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Beschouw het 'vuurtorenalgoritme', beschreven in [1], dat de ver­
bonden componenten van een eindige ongerichte graaf G met 
behulp van n = | V ( G ) | processoren in 2n —2—deg(G) stappen kan 
bepalen op een shared memory SIMD-machine. Zij Km (m€IN) 
de klasse van grafen waarvan voor elk element G geldt: 

Als C l t . . . , C q de verbonden componenten van G zijn, dan is 
diam(Cj) xdeg(Cj) < m voor i= 1 q. 

Er geldt dan dat voor elke G € K m de verbonden componenten van 
G in m stappen bepaald kunnen worden door het vuurtorenalgor­
itme op een shared memory SIMD-machine met |V(G)| proces­
soren. 

[1] F. Peper, 
"Determining connected components in linear time by a linear 
number of processors", Information Processing Letters, Vol. 25, 
July 1987, pp. 401-406. 

2. Zij T de onderliggende graaf van een (d.h)-net met een d-cube als 
bouwsteen (zie [2] en hoofdstuk 1), dan geldt: 

exp(D > 2V-2W+1\ 

[2] K. Hwang, J. Ghosh, 
"Hypernet: A Communication-Efficient Architecture for Construct­
ing Massively Parallel Computers", IEEE Transactions on Comput­
ers, Vol. C-36, No. 12, December 1987, pp. 1450-1466. 

3. Voor de uniforme exponentialiteiten van supersymmetrische 
grafen geldt: 

• exP(S6,k) = exP(S4,k+i) = exP(S3,k+3)> 
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4. Beschouw het polynoom fgk(t), beschreven in theorema 7.41. Er 
geldt: 

• Als tfl een nulpunt is van fgk(t), dan is I/IQ ook een nulpunt van 
fgk(t). 

• De grootste reële (positieve) wortel t van fgk(t) is enkelvoudig, 
en is de enige wortel van fgk(t) in C met radius t, 

• De volgende getallen zijn wortels van fgk(t): 

1 als (g,k) = (6,3) of (g,k) = (4,4) of (g,k) = (3,6), 

— 1 als g=0(mod 4) en k = 4, of als g=2(mod 4) , 

i en - i als g=3(mod 8) en (g ,k )#(3 ,6 ) . 

5. Het aantal door Nederlandse wetenschappers geproduceerde 
artikelen zou groter zijn indien al in het voortgezet onderwijs meer 
aandacht zou worden besteed aan schrijfvaardigheid, en in het 
bijzonder aan het opzetten van een coherent betoog. 

6. Het van te voren nauwkeurig specificeren van te behalen resultaten 
in een wetenschappelijk project kan belemmerend werken. 

7. Het kabaal waarmee paranormale genezers en andere kwakzalvers 
hun gelijk opeisen wanneer een deel van hun kunsten een weten­
schappelijke fundering dreigt te krijgen bewijst nu juist hun 
on weten sch appelijkh eid. 

8. Een grootscheeps onderzoek onder PC-bezitters moet welhaast tot 
de conclusie leiden dat personal computers voornamelijk gebruikt 
worden voor tekstverwerking en het verbeteren van schietvaardig­
heid. 

9. Ten onrechte wordt vaak gemeend dat de kwaliteit van een 
geluidsinstallatie slechts door de componenten wordt bepaald en 
niet door de verbindingen tussen de componenten. 
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Introduction 

Is it progress if a cannibal uses knife and fork? 

Stanislaw Lee (1962) 

Developments in integrated circuit technology have resulted in chips with large 
numbers of electronic components. Up to now the number of components that 
can fit onto a single chip has approximately been doubled every two years. 
Current top of the line chips contain about 106 gate equivalents, and this number 
is expected to grow to 107 or even 108. It is making feasible processors ever-
decreasing in size and ever-increasing in speed. 
Advances in technology not only cause but also limit performance growth of com­
puter systems. Attempts to hide from this have resulted in costly high-
performance sequential computers, such as the Cray I, the Cyber 205, etc. Up to 
now there was a wide and successful application of such pipelined vector comput­
ers, especially in a field like physical modeling. Nevertheless, limits to perfor­
mance improvements of such computers have been reached. Yet to obtain faster 
computers, parallelism is employed. Up to now, this resulted in the Cray XMP, 
Cray II, Alliant, etc. 
Parallelism in these computers is, however, only applied on a small scale, since 
their processors are very expensive. Even for these computers there remain prob­
lems which cannot be solved in reasonable time. In fields such as speech 
analysis, image processing, computer vision, machine inference, weather model­
ing, seismic exploration, and nuclear fusion research, performance increase of a 
factor 1000 is not an excessive luxury. Computation intensive jobs often consist 
of many highly parallel subtasks. It is a reason for existence of parallel comput­
ers equipped with very many cheap processors. 
This introduces the first of three themes in this dissertation, i.e. massive parallel­
ism. Computers equipped with large ensembles of processors are called mas­
sively parallel. They consist of at least 100 to 1000, in future possibly 106 to 108, 
processors. Major increases in performance can only be achieved by massively 
parallel computers. Ever-decreasing sizes and prices of processors make such 
computers highly cost-effective - although their huge number of processors will 
always keep them expensive. 

1 



Introduction 

The second theme in this dissertation is interprocessor communication. Interpro­
cessor communication is one of the crucial issues in parallel computers. In order 
to communicate efficiently, a computer should have a communication mechanism 
being able to transport messages fast, and being able to handle a large number of 
messages simultaneously. 
A special class of communication mechanisms are networks. Interprocessor 
communication by networks has been subject to many studies in literature (see 
paragraph 1.4.4). In this dissertation we are interested in a special kind of net­
works, i.e. statical point-to-point topologies. In such structures all processors 
have a local memory and they communicate via immutable interprocessor con­
nections. 

Many computer systems run out of capacity a few years after purchase. A reason 
for this is strikingly reflected by the first sentence of [AgJaPa] which says: 'As 
ever more powerful computers were developed, so did the demands made upon 
them'. 
A company confronted with lack of capacity as years pass by, will not be very 
eager to buy a new computer, mainly for two reasons. First of all, costs of such 
an operation are high. This is even more true for the replacement of an expen­
sive massively parallel computer. Second, there is no guarantee that the new 
computer is completely software-compatible with the old one. 
At this point the third theme of this dissertation comes in view, i.e. extensibility. 
A parallel computer is extensible if it can be extended by addition of processors, 
while its structure and characteristics are maintained. The structure ->*■ a com­
puter is maintained when extension does not essentially change its architecture. 
It guarantees software compatibility. By maintenance of characteristics we mean 
that a machine's characteristics, such as the worst-case communication time, do 
not change drastically upon extension. 
Clearly, an extensible computer system is a solution for the company mentioned 
above. Extensibility is also an attractive prospect to, for example, (parts of) com­
panies which expect to grow, or technical customers who use a small-sized confi­
guration for development of software and add processors when the system is put 
into use. 

This dissertation deals with the following two questions. 

1. Which problems can be expected in the design of efficient extensible mas­
sively parallel computers, and how can these problems be solved? 

2. How can efficient statical point-to-point topologies be designed for extensible 
massively parallel computers? 

Chapter 1 gives an introduction to massive parallelism, interprocessor communi-
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cation and extensibility. Chapter 2 describes a method to construct efficient 
point-to-point topologies for extensible parallel computers, and describes meas­
ures to evaluate such networks. In chapter 3 we face some unpleasant physical 
consequences of low communication times in extensible massively parallel com­
puters. It appears that low communication times in extensible computers give rise 
to space deficiencies. We meet this physical dilemma by proposing a teasing 
solution, which amounts to designing, building and putting on sale of computers, 
while most of their chips still have to be designed and cannot even be manufac­
tured by the state of technology at that moment. 
Thereupon, the construction method of chapter 2 is used to construct two infinite 
classes of extensible networks. The first class, which is dealt with in chapters 4 
and 5, consists of networks which are very likely suitable for efficient implemen­
tation of algorithms. Chapters 6, 7, and 8 describe the second class. This class 
contains networks which are planar and which enable low nearly optimal worst-
case communication times. 
Notions and notations used in this dissertation can be found in appendix A. 

3 
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Massive parallelism, communication issues, 
and extensibility 

Good communication is stimulating as black coffee, 
and just as hard to sleep after. 

