputs a single scalar Vϕ(s) ∈ R, which estimates the
expected return from state x. Here, θ and ϕ represent the train-
able parameters of the actor and value networks, respectively.

The training procedure with PPO is accelerated by running
100 parallel environments, each simulating a single drone. This
enables the agent to collect experience from multiple simula-
tions simultaneously, significantly reducing the time required for
each policy update for PPO. Episodes have a maximum dura-
tion of 12 seconds to allow the drone to fly multiple laps of the
track. Simulating at a control frequency of 100Hz, the 12 sec-
onds correspond to 1200 simulation steps. We use a discount
factor of γ = 0.999 to prioritize long-term rewards over imme-
diate rewards at a given step. Lastly, a default learning rate of
η = 3 × 10−4 is used. The training parameters are identical to
those used to train the baseline ANN in [13], ensuring a fair and
consistent comparison. To investigate the effect of the number

of cycles on SNN performance, we train a separate SNN model
for each cycle count in the set {2, 3, 4, 5, 8, 10}.

A common struggle for quadcopters is the transfer of be-
haviour and performance to real-life flight tests, which makes it
crucial to design robust policies in simulation. To overcome this
sim-to-real gap and improve robustness both in simulation and
real-life, we apply domain randomization with a 30% uniform
scaling on all physical parameters during training. Specifically,
each parameter θ is drawn from θ ∼ U(0.7θ0, 1.3θ0), where θ0
is the nominal value for the 5-inch drone identified in [13].

In addition to this, randomized initial conditions are applied
at the start of each episode, enhancing the drone’s ability to
navigate toward the next target gate from a broader range of
states. The drone’s position is uniformly sampled as x0, y0 ∼
U(−5, 5)m and z0 ∼ U(−3, 0)m. Linear velocities are ini-
tialized from vx, vy, vz ∼ U(−0.5, 0.5)m/s. Orientation is
randomized over roll and pitch angles ϕ, θ ∼ U(−π

9 ,
π
9 ) and

yaw ψ ∼ U(−π, π) radians. Body angular rates are sampled as
p, q, r ∼ U(−0.1, 0.1) rad/s, and each motor is initialized with
an angular velocity wi ∼ U(−1, 1) rad/s for i ∈ {1, 2, 3, 4}.

3 EXPERIMENTAL SETUP

We adopt the same experimental platform as in [13], using a
5-inch quadcopter configured for indoor autonomous flight. The
control firmware is based on INDIflight1, a fork of Betaflight,
which runs on a STM32H743 microcontroller. State estimation
is handled onboard using an Extended Kalman Filter (EKF) that
fuses inertial data from a TDK InvenSense ICM-42688-P IMU
with external position and attitude measurements from an Op-
tiTrack motion capture system. The state is then used as input
to the SNN which outputs the corresponding motor commands.
All experiments are conducted in the CyberZoo flight arena at
TU Delft, a 10 m × 10 m × 7 m indoor space equipped for au-
tonomous drone testing.

1https://github.com/tudelft/indiflight
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Figure 3: Training of an ANN compared to a SNN policy with
10 cycles over 20 million timesteps

4 RESULTS

4.1 Baseline ANN vs. SNN Performance

Using the procedure and parameters described in subsec-
tion 2.6, we train the ANN and SNN policies for a maximum of
20 million timesteps. Both models share an identical architec-
ture, and are trained under the same conditions. Figure 3 shows
the mean episode reward over the 20 million timesteps and the
final converged value, taken as the average reward of the last
10% of the timesteps. The SNN model used in this comparison
uses a cycle count of 10, selected based on a preliminary anal-
ysis across multiple cycle values. That analysis revealed that a
cycle count of 10 offered a favourable trade-off between train-
ing time and performance, compared to even higher cycle mod-
els, achieving quite comparable reward albeit at a much higher
training time compared to the ANN. It should be noted that the
presented curves represent a single training run for each model.
In reinforcement learning it is standard practice to evaluate aver-
age performance across multiple training runs due to the strong
influence of randomness in the training process[24]. However,
this was not feasible in the present study because of the lim-
ited computational resources available and the very long train-
ing times of some models. As a result, the analysis is based on
single representative runs for both the ANN and SNN in this and
subsequent comparisons.

Although the SNN demonstrates slower learning and con-
verges to a slightly lower average reward (31.5) compared to the
ANN baseline (36.4), the overall training reward convergence
remains comparable. This indicates that the spiking policy is
capable of effectively learning the task in simulation, with mini-
mal degradation. However, a significant drawback of the cycled
SNN becomes immediately apparent: while the ANN completed
training in 16.17 minutes, the SNN required 5.98 hours to train
on a standard consumer-grade laptop, with training time being
proportional to the cycle count of the model.

To further analyze flight performance of the spiking policy
in simulation, the SNN and ANN controllers were both trained
with PPO to achieve a comparable task reward of r = 50 be-
fore evaluation. The ANN was trained until convergence to a
mean episode reward of r = 50.7, while the SNN until a similar
reward of r = 50.82.

Metric Unsuccessful (Crash) Successful

ANN

Mean Reward 2.00± 14.52 58.23± 8.36

Max Reward 66.87 77.13

Crash Rate (%) 67.30 0.0

Mean Episode Length (steps) 206.0 1200.0

v̄ (m/s) 6.39± 3.17 7.43± 2.00

vmax (m/s) 28.67 15.16

SNN (cycles=10)

Mean Reward −2.75± 10.32 64.93± 8.59

Max Reward 58.87 87.68

Crash Rate (%) 44.80 0.0

Mean Episode Length (steps) 99.2 1200.0

v̄ (m/s) 5.56± 3.45 7.95± 1.95

vmax (m/s) 20.49 15.43

Table 1: Simulation performance comparison of ANN and SNN
policies over 1000 simulated episodes. Metrics are shown for
unsuccessful (crash) and successful (non-crash) episodes sepa-
rately.

Although both models reached the target reward after a
comparable number of timesteps (ANN: 40.3 × 106; SNN:
41.1 × 106), the SNN required 10.4 hours of training versus 33
min for the ANN. Following training, each policy was evaluated
over 1,000 simulation episodes with the reward and velocity per-
formance metrics being shown in Table 1. Metrics are calculated
for successful and unsuccessful runs separately to highlight the
performance differences between the models.

Despite comparable training reward, the SNN delivers a
higher mean reward of 64.93 on successful episodes than the
ANN with a reward of 58.23. The SNN exhibits not only better
performance but also a significantly lower crash rate of 44.80%
than the ANN with a crash rate of 67.87%, indicating a more
robust policy, while achieving a higher average velocity. The
high crash rate for both are largely a consequence of the ran-
domized initial conditions used for each episode as detailed in
subsection 2.6. In many occasions this leads to starting condi-
tions that are too extreme for the drone to recover from before
the first gates. This is supported by the statistics for unsuccessful
episodes: both controllers accumulate little reward (SNN: -2.75,
ANN: 2.00) and terminate well before the 1,200-step horizon
(SNN: 99.2 steps, ANN: 206.0 steps). Intriguingly, the ANN
shows both a higher crash rate and longer failed episodes, sug-
gesting greater sensitivity to poor initialisations, often surviving
long enough to accumulate some reward yet ultimately failing
later in the lap. By contrast, the SNN tends to either recover and
complete the episode or fail quickly when initial conditions are
unrecoverable, aligning with its lower overall crash rate.

The higher SNN performance is confirmed with real flight
tests. Both policies were flown for three identical runs of 12 sec-
onds each, equivalent to one fully charged battery. As opposed
to simulation where start position, velocity and orientation are
randomized, the real tests are initialized from a defined hovering
start point, 1 meter from the ground and 1 meter from the top
left gate in the track.

Furthermore for the evaluation of the policies in real-flight
tests, the actions of the policy were sampled deterministically



ANN SNN (cycles=10)
Metric T1 T2 T3 T̄ T1 T2 T3 T̄

Reward 59.38 59.93 60.00 59.77 70.95 70.99 69.95 70.63
v̄ (m/s) 6.91 7.03 7.03 6.99 7.87 7.99 7.95 7.94
Gates 40 41 41 40.67 46 47 46 46.33

Table 2: Real flight performance metrics over 3 trials of ANN
and SNN (10-cycle) policies in real test flights.

from the action distribution to ensure more consistent behaviour
and to draw more accurate conclusions about the performance of
the flight data. Both networks were configured with a target con-
trol update frequency of f (c)des = 1000Hz. The following Table 2
presents the performance metrics for both models. An important
note on the results for the real flight tests is that the observed
control update frequency during flight was lower than the de-
sired frequency due to onboard hardware limitations. The ANN
reached f cobs = 895.07Hz for its best trial while the SNN, lim-
ited by its higher cycle-dependent execution time, achieved only
f cobs = 356.86Hz. This is caused by the increased execution
time of the cycled SNN, which prevents new output states from
being computed at the desired rate f (c)des and represents the pri-
mary disadvantage of such models when deployed on real hard-
ware.

The trajectory comparison of the best performing trial of
the ANN and SNN policies in Figure 4 highlights distinct be-
havioural differences. While the ANN follows a relatively
smooth flight path with a roughly constant velocity of 7.03 m/s,
The SNN policy demonstrates a more dynamic control strategy,
reaching a higher average velocity of 7.99 m/s. Notably, the
SNN shows a greater variation in speed, accelerating sharply
through the central gate and hence decelerating more aggres-
sively to navigate the outermost turns. This results in sharper
cornering and frequent changes in acceleration. The SNN pol-
icy appears to prioritize aggressively accelerating during the
straighter sections of the track, trading off smoothness for speed,
resulting in the SNN outperforming the ANN in both episode re-
ward (70.99 vs. 60.00) and gates passed (47 vs. 41).

4.2 Analysis of SNN Performance

To better understand why the SNN achieves superior perfor-
mance compared to the ANN, we analyze both the motor out-
puts recorded during real flight tests and two key training metrics
from PPO: the entropy loss and the clip fraction.

The differences in control strategy are evident in the distri-
bution of output motor RPMs from real flight tests. As shown
in Figure 5, the SNN consistently generates higher output RPMs
than the ANN, with approximately 17% of outputs saturated at
the maximum normalized RPM of 1.0, and a higher number of
zero-RPM outputs as well. It indicates a more extreme actuation
pattern in the SNN’s control policy, with the motors being used
at a higher capacity than the ANN.

To investigate the source of this behaviour, we further com-
pare the training metrics of the ANN and SNN models previ-
ously trained in subsection 4.1. Another interesting distinction is
observed during training when comparing the entropy loss terms
of both networks. In PPO, entropy is explicitly used as a term
in the loss function to encourage exploration: a higher entropy

2 0 2

2

1

0

1

Y
 [m

]

ANN
R=60.00,  v=7.03 m/s,  Gates=41

2 0 2
X [m]

2

1

0

1

Y
 [m

]

SNN (cycles = 10)
R=70.99,  v=7.99 m/s,  Gates=47

2

4

6

8

10

Ve
lo

ci
ty

 (m
/s

)

2

4

6

8

10

Ve
lo

ci
ty

 (m
/s

)

Figure 4: Real flight trajectory comparison between the
best trials of the ANN vs the SNN with 10 cycles. Videos
for the real flights are available at: https://drive.
google.com/drive/folders/1uGINGe71wu0Hrh0_
ZBDAHMIO-s6B5qd3?usp=drive_link

indicates that the policy maintains greater uncertainty over its
action distribution, with lower entropy corresponding to more
deterministic policies [22]. While the original PPO formulation
maximizes entropy to promote exploration, the implementation
in Stable-Baselines3 [23] adopts the convention of minimizing
the negative entropy loss so that all terms contribute to a mini-
mization objective.

As shown in Figure 6, although similar in the beginning, the
SNN maintains a significantly lower negative entropy loss on-
wards from timestep 10 × 106 compared to the ANN, show-
ing the SNN sustains higher entropy and thus stronger explo-
ration. By contrast, the ANN continuously increases its negative
entropy loss, reflecting a continuous decline in exploration and
earlier convergence to a specific policy.

The clip fraction metric provides further insight into the dif-
fering training behaviour of the two networks. In PPO, the clip-
ping mechanism limits the size of policy updates by constraining
the probability ratio (measure of similarity) between new and
old policies, with the clip fraction quantifying the proportion of
updates that are affected by this constraint [22]. High clip frac-
tions therefore indicate that the policy is frequently attempting to
change more aggressively than the clipping threshold allows. As
shown in Figure 6, the SNN exhibits a consistently higher clip
fraction, reaching fractions above 0.3, while the ANN remains
around a fraction of 0.1. This suggests that the SNN undergoes
more larger policy shifts more frequently as a larger proportion
of updates are clipped to the maximum allowed threshold.
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Figure 5: Real flight histogram of normalized output RPMs for
the ANN and SNN over all three trials

A hypothesis which can account for these observations and
the reason for the higher performance of the SNN, is rooted in
the combined effect of using a surrogate gradient with rate de-
coding. The derivative of the arctangent gradient, as given in
subsection 2.4 is specifically highest in a narrow band around the
membrane threshold. This concentrates the gradient flow around
points where the membrane potential approaches or crosses the
threshold [25]. In practice, this means that neurons that fire
more frequently therefore produce larger gradient signals, bi-
asing learning toward higher firing rates [26]. For high-speed
quadcopter control, persistently higher motor commands can
yield greater thrust and acceleration, enabling higher speeds and
thus faster gate transitions, consistent with the increased veloc-
ities and rewards observed in Figure 4. Moreover, with rate de-
coding over C cycles, the average firing rates are quantized to
values {0, 1

C , . . . , 1} with a resolution of 1
C as noted in subsec-

tion 2.4. An upward firing-rate bias during training can shift
this empirical distribution of the firing rates S̄ toward the up-
per quantization levels, which, after the action layer maps these
latent firing rates to motor commands as in Figure 5, can yield
higher and more frequently saturated output RPMs.

Importantly, the same mechanism also explains the SNN’s
higher exploration in training: elevated firing rates keep neurons
near threshold, yielding stronger surrogate gradients and thus
larger policy updates. In addition, the quantization of the rate
decoding causes a many-to-one mapping of the output with re-
spect to the input, so small changes in x or the weights W often
leave S̄ unchanged because of the coarse resolution. As a con-
sequence, the final action output mean µθ(x) and the realized
RPMs are also unchanged. To remain effective under this map-
ping, the policy learns to increase its action variance σ2

θ via the
trainable parameters θ, so samples around µθ(x) still cross quan-
tization thresholds and produce distinct motor output RPMs, un-
like before. In the training parameters this manifests as higher
policy entropy (in SB3, lower negative-entropy loss), which is
proportional to the variance σ2

θ , and a larger clip fraction, con-
sistent with increased exploration.

