
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Deriving Effect
Handler Semantics
Chris Lemaire

Deriving Effect
Handler Semantics

by

Chris Lemaire
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday March 29, 2023 at 9:00 AM.

Project duration: January 9, 2022 – March 29, 2023
Thesis committee: Prof. Dr. A. Zaidman, TU Delft, thesis advisor

Dr. C. B. Poulsen, TU Delft, daily supervisor
J. Reinders, TU Delft, daily co-supervisor

Cover: The Rosetta Stone in the British Museum by Hans Hillewaert un-
der CC BY-SA 4.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This represents the end of a three-and-a-half year long journey to earn the degree of MSc in Computer
Science. A little longer due to various reasons, among which not least of all Covid-19, this degree has
offered me insights into the numerous aspects of computer science. The thesis itself is, in my opinion,
long overdue after a little over a year of reading, writing, programming, testing, and going back to the
drawing board. Although I am at the time of writing mostly looking forward to the end, I am also certain
I will look back at this period as one forming me for later years.

I want to thank Casper Bach Poulsen and Jaro Reinders for providing excellent steering on, among
other things, which rabbit holes to go down and which to avoid. I also want to thank Andy Zaidman and
Olivier Danvy for providing feedback on my thesis. Especially thanking Olivier for his short response
times and incredibly helpful suggestions.

Finally, I want to thank everyone that I have met the past six-and-a-half years for the great interac-
tions, deep conversations, and excessive venting we could each take part in. Seeing everyone grow
into adult life so well has made me look forward to it and gives me confidence I too will embrace it with
open arms.

Chris Lemaire
Delft, March 2023

i

Contents

Preface i

Nomenclature iv

1 Introduction 1

2 From Small-Step Operational
to Denotational
and Back 7
2.1 Small-Step to Big-Step . 7

2.1.1 Syntax and Semantics of Ex . 7
2.1.2 An Interpreter . 8
2.1.3 Step 1: Refocusing . 11
2.1.4 Step 2: Inlining Contraction . 11
2.1.5 Step 3: Lightweight Fusion . 12
2.1.6 Step 4: Compress Corridor Transitions . 13
2.1.7 Step 5: Renaming and Flattening Configurations 13
2.1.8 Step 6: Refunctionalisation . 14
2.1.9 Step 7: Back to Direct Style . 14
2.1.10 Step 8: From Big-Step to Denotational . 15

2.2 ... and back . 16
2.2.1 Step 0: From Denotational to Big-Step . 16
2.2.2 Step 1: CPS Conversion . 17
2.2.3 Step 2: Generalisation . 17
2.2.4 Step 3: Argument Lifting . 18
2.2.5 Step 4: Continuations Switch Control . 18
2.2.6 Step 5: Defunctionalisation . 19
2.2.7 Step 6: Remove Tail-Calls . 19
2.2.8 Step 7: Convert Continuations into Terms . 20
2.2.9 Step 8: Inlining and Simplification . 20
2.2.10 Step 9: Back to Direct Style . 20
2.2.11 Extracting Small-Step Operational Semantics . 21

3 Deriving a Freer Monad Embedding
for Algebraic Effects and Handlers 23
3.1 The Model Language . 23
3.2 Step 1: A Model Interpreter . 26
3.3 Step 2: Apply Transformations to Derive Denotational Interpreter 31

3.3.1 To Denotational Step 4: Compressing corridor transitions 31
3.3.2 To Denotational Step 6: Refunctionalisation . 32
3.3.3 To Denotational Step 7: Back to direct style . 33
3.3.4 To Denotational Step 8: From Big-Step to Denotational 34

3.4 Step 3: Lettify Pure Computations . 35
3.5 Step 4: Add Intrinsic Typing . 36
3.6 Step 5: Generalise Values . 37
3.7 Step 6: Lettify Handling . 38
3.8 Step 7: Merge OpCall and Let . 38
3.9 Step 8: Freer Monad! . 40

ii

Contents iii

4 Deriving an Operational Semantics
for Shallow Algebraic Effects 41
4.1 Step 0: Specify Handle Function . 41
4.2 Step 1: Split Impure into Let and Impure Computation 42
4.3 Step 2: Inline and Lift Handling . 43
4.4 Step 3: Inline and Lift Pure Computations and Specialise Values 43

4.4.1 Inline and Lift Pure Language Features . 43
4.4.2 Specialise Values . 44

4.5 Step 4: Remove Intrinsic Typing . 45
4.6 Step 5: Apply Transformations to Derive Small-Step Interpreter 45
4.7 A Small-Step Operational Semantics . 46

5 Deriving an Operational Semantics
for Deep Scoped Effects 48
5.1 The Monadic Implementation . 48
5.2 Step 0: Specify Handle Function . 49
5.3 Step 1: Split Impure into Let and Impure Computation 50
5.4 Step 2: Inline and Lift Handling . 51
5.5 Step 3: Inline and Lift Pure Computations and Specialise Values 51
5.6 Step 4: Remove Intrinsic Typing . 51
5.7 Step 5: Apply Transformations to Derive Small-Step Interpreter 52
5.8 A Small-Step Operational Semantics . 52

6 Evaluation 54
6.1 The Added Program Transformations . 54

6.1.1 Lettify/Inline Pure Computations . 55
6.1.2 Add/Remove Intrinsic Typing . 56
6.1.3 Generalise/Specialise Values . 56
6.1.4 Lettify/Inline Handling . 56
6.1.5 Merge/Split OpCall and Let . 57
6.1.6 Specify Handle Function . 57

6.2 The Applications of Program Transformations . 57
6.2.1 Infrastructure . 58

6.3 Conclusions and Considerations . 64

7 Related Work 66

8 Conclusion 68

References 70

Nomenclature

Terms

Term Definition

Big-Step Going directly from an initial state to a final state
Capture-avoiding Substi-
tution

A technique for binding names to values without accidentally cap-
turing names that were not in scope in the source program

Continuation-Passing
Style

Interpreters are in this style when they use continuations to pass
evaluation results

Denotational Semantics A form of semantics describing a program as a number of mathe-
matical entities interacting

Direct-Style Without continuations
Effectful Including impure computation
Expression A common building block of a programming language that results

in a value when executed
Expressivity Usually regarding a programming language, the theoretical diver-

sity of programs that can be expressed in the language
Operational Semantics A form of semantics describing how a program should be inter-

preted
Program Text describing instructions for a computer to follow
Programming Language The description of a set of programs, their form (syntax) and

meaning (semantics)
Pure Refers to a program or language not allowing side-effects to occur
Semantics A description of the meaning of a program
Side-Effect An interaction outside the local environment of a program, not

reflected in the primary result of that program
Small-Step Going from one intermediate state to another intermediate state
Syntax The rules describing the form/shape of a program, usually what

text constitutes a program

Abbreviations

Abbreviation Definition

AE&H Algebraic Effects and Handlers
CPS Continuation-Passing Style
DTC Data Types à la Carte

iv

1
Introduction

In 1799, French officer Pierre-François Bouchard stumbled upon a carved rock near the Egyptian city
of Rashid. Now known as the Rosetta Stone, after the Anglified name for Rashid (Rosetta), the stone
is well known due to our efforts in understanding ancient text, as it was the first ‘document’ to be written
in both Ancient Greek and Ancient Egyptian. This was key in translating one into the other and helped
us relate texts written in the one to texts written in the other [4]. In programming language research, we
often relate code to mathematical representations, but are required to prove their relation through our
own equivalents to the Rosetta Stone1. In this work, we extend our knowledge of translating between
code and mathematical representation by applying new and known transformations in a developing
domain.

To explain what it is we achieve in this thesis, we must first discuss what this relation between ‘code’
and ‘mathematical representation’ is exactly. The domain we are interested in is that of interpreters
and compilers. These are programs that receive some instructions as input and produce some result(s).
Any particular list of input instructions is what we call a program. A programming language describes
the rules required to write and understand programs. These are usually split into the exact combina-
tions of text that may appear in a valid program, called syntax, and the meaning of a program in the
language, or semantics. To transcribe the semantics of a programming language, we could describe
the way an interpreter should execute a program, called operational semantics [71]. Instead we could
also try to attach mathematical objects to terms of the language and describe the meaning of a program
mathematically, called denotational semantics.2 Where operational semantics is a useful tool for con-
veying to programmers what happens when executing a program, the mathematical representations of
denotational semantics are a necessary abstraction for proving properties of programs [64]. These are
what we elude to in the above paragraph as ‘code’ and ‘mathematical representation’, respectively.

In this thesis, we are interested in finding a correspondence between operational and denotational
semantics for a specific group of programming languages. In our efforts, we build upon the work done
by Olivier Danvy and his team. Danvy described steps to turn small-step interpreters - corresponding
to operational semantics - into big-step interpreters - which are often closely related to denotational
semantics [20]. We also use the inverse transformation, from big-step to small-step, as was described
by Vesely and Fisher [78]. The group of languages we are interested in are those implementing what
is now commonly known as effects and handlers, which came into existence as the solution to a long-
standing and constantly evolving problem.

The problem was encountered by a committee designing the language called Haskell. The goal was
for Haskell to be a language that could be used in production, while being, what is commonly referred to
as, pure. A pure programming language does not allow any variables to be changed after declaration
and, by doing so, prevents many defects. The problem that came up wasmodelling interactions with the
real world, usually called Input/Output or I/O. How does one deal with the possibility of the outside world
changing without the programmer’s interactions? Whenwriting pure code, the programmer should have

1Not referring to Rosetta Code. (https://rosettacode.org)
2A third way, axiomatic semantics, exists, but denotational semantics are usually preferred over them.

1

2

as little concern as possible for external factors. Indeed, the complexity of writing and understanding
code is reduced when a written piece of code is predictable. A solution that satisfied all conditions was
only found in 1996 with the introduction of monads. Monads are a formidable building block that require
papers, tutorials, and hopelessly lost analogies to truly get into, but in the spirit of the thesis, all that we
require to know now is that they allow us to ‘fake’ a mutable variable. Thus, I/O would be modelled as
a monad, updating an invisible environment state in the background [36].

Of course, after solving this initial question, another quickly presented itself. The question regarded
combinations of different monads. For instance, when handling I/O, onemight want to also keep track of
some local variable through monadic operations. There are many more examples of such interactions,
including ones not using I/O at all. When used in combination as it was, however, Haskell code would
end up a little mangled, nesting various actions in one another. The question was raised whether it
might be possible to arbitrarily combine monads to prevent this nesting [46, 79]. Various solutions
were proposed [42, 57, 59, 75], but none matched the requirements of arbitrary composition quite as
perfectly as algebraic effect handlers, introduced in 2009 [70].

When combined with knowledge gained from the excellent functional pearl “Data Types à la Carte”
by Swierstra [76], one could now write Haskell code that arbitrarily combines and composes user-
defined effects [49, 44]. These effects represent a similar abstraction of interactions with an external
environment as monads did, but they automatically compose. However, algebraic effects and handlers
might still be limited by their algebraic requirement [27]. This is where we are now, solutions to this
problem of expressivity of effects and handlers are being proposed and discussed. Examples of pro-
posals to solve it are scoped effects [80], staged effects [72], latent effects [10], and hefty algebras [6].
In this relatively new field of research, these important works distinguish different semantics and argue
for and against certain design decisions. Semantic decisions which are described in either operational
or denotational style, but not often both.

This thesis concerns the semantics of simple languages with effects and handlers, but a softer in-
troduction would be to start with a language without those. Consider a very simple language only
offering integers and integer addition. Examples of terms in this language are 3 + 3, 4 + (5 + 1),
(1 + 2) + 3 + (4 + 5), etc. The shape of these terms is what we call syntax, the meaning of pro-
grams in the language is called semantics. We could describe this as follows: when a +-term is en-
countered, the left-hand side argument is first reduced to an integer value, then the right-hand side,
and finally the resulting values are added together. This process could be described with a form of
operational semantics called small-step operational semantics:

plus-left:
e1 ⇝ e′1

e1 + e2 ⇝ e′1 + e2
plus-right:

e2 ⇝ e′2
v1 + e2 ⇝ v1 + e′2

plus-apply:
v1 + v2 ⇝ v3

(where v3 = v1 + v2)

The plus-left rule shows that, when the left-hand side argument of an addition can still be reduced,
it will be reduced. The plus-right rule shows that, when the left-hand side is irreducible - v stands for
integer values - and the right-hand side might still reduce, the right-hand side is reduced one step.
Finally, the plus-apply rule shows that two values are added together with the classic mathematical
meaning of additional.

Applying Danvy’s guidelines [20], we can derive big-step semantics that correspond to the same
language. These semantics are still operational in nature, as they describe how to interpret programs
in the language, but they are also closer to a mathematical model than the earlier small-step semantics.
Big-step semantics offer a different way of looking at the same behavioural rules to small-step seman-
tics. Where small-step semantics take an initial configuration to produce a next configuration, big-step
semantics produce a final configuration, which may not be further reduced by another semantic rule.
In the following big-step semantics, the plus-big rule represents plus-left, plus-right, and plus-apply in
one. It tells us to reduce the left-hand side and right-hand side arguments to a value each and add
these values together to produce the result of an addition.

plus-big:
e1 −→ v1 e2 −→ v2

e1 + e2 −→ v3
(where v3 = v1 + v2)

3

Finally, using the inverse of closure conversion, we can derive a denotational semantics from a
big-step semantics [19].

For algebraic effects and handlers, we know both small-step and big-step operational semantics [7]
andwe are familiar with denotational semantics [8]. But, what is missing is a structured showing that one
is equivalent to the other. On top of this, most efficient implementations of algebraic effects and handlers
closely resemble their denotational semantics by encoding operations in what is called the free monad.
In this work, we often refer to these implementations as freer monad-based embeddings of effects
and handlers. These embeddings enable programmers to write effectful programs as though they are
monadic programs. However, the derivation of such an embedding from an operational semantics
remains thusfar unexplored. This work fills in the gap between a denotational interpreter derived by
inverse closure conversion and the freer monad-based embedding of effects and handlers. We thus
define and show program transformations that extend the steps needed to transform a denotational
interpreter to a small-step interpreter and vice versa. All code for this thesis is written in Haskell and
can be found on Github3.

Additionally, we show that our added transformations can be reversed and combined with transfor-
mations for going from big-step to small-step semantics to obtain operational semantics from denota-
tional semantics for shallow algebraic effects [32] and handlers and from scoped effects and handlers.
Finally, to verify our transformations are correct, we provide a test suite for testing that every trans-
formation produces an equivalent interpreter to the one before. In summary, we provide the following
technical contributions:

1. We apply known transformations to derive a denotational interpreter from a small-step semantics
for deep algebraic effects. We then describe and apply our own set of program transformations
to derive a freer monad-based Haskell embedding from the denotational semantics (Chapter 3).

2. We describe the inverse program transformations to those we add in 1., to derive a denotational
interpreter from a freer monad-based embedding of effects and handlers. We apply these added
transformations and known transformations to derive a small-step semantics for shallow algebraic
effects (Chapter 4).

3. We derive an operational semantics for scoped effects and handlers using the newly added trans-
formations from 2. (Chapter 5).

4. We use state-of-the-art program synthesis techniques to generate test programs containing deep
algebraic effects and handlers to verify that each of the interpreters we derived has the same
behaviour as the interpreter it was derived from (Chapter 6).

3https://github.com/chrislemaire/deriving-handler-semantics

https://github.com/chrislemaire/deriving-handler-semantics

4

Freer
EmbeddingC

losure C
onversion

Untyped
Denotational
Interpreter

A
dd/R

em
ove Intrinsic

Typing

Small-Step
Interpreter

Big-Step
InterpreterR

efocusing &
Transition C

om
pression &

Lightw
eight Fusion &

C
PS Transform

ation &
D

efunctionalization

Small-Step
Operational
Semantics

(U
n)abstract H

andling &
(U

n)m
erge O

p(s) and Let &
R

e/D
efunctionalize H

andling &
R

e/D
efunctionalize non-H

andle
Expressions &
R

em
ove/A

dd Value Type

Typed
Denotational
Interpreter

Figure 1.1: Overview of correspondences used and introduced in this thesis. We add the derivations in bold from typed to
untyped denotational interpreters and from denotational interpreter to freer embedding.

Overview
Previous work was able to outline step-by-step instructions to transform small-step interpreters into
big-step interpreters [20] and back [78]. In this work, we apply these instructions to and extend them
for language with effects and handlers to derive a small-step operational semantics from a freer monad
embedding in Haskell and vice versa. More specifically, we apply derivations to get small-step seman-
tics from a denotational semantics (passing through big-step semantics) and vice versa, and add our
own derivations for obtaining a denotational interpreter from a freer monad embedding and vice versa.

This work builds a correspondence between the often-used embeddings of effects and handlers and
a more traditional denotational semantics for languages with effects and handlers. Of note is that we
show this correspondence in Haskell, a call-by-need language. This property of the defining language
can determine parts of the semantics of the defined languages, as shown by Reynolds [74]. This
correspondence builds on previous works showing syntactic and functional correspondences between
various forms of semantics, including the aforementioned correspondence between big-step and small-
step semantics [20]. Figure 1.1 shows an overview of the program transformations demonstrated in
this thesis.

The overview shows that we derive a small-step interpreter from operational semantics, apply var-
ious transformation to derive a big-step interpreter, apply inverse closure conversion to derive an un-
typed denotational interpreter, add intrinsic typing to get a typed denotational interpreter, and apply a
series of transformations of our own formulation to get the final freer monad embedding. This process
is reversed by inversing each transformation and can be used to obtain other forms of semantics, such
as small-step semantics for effects and handlers implemented with a freer monad embedding.

This thesis is divided into five main chapters. Chapter 2 demonstrates the existing correspondence
between denotational and small-step operational semantics. Chapter 3 introduces the program trans-
formations we use to derive a freer monad-based embeddings in Haskell of effects and handlers and
immediately applies these derivations to derive the canonical freer monad embedding from a reduction
semantics for a language with deep algebraic effects and handlers. Chapter 4 applies the inverse of
the aforementioned transformations to derive an operational semantics for a language with shallow
algebraic effects and handlers from a freer monad-based embedding of those effects and handlers.
Chapter 5 applies the inverse program transformations once again, but to derive a novel operational
semantics for deep scoped effects and handlers. Chapter 6 explains how we verified the interpreters
we got from every program transformation.

Small-step Operational to Denotational
The correspondence between small-step operational and denotational semantics is a known one [19,
22, 2]. In these works, Danvy, Biernacka, Sig Ager, Midtgaard, and Millikin show that, through simple
program transformations, one can obtain interpreters corresponding to one type of semantics from
interpreters corresponding to another type of semantics.

5

Figure 1.2: Functional and syntactical correspondences and the correspondence between small-step and big-step abstract
machines. Image taken from [19].

Specifically, we apply the exact steps presented by Danvy in [20] to transform a reduction semantics
to a big-step semantics (natural semantics in figure 1.2). The correspondence between denotational
semantics and natural semantics is shown with closure conversion. We can selectively apply an inverse
operation to closure conversion to derive an interpreter that represents the denotational semantics. This
process is shown in Section 2.1. An overview of the various forms of semantics we pass through is
shown in figure 1.2. In this, Danvy refers to the relation between reduction semantics and abstract
machines as a syntactical correspondence and the relation between natural semantics and abstract
machines as a functional one.

An inverse of these relations can be used to derive a small-step operational semantics from an in-
terpreter corresponding to denotational semantics. Applying closure conversion to the corresponding
interpreter gives us an interpreter corresponding to the big-step semantics. We apply the transforma-
tional steps presented by Vesely and Fisher [78] to further this big-step interpreter to an interpreter
corresponding to the structural semantics.

Reduction Semantics to Freer Monad-Based Embedding
In Chapter 3, we relate a denotational interpreter for a language with deep algebraic effects and han-
dlers to the freer monad-based embedding of that same language. Starting with a reduction semantics,
we apply a set of program transformations compiled by Danvy [20] to derive a big-step direct-style inter-
preter. We then replace closures with higher-order functions to get a denotational interpreter. Finally,
we apply our own program transformations to derive the freer monad-based embedding of deep alge-
braic effects and handlers. These added steps embed pure computations and the handling construct
as functions rather than data. They generalise the expression tree of the language until only pure and
impure computation are represented. Such an expression tree naturally correspond to the free/freer
monad.

The steps we add are as follows:

1. Lettify pure computations.
2. Intrinsically type the interpreter.
3. Generalise values.
4. Lettify the handling construct.
5. Merge Let with impure computations.

6

Freer Monad-Based Embedding to Structural Semantics
To derive a denotational interpreter and subsequently the small step operational semantics for freer
monad-based embeddings of effects and handlers, we show that the the inverse of our added steps
can be applied. The impure computations present in the freer monad tree are split up into impure
operations and let expressions. Our lettification steps may be inversed by adding expressions for
smart constructors and inlining their evaluation instead. A value type is added rather than removed.
Intrinsically typing the interpreter can be inverted by removing intrinsic typing instead.

Here are the steps we follow:

1. Split Let and impure computations.
2. Inline and lift the handling construct.
3. Inline and lift pure computations and specialise values.
4. Remove intrinsic typing from the interpreter.

Notice that we move around a few steps, but otherwise always apply the inverse of a transformation.
The permutation of steps here is used for convenience, not out of necessity.

To obtain an operational semantics for a language with effects and handlers, we start by applying
our transformations on the freer monad-based embedding of such a language. We then closure con-
vert the resulting interpreter to derive a big-step direct-style interpreter. We use the order of program
transformation steps described by Vesely and Fisher [78] to derive the small-step interpreter, and finally
derive a structural operational semantics.

We first show the inverse transformations in Chapter 4, and apply them on a freer monad-based
embedding of deep scoped effects and handlers in Chapter 5 to derive a novel operational semantics
for deep scoped effects and handlers.

Evaluation
Chapter 6 describes the evaluation of our derivations in Chapters 3 to 5. Here, we do not prove the
desired properties for our added program transformations, instead we attempt to verify that the applica-
tion of our transformations in the aforementioned chapter is without mistake. Ideally, one would prove
that the derivation of each interpreter is perfectly behaviour preserving, meaning that for every possible
input, the output of every interpreter is the same. However, writing a formal proof for every interpreter
is tedious and, on top of that, incredibly challenging in just Haskell. Instead, we generate a test suite
that checks this property to the best of our ability.

Creating tests is done in two steps: programs are generated (1), and converted to target interpreter
expression trees (2). We implement program generation based on the type-derived program synthesis
technique described by Pałka [67]. We extend this technique for the more complex construct of deep
algebraic handlers. To also test shallow and scoped effect handlers, we convert these deep algebraic
handlers to embeddings of those same handlers in the target effect handlers. We convert those gen-
erated untyped programs to the target expression trees. Typed expression trees present a problem
here because we need to coerce the generated expression trees to a typed expression tree. Finally,
if we run this test suite, we are ensured that, for all programs generated by the program generator, all
interpreters behave the same.

2
From Small-Step Operational

to Denotational
and Back

This thesis discusses the relation between the freer monad-based embedding of effects and handlers
to a corresponding small-step operational semantics. We derive the such embeddings from operational
semantics and vice versa. To do so, we take a number of readily available program transformations
that have previously been shown to relate various semantic forms and we add our own. In this chapter,
we discuss the program transformations that we use out-of-the-box, rather than the steps we add. We
look at the relation between small-step and denotational interpreters and how one could derive one
from the other using simple program transformations.

In this chapter, we show the transformations necessary to derive a denotational interpreter from a
reduction semantics for a minimalistic language without effects and handlers in Section 2.1. We also
show, for the same language, how one could reverse the steps previously done to obtain a small-step
structural operational semantics in Section 2.2.

2.1. Small-Step to Big-Step
In this section, we follow the steps outlined by Danvy in his work ”From Reduction Based to Reduction-
Free Normalization” [20]. This work gives a step-by-step method for deriving a big-step direct-style
interpreter from a set of reduction rules. That is, we follow a few steps to implement an interpreter
from the small-step reduction rules and then use readily available program transformations to derive a
big-step direct-style interpreter for the same language. In his work, Danvy illustrates these steps with
multiple different small languages.

In this section, we repeat the lessons learned by Danvy with a small example language we call Ex.
We introduce syntax similar to the syntax used in later chapters and show some of the more standard
parts of the transformations here. In later chapters, we only focus on the parts of the transformations
that are interesting when effects and handlers are added to the language.

2.1.1. Syntax and Semantics of Ex
We start with a formal syntax and reduction rule semantics. Ex is a simple expression language merely
implementing integer addition and multiplication, and lambda- and let-bindings. Its syntax is shown in
Figure 2.1a. Values are either integer literals or function definitions and expressions come in a few
forms. Lambda values, function application, and let-binding all contribute to binding variable names.
Binary operations are written in infix notation.

To describe the meaning of programs within Ex, we also need to provide some type of formal se-
mantics. To use Danvy’s method with as little extra steps as possible, we use small-step reduction rules
to describe this. Reduction semantics consist of evaluation contexts and reduction rules. Evaluation
contexts are used to search for the left-most inner-most part of the expression tree that may still be

7

2.1. Small-Step to Big-Step 8

v ::= nat Natural numbers
| fun idx 7→ e Anonymous functions

bop ::= + | ∗
e ::= v Value literals

| id Variables
| e1 e2 Function application
| let id = e in e Let-binding
| e1 bop e2 Unary and binary operations
| (e) Parentheses
(a) Syntax for a Ex with lambdas, numeric operations, and ifs

fun x 7→ x
(a + (b ∗ c))
let x = (2 + 5) in (x ∗ x)
fun x 7→ ((fun y 7→ (x + y)) (x + 1))

(b) Example expressions in Ex.

Figure 2.1

reduced. The reduction rules describe what forms of expression, when found in an evaluation context,
can be reduced to a ’smaller’ term.

Figure 2.2a shows the evaluation context C forEx. The first case is standard and describes an empty
evaluation context. This empty context is called the context hole and it represents the inner-most left-
most expression that is to be evaluated by a reduction rule. The second and third cases show the order
in which to look at function applications: if a function application has a value as its first argument, we
look into the second argument with C, otherwise we look at the first argument first. In the same way,
for binary operations, the left argument is evaluated to a value before the right argument. Finally, for
let-expressions, only the binding is evaluated before the entire let-expression can be reduced.

C ::= [] Context hole
| (C e) | (v C) Application
| let x = C in e Let
| (C bop e) | (v bop C) Bin-ops

(a) Evaluation contexts for Ex.

C[(fun x 7→ e) v]−→ C[e [x/v]]
C[let x = v in e]−→ C[e [x/v]]
C[v1 + v2]−→ C[(v3)] where v3 = v1 + v2
C[v1 ∗ v2]−→ C[(v3)] where v3 = v1 ∗ v2

(b) Reduction rules for Ex. From top to bottom these are: bèta
reduction, let-binding, integer addition, and integer multiplication.