Anne Morrow Lindbergh (1955) 

1.1 Introduction 

This chapter deals in more detail with the three main themes in this dissertation: 
massive parallelism, communication, and extensibility. 
Paragraph 1.2 sketches how massively parallel computers should be used in order 
to be an attractive alternative to vector computers. 
Paragraph 1.3 deals with the processors in an extensible massively parallel com­
puter. It discusses whether the processes should be MIMD or SIMD, how power­
ful the processors should be, whether they should have their own local memory, 
whether they should be identical, and whether each processor should have its 
own clock. 
Paragraph 1.4 deals with communication between processors. It states some 
demands on communication mechanisms, discusses the impact of physics on 
communication, gives a brief overview of communication mechanisms, and 
discusses statical point-to-point topologies. 
Paragraph 1.5 deals with extensibility. It starts to explain why computers should 
be extensible, relates extensibility to graph theory, and states some demands on 
extensibility. Thereupon, it discusses some limitations to performance of extensi­
ble computers, describes in what configurations an extensible computer should be 
used, and gives a short comment on extensibility. 
Paragraph 1.6 describes some important factors affecting performance of a paral­
lel computer. In particular, it discusses the scheduling and mapping of jobs on 
extensible computers based on statical interconnection networks. 

7 
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1.2 Massive parallelism as an alternative to pipelined vector computers 

In the last 10 years massive parallelism has been subject of extensive research. 
Some prototype massively parallel computers have been built, such as the Mas­
sively Parallel Processor ([Potter]), the Connection Machine ([Hillis]), the ICL 
DAP ([HocJes]), the New York University's Ultracomputer ([GoGrKr]), the 
CHiP ([Snyder]), the Non-Von ([Shaw]), the TRAC ([LipMal]), and the GF11 
([BeDeWe]). There was and is a small market for massively parallel computers. 
Nevertheless, they are still waiting for a commercial breakthrough. Massively 
parallel computers are mainly applied in academical environments. Their success 
is overshadowed by that of other supercomputers, in particular pipelined vector 
computers. In order to have a right to exist, massively parallel computers should 
offer at least the same as vector computers, preferably against lower costs. 
Vector computers have a high peak-performance, but also a high price. Vector 
computers are often employed as a multi-user system. A large number of users 
guarantees constant supply of jobs, preventing the computer system from being 
idle for a while. It enables a continuous utilization of the processing capacity. As 
a result, vector computers have a high throughput of jobs - that is the number of 
jobs processed per unit of time. Disregarding the overhead of the multi-user 
environment, the cost-effectiveness of vector computers is high. 
Massively parallel computers not only have their high performance, but also their 
high price in common with vector computers. To be competitive with vector 
computers, massively parallel computers should have a high throughput of jobs 
too. Furthermore, they should be employable as multi-user systems. 

In order to achieve a high throughput, it is necessary to have some knowledge 
about the load the jobs impose to a system. In general, there is much variety to 
the load. The well-known 20/80-rule appears to be valid, i.e. 20 percent of the 
jobs use 80 percent of the resources. For jobs processed on a parallel supercom­
puter, the amount of parallelism they exhibit is of importance. There are jobs 
exhibiting few parallelism, but there are also jobs occupying a large part of the 
computer. Furthermore, the amount of parallelism in a job may be time depen­
dent. Assuming the universal validity of the 20/80-rule, we conclude that 20 per­
cent of the jobs use 80 percent of a parallel computer's resources (processors) in a 
concurrent way. 
Jobs exhibiting only a small amount of parallelism, are just able to use only a 
small part of the processors concurrently. However, even for jobs exhibiting 
much parallelism it is sometimes not very meaningful to use the maximal number 
of processors concurrently. It would drastically degrade the efficiency (see 
appendix A) by which the processors are used. Consider Amdahl's law. If fs is 
the fraction of sequential instructions executed in a computation on p processors, 
then the speedup S_ (see appendix A) is bounded from above according to the 
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formula 

T f s +( l - f s ) /p ' 

It states that speedup of a parallel program is mainly determined by the part of 
the instructions, which are not parallelizable. If the speedup to be attained is at 
least p/2, then it is easily deduced (see [Quinn]) that 

p < l + l/fs. 

Consequently, in order to achieve a reasonable efficiency (^%), the number of 
processors should be limited if a part of the instructions is to be executed sequen­
tially. 
So, the claims that jobs make to processors in a concurrent way are due to much 
variety. They depend of the amount of parallelism exhibited in the job as well as 
the fraction of non-parallelizable instructions. 

In order to cope with the variety in the load jobs impose to a massively parallel 
computer, the computer should be able to execute several jobs concurrently. A 
job exhibiting few parallelism will claim only a small part of the processors. If it 
is impossible to execute such a job concurrently with other jobs, it will block the 
whole computer. This reduces the efficiency of a massively parallel computer 
substantially. 

We conclude that massively parallel computers with a high peak-performance are 
competitive to pipelined vector computers, if, employed as multi-user system, 
they are able to execute several jobs concurrently. In the remaining paragraphs 
of this chapter massively parallel computers are assumed to have these charac­
teristics. The requirement that a massively parallel computer should be able to 
execute jobs concurrently, will have impact on the architecture of the computer. 

1.3 The processors 

An important issue in the design of parallel computers concerns the processors. 
Major decisions to be made in the design are: 

1. Should the processors be fed by one single instruction stream or by several 
streams? (SIMD versus MIMD) 

2. Should the processors be powerful, or should their power be traded against 
their number? 

3. Should each processor have its own local memory, or should a global 
memory be used? 

And if an MIMD-concept is adopted: 

9 



Massive parallelism, communication issues, and extensibility Ch.1 

4. Should the processors be identical? 

5. Should the processors work under a single global clock, or should each of 
them have its own clock? 

In the previous subparagraph we concluded that a general-purpose massively 
parallel computer should process several jobs concurrently, in order to be effi­
ciently applicable. Running several jobs concurrently on one computer can only 
be achieved when all processors are able to run different programs. So, it is plau­
sible to choose for an MIMD concept. 

In all parallel systems designed up to now the power of processors range from 
simple 1-bit processors as in the ICL-DAP to highly pipelined vectorized proces­
sors as in the CRAY X-MP, the CRAY 2, and the CRAY Y-MP. Quinn 
([Quinn]) denotes these approaches by the army-of-ants and the herd-of-
elephants approach respectively. Both approaches have advantages and disadvan­
tages. 
Application of simple processors results in a more efficient use of the hardware. 
Compared with an advanced processor, a simple processor consists of very few 
transistors. The number of processors which can be built up from a fixed amount 
of transistors is maximized for simple processors. Furthermore, most of the 
transistors in an advanced processor are idle while the processor is running. So, 
the efficiency of the use of a fixed number of transistors is maximal if they are 
implemented as simple rather than advanced processors. 
On the other hand, it gives much trouble to keep all processors running, espe­
cially when the program to be run contains large pieces of non-parallelizable 
code. Amdahl's law implies that powerful processors are more lucrative in that 
case. So, although transistors are more efficiently used in the army-of-ants 
approach, keeping all processors running causes so much trouble that the herd-
of-elephant approach is preferable. 

Which approach should be preferred for massively parallel computers? 

Application of very powerful processors in massively parallel computers is very 
costly. On the other hand, simple processors degrade the peak-performance. 
Therefore, we propose an option somewhere between these two extremes. The 
processors in a massively parallel computer should at most be as powerful as a 
processor fitting on a single chip, but at least be as powerful so as to be able to 
run with a reasonable speed. This definition is rather vague, but for a general 
discussion of these matters more specificness can not be expected. 

Whether each processor should have its own local memory depends on the deci­
sions made for the communication medium between the processors. This subject 
will be dealt with in more detail in subparagraph 1.4.4. 

10 



Par. 1.3 The processors 

The choice for MIMD leaves open the question whether all processors must be 
identical. Before giving an answer to this we make a distinction between logical 
and physical identity. 
Two processors are logically identical if they behave identical. That is, execution 
of the same program with identical inputs produces identical outputs. Several 
levels of logical identity can be distinguished. High level identity occurs when the 
program is written in some high-level language, and input/output are strings of 
characters without concern how these characters are represented in bits. As a 
matter of fact, many processors are logically identical at this level. On the other 
hand, two processors exhibit low level identity whenever they are identical at bit 
level, i.e. when they are pin-compatible. Low level identity is more strict than 
high level identity. We shall only qualify two processors as logical identical 
whenever they don't differ at bit level. 
Two processors are physically identical whenever they are logically identical, have 
the same layout in VLSI and are equally sized. 