While this hypothesis is consistent with the observed be-
haviour, establishing causality requires further research through
systematic experiments and empirical activity analysis of the
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Figure 6: Negative entropy loss and clip fraction for baseline
ANN and SNN models during training over 20 million timesteps

neuron activations during training and evaluation. Specifically,
(i) Analyze the layer-wise LIF activations, membrane-potentials,
resulting latent firing rates during training and evaluation; (ii)
quantify how the surrogate-gradient design and the number of
cyclesC affect the distribution of the action-layer outputs µθ(x)
conditional on the quantized latent firing rates S̄ and inputs x;
and (iii) assess these relationships using appropriate statistical
tests while controlling for confounders such as initialization, in-
put distributions, learning rate, and other hyper-parameters.

4.3 Effect of Cycles on SNN Flight Performance

To assess the effect of the cycle count on SNN training and
flight performance, six models were trained using cycle counts:
{2, 3, 4, 5, 8, 10}. Each model was trained for a total of 150 mil-
lion timesteps, a value selected with the goal of reaching conver-
gence in mean episode reward for all models, while maintaining
feasible training time. To highlight the reward convergence, an
exponential moving average (EMA) with a smoothing factor of
(α = 0.1) was applied to the mean episode reward. The con-
verged reward is calculated as the average reward of the last 10%
of the training timesteps. Figure 7 shows the evolution of the
mean episode reward for the six SNN models and the converged
reward

As the number of cycles increases, the converged episode re-
ward improves consistently, indicating a clear performance gain
from averaging the spiking output over a higher cycle count. The
lowest-performing model, using only 2 cycles, converged to a
mean reward of 44.87, while the best-performing model, with
10 cycles, reached a reward of 62.57. Interestingly, 3 and 4 cy-
cles yield comparable rewards (51.05 and 50.56), while 5, 8,
and 10 cycles result in increasingly higher performance (55.35,
58.64, and 62.57, respectively). This demonstrates that a higher
cycle count provides finer resolution in spike-rate decoding, re-
sulting in smoother motor commands, which in turn improves



0 25 50 75 100 125 150

Environment Timesteps (×106)

10

0

10

20

30

40

50

60

Ep
is

od
e 

M
ea

n 
R

ew
ar

d 
(E

M
A

)

2 cycles (R=44.87)
3 cycles (R=51.05)
4 cycles (R=50.56)
5 cycles (R=55.35)
8 cycles (R=58.64)
10 cycles (R=62.57)

Figure 7: Training runs for all six SNN models, showing the
EMA of the mean episode reward over 150 million timesteps.

Cycles f
(c)
des

(Hz)
f
(c)
obs

(Hz)
τ

(iter/s)
Rew. v̄

(m/s)
Gates

2 500 403.08 806.17 65.04 7.14 42.67
3 333 268.11 804.32 65.45 7.80 44.33
4 250 204.31 817.25 68.43 8.01 44.67
5 200 167.80 838.98 70.27 8.25 50.00
8 125 105.95 847.63 70.76 8.09 45.67
10 100 85.16 851.60 69.81 8.03 47.00

Table 3: Real flight average performance metrics for inference-
constrained SNN flight tests across different cycle counts for
three trials. τ denotes the amount of forward passes per second
(inference rate)

learning and performance. However, in addition to the signif-
icantly longer training time compared to the baseline ANN, a
second drawback of cycled SNNs becomes evident during de-
ployment: increased execution time. This latency is especially a
challenge in real-time deployment for models with higher cycle
counts.

To investigate the real-time deployment, each model was
flown in three real-world trials using specific combinations of
cycle count and desired control update frequency f (c)des. The goal
was to compare the models under two conditions: constant com-
putational load and constant observed control frequency. For the
constant computational load condition, models and parameters
were matched based on a similar inference rate τ , defined as the
product of the observed control frequency and the cycle count.
The average performance metrics across trials are summarized
in Table 3.

Despite the hardware limitations on the observed frequency,
the achieved inference rate for the combinations remains rel-
atively stable ranging from 806 to 852 inferences per second.
Table 3 shows that flight performance generally improves with
increasing cycle count, peaking at cycles=8 with the highest av-
erage reward of 70.76. The best gate completion performance,
however, is achieved by the 5-cycle model, which passes 50.00

Cycles f
(c)
des

(Hz)
τ

(iter/s)
Rew. Progress

Rew.
Rate

Penalty
Gates

2 500 806.17 65.04 73.30 -8.26 42.67
3 333 804.32 65.45 74.41 -8.96 44.33
4 250 817.25 68.43 77.45 -9.02 44.67
5 200 838.98 70.27 80.66 -10.39 50.0
8 125 847.63 70.76 79.74 -8.98 45.67

10 100 851.60 69.81 79.46 -9.65 47.0

Table 4: Real flight average reward decomposition metrics for
inference-constrained SNN flight tests from Table 3. Reward
is decomposed as Progress + Rate Penalty

gates with a higher average velocity of 8.25 m/s and a reward of
70.27. Despite better objective performance in terms of gates
passed, the lower reward of the 5 cycle model is largely at-
tributed to the reward function’s rate penalty term, as shown in
Table 4, indicating the reward function can still be optimized for
time-optimal trajectories.

Lower cycle counts (e.g., 2 and 3) result in reduced rewards
(65.04 and 65.45) and fewer gates passed (42.67 and 44.33),
due to lower output resolution from the spike-rate decoding. In-
terestingly, while the 10-cycle model maintains a high reward
(69.81), it shows no further improvement in velocity or gate
count, indicating diminishing returns. Overall, the results sug-
gest that moderate cycle counts (5–8) offer the best trade-off be-
tween model performance and control responsiveness and net-
work execution time, with 8 cycles yielding the highest reward
and 5 cycles providing the most consistent all-around perfor-
mance.

Similarly, Table 5 presents the results under similar observa-
tion frequency. Again, the 8-cycle model achieves the highest
reward (70.01) with a high average velocity (8.30 m/s) and gates
passed (47.67). The 5-cycle model again performs best in terms
of velocity (8.36 m/s) and gate count (50.00), with a competitive
reward (69.81). However, its observed frequency (337.20 Hz)
was unexpectedly higher than in previous experiments, likely
due to inconsistencies in the flight controller’s task scheduling,
potentially giving it an advantage in responsiveness.

Lower-frequency models (e.g., 3 and 4 cycles at 333 Hz)
again show degraded performance, with lower rewards (65.45
and 64.37) and fewer gates completed. The 10-cycle model per-
forms similarly to the unconstrained setting, reinforcing the ob-
servation that excessive execution time from higher cycles can
reduce responsiveness despite improved spike-rate resolution.
The trajectories for some of the most significant trials are shown
in Figure 8.

The trajectories (a) and (d) in Figure 8 show the two highest-
performing models, both achieving a reward of 71.52. Like the
10-cycle SNN in subsection 4.1, they show aggressive acceler-
ation, sharp turns, and peak speeds on straight segments, rein-
forcing our earlier observation. In contrast, the 4-cycle (b) and
2-cycle (e) models achieved the lowest rewards. Interestingly,
the 2-cycle model improved significantly its reward from 44.87
in simulation to 63.13 in real-world tests, displaying slower,
smoother flight resembling the ANN baseline. Despite higher
reward and velocity, the 4-cycle model passed fewer gates than
the 2-cycle model. A similar mismatch appears for the 5-cycle
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Figure 8: Real flight trajectory plots for significant trials, (a) and (d): highest reward, (b) and (e): second lowest and lowest reward,
(c): highest gates passed, (f): highest cycle model. Videos for the flight test are available at: https://drive.google.com/
drive/folders/1uGINGe71wu0Hrh0_ZBDAHMIO-s6B5qd3?usp=drive_link

Cycles f
(c)
des

(Hz)
f
(c)
obs

(Hz)
τ

(iter/s)
Rew. v̄

(m/s)
Gates

3 333 268.11 804.32 65.45 7.80 44.33
4 333 257.08 1028.32 64.37 7.65 41.67
5 500 337.20 1686.00 69.81 8.36 50.00
8 500 289.33 2314.67 70.01 8.30 47.67
10 500 261.07 2610.67 69.07 7.83 45.33

Table 5: Real flight averaged performance metrics for
frequency-constrained SNN flight tests across different cycle
counts for three trials.

model in trajectory (c), which passed the most gates (51) but had
a lower reward than the 8-cycle model, highlighting the need to
refine the reward function to better reflect objective time-optimal
performance.

To further illustrate the effect of cycle count on control fi-
delity, Figure 9 shows the distribution of normalized output
RPMs for the 2-cycle and 10-cycle models used in subsec-
tion 4.3 during real-flight tests. The 2-cycle model produces a
coarse output distribution, with many activations concentrated at
the extremes near the minimum and maximum values. This indi-
cates a lower effective resolution, as intermediate control signals
are under-represented. In contrast, the 10-cycle model yields a
smoother distribution with a broader spread across the mid-to-
high ranges and a more gradual drop-off toward lower values.
While both models show comparable activation density in the
highest output bin, the 2-cycle model generates a substantially
larger fraction of low values, which reduces expressiveness in
motor control. This confirms that reducing the cycle count com-
promises output resolution and leads to a coarser control signal.
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Figure 9: Distribution of normalized output RPMs for the 2-
cycle and 10-cycle models. The 2-cycle model concentrates ac-
tivations at the extreme low and high ends, indicating lower out-
put resolution. The 10-cycle model produces a smoother distri-
bution with more intermediate values, resulting in finer control
signals.



5 CONCLUSION

This work presented the first successful application of a fully
spiking actor-critic network trained with PPO for continuous
quadcopter control. The SNN, implemented with LIF neurons
and trained using surrogate gradients and spike-rate decoding,
achieved performance superior to state-of-the-art ANNs in both
simulated and real-world high-speed navigation tasks. Evalua-
tion on the 5-inch racing quadcopter revealed that the SNN not
only matched the ANN in control fidelity but also outperformed
it in reward, robustness, and average velocity, despite its slower
training and higher inference latency due to cycle-based spike
integration. Analysis of the SNN further indicates that the supe-
rior performance of the SNN can be attributed to a bias towards
higher firing rates introduced through the surrogate gradient and
rate decoding mechanism, which in turn yields stronger motor
actuation and sustained exploration during training. These ef-
fects likely enable the SNN to adopt more aggressive control
strategies than the ANN, consistent with the higher velocities
and rewards observed.

An extensive analysis of different cycle counts demonstrated
a clear trade-off between temporal resolution and execution de-
lay. While higher cycle counts yielded smoother motor outputs
and improved control performance, they also imposed greater
computational costs and reduced update frequencies on embed-
ded hardware. The 8-cycle model attained the highest average
reward, whereas the 5-cycle model had the best balance between
reward, velocity, and gates passed, confirming that moderate cy-
cle counts provide the most favourable trade-off for real-time
applications.

Future work will focus on extending this approach to neu-
romorphic hardware platforms such as Intel Loihi or other
event-driven processors to fully leverage the energy efficiency
of spiking neurons. To enable efficient deployment, further
investigation is needed into quantizing the network weights
and activations and improving runtime efficiency. Addition-
ally, we aim to explore how varying the network parameters
and architecture impacts both control performance and computa-
tional cost. These directions are critical for designing scalable,
lightweight SNN controllers for embedded applications in au-
tonomous aerial vehicles.
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3
Literature Review

This literature review establishes the foundation for investigating spiking neural networks as controllers for high-speed

quadcopter flight. It begins in Section 3.1 with the historical development of neuromorphic computing and artificial

neural networks, highlighting how biological inspiration shaped both fields and how their trajectories converge in

modern spiking models. Within this context, spiking neurons introduced in Section 3.1.2 emerge as the unifying

concept that links brain-inspired computation with machine learning practice.

The review then shifts from history to theory in Section 3.2, which covers the key components that define spiking

networks. These include neuron models in Section 3.2.2 that capture integration and spiking dynamics, coding

schemes in Section 3.2.3 that translate between continuous information and discrete events, and learning methods

in Section 3.2.4 that enable SNNs to adapt to tasks. Supervised, unsupervised, and reinforcement paradigms are

examined, with particular attention to mechanisms that align with neuromorphic constraints such as locality and

energy efficiency. Reinforcement learning methods are further expanded in Section 3.2.5, where their relevance for

continuous control tasks is detailed.

Finally, the review surveys applications of learned control and perception for quadcopters in Section 3.3. Work

with artificial neural networks in Section 3.3.1 provides the current benchmark for high-speed autonomous flight, while

emerging studies with spiking networks in Section 3.3.2 demonstrate how event-driven sensing and neuromorphic

hardware can support energy-efficient autonomy in drones. This progression from historical background to theoretical

principles and practical applications provides the basis for the research questions and methodology that follow in

Chapter 4.

3.1. Historical Overview of Neuromorphic Computing and Artificial Neural

Networks

This chapter details how biological inspiration shaped neuromorphic computing and how these developments connect

to modern spiking neural networks. We begin with biomimicry as the conceptual root and then provide a brief

overview of the evolution of neuromorphic hardware and computing, highlighting recurring principles such as

event-driven computation, co-location of memory and compute, and sparse parallelism. Finally, we also provide

an overview in the development of artificial neural networks and how advances regarding architectures, training

methods, and tooling, have transferred into the domain of spiking neural networks, motivating the detailed spiking

neural network theory in the next Section 3.2.

3.1.1. Biomimicry and the Origins of Neuromorphic Computing

The first direct evidence of life on Earth dates back approximately 3.8 billion years, with Stromatolite fossils of

microorganisms discovered in metasedimentary rocks in Greenland [9]. Over these billions of years, life has evolved

to overcome numerous challenges, including energy consumption, adaptation, resource gathering, and information

processing. As a result, nature has optimised systems and processes that are incredibly efficient and finely tuned

to survive on Earth. Given the vast amount of time nature has had to perfect these solutions, it is no surprise that

throughout history, humans have increasingly turned to nature for inspiration in solving complex problems. The

concept of imitating nature, known as Biomimicry, has thus existed for centuries.

One of the earliest and most prominent examples is Leonardo da Vinci, whose fascination with nature in the late

16
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15th century led to groundbreaking designs, particularly for flying machines, inspired by the flight of birds [10].

More recent examples even include the Shinkansen, the high-speed train first developed in the 1990s, where Japanese

engineers modelled the front of the train after the beak of a kingfisher to reduce the noise of the loud tunnel pressure

wave that occurred when exiting tunnels[11]. These successes highlight a key insight: borrowing strategies from

biology can lead to incredible improvements in man-made systems.