Figure 2.2

The reductions that should be done on the inner-most left-most expression are described in the
reduction rules in figure 2.2b. The left-hand side of a reduction rule describes what expressions are
transformed by the rule. For instance, the left-hand side of the let-expression reduction rule matches
let x = v in e. The production of a reduced expression is shown on the right-hand side of the arrow in a
reduction rule. This means that every let x = v in e in the left-most inner-most position of an expression
is reduced to e [x/v], meaning all occurrences of x are replaced by value v in expression e, and the
resulting expression replaces let x = v in e in the expression tree. Similarly, beta-reductions are those
where a function value is applied to some argument value. In these reductions, the entire application
is replaced with the body of the function with v subsituted in the place of every x.

2.1.2. An Interpreter
To understand how an interpreter of this language would work, we refer to one of the examples shown
in figure 2.1b. Consider let x = (2 + 3) in (x ∗ x). If we would evaluate this expression to a value, we
would, intuitively, interpret this to mean x = 2 + 3 = 5 and the result of the entire expression would be
x ∗ x = 5 ∗ 5 = 25. The reduction rules formalise this intuition by stepwise declaring how to interpret an
expression. In the following, we show the manual reduction using evaluation contexts and reduction
rules:

2.1. Small-Step to Big-Step 9

let x = [] in (x ∗ x) where [] = (2 + 3)
apply integer addition rule with v1 = 2, v2 = 3 to get [] = 5

[] where [] = let x = 5 in (x ∗ x)
apply let− binding rule with x = "x", v = 5 to get [] = (5 ∗ 5)

[] where [] = (5 ∗ 5)
apply integer multiplication rule with v1 = v2 = 5 to get [] = 25

25 with no further decompositions into an evaluation context

We first find the inner-most left-most part of the expression that matches no evaluation context and
apply a reduction rule on that part of the expression to reduce it. If no matching reduction rule can be
found, the expression must be malformed. For instance 5 2 is not a well-formed expression because it
cannot be further reduced while also not representing a value.

The idea for an interpreter based on reduction rules is to automate this process of searching and
reducing. We start by representing the syntax of Ex as Haskell data types. In figure 2.3a we rep-
resent the two different types of values as data constructors. Lambda values store the name of the
parameter as a String and the body of the function as an Expr. Integer values wrap a Haskell Int. In fig-
ure 2.3b we encode the different expressions as Expr. For instance, function applications are encoded
as App Expr Expr, representing the left and right argument of an application as Exprs each. Integer
addition and multiplication are grouped as BinOps, using BinOpOperator to distinguish between the
two. With these types, we can represent let x = (2 + 3) in (x ∗ x) as:
Let "x" (BinOp (Lit (IntV 2)) Add (Lit (IntV 3))) (BinOp (Var "x") Mul (Var "x"))

data Value
= LambdaV String Expr
| IntV Int

data BinOpOperator = Add | Mul

(a) Values and binary operations of Ex.

data Expr
= Var String
| App Expr Expr
| Let String Expr Expr
| BinOp Expr BinOpOperator Expr
| Lit Value

(b) Expressions of Ex.

Figure 2.3

We also represent evaluation contexts (figure 2.4b) and the left-hand sides of reduction rules (fig-
ure 2.4a) as data types. For instance, PRBeta represents the left-hand side of the bèta reduction rule,
storing the name x as a String, value v as a Value, and expression e as an Expr.

We utilise these data structures with a few main functions and a few more helper types and func-
tions. The main functions needed for evaluation are decompose_context, decompose_expr, reduce,
and iterate and normalise. Besides those, we use helper functions recompose, and subst. The two
decomposition functions are used to find the inner-most left-most expression matching the left-hand
side of a reduction rule. The contract function is used to apply a single reduction rule step. iterate
and normalise combine all the main steps to create an interpreting function in normalise. Furthermore,
recompose is used to reconstruct a context into an expression and subst is used to substitute a certain
variable for a value within some expression.

We start by defining the subst function and contract function in figure 2.5. subst replaces any
Var y values with Closed v if x ≡ y and recurses down every sub-expression otherwise. Closed ex-
pressions are closed under substitution, meaning that substitution does not continue down through
these expressions to prevent name-capture. contract takes a left-hand side of a reduction and ap-
plies the reduction rule it represents if the captured expression is not otherwise malformed. For in-
stance, (2 + 3) could be captured and turned into the potential reduction PRAdd (IntV 2) (IntV 3).
contract then reduces it to Closed (IntV 5) and returns this ‘Contractum’. A PotentialRedex such
as PRAdd (LambdaV "x" (IntV 2)) (IntV 3) would, however, result in an Error as there is no way
to reduce an expression such as this one. After all, adding a function and an integer has no meaning
assigned to it in our language.

2.1. Small-Step to Big-Step 10

data PotentialRedex
= PRBeta String Expr Value
(C[(fun x 7→ e) v])
| PRLet String Expr Value
(C[let x = v in e])
| PRAdd Value Value
(C[v1 + v2])
| PRMul Value Value
(C[v1 ∗ v2])
| PRError String

(a) Encoding of the left-hand side of each reduction rule
(shown in grey) for Ex.

data Context
= CEmpty
[]
| CAppL Context Expr
(C e)
| CAppR Value Context
(v C)
| CLet String Context Expr
let x = C[·] in e

| CBinOpL Context BinOpOperator Expr
C bop e
| CBinOpR Value BinOpOperator Context
v bop C

(b) Encoding of the evaluation context cases (shown in grey) for Ex.

Figure 2.4

The next step is to implement functionality to find and construct PotentialRedex instances. We do
sowith two functions: decompose_expr and decompose_context. Both of these try to find the inner-most
left-most reducible expression and return a value or an error if no further decomposition exists. We show
these functions in figure 2.6. Decomposition of expressions creates a Context that is zipped inside out,
meaning the inner-most context represents the outer-most expression and, more usefully, the outer-
most context represents the inner-most left-most expression. These functions dictate the order in which
the expression is explored. For instance, when an expression such as BinOp e1 Add e2 is decom-
posed, e1 is first further looked into, before turning to e2 in the case for CBinOpL in decompose_context,
and finally the entire expression (CBinOpR in decompose_context). We see another helper data type is
used for representing the result of decomposing: ValueOrDecomposition, meaning either a Value is
directly found, or a reduction can be done, if no reduction can be done, we return a decomposition with
an error instead.

Finally, we utilise these functions in the iterate and normalise functions. These use another
helper function recompose to do their work. In figure 2.7 we show these functions. We encode results
of evaluation as Result, so either a Value result or an error. Iteration is done by performing a de-
composition, contracting, then iterating on the next decomposition of the recomposed expression after
reduction. normalise does an initial call to iterate to start the evaluation process. If an error or value
is encountered on the top-level expression, iteration is done and a Result is produced. recompose
works by giving an Expr t to insert in the place of the empty context

recompose :: Context→ Expr→ Expr
recompose CEmpty t = t
recompose (CAppL c e2) t =
recompose c $ App t e2

recompose (CAppR v1 c) t =
recompose c $ App (Closed v1) t

recompose (CLet x c e) t =
recompose c $ Let x t e

recompose (CBinOpL c bop e2) t =
recompose c $ BinOp t bop e2

recompose (CBinOpR v1 bop c) t =
recompose c $ BinOp (Closed v1) bop t

data Result
= Result Value
|Wrong String

decompose :: Expr→ ValueOrDecomposition
decompose = decompose_expr CEmpty
iterate0 :: ValueOrDecomposition→ Result
iterate0 (VODValue v) = Result v
iterate0 (VODDec pr c) = case contract pr of
Contractum e→ iterate0 (decompose (recompose c e))
Error err→Wrong err

normalise0 :: Expr→ Result
normalise0 e = iterate0 (decompose e)

Figure 2.7: Iteration over decompositions and contractions.

2.1. Small-Step to Big-Step 11

data Expr
= ...
| Closed Value

subst :: String→ Value→ Expr→ Expr
subst x v (Var y)
| x ≡ y = Closed v
| otherwise = Var y

subst x v (Lit (LambdaV y e))
| x ≡ y = Lit (LambdaV y e)
| otherwise = Lit (LambdaV y (subst x v e))

subst x v (App e1 e2) =
App (subst x v e1) (subst x v e2)

subst x v (Let y ev eb)
| x ≡ y = Let y (subst x v ev) eb
| otherwise = Let y (subst x v ev) (subst x v eb)

subst x v (BinOp e1 op e2) =
BinOp (subst x v e1) op (subst x v e2)

subst e@(Lit) = e
subst e@(Closed) = e

data ContractumOrError
= Contractum Expr
| Error String

contract :: PotentialRedex→ ContractumOrError
contract (PRBeta x e v) = Contractum (subst x v e)
−→ C[e [x/v]]

contract (PRLet x e v) = Contractum (subst x v e)
−→ C[e [x/v]]

contract (PRAdd (IntV n1) (IntV n2)) =
Contractum (Closed (IntV (n1 + n2)))
−→ C[(v3)] where v3 = v1 + v2

contract (PRMul (IntV n1) (IntV n2)) =
Contractum (Closed (IntV (n1 ∗ n2)))
−→ C[(v3)] where v3 = v1 ∗ v2

contract (PRError err) = Error err
contract pr = Error ("Cannot match types for: "

<> show pr)

Figure 2.5: Substitution and contraction of inner-most left-most expressions matching reduction rules for Ex.

This concludes the creation of an interpreter for Ex. Running normalise0 e on some expression e
now results in a Value or an error depending on whether the expression was well-formed. We continue
transforming this interpreter from a small-step interpreter to a big-step interpreter in the following steps.

2.1.3. Step 1: Refocusing
From this point on, we suffix all functions that may be changed and adapted over different versions
of the interpreter with a number indicating the step they belong to. For instance, iterate becomes
iterate1 in this step. This helps us separate different versions of interpreter functions and makes sure
we call the right versions of functions.

For this first step we realise one simple fact: constantly decomposing and recomposing expressions
is costly and this cost could be reduced. This reduction is done by removing recomposition entirely. As
it turns out, when a contraction is done, we do not need to start over with our search for the left-most
inner-most expression. Instead, we can restart the search on the left-most inner-most position, which
is closer to finding a result that starting from the top. This saves us needing to recompose the entire
expression every time. This process is called refocusing and the refocus function captures it. In the
following snippet we see the changed lines of the iterate function highlighted:

refocus :: Context→ Expr→ ValueOrDecomposition
refocus = decompose_expr
iterate1 :: ValueOrDecomposition→ Result
iterate1 (VODValue v) = Result v
iterate1 (VODDec pr c) = case contract pr of
Contractum e→ iterate1 (refocus c e)
Error err→Wrong err

2.1.4. Step 2: Inlining Contraction
This next step is to fuse the contract and iterate functions as contract is only called in the iteration
process. We do so by unfolding the call to contract in iterate and rewriting the resulting function to
perform pattern matches on VODDec in the top-level of the iterate function definition. The following

2.1. Small-Step to Big-Step 12

data ValueOrDecomposition
= VODValue Value
| VODDec PotentialRedex Context

decompose_expr :: Context
→ Expr
→ ValueOrDecomposition

decompose_expr c (Var s) =
VODDec (PRError ("Free variable: " <> s)) c

decompose_expr c (App e1 e2) =
decompose_expr (CAppL c e2) e1

decompose_expr c (Let x ev eb) =
decompose_expr (CLet x c eb) ev

decompose_expr c (BinOp e1 bop e2) =
decompose_expr (CBinOpL c bop e2) e1

decompose_expr c (Lit v) =
decompose_context v c

decompose_expr c (Closed v) =
decompose_context v c

decompose_context :: Value
→ Context
→ ValueOrDecomposition

decompose_context v CEmpty =
VODValue v

decompose_context v (CAppL c e2) =
decompose_expr (CAppR v c) e2

decompose_context v (CAppR (LambdaV x e) c) =
VODDec (PRBeta x e v) c

decompose_context (CAppR v1 c) =
VODDec (PRError (

"Cannot apply non-function value: "
<> show v1)) c

decompose_context v (CLet x c eb) =
VODDec (PRLet x eb v) c

decompose_context v1 (CBinOpL c bop e2) =
decompose_expr (CBinOpR v1 bop c) e2

decompose_context v2 (CBinOpR v1 Add c) =
VODDec (PRAdd v1 v2) c

decompose_context v2 (CBinOpR v1 Mul c) =
VODDec (PRMul v1 v2) c

Figure 2.6: Decomposition of an expression into a context and a potential reduction for Ex.

snippet shows the new iterate function with some cases left out to make a shorter example:

iterate2 :: ValueOrDecomposition→ Result
iterate2 (VODValue v) = Result v
iterate2 (VODDec (PRBeta x e v) c) =
iterate2 $ refocus c (subst x v e)

iterate2 ... = ...
iterate2 (VODDec pr) =
Wrong ("Cannot match types for: " <> show pr)

2.1.5. Step 3: Lightweight Fusion
In this section we apply lightweight fusion [63]. We fuse decompose_expr and decompose_context with
iterate through refocus. In practise, this means that occurrences of consecutive calls to refocus
and then iterate, brought forth from the previous step, are replaced with calls to refocus_expr.
refocus_expr and refocus_context are the results of the fusion. These are similar to decompose_expr
and decompose_context, but their return types are changed to the return type of iterate, as instead
of returning an intermediate decomposition, this decomposition is now directly passed to iterate and
the resulting value is returned. We see this change most in the signatures of refocus_expr and
refocus_context, which now return a Result value, like iterate did already.

refocus_expr3 :: Context→ Expr→ Result
refocus_expr3 c (Var s) =

iterate3 $ VODDec (PRError ("Free variable: " <> s)) c
refocus_expr3 c (App e1 e2) =
refocus_expr3 (CAppL c e2) e1

refocus_expr3 ... = ...

2.1. Small-Step to Big-Step 13

refocus_context3 :: Value→ Context→ Result
refocus_context3 v CEmpty =

iterate3 $ VODValue v
refocus_context3 v (CAppL c e2) =
refocus_expr3 (CAppR v c) e2

refocus_context3 v (CAppR (LambdaV x e) c) =
iterate3 $ VODDec (PRBeta x e v) c

refocus_context3 ... = ...

iterate3 :: ValueOrDecomposition→ Result
iterate3 (VODValue v) = Result v
iterate3 (VODDec (PRBeta x e v) c) = refocus_expr3 c (subst x v e)
iterate3 ... = ...

In the above snippets, we see how the three main functions of our interpreter are changed with this
step. refocus_expr and refocus_context now return a Result and previous decomposition results
are directly passed to the iterate function. Furthermore, refocus DLR iterate now is the same is
refocus_expr, so occurrences of this combination are replaced with it. This step serves to make the
three core functions of our interpreter mutually recursive and gives us the first big-step interpreter.

2.1.6. Step 4: Compress Corridor Transitions
In this step, we look at transitions between functions in the current interpreter and find ’corridor transi-
tions’. This means we look for calls to functions that only have a single possible execution path, one
which is also only reached through that specific call. In our example, we find that calls to iterate are all
corridor transitions. We unfold these calls to get more involved refocus_expr and refocus_context
functions:

refocus_context3 v (CAppR (LambdaV x e) c) = iterate3 $ VODDec (PRBeta x e v) c
...
iterate3 (VODDec (PRBeta x e v) c) = refocus_expr3 c (subst x v e)
−→

refocus_context4 v (CAppR (LambdaV x e) c) = refocus_expr4 c (subst x v e)

The result of this transformation in our example language is that the iterate function now con-
sists only of dead clauses and we have thus eliminated the need for the ValueOrDecomposition and
PotentialRedex auxiliary data types. When applying this technique on other languages one might
find that there are some parts of the iterate function that are still used in several places, so the two
auxiliary data types might not be completely removed yet.

2.1.7. Step 5: Renaming and Flattening Configurations
In this step we rename the current functions to more commonly used names for the same function-
ality. For instance refocus_expr now represents an evaluation function, so we rename it to eval.
refocus_context takes the part left to evaluate and find the next expression to evaluate, so we name
it continue. Finally, if iterate would still contain any live clauses, we could split the function into the
few remaining computations and rewritings done in that function to get rid of ValueOrDecomposition
and PotentialRedex entirely. In our case, we rename refocus_expr to eval, refocus_context to
continue and we remove iterate entirely:

2.1. Small-Step to Big-Step 14

refocus_expr4 −→ eval5
refocus_context4 −→ continue5
iterate4 −→

If one case of decomposition would be left in iterate, for instance that of PRBeta, the decomposition
parameters become the parameters of the iteration function. This is what ’flattening configurations’
refers to. For example, the iteration function for just this one decomposition would be as follows:

iterateBeta :: String→ Expr→ Value→ Context→ Result
iterateBeta x e v c = eval5 c (subst x v e)

2.1.8. Step 6: Refunctionalisation
In this step we merge eval and continue to a single evaluation function. The process through which
we achieve this is called refunctionalisation [23, 74]. We do so by realising that evaluation Contexts
together with continue are the first-order counterpart of a higher-order function [20]. That is, there is
a function that can be used to replace continue and Context in their entirety. This function is gen-
erally referred to as a continuation and it gets the type of continue without its Context parameter:
Value -> Result.

To create the higher-order function representing full evaluation of an expression, we use eval as
a basis and pass it the the continuation of type Value -> Result additionally. We then unfold every
call to continue to a call to eval with a new continuation. For instance, the different clauses handling
function applications are combined as like the following:

eval5 c (App e1 e2) = eval5 (CAppL c e2) e1
...
continue5 v (CAppL c e2) = eval5 (CAppR v c) e2
continue5 v (CAppR (LambdaV x e) c) = eval5 c (subst x v e)
continue5 (CAppR v1) =Wrong ("Cannot apply non-function value: " <> show v1)
−→

eval6 (App e1 e2) k =
eval6 e1 (λv1→
eval6 e2 (λv2→
case v1 of
LambdaV x e→ eval6 (subst x v2 e) k
→Wrong ("Cannot apply non-function value: " <> show v1)))

The normalisation function is adjusted by passing a default continuation, which just wraps the re-
sulting value with Result:

normalise6 :: Expr→ Result
normalise6 e = eval6 e Result

2.1.9. Step 7: Back to Direct Style
The final step is to turn this interpreter function to direct-style. The current interpreter is in continuation-
passing-like style, by passing the continuation function of type Value -> Result around. Turning the
interpreting function into direct-style is as simple as pattern matching on the result type and using that
result as the value that would have been passed to the continuation function. This eliminates the need
for a continuation function. Our final interpreter for Ex is as follows:

2.1. Small-Step to Big-Step 15

eval7 :: Expr→ Result
eval7 (Var s) =Wrong ("Free variable: " <> s)
eval7 (App e1 e2) =
case eval7 e1 of
Result v1→ case eval7 e2 of
Result v2→ case v1 of
LambdaV x e→ eval7 (subst x v2 e)
→Wrong ("Cannot apply non-function value: " <> show v1)

err→ err
err→ err

eval7 (Let x ev eb) =
case eval7 ev of
Result v→ eval7 (subst x v eb)
err→ err

eval7 (BinOp e1 bop e2) =
case eval7 e1 of
Result v1→ case eval7 e2 of
Result v2→ case (v1, bop, v2) of
(IntV n1,Add, IntV n2)→ eval7 (Closed (IntV (n1 + n2)))
(IntV n1,Mul, IntV n2)→ eval7 (Closed (IntV (n1 ∗ n2)))
→Wrong ("Cannot match types for binary operation: " <> show bop)

err→ err
err→ err

eval7 (Lit v) = Result v
eval7 (Closed v) = Result v

normalise7 :: Expr→ Result
normalise7 = eval7

In the rest of this work, we try to avoid explicit error-handling like this to focus solely on translations
of good-weather behaviour. So we will not have as many default cases for errors. Instead, we simply let
errors delegate to top-level with error. This is fine because we build pure languages with no runtime
exceptions in the following sections. Errors can thus only indicate a typing problem, meaning the
program we input is malformed.

2.1.10. Step 8: From Big-Step to Denotational
At this point, we have a direct-style big-step interpreter of the language. This step turns the current
abstract syntax tree represented by Expr into a higher-order abstract syntax [68] represented by Expr8.
To do so, we replace all occurrences of name-binding with a Haskell function for binding instead.

In figure 2.8a, we show the changes done to values, expressions, and handlers. Here we see that
in every place where a name was bound using a String and an Expr, names are now bound through a
function Value8→ Expr8.

2.2. ... and back 16

data Value8
= LambdaV8 (Value8→ Expr8)
| ...

data Expr8
= Let8 Expr8 (Value8→ Expr8)
| ...

(a) Higher-order abstract syntax for Deep.

eval8 :: Expr8→ Result8
eval8 (App8 ef ea) =
check_result8 (eval8 ef)
(λvf→ check_result8 (eval8 ea)
(λva→ case vf of
LambdaV8 body→ eval8 (body va)
→Wrong8 ("non-function value: "
<> show vf))

eval8 (Let8 ev body) =
check_result8 (eval8 ev)
(λv→ eval8 (body v))

eval8 ... = ...

(b) Example of evaluating handle-expressions with higher-order abstract
syntax.

Figure 2.8

To demonstrate the transformation of the evaluation function, we show the cases for function appli-
cation and let-binding in figure 2.8b. We adjust evaluation cases by replacing calls to subst with a call
to the appropriate function.

2.2. ... and back
Turning a denotational interpreter back into a small-step interpreter is a process exactly inverse to the
the process previously described. The work we base these transformations on is that of Minamide et
al. [61] and Vesely and Fisher [78]. Minamide et al. describe typed closure conversion, which we use
to obtain a big-step interpreter from a denotational interpreter. Vesely and Fisher describe 9 steps to
transform a big-step direct-style interpreter to a small-step direct-style interpreter. In this work we go
through each of these transformations by hand.

2.2.1. Step 0: From Denotational to Big-Step
Inversely to Section 2.1.10, we apply closure conversion to the interpreter we end off with in the previous
section to get the first interpreter of this section. We apply this by replacing every instance of a higher-
order function with a parameter name-body expression pair. Each of these pairs represents a closure,
capturing the name of the previously free variable as its String argument. We end up with the same
big-step direct-style interpreter as before, but without explicit error handling:

2.2. ... and back 17

eval0 :: Expr→ Value
eval0 (Var s) = error ("Free variable: " <> s)
eval0 (App e1 e2) = case eval0 e1 of
v1→ case eval0 e2 of
v2→ case v1 of
LambdaV x e→ eval0 (subst x v2 e)
→ error ("Cannot apply non-function value: " <> show v1)

eval0 (Let x ev eb) = case eval0 ev of
v→ eval0 (subst x v eb)

eval0 (BinOp e1 bop e2) = case eval0 e1 of
v1→ case eval0 e2 of
v2→ case (v1, bop, v2) of
(IntV n1,Add, IntV n2)→ eval0 (Closed (IntV (n1 + n2)))
(IntV n1,Mul, IntV n2)→ eval0 (Closed (IntV (n1 ∗ n2)))
→ error ("Cannot match types for binary operation: " <> show bop)

eval0 (Lit v) = v
eval0 (Closed v) = v

We take the liberty to remove runtime errors at this point as they have so far only contributed to the
length of the work, rather than the depth. From this point, we add a suffix number again to indicate the
step of evaluator function we use. Due to an editing issue, we start this at 0, rather than 1.

2.2.2. Step 1: CPS Conversion
In the first step we turn the direct-style interpreter into a CPS (continuation passing-style) interpreter.
This is done by adding a (Value -> Value)-type argument to the evaluator, called the continuation.
The continuation is called whenever a value would be resulted from the interpreter. Whenever a recur-
sive call to eval is done, we need to construct a continuation that captures the parts of the evaluation
function that depend on the result of that recursive call. For instance, the case for evaluating Lets de-
fines a continuation k1 that captures eval1 (subst x v eb) k', as the part of the evaluation function
dependent on the result of evaluating ev.

eval1 :: Expr→ (Value→ a)→ a
eval1 (Let x ev eb) k =
let k1 = λv→
let k′ = k
in eval1 (subst x v eb) k′

in eval1 ev k1

The normalisation function for most of these transformations is rather uninteresting. This normali-
sation function simply passes in the last continuation, which wraps result values when necessary, or
just returns the same value in our case:

normalise1 :: Expr→ Value
normalise1 = flip eval1 id

2.2.3. Step 2: Generalisation
The difference between a small-step interpreter and a big-step interpreter is that big-steps fully evaluate
an expression to a value, whereas small-step interpreters only step an expression to a ’more evaluated’
form. Currently, continuations receive a Value-type parameter and result in a Value-type result. This
step changes the continuation so that it may accept either Values or Exprs. We achieve this in this

2.2. ... and back 18

work through the sum-type operator :+:. This sum-type operator allows us to define the type of the
continuation as: (Value :+: Expr) -> Value, meaning the continuation takes either a Value or an
Expr and needs to define how to deal with both cases. The sum-type comes with a convenience
function to lift values to the sum-type (inj0) and two constructors Inl0 and Inr0 which are used to
match for a value of the left- and right-type, respectively.

Every continuation in the evaluation function now matches on its parameter to find out whether
the parameter is a finished computation (Value) or an expression. The Value-case is that of the big-
step computation as we had it in the first step. The Expr-case of a continuation is added and simply
passes its argument into the evaluation function with the current continuation as the eval continuation.
Although this does nothing for the moment, as continuations are currently only called with result values,
this step adds small stepping to the evaluation function.

The Let and Lit cases reflect the types of changes that are performed over this step:

eval2 (Let x ev eb) k =
let k1 = λcase
Inl0 v→ eval2 (subst x v eb) k
Inr0 ev′ → eval2 ev′ k1
in eval2 ev k1

eval2 (Lit v) k = k (inj0 v)

2.2.4. Step 3: Argument Lifting
We can categorise the various constituents of an expression used in a continuation during evaluation
into two groups.

1. The expression that is currently under evaluation and is the main parameter of a continuation.
2. The expressions that are yet to be evaluated, values that have resulted from previous evaluation

and various other constituents of an expression that will be used within the continuation but are
not under evaluation in this continuation.

In this step we ensure that both of these types of parameters are passed to the continuation. This
is done by adding all constituents of the second group to the parameter list of the continuation and
partially applying all mentions of that continuation with the constituents.