From many points of view, it is beneficial for a parallel computer to have logi­
cally identical processors. It simplifies the computer's structure. Logically ident­
ical processors are able to take over tasks of each other, easing the consequences 
of defective processors. It also enables a flexible schedule of jobs onto proces­
sors. For, in a computer with logically identical processors scheduling software 
does not have to take into account processor inhomogeneities. So, logical identity 
results in simplicity of (system) software. 
Another benefit of logical identity is that it simplifies the analyses of the charac­
teristics and performance of a parallel computer. 
Although parallel computers with non-identical processors don't have the advan­
tages of identity, they are sometimes preferred to homogeneous computers. 
Addition of special-purpose processors for database operations, matrix operations 
or other specific operations often results in a significant improvement of a parallel 
computer's total performance. However, it might have a negative influence on a 
computer's efficiency for two reasons. 
First, although the high speed of special-purpose processors results in perfor­
mance improvements, it might be overshadowed by the time needed for data-
transport to and from the processors. 
Second, if special-purpose processors are not frequently used, then the yield of 
the investment in them is low. In that case, it is more cost-effective to spend the 
money to continuously used general-purpose processors (see also [LipMal; pp.11, 
29,30]). 

In addition to all advantages of logical identity, physical identity offers even 
more. It implicates the identity of many electronic components, thus resulting in 
larger series and lower prices. Furthermore, a limited number of different kinds 
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of electronic components in a computer implies that only a small number of com­
ponents has to be designed. As a result of this, the design costs will be lower, 
and they can be spread among larger series. 

In this dissertation we shall only consider parallel computers consisting of logi­
cally identical processors, without willing to qualify computers with logically dif­
ferent processors as useless. Whether processors should be physically identical 
will be discussed in chapter 3. 

Finally, we are confronted with the question whether all processors should work 
under a global clock or not. Processors working under local clocks are some­
times said to work asynchronously. This kind of asynchronism differs from the 
asynchronism denoting that a computer is a member of the class MIMD. By 
definition, programs are executed asynchronously by MIMD processors, even if 
they are controlled by a global clock. Consequently, two levels of synchronism 
can be distinguished. To differentiate between them we decided to use the terms 
global and local clock instead of synchronous and asynchronous. 

In practice, global clock designs are preferred because they require less compli­
cated hardware. Data exchange between two directly connected processors is 
complicated when both have their own local clocks. As a consequence of local 
clock designs, hardware provisions have to be made for synchronization of data 
transfer. 
On the other hand, when systems become physically large, or when their size can 
not be predicted in advance, the advantages of local clock designs begin to 
mount. If a system's physical size is large, application of a global clock runs up 
against difficulties. There is the delay of a signal through a wire, caused by the 
wire's resistance and capacity. In a computer with many processors, transporta­
tion of a clock pulse to a processor lying far away takes a longer time than tran­
sport to a near processor. As a consequence, the processors don's run in lock 
step. To cope with this, the clock frequency can be decreased until the situation 
arises that no processor receives a new pulse, while others haven't yet received 
the previous one. This causes a degradation of the computer's performance. 
Alternatively, a so-called 'clock-tree' may be used, which is able to transport a 
signal from the root to its leaves. If all wires in the tree have equal length, this 
device guarantees simultaneous arrivals of all the pulses in its leaves. When a 
provision is made for pipelining the pulses among the tree, the system doesn't 
suffer from long delays, enabling a higher clock pulse. 

However, not only clock pulses but also data transmission between processors is 
hindered by large physical distances. In global clock designs, the time between 
two consecutive pulses should be large enough to enable a package of data to flow 
from a source processor to its destination. Clearly, large physical distances force 
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the clock frequency to be low. We conclude that extensibility and massiveness 
causes complications in globally clocked computers (see also [FisKun] and [Wan-
Fra]). For this reason and for reasons which will become clear in chapter 3 we 
prefer locally clocked schemes. 

1.4 Communication issues 

1.4.1 Introduction 

One of the crucial issues in parallel computer design is interprocessor communi­
cation. The design of a parallel computer stands or falls with the efficiency of its 
communication. In the previous decade, interprocessor communication has been 
the subject of much research. This paragraph will not give an exhaustive over­
view of this research. We shall rather describe the conditions that communica­
tion mechanisms should satisfy in order to be fully fledged (see subpara-
graph 1.4.2). In addition, we shall describe some measurements on the basis of 
which strategies for communication can be evaluated. 
For communication models, and in particular the efficient ones among them, a 
number of restrictions imposed by nature's laws hold. The consequences of these 
restrictions will be described in subparagraph 1.4.3. 
In the search for ways to communicate many proposals have been done. Sub-
paragraph 1.4.4 will give an overview of well-known communication mechan­
isms. 
Thereupon, in subparagraph 1.4.5 one of the communication mechanisms, stati­
cal networks, will be considered in more detail. 

1.4.2 Demands on communication mechanisms 

To be efficiently applicable in practice, communication mechanisms should 
satisfy a number of conditions. Before dealing with these conditions in this sub-
paragraph, we shall describe two measurements enabling evaluation of communi­
cation mechanisms. 
The first metric is the worst-case communication time. It is the longest time 
needed to send a single message in isolation of a processor to another, considered 
over any two processors in a computer. During the mailing of the message no 
other communication in the computer takes place. 
The second metric is the so-called communication bandwidth (e.g. see [Levita]). It 
is the total number of messages that can be sent or received by the processors in 
the system in one unit of time (0(1)). The time needed for one CPU operation 
or instruction is considered as unit of time. In a computer with n processors the 
communication bandwidth is never greater than n. 
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Having defined these two metrics, we can deal with the demands on communica­
tion mechanisms. Two groups of demands are distinguished. 

• Preconditions to communication. 

• Preconditions to efficiency of communication. 

Essential demands in the first group are 

1. The communication mechanism should be capable to establish communica­
tion between any two processors (trivial). 

2. The communication method should not conflict with physical laws. 
This trivial requirement appears to have more repercussions than would be 
expected on the face of it. More details about this can be found in subpara-
graph 1.4.3 and chapter 3. 

3. The communication mechanism must technologically be feasible. 
As an example, a totally connected network with a large number of proces­
sors is infeasible with current technology. (In such a network any two pro­
cessors are directly connected, resulting in n—1 connections per processor, 
where n is the number of processors.) The number of I/O-ports needed in 
each processor is very large in totally connected networks. 
In the near future a totally connected network with 1000 processors seems to 
be technologically feasible: In [DeFrSm] a parallel computer with 1000 pro­
cessors is proposed in which each processor has direct write-access to an 
output buffer belonging to it and each processor has direct read-access to 
1000 input buffers, each of which corresponds uniquely to a processor. The 
total number of input buffers is 106 and the contents of each output buffer 
can be transported via optical links to 1000 of the input buffers. 

Preconditions to efficiency of communication are 

4. The amount of communication hardware should be kept small, and the 
hardware should not be too complex. 
Since most of the hardware of a parallel computer is needed for communi­
cation, any attempt to reduce it is welcome. This demand does not neces­
sarily result in faster communication, but it does enable the spared com­
ponents to be used for other purposes, such as extra computational 
hardware. Furthermore, simplicity of communication hardware results in 
lower design costs. 

5. The communication mechanism should be applicable in massively parallel 
computers. 
Communication mechanisms which can only be used efficiently when the 
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number of processors is limited, or which require extensive hardware provi­
sions for large numbers of processors, can not be applied in massively paral­
lel computers. 

6. Communication software should be simple. 
Simplicity of the software dealing with the sending of messages in a com­
puter will result in lower software design costs, and will often result in faster 
execution of the software. 

7. The structure of the communication mechanism should be regular. 
This demand does not necessarily result in faster communication, but it 
does result in a more well-organized communication process. 
It promotes simplicity of the software running on the computer, in particu­
lar the system-software dealing with the sending of messages. For, the 
software does not have to take into account inhomogeneities in the com­
munication structure if the latter is regular. 
A regular communication structure will also relieve the job of someone 
analyzing the performance of the computer. In general, absence of inhomo­
geneities results in a more orderly course of the data streams in a computer, 
simplifying the forecast of the behaviour of these streams and the analysis of 
the load they impose to the system. 
Finally, regularity of a communication mechanism results in a simpler lay­
out of the computer. This is not only an advantage for a user, a designer 
will also profit from this. The ever-repeated patterns in a regular structure 
need to be designed only once, resulting in lower design-costs. 

8. The worst-case communication time should be low. 
Too high a worst-case communication time slows down the execution of jobs 
and causes processors to wait long for messages. The best worst-case com­
munication time that can be achieved by most practicable communication 
mechanisms is 0(log n), where n is the total number of processors. 

9. The communication-bandwidth should be large. 
One important pursuit in the design of communication mechanisms is to 
maximize the number of processors capable to communicate simultane­
ously. Too small a bandwidth may cause congestion of the communication 
mechanism. As a consequence of congestion a system's performance will 
decrease. 