From that same philosophy emerged the field of Neuromorphic Computing in the late 20th century, introducing

a new perspective for designing computational systems by emulating the structure and processing principles of

the biological brain, unlike conventional von Neumann architectures. This field was pioneered in the 1980s by

Carver Mead and Lynn Mahowald, who, in their paper A Silicon Model of Early Visual Processing, described the

development of the first analog silicon retina, an implementation of the initial stages of retinal processing on a

single silicon chip [12]. This groundbreaking work demonstrated the potential of silicon-based systems to replicate

complex neural functions and it foreshadowed an entirely new type of brain-like computation, given the minimal area

and power the device consumed compared to conventional digital processors. It marked a foundational step in the

development of neuromorphic computing, and motivated many researchers to further investigate how to incorporate

principles from neural processing into the design of computing systems.

3.1.2. Spiking Neurons: Connecting Neuromorphic Computing to Artificial Neural Net-

works

Before reviewing the historical developments in Section 3.1.3 and Section 3.1.4, we briefly introduce spiking neurons

and spiking neural networks (SNNs) to clarify terminology and the provide the reader with a better understanding of

SNNs before expanding on the historical background. A more detailed description of SNNs and the theory is given in

Section 3.2

Artificial neural networks (ANNs) and neuromorphic computing grew in parallel from the broader idea of learning

from biology. The common link is the spiking neuron. A spiking neuron integrates incoming synaptic inputs into

a membrane potential. When this potential crosses a threshold, the neuron emits a spike, then resets and briefly

becomes refractory [13]. Different mathematical models implement this same basic mechanism with different levels of

biological detail or computational practicality. Examples include the leaky integrate-and-fire family [14]. Section 3.2

goes into further depth regarding existing models and their implementation.

Figure 3.1: The basic model of a single spiking neuron which integrates a weighted sum of synaptic inputs, and

spikes when its membrane potential exceeds the threshold [15].

SNNs are built by interconnecting spiking neurons with weighted synapses. Many models also include axonal or

synaptic delays that shape when inputs arrive at a neuron. In contrast to conventional ANNs that pass continuous

activations on a fixed clock, SNNs communicate via discrete events in time. Computation is event-driven and often

asynchronous, so neurons and synapses update only when spikes occur. This produces sparse activity and can reduce

energy use on neuromorphic hardware, where power tends to scale with spike activity [16, 17, 3].

With this conceptual foundation in place, the next two sections review the historical developments that shaped

today’s SNNs. Section 3.1.3 summarizes key milestones in neuromorphic computing, including hardware and sensors

that favour event-driven operation. Section 3.1.4 then reviews developments in ANNs that supplied many of the

architectural and training ideas later adapted to spiking models.
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3.1.3. A Brief Historical Overview of Neuromorphic Computing

Inspired by the work of Mead [12], many other developments ensued in neuromorphic computing, developing

hardware, sensors, and algorithms that aim for efficient, event-driven computation. This section gives a concise

overview of the main developments within the field of neuromorphic computing and introduces three recurring design

principles.

• Event-driven computation. Circuits and programs update only when relevant events arrive, rather than on

a fixed clock. This asynchronous operation reduces unnecessary computations, lowers latency and is more

energy efficient [16].

• Co-location of memory and compute. Synaptic weights and state are stored near the neuron and synapse

circuits that use them. Shorter data paths cut data movement, significantly reducing energy use and delay [16].

• Sparse activity with massive parallelism. At any moment only a small subset of neurons and synapses is

active, and many units operate in parallel without waiting for a global clock. Systems and algorithms are

designed to exploit this sparsity and parallelism [16].

We describe how these ideas appeared in practice, from early analog and mixed-signal chips to large-scale

digital platforms and modern learning methods for neuromorphic systems. The first wave of neuromorphic hardware

development explored analog and mixed-signal approaches, which directly implemented neural dynamics in silicon.

Analog and mixed-signal VLSI foundations.

In the late 1980s, neuromorphic hardware emerged from analog very-large-scale integration (VLSI), the practice of

packing very large numbers of transistors onto a single chip, so that brain-inspired circuits could be implemented

compactly and at very low power [18, 19]. Analog VLSI uses continuous voltages that naturally represent physical

quantities such as membrane potential. Mixed-signal designs combine analog cores for efficient continuous-time

dynamics with digital logic for configuration, routing, and monitoring. Early chips demonstrated basic neural

mechanisms: a leaky integrator that accumulates input while slowly decaying, a threshold element that emits a spike

when a level is crossed, and adaptation that adjusts gain based on recent activity to avoid saturation. Designers

also kept synaptic weights and state physically close to the neuron circuits that use them, which shortens data

paths and reduces energy and latency, choices which established two recurring principles in neuromorphic systems:

continuous-time dynamics and memory-compute co-location [16].

Asynchronous spike communication and event sensing.

During the 1990s and 2000s, neuromorphic systems needed scalable ways to move spikes within and across chips

without wasting energy. In light of this, the Address-Event Representation (AER) communication scheme was

developed which encodes each spike as a short digital packet that carries the neuron address. Events travel on an

asynchronous bus that transmits only when data are present rather than at fixed clock ticks. Simple arbitration handles

simultaneous requests, and routers can copy events to multiple destinations. When the network is inactive nothing is

sent, so bandwidth and power track activity. This makes AER efficient for sparse spiking workloads [20].

In the same period, dynamic vision sensors, also known as event cameras, appeared. Instead of sending full

image frames at a fixed rate like conventional cameras, in dynamic vision sensors each pixel reports an event only

when the change in log-intensity at that pixel exceeds a threshold. Each event includes the pixel location, the time

of the change, and the polarity, which indicates whether brightness increased or decreased. This design provides

microsecond-level latency and very high dynamic range, and it aligns well with spike-based processing [21].

Large-scale neuromorphic systems.

By the 2010s, several platforms demonstrated neuromorphic computation at large scale. IBM’s TrueNorth chip

[17, 22], for example, integrates 4,096 neurosynaptic cores, emulating 1 million spiking neurons and 256 million

synapses, all on a single CMOS chip. Consuming only 65 mW, it demonstrates orders-of-magnitude lower power

usage for tasks such as visual object recognition compared to von Neumann processors. The design focused on very

low energy per synaptic event and reliable large-scale operation [17].

Intel’s Loihi neuromorphic research chip [3] contains 128 neuromorphic cores supporting approximately 130,000

neurons and 130 million synapses consuming under 1.5 W. Intel Loihi introduced on-chip learning. In practice this

means the chip can update synaptic weights during execution using programmable plasticity rules, rather than only

offline on a CPU or GPU. Loihi also supports configurable synaptic delays, hierarchical connectivity across cores,

and multi-compartment neuron models where subunits integrate inputs separately before they influence the soma [3].
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SpiNNaker targeted real-time emulation of spiking networks using a very large number of low-power processor

cores. Each spike is packed into a small network packet and routed over a custom interconnect, which allows flexible

models to run with biological wall-clock timing [23].

In parallel, the BrainScaleS-2 platform pursued accelerated analog computation. Its physical neuron and synapse

dynamics run faster than biological real time, while digital logic handles configuration and learning support. This

acceleration enables rapid experiments with continuous-time dynamics, and the system exposes an event-routing

network for external sensors and actors [24].

Across all these platforms, the shared philosophy is to maximize parallelism, minimize idle computation, and

align the hardware to the sparse, event-driven computation, making them ideal for SNNs.

Learning methods and integration.

Nearing the late 2010s-2020s training spiking networks with gradients became practical through surrogate-gradient

learning. These developments made deeper SNNs trainable on GPUs and CPUs and supported deployment on

neuromorphic hardware for efficient inference [5]. Learning methods for SNNs are further detailed in Section 3.2.4.

With the main principles, hardware, sensors, and communication mechanisms for event-driven computation in

view, we now turn to Section 3.1.4 for the historic developments in ANNs that supplied the architectures and training

methods later adapted to SNNs, linking the neuromorphic and ANN fields.

3.1.4. From Artificial Neural Networks to Spiking Neural Networks

This section reviews three generations of artificial neural networks and the training advances that later transferred

into spiking models.

First Generation: Threshold Logic Networks

The modern story of artificial intelligence can be traced back to 1943, when neurophysiologist Warren McCulloch

and mathematician Walter Pitts introduced the first ANN, a mathematical neuron model capable of performing

logical operations through a network of interconnected neurons [25]. It laid the crucial theoretical foundation for the

development of the first generation of ANNs.

Building upon this foundation, the first practical implementation of an ANN was introduced by Frank Rosenblatt

in 1958. He developed the Perceptron, a single-layer neural network designed to address binary classification tasks

[26]. It included some of most primary components that are crucial for any modern ANN: input nodes were connected

to the single layer by a weight. The Perceptron then computed a weighted sum of the inputs and added a bias.

This result was then passed to a step activation function which triggered at a given threshold, resulting in an binary

output which classified the input to either 1 or 0. In order to learn, the Perceptron was able to update the weights

incrementally by adding or subtracting a fraction of the error, allowing it improve its classification performance over

time. Rosenblatt also proposed the multilayered perceptron (MLP) model by including a hidden layer of perceptrons.

These models were however not yet capable of learning, as there was no general method for training throughout

multiple perceptron layers.

Figure 3.2: The structure of the Perceptron and its main mechanisms such as the weights, summation and threshold

step activation function, elements which have now become the crucial components of modern ANNs.[27]

Despite its simplicity, the Perceptron demonstrated the potential of neural networks in pattern recognition. It was

in 1969, however, that a key limitation of the Perceptron was brought to light in the book Perceptrons by Marvin
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Minsky and Seymour Papert [28]. They showed that the Perceptron was incapable of solving linearly inseparable

problems, such as XOR logic function, which cannot be accurately classified by a single-layer neural network. This

revelation even led to what is known as the first major AI winter, where AI research experienced a long period of

reduced interest [29].

Second Generation: Continuous Activation Networks

Interestingly, it was during this period of reduced interest that two of the most popular architectures in AI appeared

[30]. Firstly the Convolutional Neural Network (CNN) in 1980 proposed by Kunihiko Fukushima [31], named the

Neocognitron, was designed for recognizing visual patterns based on geometric similarity, regardless of their position

or small discrepancies in shape. It marked a significant advancement in the field of visual processing for AI. Another

important contribution in this paper was the introduction of the rectified linear unit (ReLU) activation function, being

one of the most widely used activation functions to this day for ANNs. The second architecture introduced during

this time was the idea of a recurrent neural network (RNN) by John Hopfield in 1982 [32]. The RNN provided a

model for solving memory-dependent problems, which required the network to retain memory over time, such as

learning associations and optimization problems. These networks had a feedback loop that enabled the network to

store and recall patterns. This contribution is a critical foundation for many modern day networks which involve

time-series data, speech recognition and language modelling [33].

It was thanks to David Rumelhart and Geoffrey Hinton in 1986 that interest in AI was reignited with their paper

Learning Representations by Back-Propagating [34]. In this work, they demonstrated how the backpropagation

algorithm can be used to efficiently train MLPs by propagating error gradients backward through the network,

enabling the adjustment of weights across all layers. It addressed the major limitations of single-layered perceptrons

and paved the way for deeper network architectures capable of learning more complex tasks. Backpropagation has

since become one of the foundational components of neural networks, serving as the primary method for training

deep learning models through gradient-descent.

As a part of this second wave also came the first implementation of a CNN trained with backpropagation by

Yann Le Cun in 1989, achieving great success with handwritten digit recognition [35]. Theoretical advancements

also contributed to the growing credibility of neural networks. In the same year, George Cybenko presented the

Universal Approximation Theorem, proving that a single-layer feed-forward neural network with a finite number

of neurons can approximate any continuous function [36]. As neural networks expanded in depth and complexity,

training these models became increasingly impractical due to a significant issue identified by Sepp Hochreiter in

1991: the vanishing gradient problem [37]. This problem arises during backpropagation, where gradients used to

update weights diminish exponentially as they are propagated backward through each layer. Consequently, weights

in earlier layers receive minimal updates, impeding the network’s ability to learn effectively. It was this finding that

also led to a second period of reduced interest in AI.

(a) The standard RNN unit and unfolded RNN [38]. (b) Example of a CNN architecture [39].

Figure 3.3: Comparison of neural network architectures. (a) shows the unfolded RNN structure and how the

feedback loop carries information across multiple timesteps with weightW , while (b) shows a general CNN

architecture and how input images can be transformed over multiple layers to continuous output.

While these limitations of ANNs stalled deep networks for a time, they also inspired new ideas and eventually the

third generation of neural models. This resurgence during the 2000s was driven by several key advancements. First

was the development of more efficient training architectures and algorithms, which addressed the vanishing gradient

problem, such as the introduction of the Long Short-Term Memory (LSTM) network in 1997 [40]. Secondly were

the rapid advancements in hardware. This led many researchers to advocate using Graphics Processing Units (GPUs)

for faster, more efficient training of larger models on bigger datasets. [41]. And lastly was the increasing availability
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of large-scale high quality labelled datasets, providing the necessary resources for the increasingly complex models.

An example of this is the introduction of ImageNet in 2009, a database of 14 million labelled images, which largely

promoted the training of models for object classification, image recognition and automatic object clustering [42].

Third Generation: Spiking Neural Networks

It was also during this time that researchers began pursuing neuron models more faithful to biological dynamics. In

1997, Wolfgang Maass formally characterized SNNs as the third generation of neural networks [13]. Unlike ANNs,

which use continuous-valued activations, SNNs communicate via discrete spikes in time, integrating inputs until a

threshold is reached, at which point a spike is emitted. This allows them to exploit both spike timing and firing rates

for information processing, aligning naturally with neuromorphic hardware and event-based sensing. It is thanks to

the many developments regarding ANNs, SNNs could be enhanced using architectures and optimization techniques

from traditional ANNs.

Implications for Spiking Neural Networks

The importance of the historical background of neuromorphic computing and ANNs now becomes evident. Neu-

romorphic computing contributed the core operating principles and platforms for event-driven processing. These

include asynchronous communication that transmits information only when activity occurs, memory located close to

the compute units that use it, and sensors and hardware that exploit sparse activity for low latency and low energy use.

Over time this produced practical platforms for spike-based computation, from address-event networks and event

cameras to large-scale digital and accelerated analog systems.

Advances in ANNs have directly enabled modern spiking models. Convolutional and residual patterns for spatial

feature extraction have been transferred to the spiking domain through network conversion and deep SNN design

[43, 44]. Gradient-based learning has been adapted to spiking dynamics with surrogate gradients, which replace the

non-differentiable spike function in the backward pass while keeping hard spikes in the forward pass. This makes

deeper spiking networks trainable and supports backpropagation through time for temporal tasks [5, 45, 46]. Tooling,

datasets, and accelerators from deep learning have accelerated spiking research. Examples include PyTorch-based

SNN libraries with autograd and GPU support (snnTorch [47], SpikingJelly [48], SINABS [49]), simulation platforms

for SNNs (Brian2 [50], NengoDL [51]) and code-generation and GPU back ends for large simulations (PyGeNN

[52], Brian2CUDA [50]).