For instance, for the Let-case the parameter name (x) and body expression (eb) constituents of Let
are of the second category and are added to the parameter list of k1:

eval3 (Let x ev eb) k =
let k1 x eb = λcase
Inl0 v→ eval3 (subst x v eb) k
Inr0 ev′ → eval3 ev′ (k1 x eb)
in eval3 ev (k1 x eb)

2.2.5. Step 4: Continuations Switch Control
In this step we simplify the evaluation function a little by noticing that the recursive calls to eval that
switch control to a new continuation (in the in part of a let that defines a new continuation) are unnec-
essary. Instead of having this recursive call, we can call the continuation directly with the expression
to be evaluated. This causes the Inr0-case to call the evaluation function recursively anyway. The
Let-case is changed to the following:

2.2. ... and back 19

eval4 (Let x ev eb) k =
let k1 x eb = λcase
Inl0 v→ eval4 (inj0 $ subst x v eb) k
Inr0 ev′ → eval4 ev′ (k1 x eb)
in k1 x eb (inj0 ev)

2.2.6. Step 5: Defunctionalisation
Defunctionalisation is the process of eliminating higher-order functions in code at compile-time [24, 74].
In this step we use this process to extract the nested continuation declarations into a separate apply
function. To do this, we perform the following changes:

1. Add a Continuation-type representing the various types of continuations with their parameters
as last amended in step 3.

2. Add an apply function that takes a Continuation argument and the surrounding continuation.
For every Continuation constructor, the matching continuation’s body becomes the body of the
apply function, adjusting case matching where necessary to refer to the last argument of the
continuation.

3. Replace every inner definition and subsequent call of a continuation with a call to apply with its
Continuation counterpart.

Important to note is that, to ensure the interpreter compiles in Haskell, we need to type the last
argument to Continuations the same as the general continuation parameter. In ”One Step at a Time”,
Vesely and Fisher use a language with automatic sum-typing, which Haskell does not support out-of-
the-box, so we need to use explicit sum-types.

data Continuation5
= Cont5App1 Expr (Value : + : Expr)
| Cont5App2 Value (Value : + : Expr)
| Cont5Let1 String Expr (Value : + : Expr)
| Cont5BinOp1 BinOpOperator Expr (Value : + : Expr)
| Cont5BinOp2 Value BinOpOperator (Value : + : Expr)

apply5 :: Continuation5→ ((Value : + : Expr)→ Value)→ Value
apply5 (Cont5Let1 x eb ev) k = case ev of
Inl0 v→ eval5 (inj0 $ subst x v eb) k
Inr0 ev′ → eval5 ev′ (λev′′ → apply5 (Cont5Let1 x eb ev′′) k)

eval5 (Let x ev eb) k = apply5 (Cont5Let1 x eb (inj0 ev)) k

2.2.7. Step 6: Remove Tail-Calls
Before showing that Continuations can be turned into reconstructions of terms, we eliminate the re-
cursive apply calls in Inr0 cases. We do so by passing these Continuations directly to the general
continuation instead of calling apply for the Continuation:

apply6 (Cont6Let1 x eb ev) k = case ev of
Inl0 v→ eval6 (inj0 $ subst x v eb) k
Inr0 ev′ → eval6 ev′ (λev′′ → k (inj0 $ Cont6Let1 x eb ev′′))

This eliminates the recursive calls to apply embedded in general continuations and leaves the
general continuation in charge of control flow. We do not change the recursive calls to apply in Inl0
cases. Finally, to accommodate this change, we need to change the continuation parameter type to
include the Continuation-type in the sum. We also adapt the eval function to simply call apply in the
case of a continuation passed to it:

2.2. ... and back 20

eval6 (Inl0 (Let x ev eb)) k = apply6 (Cont6Let1 x eb (inj0 ev)) k

2.2.8. Step 7: Convert Continuations into Terms
The previous step ensures that every Inr0 case in apply passes Continuations directly to the general
continuation. This setup allows us to replace those Continuation values with Expr values that evaluate
to the exact same call to apply, eliminating the need to passing Continuation values into general
continuations and thus removing the case we added to eval in step 6.

To do so, we replace the general continuations passed to eval in the Inr0 cases of apply to the
body of that same apply case with its Inr0 case substituted for the call to the general continuation
instead. This may appear a little convoluted, but is required to ensure the result of eval is not a value.
We then replace the Continuation in the innermost Inr0 case with an Expr representing the leftover
computation. For the case of Let, the result of these changes is as follows:

apply7 (Cont7Let1 x eb ev) k = case ev of
Inl0 v→ eval7 (subst x v eb) k
Inr0 ev′ → eval7 ev′ $λcase
Inl0 v→ eval7 (subst x v eb) k
Inr0 ev′′ → k (inj0 $ Let x ev′′ eb)

2.2.9. Step 8: Inlining and Simplification
In this step we reconstruct a CPS interpreter from the apply and eval functions. We inline every call
to apply and simplify the resulting eval function to get the following Let-case in eval:

eval8 (Let x ev eb) k = eval8 ev $λcase
Inl0 v→ eval8 (subst x v eb) k
Inr0 ev′ → k (inj0 (Let x ev′ eb))

The body of this eval clause is the Inr0 case of the corresponding apply clause.

2.2.10. Step 9: Back to Direct Style
Finally, to go back to a direct-style interpreter, we remove all mentions of the general continuation
in eval and fix syntax where necessary. This is possible because the only usages of the general
continuation is in the final computation of the evaluation function. We are left with a direct-style small-
step interpreter:

2.2. ... and back 21

eval9 :: Expr→ (Value : + : Expr)
eval9 (Var s) = error ("Free variable: " <> s)
eval9 (App e1 e2) = case eval9 e1 of
Inl0 v1→ case eval9 e2 of
Inl0 v2→ case v1 of
LambdaV x e→ eval9 (subst x v2 e)
→ error ("Cannot apply non-function value: " <> show v1)

Inr0 e2′ → inj0 $ App (Lit v1) e2′
Inr0 e1′ → inj0 $ App e1′ (inj0 e2)

eval9 (Let x ev eb) = case eval9 ev of
Inl0 v→ eval9 (subst x v eb)
Inr0 ev′ → inj0 $ Let x ev′ eb

eval9 (BinOp e1 bop e2) = case eval9 e1 of
Inl0 v1→ case eval9 e2 of
Inl0 v2→
case (v1, bop, v2) of

(IntV n1,Add, IntV n2)→ eval9 (Closed (IntV (n1 + n2)))
(IntV n1,Mul, IntV n2)→ eval9 (Closed (IntV (n1 ∗ n2)))
→ error ("Cannot match types for binary operation: " <> show bop)

Inr0 e2′ → inj0 $ BinOp (Lit v1) bop e2′
Inr0 e1′ → inj0 $ BinOp e1′ bop e2

eval9 (Lit v) = inj0 v
eval9 (Closed v) = inj0 v

normalise9 :: Expr→ Value
normalise9 e = case eval9 e of
Inl0 v→ v
Inr0 e′ → error ("STUCK: Irreducible expression: " <> show e′)

2.2.11. Extracting Small-Step Operational Semantics
From the final eval function, we can extract a small-step structural operational semantics. We write
these as transition rules where every single arrow denotes a small step. For example, we extract the
small-step transitions for function application and let-binding and display them in figure 2.9. We could
just as well derive an operational semantics for binary operations, but we choose to leave these out for
space concerns.

App-Left:
e1 → e′1

(e1 e2)→ (e′1 e2)
App-Right:

e2 → e′2
(v1 e2)→ (v1 e′2)

App-Beta:
((λx 7→ eb) va)→ eb [x/va]

Let-Bind:
ea → e′a

let x = ea in eb → let x = e′a in eb
Let-Apply:

let x = va in eb → eb [x/va]

Figure 2.9: Structural operational semantics for the simple language obtained through various program transformations,
excluding binary operations to reduce clutter.

2.2. ... and back 22

Concluding
We have seen how to transform a small-step interpreter into a denotational interpreter for exactly the
same language and vice versa in this chapter. In the following chapters, we extend this process with
steps to transform a denotational interpreter into an embedding and back. In those chapters, we refer
back to these transformations, but we do not explain every single one of these transformations in detail
anymore. In Chapter 6, we describe ways to verify these steps, as well as those steps we introduce in
the next chapters.

3
Deriving a Freer Monad Embedding

for Algebraic Effects and Handlers

In this chapter, we start with a description of a minimal language implementing algebraic effects and
handlers, inspired by the language Pretnar used to introduce algebraic effects and handlers [73]. We do
so by describing the syntax and small-step operational semantics (in the style of Felleisen and Hieb [26])
of such a language (Section 3.1). We call this languageDeep to refer back to it within this chapter. From
this description, we implement a small-step interpreter (Section 3.2). We take this interpreter through
the steps to transform it to a denotational interpreter using the program transformations described in
Section 2.1 (Section 3.3). We then perform the following added steps to transform the denotational
interpreter into a freer monad:

1. Lettify pure computations. (Section 3.4)
2. Add intrinsic typing to values, expressions, handlers, binary operations, etc. (Section 3.5)
3. Generalise the Value type. (Section 3.6)
4. Lettify the handling abstraction. (Section 3.7)
5. Merge impure computations and let constructs into a single expression constructor. (Section 3.8)

3.1. The Model Language
The language we show our transformations on is inspired by that used to introduce effects and handlers
by Pretnar [73]. By this we mean to say we adopt their syntax and semantics for effect handlers
and handling of effects. This language consists of the following expressions: anonymous functions
(lambdas), variables, function application, boolean constants, handlers, operation calls, sequencing
through a do-expression, a handling expression to use handlers, and if-then-else expressions. We
use this as a base for our language as it offers a convenient recognisable syntax and semantics for
algebraic effects and handlers. We do, however, change a few things about the aforementioned syntax.
We:

1. Allow effectful computation to occur anywhere, not just sequenced through do. Instead, we add
do-expressions for easily sequencing operations.

2. Instead of passing a continuation to op-calls explicitely, we capture the continuation implicitly.
3. Add natural numbers, lists, pairs, and unit values, and unary and binary operations to be able to

show and generate interesting programs.

Syntax
To describe the language, we start by describing the syntax of the language. That is, the exact phrasing
of expressions in Deep. We give a BNF specification in figure 3.1. In short, this specification covers
values, handlers, unary- and binary-operations, and expressions. The following concepts are covered:

23

3.1. The Model Language 24

Common language constructs including functions, function application, lists, pairs, integers, booleans,
and unary and binary operations are mostly represented with Haskell-like syntax. Only unnamed func-
tions (lambdas) can be constructed with fun idx 7→ e, where idx is the parameter name and e is the
body of the function. A function application such as ((fun x 7→ x) 5) is a valid expression in Deep and
we expect it to result in a value of 5 after evaluation.

Handlers define a return-implementation and zero ormore operation implementations. The return x 7→ e
implementation determines what to dowhen having to finish handling an expression under handle h with eb.
When eb evaluates to a value v, the surrounding handler can be fully applied to the value by filling in e
with v bound to the name x. Operation implementations are defined as opi (x, k) 7→ e, where opi is the
name of the operation, x is the name of the operation parameter, and k is the name of the continuation
bound in body e. k represents all computation that uses the operation result and can be passed a result
to execute those computations.

Op-calls are done with op-call op e, where op is the name of the operation to call and e is the
argument to be passed to the operation. When handled, e is evaluated and passed to the handler
function for op. If that handler function calls a continuation with value v as argument, in essence, the
program evaluation is continued with v in the place of op-call op e.

Handling is done through the handle e with h construction. Inside expression e, all occurrences
of an op-call expression can be handled by handler h. When an op-call opi e is found, the nearest
surrounding handle e with h where h has an implementation of opi is used to handle it. When using
an op-call expression, the programmer should be aware that every such expression needs to have a
surrounding handle with h block handling that specific operation. In some more complex languages,
operations can be left unhandled as long as the type reflects what operations are left unhandled [56,
58].

Do-sequencing is added to more easily write examples with sequenced operations. In practice,
these constructs act as sugar over multiple let-expressions. For example, one may write let x =
e1 in (let y = e2 in e) as do x← e1; y← e2; e.

v ::= nat Natural numbers
| fun idx 7→ e Anonymous functions
| true | false Boolean constants
| [] | vh : vt Lists
| () | (v1, v2) Unit and pair

h ::= handler {return idx 7→ er, op1(idx, idk) 7→ e1, ..., opn(idx, idk) 7→ en} Handlers
uop ::= fst | snd
bop ::= ++ | + | ∗
e ::= v Value literals

| id Variables
| (e1 e2) Function application
| (let id = e in e) Let-binding
| do ({{id←}} e;)∗ e Do-sequencing
| (with h handle e) Handling
| (op-call id e) Effect operation call
| if ei then et else ee If-then-else
| eh : et List construction
| (e1, e2) Pair construction
| (uop e) | (e1 bop e2) Unary and binary operations
| (e) Parentheses

Figure 3.1: Syntax of Deep. {{...}} denotes optional syntax.

3.1. The Model Language 25

let helloWorld = do
op-call print 43110

in ...

let getAndIncrement = do
s← op-call get ();
op-call put (s + 1)
s

in ...

let flipAndPut = do
b← op-call flip ();
s← op-call get ();
if b
then op-call put (s + 1)
else op-call put (s + 2)

in ...

Figure 3.2: Example programs in Deep. From left to right, the programs are a simple hello world print, getting and
incrementing an integer state (corresponding to s ++ in Java, C++, etc.), and flipping a coin to update a state.

helloWorld :: IO ()
helloWorld = do
print 43110

getAndIncrement :: State Int Int
getAndIncrement = do
s← get
put (s + 1)
return s

Figure 3.3: Haskell programs corresponding to the two left-most Deep programs shown in figure 3.2.

Examples
To illustrate what programs can be created and executed in a language such as Deep, we show three
programs in figure 3.2. These programs demonstrate the use of three different effects: I/O, state, and
ambiguity. Each of these effects offer different operations.

1. I/O offers input/output actions such as reading text from a user and printing to screen. print simply
takes a value and results in ().

2. State offers a put and get action for updating and retrieving an underlying state, respectively. put
thus expects a state value and results in (). Conversely, get receives () and results in a state
value.

3. Ambiguity only offers the flip operation, representing the flip of a coin. The operation expects a
()-value could either result in true or false.

The helloWorld and getAndIncrement program each only make use of a single effect. In these cases,
we can write corresponding programs in Haskell to illustrate exactly what such a computation looks like.
We do so in figure 3.3. The third program, however, is a little harder to transcribe with Haskell code as
it makes use of both the ambiguity and state effects. A monad transformers solution would have a type
such as StateT Amb Int (), or perhaps AmbT (State Int) (), where Amb is the ambiguity monad, and
AmbT the corresponding monad transformer. However, either version makes more assumptions of the
effect interactions within this program than the Deep program, as both types assume an ordering of
state and ambiguity effects, so we do not show such a corresponding Haskell program.

As could be noticed from our descriptions, these programs do not offer any insight in the semantics
of operations. Instead, the program is only concerned with the syntax of operations, i.e. which types of
arguments need to be passed to operations and what types of values are returned. Instead, semantics
of operations are given only by the handlers of those operations. For instance, we could handle the
ambiguity effect in many different ways, such as those in figure 3.4.

Combining programs and handlers is done through the handle ... with... construct. Suppose the
flipAndPut program and hAmbBoth1 handler are available then handle flipAndPut with hAmbBoth1
would fully take care of the ambiguity effect and thus all invocations of the flip operation within the
flipAndPut program. Finally, let us consider a handler for the state effect called hSt, using this we
would be able to fully handle all operations and retrieve a value result. We give an implementation for
hSt below:

let hSt = handler {
return x 7→ fun s 7→ (s, x),

3.2. Step 1: A Model Interpreter 26

let hAmbConstant =
fun b 7→ handler {
return x 7→ x,
flip (, k) 7→ k b}

in ...

let hAmbBoth1 = handler {
return x 7→ x : [],
flip (, k) 7→ k true ++ k false}

in ...

let hAmbBoth2 = handler {
return x 7→ x : [],
flip (, k) 7→ k false ++ k true}

in ...

Figure 3.4: Three different handlers for the ambiguity effect, offering three different semantics for flip. From left-to-right these
are always using either true or false, first trying true then trying false and concatenating lists of results, and finally first trying

false, then trying true to do the same.

put (s, k) 7→ fun 7→ (k ()) s,
get (, k) 7→ fun s 7→ (k s) s}

The handler uses a function to pass along state, similar to how the state monad in Haskell keeps and
modifies its state. In the return-case, a state-passing function simply wraps the result value and the
resulting value is a pair of the state and result value (corresponding to the pure/return implementation
of the state monad). The put operation is implemented by ignoring the function parameter of the state
passing function and continue with the new state when applying the continuation result. The get op-
eration continues with the same state, but passes that state to the continuation call, so that the state
becomes the result of op-call get ().

Semantics
Next, we describe the semantics of algebraic effect handling precisely using reduction rules in the style
of Felleisen and Hieb [26]. This requires two constructions: evaluation contexts to decide what needs
to be captured for evaluation and reduction rules to describe how to reduce a captured context. We
show the evaluation contexts (figure 3.6) and a subset of the reduction rules (figure 3.5) for Deep. We
base these rules on the reduction rules presented by Leijen et al [56]. The four rules shown are as
follows:

1. Applying a function. We do this by filling in the replacing all occurrences of x within the function
body e with the value v the function is applied to.

2. The desugaring of do-syntax. In this language, we only use do as a syntactical sugar over many
consecutive let-expressions. If no name for the binding is given, we simply use the name ‘ ’,
instead.

3. Returning a value from a handler. Whenever the expression inside a handle is fully evaluated, the
wrapping handle-expression is evaluated by applying the return-function defined by the handler.

4. Handling an operation within a handle-block. This makes use of the Xop context to capture
all expressions surrounding an op-call-expression wtihin a handle. The op-call operation is
matched with an operation implementation in the handler and the operation argument and a
continuation are supplied. The continuation is constructed by propagating the handle-expression,
surrounding the Xop context with the operation result in it.

We only show these four rules as they represent the essence of our model language. We leave
out let-application - which is very similar to function application - and all other more common language
features. We do this to leave the focus of this chapter on effects and handlers.

3.2. Step 1: A Model Interpreter
At this point, we have formal descriptions for the syntax and semantics given in figure 3.1, and figure 3.5
and figure 3.6, respectively. To start transforming interpreters, we must implement our first small-step
interpreter based on these descriptions.

3.2. Step 1: A Model Interpreter 27

C ::= [] Context hole
| (C e) | (v C) Application
| let x = C in e Let
| if C then e else e If-then-else
| ...
| op-call op C Op-calls
| (with h handle C) Handling

Xop ::= [] Context hole
| (Xop e) | (v Xop) Application
| let x = Xop in e Let
| if Xop then e else e If-then-else
| ...
| op-call op Xop Op-calls
| (with h handle Xop) if op /∈ Xop Handling

Figure 3.5: Evaluation contexts of Deep

C[((fun x 7→ e) v)]
−→ C[(e [x/v])]

C[(do x1 ← e1; ...; xn ← en; er)]
−→ C[(let x1 = e1 in (... in (let xn = en in er) ...))]

C[(with (handler {return xr 7→ er, ...}) handle v)]
−→ C[(er [xr/v])]

C[(with h handle Xop[(op-call opi ev)])]
−→ C[(eop [x/v, (k/fun y 7→ (with h handle Xop[y]))])]
where
opi (x, k) 7→ eop ∈ h

Figure 3.6: A subset of the reduction rules for Deep.

data Value
= LambdaV String Expr fun id 7→ e
| IntV Int nat
| BoolV Bool true ∨ false
| UnitV ()
| PairV Value Value (v, v)
| NilV []
| ConsV Value Value v : v

op (id, id) 7→ e
data OpI = OpI String String Expr
return id 7→ e
data ReturnI = ReturnI String Expr
handler {return . . , op1 . . , . . , opn . .}
data Handler = Handler [OpI] ReturnI
data UnOpOperator = Fst | Snd
data BinOpOperator = Add | Mul | Concat

data Expr
= Var String id
| App Expr Expr (e e)
| Let String Expr Expr let id = e in e
| OpCall String Expr op-call op e
| Handle Handler Expr with h handle e
| Lit Value v
| Closed Value
| Pair Expr Expr (e, e)
| Cons Expr Expr e : e
| UnOp UnOpOperator Expr uop e
| BinOp Expr BinOpOperator Expr e bop e

do ({ id←} e) ∗ e
do :: [(Maybe String,Expr)]→ Expr→ Expr
do [] res = res
do ((Nothing, eb) : t) res = Let "_" eb (do t res)
do ((Just nm, eb) : t) res = Let nm eb (do t res)

Figure 3.7: Deep syntax modeled in Haskell.

Kicking off, we define data types representing values, unary and binary operations, and expressions

3.2. Step 1: A Model Interpreter 28

in figure 3.7. These data types directly capture the syntax as described in figure 3.1. We add only one
data constructor for interpreting purposes: Closed. This constructor is used in the same ways as Lit for
value literals is used, except for being closed under substitution. When binding a name - through, for
instance, function application -, we replace all unshadowed occurrences of that variable name with the
bound value wrapped in Closed. This process does not enter Closed expressions, however, to make
sure substitutions are capture-avoiding1.

data PotentialRedex
= PRBeta

String Expr Value
C[((fun x 7→ e) v)]
| PRHandleReturn

String Expr Value
(C[(with (handler {return xr 7→ er, ...}))]

handle v)
| PRHandleOp

Handler (Expr→ Expr)
String String Expr Value

C[(with h handle Xop[(op-call opi ev)])]
| PRError String
| ...

(a) Potential Redexes representing the
left-hand-side of a reduction rule.

contract :: PotentialRedex→ ContractumOrError
contract (PRBeta x e v) =
Contractum (subst x v e)
−→ C[(e [x/v])]

contract (PRHandleReturn xr er v) =
Contractum (subst xr v er)
−→ C[(er [xr / v])]

contract (PRHandleOp h Xop x k eop v) =
Contractum (subst x v

(subst k (LambdaV "y" (Handle h (Xop (Var "y"))))
eop))

−→ C[(eop [x / v, k / (fun y 7→ with h handle Xop[y])])]
where opi (x, k) 7→ eop ∈ h

contract (PRError err) = Error err
contract ... = ...

(b) Contraction representing the function from left-hand to right-hand side of a reduction rule.

Figure 3.8

The next step is to implement the reduction rules from figure 3.6. First, we define a data type to
represent the parts of expressions that are captured and used by a reduction rule, as seen on the
left-hand side of a reduction rule. We call this data type PotentialRedex, as can be seen in figure 3.8a.
Next, we apply the reduction in a contract function (figure 3.8b). This function takes the left-hand side
of a reduction rule as a PotentialRedex and contracts it to an expression representing the right-hand
side of a reduction rule. We list the relevant parts of the reduction rules beside each constructor or
case in gray. Substitutions are done through the subst :: String → Value → Expr → Expr function
and the definition of ContractumOrError is a simple data type either storing a contracted expression
(Contractum) or an error. Finally, notice that we store the context Xop[·] as a function Expr → Expr.
This is because we only use this captured context to reconstruct an expression with a value filled in in
the context hole.

1Capture-avoiding substitutions prevent name-capture when a previously free variable would be bound. For instance
((fun y (fun x y)) x) might be substituted to get fun x x, rather than an error because the outer x is unbound.

3.2. Step 1: A Model Interpreter 29

data Context
= CEmpty []
| CAppL Context Expr (C e)
| CAppR Value Context (v C)
| COp String Context op-call op C
| CHandle Handler Context handle h with C
| ...

(a) Deep evaluation contexts represented as a Haskell data-type.

decompose_expr :: Context→ Expr→
ValueOrDecomposition

decompose_expr c (App e1 e2) =
decompose_expr (CAppL c e2) e1
(C e)

decompose_expr c (Handle h eb) =
decompose_expr (CHandle h c) eb
with h handle C

decompose_expr c (Lit v) =
decompose_context v c

decompose_expr ... = ...

(b) Decomposing expressions into contexts.

Figure 3.9

decompose_context :: Value→ Context→ ValueOrDecomposition
decompose_context v CEmpty = VODValue v

[]
decompose_context v (CAppL c e2) = decompose_expr (CAppR v c) e2
(v C)

decompose_context v (CAppR (LambdaV x e) c) = VODDec (PRBeta x e v) c
C[((fun x 7→ e) v)]

decompose_context (CAppR v1 c) =
VODDec (PRError ("Cannot apply non-function value: " <> show v1)) c
C[(v v)]

decompose_context v (COp op c) = recompose_op op v id c
C[(op-call op v)]

decompose_context v (CHandle (Handler (ReturnI x e)) c) = VODDec (PRHandleReturn x e v) c
C[(with h handle v)]

Figure 3.10: Further decomposing contexts after bottoming to a value.

Finally, we need away to search through expressions to find the evaluation context hole. Thismeans
we search through an expression to see whether it matches a context and, if not, we recurse down the
left-most part that requires further evaluation to continue the search. The functions we use to do this are
decompose_expr (figure 3.9b) and decompose_context (figure 3.10), which both make use of the data-
type encoding of evaluation contexts written as Context (figure 3.9a). The decompose_expr function
tries to find the left-most hole in an expression whereas decompose_context takes a found value, fills
it in in the place of the current context hole and continues the search in the next left-most hole. In
either case, if the context matches a left-hand side of a reduction rule, the rule is applied by returning a
decomposition with the VODDec constructor of ValueOrDecomposition. When an expression directly
reduces to a value, it is returned with the VODValue constructor.

As an example, let us follow the decomposition of with h handle 5, with some arbitrary handler h.
When applying decompose_expr to some prior context and this expression, we see that decompose_expr
is first recursively called with context (with h handle C) and expression 5. This results in a value 5,
passed to decompose_context. Here we find that the CHandle case is reached, causing the function to
correctly signal a decomposition is found in (with h handle v). Similarly, folloding the decomposition
of with h handle (op-call op 4), where h handles op, we find that we reach the decompose_context
case for COp. This case is a little special as we will need to retrace our steps to find Xop. To do this,
we call the recompose_op function.

3.2. Step 1: A Model Interpreter 30

recompose_op :: String→ Value→ (Expr→ Expr)→ Context→ ValueOrDecomposition
recompose_op op v CEmpty =
VODDec (PRError ("Cannot handle free op: " <> op<> "(" <> show v<> ")")) CEmpty

recompose_op op v x_op c@(CHandle h@(Handler ops) c′) =
case find (λ(OpI op′)→ op ≡ op′) ops of
Just (OpI x k e)→ VODDec (PRHandleOp h x_op x k e v) c′
Nothing→
let (, f) = recompose_ss c
in recompose_op op v (f.x_op) c′

recompose_op op v x_op c =
let (c′, f) = recompose_ss c
in recompose_op op v (f.x_op) c′

Figure 3.11: Recomposing the Xop context up until the nearest handler handling an operation

An impression of the recompose_op function is given in figure 3.11. This function takes the name
of the operation and argument value of an op-call op v, the built context Xop as a function mapping
expressions, and the surrounding context C[·]. This function looks at C[·] to find the nearest handle-
expression handling the op-call with an appropriate handler. If it does not find such a handler, it
adds the current context to Xop by recomposing it to an Expr → Expr function and composing it with
the current Xop function. It calls the recompose_ss function to do this, which recomposes a single
step, meaning it shallowly turns a context into its containing context and an Expr → Expr function
representing that shallow context wrapping.

recompose_ss :: Context→ (Context,Expr→ Expr)
recompose_ss (CAppL c e2) = (c, λt→ App t e2)
recompose_ss (CAppR v1 c) = (c, λt→ App (Closed v1) t)
recompose_ss (COp op c) = (c, λt→ OpCall op t)
recompose_ss (CHandle h c) = (c, λt→ Handle h t)
recompose_ss ... = ...

recompose :: Context→ Expr→ Expr
recompose CEmpty t = t
recompose c t = let (c′, f) = recompose_ss c in recompose c′ (f t)

Figure 3.12: Single-step and full recomposition of contexts into expressions.