10. The processes in a job should be scheduled on the processors such that 
interprocessor communication is minimized. 
Direct processor to processor communication in an asynchronous MIMD 
computer causes serious problems ([Uhr; p. 51]). The operating system 
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running on such a computer has to execute many thousand instructions to 
send a message between processors. It takes thousands of times longer to 
send information than to operate on that information. Hence, minimization 
of interprocessor communication grades up the efficiency with which jobs 
are executed. 

Since it is hard to forecast communication between processors within one job, the 
above demand is not easily satisfied. Therefore, we propose the following 
requirement as alternative. 

11. The processes in a job should be scheduled on the processors such that com­
putation and interprocessor communication are well-balanced. 
An excess of processors used for a job will tip the scale to considerable 
interprocessor communication times. On the other hand, using too small a 
number of processors results in a more efficient use of them, but also in a 
lower speedup. An intermediate course between these alternatives results in 
a reasonable speedup and a reasonable efficiency of the use of the proces­
sors. Setting the number of processors working on a job such that the effi­
ciency of their use is, say, % seems to be reasonable. 

12. Communication within a job should not be interfered by communication in 
other jobs. 
The routes via which processes in a job send their messages should not pass 
via processors executing another job. There is no mutual communication 
between jobs. The only communication taking place should be the com­
munication between processes belonging to the same job. Dependency of 
jobs with respect to communication decreases the speed and efficiency of 
their execution. It causes the communication times in a job to be not only 
dependent of the job itself, but also of external factors. 

The first class of demands should be satisfied unconditionally. The second class 
is more interesting: it is a challenge to design a model for communication satisfy­
ing these demands as close as possible. 

1.4.3 Physical aspects of communication 

In early computers a large part of the costs was constituted by components rather 
than wires. Because of the ever-advancing VLSI technology, this situation has 
drastically changed. Nowadays the fundamental limitation to computers are the 
high costs of communication relative to logic and storage. These costs are mainly 
encountered in (see [Seitz], [Hilber]): 

• Consumption of chip area. 
The layers of a chip are primarily covered by wires, whereas at most 5 percent 
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of its area is swallowed up by transistors on the lowest layer. 

• Power consumption. 
The energy supplied to a chip is mainly absorbed by the circuits that switch 
signal nodes. It is almost entirely used to charge the capacitance of internal 
and interchip wires, rather than the capacitance of transistor gates. 

• Time delays, both on chips as between chips. 
First, the delay of a signal when transmitted through a wire is high compared 
to the switching time of a modern transistor. The delay is due to the poor 
relation between transistor driving capabilities and the high parasitic capaci­
tance of a wire. 
Second, delay of a wire caused by resistance and parasitic capacitance of 
wires, is becoming increasingly significant at smaller geometries. The delay 
depends of the ratio between a wire's length and its width. The delay of a 
short wire is logarithmic in its length. Beyond a certain length, dependent of 
the wire's width, the delay time grows linearly with the length of the wire. 
Third, amplification of an on-chip signal to off-chip levels causes a delay com­
parable to a clock period. Amplification is necessary to bridge the differences 
between internal and external signal energies. External signal energies are 
higher than internal energies, to cope with the large capacitances of package 
pins and interchip wiring. 

The above discussion implies that communication constitutes the main part of the 
costs of VLSI chips. We conclude that communication costs favour architectures 
in which communication is minimized or at least localized. 

Physics have their impact to still other communication issues. In the previous 
subparagraph, a low worst-case communication time - O(logn), where n is 
number of processors - is considered important. To realize models, exhibiting 
such performance on communication time, some physical aspects have to be 
taken into account. Nature's laws appear to impose severe restriction on such 
models. 
In the discussion in this subparagraph we will assume that the physical space 
required by a processor is constant, and that the time to transmit a signal through 
a wire scales linearly to the wire's length. 

In [Vitany] Vitanyi discusses the physical readability of communication models 
with logarithmic worst-case communication times. He concludes that under the 
constant space assumption for processors such models are infeasible, modulo 
major advances in physics, when a system contains a large number of processors. 
This is easily seen. If a computer consists of n processors of unit size each, then 
the tightest they can be packed is in a 3-dimensional sphere of volume n. If this 
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ball has radius R, then 

n = 4/3ITR3 . 

The maximum physical distance between two processors in the ball is 

2.R = 0(n1/3). 

Since the worst-case communication time is linearly proportional to this distance, 
it is of the same order. Hence, communication models with communication 
times less than asymptotically 0(n1/3) time and assuming 0(1) space per proces­
sor are infeasible. If the computer is embedded in only 2 dimensions, the situa­
tion is even worse. Worst-case communication times of 0(n1/2) are the optimum 
which can be attained in that case. 
Communication mechanisms with communication times less than 0(n1/3) 
(respectively 0(n1/2)) suffer from space deficiencies, if they are applied in mas­
sively parallel computers assuming constant space per processor. It is emphasized 
that this result holds for any communication mechanism. Results equivalent to 
those in [Vitany] but less general can be found in [Mazumd] and [Fisher]. We 
refer to chapter 3 for more details about space deficiencies. 

Quite a different physical limitation to communication mechanisms is the limita­
tion to the rate at which processors can send messages to other processors in a 
uniform or purely random pattern. This limitation follows from considerations 
which are well-known in VLSI complexity theory (see [HarUll]). Again, we 
assume a parallel computer with n processors of 0(1) physical size each and an 
arbitrary communication mechanism. 
Suppose that the processors are tightly packed in d-dimensional Euclidean space 
(d = 2 o r 3 ) , and constitute a parallel computing system with physical size 
Sd(n) = O(n). If we assume that the space occupied by the system is convex 
(which is a reasonable assumption, because the packing of the processors must be 
tight), then the space taken up by the d-dimensional circumscribed rectangle is 
also 0 (n ) . 
Let's consider the hyperplanes - i.e. (d—l)-dimensional subspaces of a d-
dimensional space - dividing this rectangle in two parts, each part containing 
approximately half of the processors. Of all these hyperplanes, the ones perpen­
dicular to a longest side of the rectangle have the smallest 'space' (i.e. 'area' for 
d = 3 and 'line segment' for d = 2) in common with the rectangle. The size of this 
space is at most 0(n^d~^ /d) - compare: shortest side of 2-dimensional rectangle 
with area 0(n) is at most 0(n1/2). Therefore, at most that order of communica­
tion lines can cross this space. Since each wire is capable to send only a limited 
number of messages per unit of time, the rate at which messages cross the space 
is at most 0(n(d _ 1 ) / d) . 
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Suppose, communication between processors in the system is determined by a 
purely random or uniform pattern. This pattern depends of course of the pro­
grams running on the computer, and the matching of programs onto the com­
puter. If an efficient matching between programs and processors is possible, 
communication may be very locally bounded. In that case the above supposition 
does not hold. In many other cases, however, an efficient matching is impossi­
ble. In particular, in AI programs data streams exhibit a somewhat random 
behaviour. So, the assumption of random or uniform patterns is not purely 
unrealistic. 
In the communication-pattern supposed, about n/4 processors in each half of the 
computer will send a message to the other half through the hyperplane. This 
results in approximately n/2 = fi(n) messages wishing to cross the hyperplane per 
unit of time. However, only 0(n^d-1^/d) are allowed to pass per unit of time, 
causing a communication bottleneck. 
The inconvenience experienced from this bottleneck strongly depends of the com­
munication pattern. It is a ground to aim at schedulings of jobs on a computer so 
that local communication patterns will arise. For other reasons, i.e. to minimize 
communication times experienced by a job, there already was wide agreement of 
the necessity of local communication patterns (see also demand no. 10 in sub-
paragraph 1.4.2). 

1.4.4 Brief overview of communication mechanisms 

This subparagraph gives a short overview of the main communication mechan­
isms. We shall not give a complete survey of these models, but rather intend to 
supply the unexperienced reader with a global impression and the main refer­
ences to the literature. 

Communication mechanisms can roughly be divided into three classes: 

• Shared memories. 

• Shared busses. 

• Networks. 

Combinations of them can often be found in parallel computers. 

In a shared memory model processors communicate via a shared random access 
memory, writable and readable for all of them. In its simplest construction at 
most one processor at a time is allowed to refer to it. Trivially, the shared 
memory is a flagrant bottleneck in that case. For this reason, alternative shared 
memory models have been introduced, which permits simultaneous reference of 
many processors to it. 
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These models exhibit larger communication bandwidths. Nevertheless, conflicts 
will arise if several processors simultaneously refer to one memory location. The 
most tedious conflicts are those in which several processors simultaneously try to 
write to one memory location. We call them write-conflicts. 
The situation in which one processor writes to a certain memory location and oth­
ers simultaneously read from it is denoted by the term read-lwrite-conflicts. As a 
consequence of read-/write-conflicts read values are not defined uniquely: they 
may be equal to the written value, but they may also be equal to the contents of 
the memory location before it was written to. 
Finally, read-conflicts occur when several processors read from one location. 
There are no principal drawbacks of such conflicts: permitting them in theoretical 
models causes no disasters. Practice is different, however. Memories permitting 
read-conflicts in their locations are not easily designed and are expensive. 