SNNs are at the convergence of these two fields. They compute with discrete spikes and threshold dynamics,

which align with event-driven hardware, and they benefit from deep-learning practice through techniques such

as surrogate gradients [5]. This combination enables real-time and energy-efficient systems while keeping a path

to gradient-based learning and established network design patterns. With this background in place, the following

Section 3.2 goes into the theory of SNNs, including neuron models and their formulation in Section 3.2.2, encoding

methods for information transfer in Section 3.2.3 as well as the specifics of training SNNs in Section 3.2.4.

3.2. Spiking Neural Networks

This chapter provides the theoretical foundation required for later sections. It begins with the functioning of biological

neurons to motivate the abstractions used in computational models. It then reviews widely used spiking neuron

models, ranging from biophysically detailed conductance-based equations to simplified point-neuron formulations

such as the leaky integrate-and-fire model. Next, it examines coding methods that define how continuous information

is represented and decoded in spike trains, with an emphasis on their implications for accuracy, latency, and energy

efficiency. Finally, it surveys learning methods for SNNs, spanning supervised, unsupervised, and reinforcement

paradigms, and highlights the mechanisms that make them compatible with neuromorphic constraints. Together,

these elements form the conceptual and mathematical basis for the experiments in this thesis, where spiking networks

are applied to high-speed quadcopter control.

3.2.1. Basic Functioning of Biological Neurons

This introduction explains how real neurons operate so that the abstractions used in SNNs are clear. Detailed equations

and models follow later in this chapter.

Neurons can be described by four main parts: dendrites, the soma, the axon initial segment, and the axon, which

ends in synaptic terminals as shown in Figure 3.4a. Neuron inputs arrive at chemical synapses on the dendrites

and soma. When a presynaptic spike reaches a synapse, neurotransmitters are released; this opens postsynaptic ion
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channels and produces a postsynaptic current that changes the membrane potential of the neuron. These voltage

changes spread passively toward the soma and sum across space and time. The axon initial segment is a short segment

at the start of the axon with a high density of voltage-gated sodium (Na+) channels [53]. When the net depolarization

at the axon initial segment exceeds the neuron threshold, the Na+ channels open rapidly and initiate and increase the

action potential, known as a spike. After a spike there is an absolute refractory period when a new spike cannot occur.

There is also a relative refractory period when the threshold is temporarily higher. These properties limit the firing

rate and influence spike timing [54, 55]. This generated spike then propagates along the axon and its branches to the

synaptic terminals, where it can trigger transmitter release onto the following neurons [55].

(a) A biological neuron showing the main components that characterize

its behaviour and inspire SNN models [56].

(b) Simplified spiking neuron behaviour with integrate–threshold–reset

dynamics.

Figure 3.4: From biology to abstraction: a biological neuron and a simplified spiking neuron model used in

neuromorphic computing.[57]

The membrane acts like a capacitor also has ion channels which allow the membrane potential to leak over time.

Small inputs change this membrane potential with low-pass dynamics set by the membrane time constant, which is the

product of membrane resistance and membrane capacitance. The membrane potential also attenuates along dendrites

according to cable properties that depend on axial resistance inside the dendrite and membrane conductances. These

passive properties shape how inputs integrate over space and time [55, 58].

Another important concept is synaptic strength, which determines how strongly a presynaptic spike changes

the postsynaptic membrane potential. Synaptic strength is activity dependent and can change through plasticity.

In spike-timing-dependent-plasticity (STDP), the sign and magnitude of long-term change depend on the relative

timing of presynaptic and postsynaptic spikes: pre-before-post spikes tend to produce long-term potentiation (LTP),

whereas post-before-pre spikes tend to produce long-term depression (LTD) as shown in Figure 3.5 [59, 55]. When

many neurons are connected into a network, populations can represent information in different ways. In rate coding,

information is carried by average firing rates over a time window. In temporal coding, information is carried by

precise spike times, spike order, or inter-spike intervals. Both coding views are used in theory and experiments and

motivate different modelling choices, these will be further detailed in Section 3.2.3 [60, 14, 55].

The spiking neural models represent these mechanisms by combining leaky integration, a fixed threshold for

spike initiation, a reset after each spike, and optional refractoriness. These models preserve temporal integration,

thresholding, and spike-based communication while remaining useful for analysis and simulation [14]. The next

Section 3.2.2 details existing neuron models in literature and their implementation.

3.2.2. Spiking Neuron Models

Modern spiking neuron modelling was mainly inspired by the Hodgkin and Huxley equations introduced in 1952.

These non-linear differential equations describe ionic membrane currents and the generation of spikes in the giant

squid axon [54, 55]. The model couples membrane voltage with activation and inactivation variables for sodium

Na+ and potassiumK+ conductances and reproduces spike initiation and conduction with high quantitative fidelity

[54, 60] in a four-dimensional set of equations. The Hodgkin and Huxley framework established a standard in neuron
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Figure 3.5: Spike-timing-dependent-plasticity describes the observation that synaptic strengthW between two

neurons depends on the timing of the pre and post-synaptic spike signal. Pre before post leads to long term

potentiation (LTP), while post before pre leads to long term depression (LTD) [61].

modelling that inspired many reduced models that trade biological plausibility for simplicity while preserving the

main neuronal characteristics [55, 60].

A first major reduction is the FitzHugh–Nagumo system that isolates excitation and recovery in a two-dimensional

dynamical system that captures threshold, refractory period, and sustained periodic spiking with abstract variables [62,

63]. The Morris–Lecar model is a more grounded model based on barnacle muscle fibres and provides a two-variable

conductance-based description that reproduces oscillations and different excitability behaviours with calcium Ca2+

and potassiumK+ currents [64, 60].

Although these models preserved biological accuracy and were able to replicate a wide range of neuronal

behaviours, they remained relatively complex and computationally demanding. To enable more efficient simulations

and simpler mathematical analyses, neurons were further abstracted into point-neuron models, in which the entire cell

is represented as a single compartment that integrates inputs until a threshold is reached, triggering a spike followed

by reset [14, 65]. Historically, this line of thought traces back to Lapicque’s 1907 RC threshold model with reset,

which anticipated later point-neuron formulations [66, 67]. Given their widespread use in SNNs and practical ease

of implementation, we emphasize these models as the main models of interest for spike-based computation and

deployment:

• Leaky integrate-and-fire (LIF): Models the membrane as a leaky RC circuit and emits a spike when the

voltage crosses a fixed threshold. The model maps input current and leak to the membrane potential with a

single state which enables fast simulation and simple analysis and it is one of the most widely used neuron

models in SNNs due to its practicality [60, 65, 55]. Its implementation is further detailed in Section 3.2.2.

• Integrate-and-fire (IF): Further simplifies the LIF neuron by leaving out the leak term, which leads to its

membrane potential only diminishing when a spike is generated[14, 55].

• Quadratic integrate-and-fire (QIF): Uses a single voltage variable with a quadratic term that makes the

voltage accelerate rapidly as it approaches spike generation. A spike is represented by this rapid divergence

followed by a reset, which yields rich firing behaviour with a minimal state description [68].

• Izhikevich model: This model consists of two states, a membrane voltage and a recovery variable. Its quadratic

voltage equation with a simple reset reproduces many firing patterns at very low computational cost [69, 70].

• Adaptive exponential integrate-and-fire (AdEx): This model includes an exponential term that captures

sharp spike initiation and a slow adaptation current that produces spike-frequency adaptation. With two coupled

equations it matches a wide range of experimental recordings of neuronal voltage responses.[71, 72, 55]

• Spike Response Model (SRM): offers a kernel-based view in which causal filters describe sub-threshold

dynamics and the post-spike refractory phase, combined with a threshold condition for spike emission [73, 14].
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Leaky integrate-and-fire (LIF) neuron

The practicality of the LIF neuron has made it a central component of SNN research. For example, it is the most

common model used when converting ANNs to SNNs, as detailed later in Section 3.2.4, by mapping activations to

firing rates, and these converted LIF networks typically preserve accuracy within a small margin on benchmarks

such as MNIST and CIFAR [43, 44]. Beyond software, the LIF model has also shaped hardware design: large-scale

neuromorphic systems such as IBM TrueNorth and Intel Loihi implement LIF-like compartments to achieve real-time

operation at very low energy per spike [22, 3]. Given its central role across software and hardware, in this subsection

we detail the discrete formulation of the current-based LIF neuron as used in Python libraries such as snnTorch [47].

Original LIF RC-circuit equations in continuous time

The classical LIF model represents the membrane as a leaky RC circuit driven by input currents:

Cm
dV

dt
= −gL [V (t)− EL] + Isyn(t) + Iext(t), (3.1)

whereCm is membrane capacitance, gL leak conductance,EL the leak reversal potential (the voltage at which the leak

current is zero), V (t) the membrane potential, Isyn(t) synaptic current, and Iext(t) an external current. Introducing
τm = Cm/gL and Rm = 1/gL gives the equivalent form

τm
dV

dt
= −

[
V (t)− EL

]
+Rm

(
Isyn(t) + Iext(t)

)
. (3.2)

Spiking is defined by a threshold–reset rule: when V (t) reaches Vth, a spike is emitted, V is set to Vreset, and the

neuron is inactive for a refractory period tref.

There are two common ways to model synaptic input. In a current-based model, each synapse contributes an

added current (simple, fast, and common in analysis and many libraries) [65, 47, 49]. In a conductance-based model,

each synapse changes the membrane conductance toward a synapse-specific reversal potential. Because conductance

changes alter how easily current flows, they capture shunting effects and make the effective membrane time constant

state dependent. Conductance-based models are more biophysically faithful, while current-based models are lighter

and easier to tune [55].

Discrete formulation of the current-based LIF model

(a)Membrane potential and spiking activity for LIF neuron with

constant input current Iin = 0.2.
(b) [Membrane potential and spiking activity for LIF neuron with a

higher constant input current of Iin = 0.3.

Figure 3.6: Side-by-side comparison of membrane potential for the Lapicque LIF neuron in snnTorch for two

different input currents. A higher constant input current Iin leads to a higher firing rate of the neuron [47].

To simulate the LIF neuron, the continuous-time dynamics are stepped in discrete time. Two standard one-step

updates are widely used [50, 47, 52]. The first method is the exact exponential update, being a closed-form solution

which assumes the input is approximately constant over one step ∆t:

Vt+∆t = EL +
(
Vt − EL

)
e−∆t/τm +RmIt

(
1− e−∆t/τm

)
. (3.3)
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Another simpler method to obtain the solution is using a Forward-Euler update, being a simple first-order approxima-

tion:

Vt+∆t = Vt +
∆t

τm

(
EL − Vt +RmIt

)
. (3.4)

After each step, a threshold is checked and a reset is applied. An optional refractory counter can hold the voltage

fixed for a few steps after a spike. In practice, Python libraries recentre voltage at rest and absorb the membrane

resistance into the input. Defining v = V −EL, it = RmIt, and β = e−∆t/τm (or β ≈ 1−∆t/τm for Euler), the

recurrent form used in snnTorch and similar libraries is:

vt+∆t = β vt + (1− β) it − st Vth, (3.5)

where st is the binary spike at step t (1 if a spike occurred, else 0). The subtraction implements a soft reset by one

threshold. The reset mechanism can also reset the membrane potential vt+∆t to zero, know as a hard reset. In this

parametrization, Rm does not appear explicitly because it is folded into the effective input it, and EL vanishes

because v is stored relative to rest [47].

3.2.3. Neural Coding Methods

To connect many neurons into a functional SNN, the interface to continuous signals must be defined at both ends.

Inputs are encoded into spike trains or injected currents and outputs are read back (decoded) into continuous estimates

or actions [60, 14, 55]. This section presents themain coding rules with their usual decoding and highlights applications

that report effects on latency, spike count, energy, accuracy, and training stability [56, 47].

Rate Coding

A continuous signal is mapped to a firing rate that is proportional to the input magnitude [60, 14, 55].

λ(t) = κx(t) (3.6)

Here, λ(t) is the instantaneous firing rate, x(t) is the input signal, κ is a gain, and t is time. Spikes are drawn

from an inhomogeneous Poisson generator. In small time bins each bin behaves like a single Bernoulli trial with

probability equal to the local rate times the bin width, and the probability of two spikes in the same bin is negligible

for sufficiently small bins [60, 14, 55]. A common readout estimates the average firing rate by counting spikes in a

fixed window [60, 14].

λ̂ =
n

T
(3.7)

Here, λ̂ is the estimated rate, n is the number of spikes observed, and T is the window length. An alternative decoding

method is exponential filtering, which assigns exponentially decaying weight to past spikes [60, 14, 55].

k(t) = H(t) exp
[
− t

τs

]
(3.8)

y(t) =
∑
j

k
(
t− tj

)
(3.9)

Here, k(t) is a causal synaptic kernel, H(t) is the Heaviside step, τs is the synaptic time constant, y(t) is the filtered
activity, and tj are spike times. This remains rate decoding because the expected filtered activity tracks the firing rate

smoothed by the kernel. For slowly varying or constant rates a local rate estimate follows by dividing by the kernel

area A[60, 14].

λ̂(t) ≈ y(t)

Aτs
(3.10)

An important application of rate coding is within ANN-to-SNN conversion methods, where trained ANNs are

converted to SNNs through adaptations which align the behaviour of the SNN with the ANN. These procedures

rescale weights and biases, choose neuron thresholds, and select a simulation window so that spike counts or filtered

postsynaptic currents reproduce ANN activations with small error [43]. This approach converts common layers such

as ReLU, pooling, batch normalization, and softmax, and it preserves accuracy on large scale vision benchmarks with

VGG and Inception style models while enabling event-driven execution [43, 44, 74]. The same decoded outputs map

cleanly onto neuromorphic chips where synaptic filters accumulate spikes and computation triggers only on events,
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which reduces switching activity and supports low power inference [17, 22, 3]. In a different setting, unsupervised

digit recognition used Poisson rate input to drive stable feature learning and reported robustness to input noise, with

longer windows and higher spike counts as the trade-off [75]. Broader surveys describe the same pattern across tasks.

Rate coding is simple and reliable, and the main cost is added latency and spike budget compared to temporal codes

[56, 47].

Time to First Spike (TTFS)

A normalized input maps to a single spike time so that larger values fire earlier and smaller values fire later [14, 55].

ts = t0 + τmax [1− x] (3.11)

Here, ts is the spike time, t0 is the earliest allowed time, τmax is the maximal latency, and x ∈ [0, 1] is the normalized

input. To decode this scheme either takes the earliest spike across a population for decisions or inverts the mapping

to recover an estimate of x [14, 55]. First-to-spike decisions, when trained with standard SNN learning methods,

achieved fast and sparse inference on vision tasks with fewer spikes and shorter decision times than rate codes, which

reduced energy and latency in practice [76, 77]. Hardware-oriented networks using first–spike rules further cut

reaction time at the edge while maintaining accuracy, provided training controls timing noise [78, 47].