In figure 3.12 we implement single-step and full recomposition of contexts. Every single step of
recomposition takes a context and produces the inner context and a function as its result. The func-
tion fills in the context hole with its expression parameter, turning a single layer of the context back
into an expression. Notice that this function has to be partial, as we cannot find an inner context for
CEmpty. This partialness could be resolved with a Maybe, but we would rather keep recompose and
recompose_op easier to read this way. recompose applies this single-step function and continues
recursively until an empty context is encountered.

3.3. Step 2: Apply Transformations to Derive Denotational Interpreter 31

decompose :: Expr→ ValueOrDecomposition
decompose = decompose_expr CEmpty
iterate0 :: ValueOrDecomposition→ Result
iterate0 (VODValue v) = Result v
iterate0 (VODDec pr c) = case contract pr of
Contractum e→ iterate0 (decompose (recompose c e))
Error err→Wrong err

normalise0 :: Expr→ Result
normalise0 e = iterate0 (decompose e)

Figure 3.13: The first normalisation function for Deep.

Finally, we connect all these pieces together in the iterate0 and normalise0 functions in figure 3.13
to do the following:

1. Take an expression and decompose it into either a value or a decomposition.
2. If we derive a value, we are done evaluating and it can be returned as a Result.
3. If we derive a decomposition, we contract its containing PotentialRedex and find the next decom-

position of the recomposed expression.

3.3. Step 2: Apply Transformations to Derive Denotational Interpreter
We obtained a small-step interpreter in the style of Danvy’s normalising interpreter [20]. We now trans-
form this small-step interpreter, following the steps from [20], into a big-step interpreter of the same
language. During every step, we re-number our functions with a new number. So, for instance, iterate0
becomes iterate1 in the first step. We thus also change references to functions with every step to a
new postfix number. The steps to derive a big-step interpreter range steps 1 up to 7:

1. Refocusing decompositions
2. Inlining the contraction function
3. Lightweight fusion
4. Compressing corridor transitions
5. Renaming transition functions and flattening configurations
6. Refunctionalisation
7. Back to direct style

In the following subsections, wemake notes on performing steps 4, 6, and 7 of this process. Besides
these steps, we follow the transformations from [20] to the letter, exactly as also shown in Chapter 2.
These steps demonstrate some maybe less obvious caveats required for effects and handlers.

Finally, we derive a denotational interpreter from the big-step interpreter by inversely applying clo-
sure conversion.

3.3.1. To Denotational Step 4: Compressing corridor transitions
In this step, we check find and compress ‘corridor transitions’. This means we will look at any function
application and check whether there are multiple computational paths for that application. If there is
only one, we fill in this one path of computation in the place of the application and we might be able to
remove some transitions from our interpreter entirely.

As per usual, we see that the iterate4 function largely consists of dead clauses after this process,
as all calls of the form iterate4 (VODDec...) are considered corridor transitions. However, in addition to
the usual transformations, we add one of our own in this step. We add it here to be able to demonstrate
step 6 more clearly.

The transformation we add is to consider the only call to refocus_op3 an opportunity for reducing the
number of functions we need to deal with. We will merge refocus_op3 into refocus_context3. We do so

3.3. Step 2: Apply Transformations to Derive Denotational Interpreter 32

by introducing a data type that holds either the Value argument to refocus_context3, or the operation
describing arguments to refocus_op3. We call this data structure ValueOrOp:

data ValueOrOp
= NoOp Value
| Op String Value (Expr→ Expr)

refocus_context4 :: ValueOrOp→ Context→ Result

We change the type of refocus_context3 to receive a ValueOrOp, rather than a Value. We adjust
the existing cases of refocus_context3 to match a NoOp v instead of just a Value v. We then merge the
three cases of refocus_op3 into this function and capture its arguments except for the context with the
Op constructor. Finally, whenever a call to refocus_op3 was made, we wrap its first three arguments
in an Op and whenever a call to refocus_context3 was made, we wrap its value argument in NoOp.

Consider the case for COp. Here, we change the call to refocus_op3 to target refocus_context4
instead and we wrap matches and values that are passed as arguments in Op or NoOp:

refocus_context3 v (COp op c) = refocus_op3 op v id c
−→

refocus_context4 (NoOp v) (COp op c) = refocus_context4 (Op op v id) c

Finally, let us look at how the cases for refocus_op3 are transformed. The generic case for recom-
posing single layers of the context is easily adjusted by retargeting the calls to refocus_op3 and adding
Op constructors. The case for handling is just as easily adjusted to fit in refocus_context4.

refocus_op3 op v x_op c =
let (c′, f) = recompose_ss c
in refocus_op3 op v (f.x_op) c′
−→

refocus_context4 (Op op v x_op) c =
let (c′, f) = recompose_ss c
in refocus_context4 (Op op v (f.x_op)) c′

3.3.2. To Denotational Step 6: Refunctionalisation
After renaming refocus_context to continue and refocus_expr to eval and isolating unary and binary
operation application into applyUnOp5 and applyBinOp5, we are now tasked with merging continue
into the eval function. The evaluation function gets the following signature:

eval6 :: Expr
→ (Value→ Result)
→ (String→ Value→ (Expr→ Expr)→ Result)
→ Result

In this signature, we have turned continue5 into two higher-order functions, each of their parameters
determined by a case in ValueOrOp. To implement this function, we perform the usual refunctionalisa-
tion as done by Danvy, but we need to add two continuation functions per recursive call. This process
involves filling in and simplifying computations done by recompose_ss for the second (op-finding) con-
tinuation. We show, for instance, what it looks like to evaluate an operation call in this refunctionalised
interpreter:

3.3. Step 2: Apply Transformations to Derive Denotational Interpreter 33

eval5 c (OpCall op e) = eval5 (COp op c) e
...
continue5 (NoOp v) (COp op c) = continue5 (Op op v id) c
...
recompose_ss (COp op c) = (c, λt→ OpCall op t)
−→

eval6 (OpCall op e) kv ko =
eval6 e (λv→ ko op v id)
(λop′ v x_op→ ko op′ v ((λt→ OpCall op t) .x_op))

We see that two continuations are captured instead of a context: kv for value continuations and
ko for operation continuations. The operation call first evaluated its argument. If a value is resulted
from evaluation, the operation continuation is called with this operation as its arguments. If, instead,
the argument requires another operation to be evaluated, the operation is passed along the operation
continuation, wrapping the argment expression with the recomposition of the current operation. The
highlighted part corresponds to the case for recompose_ss of an operation call context.

Taking a look at the case for handling operations, we see the same transformations. We combine
all cases for handling within eval5, continue5, and recompose_ss to create the case for eval6. Note
that we can link back every part of the resulting code to one of the four functions listed before the arrow.
For instance, we highlight the part that came from unfolding recompose_ss again.

eval5 c (Handle h eb) = eval5 (CHandle h c) eb
...
continue5 (NoOp v) (CHandle (Handler (ReturnI x e)) c) = eval5 c (subst x v e)
...
continue5 (Op op v x_op) c@(CHandle h@(Handler ops) c′) =
case find (λ(OpI op′)→ op ≡ op′) ops of
Just (OpI x k e)→
eval5 c′ (subst x v

(subst k (LambdaV "y" (Handle h (x_op (Var "y"))))
e))

Nothing→
let (, f) = recompose_ss c
in continue5 (Op op v (f.x_op)) c′

...
recompose_ss (CHandle h c) = (c, λt→ Handle h t)
−→

eval6 (Handle h@(Handler ops (ReturnI xr er)) eb) kv ko =
eval6 eb
(λbv→ eval6 (subst xr bv er) kv ko)
(λop v x_op→
case find (λ(OpI op′)→ op ≡ op′) ops of
Just (OpI x k e)→
eval6 (subst x v

(subst k (LambdaV "y" (Handle h (x_op (Var "y"))))
e))

kv ko
Nothing→ ko op v ((λt→ Handle h t) .x_op))

3.3.3. To Denotational Step 7: Back to direct style
Finally, to convert back to direct style, we use the same trick as used in step 4. We realise the result
of evaluating an expression in Deep is either a value or an unhandled operation. This realisation does

3.3. Step 2: Apply Transformations to Derive Denotational Interpreter 34

mean that the result of evaluating an expression can thus be incomplete if no handler is inserted to
handle an operation. We do, however, assume that a type-checker would be in place to check that
the property of having no unhandled operations is enforced. Indeed, we type our expressions later to
enforce this property (see: Section 3.5.

To implement a direct style interpreter, we thus add a case to the Result data type. This result type
can be seen in figure 3.14. The constructor Op7 String Value (Expr → Expr) represents unhandled
operations with exactly the same types as the operation continuation from the last step.

data Result7
= NoOp7 Value
| Op7 String Value (Expr→ Expr)
|Wrong7 String

Figure 3.14: Result type for direct style evaluation.

When turning eval6 into eval7, we translate every call to the value continuation to aNoOp7 result and
every call to an operation continuation to an Op7 result. We show this transformation in the evaluation
function for OpCall below. Specific to OpCall is that it has the only value-continuation not ending with
a NoOp7 result. Instead, it produces the unhandled operation it represents.

eval6 (OpCall op e) kv ko =
eval6 e
(λv→ ko op v id)
(λop′ v x_op→ ko op′ v ((λt→ OpCall op t).x_op))
−→

eval7 (OpCall op e) =
case eval7 e of
NoOp7 v→ Op7 op v id
Op7 op v x_op→ Op7 op v ((λt→ OpCall op t).x_op)

Finally, we take a look at the evaluation of handling. The same transformations are applied on it to get
the following evaluation case. However, the result of evaluating the body of a handle block is given
somewhat special treatment. Instead of simply re-wrapping unhandled operations, they are checked
and handled if possible:

eval7 (Handle h@(Handler ops (ReturnI xr er)) eb) =
case eval7 eb of
NoOp7 bv→ eval7 (subst xr bv er)
Op7 op v x_op→
case find (λ(OpI op′)→ op ≡ op′) ops of
Just (OpI x k e)→
eval7 (subst x v
(subst k (LambdaV "y" (Handle h (x_op (Var "y")))) e))

Nothing→ Op7 op v ((λt→ Handle h t).x_op)
Wrong7 err→Wrong7 err

3.3.4. To Denotational Step 8: From Big-Step to Denotational
We use the inverse closure conversion or lifting of function arguments as described in Section 2.1.10.
We need to not only apply this conversion to lambdas and lets, but also to the operation implementations
and return implementations for effect handlers. The continuation argument for operation implementa-
tions is converted to a higher-order Value8→ Expr8 argument. The following code shows some of the
changes made to the data types for our interpreter and the interpreting function itself:

3.4. Step 3: Lettify Pure Computations 35

data Value8
= LambdaV8 (Value8→ Expr8)
| ...

data OpI8 =
OpI8 String

(Value8→ (Value8→ Expr8)→ Expr8)
data Handler8 =
Handler8 [OpI8] (Value8→ Expr8)

data Expr8
= Let8 Expr8 (Value8→ Expr8)
| ...

data Result8
= NoOp8 Value8
| Op8 String Value8 (Expr8→ Expr8)

eval8 :: Expr8→ Result8
eval8 ...
eval8 (OpCall8 op e) =
case eval8 e of
NoOp8 v→ Op8 op v id
Op8 op v x_op→ Op8 op v ((λt→ OpCall8 op t).x_op)

eval8 (Handle8 h@(Handler8 ops ret) eb) =
case eval8 eb of
NoOp8 bv→ eval8 (ret bv)
Op8 op v x_op→
case find (λ(OpI8 op′)→ op ≡ op′) ops of
Just (OpI8 body)→
eval8 (body v (λy→ (Handle8 h (x_op (Lit8 y)))))

Nothing→ Op8 op v ((λt→ Handle8 h t).x_op)
eval8 ...

We see that, instead of substituting arguments into the bodies of lambdas, we now directly call a
function, passing the argument into it instead.

3.4. Step 3: Lettify Pure Computations
In this step, we remove all pure computations except for Let and Handle from the expression tree. This
means binary expressions, App-expressions, etc. are no longer a part of Expr at the end of this step.
We do this by extracting the evaluation for every pure expression into its own smart-constructor like
function. We start by pulling all cases for evaluation into a separate function for each:

app8 :: Expr8→ Expr8→ Result8
app8 ef ea =
case eval8 ef of
NoOp8 vf→ case eval8 ea of
NoOp8 va→ case vf of
LambdaV8 body→ eval8 (body va)
→ error ("Cannot apply non-function value: " <> show vf)

Op8 op v x_op→ Op8 op v ((λt→ App8 (Lit8 vf) t).x_op)
Op8 op v x_op→ Op8 op v ((λt→ App8 t ea).x_op)

We take these functions, and ‘lettify’ each to find the desired form. For a lack of a better word, we
use ‘lettify’ to say that we find a structure that only uses Let-expressions to perform boiler-plate construc-
tions. The boiler-plate constructions here are the cases for reconstructing the surrounding context of an
unhandled operation. This reconstruction is generalised by the evaluation case for Let-expressions2.
In other words, evaluating this ‘lettified’ expression should always yield the same behaviour as the eval-
uating the original expression would have3. Such a ‘lettified’ function for function application is found
below:

2This is also why the freer monad abstraction in the end works so well. That Let evaluation is a good generalisation for other
pure computations foreshadows its relation to monadic bind.

3Unhandled operations would contain a slightly different context, but in behaviour, the expressions contained in this context
are also equivalent.

3.5. Step 4: Add Intrinsic Typing 36

app8′ :: Expr8→ Expr8→ Expr8
app8′ e1 e2 =
Let8 e1 (λv1→
Let8 e2 (λv2→ case v1 of
LambdaV8 body→ body v2
→ error ("Cannot apply non-function value: " <> show v1)))

This re-expresses the application expression in terms of only Let-expressions. This step requires
that eval8 (app8 e1 e2) = eval8 (App8 e1 e2) for arbitrary e1 and e2. Notice that with this abstraction,
we fully remove the dependency on an expression data constructor.

In figure 3.16a, we show the new data structure to represent expressions and the new smart
constructor-like function for constructing application expressions. The new expression tree no longer
needs to contain constructors for pure computations such as function application, instead these com-
putations are now embedded. In figure 3.16b, we show the full evaluation function at this point. We
see that only Let-expression evaluation requires the check_result9 function now as all other uses have
been eliminated. Indeed all cases remain the same as last step, but we have removed the need for
many cases of the evaluation function.

data Expr9
= Let9 Expr9 (Value9→ Expr9)
| OpCall9 String Value9
| Handle9 Handler9 Expr9
| Lit9 Value9

app9 :: Expr9→ Expr9→ Expr9
app9 e1 e2 =
Let9 e1 (λv1→
Let9 e2 (λv2→ case v1 of
LambdaV9 body→ body v2
→ error ("[...]" <> show v1)))

(a) Full expression type after ‘lettifying’ all other
expressions and smart constructors for op-calls

and lists.

eval9 :: Expr9→ Result9
eval9 (Let9 ev body) =
check_result9 (eval9 ev)
(λv→ eval9 (body v))
(λt→ Let9 t body)

eval9 (OpCall9 op v) = Op9 op v Lit9
eval9 (Handle9 h@(Handler9 ops ret) eb) =
case eval9 eb of
NoOp9 bv→ eval9 (ret bv)
Op9 op v x_op→
case find (λ(OpI9 op′)→ op ≡ op′) ops of
Just (OpI9 body)→
eval9 (body v (λy→ (Handle9 h (x_op y))))

Nothing→ Op9 op v ((λt→ Handle9 h t).x_op)
eval9 (Lit9 v) = NoOp9 v

(b) Full evaluation of expressions after ‘lettifying’.

3.5. Step 4: Add Intrinsic Typing
To progress further, it is most illustrative and even necessary for the final typed interpreter to introduce
the types we have so far implicitly enforced. To do this, we redefine value and expression types as
GADTs, allowing us to intrinsically type values and expressions. We start with redefining the Value-type
as Value10 a, where a represent the Haskell type that a Value-constructor represents. In the following,
we see, for instance, lambda values types as a function from Value10 s to Expr10 sig a, where this
expression type is an expression containing some unhandled operations described with sig and, under
evaluation, might result in a value of type a. For example, we see that NilV10 is a representation of the
Haskell type [x], and BoolV10 is encoding a Bool.

data Value10 a where
LambdaV10 :: (Value10 x→ Expr10 sig a)→ Value10 (Value10 x→ Expr10 sig a)
IntV10 :: Int→ Value10 Int
BoolV10 :: Bool→ Value10 Bool
UnitV10 :: Value10 ()
PairV10 :: Value10 x→ Value10 y→ Value10 (x, y)

3.6. Step 5: Generalise Values 37

NilV10 :: Value10 [x]
ConsV10 :: Value10 x→ Value10 [x]→ Value10 [x]

To type effects and handlers, we use Data Types à la Carte [76]. This means that we encode all effects
possibly left unhandled in an expression as a type-parameter sig :: ∗ → ∗. We show the encoding of
handlers and expressions in figure 3.17. Here, we see that type parameters are added to every usage
of a value or expression type, making the implicit typing rules we have enforced up until now explicit.
For instance, Let-expressions take an arbitrary expression of type x, and a function taking a value of
type x and producing a new expression of the same type as the final Let-expression. More complexly,
handling an operation takes a handler that removes an effect eff from the signature of the expression
and transforms its body result type from a to the answer type modification of a: w.

data Handler10 eff r a w where
Handler10 :: (forall x.eff x→ (Value10 x→ Expr10 r w)→ Expr10 r w)

→ (Value10 a→ Expr10 r w)
→ Handler10 eff r a w

data Expr10 sig a where
Let10 :: Expr10 sig x→ (Value10 x→ Expr10 sig a)→ Expr10 sig a
OpCall10 :: sig a→ Expr10 sig a
Handle10 :: Handler10 eff r a w→ Expr10 (eff :++: r) a→ Expr10 r w
Lit10 :: Value10 a→ Expr10 sig a

Figure 3.17: Intrinsically typed handlers and expressions.

To complete this transformation, we need to adjust the evaluation function and the result type. The
Result type is now fully typed, making the type-based errors nearly impossible. We thus remove the
previously required Wrong constructor to favour raising an exception in Haskell directly. Finally, the
evaluation function is changed only for the case for Handle-expressions. Matching operations to oper-
ation implementations present in a handler used to be done with a find, but is now done using the Inl
and Inr constructors. When an operation is part of the handler’s operation set, the effect belonging to
that operation is left-most in the effect signature. This means that any operation wrapped in Inl is part
of the effect that is currently handled.

data Result10 sig a where
NoOp10 :: Value10 a→ Result10 sig a
Op10 :: sig x→ (Value10 x→ Expr10 sig a)→ Result10 sig a

eval10 :: Expr10 sig a→ Result10 sig a
eval10 (Handle10 h@(Handler10 ops ret) eb) =
case eval10 eb of
NoOp10 bv→ eval10 (ret bv)
Op10 (Inl op) x_op→ eval10 (ops op (λy→ (Handle10 h (x_op y))))
Op10 (Inr op) x_op→ Op10 op ((λt→ Handle10 h t).x_op)

...

3.6. Step 5: Generalise Values
In this step, we remove the Value type and generalise to allow, in theory, any type of value to inhabit
the pure computation (Lit) branch of the expression tree. Instead of encoding Haskell values with this
data type, we start using the Haskell values they represent directly. Generalising Value after adding
intrinsic typing is very straight forward. We need to remove every occurrence of the Value type and
we need to change smart constructors to directly use Haskells built-in value constructors for pairs and
lists for instance. For example, the Expr tree is changed to no longer contain Value-types and the pair
function now uses the Haskell constructor for pairs.

3.7. Step 6: Lettify Handling 38

data Expr11 sig a where
Let11 :: Expr11 sig x→ (x→ Expr11 sig a)→ Expr11 sig a
OpCall11 :: sig a→ Expr11 sig a
Handle11 :: Handler11 eff r a w→ Expr11 (eff :++: r) a→ Expr11 r w
Lit11 :: a→ Expr11 sig a

pair11 :: Expr11 sig x→ Expr11 sig y→ Expr11 sig (x, y)
pair11 e1 e2 =
Let11 e1 (λv1→
Let11 e2 (λv2→ Lit11 (v1, v2)))

3.7. Step 6: Lettify Handling
There are only 4 constructors of the expression type left at this point. In this step and the next we
eliminate Handle by moving its interpretation into a function, and we find that, after this move, we can
merge two of the remaining constructors into one. This step involves writing a handle-function that
correctly represents the interactions that a Handle-expression could have with all other expressions.

We again, make sure to abstract handle into a function that results in an expression by using Let to
mimic the use of recursive calls to eval. In figure 3.18, the body of the handle is structurally matched
to produce an expression that can directly be evaluated to yield a result. These cases are as follows:

• Case 1 corresponds to evaluating a Handle expression where the body is already a value and is
thus immediately passed to the return function.

• Case 2 and 3 correspond to finding that the body evaluates to an unhandled operation and the
op either being part of the operations handled by this handler (case 2) or not (case 3).

• Case 4 is an occurrence where a Let-expression harbours a literal in its argument, these can be
immediately applied and the result can be further handled.

• Case 5 describes that, when Let-expressions are nested inside Let-expression arguments, the
larger Let is normalised by moving the inner Let into the body of the outer Let.

• Case 6 ensures lone OpCall expressions are handled in the same way as a Let-expression with
an OpCall in its argument and no meaningful body. This corresponds to OpCalls evaluating to an
Op result with Lit as the initial recomposition function.

handle12 :: Handler12 eff r a w→ Expr12 (eff :++: r) a→ Expr12 r w
handle12 h@(Handler12 ops ret) eb = case eb of
Lit12 bv→ ret bv 1
Let12 (OpCall12 (Inl op)) body→ ops op (λy→ (handle12 h (body y))) 2
Let12 (OpCall12 (Inr op)) body→ Let12 (OpCall12 op) ((λt→ handle12 h t).body) 3
Let12 (Lit12 bv) body→ handle12 h (body bv) 4
Let12 (Let12 e′ body′) body→ handle12 h (Let12 e′ (λv′ → Let12 (body′ v′) body)) 5
OpCall12 op→ handle12 h (Let12 (OpCall12 op) Lit12) 6

Figure 3.18: The handle function representing the old Handle data constructor.

3.8. Step 7: Merge OpCall and Let
Finally, we see that the three constructors left have some extraneous parts to them. Specifically, ex-
pressions of the form Let (Lit v) b do little extra calculation. It would almost always make more sense
to encode this as (b v) directly, without the need of an interpreter to do exactly that. Additionally, we
take note that handling prefers to wrap occurrences of OpCall in a Let-expression to explicitly show
what continuation should be passed to the operation implementation. Because of this, it makes sense
to merge OpCalls and Lets into a single expression form, eliminating the possibility of having literals in
the place of the Let-expression argument.

3.8. Step 7: Merge OpCall and Let 39

In figure 3.19 we show the new expression type and a replacement for constructing the old Let-
and OpCall-expressions. The new OpLet constructor has the shape of Let, but only takes operations
as its argument, thus representing Let-expressions that can only take (completed) OpCalls as their
arguments. For the old Let-expressions, we introduce a let function. This function directly calls the
let-body on literal values and propagates a let into the body of an OpLet otherwise, similar in function
to cases 4 and 5 from figure 3.18. The op function receives a constructor for the operation and an argu-
ment expression. It produces the OpLet expression after first evaluating and embedding the operation
argument in a similar fashion to case 6 from figure 3.18.

data Expr13 sig a where
OpLet13 :: sig x→ (x→ Expr13 sig a)→ Expr13 sig a
Lit13 :: a→ Expr13 sig a

let13 :: Expr13 sig x→ (x→ Expr13 sig a)→ Expr13 sig a
let13 (Lit13 x) body = body x 4
let13 (OpLet13 op k) body = OpLet13 op (λx→ let13 (k x) body) 5
op13 :: eff :«: sig⇒ (x→ eff a)→ Expr13 sig x→ Expr13 sig a
op13 op e = let13 e (λx→ OpLet13 (inj $ op x) Lit13) 6

Figure 3.19: The expressions for Deep reduced to only OpLet and Lit after merging OpCall and Let and replacements for the
old Let- and OpCall-expressions.

After merging these operators, we see that cases 4 to 6 of the handle function are indeed completely
incorporated in the implementations of let and op. In figure 3.20, we show the changes to the handle
function. We seematches and constructions ofOpCalls nested in argument expression of a Let reduced
to matching and constructingOpLet instead and we see cases 4 to 6 removed from the handle function.
Indeed, what we have left is what we believe to be a fairly minimal version of the handling function,
embodying algebraic effect handling in only three cases:

1. Return a value body by calling the return function for wrapping it in the answer type modification.
2. Handle an operation by calling its op-implementation with it and its continuation (captured by

means of an OpLet).
3. Delegate any other operations to a handler further down the chain by skipping over it and handling

further down the continuation of those operations.

handle13 :: Handler13 eff r a w→ Expr13 (eff :++: r) a→ Expr13 r w
handle13 h@(Handler13 ops ret) eb = case eb of
Lit13 bv→ ret bv 1
OpLet13 (Inl op) body→ ops op (λy→ (handle13 h (body y))) 2
OpLet13 (Inr op) body→ OpLet13 op ((λt→ handle13 h t).body) 3

Figure 3.20: Handling function after merging OpCall and Let expressions into a single OpLet.

We are left with implementing the evaluation function. Its implementation is now rather short. The
only cases left are those of OpLet and Lit where both directly correspond to a constructor in Result.
Indeed, instead of using this Result data type to encode the same thing as Expr now embodies, we
might as well only match those expressions that have no effects left, represented here by the empty
effect EPure, such as is done with the run function.