The forementioned conflicts have resulted in a multitude of shared memory 
SIMD models ([Quinn]) each permitting a particular combination of conflicts. 
We mention the SIMDAG ([Goldsc]), P-RAM, PP-RAM, SP-RAM ([ShiVi2]), 
RP-RAM ([ShiVil]), CRCW P-RAM ([Quinn]), CREW P-RAM ([Quinn]), and 
the EREW P-RAM. No one of these models have actually been realized as com­
puter. 
The only practicably applicable model permits no read- and write-conflicts. To 
prevent bottlenecks in such models shared memory is divided in memory banks. 
Memory banks are memories which can independently be accessed by all proces­
sors, each bank permitting one access at a time. So, division of a shared memory 
in m banks enables at most m simultaneous accesses to the memory. 

How should the processors be connected to the memory banks? 

The processors are connected by a communication mechanism which sends 
access instructions to the proper memory bank and returns eventual data to the 
proper processor. There are roughly two possibilities for such a mechanism. It 
can be a bus or it can be a network. These are the two alternatives to the shared 
memory model. We conclude that shared memory models should be combined 
by busses or networks in order to be applicable. 

Are there examples of shared memory computers which have actually been built? 

Yes, there are. Most pipelined vector computers (though they are strictly speak­
ing not parallel) are equipped with memories divided in banks and connected by 
busses to the processor(s). 
In tightly coupled multiprocessors - these are MIMD computers with a shared 
memory and shared memory address space - busses as well as networks may 
occur. Encore's Multimax ([Quinn]), and Sequent's Balance 8000 ([Quinn]) 
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consist of processors connected by a bus to a shared memory divided in banks. 
Examples of shared memory multiprocessors using networks are Carnegie-
Mellon's C.mmp ([HwaBri]), Denelcor's Hep ([Kowali]) and New York 
University's Ultracomputer ([GoGrKr]). 

Quite a different class of parallel computers are the so-called loosely coupled 
multiprocessors. As in tightly coupled multiprocessors, they have a shared 
address space. In this architecture, however, the memory banks are directly 
accommodated with the processors. Each processor is directly connected to one 
memory bank. Together they constitute a module. Intermodule communication 
is done by a bus or by a network. An example of a loosely coupled multiproces­
sor connected by a network is the Bolt, Beranek, and Newman Butterfly™ Paral­
lel Processor ([Quinn]). An example of a hybrid loosely coupled multiprocessor 
using busses as well as a network is the Cm multiprocessor ([Quinn]). 

The next class of communication mechanisms to be dealt with are shared busses. 
They are used to interconnect processors to processors and processors to 
memories. It is not very efficient to connect a multitude of processors to a single 
bus. Only so many processors can share the bus before it becomes saturated. 
Busses are very common in computers, but their use as central communication 
mechanism in parallel computers is not very customary. Two computers using 
busses as part of their communication mechanism are the forementioned Mul-
timax and Balance 8000 tightly coupled multiprocessors and the Cm* loosely cou­
pled multiprocessor. 

Finally, we discuss the class of networks. A network consists of a set of nodes 
that are connected by edges according to some pattern. A node in a network may 
consist of 

• a processor, 

• a memory, 

• a bus, 

• a switching element, 

• a comparator with switching element, 

• etc, 

or a combination of these elements. Edges model connections between these ele­
ments. 
The most common network models have processors and/or switching elements as 
their nodes, and wires as their edges. These kinds of networks can be divided 
into the class of circuit-switched and packet-switched networks. 
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To mail data in circuit-switched networks, a physical path is established from 
source to destination. It endures as long as there is a data stream from source to 
destination. All nodes on the path deal with a data stream as long as it is not ter­
minated. 
On the contrary, packet-switched networks put data into packets which are routed 
through the network. So, no physical paths between source and destination are 
established, and of all nodes on the route followed, only one (or two consecutive) 
node(s) deal with sending of the data. 
In general, circuit-switching is more suitable for bulk data transmission, and 
packet switching for mailing of short messages. 

Another classification of networks which is of interest, is that according to their 
ability to change their structure. We distinguish two categories of networks: 

• Dynamical networks. 

• Statical networks. 

In dynamical networks connections between processors can be shifted, so they 
may change in time. Opposite to this are statical structures, which can not be 
reconfigured. 

Dynamical networks are networks capable to establish a connection between any 
two processors. The connections between processors in dynamical networks pass 
via a number of consecutive switching elements. Dynamical networks may be 
viewed as statical networks of which the nodes contain switching elements. The 
input and the output terminals of the switching elements are connected to other 
switching elements or connected to the processors. Dynamical networks known 
up to now can be grouped into three categories: 

• Single-stage networks. 

• Multi-stage networks. 

• Crossbar switch. 

A single-stage network consists of one stage of switching elements, each being 
able to make a direct connection to one of a limited number of elements in the 
stage. A connection between two processors may pass through several elements 
in the stage. A single-stage network may be viewed as a statical network with a 
combination of a processor and a switching element in each of its nodes. The 
perfect shuffle ([Stonel]) is an example of a single-stage network. 

Multi-stage networks are composed of more than one stage of switching ele­
ments. The processors are connected to the input terminals of the first stage and 
the output terminals of the last stage, or, in so-called one-sided networks, all 
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processors are connected to input and output terminals of one of the stages. In 
literature many multi-stage networks have been described, such as the SW-
Banyan, the Omega ([Lawrie]), the Flip ([Batche]), the Delta, the Baseline 
([WuFeng]), the Benes ([Benes]), and the Clos network. Most of these networks 
require O(logn) stages of O(n) switching elements to connect n processors. 
Consequently, their time delay is O(logn) and the hardware costs of such net­
works are 0(n.log n). 

A crossbar switch ([Feng]) consists of a number, say n, of vertical parallel input 
lines and the same number of horizontal parallel output lines. On the intersec­
tions of these lines switching elements are placed, which can establish a connec­
tion between the lines. Each line can be connected to only one line perpendicular 
to it by such an element. A crossbar switch can be used as interconnection net­
work between processors by connecting each processor to one input and one out­
put line. Since a network with n processors requires n2 switching elements, a 
crossbar switch is unsuited for parallel computers with many processors. 

The remaining class of networks are the statical networks. Due to the 
unchangeability of these networks, their structure is often referred to by the term 
'topology'. In the course of time many different topologies have been proposed in 
literature. The best-known among them are (see figure 1.1) the mesh 
([BaBrKa]) of which the 2-dimensional and the 3-dimensional versions are well-
known, the binary tree, the totally connected network ([Aupper]), the ring, the 
hypercube, the cube-connected-cycles ([PreVui]), which is based on the cube, the 
shuffle-exchange ([Stonel], [LanSto]), and the linear array ([Kung]). In these 
networks each processor is equipped with a local memory. 

The above topologies are often denoted as point-to-point topologies, since each of 
their edges connects one node to one node. These structures can very well be 
modeled by graph theory. Nodes in a network correspond to nodes in a graph, 
and edges in a network to edges in a graph. 
Networks which are less well-known but which attract increasing attention are 
those based on hypergraphs ([Berge]). In a hypergraph, each edge is able to con­
nect more than two nodes. An edge in a hypergraph is not viewed as a wire, but 
as a relation between all nodes it connects. Networks based on hypergraphs 
might consist of processors on the nodes, connected by memories or busses 
modeled by the edges. 

A more elaborate general overview of communication mechanisms can be found 
in [Quinn]. For a survey of networks we refer to [Feng]. 

Finally, we shall make a choice between the communication mechanisms. This 
choice is the base for the rest of this dissertation. For this we recall some of the 
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Figure 1.1 Some well-known topologies. 

demands stated in subparagraph 1.4.2. 

• The communication mechanism should be applicable in massively parallel 
computers. 

• The amount of hardware supporting communication should be small. 

• The hardware should not be too complex. 

• The structure of the communication mechanism should be regular. 

• The communication bandwidth should be large. 

• Communication software should be simple. 

• The processes should be scheduled on the processors such that interprocessor 
communication is minimized. 

24 



Par. 1.4 Communication issues 

A bus can not efficiently be applied as communication mechanism for massively 
parallel computers, because it does not support a large communication 
bandwidth. 