Rank Order

Each neuron is allowed at most one spike and the information is carried by the order in which neurons fire [79, 80].

ts,π(1) < ts,π(2) < · · · < ts,π(N) (3.12)

Here, ts,i is the first spike time of neuron i, N is the population size, and π is the permutation that orders neurons by

first spike. Decoding uses either the first spike or the explicit order of first spikes across the population to produce

a decision. This is rank–based readout [81, 14]. Latency pipelines that encode intensity as earlier spikes and then

apply first spike (order) or rank pooling extracted oriented features and reached competitive accuracy with only a few

spikes per image, which enabled rapid categorization [82]. Supervised methods that match precise spike times solved

standard benchmarks under low spike budgets (spike count is constrained). These readouts rely on exact latencies

rather than being strictly rank–invariant, yet they still show that the relative order of first spikes can support fast

decisions with little activity [83, 81]. The approach is sparse and fast, and it is more sensitive to timing jitter and

conveys weaker amplitude information than rate codes [80, 81, 56].

Burst Coding

Burst coding conveys information by groups of spikes fired in rapid succession, called bursts, rather than by isolated

single spikes [84]. A burst is typically defined as a short sequence of spikes separated by interspike intervals (ISI)

much shorter than those between bursts. Encoding schemes use the number of spikes in a burst, the timing of burst

onset, or both to represent signal features [85]. This provides a richer vocabulary than single spikes because bursts

can simultaneously transmit discrete events and graded values.

Decoding methods count spikes within bursts or detect burst onset times. Burst count can be mapped to input

amplitude while burst onset time carries temporal information, which allows the combination of rate and temporal

codes, this can enhance robustness by reducing the probability that important events are lost to noise or transmission

failures [85]. Computational models demonstrate that burst codes can increase efficiency in SNNs by allowing low

baseline activity with rapid, high–fidelity responses when relevant stimuli appear [72].

Phase of Firing

This scheme uses an oscillating carrier signal which provides a reference. Information is then encoded into the spikes

by assigning a phase to each spike [14, 86].

φ(t) = ωt mod 2π, φs = φ(ts) (3.13)

Here, φ(t) is the instantaneous phase, ω is the carrier angular frequency, t is time, and φs is the phase at the spike

time ts. For decoding, the scheme uses circular averaging or phase bins and then maps the phase code to values or

classes [86]. Research shows that in the auditory cortex of animals, the phase of firing relative to local oscillations

adds information about natural sounds beyond rate and improves decoding accuracy on real recordings [86]. Models

that align input phases boost timing-based plasticity and converge faster on temporal tasks, which supports efficient

learning when oscillatory structure is present. These gains depend on a stable carrier and precise timing [87, 56].
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Figure 3.7: A representation of coding schemes A: Rate coding, B: TTFS, C: Phase coding, D: Burst coding, with a

example input pixel P and the resulting encoding spikes for each scheme [88].

Population Coding

A single value is represented by many neurons that respond over overlapping ranges. A common choice is Gaussian

tuning [60, 55].

ri(x) = rmax exp
[
− (x− µi)

2

2σ2

]
(3.14)

Here, ri(x) is the mean firing rate of neuron i, x is the encoded input, rmax is the peak rate, µi is the preferred value

of neuron i, and σ is the tuning width. Spikes are typically generated from these rates with a Poisson sampler [60]. A

simple readout forms a population vector that averages preferred values using the current activity as weights [60].

x̂pv =

∑
i r̄i µi∑
i r̄i

(3.15)

Here, x̂pv is the estimate and r̄i is a rate estimate for neuron i obtained from spike counts or exponential filtering

under a rate decoding scheme as in Section 3.2.3 [60]. Under a Poisson model, maximum likelihood uses observed

counts ni in a window of length T [60].

x̂ml = argmaxx

[∑
i

nilog ri(x)− T
∑
i

ri(x)
]

(3.16)

Here, x̂ml is the value that best explains the counts given the tuning curves. For Gaussian tuning the maximum

response occurs at x = µi, and σ sets the selectivity bandwidth. A common width metric is the full width at half

maximum,

FWHM = 2
√
2 ln 2 σ, (3.17)

which shows how σ controls the half–maximum width [60]. Probabilistic population codes pair these tuning functions

with noise models to support robust inference, and linear decoders can be very accurate in this setting. This is useful

for continuous control and for readouts that must stay calibrated under sensor drift or changing noise [89, 60, 55].

When fitting tuning curves to data, µi and σ are curve–fit parameters estimated from responses of neuron i. They
describe preference and selectivity rather than the mean and spread of the external stimulus ensemble. Spike–count

variability around the mean rate is commonly modelled separately, for example with Poisson noise where the count

variance equals the mean [60, 55].
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Direct Current Injection

The first layer receives a continuous current that is proportional to the input. No Poisson sampling is used and the

layer itself acts as a learnable spike generator [90, 91, 92, 93].

Iext(t) = κx(t) (3.18)

Here, Iext(t) is the injected current at time t, x(t) is the input signal, and κ is a gain that sets the scale. Through

this method continuous input values can also be directly passed on to the neuron with κ = 1. Subsequent neurons
integrate this current and produce spikes when their membrane potentials cross threshold. A linear output layer then

reads filtered activity, the membrane potential, or spike counts using rate decoding.

This method reduces latency and energy because it removes input sampling noise and allows accurate inference

with few time steps. A representative example is DIET-SNN, which applies analog pixel values directly to the

input layer and, during training, optimises thresholds, leaks, and weights. It reports near ANN accuracy on image

benchmarks with very few time steps and lower compute energy than rate encoded baselines [90]. Calibration based

conversion reaches high accuracy at low time steps by passing input to the first layer directly and correcting internal

mismatches with analytic and layer-wise calibration, which stabilizes low latency inference [91].

This method does have the downside that training and conversion at very small time steps are sensitive to internal

deviations that accumulate across layers. Direct input reduces sensor noise but does not remove these internal errors.

Accurate low latency SNNs therefore rely on careful threshold balancing, normalization, and error control in deeper

layers [92, 93].

Event Camera Output

Dynamic vision sensors emit asynchronous address events when the change in log intensity at a pixel crosses a

contrast threshold [21, 94].

∆log I(x, y, t) ≥ θ or ∆log I(x, y, t) ≤ −θ (3.19)

Here, ∆log I(x, y, t) is the local change in log intensity at pixel (x, y) and time t, and θ is the contrast threshold.
Each event carries a pixel address, a precise timestamp, and a polarity bit that indicates the sign of the change [21,

94].

p(x, y, t) = sign
[
∆log I(x, y, t)

]
, p ∈ {+1,−1} (3.20)

Thus the event values are binary in polarity. There is no grayscale intensity attached to an event. Information is

encoded by when and where events occur and by their sign [21, 94]. A SNN can consume the stream directly by

assigning one input neuron per pixel and emitting an input spike at the event time with the sign of the synapse set

by the polarity. Positive events will excite the membrane potential and negative events inhibit it. The postsynaptic

current is then updated by the used spiking neuron model [94]. Alternatively, it is also possible to produce a decaying

time trace of events so that recent events produce larger values and older events decay away. A common construction

stores, for each pixel, a leaky memory of the last event time [94].

S(x, y, t) = exp
[
− t− tlast(x, y)

τts

]
(3.21)

Here, S(x, y, t) is the time surface value, tlast(x, y) is the timestamp of the most recent event at (x, y), and τts is
the decay constant. This yields a continuous map that can drive the first layer as a current input or be combined

with polarity by maintaining separate traces for p = +1 and p = −1 [94]. The use of these event streams can

provide microsecond latency and very high dynamic range. Systems that use these streams achieve fast tracking and

robust perception in robotics and navigation where frame cameras saturate or blur. Like many other methods the

asynchronous and sparse nature of events also matches neuromorphic hardware well and restrains computation only

to events [94, 21]. A downside, however, is that event cameras provide polarity and time but not absolute intensity,

so static regions produce no data and tasks that need brightness require reconstruction or fusion [94]. Event cameras

also exhibit pixel dependent thresholds, background activity in low light, missed events, and refractory effects at very

high contrast motion, which reduce accuracy if not modelled [94, 21].

Sigma–delta Coding

This code scheme transmits only when the signal changes enough to matter. It emits sparse signed events that keep a

running reconstruction close to the true signal within an error band set by a threshold. The aim is to cut bandwidth

and operations while preserving accuracy in deep SNNs where many activations vary slowly over time. A predictive
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decoder maintains an estimate of the input and triggers an event when the instantaneous error exceeds a threshold

[95].

e(t) = x(t)− x̂(t), emit s ∈ {+1,−1} when |e(t)| ≥ ϑ (3.22)

Here, x(t) is the input, x̂(t) is the running estimate, e(t) is the residual, ϑ is the threshold, and s is the event sign.
The estimate is computed by filtering the signed event train with a causal reconstruction kernel and scaling by the

step size [95].

x̂(t) = x̂0 + ϑ
∑
i

si k
(
t− ti

)
,

∫ ∞

0

k(u) du = 1 (3.23)

Here, {ti, si} are event times and signs, k(t) is a unit–area kernel, and x̂0 is an initial offset. A common choice is an

exponential kernel that implements a leaky integrator [95].

k(t) = H(t)
1

τr
exp

[
− t

τr

]
(3.24)

Here, H(t) is the Heaviside step and τr is the reconstruction time constant. In SNNs the same kernel typically

defines the postsynaptic current, so later layers consume the filtered current directly without an explicit reconstruction

stage [95]. Applied inside deep networks, sigma-delta neurons reduce operation counts while keeping accuracy

close to dense baselines. The trade-off is that it functions as a decoder with a state and weighted signed spikes, and

performance depends on proper choices of threshold and kernel [95].

3.2.4. Learning Methods for Spiking Neural Networks

Training SNNs is difficult because spike generation is non-differentiable and because temporal dynamics complicate

gradient propagation across many steps [5, 96]. In addition, neuromorphic hardware favours local updates, bounded

memory, and low precision which constrains which learning rules are practical [3, 22]. To analyse the existing

learning methods for SNN, it is helpful to first make the distinction between learning algorithms and update rules

[5, 97]. Learning algorithms specify labels or objectives that guide the learning procedure of the network, while

mechanisms specify how parameters within the network are updated, such as global gradients, local three factor

rules, eligibility traces, or conversion pipelines [97, 5]. Learning algorithms have been separated by supervised and

unsupervised methods, while reinforcement learning methods for both ANNs and SNNs will be detailed further in

Section 3.2.5.

Supervised Learning

Supervised learning uses labelled input-output pairs and an explicit loss to align network predictions with known

outputs [98, 97]. The objective guides all updates so that the model reduces classification error or regression error on

the training distribution [98, 5]. In SNNs, using this method also entails using an appropriate decoding method to

obtain continuous values from output spikes as discussed in Section 3.2.3 [5, 99].

Surrogate Gradient Descent replaces the non-linear gradient of a spike with a smooth differentiable alternative

during the backward pass which allows backpropagation through time to proceed [5, 99]. The forward dynamics

maintain thresholding and reset while the backward pass uses a bounded surrogate derivative to approximate the

gradient of the spike function [99, 5]. Common supervised objectives optimise the cross entropy on spike counts for

classification and rank order coding for timing tasks [99, 100, 5]. A standard surrogate derivative is the sigmoid

function, shown in Figure 3.8. It is centred at the firing threshold with a slope parameter α that controls gradient

magnitude and width which provides stable and smooth gradients for training [99, 5]. Another common choice is a

piecewise linear triangular window that assigns a constant derivative within a narrow band around the threshold and

zero derivative outside which preserves locality of the learning signal in voltage space [100, 5]. Implementations

improve stability with gradient clipping and careful handling of membrane resets during the backward pass to avoid

exploding or vanishing gradients through time [5, 99]. Surrogate gradient training achieves strong accuracy on static

frames and event streams but increases memory and time because temporal states must be stored across many steps

during backpropagation through time [5, 100].

Online Approximations with Eligibility Traces compute a local trace at each synapse from pre and post activity

and then multiply this trace by a broadcast learning signal to update the weights [96]. E-prop is an example that

uses filtered traces that capture how earlier spikes influence current activity and uses target or error signals that

do not require exact symmetric weight transport, which is the requirement that the feedback pathway of weights
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Figure 3.8: The spike heavy side step function, the sigmoid function g(x) and its derivative g′(x) which is a
commonly used surrogate gradient in SNNs to enable backpropagation [101].

during backpropagation must mirror the forward pathway for effective backpropagation [96]. E-prop therefore

yields online learning with modest memory and competitive performance on tasks that require temporal integration

[96]. The separation of local eligibility and global learning signals improves hardware fit because it avoids global

synchronization of gradients [96].

Local Errors and Feedback Alignment attach simple auxiliary heads to each layer in the network so that each layer

receives a training signal that depends only on nearby activity [102]. Feedback alignment replaces exact transpose

feedback paths with fixed random feedback which reduces the requirement for symmetric weights in deep training

[103]. Direct feedback alignment sends error signals to every layer through fixed random projections which further

relaxes global gradient flow [104]. These approaches reduce coordination across layers and improve compatibility

with on chip learning while often trading peak accuracy for locality [103, 102].

Timing Based Perceptrons also known as Tempotrons, learns to classify input spike patterns by shifting synaptic

efficacies so that the membrane potential crosses threshold for target classes and stays below threshold for others

[105]. The rule uses spike timing encoding of pre spikes and the membrane kernel to compute a margin like quantity

which guides weight updates from single trial outcomes [105]. Alternatively, the Chronotron learns to produce target

output spike times by minimizing a spike train distance and adapting synapses to align actual and desired latencies

[106]. These methods are attractive when information is carried in precise spike times and when low inference latency

is important [105, 106].

Spike Train Distance Objectives turn temporal alignment into a supervised loss for spiking outputs [107, 108].

The Victor Purpura metric defines a set of edit operations with costs and the training objective reduces the edit

cost between the produced and the target spike trains [107]. The van Rossum distance filters spike trains with an

exponential kernel and computes a squared difference which produces a smooth objective that respects temporal

structure [108]. These distances encourage networks to match the full temporal pattern rather than only spike counts

[107, 108].