3.9. Step 8: Freer Monad! 40

eval13
:: Expr13 sig a
→ Result13 sig a

eval13 (OpLet13 op body) = Op13 op body
eval13 (Lit13 v) = NoOp13 v
run13 :: Expr13 EPure a→ a
run13 (Lit13 v) = v

3.9. Step 8: Freer Monad!
The final fact we take note of is the familiarity of the signature of let13. Its type is: let13::Expr13 sig x→
(x → Expr13 sig a) → Expr13 sig a. This should look familiar, as when we substitute m = Expr13 sig,
we get a type of m x → (x → m a) → m a, which is exactly the signature of monadic bind. Indeed
we have used Let-expressions as though they are the monadic bind operation since section 3.4 to
abstract computations without operations. As it turns out, we can directly implement a Monad instance
for Expr13 sig:

instance Monad (Expr13 sig) where
return = Lit13
(>>=) = let13

We can now implement, for instance, function application using do-notation, rather than having to man-
ually write let-binds:

app13 :: Expr13 sig (x→ Expr13 sig a)→ Expr13 sig x→ Expr13 sig a
app13 e1 e2 = do
v1← e1
v2← e2
v1 v2

In fact, the signature of Expr13 is exactly equivalent to the signature of the freer monad [48]. Either
this or the free monad [44] is what is used most often to model algebraic effects and handlers. We
can see now why this model is so useful: it separates pure actions from effectful ones by means of the
Lit and OpLet constructors and it allows access to the large expressive power of monads. As a final
showing of the equivalence of Expr13 to the freer monad, we can expand the implementation of let13
in the body of (>>=) to get the following monad instance:

instance Monad (Expr13 sig) where
return = Lit13
Lit13 x>>= body = body x
OpLet13 op k>>= body = OpLet13 op (λx→ k x>>= body)

This is the abstraction that is also used as a starting point for implementing other types of effects. In
Chapter 4, we start with the exact same implementation for effect trees, but we change the handling
abstraction. In Chapter 5, we use an adjusted tree that embeds scoped effects. Finally, in Chapter 6, we
show a way of testing embedded interpreters such as this one and comparing it to any other interpreter.

4
Deriving an Operational Semantics

for Shallow Algebraic Effects

In this chapter we examine a variant of the semantics of algebraic effects called shallow algebraic
effects. These semantics of handlers differ only in their titular component: effect handlers. We saw
in Section 3.1 that handlers propagate themselves into the continuation argument of an operation im-
plementation. Shallow handlers differ in that they instead leave that propagation in the hand of the
programmer. This difference makes shallow effects somewhat more flexible to write. However, shal-
low effects and deep effects are otherwise equivalent in expressivity [32].

We introduce inverse program transformational steps that mirror our steps in Chapter 3. These
steps turn the monadic implementation from Section 3.9 into shallowly handled effects (Section 4.3)
and then to an untyped denotational interpreter. The steps we add are as follows:

1. Abstract a handle function that summarises the wanted behaviour.
2. Split the Impure constructor into OpCall and Let (inverse of Section 3.8).
3. Inline and lift the handle function as a Handle constructor in the expression tree (inverse of Sec-

tion 3.7).
4. Inline and lift pure computations into the expression tree and add a Value type (inverse of Sec-

tion 3.4 and Section 3.6).
5. Remove intrinsic typing from the language (inverse of Section 3.5).

The order of these inverse steps differs only in removing intrinsic typing. Indeed it should be possible
to first remove intrinsic typing and later inline and lift pure language features into the expressiont tree,
but we choose to have the interpreter safely intrinsically typed a little longer. After these custom steps,
we apply closure conversion to get a big-step interpreter, after which we apply the list of steps shown by
Vesely and Fisher in ‘One step at a time’ [78] to get the final small-step interpreter shown in Section 4.6.
Finally, we derive a small-step operational semantics for shallow effects and handlers in Section 4.7.

4.1. Step 0: Specify Handle Function
The first step is to abstract handling from the general use of the freer monad. Specifically, we want to
abstract a handle function that allows us to handle effects ‘in a shallow manner’. We write a handling
function for states using the freer monad below:

hSt0 :: Freer (St st :++: r) a→ Freer r (st→ Freer r (st, a))
hSt0 (Pure a) = Pure (λst→ return (st, a))
hSt0 (Impure (Inl (Get ())) k) = Pure (λst→ hSt0 (k st)>>= ($ st))
hSt0 (Impure (Inl (Put st)) k) = Pure (_ → hSt0 (k ())>>= ($ st))
hSt0 (Impure (Inr op) k) = Impure op (hSt0.k)

41

4.2. Step 1: Split Impure into Let and Impure Computation 42

This function matches on the cases of Freer to define a return-like behaviour in the Pure-clause,
operation handling behaviour in the clauses for Impure (Inl), and deferring behaviour in the clause
for Impure (Inr). We could abstract these behaviours in at least two ways. The deep handling
abstraction we have already seen abstracts all recursive calls to hSt0. The shallow abstraction leaves
the place of applying the handler up to the programmer. The sHandle function and SHandler type
together implement this abstraction:

data SHandler0 eff r a w where
SHandler0 ::
(forall x.eff x→ (x→ Freer (eff :++: r) a)→ (Freer (eff :++: r) a→ Freer r w)→ Freer r w)→
(a→ Freer r w)→
SHandler0 eff r a w

sHandle0 :: SHandler0 eff r a w→ Freer (eff :++: r) a→ Freer r w
sHandle0 hlr@(SHandler0 ops ret) (Pure a) = ret a
sHandle0 hlr@(SHandler0 ops ret) (Impure (Inl op) k) = ops op k (sHandle0 hlr)
sHandle0 hlr@(SHandler0 ops ret) (Impure (Inr op) k) = Impure op (sHandle0 hlr.k)

The only difference between this function and its deep counterpart is in the Impure (Inl)-clause
and its corresponding parameter in the SHandler constructor. Instead of always applying sHandle0 hlr
to the continuation result, we leave this application to the programmer, leaving open the option of
applying a different handler. In the usual configurations of such a language, recursive definitions are
present in the language in one way or another. We do not make these available with some letrec or
recursive function definition, so we pass the current handler to the operation implementation to use for
convenience.

4.2. Step 1: Split Impure into Let and Impure Computation
This step inverses the merging of OpCall and Let. We do so to reach a state where all operations in
our language are part of the expression data type. From this point on, we will name our expression
data type Expr, instead of Freer.

Exactly inverse to how we merged OpCall and Let into OpLet and later Impure in Section 3.8, we
now split Impure to get back OpCall and Let. Aside from the constructors we add to Expr1, we add a
smart constructor to construct op-calls in the same way we did before.

data Expr1 sig a where
Lit1 :: a→ Expr1 sig a
OpCall1 :: sig a→ Expr1 sig a
Let1 :: Expr1 sig x→ (x→ Expr1 sig a)→ Expr1 sig a

opCall1 :: eff :«: sig⇒ (x→ eff a)→ Expr1 sig x→ Expr1 sig a
opCall1 eff xt = xt>>= λx→ OpCall1 (inj $ eff x)

Finally, we also need to adjust the running function. We rename run to eval and add a case for Let.
Interpreting Let is done by applying the body function to the fully evaluated binding.

eval1 :: Expr1 EPure a→ a
eval1 (Lit1 v) = v
eval1 (Let1 ev body) = eval1 (body (eval1 ev))

4.3. Step 2: Inline and Lift Handling 43

4.3. Step 2: Inline and Lift Handling
Embedding the sHandle function into the Expr-type and eval-function is a process inverse to the one de-
scribed in Section 3.7. We take the signature of sHandle and use it as the type of the GADT constructor
for SHandle.

data Expr2 sig a where
Lit2 :: a→ Expr2 sig a
OpCall2 :: sig a→ Expr2 sig a
Let2 :: Expr2 sig x→ (x→ Expr2 sig a)→ Expr2 sig a
SHandle2 :: SHandler2 eff r a w→ Expr2 (eff :++: r) a→ Expr2 r w

Writing an evaluation function with type Expr2 EPure a → a hits a dead end when we try to write
an implementation for the new SHandle case. In this case, an expression of type eff :++: Expr is
introduced, which we do not know how to evaluate with this old evaluation function. Instead, we use
a trick learned from Section 3.3.3: we add a Result type to say that unhandled operations are valid
results of evaluation. We change the signature of eval to return this Result type, and add cases for
OpCall and SHandle, as well as a case-match case for Lets.

data Result2 sig a where
NoOp2 :: a→ Result2 sig a
Op2 :: sig x→ (x→ Expr2 sig a)→ Result2 sig a

eval2 :: Expr2 sig a→ Result2 sig a
eval2 (Lit2 v) = NoOp2 v
eval2 (OpCall2 op) = Op2 op Lit2
eval2 (Let2 ev body) = case eval2 ev of
NoOp2 v→ eval2 (body v)
Op2 op k→ Op2 op (λt→ k t>>= body)

eval2 (SHandle2 hlr@(SHandler2 ops ret) eb) = case eval2 eb of
NoOp2 v→ eval2 (ret v)
Op2 (Inl op) k→ eval2 (ops op k (SHandle2 hlr))
Op2 (Inr op) k→ Op2 op (SHandle2 hlr.k)

This Result type closely resembles the original Freer monad. The main difference, however, is that it
does not refer to itself in the continuation argument of Op. The clauses for Lit and OpCall wrap their
values in NoOp and Op, respectively. For OpCalls, we need to add a continuation, we initialise this
with Lit, corresponding to return, i.e. merely wrapping values into the Expr monad.

The case-match for Let resembles the implementation of bind (>>=) for the freer monad quite closely.
Indeed, if we try to emulate the behaviour of Let in the freer monad, we can use ’bind’ directly. The
implementation for the SHandle clause is obtained directly from the cases of sHandle, wrapped with
recursive calls to eval unless an unhandled operation is intentionally returned.

4.4. Step 3: Inline and Lift Pure Computations and Specialise Val-
ues

The goal of these transformations is to lift Haskell embeddings into the expression tree. Although the
Expr type already has constructors for the most crucial parts of a language centred around effects
and handlers, a full-blown language requires other features and functionalities to be usable. This step
unlifts these pure features from our embedding language into the expression tree. This makes it so
that the characteristics of these pure features mimic the characteristics of Haskell [74]. We do two
transformations to accomplish this feat.

1. We inline and implement functionalities that need to be part of the expression tree.
2. We specify and limit the types that values may assume.

4.4.1. Inline and Lift Pure Language Features
We select the same set of pure language features previously used by Deep and unlift them into the
expression tree. We do this by first writing out the functionality we would like to unembed. We then inline

4.4. Step 3: Inline and Lift Pure Computations and Specialise Values 44

the body of each functionality until a form is reached that only consists of Let and Lit constructors and
the embedded functionality. For instance, for constructing pairs (or 2-tuples), we perform the following
steps:

pair2 :: Expr2 sig x→ Expr2 sig y→ Expr2 sig (x, y)
pair2 = liftM2 (,)

pair2_1 :: Expr2 sig x→ Expr2 sig y→ Expr2 sig (x, y)
pair2_1 e1 e2 = do
v1← e1
v2← e2
return (v1, v2)

pair2_2 :: Expr2 sig x→ Expr2 sig y→ Expr2 sig (x, y)
pair2_2 e1 e2 =
e1>>= λv1→
e2>>= λv2→
return (v1, v2)

pair2_3 :: Expr2 sig x→ Expr2 sig y→ Expr2 sig (x, y)
pair2_3 e1 e2 =
Let2 e1 (λv1→
Let2 e2 (λv2→
Lit2 (v1, v2)))

Notice that we use the definitions of the monad instance to convert (>>=) and return calls to expressions.
To implement pair expressions in our new expression tree, we add a constructor for pair-expressions in
the tree and we use the desugaring of the functionality into Lets and Lits to write the eval implementation:

data Expr3 sig a where
Pair3 :: Expr3 sig x→ Expr3 sig y→ Expr3 sig (x, y)
...

eval3 (Pair3 e1 e2) =
eval3 (Let3 e1 (λv1→
Let3 e2 (λv2→
Lit3 (v1, v2))))

Finally, we can further reduce this expression by inlining eval3 (Let3...), etc. We obtain the following
equivalent implementation that we find to be convenient in its descriptivity while being close to the most
performant equivalent:

eval3 (Pair3 e1 e2) =
case eval3 e1 of
NoOp3 v1→
case eval3 e2 of
NoOp3 v2→ NoOp3 (v1, v2)
Op3 op x_op→ Op3 op ((λt→ Pair3 (Lit3 v1) t).x_op)

Op3 op x_op→ Op3 op ((λt→ Pair3 t e2).x_op)

4.4.2. Specialise Values
This step is exactly inverse to the transformation described in Section 3.6. We narrow the set of possible
values that can result from a computation in our language. We do this by creating a Value type with a
limited set of constructors. For this language, it is defined as follows:

data Value3 a where
LambdaV3 :: (Value3 x→ Expr3 sig a)→ Value3 (x→ Expr3 sig a)
IntV3 :: Int→ Value3 Int
BoolV3 :: Bool→ Value3 Bool
UnitV3 :: Value3 ()

4.5. Step 4: Remove Intrinsic Typing 45

PairV3 :: Value3 x→ Value3 y→ Value3 (x, y)
NilV3 :: Value3 [a]
ConsV3 :: Value3 a→ Value3 [a]→ Value3 [a]

We adapt the evaluation function to wrap returned values with the appropriate constructor and we add
the Value type to the types of the arguments of embedded functions. This change makes it impossible
to define a monad instance for the expression tree because there is no way to lift an arbitrary value into
the expression tree.

4.5. Step 4: Remove Intrinsic Typing
Inverse to the step in Section 3.5, we remove intrinsic typing of the evaluation function in this step.
We do so by removing all type parameters from the SHandler, Expr, and Value types. To differentiate
operations and effects that were previously differentiated in sig type-parameters, we add an identifier
of sorts to the Op and OpCall constructors. We also adjust the operation implementations to specify
the operation each operates over and we change handlers to match on these names. Any types of
unique identifier for effects and operations can be used, but for this example we use String names for
both effects and operations within effects.

This causes the Op and OpCall constructors to have two Strings and a Value added to each, repre-
senting the effect name, operation name, and operation argument, respectively. We change handlers
to store the name of the effect they handle and we split the operation handling function into multiple
functions that are paired with the name of the operation each handles. Finally, we adjust the evaluation
function to accommodate for these changes in the SHandle clause:

eval4 (SHandle4 hlr@(SHandler4 eff ops ret) eb) = case eval4 eb of
NoOp4 v→ eval4 (ret v)
Op4 eff′ op va x_op→ if eff ≡ eff′
then eval4 (ops op va x_op (SHandle4 hlr))
else Op4 eff′ op va (SHandle4 hlr.x_op)

We see that evaluating SHandle is quite similar to the last step, but we no longer match on Inl and
Inr. Instead, we look at the effect names listed by the Op and SHandler constructors. Operations with
an equal effect name are treated equivalently to the Inl-constructor, whereas unmatched operations
are returned to be dealt with by a different handler, like with Inr-cases. This implementation handling
performs exactly the same as before as long as duplicate effects in the signature are now referenced
with unique effect names.

4.6. Step 5: Apply Transformations to Derive Small-Step Interpreter
Our evaluation function is now of a denotational style, but we wish to find a small-step semantics for
our language. We find a small-step interpreter for the same language by first deriving a big-step direct-
style interpreter before applying the program transformations described by Vesely and Fisher [78]. The
process of deriving a big-step interpreter from the denotational interpreter is now rather systematic. We
apply closure conversion to directly obtain the required interpreter.

Applying Vesely and Fisher’s transformations can be done in a similarly systematic way, without
much change needed for this specific language, so we refrain from giving a detailed re-explanation of
the steps. Instead, we skip to the final interpreter and present the small-step direct-style evaluation
function clause for SHandle:

4.7. A Small-Step Operational Semantics 46

substHandleBody5 :: String→ Value5→ (Expr5→ Expr5)→ SHandler5→ Expr5→ Expr5
substHandleBody5 param va x_op hlr =
substHdl5 (SHandle5 hlr) ◦
substAll5

[(param, va),
("resume", LambdaV5 "___y" (x_op (Var5 "___y")))

]

eval5_9 (SHandle5 hlr@(SHandler5 eff ops (RetI5 retArgNm retBody)) eb) =
case eval5_9 eb of
Inl0 (NoOp5 v)→ eval5_9 (subst5 retArgNm v retBody)
Inl0 (Op5 op eff′ va x_op)→ if eff ≡ eff′
then let OpI5 param opI = fromJust $ find (λ(OpI5 op′)→ op ≡ op′)

in eval5_9 (substHandleBody5 param va x_op hlr opI)
else inj0 $ Op5 op va (SHandle5 hlr.x_op)

Inr0 eb′ → inj0 (SHandle5 hlr eb′)

4.7. A Small-Step Operational Semantics
We now use the interpreter derived in the last step to find a structural operational semantics for shallow
effects and handlers. This structural operational semantics consists of single steps that reduce an
expression to a ’smaller’ expression, a value, or an unhandled operation. To read these rules from the
interpreter, we look at every case of interpretation. For instance, the final evaluation case for operation
calls is as follows:

eval5_9 (OpCall5 eff op ea) =
case eval5_9 ea of
Inl0 (NoOp5 v)→ inj0 $ Op5 eff op v id
Inl0 (Op5 eff′ op′ va x_op)→ inj0 $ Op5 eff′ op′ va ((λt→ OpCall5 eff op t).x_op)
Inr0 ea′ → inj0 (OpCall5 eff op ea′)

From this code, we can read 3 structural operational semantics rules. One for each clause covered
in this implementation. The three clauses are, generally speaking:

1. The operand is a value: another operand can be interpreted or we can reduce the entire expres-
sion.

2. The operand is an unhandled operation, which is a special type of value: the current expression
is made part of the continuation of the unhandled operation.

3. The operand can be further reduced: a stepping rule for the operand must exist and it is replaced
by its reduction.

OpCall-Value
op-call effi opj va → op effi opj va []

OpCall-Op
op-call effi opj (op effk opm va Xop[])→ op effk opm va (op-call effi opj Xop[])

OpCall-Step
ea → e′a

op-call effi opj ea → op-call effi opj e′a

Figure 4.1: Structural operational semantics for operation call expressions with (shallow) algebraic effects.

In figure 4.1, we show these three rules for operation call expressions. Each corresponds with
a case in the interpreter clause for operation calls. Evaluating an expression either causes it to be

4.7. A Small-Step Operational Semantics 47

reduced a single step, or find that it is a value or unhandled operation. This is captured most explicitly
by the OpCall-Step case, where the single step reduction is shown. In the other two steps, this is
not explicitly shown because the operand expression is not further reduced in such a step. Notice
that, in these descriptions, we use Xop[] to denote the reconstruction function and Xop[x] to denote the
reconstruction function applied to term x. We perform the same process for handler semantics to find
the operational semantics for our shallow handlers in figure 4.2.

Handle-Value
handle { . . , return x 7→ e, . .} v→ e [x/v]

Handle-Op
handle h@{effi, . . , opj x 7→ e, . .} (op effi opj v Xop[]))→
e [x/v, (hdl e′)/(handle h e′), resume/(x 7→ Xop[x])]

Handle-Op-Other
handle h@{effi, . .} (op effk opj v Xop[])→ op effk opj (handle h Xop[])

if effi 6≡ effk

Handle-Step
eb→ eb′

handle h eb→ handle h eb′

Figure 4.2: Structural operational semantics for shallow algebraic effect handling.

5
Deriving an Operational Semantics

for Deep Scoped Effects

In this chapter we apply the same transformations as in Chapter 4, but on scoped effects. At the
time of writing, no published article lists an operational semantics for scoped effects. The operational
semantics of scoped effects are an open topic of research [81]. With our method, we can derive one
for scoped effects in a very similar fashion to shallow effects.

We introduce scoped syntax in Section 5.1 and Section 5.2. We list the peculiarities of applying the
transformations on scoped effects in Section 5.3 until Section 5.6. We use Vesely and Fisher’s transfor-
mations in Section 5.7 to derive a small-step operational semantics for scoped effects in Section 5.8.

5.1. The Monadic Implementation
For the monadic implementation of scoped effects, we start with Yang’s implementation [81]. From that
implementation, we derive a freer form, similar to how a freer monad is obtained in ‘Freer Monads more
Extensible Effects’ [48].

data Freer sig gam a where
Pure :: a→ Freer sig gam a
Call :: sig x→ (x→ Freer sig gam a)→ Freer sig gam a
Enter :: gam x→ (x→ Freer sig gam y)→ (y→ Freer sig gam a)→ Freer sig gam a

instance Monad (Freer sig gam) where
return = Pure
Pure a>>= f = f a
Call op k>>= f = Call op ((>>=f) <$> k)
Enter scp k k′ >>= f = Enter scp k ((>>=f) <$> k′)

To convince the reader of their equivalence, we use the Yoneda lemma [13]. We can create conversion
functions both ways using either the Yo type declaration or its CoYo counterpart. The existence of the
progToFreer function and its counterpart shows the equivalence of Freer and Prog as data structures.

data Yo f a = Yo {unYo :: forall r.(a→ r)→ f r}
freerToProg :: Freer (Yo sig) (Yo gam) a→ Prog sig gam a
freerToProg (Pure a) = Pure′ a
freerToProg (Call (Yo opF) k) = Call′ (opF (freerToProg.k))
freerToProg (Enter (Yo scpF) rec k) = Enter′ (scpF (freerToProg.fmap (freerToProg.k).rec))
progToFreer :: (Functor sig,Functor gam)⇒ Prog sig gam a→ Freer (Yo sig) (Yo gam) a
progToFreer (Pure′ a) = Pure a
progToFreer (Call′ op) = Call (Yo (<$> op)) progToFreer
progToFreer (Enter′ scp) = Enter (Yo (<$> scp)) progToFreer progToFreer

48

5.2. Step 0: Specify Handle Function 49

These show, in essense, that using the Yo wrapper, the same programs can be embedded in Freer as
in Prog. For the rest of this work, we do not use Yo, as we only use it as a tool to show this equivalence.
Instead, we would write operations algebraic operations that directly embed a value, rather than a
continuation, as the continuation can be explicitly passed to Call. For Enter, we could construct scoped
nodes in multiple ways with Freer. We could embed the scoped programs directly in the operation,
without continuation (catch). Or we could embed a selector in the operation and select the appropriate
scoped program in the first continuation (catch′).

catch :: SCatch :«: gam⇒ Freer sig gam a→ Freer sig gam a→ Freer sig gam a
catch h r = Enter (inj $ SCatch h r) id return
data CatchArgs = CatchH | CatchR
catch′ :: SCatch :«: gam⇒ Freer sig gam a→ Freer sig gam a→ Freer sig gam a
catch′ h r = Enter (inj $ SCatch CatchH CatchR) (λcase
CatchH→ h
CatchR→ r) return

Both can be written with exactly the same tree, but catch is an approach more faithful to the original
scoped effects. catch′, although equivalent in behaviour to catch, demonstrates explicitly what the first
continuation does: it takes a selection and presents the scoped program selected.

5.2. Step 0: Specify Handle Function
For specifying the handle function, we start with the handleE function from the paper. This function
is already somewhat of a specification of the more generic handle function. This function takes, what
we have commonly referred to as a Handler data type thusfar, an expression tree to be handled, and
results in some wrapping of the result type of the expression tree. We need the result wrapping to still
be within an expression tree, as we cannot write an interpreter for it otherwise. We also specify that the
handling function should only try to handle a single layer of algebraic and scoped effects at the same
time, so a Freer (eff :++: sig) (scp :++: gam) a should have its eff and scp effects handled at once
by a handler. To put it in terms of the handleE function, the following type-signature signifies these
specifications:

handleE′ :: EndoAlg sig gam (Compose (Freer sig′ gam′) f)
→ Freer sig gam a
→ (Compose (Freer sig′ gam′) f) a

handleE′ = handleE

We redefine this specific composition as a new handling function handleE′′. In this redefinition we get
rid of the obnoxious Compose type-constructors and by writing every part of the EndoAlg data type and
replacing Compose f1 f2 a with f1 (f2 a):

handleE′′ :: (forall x.x→ Freer sig′ gam′ (f x))
→ (forall x w.sig x
→ (x→ Freer sig′ gam′ (f w))
→ Freer sig′ gam′ (f w))

→ (forall x y w.gam x
→ (x→ Freer sig′ gam′ (f y))
→ (y→ Freer sig′ gam′ (f w))
→ Freer sig′ gam′ (f w))

→ Freer sig gam a
→ Freer sig′ gam′ (f a)

handleE′′ hReturn hOps hScps (Pure x) = hReturn x
handleE′′ hReturn hOps hScps (Call op k) = hOps op (handleE′′ hReturn hOps hScps.k)
handleE′′ hReturn hOps hScps (Enter scp rec k) =
hScps scp (handleE′′ hReturn hOps hScps.rec) (handleE′′ hReturn hOps hScps.k)

handleE′′ is still equivalent to handleE in meaning, but its signature is slightly easier to write programs
and transformations for. However, in practice, it is very hard to writemodular handlers with this signature

5.3. Step 1: Split Impure into Let and Impure Computation 50

alone. For those, we would need a ‘weaving function’ [80, 72]. We introduce a similar concept to be able
to weave together the results of handling with subsequent continuations. We call the added function
the ‘mending function’ and its purpose is to implement ‘weaving’ in a way that is compatible with our
transformations. It has the type forall x w.f x → (x → Freer sig′ gam′ (f w)) → Freer sig′ gam′ (f w)
and thus defines the way an answer type modification can affect a following computation. Using the
mending function, we can now modularise our handlers, meaning we can pop off one level of scoped
and algebraic effects with a single handler. Without this function, we would be unable to thread the
handler in cases where unhandled operations and scopes must be treated.

data Handler0 eff r scp rg f where
Handler0 ::
{hReturn :: forall x.x→ Freer r rg (f x),
hOps :: forall x a.eff x→ (x→ Freer r rg (f a))→ Freer r rg (f a),
hScp :: forall x y a.scp x→ (x→ Freer r rg (f y))→ (y→ Freer r rg (f a))→ Freer r rg (f a),
hMend :: forall x a.f x→ (x→ Freer r rg (f a))→ Freer r rg (f a)
} →
Handler0 eff r scp rg f

handle0 :: Handler0 eff r scp rg f→ Freer (eff :++: r) (scp :++: rg) x→ Freer r rg (f x)
handle0 (Handler0 ret) (Pure a) = ret a
handle0 h@(Handler0 ops) (Call (Inl op) k) =
ops op (λx→ handle0 h (k x))

handle0 h (Call (Inr op) k) =
Call op (handle0 h.k)

handle0 h@(Handler0 scps) (Enter (Inl scp) rec k) =
scps scp (handle0 h.rec) (handle0 h.k)

handle0 h@(Handler0 mend) (Enter (Inr scp) rec k) =
Enter scp (handle0 h.rec) (λfx→ mend fx (handle0 h.k))

Note that the mending function is used only to connect the handled result of scoped programs with the
continuation. The rest of the computation is standard. The mending function might also be used by the
implementation of handlers to mend scoped program results and the continuation, but handlers might
also define mending per operation, not using a single mending function. For this reason, we do not
apply the mending function by default for handled scoped operations.