A shared memory model in combination with a network is more attractive. This 
model seems to be a bit more complex than the pure network model, especially 
when it is combined with extensibility. For reasons of simplicity of the hardware, 
we shall drop shared memory models, and concentrate on pure network models. 
In subparagraph 1.4.3 we concluded that both cost and performance metrics 
favour architectures in which communication is localized. This is the reason to 
adopt network models in which each processor has its own local memory. 

Should we prefer dynamical or statical networks? 

A dynamical single-stage network should not be used, because simultaneous con­
nections between more than one processor pair may result in conflicts. For, there 
is only one stage via which connections between processors are allowed to pass. 
Dynamical multi-stage networks and crossbar switches require more complex and 
a larger amount of hardware than statical networks. Furthermore, to control the 
switches of a dynamical network complex software is needed. This pleads for 
statical networks. 
Whether statical networks satisfy the demands concerning their structure and 
communication bandwidth depends of their topologies. There are no principal 
impediments to regularity and high communication bandwidth in a statical net­
work; the forementioned statical networks in this subparagraph all satisfy these 
requirements. 

How about the remaining demands, i.e. can statical networks be applied in mas­
sively parallel computers and can schedulings minimizing communication be esta­
blished? 

Statical networks can surely be applied in massively parallel computers. 
The demand that jobs should be scheduled on processors such that communica­
tion is minimized is less easy to meet for statical networks. The load imposed to 
a system by communication will be minimal if communication patterns can be 
matched optimally onto the network. This favours dynamical networks, because 
they can be adapted to the communication patterns. For statical networks the 
situation is less beneficial: only communication patterns isomorphic to the topol­
ogy of the network can be mapped optimally. 

Due to the advantages of statical networks, and in spite of the advantages of 
dynamical networks, we prefer statical networks. The main argument for this 
decision is the simplicity of statical networks. Research in a rather unexplored 
field as extensible computers should be initiated at the simplest cases. The choice 
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for statical structures leaves open the question whether hypergraph networks will 
be considered in addition to point-to-point topologies. Because of their simplicity 
in mathematical sense as well as in their realization as computers, we prefer 
point-to-point topologies and reject hypergraph models. Statical point-to-point 
topologies will be considered in more detail in the next subparagraph. 

1.4.5 More about statical point-to-point topologies 

In this subparagraph a set of demands specific for statical networks based on 
point-to-point topologies will be formulated. Due to the analogy of statical point-
to-point topologies to graphs these demands will be stated in graph theoretical ter­
minology. 

The first demand on statical networks concerns the degree (see appendix A). The 
degree of a node in a network is linearly proportional to the number of I/O-ports 
of the corresponding processor. I/O-ports require a considerable part of the area 
of a chip. In addition, a large number of I/O-ports on a chip causes the chip to 
have many pins, especially when the I/O-ports are parallel ports. To limit the 
costs of I/O-ports, the degree of the processors should be low. Furthermore, 
since all processors are logically identical, they should all have the same degree. 
So, the demand on the degree is: 

1. The degree of a statical network should be low, and all nodes should have 
the same degree. 

Let's consider the worst-case communication time. Concerning demand no. 8 in 
subparagraph 1.4.2 the worst-case communication time should be low. The 
worst-case communication time in a statical network is determined by two fac­
tors: 

• The diameter of the network. 
The diameter of a network is the maximum of the lengths of all shortest paths 
in it (see appendix A). 

• The routing function of the network. 
The routing function of the network determines the routes by which data is 
sent between processors. 

In order to obtain a low worst-case communication time, the diameter of a net­
work should be small, and the routing function should not route via long detours. 
To get an impression of the minimal value of a graph's diameter we consider the 
so-called Moore-bound ([BeBoPa], [BeDeQu], [Uhr; p.138]). In an undirected 
graph of degree k the number of nodes, n(k,r), within distance r from an arbi­
trary node is limited according to the following formulas: 
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n(2,r) < 2 . r+ l , 
n(k,r) < ( k . ( k - l ) r - 2 ) / ( k - 2 ) if k>3 . 

The distance r is at most equal to the diameter of the graph. Substituting the 
diameter for r gives the Moore-bound. The diameter D of graphs of degree k can 
never be less than il(log n(k,D)). 
The Moore-bound for k = 2 is obtained by considering a circuit graph of 2.r+l 
nodes. 
The Moore-bound for k&3 is obtained by starting with a tree of which all non-
leaf-nodes have degree k, and which consists of r+ 1 complete levels. The diame­
ter of such a tree is twice the distance from any leaf to the root, since the root lies 
on some leaf-to-leaf paths. By adding edges to the tree until all leaves have 
degree k rather than 1, at best the diameter can be reduced to the root-leaf dis­
tance. The latter distance is not influenced by addition of the edges, since no new 
edges are added to nonleaf nodes. 

It has been proved by several authors (see for example [Biggs; chapter 23]) that 
only three nontrivial graphs other than circuit graphs achieve the Moore-bound: 
the Petersen graph (r=2, k = 3; see figure 1.2), the Hoffman-Singleton graph 
(r = 2, k = 7), and possibly a graph with parameters r = 2 and k = 57, which has not 
yet been discovered. 

Figure 1.2 The Petersen graph. 

Networks with a logarithmic diameter are indeed possible - for example the 
binary tree. So, it is not unrealistic to reformulate the demand for a low diameter 
as: 

2. The diameter of a statical network should be a logarithmic function of the 
number of nodes. 

The other factor which determines the worst-case communication time in a stati­
cal network is the routing function. Before stating a demand on it, we first 
define it formally. 

(1.1) Definition. Let T be a connected graph and r r : V ( r ) x V ( r ) - 2 v < r ' be a func­
tion for which rr(v,v) = {v} and 0Cr r (u ,v )Cr 1 (u ) if u # v , where T^u) is the set 
of neighbours of node u (see appendix A). 
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Let R n :V( r )XV(D-2 v ( r ) be defined by 
R ro(u,v) := {u} 
R r i + 1(u,v) := U rr(w,v) for i=l ,2 

w€Rn(u,v) 

Then, r r is a routing function of F if for all u,v^V(D there exists an integer N 
such that for all i>N: Rri(u,v) = {v}. rr(u,v) will be supposed to route from u to 
v. 
R r i is called the routing trace of r r in V. 
An optimal routing function is a routing function for which Rrd(u,v)(u>v) = (v} f° r 

a l lu ,veV(D. 

A routing function, as defined by this definition, routes from a node u to a node 
v by determining all neighbouring nodes R r i(u,v) of u which are to lie on a route 
from u to v. Applying the routing function to one of the nodes in R r i(u,v) and v 
results in a set Rr2(u,v) of nodes, each of which is a neighbour of at least one 
node in R r i(u,v) . Repeating this process N times results in the sets R r i(u,v), 
R r 2 , R r N(u,v). This sequence traces all routes between u and v via which r r 

may route. If N = d(u,v), then the nodes in r^u.v) have distance d(u,v) —i from 
v. In that case, the routing function routes via shortest paths from u to v, and is 
optimal. 

The consequence of non-optimality of a routing function is that the worst-case 
communication time may not be linearly proportional to the diameter of a net­
work. The following should hold in order that the worst-case communication 
time is linearly proportional to the diameter: 

The length of any route between two arbitrary nodes determined by the rout­
ing function is of the same order as the distance between those two nodes. 

Though this demand guarantees a logarithmic worst-case communication time in 
a network with a logarithmic diameter, it does not guarantee a low worst-case 
communication time. Therefore, we demand 

3. The routing function of a statical network should be optimal. 

Demand no. 9 in subparagraph 1.4.2 stated that the communication bandwidth of a 
communication mechanism should be high. Whether this demand is satisfied for 
a particular statical network depends of the structure of the network. The precise 
relation between the bandwidth and a network's structure is not clear, but com­
munication bandwidth appears to be very high for most networks. The reason 
for this is that each processor can often find a recipient to send a message to, 
simultaneously to the mailing of other processors. This seems to be even more 
valid, when the network's degree is high. So, the demand for a high 
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communication bandwidth does not impose a very severe restriction onto statical 
networks. 