ANN-to-SNN Conversion as mentioned in Section 3.2.3 trains a conventional network with ReLU units and

then maps activations to integrate and fire neurons by setting thresholds and normalizations so that rate codes

reproduce the analog responses [43]. Proper weight normalization and bias handling avoid rate saturation and

preserve activation ordering across layers which maintains accuracy on vision benchmarks [43]. Deeper models can

be converted by correcting layerwise imbalances and by calibrating thresholds which improves robustness and speed

of rate accumulation [44]. Conversion yields high accuracy and easy reuse of mature ANN training pipelines but it

introduces a latency-accuracy trade-off because rate estimates need multiple time steps to be accurate [43, 44].

Unsupervised and Self Supervised Learning

Unsupervised learning discovers structure in data without labels or known ground truths, and optimises objectives that

capture regularities in inputs [98, 97]. Typical goals include clustering, sparse coding, prediction, and reconstruction
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which build representations that transfer to subsequent tasks [98, 5]. In SNNs these goals map naturally to local

plasticity rules and to layerwise targets that use only nearby activity [97, 5].

Hebbian Learning strengthens synapses when presynaptic and postsynaptic activity occur near each other and

weakens them when they are anti correlated which captures the idea that neurons that fire together wire together

[109, 110]. Simple Hebbian rules discover structure in inputs such as oriented edges under competition and lateral

inhibition which yields selective receptive fields [111, 110]. Pure Hebbian learning can be unstable because activity

can grow without bound which motivates the implementation of synaptic normalization and activity homeostasis to

maintain balanced firing [112, 110].

Spike-timing-dependent-plasticity (STDP) makes the synaptic change depend on the relative timing between pre

and post spikes which introduces causality into the rule [59, 110]. A pre spike that precedes a post spike within tens of

milliseconds drives potentiation while the reverse order drives depression which shapes temporal feature sensitivity

[59, 110]. Triplet STDP adds interactions among pairs of post spikes or pairs of pre spikes which captures rate effects

that are not explained by pair based rules [113]. Competitive STDP with lateral inhibition leads to emerging filters

and orientation tuning in early vision layers which demonstrates unsupervised emergence of structure [87]. These

dynamics depend on input statistics and on the width and amplitude of the plasticity windows which link coding

choices to learned features [110, 87].

.

Unsupervised Pipelines with Simple Readouts STDP based encoders can feed a simple classifier that operates

on spike counts which yields competitive accuracy on digit recognition without global labels during representation

learning [75]. The encoder learns features from streams of spikes while a linear readout or a simple vote on spike

counts handles the final decision which keeps training local in the feature extractor [75]. Surveys report that such

pipelines provide sample efficient representations while trading maximal accuracy for locality and energy benefits

[97]. Self supervised objectives extend these ideas by training layers to predict future events or to reconstruct streams

which builds temporal features without external labels [97, 5].

3.2.5. Reinforcement Learning Methods

Next to supervised and unsupervised methods, reinforcement learning (RL) is another main approach towards training

both ANNs and SNNs, which is particularly suited to robotic control tasks. RL addresses control as sequential

decision making under uncertainty. An agent observes a state, selects an action, and receives a reward from the

environment as shown in Figure 3.9. The aim is to learn a policy that maximizes long term performance, which

aligns well with robotic control tasks [114].

Figure 3.9: The agent-environment interaction which encapsulates the basic elements of reinforcement learning

[114].

The basic task behind RL can be modelled as a Markov decision process M = (S,A, P, r, γ, ρ0) with state

space S, action space A, transition law P (s′|s, a), reward function r(s, a), discount factor γ ∈ (0, 1), and initial

state distribution ρ0. A policy π(a|s) assigns a distribution over actions to each state [114]. The objective function
J(π) quantifies performance as the expected discounted return along trajectories generated by ρ0, P , and π:

J(π) = Eτ∼π

[ ∞∑
t=0

γt r(st, at)

]
. (3.25)
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The factor γ ∈ (0, 1) downweights distant rewards and ensures the series is finite [114]. Two value functions

summarize future utility under a fixed policy. The state value V π(s) measures how good it is to start in state s and
then follow π, while the action value Qπ(s, a) measures how good it is to take action a at s and then follow π:

V π(s) = E

[ ∞∑
t=0

γt r(st, at)
∣∣∣ s0 = s

]
, (3.26)

Qπ(s, a) = E

[ ∞∑
t=0

γt r(st, at)
∣∣∣ s0 = s, a0 = a

]
. (3.27)

These functions are linked by the policy weighted average

V π(s) = Ea∼π(·|s)
[
Qπ(s, a)

]
, (3.28)

which shows that state value aggregates action values under the current policy [114]. Many algorithms either learn

Qπ or V π to guide action selection, or they optimise J(π) directly when the policy is differentiable. The policy

gradient theorem provides a practical gradient that does not require differentiating through unknown dynamics:

∇θJ(πθ) = Es∼dπθ , a∼πθ

[
∇θlog πθ(a|s)Qπθ (s, a)

]
, (3.29)

where dπθ is the discounted state visitation distribution under πθ. Actor critic methods estimate the value terms to

reduce variance and improve sample efficiency in robotics [114, 115].

This formulation forms the basis for the main algorithm families reviewed next in Section 3.2.5 for both ANNs

and SNNs, including value-based methods that learn V or Q for action selection, policy gradient and actor critic

methods that optimise J(π) from sampled rollouts (sampled state-action pairs from the environment), and model

based methods that learn dynamics to plan or to improve the policy [114].

Reinforcement Learning Algorithms for ANNs

ANNs implement policies and value functions that are trained from reward signals using gradient based updates,

which makes deep RL practical at scale [114]. In robotics the choice of algorithm is shaped by the action space, the

amount of data that can be collected, and real time compute limits [116]. We therefore organize the methods that

follow into four families that are standard in practice for ANN based control in robots: value-based control, on-policy

gradient with trust region updates, off-policy actor critic for continuous actions, and model based policy search [114,

116].

Value-Based methods learn an action value function and extract a greedy or near greedy controller. Deep Q

learning and its descendants initiated the modern wave of deep RL [117]. For continuous control in robotics, direct Q

learning is adapted through continuous action selection or stochastic policies driven by a learned Q function. QT Opt

is a scalable vision based grasping system that learns a continuous control grasping policy with batch Q learning

and achieves strong success rates on real manipulators [118]. Applications in practice include closed loop robotic

grasping under visual feedback with high success on unseen objects [118].

On-policy Policy Gradient and Trust Region Methods optimise a stochastic policy from fresh rollouts using a

surrogate objective. Trust Region Policy Optimization (TRPO) constrains updates for stable improvement [119].

Proximal Policy Optimization (PPO) simplifies the constraint with clipped ratios and is widely used in robotics due

to robustness and ease of use [8].

Champion level autonomous drone racing demonstrates on-policy learning at scale. The Swift system trains a

visuomotor policy in simulation and transfers it to the real platform, running onboard with only onboard sensing. The

learned controller trained with proximal policy optimization matches and at times surpasses top human pilots on real

tracks [120, 8].Another similar study shows that a single neural controller can generalize across distinct quadcopter

platforms when trained using PPO to map state to output motor RPMs. One Net to Rule Them All trains one policy

with domain randomization and validates it on 3 inch and 5 inch race drones in real flights. The generalized controller

is slightly slower than fine-tuned models yet transfers across platforms reliably and reaches speeds up to ten meters

per second, which highlights the trade-off between robustness and peak performance when generalizing a model

through policy training [121, 8].
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At low level, attitude controllers for quadcopters trained with PPO have been compiled to embedded firmware and

evaluated on real airframes. Neuroflight reports higher tracking precision than PID baselines in simulation, real time

execution at kilohertz rates on resource constrained hardware, and successful flight tests, which illustrates feasibility

for deployable flight control [122, 123]. For legged locomotion, massively parallel PPO produces policies for the

ANYmal quadruped in minutes in simulation and transfers them to hardware with strong zero-shot performance.

This setup enables rapid iteration and robust behaviours over uneven terrain [124]. Earlier work combined accurate

actuation models and robustness training to achieve agile gaits and recovery on the real robot using policies learned

in simulation [125]. Dexterous manipulation also leverages on-policy training. A recurrent policy trained entirely in

simulation with PPO and automatic domain randomization solved a Rubik’s Cube with a multi fingered robot hand

and showed resilience to perturbations during real world execution [126, 8].

Off-policy Actor–critic for Continuous Control methods learn a policy by following gradients provided by

a value critic while reusing data through a replay buffer, which improves sample efficiency relative to on-policy

methods [127, 124]. Deterministic Policy Gradients introduced the deterministic policy gradient theorem and showed

that an off-policy actor can improve by ascending the gradient of the critic with respect to the action, which laid

the foundation for continuous control [128]. Deep Deterministic Policy Gradients (DDPG) extended this idea with

deep function approximation, target networks, and replay, and demonstrated end-to-end learning from pixels and

state inputs across many physics tasks [127]. Twin Delayed Deep Deterministic Policy Gradients (TD3) reduced

overestimation and training instability by learning two critics, updating the actor less frequently than the critics,

and smoothing target actions with clipped noise, which produced strong gains over DDPG on continuous control

benchmarks [129]. Soft Actor–Critic (SAC) optimised a maximum entropy objective that encourages high-entropy

policies while maximizing return, and combined off-policy updates with a stochastic actor and a stable critic to

achieve state-of-the-art performance with good data efficiency [130]. On hardware, SAC learned a stable walking

gait for the Minitaur robot directly on the real system in about two hours and produced a policy that was robust to

moderate perturbations, which highlighted the practicality of off-policy learning for real robots [131].

Model-based Policy Search learns a predictive dynamics model and uses it to plan actions or to improve a policy,

which can reduce interaction cost by trading computation for data. PILCO learned Gaussian process dynamics

and evaluated policies analytically, which enabled learning controllers for classic control tasks and small robots

in very few trials with high data efficiency [132]. Model-Based Policy Optimization also combined short rollouts

from a learned ensemble with real experience and trained a model-free learner on this mixed dataset, which limited

model bias and delivered state-of-the-art sample efficiency across continuous control tasks [133]. In practice, such

model-based components can speed up learning on hardware-scale systems where interaction is costly, and they can

also warm-start or augment model-free training to reach strong final performance with less data [132, 133].

Reinforcement Learning Algorithms for Spiking Neural Networks

SNNs offer event-driven computation and low latency, yet training remains difficult due to discontinuous spikes

and long range credit assignment across timesteps [5, 134]. Currently two main approaches exist in practice for RL

with SNNs. The first uses surrogate gradients to enable end to end policy optimization. The second uses three factor

rules that combine local eligibility traces with a global reward prediction error, including e-propagation style online

updates [5, 135, 136, 96, 134]. The following examples mentioned in this subsection, fall under these two categories.

Within continuous control, a consistent pattern has emerged. Population coded spiking actors are trained together

with deep critics and reach returns comparable to deep actors while enabling efficient deployment on neuromorphic

chips [137]. The PopSAN framework integrates with on-policy and off-policy algorithms and, on the Intel Loihi,

reduced energy per inference by about two orders of magnitude at similar task performance to a deep actor on

embedded GPUs [137]. The same neuromorphic deployment method extends to mobile navigation. A hybrid spiking

actor paired with a deep critic was trained for mapless navigation and executed on Loihi with large energy savings

while maintaining success rates, which supports onboard autonomy under tight power budgets [138]. General purpose

toolkits now make it practical to train fully spiking policies with standard deep reinforcement learning [47]. A recent

comparative study trained SNN policies with PPO in the Isaac Gym simulator, explored network configurations, and

reported competitive performance and useful training throughput when compared to ANN baselines [4]. Beyond

simulation, actor-critic SNNs with temporal coding have been validated in hardware in the loop experiments.

value-based agents follow a similar trajectory. Deep spiking Q networks were ported to Intel Loihi and evaluated

in closed loop on classic control tasks, where quantized spiking variants were adopted to meet hardware constraints

while preserving the distributional target and replay design choices of deep Q learning. These results show that event-
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driven execution can be combined with established value-based ingredients without sacrificing the core algorithmic

structure [139].

Perception and navigation with asynchronous sensors also benefit from spiking policies. An event enhanced

multimodal spiking actor fused laser range measurements with event camera input and used deep RL to improve

dynamic obstacle avoidance, outperforming prior methods on moving obstacle scenarios [140]. Reward modulated

plasticity (R-STDP) has delivered end to end control on real robots as well. Lane keeping and target tracking

controllers trained with R-STDP illustrate the three factor family on physical platforms with neuromorphic vision

[141]. Broader evaluations conclude that spiking function approximators can learn complex continuous control when

paired with modern deep reinforcement learning algorithms, provided careful tuning of neuron models and simulation

hyperparameters [142].

3.3. Applications of Learning-Based Control and Perception for Quadcopters

Having reviewed the main theoretical components regarding SNNs for quadcopter control and how to train them, we

can finally move on to emphasizing what specific application of learning-control exist in literature. This chapter

reviews the current literature for ANNs and SNNs applied to quadcopter control. The focus is on methods, learning

setups, and reported results on real platforms. We first cover ANNs for agile flight, perception, and deployment

under tight resource budgets. We then turn to SNNs that leverage event-driven sensing and neuromorphic hardware.

3.3.1. Artificial Neural Networks for Quadcopters

Vision-Based Agile Flight and Racing

End-to-end vision to motor policies have raised the ceiling of autonomous racing by training perception and control

together and validating the full stack on physical tracks [120, 143]. Swift combines a learned perception encoder with

a policy trained in simulation and improves it with real track data. The system wins multi lap races against human

champions using only onboard sensing and compute, which sets a modern benchmark for closed loop racing with

learned controllers [120]. A complementary approach imitates a privileged expert in simulation and then transfers

zero-shot to diverse outdoor and indoor sites. Mapping raw onboard sensing to short horizon trajectories reduces

latency and improves robustness compared to map-then-plan pipelines, which supports tight perception to action

coupling for high speed flight [143].

Recent work extends this end-to-end paradigm to direct motor control for time-optimal racing. Ferede et al. train

a policy with RL that outputs motor commands and close the reality gap using a learned residual model together

with adaptive compensation for thrust and moment errors. The controller outperforms a strong baseline that relies on

an inner loop controller for body rates and thrust, with faster laps in simulation and measurable gains in real flight,

which demonstrates the potential of end-to-end RL for time-optimal quadcopter flight [6].

Learning-based tracking enables aggressive maneuvers that exceed traditional safety margins. A neural tracker

that follows optimal reference trajectories flies loops and barrel rolls with only onboard sensing, which demonstrates

precise attitude and thrust control under extreme setpoints [144]. Direct comparisons between model-based control

and deep RL in racing tasks show that policies trained with RL can outperform strong optimal-control baselines on

time-optimal gate sequences. Analysis points to task objective choice and landscape properties that favour RL for

fast progress through gates [7].