5.3. Step 1: Split Impure into Let and Impure Computation
We split the impure operations into OpCall, ScopeCall and Let. In the case of scoped effects, we
have two: Call and Enter. Both of these constructors currently carry a generic continuation. The Let
constructor will take these generic continuations, as Call and Enter have their continuations removed:

data Expr1 sig gam a where
Lit1 :: a→ Expr1 sig gam a
OpCall1 :: sig a→ Expr1 sig gam a
ScopeCall1 :: gam x→ (x→ Expr1 sig gam a)→ Expr1 sig gam a
Let1 :: Expr1 sig gam x→ (x→ Expr1 sig gam a)→ Expr1 sig gam a

Handling is changed in the same way as for shallow handlers, and we adjust evaluation to return a
Result, possibly containing unhandled algebraic and scoped operations:

data Result1 sig gam a where
NoOp1 :: a→ Result1 sig gam a
Op1 :: sig x→ (x→ Expr1 sig gam a)→ Result1 sig gam a
Scope1 :: gam x→ (x→ Expr1 sig gam y)→ (y→ Expr1 sig gam a)→ Result1 sig gam a

eval1 :: Expr1 sig gam a→ Result1 sig gam a
eval1 (Lit1 a) = NoOp1 a
eval1 (OpCall1 op) = Op1 op return
eval1 (ScopeCall1 scp rec) = Scope1 scp rec return

5.4. Step 2: Inline and Lift Handling 51

eval1 (Let1 x k) = case eval1 x of
NoOp1 xv→ eval1 $ k xv
Op1 op x_op→ Op1 op (x_op>⇒ k)
Scope1 scp rec x_op→ Scope1 scp rec (x_op>⇒ k)

5.4. Step 2: Inline and Lift Handling
We lift the handle function signature into the expression tree. The expression tree is extended with a
Handle constructor as follows:

data Expr2 sig gam a where
...
Handle2 :: Handler2 eff r scp rg f→ Expr2 (eff :++: r) (scp :++: rg) x→ Expr2 r rg (f x)

The evaluation function is also adjusted. An initial version can be implemented as eval2 (Handle2 h eb) =
eval2 (handle2 h eb), where handle2 is handle1, but in Expr2. However, to get an informative small-
step semantics, we cannot work with these structure desugarings. Instead, we simplify, inline, and
evaluate the case-matches from handle to find the following implementation:

eval2 :: Expr2 sig gam a→ Result2 sig gam a
eval2 ...
eval2 (Handle2 h@(Handler2 ret ops scps mend) eb) = case eval2 eb of
NoOp2 a→ eval2 $ ret a
(Op2 (Inl op) k)→ eval2 $ ops op (λx→ Handle2 h (k x))
(Op2 (Inr op) k)→ Op2 op (Handle2 h.k)
(Scope2 (Inl scp) rec k)→ eval2 $ scps scp (Handle2 h.rec) (Handle2 h.k)
(Scope2 (Inr scp) rec k)→ Scope2 scp (Handle2 h.rec) (λfx→ mend fx (Handle2 h.k))

5.5. Step 3: Inline and Lift Pure Computations and Specialise Values
This step is the same as for shallow handlers. The main difference is that we end up with a slightly
different evaluation function because of the third alternative result type. We must not only accumulate
surrounding context/continuations for unhandled algebraic operations, but also for unhandled scoped
operations. This means that, for instance, the evaluation case for function applications, gets extra
cases for dealing with unhandled scoped operations:

eval3 (App3 ef ea) =
case eval3 ef of
NoOp3 vf@(LambdaV3 f)→
case eval3 ea of
NoOp3 va→ eval3 (f va)
Op3 op x_op→ Op3 op ((λt→ App3 (Lit3 vf) t).x_op)
Scope3 scp k x_op→ Scope3 scp k ((λt→ App3 (Lit3 vf) t).x_op)

Op3 op x_op→ Op3 op ((λt→ App3 t ea).x_op)
Scope3 scp k x_op→ Scope3 scp k ((λt→ App3 t ea).x_op)

5.6. Step 4: Remove Intrinsic Typing
Just like with algebraic operations, scoped operations need to be qualified by something other than
their constructors. Same as before, we add effect names to handlers, op calls, and scoped calls. We
also add a name for every algebraic operation and every scoped operation. The evaluation function
is changed for the Handle case by replacing the match on Inl and Inr constructors with an if-then-else
checking whether the handler effect and operation effect are the same. We could add a second effect
name to separate algebraic effects and scoped effects, but we think that, because we already handle
both a layer of algebraic effects and scoped effects at once, we might as well use the same name for
both. The change equates to an if-expression rather than a case-match in:

5.7. Step 5: Apply Transformations to Derive Small-Step Interpreter 52

eval4 (Handle4 h@(Handler4 eff ret ops scps mend) eb) = case eval4 eb of
NoOp4 a→ eval4 $ ret a
Op4 eff′ op vo k→
if eff ≡ eff′
then eval4 $ ops op vo (λx→ Handle4 h (k x))
else Op4 eff′ op vo (Handle4 h.k)

Scope4 eff′ scp vs rec k→
if eff ≡ eff′
then eval4 $ scps scp vs (Handle4 h.rec) (Handle4 h.k)
else Scope4 eff′ scp vs (Handle4 h.rec) (λfx→ mend fx (Handle4 h.k))

5.7. Step 5: Apply Transformations to Derive Small-Step Interpreter
We apply the transformations composed by Vesely to get a direct-style small-step interpreter. We show
the Handle-case for the final evaluation function:

eval5_9 (Handle5 h@(Handler5 eff (retP, retB) ops scps (mendP,mendB)) eb) = case eval5_9 eb of
Inl0 (NoOp5 a)→ eval5_9 (inj0 $ subst5 retP a retB)
Inl0 (Op5 eff′ op vo x_op)→
if eff ≡ eff′
then eval5_9 (inj0 $ substAll5 [(opParamP, vo), ("resume", resumption5 h x_op)] opBody)
else inj0 $ Op5 eff′ op vo (Handle5 h.x_op)

where
(, opParamP, opBody) = fromJust $ find (λ(op′, ,)→ op ≡ op′) ops

Inl0 (Scope5 eff′ scp vs recP recB x_op)→
if eff ≡ eff′
then eval5_9 (inj0 $ substAll5 [
(scpParamP, vs),
(scpRecP, LambdaV5 recP (Handle5 h recB)),
("resume", resumption5 h x_op)] scpB)

else inj0 $ Scope5 eff′ scp vs recP (Handle5 h recB)
(λfx→ Let5 fx mendP (subst5 "resume" (resumption5 h x_op) mendB))

where
(, scpParamP, scpRecP, scpB) = fromJust $ find (λ(scp′, , ,)→ scp ≡ scp′) scps

Inr0 eb′ → inj0 $ Handle5 h eb′

5.8. A Small-Step Operational Semantics
Finally, we take the final implementation of the interpreter to find a structural operational semantics for
scoped effects. We only extract the semantics for handling to save space, all other semantic descrip-
tions, such as those for function application, seem to be the same as for deep algebraic effects and
handlers.

5.8. A Small-Step Operational Semantics 53

Handle-Value
handle {return x 7→ e, . .} v→ e [x/v]

Handle-Op
handle h@{eff, . . , opi x 7→ e, . .} (op eff opi v Xop[]))→ e [x/v, resume/(x 7→ handle h Xop[x])]

Handle-Op-Other
handle h@{eff, . .} (op eff′ opi v Xop[])→ op eff′ opi (handle h Xop[])

if eff 6≡ eff′

Handle-Scope
handle h@{eff, . . , scpi 7→ e, . .} (scope eff opi v xrec erec Xop[]))→
e [x/v, rec/(xrec 7→ handle h erec), resume/(x 7→ handle h Xop[x])]

Handle-Scope-Other
handle h@{eff, . . ,mend xm 7→ em} (scope eff′ scpi v xrec erec Xop[])→

scope eff′ scpi v xrec (handle h erec) (let xm = [] in em [resume/(y 7→ handle h Xop[y])])
if eff 6≡ eff′

Handle-Step
eb→ eb′

handle h eb→ handle h eb′

Figure 5.1: Small-step structural operational semantics for handling of scoped effects.

6
Evaluation

After showing our additional program transformations to derive a freer monad embedding for effects
and handlers from an operational semantics and vice versa, we discuss the quality of our steps and
applications in this chapter. We split this evaluation into two parts:

1. We review our program transformations and argue that new formal proofs are not required to
prove that each transformation maintains the behaviour of the interpreter that is transformed.

2. We evaluate the applications of our program transformations from Chapters 3 to 5. For this, we
generate a test suite that attempts to verify that each of the interpreters from the aforementioned
chapters displays the same behaviour.

In the following sections, we first discuss the validity of the program transformations to relate a
freer monad-based embedding of effects and handlers to an untyped denotational interpreter. We
argue that the program transformations we use are well-known derivations that have been proven to
preserve behaviour of the program under transformation, and thus require no additional proving in this
work. The second part to evaluating our work comes in the form of a generated test suite. This test suite
uses state-of-the-art program synthesis techniques to automatically synthesise programs with effects
and handlers that can be executed by our interpreters. Finally, we discuss the conclusions we can take
away from these methods of evaluation and what may be considered to be done differently in future
work.

6.1. The Added Program Transformations
In this section, we discuss the program transformations we add to derive a freer monad-based em-
bedding of effects and handlers from an untyped denotational interpreter of the same language. We
look at every step individually to see where the difficulties of application lie and to relate each step to
the works that most closely describe a similar or even exactly the same transformation. We indicate
when we involve some creativity in a transformation and when we think the process can be completely
automated. We claim that every step can be inverted without loss, albeit with a few caveats for specif-
ically the step that introduces intrinsic typing. Additionally, we claim that, again with a few caveats for
intrinsically typing, our transformations relate so closely to existing program transformations that no
additional proof is necessary to convince the reader of their correctness.

We discuss the added steps in the order of introduction in Chapter 3. The inverse of every step
is discussed in the same section. We also discuss the step we only introduce when deriving an op-
erational semantics from a freer monad-based embedding, such as is done for shallow algebraic and
deep scoped effects and handlers. This step we discuss additionally is the step of specifying a handle
function. The steps, with section of introduction within parentheses, are as follows:

1. Lettify/Inline and lift pure computations. (Section 3.4)
2. Add/Remove intrinsic typing to values, expressions, handlers, binary operations, etc. (Section 3.5)
3. Generalise/Specialise the Value type. (Section 3.6)
4. Lettify/Inline and lift the handling abstraction. (Section 3.7)

54

6.1. The Added Program Transformations 55

5. Merge/Split impure computations and let constructs into a single expression constructor. (Sec-
tion 3.8)

6. Specify Handle Function (Section 4.1)

6.1.1. Lettify/Inline Pure Computations
At first glance, this transformation reminded us of refunctionalisation/defunctionalisation [24, 23]. This
is because we replace a data constructor with an equivalent higher order program, built with Let-
expressions. However, at this moment, we cannot fully confirm that this step uses refunctionalisation
and defunctionalisation exactly because of a few reasons. Firstly, because the conversion is partial:
it only removes part of the data involved and leaves part of that same data untouched. Secondly, be-
cause no higher-order functions appear to be involved in the transformation at first glance. And finally,
because Let-expressions are apparently introduced where none were present before.

For lettification, we introduce expressions using mostly Let for every pure computation that, when
evaluated, are behaviourally equivalent to the original expressions. The equivalence is most apparent if
we perform the inlining direction of the transformation. For example, we can inline the smart constructor
for function application to find the following:

eval8 (app8 ef ea)
→
case eval8 ef of
NoOp8 vf→ case eval8 ea of
NoOp8 va→ case vf of
LambdaV8 body→ eval8 (body va)
→ error ("Cannot apply non-function value: " <> show vf)

Op8 op v x_op→ Op8 op v ((λt→
Let8 t
(λva→ case vf of
LambdaV8 body→ body va
→ error ("Cannot apply non-function value: " <> show vf))).x_op)

Op8 op v x_op→ Op8 op v ((λt→
Let8 ef
(λvf→ Let8 ea
(λva→ case vf of
LambdaV8 body→ body va
→ error ("Cannot apply non-function value: " <> show vf)))).x_op)

We then notice that eval8 (Let8 (Lit8 v) f) = eval8 (f v), apply it to the inner operation context
reconstruction function. Finally, we notice that the resulting operation continuation functions (λt→ ...)
are the right-hand side of app8. Thus rewriting gives:

case eval8 ef of
NoOp8 vf→ case eval8 ea of
NoOp8 va→ case vf of
LambdaV8 body→ eval8 (body va)
→ error ("Cannot apply non-function value: " <> show vf)

Op8 op v x_op→ Op8 op v ((λt→ app8 (Lit8 vf) t).x_op)
Op8 op v x_op→ Op8 op v ((λt→ app8 t ea).x_op)

Which is the evaluation case of App8, with the exception of using the smart constructor to recon-
struct function application expressions. By induction, this shows that App8 and app8 are behaviourally
equivalent under evaluation with eval8.

A proof like the above should be possible to implement in Coq or Agda just the same for every other
pure expression. On an alternate, but related note, the correctness of this transformation appears

6.1. The Added Program Transformations 56

to be closely related to the manner in which Let bindings are later abstracted: as monadic binding.
Monadic bind threads evaluation of expressions in the final monadic embedding. This step prepares
this threading by abstracting away threading through Let expressions. The final result of lettifying
appears to be nested Let-expressions for every subsequently evaluated sub-expression, with a final
pure computation when all expressions are evaluated.

6.1.2. Add/Remove Intrinsic Typing
This step makes all typing rules assumed or otherwise explicit or, inversely, removes all explicit men-
tion of typing in the types of expressions. Intrinsically typed terms are have their type rules built into
their definition [9]. We do this using GADTs in Haskell by explicitely adding each type rule onto the
expressions of our language.

In our work, we assume type rules for each expression we transform in this way. However, explicitly
defining type rules that match ones semantics should be a more preferred approach. We know of no
automatic way as of yet, but we suspect it is possible to derive a set of type rules from the untyped
denotational interpreter that fit its expressions. In fact, this is the approach we took: we looked at
every expression, looking at what types of values were matched and constructing type rules within the
intrinsically typed expression tree as we went.

Themain difference between the untyped denotational interpreter and typed denotational interpreter
lies in the transformation for impure operations. These impure computations are represented as a
product of effect name, operation name, and operation argument when left untyped and as a value
of a constructor when typed. The effect name (untyped) corresponds to the data type (typed), the
operation name (untyped) corresponds to the data constructor (typed), and the operation argument
(untyped) corresponds to the constructor arguments (typed):

data Eff a {Op :: Value ()→ Op ()}
Op UnitV
-- corresponds to

OpCall "Eff" "Op" UnitV

These constructions encode almost exactly the same information, with the exception of the typed variant
holding more information on the type of the operation.

In summary, adding type information to an expression tree is a well-known operation. Impure com-
putations in a typed setting hold the same information as in the untyped setting. However, one might
not have enough information from just the untyped denotational interpreter to introduce intrinsic typing.
Instead, one might need to resort to typing rules accompanying the formal semantics of the language
to be able to fully derive a typed denotational interpreter.

6.1.3. Generalise/Specialise Values
This transformation either removes or adds a Value type that specialises the types of values that can
inhabit the language.

When generalising, the restriction on values already exists and is simply removed with little conse-
quence. Value turns out to only be a wrapper of the underlying Haskell-native values, such as native
pairs, Ints, etc. Whatever matching we did on wrapped values may just as well be done on the under-
lying value and operations we applied on underlying values can now be directly applied.

When specialising, restrictions on the types of values are added. We base these restrictions on the
types of computations that should be possible within the language we are trying to form an operational
semantics for. Exactly opposite to generalising, we now impose the need to wrap and unwrap values,
but computation is otherwise left unchanged.

This appears to us as a very standard operation. One which any programmer can relate to as being
a fairly common activity.

6.1.4. Lettify/Inline Handling
Here we perform a similar transformation for handling as we have done for pure computations before.
However, the result is different, as shown in Section 3.7. The resulting function structurally matches
the body of the handling expression and splits it up in cases. Each of these cases corresponds to an
result of evaluation. We think this lettification can be shown to correspond to the original evaluation
case for handling. However, we did not have the time to formulate the proof.

6.2. The Applications of Program Transformations 57

6.1.5. Merge/Split OpCall and Let
This step merges or splits impure computations and Let-binding into a single expression.

We convince the reader of the behaviour preserving nature of this transformation through an ob-
servation: there are only very few expressions left in the expression tree, namely Let-binding, impure
computations, and pure computations. Combining these expressions can only yield a very limited num-
ber of interactions. Namely, Let can have a pure computation or impure computation in its argument.
For pure computations, however, a value is readily available to be passed to the continuation of Let.
Thus leaving it a rather unnecessary wrapping of function application at this point. Seeing as the only in-
teractions left are those between impure computations and Let-binding, we can merge the two. When
we go the other way and split impure computation and Let-expressions, we merely re-introduce the
possibility to use Let to unnecessarily represent function application.

When splitting, the resulting evaluation function is obtained by simple inlining and simplification.
When merging, we introduce the split between a pure result and an impure result and evaluate each
accordingly. The only other function affected is the handling function. Its cases are simplified when
we merge, as many combinations of expressions can no longer occur and computations are inherently
coupled with their continuation. When splitting, the cases we add to handling are those relating to the
possible nestings of Let-expressions and pure computations and are inlined parts of the evaluation
function.

6.1.6. Specify Handle Function
Specifying the handle function is only done when we start with a freer monad-based embedding of
effects and handlers. This is done to make sure that the handling function we use during the transfor-
mations is modular and encodes the semantics we would like to end up with. However, this step is
exempt from needing to be behaviour preserving, as we have no defined behaviour for handling before
this point. The freer monad in itself is not enough to restrict the way handling is implemented. In fact,
deep and shallow handling differ only in the handling abstraction, not in the freer monad that abstracts
computations.

However, because there is no defined handling behaviour before, this step is absolutely crucial in
determining the semantics one ends up with. If the semantics of the handling function one invents at
this point do not equal the desired semantics, the resulting operational semantics would of course not
offer any insights into those desired semantics.

6.2. The Applications of Program Transformations
We have seen that the program transformations we add to derive a freer monad-based embedding of
effects and handlers from an untyped denotational interpreter closely relate to existing and well-known
transformations. In Chapters 3 to 5 we have applied these and other already described steps to derive
the freer monad-based embedding from a small-step operational semantics and vice versa. These
applications of the program transformations are what we evaluate in this section. Knowing what we
know from Section 6.1, if we applied all transformations to the letter, there is little doubt that the final
embedding implements the same language as the original operational semantics describes. However,
humans are imperfect, so while applying these steps we may well have made mistakes along the
way. To gain confidence in our application of the program transformations and thus in the resulting
embedding and operational semantics, we test the interpreters we present in Chapters 3 to 5.

The first observation we have when we think of how to test these interpreters is that every interpreter
should interpret the same language, with the same semantics. Secondly, the semantics of the language
we interpret is introduced by the first interpreter we implement, a definitional interpreter if you will [74].
The property we want to test is that, indeed, each interpreter interprets the language the same way. For
a program transformation, we call the transformation ‘behaviour preserving’ if the initial program and
the final program have the same domain and codomain. This definition comes from the definition of
equivalence of mathematical functions and can be applied to our programs as long as the program we
test is pure1. When transforming interpreters, the behaviour preserving property exactly describes what
we wish to check, that the syntax (domain) and semantics (related to the codomain) of the language
an interpreter describes is the same as before. To effectively test this property, one could construct

1Our interpreters are not pure exactly, as they may throw errors with error. We mention and avoid this issue later in this
section.

6.2. The Applications of Program Transformations 58

proofs that rigorously equate the domain and codomain for the interpreter before transformation and
after transformation. However, we chose to test this using dynamic tests, as Haskell lends itself to
proofs of this type less easily than a dependently typed language with proof assistant such as Agda or
Coq.

To come close to the result of a rigorous proof, we generate programs (the domain) and run each
program with every interpreter (codomains) to check that indeed, the domains and codomains of trans-
formed interpreters are the same. Paĺka [67] has previously described a basic technique for generating
programs based on the type of expression expected. We use this technique and extend it with genera-
tion rules for deep algebraic handler semantics. We convert deep algebraic handlers to an embedding
of those same handlers in shallow and scoped handler syntax. This is to say, we were not able to
generate shallow and scoped handlers directly, but we describe what is necessary to add generation
rules for these in future work.

This section is meant to explain how we wrote the tests for testing interpreters. The following
components require explanation:

1. The architecture of the test suite in Section 6.2.1 and why the codebase for the test suite is split
into a few components.

2. The program generation component that is responsible for synthesising programs in an untyped
expression tree only used in the test suite in Section 6.2.1.

3. The conversion component that provides conversion functions to convert programs of the generic
untyped expression tree to other, possibly intrinsically typed, expression trees in Section 6.2.1.

In the final part of this chapter, we reflect on the testing process by showing the types of errors it caught
as well as offer a look forward to see what could be done better in the future (Section 6.3).

6.2.1. Infrastructure
In figure 6.1, we show an overview of the functions necessary to test our interpreters. We write pro-
grams, either by generating them or by manually writing them, as values of the PG.Expr expression
tree. We can use a few ‘dialects’ within this expression tree to represent the three different languages
with effects and handlers (with Deep, Shallow, and Scoped effects, respectively). Every test program
uses the same expression tree to promote re-use of utility functions across tests.

When we test a specific interpreter with a program, we convert the program using the appropri-
ate conversion function. These conversions should represent the program in such a way that the
meaning of the program is conserved exactly. Verifying that these program conversions are behaviour-
conserving amounts to a problem similar in nature to verifying the transformations themselves, although
perhaps slightly less involved. For this work, we assume program conversions are done carefully
enough so as not to lose meaning. We make this easier by making sure that the test expression
tree does not change or add any language features with respect to the deep, shallow, and scoped
languages.

This section is meant to explain how we wrote the tests for testing interpreters. The following
components require explanation:

1. The program generation component that is responsible for synthesising programs in an untyped
expression tree only used in the test suite.

2. The conversion component that provides conversion functions to convert programs of the generic
untyped expression tree to other, possibly intrinsically typed, expression trees in.

Program Generation
Wewished to generate programs that type-check, to check the behaviours of interpreters rather than the
exceptional cases. Although this does mean we cannot detect differences in exceptional behaviours,
the goal of this work is to connect semantics that require well-typed programs to make sense anyway.
We use the generation technique presented by Klein et al. [50] adjusted for use in Haskell with the
QuickCheck testing framework [16] as a basis.

The idea is to generate a program recursively using a function with at least two arguments: an
environment of bound variables, and the type to be generated. The function simulates a theorem-
proving method, where the theorem is that a program for the given type can be generated, and the

6.2. The Applications of Program Transformations 59

Figure 6.1: Diagram of the process of generating and converting programs for various interpreters. Nodes stand for the type of
values generated and arrows stand for a function generating or converting programs. PG., Sc and ScT stand for the program

generation, scoped effect interpreters, and tests for scoped effect interpreters modules, respectively.

proof is such a program [60]. Every call to this function may cause recursive calls to generate sub-
expressions that might have a different type-goal. We use recommendations from Pałka et al. to
limit the size of a generated expression tree and add weights to interesting structures [67]. In our
cases, the interesting structures are lambdas and applications (same as for Pałka et al.) and of course
handling constructs and operation calls. These get a higher weight than other constructs such as binary
operators.

Our languages are more complex than the simple lambda terms used by Pałka et al., but most
language constructs can be generated without much trouble. To write generation rules for these con-
structs, we need to find a typing judgment for that construct first. We use the intrinsic typing of the
language in either the first or final step of the process to derive a typing rule and generation rule. For
all non-handler constructs, this process has, to some degree, been done before. For handlers and op-
eration calls, however, we discuss our generation rules for every language, as these offer the biggest
challenge in program generation.

The Basic Generator
The basis of the expression generator is to generate expression trees recursively based on the type of
the required expression. It takes, as arguments, the aforementioned environment and expected type.
The environment may sometimes be represented as several arguments for several namespaces. In
this work, we pass an environment of effect signatures and an environment of variable name-bindings.

The expression tree itself represents all language features present in the three target languages as
closely as possible. It annotates some expressions with its constituent types whenever necessary for
conversion. For instance, the type of effect that is handled by a handler is described in the expression
tree node for the handler. All variables and types that are introduced and need to be referencable later
in generation are referred to with De Bruijn indices [25].

Non-Handler Language Features
Constructs like if-then-else expressions can be generated based on the intrinsic typing rules for each
of those constructs. For instance, we can take the type for the if smart-constructor from Section 3.5
for the Deep algebraic language. From this type, we can derive a typing rule directly, using row-type
notation for adding the effect signature [55].

Finally, a generation rule can be derived. Within a generation step, the type that is required is
known. In the case of If, the output may be anything as long as the ‘then’ and ‘else’ expressions are
that same type and the ‘if’ expression is of type Bool. We thus generate 3 expressions according to
these rules, such that the first is of the boolean type and the latter 2 are of the type required. The
resulting expressions are used to create an If-expression. We show the signature, typing judgement,

6.2. The Applications of Program Transformations 60

if10 :: Expr10 sig Bool
→ Expr10 sig a
→ Expr10 sig a
→ Expr10 sig a

ec : 〈σ〉Bool, et : 〈σ〉a, ee : 〈σ〉a
if ec then et else ee : 〈σ〉a

do
ec ← generateExpr effs nv BoolT
et ← generateExpr effs nv a
ee ← generateExpr effs nv a
return $ If ec et ee

Figure 6.2: The type of an if-expression and its derived typing judgement (left), and a generation rule generated from it (right).
For the program generation, we leave out size limitation and general plumbing arguments from ’generateExpr’ calls to reduce

cognitive load for the reader.

Handler10 :: (forall x.eff x
→ (Value10 x→ Expr10 r w)
→ Expr10 r w)

→ (Value10 a→ Expr10 r w)
→ Handler10 eff r a w

Handle10 :: Handler10 eff r a w
→ Expr10 (eff :++: r) a
→ Expr10 r w

ops :: ∀ x.eff x→ (x→ 〈r〉w) → 〈r〉w,
ret :: a→ 〈r〉w

handler ops ret : handler eff r a w

h :: handler eff r a w, e : 〈eff|σ〉a
with h handle e : 〈σ〉w

Figure 6.3: The types for handlers and handle expressions and matching typing judgements. In the typing judgements, we use
a single colon to denote that the expression on the left evaluates to a value of the type on the right. Double colons denote that

the term on the left is a value of the type on the right already, as handlers are only used directly in our language.

and eventual generation rule all in figure 6.2.