A metric somewhat similar to communication bandwidth is the connectivity of a 
network (see appendix A). As with the communication bandwidth, the connec­
tivity should be high. High connectivity results in lots of disjunct paths between 
any two nodes - and in most graphs even much more non-disjunct paths between 
those nodes. This implies that there are many paths by which messages can be 
routed between processors. 
High connectivity has a positive influence on the total number of messages which 
can be handled by a network per unit of time. Consequently, it limits congestion 
in a network. Another advantage of high connectivity comes into prominence 
when there are faults in the network, i.e. when processors or connections 
between processors are defective. High connectivity eases bypassing of messages 
in that case. So, we demand: 

4. The connectivity of a statical network should be high. 

Concerning the structure of communication mechanisms, demand no. 7 in sub-
paragraph 1.4.2 stated that it should be regular. Applied to statical networks this 
demand becomes: 

5. A statical network should have a regular topology. 

In addition to the motives for this demand mentioned in subparagraph 1.4.2, 
there are some motives specifically tailored to statical networks. 
The first motive to demand regularity of a network concerns the routing of mes­
sages in a network. Irregular structures may need a table in each processor for 
routing data. For large networks such tables consume much memory space, 
because each node requires a table with size linearly proportional to the total 
number of nodes. It is preferable to route by using a function. This function 
should not be complicated. Such a property will be reflected by simplicity of the 
software controlling communication (see demand no. 6 in subparagraph 1.4.2). 
Which conditions must be satisfied to obtain networks with simple routing func­
tions is currently unknown. At least it may be clear that the aspirations to a sim­
ple routing function are not hindered by a regular network structure. 
The second motive to demand a network to be regular concerns its realization in 
hardware. A regular structure often results in an efficient packing of com­
ponents on chips as well as on printed circuit boards. Furthermore, a regular 
structure of a network simplifies the design of chips and printed circuit boards. 

The question remains how regularity is represented in graph theoretical terms. 
We use automorphism groups for this (see appendix A). The size of a graph's 
automorphism group gives an indication of its structure. The larger the group, 
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the more regular is the graph. Appendix A distinguishes four main categories of 
graphs classified to regularity: node-transitive graphs, edge-transitive graphs, 
symmetric graphs and distance transitive graphs. Symmetric graphs in particular 
will be of significant importance in this dissertation. 

We conclude the list of demands with a demand concerning the routing function 
of a statical network. It was implicitly stated above in the discussion about regu­
larity of a statical network: 

6. The routing function of a statical network should be simple. 

This concludes the formulation of the demands on statical networks, as well as 
this paragraph about communication. In the next paragraph another important 
aspect of massively parallel computers will be considered. 

1.5 Extensibility 

1.5.1 Why extensibility? 

The need for extensible computers is a direct consequence of the ever-growing 
demands of computer users on computation capacity. The most common way to 
satisfy these demands is the purchase of new computers in substitution for older 
ones. This is an expensive solution. Not only should hardware, actually not yet 
outdated, be replaced, it is also very likely that existing software must be adapted 
to a new computer. 
Extensibility of a computer will relieve these difficulties, provided the concept is 
implemented properly. A computer is considered properly extensible if its infras­
tructure need not be changed when the computer's capacity is increased. 
Extensibility will not only result in lower direct costs, design costs of a computer 
will also be lower. For, they can be spread over a multitude of (identical) com­
ponents. Asa result, the hardware design bottleneck will be broadened. 
Extensibility will also broaden the software design bottleneck. Extensibility 
results in a longer life-cycle of the software running on a computer, provided the 
computer's underlying structure is maintained under extension. An architecture 
preserved by extensions promotes software compatibility. An additional advan­
tage of preservation of a computer's structure under extension is that software 
can run on computers of different sizes. This implies that the costs for develop­
ing software can be spread over more computers (see also [LipMal; p.42]). 

The merits of extensibility open up interesting perspectives to computer 
designers. Not surprisingly, literature shows a growing interest in extensibility of 
networks, also denoted by expandability, scalability or inductivity. Agrawal, 
Janakiram and Pathak give in [AgJaPa] an overview of some networks and their 
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characteristics. They consider extension capability as an important property of 
networks. Extensibility is more elaborately discussed by Lipovski and Malek in 
[LipMal]. They make a distinction between plainly extensible computers and 
inductive computers. Extensibility as defined by them satisfies less stringent 
demands than inductivity. Their inductivity concept looks like our concept of 
extensibility still to be described, with one main difference: an inductive com­
puter can be extended by 1 processor. This property is of no use for massively 
parallel computers, as will be shown in demand no. 2 in subparagraph 1.5.3. 

As far as I know, Lipovski's and Malek's book is the most elaborate treatment of 
extensibility in literature. Articles dealing with extensible architectures are 
[Parber], [DesPat], [GooSeq], [FrHeHe], [HoKuRe], [HwaGho], [Snyder], and 
[Shaw]. The ones among them based on statical point-to-point topologies will be 
described in subparagraph 1.5.5. In the next subparagraph, extensibility is 
related to graph theory. Subparagraph 1.5.3 deals with some demands on exten­
sibility. Thereupon, subparagraph 1.5.4 discusses some architectural limitations 
to the performance of extensible computers. Subparagraph 1.5.6 deals with the 
devices that are to be connected to an extensible network of processors. Finally, 
subparagraph 1.5.7 gives some marginal notes to extensibility. 

1.5.2 Extensibility and graph theory 

This subparagraph starts by defining extensible networks in terms of graph 
theory. Thereupon, it introduces some graph theoretical notions related with 
extensible networks. Because of the similarity between networks and graphs, the 
terms 'extensible network' and 'extensible graph' will be used indifferently. 

An extensible network is viewed as a finite graph being an element of a sequence 
of finite graphs (A0,A1,A2,...), for which: 

A iCA i + 1 (i>0), 

that is, Aj is a proper subgraph of A i+1. 

The sequence (A0,A1,A2,...) is called an extension sequence of A;. An extensible 
graph may have several extension sequences. Throughout this dissertation it is 
assumed that whenever a particular extensible graph is denoted by A; (or any 
other symbol with subscript), its extension sequence is defined to be 
(A0,A1,A2,...) (or a sequence based on another symbol with subscript). The 
extension sequence of A; will be denoted by S^A;). When discussing some 
extensible graph A; in this dissertation, i being an open variable, it is assumed to 
be an arbitrary element of its extension sequence SE(Aj). 

The result of extending a graph A; is determined by its extension sequence. 
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Extending A; results in a graph A: ( j> i ) , called an extension of A;. Extending A; 
by a minimal number of nodes results in A i + 1 . The set V(A i + 1) — V(Aj) is the set 
of nodes added to A; in that case. T h e number of nodes in this set is called the 
extension complexity of A;. 

(1.2) Definition. The extension complexity of an extensible graph A; is defined by 

C E (Ai ) := |V(A i + 1 ) -V(Ai ) | . 

The extension complexity of A; is optimal whenever CE(A ;) = O ( l ) . 

So, the extension complexity of an extensible graph A; is optimal when it can be 
extended by addition of a constant number of nodes. 

Extensible statical networks differ from plain statical networks, in that some of 
the edges of the former are loose, i.e. incident to only one node. Loose edges are 
necessary to extend a network. 
Different kinds of nodes in an extensible network can be distinguished: nodes 
incident to loose edges, called the border nodes, and the other nodes, called the 
internal nodes. Nodes that still have to be added to the network are called external 
nodes. 
The processors corresponding to the border nodes in an extensible network have 
open I/O-ports, i.e. ports not connected to other processors. These ports will be 
used for transmission of jobs and data to and from the network. 

1.5.3 Demands on extensibility 

Subparagraph 1.5.1 laid the emphasis on proper extensibility. Which demands 
should be satisfied by a computer to be proper extensible will be discussed in the 
current subparagraph. It is assumed that the communication mechanism used is 
a statical point-to-point network. 

Some general demands, i.e. demands not related to the communication mechan­
ism used, are: 

1. The size of extensions should be limited. 
The minimal number of processors needed to extend a computer should be 
of the same or lower order as the number of processors already existent in 
the computer. Hardly any customer will be interested in a computer of 
which the smallest extension is many times more expensive than the com­
puter itself. Extensions at most doubling a computer's size seem to be rea­
sonable. Applied to statical networks this demand becomes 

CE(Ai) = 0( |V(Ai) |) . 
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2. The size of extensions need not be extremely small. 
Actually, this is not a demand but a relaxation of the previous demand. 
Lipovski and Malek propagate in [LipMal] extensibility by 1 processor. 
Their preference for that small extensions might be explained by the fact 
that it simplifies analysis of matters like performance improvements as 
result of extension, etc. From a practical point of view, their demand has 
no sense for massively parallel computers and is much too strict. This can 
simply be made clear by posing the following question: 

Why should one extend a 100000-processor system to a 100001-
processor system? 

The increase of the computation capacity of a massively parallel computer as 
a result of extension by 1 processor is negligible in terms of percentage. So, 
the number of processors in an extension should be in proportion to the 
number of processors already existent in the computer. Applied to statical 
networks this demand becomes CE(Ai) = O(l) . 