Platform support has also matured. Agilicious provides an open research quadcopter with high thrust-to-weight

ratio, GPU-accelerated onboard perception, and support for both model-based and learned controllers. The platform

tracks trajectories at high speed and performs vision-based acrobatics with onboard inference, which enables repro-

ducible studies of learned control in real flight [145]. Methods that optimise both progress and and camera input in

tandem, further improve robustness. Finally perception-aware training shapes policies that maintain visibility while

moving fast through clutter, which leads to safer and quicker flight when field-of-view limits dominate [146].

Perception and State Estimation for Fast Navigation

Fast flight relies on sensing and estimation that remain accurate under motion blur, lighting changes, and dynamic

obstacles. Event cameras enable obstacle avoidance with millisecond perception-to-control latency by exploiting

asynchronous events fused with inertial data. Experiments show onboard dodging of fast moving obstacles that

exceed what conventional frame-based pipelines can handle [147]. Shallow policies trained to estimate ego-motion

and object motion from events can output collision-avoidance actions directly. EVDodgeNet is trained in simulation
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and transfers zero-shot to real flight with strong success rates across shapes and illumination, which validates the

value of event streams for fast reactions [148]. Learning-based inertial odometry tailored to racing conditions also

advances state estimation. A temporal convolutional model fused with a model-based filter using inertial and thrust

signals achieves drift and tracking accuracy competitive with visual–inertial odometry while remaining robust to blur

and lighting [149].

Resource-Constrained Deployment on Nano Drones

Neural control can run on micro air vehicles with strict power budgets when models and toolchains are designed for

efficient computation. Closed-loop visual navigation with a compact convolutional network runs on a twenty-seven

gram platform using an ultra low power microcontroller at milliwatt budgets and multi-hertz rates, which shows that

end-to-end policies can fit tiny vehicles [150]. Model compression and distillation extend this approach. Tiny PULP

DroNets compress steering and collision predictors by large factors in parameters and operations with similar flight

behaviour on PULP microcontrollers, which enables multitasking under tight memory and compute [151]. A simple

and robust baseline remains widely used. DroNet maps monocular images to steering and collision probability using

imitation from driving data and transfers to micro aerial vehicles in urban scenes, which popularized reactive CNNs

for navigation in complex environments [152]. Data collection strategies also matter. Learning from large negative

datasets created by deliberate crashes produces policies that avoid obstacles without expert labels, which offers a

cost-effective route to robust behaviour [153].

3.3.2. Spiking Neural Networks for Quadcopters

Fully Neuromorphic Vision to Control

A fully neuromorphic pipeline can map raw event streams to control with only spiking computation along the path

from vision to action. A recent system learns spiking ego-motion self-supervised on real events and trains a spiking

decoding layer with evolutionary search in simulation to output control. Free flight with only neuromorphic processing

validates an end-to-end spiking stack for autonomous drones at scale [154].

Neuromorphic low level control and state estimation

Neuromorphic hardware supports ultra low latency feedback and on-chip learning that adapts during flight. Event-

driven perception and control implemented as spiking networks run on a neuromorphic processor and achieve high-

speed attitude control with learned adaptation, which shows the latency and energy advantages of neuromorphic loops

[155]. Minimalist spiking modules replace classical blocks as well. A neuromorphic proportional–integral–derivative

controller with fewer than one hundred neurons achieves onboard altitude control on a flying platform with high

update frequency, which keeps the control stack fully spiking [156]. Spiking estimation is also feasible onboard the

processor. An attitude estimator with roughly 150 neurons trained on flight data runs onboard and reaches accuracy

comparable to non-neuromorphic estimators during real flights [157]. Merging estimation and control closes the

loop. An end-to-end neuromorphic attitude controller trained by imitation runs at 500 Hz on a micro quadcopter and

improves oscillation behaviour with data augmentation, which demonstrates a plausible core for a neuromorphic

autopilot [158].

Spiking Perception for High Speed Motion Sensing

Spiking perception models operate directly on asynchronous event streams, which supports fast motion sensing

under high dynamics [159, 160]. One line of work trains a convolutional spiking network with surrogate gradients to

estimate three degree of freedom angular velocity from events and shows accurate regression on flight data [159].

Another line computes optical flow with spiking architectures on event datasets and attains competitive accuracy

with strong efficiency, which enables spiking pipelines for agile odometry and anticipatory control [160].
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Research Formulation

4.1. Motivation

Quadcopters are highly agile vehicles that require fast and reliable control in order to navigate through complex

environments at high speed. Within MAVLab, bioinspired design has driven numerous innovations. The DelFly

Nimble, a tailless flapping-wing micro air vehicle, shown in Figure 4.1, demonstrated exceptional agility inspired by

fruit fly escape maneuvers and revealed aerodynamic strategies such as torque coupling used in rapid banked turns

[161].

Figure 4.1: DelFly Nimble: a tailless flapping-wing micro air vehicle developed at the TU Delft MAVLab [161].

Building on this tradition, MAVLab has advanced neuromorphic implementations for autonomous flight. A

recent study demonstrated a fully neuromorphic drone that coupled an event-based vision system with a SNN running

on the Intel Loihi neuromorphic processor, achieving onboard closed-loop control at 200Hz while consuming orders

of magnitude less energy than GPU-based systems [154].

In parallel, MAVLab has also shown the power of ANNs for high-speed quadcopter navigation. End-to-end

reinforcement learning for time-optimal quadcopter flight demonstrated that neural policies could autonomously race

through a track at speeds approaching the theoretical optimum [6]. Building on this, the One Net to Rule Them All

framework showed that a single end-to-end policy could generalize across diverse flight and perception tasks [121].

Together, these studies established strong ANN baselines and confirmed that neural controllers can push the limits of

agile autonomous flight.

Although ANNs have achieved remarkable results, their reliance on dense computations and continuous activations

makes them energy demanding and less suitable for embedded aerial platforms. SNNs, by contrast, operate with

sparse and event-driven communication and are ideally suited for neuromorphic hardware. The motivation for this

thesis therefore arises directly from MAVLab’s two lines of research: bioinspired and neuromorphic approaches on

the one hand, and high-performance ANN-based control on the other.

36
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4.2. Research Objective

Although SNNs have gained increasing attention in recent years, their application in reinforcement learning for

control tasks has so far remained narrow. Most existing studies rely on ANN-to-SNN conversion or hybrid models

and have not shown that spiking networks can be trained directly to solve demanding continuous control problems

as discussed in Section 3.3.2. In particular, no studies to date have investigated the use of SNNs for high-speed

quadcopter control. This represents a critical gap in the literature, since quadcopters place strict requirements on

real-time stability, performance, precision, and execution efficiency. The aim of this thesis is therefore to demonstrate

that a SNN controller can be trained with reinforcement learning to control a quadcopter in high-speed flight, while

maintaining comparable performance to an ANN baseline. By doing so, this work seeks to establish whether spiking

networks can serve as viable alternatives to artificial ones for agile drone navigation. The main research objective is

summarized as follows:

To develop and evaluate a spiking neural network controller for high-speed quadcopter flight, with a focus on

spiking network design, training methodology, and benchmarking against ANN baselines in terms of control

performance and stability

4.3. Research Questions

To address the research objective, the study is guided by two central questions. The first question focuses on the

fundamental challenge of designing and training spiking networks that can learn to fly a quadcopter. Spiking networks

process information through discrete temporal events, which makes learning continuous control tasks non-trivial.

The central issue is whether spiking networks can be constructed and trained in such a way that they achieve stable

and high-performance control comparable to a proven ANN baseline. This requires exploring network architectures

and training methods that can successfully leverage spiking dynamics while maintaining reliable real-time behaviour.

What spiking network architectures and training methods enable stable and high-performance quadcopter

control, and how do these controllers compare to a known ANN baseline in terms of performance?

Research Question 1

The second question addresses the broader influence of design and training parameters on spiking control

performance. The structure of spiking networks, including neuron models, coding strategies, and temporal integration,

can have an influence on stability and responsiveness during flight. Training choices such as optimization setup,

rollout length, or spike averaging may further shape how well the network generalizes and how efficiently it operates.

Understanding how these factors impact performance relative to an ANN baseline is crucial for assessing whether

spiking controllers offer practical benefits or introduce new limitations. By systematically examining these trade-offs,

the study aims to clarify the conditions under which SNNs can serve as viable alternatives for high-speed quadcopter

control.

How do the design and training parameters of spiking neural networks affect quadcopter control perfor-

mance compared to a known ANN baseline?

Research Question 2

4.4. Research Methodology

To answer the first question, several complementary approaches will be explored to obtain spiking controllers capable

of high-speed quadcopter flight. The first avenue is ANN-to-SNN conversion, where a trained ANN is mapped onto

a spiking network to test whether suitable performance can be retained. This approach is chosen as the starting point

because ANN-to-SNN conversion is a well-documented and widely used method in the SNN literature. It provides

a reliable baseline for evaluation and allows us to quickly determine whether spiking dynamics can approximate
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the behaviour of an already successful ANN policy. Performance may also be further improved with additional

supervised learning methods to match the output of the SNN to the ANN.

The second avenue is reinforcement learning with PPO, where both the spiking network and the training algorithm

must be adapted to enable effective policy optimization. PPO is selected because it is a robust, stable, and well-known

algorithm for continuous control, and it has become a standard method in reinforcement learning research. However,

there are almost no prior studies that apply PPO directly to spiking networks, which makes this approach riskier

but also potentially more rewarding. If successful, it would provide one of the first demonstrations of end-to-end

reinforcement learning with PPO for spiking policies in high-speed quadcopter control.

Different methods will be tested for their suitability in learning the task, with the most successful approach

ultimately chosen as the main method for further analysis. Across these approaches, the performance of spiking

networks will be compared to ANN baselines trained under identical conditions, ensuring a fair and systematic

benchmark.

A caveat of the second question is that it assumes a positive outcome for the first: namely, that training spiking

controllers for high-speed quadcopter flight is feasible. The choice of parameters to analyze will also depend strongly

on the selected architecture and learning method. In addition, this question implicitly assumes that a strategy that

works in simulation can also transfer to real flight. If this proves to be the case, the scope of the research can be

extended to include conclusions about real-world flight performance. Nonetheless, even in the absence of hardware

validation, generalizations can be made about the methodology for addressing the second question. It will be tackled

by systematically varying design and training parameters of the spiking controllers. Structural factors such as neuron

models, spike coding strategies, and temporal integration mechanisms will be investigated to determine their impact

on flight stability and control quality. Training-related factors such as optimization setup, rollout length, and spike

coding will also be varied to assess their effect on learning dynamics and final performance. These experiments will

provide insight into how design and training parameters influence stability, robustness, execution frequency, and

overall performance, thereby clarifying the trade-offs between spiking and artificial networks.

All experiments will first be carried out in simulation, where conditions and disturbances can be controlled and

repeated consistently. Once promising spiking controllers are identified, they will be deployed on real quadcopter

hardware for validation in practical flight scenarios. This staged approach, from ANN-to-SNN conversion and

supervised training, to direct reinforcement learning, to parameter analysis and hardware validation, ensures that the

methodology addresses both the feasibility of training spiking controllers and their potential advantages over ANN

baselines.

4.5. Research Planning

The research will be carried out in several phases that build on each other. The first phase is dedicated to a thorough

literature review, covering neuromorphic computing, SNNs, ANNs, and reinforcement learning, with a particular

focus on training methods for SNNs and their application to drones or other robotic control tasks. This review

establishes the theoretical foundation and clarifies the state of the art.

After the literature study, the project moves to testing and implementation of the two main approaches identified

in the methodology. The first is ANN-to-SNN conversion. This method will be implemented and tested on the gate

navigation task to evaluate whether a converted network can deliver satisfactory performance. In addition, possible

extensions will be explored, such as augmenting the conversion with supervised learning techniques or other training

refinements to improve stability and accuracy. The second approach is direct reinforcement learning of spiking

networks using PPO. While more challenging and uncertain, this method also has the potential for higher impact, as

little to no prior work has investigated PPO training of fully spiking policies. For this reason, the research plan begins

with the more established conversion-based approach and only then advances to the more experimental reinforcement

learning method.

Once both approaches have been tested, a decision will be made regarding which method provides the best

performance in simulation and whether an SNN can in fact learn to fly with results comparable to the ANN baseline.

If successful, the next steps will focus on adapting the spiking policy for transfer from simulation to reality. This

includes addressing the sim-to-real gap and ensuring that the controller can run efficiently on embedded hardware,

culminating in real-world quadcopter flight tests, and analysis of performance of the SNN in comparison to the

baseline ANN.
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As one of the later stages, evaluation of the gathered data on the SNN and ANN will be performed which will

then lead into the final reporting section for the thesis. A timeline of the planned phases is given in the Gantt chart in

Figure 4.2. The tasks have been split up into the 4 nominal stages according to the MSc Thesis guidelines, namely

Kick-off phase, Mid-term phase and Green-light phase and Finalisation Phase
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5
Preliminary Work

5.1. ANN-to-SNN and Supervised Learning Methods

Before adopting reinforcement learning with PPO as the main method, several conversion-based approaches were

explored. These followed the well-established line of ANN-to-SNN conversion methods, which exploit the equiv-

alence between ReLU activations and the firing rate of leaky integrate-and-fire (LIF) neurons under rate coding

[43]. In theory, this correspondence enables a direct transfer of weights from a trained ANN into an SNN with

the same architecture, given that the LIF neurons are functionally equivalent. Given the exploratory nature of this

stage, not all approaches were fully developed or explored in depth, leaving several open research directions for the

future. Because the emphasis was on finding a minimum viable approach to solving the problem of SNN control for

high-speed drones, methods that showed little potential after significant experimentation were set aside in favor of

more promising directions.

Direct weight injection

The first approach was to copy the trained weights of an ANN baseline policy into an SNN policy of identical structure.

The weights of the fully connected layers of the ANN were mapped directly onto the corresponding layers of the

SNN. Unlike ReLU, LIF neurons do not have an explicit bias term. Instead, this bias is absorbed as a constant input

current. Input values were therefore passed to the LIF neurons through direct current injection, with the bias added as

an offset to the input. The LIF neurons were parameterized with a threshold Uthreshold = 1 and a leak parameter

β = 0.999.

Figure 5.1: Representation of direct weight injection from a trained ANN into an SNN with the same architecture

using rate decoding [162].

The expectation was that the LIF neurons with rate decoding would replicate the ANN activations, leading to

matched outputs between the two models. Initial evaluation, as shown in Figure 5.2, indicated that the outputs aligned

only for a short period before diverging toward the end of the episode. Each episode lasted 70 timesteps, and with

a control update rate of 100 Hz this corresponded to less than a second, as the episode terminated when a crash

occurred. When deployed in the quadcopter environment, the converted SNN achieved very low rewards and crashed
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rapidly for most episodes, confirming that direct weight transfer was insufficient on its own. The drone almost always

crashed immediately, although it consistently moved toward the gate. In the best cases, only a single gate was crossed.