Deep Algebraic Handlers
Deep algebraic handlers are generated with a slightly more guided generation process than the rest
of the non-handler constructs. Figure 6.3 shows the types and typing judgements derived for handlers
and handle expressions. In our languages, we simplify handling by only allowing handlers to be directly
embedded values in a handle expression. We thus type handlers with double colons to separate typing
of handlers from typing of expressions.

During generation, we give the generator function access to an environment of variable name bind-
ings as well as an environment of effect types that may be used. For generating the body of a handle-
expression, we simply add the handled effect type to the latter environment, similar to how we generate
function bodies à la Klein [50]. Handlers are a little more challenging to generate, however. For gener-
ating handlers, we need to generate expressions that represent the bodies of the operation and return
implementations. Both can be generated by attempting to generate a type 〈r〉w recursively. The en-
vironment is populated with an argument of type a for return implementations, and x and x → 〈r〉w
arguments for operation implementations. An outline of the program generation steps needed to gen-
erate handle expressions is shown in figure 6.4. To avoid generation failures as much as possible, we
guide operation implementation generation in the following way:

1. A number of expressions of type a are generated and passed directly to the continuation function
argument to get a number of expressions of the type 〈r〉w.

2. A number of expressions of type 〈r〉w is generated without the use of the continuation function in
such a way that no value of type w is required, if possible.

3. All these expressions are made available in the environment by generating nested Let expres-
sions that introduce a name for each.

4. The final body expression is generated with all generated final values in the environment.

6.2. The Applications of Program Transformations 61

data Handler = Handler Int [OpI] RetI
data OpI = OpI
{opISig ::OpType,
opIBody :: Expr}

data RetI = RetI
{retISig :: RetType,
retIBody :: Expr}

generateHandle effs nv a = do
eff← generateEffect
hlr← generateHandler eff
eb← generateExpr (effs<> [eff]) nv a

generateHandler effs nv eff@(EffType { . .}) a = do
ops← traverse (generateOp effs nv) effOpTypes
ret← generateRet effs nv eff a
return (Handler ops ret)

generateOp effs nv opT@(OpType { . .}) = do
[contN, emptyN]← sequence

[chooseInt (1, 3), chooseInt (1, 3)]
conts← replicateM contN (fmap Resume $
generateExpr effs nv opArgT)

empties← replicateM emptyN (generateEmptyOp opResT)
eb← generateExpr effs

(nv<> replicate (length conts + length empties) opResT)
opResT

return (OpI opT (foldr Let eb (conts<> empties)))

Figure 6.4: A simplified outline of the process of generating deep handlers. Empty op generation can, for instance, yield an
empty list if the op result type is w = [a]. The implementation for ’generateEffect’ and ’generateRet’ are missing, because we

do not attempt to give an exact implementation of the generation function in this chapter.

Shallow Algebraic Handlers
Shallow algebraic handlers can currently not be generated to their full potential by our program genera-
tor. We currently generate deep handlers and convert them to shallow handlers during the generation
process. This is done by consistently calling the recursive handling function on every result of a call to
the continuation. This embeds deep handlers in shallow handler syntax, in the same way as described
by Hillerström and Lindley [32].

To generate handlers that utilise shallow handler semantics, we would need to make multiple han-
dlers available for every effect (currently we only generate 1). Ideally, wemight makemutually recursive
shallow handlers possible through the use of a recursive let expression. This might well, however, gen-
erate programs that introduce infinite recursion, which is currently prevented by rigorously avoiding
recursion. A generator might thus generate programs that do not terminate and would need to be
time-boxed when tested.

Scoped Handlers
Scoped handlers are also not currently generated to their full potential. Similar to shallow handlers, we
convert deep algebraic handlers into scoped handlers during the program generation process. This is
done by leaving the list of scoped operations empty and generating a bogus mending function, to be
removed during conversion. Additionally, the expression tree dialect for scoped handlers includes a
representation of the answer type modification to later be used during conversion.

It is possible to extend the program generation to introduce fully fledged scoped effects, although
we did not have the time to do it in this work. An extension would be based on the deep algebraic
effect generation. It would further need to introduce well-typed bodies for scoped operation bodies and
mending functions.

Scoped operation implementations are of type scp x→ (x→ Freer sig gam y)→ (y→ Freer sig gam a)→
Freer sig gam a. The first function passed to this implementation is defined within a scoped operation
call: ScopeCall :: gam x → (x → Freer sig gam a) → Freer sig gam a. We would need to generate
scoped operation types, similar to how we generate algebraic operation types. We would also need
to generate values for x, such that x can be used to select a scoped program using this function argu-
ment to scoped operation calls. x would be used to select a scoped program within the function using
if-expressions or further introduced branching functionality.

The main challenge for an implementation of program generation lies elsewhere, however. The
mending function has a signature of f x → (x → Freer sig gam (f a)) → Freer sig gam (f a). In words,
the mending function ‘unpacks’ a value of the answer type modification of x, namely f x. Generating
interesting implementations of this function is challenging. This is because a value of Freer sig gam a

6.2. The Applications of Program Transformations 62

Figure 6.5: The process of converting a test expression into an interpreted value through means of a generated Haskell
module.

can almost solely2 be obtained through the function, and a value of x can only be obtained through
this ‘unpacking’. In general, we have not needed to do this sort of generation before in the generator,
so this would form the biggest challenge. We imagine one would steer program generation towards
values of that type by looking ahead through the type and finding expressions as paths from f x to x.
Without further looking into such a solution, it’s hard to say whether this approach would be able to fully
enumerate all programs as well.

Program Conversion
The generated expression tree programs are generated into various target expression tree syntaxes.
This is done in one of two ways. Either the expression tree is directly converted to a new expression
tree by inspecting every sub-tree and gradually converting that node to an equivalent sub-tree in the
new expression tree (1), or every sub-tree is instead converted to Haskell code that represents that
sub-tree (2). In both cases, the conversion function makes sure that all De Bruijn indices [25] present
in the generated program tree are converted to names and replaced wherever referenced.

Untyped Expression Trees
These are the target for the first type of conversion. An untyped tree is created to represent the same
program as our generated untyped expression tree represents. This is often done by simply convert-
ing an expression to its corresponding expression in the target tree. For instance, PG.If corresponds
directly to D.If, where PG is the program generation module and D is the deep language module. Re-
cursively converting an expression to its correponding target expression or to a call to its corresponding
smart constructor is thus enough to convert most expressions. Even handlers can be converted rather
easily.

Typed Expression Trees
Typed expression trees are a lot more difficult to convert to. The main difficulty in writing a conversion
function is that it’s impossible to type such a conversion function without arbitrarily introducing type
information. To illustrate, the signature of such a conversion function for Freer trees is PG.Expr →
Freer sig a. The sig and a type parameters need to be introduced, but can be anything, as PG.Expr
may expect any effects and return any type of value. We only know what these types should be at
run-time. We circumvent this typing restriction by generating Haskell code to represent the target tree
instead of converting to the tree directly. In the test, we make sure to run the generated Haskell code,
thus delaying type-checking to this step. Figure 6.5 shows the process as a simple graph.

We use the template-haskell3 library for its complete AST representation of Haskell with pretty-
printing capabilities. The conversion function for converting expressions turns a generated expression
into a Haskell AST expression representing the same (partial) program. For instance, we can convert
a program like BinOp (Lit (IntV 5)) Add (Lit (IntV 1)) to a program in the Freer tree:

binOp14 (Pure 5) Add (Pure 1)
2It is also possible to obtain ‘empty’ values of type f a in some cases, but always mending to an empty value is quite boring,

so one would want to use the function. For example, if f a = [a], an returning empty list will satisfy the type.
3https://hackage.haskell.org/package/template-haskell

https://hackage.haskell.org/package/template-haskell

6.2. The Applications of Program Transformations 63

Where binOp14 is a smart constructor to construct binary operation expressions in the Freer tree. Our
conversion function would, however, return a representation of this Haskell code, to circumvent the
need to type-check at compile-time. The binary operations-case for a conversion function from gener-
ated programs to a program in the Freer tree looks like this:

convertExpr0To14 (BinOp e1 bop e2) =
appsE [
varE $ mkName "binOp14",
convertExpr0To14 e1,
convertBinOp0To14 bop,
convertExpr0To14 e2]

Every program generated through this way will need to be interpreted with a Haskell interpreter. We
use hint4 for this. After writing out a module of a number of programs, hint is run to compile the module
(and thus type-check our generated programs) and run every individual program afterwards. This has
as an added benefit that, although our program generator produces untyped expressions, tests in this
step can still be used to check that our program generator produces well-typed expressions indirectly.

Handlers
Handlers offer another challenge for this type of program generation. With embedded effects and han-
dlers, effects are represented as GADTs. Every constructor for such a GADT represents an operation
that requires the effect. In the constructor, its parameter types represent the operation parameters and
the instantiation of the last type parameter of the GADT represents the return type of the operation.
With this in mind, we can convert every effect present in the expression tree into one of these GADTs.

The operation implementations of handlers differ a lot during the various transformations. In their
most denotational form, operation implementations are functions that take the effect to handle and per-
form a case-match on that effect to find the operation. In the most operational form, however, multiple
operation implementations each handle a single operation. We make sure that the conversion function
for a specific target outputs the correct form of operation implementation.

Scoped handlers
Scoped handlers introduce a slight caveat on this generation process. Scoped effect handlers are
parameterised with the answer type modification f, rather than the polymorphic w5 seen in algebraic
handlers. We thus need to offer a sensible type for f to allow our generated programs to type-check. We
generate a newtype6 declaration for the answer type modification f for every handler. The generated
answer type modification is used in every place where a type f would be needed. To make sure the
program type-checks, we then need to wrap the operation implementation and return results in this
newtype and unwrap results of continuations and handle expressions. This makes sure we do not
need to take care of the wrapping in our program generator.

Testing Philosophy
For every program we perform the same tests that have as goal to confirm that interpreters maintain
the same semantics. A program, generated or otherwise, is targeted with a specific language in mind
already, but we still need to convert every program into values of the target expression trees. A test
case consists of a few steps:

1. Convert the program into the representations for 2 interpreters, one is the reference interpreter
and the other is the interpreter under test.

2. Run each program with its target interpreter.
4https://hackage.haskell.org/package/hint
5w is for most intents and purposes actually equivalent to f a, but allows no wrapping of a, unlike f a.
6A type declaration would be more desirable, but because Haskell does not allow partial type-alias application, we need to

make due with newtype.

https://hackage.haskell.org/package/hint

6.3. Conclusions and Considerations 64

3. Convert both interpreting results to a single result representation (often that of the reference
interpreter).

4. The test passes if the converted results are equal.

The reference interpreter is the same for all tests for the same language. Although this is not
needed for verification reasons, using the same reference interpreter limits the number of conversions
necessary. We thus test every step individually, but we also know that any two interpreters other than
the reference interpreter yield the same results by transitivity of equality. This puts our intention of
testing that the domain and codomain of two functions are the same into action.

The programs we test are 10000 generated programs per target interpreter. We expect each of
these 10000 generated programs to be interpreted without erroring or returning an unhandled operation
by every interpreter. We expect the target interpreter to give the same result as the reference interpreter,
to verify that interpreters have the same semantics.

6.3. Conclusions and Considerations
We provide evidence that the program transformations we use to derive a freer monad-based embed-
ding of effects and handlers from a corresponding denotational interpreter are well-known, standard
transformations. However, we were unable to provide a full correspondence for every step. To truly
know that each step preserves the semantics of the language an interpreter interprets, we need to
complete the picture. We think it is possible to connect ‘lettification’, as we call it, to defunctionalisation
and refunctionalisation, because the parts transformed show the typical signs of defunctionalisation,
but we have yet to fully show their correspondence. Aside from this, we claim that our introduction
of intrinsic typing in the expression tree assumes typing rules that should be preferred to be specified
explicitly in future work.

As for the application of our program transformations, we describe the test suite we use to evaluate
the correctness of our implementations. These tests check that interpreters have the same codomain
for a generated domain. In other words, we test that interpreters have the same behaviour by generating
a set of programs as input to these interpreters and check that each interpreter outputs the same values.

During the application of the program transformations, many things could go wrong. A couple in-
stances of such problems are:

• Copying interpreter1, we would search 1 and replace it with 2 to update the names of functions
and types. However, variable names would also sometimes contain 1, introducing name conflicts
if another variable with the same name was already present.

• Another simple type of copy paste issue could happen when working on binary operations. We
could sometimes introduce a case with the wrong semantics for one of the binary operations.

• At times, we missed cases when we had to implement a new functionality such as substitution.
• Handling shallow effects experiences a subtle change when we just as subtly removed a depen-
dency on the laziness of the defining language (Haskell).

All these types of mistakes in applying and implementing the program transformations were caught by
our generated tests.

However, the tests we ran could have been executed a little better if we took the time to do any of
the following improvements:

• We could have not only ran the tests just to see that they passed, but we could have looked
into the coverage that these tests had. For instance, we might have ran simple line or branch
coverage. However, because of how we convert untyped expression trees into typed expression
trees, a coverage measuring tool should take into account in-execution calls to GHC. We may
well have also looked into mutation testing to find exactly what type of errors were left uncaught
by the tests.

• The programs we generate currently are restricted to be deterministic and always well-typed.
A future iteration of such a generator might also consider not well-typed and non-deterministic
programs. However, the assumption of determinism is interwoven into the program generation
and testing method rather tightly at this moment. A solution that should support both these, might
need to rethink the approach to program generation.

6.3. Conclusions and Considerations 65

• On top of this, program generation of effect handlers is currently limited to handlers that display
deep algebraic-like handling semantics. These handlers are then converted and embedded in
shallow and deep scoped handlers, simulating only deep algebraic semantics. We have explained
a way to extend the program generation rules to include shallow and scoped handlers, but we
have yet to implement these rules.

More structurally, dynamic tests could only verify that a set of interpreters all implement the same
semantics to some degree of confidence. To know for sure that this is the case, a proof would be
required. Although it is indeed possible to write such a proof for every pair of interpreters in Coq or
Agda, we have not tried this, as our work was written in Haskell and would take a considerable time to
convert and prove.

7
Related Work

We relate the small-step operational semantics for languages with effects and handlers to their corre-
sponding free monad embeddings in Haskell, closely modelling their denotational semantics. Previous
work has related the denotational semantics for effects and handlers to their free monad model [28],
as well as a model for delimited control. In fact, previous work relates effects and handlers to delimited
control more often [18, 69]. These works show that both in typed and untyped settings, deep handlers
are related to the shift0 operator, and, likewise, shallow handlers are related to the control0 operator.
These works provide mathematical approaches to proving a relation between delimited control and ef-
fects and handlers. More practically, previous works have shown both partial [56] and full [33, 32] CPS
translations for deep and shallow algebraic effect handlers.

We relate different semantics through series of small, discernible program transformations, like
demonstrated by Danvy [20] and Vesely and Fisher [78]. Specifically, work involving exceptions demon-
strates stack unwinding relates closely to this work: Danvy demonstrates the relation between [19], and
Hutton and Wright show how to derive a compiler from a corresponding interpreter [39]. This is in the
spirit of Hoare’s seminal work Unifying Theories of Programming [34], wherein Hoare states ”What is
needed is a deep understanding of the relationships between the different models and theories, and a
sound judgment of the most appropriate area of application of each of them”. Danvy relates small-step
to big-step operational semantics, Vesely and Fisher relate big-step back to small-step operational se-
mantics [78]. Work relating operational to denotational semantics exists as well, relating the worst-case
execution paths mathematically [77], relating semantics for web services [82], and relating semantics
for Verilog [37, 38]. All of the aforementioned works relating operational and denotational semantics do
so through a single conversion, unlike howDanvy takes us through a semantic park [21] when he shows
the various types of semantics in between small-step operational and big-step operational semantics.

The work we consider to be closest to this work in its goals and results is [1], in which Sig Ager,
Danvy, and Midtgaard show the relation between various monadic evaluators and an abstract machine
for languages with computational effects. Another work very closely related to this work is the PhD
thesis of Biernacki, in which he relates the various semantics of programs with delimited continuations
[12]. Other work similar in nature are ones relating the abstract machines and denotational semantics
of the gradually-typed lambda calculus [30] and functional languages [11].

We test our program transformations with programs generated using type-directed program synthe-
sis techniques. We make use of random testing using QuickCheck [16], where inputs are generated
to check that a user-defined property holds. Approaches such as Adaptive Random Testing [15, 35]
focus on the uniformity of the generated inputs. Extensions of which exist for generating non-numeric
inputs [43]. An extension on this method of testing is that of symbolic execution [47, 17]. This system of
testing would describe the properties of the interpreter under test and test properties hold symbolically.

The program generation approach is based on Pałka’s work [67], which of itself is an implementation
of constraint-based program synthesis [65]. A work by Juhošová basing itself on Pałka’s work like ours
focuses on generating both well-typed and ill-typed expressions [43]. For Haskell specifically, tools
such as TYGAR [29], Scythe [65], Djinn 1, and Wingman 2 synthesize Haskell expressions to help auto-

1https://hackage.haskell.org/package/djinn
2https://hackage.haskell.org/package/hls-tactics-plugin

66

https://hackage.haskell.org/package/djinn
https://hackage.haskell.org/package/hls-tactics-plugin

67

completions. Aside from randomly searching, many works instead base their approach on example
programs [66, 51]. Alternatively, one might look toward symbolic execution for generating tests [14].
Recently, this hybrid approach was used to generate test suites for interpreters written in Scala [5].

As for evaluating our program generation procedure, wemight have looked towards various forms of
coverage, such as the well-known line coverage, branch coverage, but also pairwise combinatorial cov-
erage [31], multi-way combinatorial coverage [52], mutation adequacy score [40], or even higher-order
mutation adequacy [41]. Tools such as QuickCover [31] and MuCheck [54] make these evaluations
available in Haskell. Using such coverage measures, we could have improved our generated test in-
puts incrementally [53, 62, 31, 45]. Work by Allwood et al. supports fully black box test suite generation
in Haskell [3].

8
Conclusion

After presenting the generally known transformations to derive a denotational interpreter from a small-
step operational semantics and vice versa in Chapter 2, we showed our own transformations to take
an operational semantics all the way to a freer monad-based embedding for deep effects and handlers
in Chapter 3, and back for shallow effects in Chapter 4 and scoped effects in Chapter 5. We evaluated
the transformations we add to derive the embedding from a denotational interpreter and back, and our
applications of these same transformations in Chapter 6.

In Chapter 4, we derive a novel set of operational semantics for deep scoped effects and handlers.
These operational semantics show that scoped effects defined with the helping construct of a ‘mending
function’ use themending function only to thread handling in the case of an unhandled scoped operation
(figure 8.1). Other than this case, scoped operations appear to be very similar to algebraic operations,
threading handling into two continuations rather than the single continuation provided by algebraic
operations.

handle h@{eff, . . ,mend xm 7→ em} (scope eff′ scpi v xrec erec Xop[])→
scope eff′ scpi v xrec (handle h erec) (let xm = [] in em [resume/(y 7→ handle h Xop[y])])

if eff 6≡ eff′

Figure 8.1: Part of the scoped effects structural operational semantics

The program transformations we add are those that transform an untyped denotational interpreter
to a freer monad-based embedding in Haskell and vice versa. We claim that these program transfor-
mations are standard and can be shown to originate in known transformations such as specialisation
and generalisation, and defunctionalisation and refunctionalisation. The testing we have done has yet
to indicate otherwise.

We evaluated the applications of program transformations in Chapters 3 to 5 with generated and
manual programs rather than a formal proof. The process described in Chapter 6 generates untyped
expression trees and converts those trees into untyped and typed expression trees to be interpretedwith
various interpreter functions. This process is not perfect. Not all features of the languages we transform
can be generated. We only generate deep handler semantics and convert those to the semantics
required for each language. Therefore, we do not generate programs that test scoped operations
or utilise the possibility of mutually recursive shallow effect handlers, for instance. Future work may
remedy this by extending the program generation functions we use here, but we believe this might
require rethinking our assumptions. This might require generation of non-deterministic programs, which
our program generation function explicitly avoids.

We show that it is possible to test the applications of our program transformations on embeddings
of effects and handlers, but we cannot show a complete proof that the transformations work on every
language. We claim that it can be proven that our interpreters implement the same semantics, however.
By breaking up the transformation process into small steps, we do not only facilitate understanding of
each transformation, but we also facilitate writing a proof. Without a proof, our testing method is good,

68

69

but could be better. We could have measured the coverage of our tests through mutation testing and
it is still possible to improve that coverage by implementing generation rules for shallow and scoped
effects and handlers. Additionally, onemight look into generating recursive programs as well as erroring
programs to also investigate bad-weather behaviours of the interpreters under test.

Future Work
Generalisation of our transformations
The transformational steps we introduced may not generalise to be applicable to every single language
that implements effects and handlers. We might see that some languages cannot be represented with
a freer-monad-like tree and might indeed need some different abstraction. This might hinder our abil-
ity to generically apply these steps to get the best abstraction. We cannot currently guarantee that
these steps are generally applicable and future work would thus be needed to try to convert different
implementations of effects and handlers. Future work may start by converting the model for denota-
tional semantics of latent effects [10] to an operational semantics, as a first check. If the steps cannot
generically apply to these semantics, perhaps adjustments can be made.

A complete proof
As it stands, we justified our strong suspicion that the program transformations we add are ‘standard’
transformations, known to preserve the behaviour of the transformed programs. However, a full con-
nection and proof of that connection is yet to be produced. A future work could look into these connec-
tions and formally connect lettification to refunctionalisation, for instance. Formalisations of such kinds
would also give some insight into the way these transformations generalise to other types of effects
and handlers.

Incomplete program generation
We currently generate programs in a target language with deep algebraic handler semantics turned into
the target handler semantics. To properly cover the search space, we believe the program generator
would need to be extended to support generating scoped syntax. A solution would need to be created
to generate mending functions of type f x → (x → Freer sig gam a) → Freer sig gam a, as discussed
in Section 6.2.1. The difficulty with this function is that a search for a value of type x from the argument
of type f x is hard to imagine to generally enumerate all possible expressions to fill the gap.

Different program generation techniques
Our untyped approach is useful for being relatively easy to implement and describe, but does not offer
type-level guarantees about the programs generated. A program generator written with dependent
types might be able to generate typed expression trees that can be directly converted to other typed
expression trees. This would remove the need for special conversion functions that generate Haskell
code. However, this would come with its own challenges, such as typing the environment of effects
and scoped effects of which operations can be called.

Evaluating quality of generated programs
Currently, we have no way of properly evaluating the quality of the programs generated. For this, we
would look towards a metric such as combinatorial coverage. Combinatorial coverage can give an
indication of how many 2-way combinations of interactions are tested with a test-set and can reduce
the test-set to the set of tests that is most relevant to getting a high coverage. A measurement can be
made using the framework introduced by Goldstein et al. [31], to find how much of the search space is
likely covered by our generated programs.

In combination with this, we might be able to perform some additional tests with less effort to find
out how much our generated programs may cover. We may define a set of features that we wish to be
covered by generated programs and see whether each of those features are used by a program and,
importantly, tested by the interpreter. The second part is important because not every part of a program
is eventually executed. This would give an indication of what features might need to be prioritised in
generation to optimally generate interesting programs.

References

[1] Mads Sig Ager, Olivier Danvy, and JanMidtgaard. “A functional correspondence betweenmonadic
evaluators and abstract machines for languages with computational effects”. In: Theoretical Com-
puter Science 342.1 (2005). Applied Semantics: Selected Topics, pp. 149–172. ISSN: 0304-3975.
DOI: https://doi.org/10.1016/j.tcs.2005.06.008. URL: https://www.sciencedirect.
com/science/article/pii/S0304397505003439.

[2] Mads Sig Ager et al. “A Functional Correspondence between Evaluators and Abstract Machines”.
In: Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declaritive Programming. PPDP ’03. Uppsala, Sweden: Association for Computing Machinery,
2003, pp. 8–19. ISBN: 1581137052. DOI: 10.1145/888251.888254. URL: https://doi.org/10.
1145/888251.888254.

[3] Tristan Allwood, Cristian Cadar, and Susan Eisenbach. “High Coverage Testing of Haskell Pro-
grams”. In: Proceedings of the 2011 International Symposium on Software Testing and Analysis.
ISSTA ’11. Toronto, Ontario, Canada: Association for Computing Machinery, 2011, pp. 375–385.
ISBN: 9781450305624. DOI: 10.1145/2001420.2001465. URL: https://doi.org/10.1145/
2001420.2001465.

[4] Carol AR Andrews. The Rosetta Stone. British Museum Publications London, 1981.
[5] Wesley Baartman. “Towards Automatic Test Suite Generation for Functional Programming As-

signments using Budgeted Compositional Symbolic”. In: (2022).
[6] Casper Bach Poulsen and Cas van der Rest. “Hefty Algebras: Modular Elaboration of Higher-

Order Algebraic Effects”. In: Proc. ACM Program. Lang. 7.POPL (Jan. 2023). DOI: 10.1145/
3571255. URL: https://doi.org/10.1145/3571255.

[7] Andrej Bauer and Matija Pretnar. “An Effect System for Algebraic Effects and Handlers”. In: Al-
gebra and Coalgebra in Computer Science. Ed. by Reiko Heckel and Stefan Milius. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 1–16. ISBN: 978-3-642-40206-7.

[8] Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and handlers”. In: Journal
of Logical and Algebraic Methods in Programming 84.1 (2015). Special Issue: The 23rd Nordic
Workshop on Programming Theory (NWPT 2011) Special Issue: Domains X, International work-
shop on Domain Theory and applications, Swansea, 5-7 September, 2011, pp. 108–123. ISSN:
2352-2208. DOI: https://doi.org/10.1016/j.jlamp.2014.02.001. URL: https://www.
sciencedirect.com/science/article/pii/S2352220814000194.

[9] Nick Benton et al. “Strongly Typed Term Representations in Coq”. In: Journal of Automated Rea-
soning - JAR 49 (Aug. 2012), pp. 1–19. DOI: 10.1007/s10817-011-9219-0.

[10] Birthe van den Berg et al. “Latent Effects for Reusable Language Components”. In: Program-
ming Languages and Systems. Ed. by Hakjoo Oh. Cham: Springer International Publishing, 2021,
pp. 182–201. ISBN: 978-3-030-89051-3.