The exact reason behind the discrepancy between the SNN and ANN outputs despite the functional equivalence

between the ReLU and the LIF neurons is still unknown and remains a point of future investigation. A likely cause

is the treatment of the bias term, which may deviate from the ideal mapping since the way a constant input current

shifts LIF activation differs from how a bias term affects ReLU activations.

(a) Normalized output RPM for the ANN and SNN with weight injection for a

single episode over several timesteps until termination.

(b) Total accumulated reward for trained ANN and SNN after

weight injection over 10 episodes.

Figure 5.2: Initial comparison results of the SNN with injected weights from a trained ANN model.

Fine-tuning output heads

A second attempt drew inspiration from supervised learning. After weight injection, only the actor output heads of

the SNN were fine-tuned to minimize the error between the ANN and SNN outputs over longer time horizons. The

training objective was the mean squared error (MSE) between the motor RPM predictions of the two networks,

LMSE =
1

N

N∑
i=1

(
yANNi − ySNNi

)2
, (5.1)

where yANNi and ySNNi denote the motor RPM outputs of the ANN and SNN for sample i, and N is the batch size.

Optimization was carried out using Adam [163], which maintains exponential moving averages of the first and second

moments of the gradients. For parameters θ, gradient gt = ∇θLt at step t, and learning rate α, the update rules are

mt = β1mt−1 + (1− β1)gt, (5.2)

vt = β2vt−1 + (1− β2)g
2
t , (5.3)

m̂t =
mt

1− βt
1

, (5.4)

v̂t =
vt

1− βt
2

, (5.5)

θt+1 = θt − α
m̂t√
v̂t + ε

, (5.6)

where mt and vt are biased moment estimates, m̂t and v̂t are their bias-corrected forms, and β1, β2 are decay

coefficients.

Figure 5.3 shows that this adjustment improved output RPM alignment between the two policies. Cumulative

rewards per episode were slightly higher than with direct injection, but performance remained unreliable. At this

level of reward, the simulated models could typically fly through one or two gates at most before crashing.

Full-network fine-tuning

To allow broader adaptation, the entire network was fine-tuned instead of only the output heads. The setup again used

the Adam optimizer with MSE loss between ANN and SNN motor outputs. As shown in Figure 5.4, this strategy
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(a) Normalized output RPM for the ANN and SNN with weight injection and

output head fine-tuning for a single episode.

(b) Total accumulated reward for trained ANN and SNN after

weight injection and output head fine-tuning over 10

episodes.

Figure 5.3: Comparison results of the SNN with injected weights and output head fine-tuning from a trained

ANN model.

(a) Normalized output RPM for the ANN and SNN with weight injection and

full network fine-tuning for a single episode.

(b) Total accumulated reward for trained ANN and SNN after

weight injection and full network fine-tuning over 10 episodes.

Figure 5.4: Comparison results of the SNN with injected weights and full network fine-tuning from a trained

ANN model.

offered only marginal improvement compared to output-head fine-tuning. Output RPMs aligned similarly, and

average rewards were only slightly higher, with some still close to zero. In the best cases, the SNN managed to pass

three or four gates when simulated, but struggled to stay airborne afterwards.

Transition toward reinforcement learning

The supervised conversion approaches confirmed that ANN-to-SNN transfer was feasible for short horizons but

did not provide stable long-term control in a closed-loop setting. The likely cause of poor performance over longer

horizons was the accumulation of output RPM errors. Since the SNN did not perfectly match the outputs of the

trained ANN, it incurred a small error at each timestep. While this error was tolerable for the first few gates, it

compounded over time, and the mismatch between SNN and ANN grew. Once the SNN entered states that were

not represented in its training data, performance degraded sharply and crashes followed. Cumulative rewards were

sometimes lower than with output-head training alone, and the computational cost of simulating multiple episodes

further limited the experiments.

This analysis also highlighted a key limitation of supervised learning, namely that the objective function, in this

case the loss, was not representative of actual task performance. Optimizing the loss did not necessarily translate into

better control. For this reason, analyzing output RPMs was less informative than simulating the trained agents directly.

With this preliminary analysis we also partially addressed the first research question, as the initial experiments showed



that ANN-to-SNN conversion with supervised learning was not promising enough for a fully spiking controller for

high-speed quadcopters.

The instability, frequent crashes, and computational demands motivated a pivot toward direct reinforcement

learning with PPO. This method does not rely on an ANN teacher but instead optimizes the spiking policy directly

through interaction with the environment, which became the main research direction of this thesis.
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Limitations and Recommendations for Future
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6
Limitations

Although the spiking policy trained with PPO completes the high speed racing task, the strength of the conclusions is

shaped by the way the problem was framed, the measurements that were taken, and the hardware that executed the

controller. Reinforcement learning outcomes can vary across random seeds, which affects how much confidence we

can place in single run curves and final scores [164]. Energy efficiency is a central motivation for spiking computation

and must be verified with on chip measurements on neuromorphic hardware rather than inferred from theory alone

[3]. The specific choices that made training stable, such as LIF neurons, surrogate gradients, and rate decoding, also

influence expressiveness and latency [47]. The sections below provides and overview of the limitations of the study,

which motivate many of the future reccommendations in Chapter 7

Methodological Limitations

The evaluation is based on a limited number of training runs due to the long training times of SNN models. As a

result, performance curves and convergence results are derived from single representative runs rather than averaged

across multiple seeds. In reinforcement learning, variance across seeds can be significant, and more repetitions would

be required for statistically robust conclusions [164].

Architectural and Model

The SNN architecture is constrained to three hidden layers of 64 LIF neurons each. This shallow feed-forward

structure may lack the representational capacity of deeper or recurrent networks, limiting long-horizon planning.

Moreover, the use of rate decoding over a fixed number of cycles introduces quantization effects in the latent output.

For example, with C = 5 cycles, each neuron’s average firing rate is limited to six possible values {0, 1
5 , . . . , 1},

which can severely impact the resolution of the subsequently generated motor output RPM. In addition, only a narrow

range of cycle counts was tested, which limits the generality of the conclusions on the trade-off between control

resolution and computational cost. The conversion pipeline also did not explicitly optimize for energy efficiency,

which is a central motivation for deploying SNNs on neuromorphic hardware [3].

Training and Evaluation

Training time scales linearly with the number of cycles due to repeated forward passes per input. The 10-cycle model,

for example, required over ten hours to train to convergence, compared to 33 minutes for the ANN baseline. This

severely restricted the extent of hyperparameter tuning, such as exploration of learning rates, discount factors, or

PPO-specific clip ranges, which may have yielded higher-performing policies. Furthermore, while PPO is stable and

well-documented, it is not clear whether alternative RL algorithms (e.g., TD3 or SAC) could be more efficient or

well suited for spiking networks.

Hardware and implementation

The current C implementation of the SNN defines layers and neuron dynamics manually, without optimised vectorized

operations. This results in slower execution compared to what could be achieved with matrix multiplication libraries

on embedded processors. Inference-time measurements were only inferred indirectly through observed control update

frequencies, not profiled at the function-call level, making it difficult to pinpoint computational bottlenecks. Most

importantly, no neuromorphic hardware was employed in this study. Thus, while the energy efficiency of SNNs

is a primary motivation, the claimed efficiency remains theoretical without direct measurement on event-driven

processors such as Loihi.
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7
Future Work and Research Directions

This research identified several promising directions for extending the study of spiking neural networks in quadcopter

control. The recommendations can be grouped into hardware optimization, neuromorphic deployment, RL design,

neuron and encoding analysis, architectural changes, and further investigation of ANN-to-SNN conversion.

Hardware Optimisation and Performance Analysis

In this work the spiking policy was trained in Python, but deployment on the drone required manual translation

into C code. Each layer was implemented explicitly with scalar multiplications, after which the code was compiled

and executed onboard. A clear next step is to optimise this implementation by using vectorised or matrix-based

operations, which are expected to reduce inference latency and improve throughput on embedded processors.

Complementary to this, an in-depth analysis of execution time on the hardware is needed. The current evaluation

relied mostly on observed update frequencies from actual flight logs, which should in theory provide an accurate

estimate of the actual inference time of the network. However, direct timing measurements at the processor level,

implemented in the C code, would yield more accurate results. Such measurements should also examine the effect of

cycle count on execution time. Although a linear scaling is expected, the results from real flights point to the fact that

inference time saturates after a certain number of cycles of the network, as increasing cycle count did not increase the

observed update frequency. This behaviour may be linked to the scheduling strategy of the onboard processor, which

motivates a more detailed study of scheduler behaviour and its impact on the consistency of SNN execution.

Deployment on Neuromorphic Hardware

Another important and interesting next step is to adapt the controller for deployment on neuromorphic processors

such as Loihi or TrueNorth [3, 17]. These platforms impose strict resource constraints and typically do not support

floating-point arithmetic. This makes quantisation of weights and biases necessary. Both as an initial technique,

post-training quantisation and quantisation-aware training should be systematically evaluated to determine their effect

on task performance. In addition, further adaptations may be required, such as limiting connectivity and adapting

spike timing resolution to match the hardware. Deployment on neuromorphic devices would make it possible to

directly measure energy consumption per inference and to validate the anticipated efficiency benefits of neuromorphic

computation. To maximise these gains, it is advisable to design and train spiking networks with energy efficiency

as a primary objective, thereby aligning the controller with the strengths of neuromorphic platforms. This would

advance the research in a straight direction towards the initial motive and inspiration for this thesis.

Reinforcement Learning Setup, Hyperparameters and Reward Design

The RL framework also presents opportunities for improvement. First of all, the reward function used in this study

did not fully capture the true task objective, which is to maximise the number of gates passed within a fixed time

interval, in other words, a faster completion of the track. Future work should investigate reward shaping strategies

that explicitly encourage task completion and high-speed flight, given that our reward function focused largely on

rewarding distance towards the next target gate. Beyond reward design, the influence of hyperparameters of PPO on

training stability and convergence should be further assessed. This is also involves analysing the training parameter

curves to better understand how the algorithm can be optimized to produce better performance for the same model. It

is also recommended, as with any RL approach, that results should be averaged over a larger number of training runs

to reduce variance and provide statistically reliable benchmarks of performance.
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Neuron Parameters and Coding Methods

The dynamics of spiking neurons strongly depend on their parametrization. Future work should examine how

variations in the LIF threshold, bias, and leak affect training performance and real flight tests. Small adjustments in

these values may lead to significant differences in convergence speed or control precision. In addition, alternative

encoding methods should be explored. The choice of encoding has a direct impact on spike efficiency, latency, and

accuracy, and systematic comparisons could reveal trade-offs that were not captured by the current setup.

Architectural Explorations

Architectural modifications represent another promising avenue. Increasing the depth or width of the spiking network

may allow for richer representations of the task dynamics, though this comes at the cost of higher inference complexity.

Hybrid actor-critic structures, where the actor is implemented as an SNN and the critic as a conventional ANN,

could provide a balance between efficiency and learning stability. More generally, exploring architectures that are

explicitly optimised for energy efficiency could be advantageous, especially when considering eventual deployment

on neuromorphic processors.

Further Analysis of ANN-to-SNN Conversion

Finally, the ANN-to-SNN conversion approach explored in the early stages of this work remains an open research

question. In principle, the functional equivalence between rate-decoded LIF neurons and ReLU activations suggests

that injected weights should produce identical outputs. However, this study observed consistent mismatches between

the ANN baseline and the converted SNN. The source of this discrepancy is not yet understood. Future work should

perform a systematic analysis of the factors contributing to this error, such as the leak parameter, encoding precision,

or numerical approximations in the conversion pipeline. More comprehensive experiments are needed to determine

whether ANN-to-SNN conversion can be established as a reliable alternative to direct training for spiking controllers.
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Part IV
Closure
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8
Conclusion

This thesis presented, for the first time, a fully spiking actor–critic controller for continuous quadcopter flight, trained

end-to-end with reinforcement learning to perform high-speed, agile manoeuvrers. In simulation, the spiking policy

learned to control the drone through an eight-shaped gate navigation task, and it successfully transferred to real-world

flight tests while preserving performance. Notably, the spiking controller’s flight performance was superior to a

standard artificial neural network based controller, provided by Ferede et. al[6], despite being trained on equal

conditions. This result indicates that a spiking agent can achieve the effectiveness of conventional drone controllers

even on demanding tasks. This marks a key contribution: despite relying on discrete spike signals throughout the

network, our spiking agent matched the agility and performance expected from state-of-the-art artificial neural

network policies [6]. We thereby demonstrate that neuromorphic control can attain high-speed flight performance on

par with traditional neural networks.

The answer and link back to our initial research questions are embedded in the specific set of coupled design

choices for the spiking policy. For RQ1 on architectures and training methods that enable high speed flight, we

used a compact feed-forward spiking actor-critic with leaky integrate and fire neurons and layer sizes matched to a

proven artificial neural network baseline. Training used Proximal Policy Optimisation. Surrogate gradients smoothed

the spike non-linearity in the spiking neurons to preserve gradient flow during training through backpropagation.

Inputs were passed as state vectors and outputs were decoded as short window spike rates to produce continuous

motor commands. These decisions produced stable learning from scratch without artificial neural network to spiking

neural network conversion and yielded a policy that matched the agility of the artificial neural network reference in

simulation and real flight [8, 47, 43, 44].

For RQ2 on how design and training parameters influence performance, we quantified how the spike integration

window used for decoding actions governs the latency and control precision trade off by varying the number of

spike cycles used to decode each control output. Each action is formed by integrating spikes over a short window of

cycles, so the cycle count sets the effective rate resolution and therefore the granularity of the latent action space

and by consequence the output RPM. Using few cycles minimized inference latency and computational cost but

produced coarser decoded outputs and a drop in training and flight performance. Increasing the cycle count improved

training performance, output resolution, and reward, at the cost of added latency and a lower achievable control

update frequency on embedded hardware. A moderate cycle count balanced reward, average velocity, and gates

passed, which yields a practical rule for configuring real time spiking control on resource constrained platforms.

Together these choices inform how to tune latency and performance for a given task [8, 43, 44, 6].

In conclusion, this work bridges the gap between neuromorphic computing and advanced quadcopter control and

robotics. We have demonstrated that brain-inspired spiking neural networks, trained with modern reinforcement

learning techniques, can control a micro aerial vehicle with superior performance to conventional ANN controllers.

This achievement opens the door to leveraging neuromorphic processors for real-time, on-board flight control—po-

tentially enabling a new generation of highly energy-efficient, high-performance autonomous drones. By showing

that an SNN can meet the demands of high-speed flight while offering low-power, high-frequency operation [154],

we pave the way for generalizing this approach to other robotic platforms and scenarios, where efficiency and agility

are paramount.
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