[11] Ma lgorzata Biernacka. “A derivational approach to the operational semantics of functional lan-
guages”. PhD thesis. Citeseer, 2006.

[12] Dariusz Biernacki. “The theory and practice of programming languages with delimited continua-
tions”. PhD thesis. Citeseer, 2005.

[13] Guillaume Boisseau and Jeremy Gibbons. “What You Needa Know about Yoneda: Profunctor
Optics and the Yoneda Lemma (Functional Pearl)”. In: Proc. ACM Program. Lang. 2.ICFP (July
2018). DOI: 10.1145/3236779. URL: https://doi.org/10.1145/3236779.

[14] Cristian Cadar and Koushik Sen. “Symbolic execution for software testing: three decades later”.
In: Communications of the ACM 56.2 (2013), pp. 82–90.

70

https://doi.org/https://doi.org/10.1016/j.tcs.2005.06.008
https://www.sciencedirect.com/science/article/pii/S0304397505003439
https://www.sciencedirect.com/science/article/pii/S0304397505003439
https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/2001420.2001465
https://doi.org/10.1145/2001420.2001465
https://doi.org/10.1145/2001420.2001465
https://doi.org/10.1145/3571255
https://doi.org/10.1145/3571255
https://doi.org/10.1145/3571255
https://doi.org/https://doi.org/10.1016/j.jlamp.2014.02.001
https://www.sciencedirect.com/science/article/pii/S2352220814000194
https://www.sciencedirect.com/science/article/pii/S2352220814000194
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

References 71

[15] T. Y. Chen, H. Leung, and I. K. Mak. “Adaptive Random Testing”. In: Advances in Computer Sci-
ence - ASIAN 2004. Higher-Level Decision Making. Ed. by Michael J. Maher. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 320–329. ISBN: 978-3-540-30502-6.

[16] KoenClaessen and JohnHughes. “QuickCheck: A Lightweight Tool for RandomTesting of Haskell
Programs”. In: SIGPLAN Not. 35.9 (Sept. 2000), pp. 268–279. ISSN: 0362-1340. DOI: 10.1145/
357766.351266. URL: https://doi.org/10.1145/357766.351266.

[17] Lori A. Clarke. “A Program Testing System”. In: Proceedings of the 1976 Annual Conference.
ACM ’76. Houston, Texas, USA: Association for Computing Machinery, 1976, pp. 488–491. ISBN:
9781450374897. DOI: 10.1145/800191.805647. URL: https://doi.org/10.1145/800191.
805647.

[18] Youyou Cong and Kenichi Asai. “Understanding Algebraic Effect Handlers via Delimited Control
Operators”. In: Trends in Functional Programming. Ed. by Wouter Swierstra and Nicolas Wu.
Cham: Springer International Publishing, 2022, pp. 59–79. ISBN: 978-3-031-21314-4.

[19] Olivier Danvy. “Defunctionalized Interpreters for Programming Languages”. In: SIGPLAN Not.
43.9 (Sept. 2008), pp. 131–142. ISSN: 0362-1340. DOI: 10.1145/1411203.1411206. URL: https:
//doi.org/10.1145/1411203.1411206.

[20] Olivier Danvy. “From Reduction-Based to Reduction-Free Normalization”. In: Electronic Notes in
Theoretical Computer Science 124 (Apr. 2005), pp. 79–100. DOI: 10.1016/j.entcs.2005.01.
007.

[21] Olivier Danvy, Jacob Johannsen, and Ian Zerny. “A Walk in the Semantic Park”. In: Proceed-
ings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation.
PEPM ’11. Austin, Texas, USA: Association for Computing Machinery, 2011, pp. 1–12. ISBN:
9781450304856. DOI: 10.1145/1929501.1929503. URL: https://doi.org/10.1145/1929501.
1929503.

[22] Olivier Danvy and Kevin Millikin. “On the equivalence between small-step and big-step abstract
machines: a simple application of lightweight fusion”. In: Information Processing Letters 106.3
(2008), pp. 100–109. ISSN: 0020-0190. DOI: https://doi.org/10.1016/j.ipl.2007.10.010.
URL: https://www.sciencedirect.com/science/article/pii/S0020019007003018.

[23] Olivier Danvy and Kevin Millikin. “Refunctionalization at work”. In: Science of Computer Program-
ming 74.8 (2009). Special Issue on Mathematics of Program Construction (MPC 2006), pp. 534–
549. ISSN: 0167-6423. DOI: https://doi.org/10.1016/j.scico.2007.10.007. URL: https:
//www.sciencedirect.com/science/article/pii/S0167642309000227.

[24] Olivier Danvy and Lasse R. Nielsen. “Defunctionalization at Work”. In: Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative Program-
ming. PPDP ’01. Florence, Italy: Association for Computing Machinery, 2001, pp. 162–174. ISBN:
158113388X. DOI: 10.1145/773184.773202. URL: https://doi.org/10.1145/773184.773202.

[25] N.G de Bruijn. “Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem”. In: Indagationes Mathematicae
(Proceedings) 75.5 (1972), pp. 381–392. ISSN: 1385-7258. DOI: https://doi.org/10.1016/
1385- 7258(72)90034- 0. URL: https://www.sciencedirect.com/science/article/pii/
1385725872900340.

[26] Matthias Felleisen and Robert Hieb. “The revised report on the syntactic theories of sequential
control and state”. In: Theoretical Computer Science 103.2 (1992), pp. 235–271. ISSN: 0304-
3975. DOI: https://doi.org/10.1016/0304-3975(92)90014-7. URL: https://www.scienced
irect.com/science/article/pii/0304397592900147.

[27] Yannick Forster et al. “On the Expressive Power of User-Defined Effects: Effect Handlers, Monadic
Reflection, Delimited Control”. In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017). DOI: 10.1145/
3110257. URL: https://doi.org/10.1145/3110257.

[28] Yannick Forster et al. “On the Expressive Power of User-Defined Effects: Effect Handlers, Monadic
Reflection, Delimited Control”. In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017). DOI: 10.1145/
3110257. URL: https://doi.org/10.1145/3110257.

https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/800191.805647
https://doi.org/10.1145/800191.805647
https://doi.org/10.1145/800191.805647
https://doi.org/10.1145/1411203.1411206
https://doi.org/10.1145/1411203.1411206
https://doi.org/10.1145/1411203.1411206
https://doi.org/10.1016/j.entcs.2005.01.007
https://doi.org/10.1016/j.entcs.2005.01.007
https://doi.org/10.1145/1929501.1929503
https://doi.org/10.1145/1929501.1929503
https://doi.org/10.1145/1929501.1929503
https://doi.org/https://doi.org/10.1016/j.ipl.2007.10.010
https://www.sciencedirect.com/science/article/pii/S0020019007003018
https://doi.org/https://doi.org/10.1016/j.scico.2007.10.007
https://www.sciencedirect.com/science/article/pii/S0167642309000227
https://www.sciencedirect.com/science/article/pii/S0167642309000227
https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/773184.773202
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/https://doi.org/10.1016/0304-3975(92)90014-7
https://www.sciencedirect.com/science/article/pii/0304397592900147
https://www.sciencedirect.com/science/article/pii/0304397592900147
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3110257

References 72

[29] Didier Galmiche. “Constructive system for automatic program synthesis”. In: Theoretical Com-
puter Science 71.2 (1990), pp. 227–239. ISSN: 0304-3975. DOI: https://doi.org/10.1016/
0304- 3975(90)90199- R. URL: https://www.sciencedirect.com/science/article/pii/
030439759090199R.

[30] Álvaro Garcı́a-Pérez, Pablo Nogueira, and Ilya Sergey. “Deriving Interpretations of the Gradually-
Typed Lambda Calculus”. In: Proceedings of the ACM SIGPLAN 2014 Workshop on Partial Eval-
uation and Program Manipulation. PEPM ’14. San Diego, California, USA: Association for Com-
puting Machinery, 2014, pp. 157–168. ISBN: 9781450326193. DOI: 10.1145/2543728.2543742.
URL: https://doi.org/10.1145/2543728.2543742.

[31] Harrison Goldstein et al. “Do Judge a Test by its Cover”. In: European Symposium on Program-
ming. Springer, Cham. 2021, pp. 264–291.

[32] Daniel Hillerström and Sam Lindley. “Shallow Effect Handlers”. In: Programming Languages and
Systems. Ed. by Sukyoung Ryu. Cham: Springer International Publishing, 2018, pp. 415–435.
ISBN: 978-3-030-02768-1.

[33] Daniel Hillerström et al. “Continuation passing style for effect handlers”. In: 2nd International
Conference on Formal Structures for Computation and Deduction (FSCD 2017). Ed. by Dale
Miller. Leibniz International Proceedings in Informatics (LIPIcs). Germany: Dagstuhl Publishing,
Sept. 2017, 18:1–18:19. DOI: 10.4230/LIPIcs.FSCD.2017.18. URL: https://doi.org/10.
4230/LIPIcs.FSCD.2017.18.

[34] Charles Antony Richard Hoare and He Jifeng.Unifying theories of programming. Vol. 14. Prentice
Hall Englewood Cliffs, 1998.

[35] Rubing Huang et al. “A Survey on Adaptive Random Testing”. In: IEEE Transactions on Software
Engineering 47.10 (2021), pp. 2052–2083. DOI: 10.1109/TSE.2019.2942921.

[36] Paul Hudak et al. “A History of Haskell: Being Lazy with Class”. In: Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages. HOPL III. San Diego, California:
Association for Computing Machinery, 2007, pp. 12–1–12–55. ISBN: 9781595937667. DOI: 10.
1145/1238844.1238856. URL: https://doi.org/10.1145/1238844.1238856.

[37] Z. Huibiao, J.P. Bowen, and He Jifeng. “Deriving operational semantics from denotational seman-
tics for Verilog”. In: Proceedings Eighth Asia-Pacific Software Engineering Conference. 2001,
pp. 177–184. DOI: 10.1109/APSEC.2001.991475.

[38] Zhu Huibiao, Jonathan P. Bowen, and He Jifeng. “From Operational Semantics to Denotational
Semantics for Verilog”. In: Correct Hardware Design and Verification Methods. Ed. by Tiziana
Margaria and Tom Melham. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 449–464.
ISBN: 978-3-540-44798-6.

[39] Graham Hutton and Joel J Wright. “Calculating an exceptional machine.” In: Trends in Functional
Programming 5 (2004), pp. 49–64.

[40] Yue Jia and Mark Harman. “An Analysis and Survey of the Development of Mutation Testing”. In:
IEEE Transactions on Software Engineering 37.5 (2011), pp. 649–678. DOI: 10.1109/TSE.2010.
62.

[41] Yue Jia and Mark Harman. “Higher Order Mutation Testing”. In: Information and Software Tech-
nology 51.10 (2009). Source Code Analysis and Manipulation, SCAM 2008, pp. 1379–1393.
ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2009.04.016. URL: https:
//www.sciencedirect.com/science/article/pii/S0950584909000688.

[42] Mark P Jones and LucDuponcheel.Composingmonads. Tech. rep. Technical Report YALEU/DCS/RR-
1004, Department of Computer Science. Yale …, 1993.

[43] Sára Juhošová. “Validating Type Checkers Using Property-Based Testing”. In: (2021).
[44] Ohad Kammar, Sam Lindley, and Nicolas Oury. “Handlers in Action”. In: SIGPLAN Not. 48.9

(Sept. 2013), pp. 145–158. ISSN: 0362-1340. DOI: 10.1145/2544174.2500590. URL: https:
//doi.org/10.1145/2544174.2500590.

[45] Manju Khari et al. “Performance analysis of six meta-heuristic algorithms over automated test
suite generation for path coverage-based optimization”. In:Soft Computing 24.12 (2020), pp. 9143–
9160.

https://doi.org/https://doi.org/10.1016/0304-3975(90)90199-R
https://doi.org/https://doi.org/10.1016/0304-3975(90)90199-R
https://www.sciencedirect.com/science/article/pii/030439759090199R
https://www.sciencedirect.com/science/article/pii/030439759090199R
https://doi.org/10.1145/2543728.2543742
https://doi.org/10.1145/2543728.2543742
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.1109/TSE.2019.2942921
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1109/APSEC.2001.991475
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/https://doi.org/10.1016/j.infsof.2009.04.016
https://www.sciencedirect.com/science/article/pii/S0950584909000688
https://www.sciencedirect.com/science/article/pii/S0950584909000688
https://doi.org/10.1145/2544174.2500590
https://doi.org/10.1145/2544174.2500590
https://doi.org/10.1145/2544174.2500590

References 73

[46] David J. King and P Wadler. “Combining Monads”. English. In: GlasgowWorkshop on Functional
Programming. Workshops in Computing. United Kingdom: Springer London, 1992, pp. 134–143.
ISBN: 978-3-540-19820-8. DOI: 10.1007/978-1-4471-3215-8_12.

[47] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7 (July 1976),
pp. 385–394. ISSN: 0001-0782. DOI: 10.1145/360248.360252. URL: https://doi.org/10.
1145/360248.360252.

[48] Oleg Kiselyov and Hiromi Ishii. “Freer Monads, More Extensible Effects”. In: SIGPLAN Not. 50.12
(Aug. 2015), pp. 94–105. ISSN: 0362-1340. DOI: 10 . 1145 / 2887747 . 2804319. URL: https :
//doi.org/10.1145/2887747.2804319.

[49] Oleg Kiselyov, Amr Sabry, and Cameron Swords. “Extensible Effects: An Alternative to Monad
Transformers”. In: SIGPLAN Not. 48.12 (Sept. 2013), pp. 59–70. ISSN: 0362-1340. DOI: 10 .
1145/2578854.2503791. URL: https://doi.org/10.1145/2578854.2503791.

[50] Casey Klein, Matthew Flatt, and Robert Bruce Findler. “Random Testing for Higher-Order, Stateful
Programs”. In: SIGPLAN Not. 45.10 (Oct. 2010), pp. 555–566. ISSN: 0362-1340. DOI: 10.1145/
1932682.1869505. URL: https://doi.org/10.1145/1932682.1869505.

[51] Tristan Knoth et al. “Resource-Guided Program Synthesis”. In: Proceedings of the 40th ACMSIG-
PLAN Conference on Programming Language Design and Implementation. PLDI 2019. Phoenix,
AZ, USA: Association for Computing Machinery, 2019, pp. 253–268. ISBN: 9781450367127. DOI:
10.1145/3314221.3314602. URL: https://doi.org/10.1145/3314221.3314602.

[52] Rick Kuhn, Yu Lei, and Raghu Kacker. “Practical Combinatorial Testing: Beyond Pairwise”. In: IT
Professional 10.3 (2008), pp. 19–23. DOI: 10.1109/MITP.2008.54.

[53] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. “Coverage Guided, Property
Based Testing”. In: Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019). DOI: 10.1145/3360607.
URL: https://doi.org/10.1145/3360607.

[54] Duc Le et al. “MuCheck: An Extensible Tool for Mutation Testing of Haskell Programs”. In: Pro-
ceedings of the 2014 International Symposium on Software Testing and Analysis. ISSTA 2014.
San Jose, CA, USA: Association for ComputingMachinery, 2014, pp. 429–432. ISBN: 9781450326452.
DOI: 10.1145/2610384.2628052. URL: https://doi.org/10.1145/2610384.2628052.

[55] Daan Leijen. “Koka: Programming with Row Polymorphic Effect Types”. In: Electronic Proceed-
ings in Theoretical Computer Science 153 (June 2014), pp. 100–126. DOI: 10.4204/eptcs.153.
8. URL: https://doi.org/10.4204%2Feptcs.153.8.

[56] Daan Leijen. “Type Directed Compilation of Row-Typed Algebraic Effects”. In: SIGPLAN Not.
52.1 (Jan. 2017), pp. 486–499. ISSN: 0362-1340. DOI: 10.1145/3093333.3009872. URL: https:
//doi.org/10.1145/3093333.3009872.

[57] Sheng Liang, Paul Hudak, and Mark Jones. “Monad Transformers and Modular Interpreters”.
In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’95. San Francisco, California, USA: Association for Computing Machinery,
1995, pp. 333–343. ISBN: 0897916921. DOI: 10.1145/199448.199528. URL: https://doi.
org/10.1145/199448.199528.

[58] Sam Lindley, Conor McBride, and Craig McLaughlin. “Do be do be do”. In: CoRR abs/1611.09259
(2016). arXiv: 1611.09259. URL: http://arxiv.org/abs/1611.09259.

[59] Christoph Lüth and Neil Ghani. “Composing Monads Using Coproducts”. In: Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming. ICFP ’02. Pitts-
burgh, PA, USA: Association for Computing Machinery, 2002, pp. 133–144. ISBN: 1581134878.
DOI: 10.1145/581478.581492. URL: https://doi.org/10.1145/581478.581492.

[60] Zohar Manna and Richard Waldinger. “A Deductive Approach to Program Synthesis”. In: ACM
Trans. Program. Lang. Syst. 2.1 (Jan. 1980), pp. 90–121. ISSN: 0164-0925. DOI: 10 . 1145 /
357084.357090. URL: https://doi.org/10.1145/357084.357090.

https://doi.org/10.1007/978-1-4471-3215-8_12
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/1932682.1869505
https://doi.org/10.1145/1932682.1869505
https://doi.org/10.1145/1932682.1869505
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1109/MITP.2008.54
https://doi.org/10.1145/3360607
https://doi.org/10.1145/3360607
https://doi.org/10.1145/2610384.2628052
https://doi.org/10.1145/2610384.2628052
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.4204%2Feptcs.153.8
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://arxiv.org/abs/1611.09259
http://arxiv.org/abs/1611.09259
https://doi.org/10.1145/581478.581492
https://doi.org/10.1145/581478.581492
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090

References 74

[61] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. “Typed Closure Conversion”. In: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’96. St. Petersburg Beach, Florida, USA: Association for Computing Machinery,
1996, pp. 271–283. ISBN: 0897917693. DOI: 10.1145/237721.237791. URL: https://doi.
org/10.1145/237721.237791.

[62] Saahil Ognawala et al. “Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed
Symbolic Execution Approach”. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. SAC ’18. Pau, France: Association for Computing Machinery, 2018, pp. 1475–1482.
ISBN: 9781450351911. DOI: 10.1145/3167132.3167289. URL: https://doi.org/10.1145/
3167132.3167289.

[63] Atsushi Ohori and Isao Sasano. “Lightweight fusion by fixed point promotion”. In: ACM SIGPLAN
Notices 42.1 (2007), pp. 143–154.

[64] C-H Luke Ong. “Correspondence between operational and denotational semantics: the full ab-
straction problem for PCF”. In: Handbook of logic in computer science 4 (1995), pp. 269–356.

[65] Peter-Michael Osera. “Constraint-Based Type-Directed Program Synthesis”. In: Proceedings of
the 4th ACM SIGPLAN International Workshop on Type-Driven Development. TyDe 2019. Berlin,
Germany: Association for Computing Machinery, 2019, pp. 64–76. ISBN: 9781450368155. DOI:
10.1145/3331554.3342608. URL: https://doi.org/10.1145/3331554.3342608.

[66] Peter-Michael Osera and Steve Zdancewic. “Type-and-Example-Directed Program Synthesis”.
In: SIGPLAN Not. 50.6 (June 2015), pp. 619–630. ISSN: 0362-1340. DOI: 10.1145/2813885.
2738007. URL: https://doi.org/10.1145/2813885.2738007.

[67] Michał H. Pałka et al. “Testing an Optimising Compiler by Generating Random Lambda Terms”. In:
Proceedings of the 6th International Workshop on Automation of Software Test. AST ’11. Waikiki,
Honolulu, HI, USA: Association for ComputingMachinery, 2011, pp. 91–97. ISBN: 9781450305921.
DOI: 10.1145/1982595.1982615. URL: https://doi.org/10.1145/1982595.1982615.

[68] F. Pfenning and C. Elliott. “Higher-Order Abstract Syntax”. In: SIGPLAN Not. 23.7 (June 1988),
pp. 199–208. ISSN: 0362-1340. DOI: 10.1145/960116.54010. URL: https://doi.org/10.
1145/960116.54010.

[69] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. “Typed Equivalence of Effect Handlers and
Delimited Control”. In: 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, 30:1–30:16. ISBN: 978-3-95977-107-8. DOI: 10.4230/LIPIcs.FSCD.2019.30. URL: http:
//drops.dagstuhl.de/opus/volltexte/2019/10537.

[70] Gordon Plotkin and Matija Pretnar. “Handlers of Algebraic Effects”. In: Programming Languages
and Systems. Ed. by Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 80–94. ISBN: 978-3-642-00590-9.

[71] Gordon D Plotkin. A structural approach to operational semantics. Aarhus university, 1981.
[72] Casper Bach Poulsen, Cas van der Rest, and Tom Schrijvers. “Staged effects and handlers for

modular languages with abstraction”. In: Workshop on Partial Evaluation and Program Manipu-
lation (PEPM). 2021.

[73] Matija Pretnar. “An Introduction to Algebraic Effects and Handlers. Invited tutorial paper”. In: Elec-
tronic Notes in Theoretical Computer Science 319 (2015). The 31st Conference on the Mathe-
matical Foundations of Programming Semantics (MFPS XXXI)., pp. 19–35. ISSN: 1571-0661.
DOI: https://doi.org/10.1016/j.entcs.2015.12.003. URL: https://www.sciencedirect.
com/science/article/pii/S1571066115000705.

[74] John C Reynolds. “Definitional interpreters for higher-order programming languages”. In: Pro-
ceedings of the ACM annual conference-Volume 2. 1972, pp. 717–740.

[75] Guy L. Steele. “Building Interpreters by Composing Monads”. In: Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’94. Portland,
Oregon, USA: Association for Computing Machinery, 1994, pp. 472–492. ISBN: 0897916360.
DOI: 10.1145/174675.178068. URL: https://doi.org/10.1145/174675.178068.

https://doi.org/10.1145/237721.237791
https://doi.org/10.1145/237721.237791
https://doi.org/10.1145/237721.237791
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.1145/3167132.3167289
https://doi.org/10.1145/3331554.3342608
https://doi.org/10.1145/3331554.3342608
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/960116.54010
https://doi.org/10.4230/LIPIcs.FSCD.2019.30
http://drops.dagstuhl.de/opus/volltexte/2019/10537
http://drops.dagstuhl.de/opus/volltexte/2019/10537
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.003
https://www.sciencedirect.com/science/article/pii/S1571066115000705
https://www.sciencedirect.com/science/article/pii/S1571066115000705
https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/174675.178068

References 75

[76] Wouter Swierstra. “Data types à la carte”. In: Journal of Functional Programming 18.4 (2008),
pp. 423–436. DOI: 10.1017/S0956796808006758.

[77] Fairouz Tchier. “Demonic Operational and Denotational Semantics”. In: Applied Mathematical
Sciences 2.18 (2008), pp. 861–881.

[78] Ferdinand Vesely and Kathleen Fisher. “One Step at a Time”. In: European Symposium on Pro-
gramming. Springer, Cham. 2019, pp. 205–231.

[79] Philip Wadler. “Monads for functional programming”. In: Advanced Functional Programming. Ed.
by Johan Jeuring and Erik Meijer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 24–
52. ISBN: 978-3-540-49270-2.

[80] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. “Effect Handlers in Scope”. In: Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell. Haskell ’14. Gothenburg, Sweden: Association for
Computing Machinery, 2014, pp. 1–12. ISBN: 9781450330411. DOI: 10.1145/2633357.2633358.
URL: https://doi.org/10.1145/2633357.2633358.

[81] Zhixuan Yang et al. “Structured Handling of Scoped Effects”. In: Jan. 2022, pp. 462–491. ISBN:
978-3-030-99335-1. DOI: 10.1007/978-3-030-99336-8_17.

[82] Huibiao Zhu et al. “Linking denotational semantics with operational semantics for web services”.
In: Innovations in Systems and Software Engineering 6 (2010), pp. 283–298.

https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1007/978-3-030-99336-8_17

	Preface
	Nomenclature
	Introduction
	From Small-Step Operational to Denotational and Back
	Small-Step to Big-Step
	Syntax and Semantics of Ex
	An Interpreter
	Step 1: Refocusing
	Step 2: Inlining Contraction
	Step 3: Lightweight Fusion
	Step 4: Compress Corridor Transitions
	Step 5: Renaming and Flattening Configurations
	Step 6: Refunctionalisation
	Step 7: Back to Direct Style
	Step 8: From Big-Step to Denotational

	... and back
	Step 0: From Denotational to Big-Step
	Step 1: CPS Conversion
	Step 2: Generalisation
	Step 3: Argument Lifting
	Step 4: Continuations Switch Control
	Step 5: Defunctionalisation
	Step 6: Remove Tail-Calls
	Step 7: Convert Continuations into Terms
	Step 8: Inlining and Simplification
	Step 9: Back to Direct Style
	Extracting Small-Step Operational Semantics

	Deriving a Freer Monad Embedding for Algebraic Effects and Handlers
	The Model Language
	Step 1: A Model Interpreter
	Step 2: Apply Transformations to Derive Denotational Interpreter
	To Denotational Step 4: Compressing corridor transitions
	To Denotational Step 6: Refunctionalisation
	To Denotational Step 7: Back to direct style
	To Denotational Step 8: From Big-Step to Denotational

	Step 3: Lettify Pure Computations
	Step 4: Add Intrinsic Typing
	Step 5: Generalise Values
	Step 6: Lettify Handling
	Step 7: Merge OpCall and Let
	Step 8: Freer Monad!

	Deriving an Operational Semantics for Shallow Algebraic Effects
	Step 0: Specify Handle Function
	Step 1: Split Impure into Let and Impure Computation
	Step 2: Inline and Lift Handling
	Step 3: Inline and Lift Pure Computations and Specialise Values
	Inline and Lift Pure Language Features
	Specialise Values

	Step 4: Remove Intrinsic Typing
	Step 5: Apply Transformations to Derive Small-Step Interpreter
	A Small-Step Operational Semantics

	Deriving an Operational Semantics for Deep Scoped Effects
	The Monadic Implementation
	Step 0: Specify Handle Function
	Step 1: Split Impure into Let and Impure Computation
	Step 2: Inline and Lift Handling
	Step 3: Inline and Lift Pure Computations and Specialise Values
	Step 4: Remove Intrinsic Typing
	Step 5: Apply Transformations to Derive Small-Step Interpreter
	A Small-Step Operational Semantics

	Evaluation
	The Added Program Transformations
	Lettify/Inline Pure Computations
	Add/Remove Intrinsic Typing
	Generalise/Specialise Values
	Lettify/Inline Handling
	Merge/Split OpCall and Let
	Specify Handle Function

	The Applications of Program Transformations
	Infrastructure

	Conclusions and Considerations

	Related Work
	Conclusion
	References