3. There should be no upper bound to the number of processors in an extensi­
ble computer. 
If there is such an upper bound, the computer is not truly extensible. From 
a practical point of view, a computer with a very large upper bound is of 
course extensible. For reasons of convenience we shall assume that no con­
stant bounds the number of processors in an extensible computer. Any 
extensible computer should permit extension by an unlimited number of 
processors. The extension sequence of a statical network satisfying this 
demand, is an infinite sequence. 

4. Software which runs on a computer should also run on the extended com­
puter. In particular, this should be true for system software. 
An extensible computer not satisfying this demand is not very meaningful. 
This demand is related to the next demand, which refers to the structure of 
an extensible computer. 

5. The structure of an extensible computer should be maintained under exten­
sion. 
There are two motives for this demand. 
The first motive refers to the previous demand, concerning software compa­
tibility under extension. 
The second motive is that it enables an easier and more precise analysis of 
performance of extensible computers. This is important, both from a 
theoretical as from a practical point of view. 
In another context, the above demand is encountered once again in this list 
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of demands (see no. 13). That demand is specifically tailored to the struc­
ture of statical extensible networks. 

6. An extensible computer should take advantage of advances in technology, 
i.e. it should remain technologically up-to-date. 
The life of a parallel computer is not only determined by its capability of 
being extended by new processors, but also by the technological standard of 
these components. If the processors used for extension are of the same 
technological standard as those in the original computer, the latter will 
become out-of-date in the course of time, since technology is always advanc­
ing. To prevent this, a computer should always be extended by the most 
up-to-date components. 

7. The performance of an extensible computer should be linearly or almost 
linearly related to its number of processors. 
Actually, this is a demand on software, and in particular to system software 
running on the computer. The amount of pure MIPS increases linearly with 
the number of processors, but the degree to which these MIPS manifest 
themselves in the computer's performance is determined by software. If 
this demand is not satisfied, a disproportionate amount of money must be 
invested to increase a computer's performance. 

8. The efficiency with which a fixed sized job is executed should not decrease 
radically when the computer used is extended. 
The increase of a job's overhead as a consequence of extension should be 
limited. If the above demand is not satisfied, an extensible computer can 
not be applied efficiently. 
This demand correlates slightly to demand no. 12 in subparagraph 1.4.2, 
which stated that communication in different jobs should not interfere with 
each other. If data streams in different jobs are not independent of each 
other, and the number of jobs run on the computer is linearly proportional 
to the number of processors, then extension of the computer causes an 
increase of communication overhead in the jobs. 

Demands no. 9 up to 15 are more specific for statical point-to-point networks: 

9. The degree of the network and of all its extensions should be bounded from 
above by a fixed positive constant. 
Subparagraph 1.4.5 stated that a node's degree is linearly proportional to the 
number of I/O-ports on the corresponding processor. This number is not 
allowed to increase just like that. A statical network not satisfying this 
demand is the k-cube. Extension of a k-cube to a (k+l)-cube causes the 
degree to increase from k to k+ 1. 
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10. A network's diameter, expressed as function of the number of nodes, 
should remain of the same order under extension. 
Some particular worst-case communication time of an extensible network 
can only be guaranteed when this demand is satisfied. A logarithmic diam­
eter should also be a logarithmic diameter after extension. 

Demands similar to the previous one can also be stated for other characteristics 
which express the performance of a network. For communication bandwidth this 
results in demand no. 11: 

11. A network's communication bandwidth, expressed as function of the 
number of nodes, should remain of the same order under extension. 

12. The connectivity of the network should not decrease when it is extended. 
A high connectivity, the benefits of which are pointed out in subpara-
graph 1.4.5, should be maintained under extension. For this reason exten­
sion by only one processor, as propagated by Lipovski and Malek, may even 
be disadvantageous. If the newly added processor is connected to only one 
other processor in the network, the resulting edge-connectivity will be 1. 
Naturally, subsequent extensions with other processors might restore the 
connectivity, but why then add them not all at once? It would result in an 
'extension-module', that, when added, would keep the network's connec­
tivity intact. 

The first two of the following demands were encountered before in a more gen­
eral form. 

13. The underlying structure of the network should be maintained under exten­
sion. 
An explanation of this demand can be found with demand no. 5 in this list. 
Networks not satisfying the above demand are the shuffle-exchange and the 
cube-connected cycles. Not only processors should be added to extend 
them; the shuffle-exchange and the cube-connected-cycles should also be 
restructured. 

14. The routing function should be maintained under extension. 
The description of a routing function should be left unchanged by exten­
sions. As a consequence of this demand, the description of a routing func­
tion should be very general. It should even be so general as to be able to 
establish a route from a processor in a network to a processor not yet added 
to the network. 
The routing function is the base for the system software dealing with com­
munication. So, the demand is a special case of the fourth demand of this 
list. 
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15. The routing function should only route via paths inside the network. 
A routing function is worthless, if it establishes routes between processors in 
the network which pass through processors not yet added to the network. A 
message sent via these routes would never arrive. This is a trivial demand 
for non-extensible networks. However, this demand is harder to be satis­
fied by extensible networks. It requires the shape of an extensible network 
to be adapted to its routing function (and the other way around). 

We conclude this subparagraph with an example of two well-known networks 
which satisfy all demands concerning extensibility. Those networks are the mesh 
and the binary tree. Though both satisfy the demands in this subparagraph, they 
are not the kind of networks we are looking for. They don't satisfy all demands 
on statical point-to-point topologies (see subparagraph 1.4.5). The diameter of 
the mesh is not logarithmic and the connectivity of the binary tree is only 1. For 
a survey of extensible networks that do satisfy all demands on statical point-to-
point topologies, we refer to subparagraph 1.5.5. 

1.5.4 Architectural limitations to the performance of extensible computers 

In many parallel computers bottlenecks occur, affecting the performance. Such 
bottlenecks are mainly caused by a shared resource, such as a common bus, a 
common memory, etc. If an extensible computer contains such an inherent 
bottleneck, it is not properly extensible. An example of such a computer is an 
installation which consists of separate computers connected to an Ethernet. This 
computer can be extended indefinitely. In most applications, however, the effi­
ciency of the installation will be low (see also [LipMal; p.36]). It is caused by the 
limited capacity of the bus. 
An extensible computer should not contain this kind of bottlenecks. Unfor­
tunately, a bottleneck can be less explicit than above. In this subparagraph they 
are visualized. 

In [LipMal; p. 45, Theorem 2] Lipovski and Malek give a characterization of 
bottlenecks in extensible computers. It amounts to: 

Any resource, that is unique in an extensible system, and is called on by all 
processors with probability bounded from below by some fixed positive con­
stant, and that can not be used concurrently, restricts the performance of the 
system. 

As the number of processors in the system increases, the load of the resource will 
increase up to the point that the resource is fully used. Beyond that point the sys­
tem is too large for that one resource, as a consequence of which all requests of 
the processors can not be handled any more. This affects the efficiency and 
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usefulness of the system. 

The unique resource can have several manifestations, such as a shared bus, or a 
memory which can only be accessed simultaneously by one processor. The 
resource can also be less explicit, such as in the linear array at which software 
imposes a purely random or uniform communication pattern. Under such a 
communication pattern, the probability that a communication path passes through 
a node somewhere close to the middle of the array is larger than a fixed positive 
constant. When the number of processors grows, the node in the middle will 
behave like a bottleneck. 
This problem is not restricted to a linear array. It will occur in all connected 
extensible statical networks. It is caused by the communication pattern, not that 
so much by the architecture. Communication patterns mainly exhibiting locality, 
will result in considerably fewer bottlenecks. We conclude that not only features 
of the architecture, but also factors like the communication pattern may impose a 
restriction to the performance of extensible computers. 

In addition to the factors mentioned above, a computer's age, and related to that 
its technological outdatedness, may also cause bottlenecks in a system. Demand 
no. 6 in subparagraph 1.5.3 stated that extensible computers should be extended 
by modern components in order to remain up-to-date. However, whether or not 
a computer is extended by modern components, its core remains always the 
same. Consequently, the core will be outdated after some years. This causes the 
core to become the slow part of an extensible computer. 
The age of the core may decrease the performance of the computer, though that 
is not inevitable. If the core lies centrally in the network, uniform or random 
communication patterns will cause many communication paths to pass through it. 
The resulting bottleneck is underlined by the age of the core. However, if we 
succeed to extend the computer in such a way, that the old core is located at a 
non-central part somewhere in the computer, and the modern components are 
directed to the main parts, then a decrease of performance will less strongly be 
felt. 

In addition to the restrictions dealt with in this subparagraph, there are also prac­
tical reasons for reservations against extensibility. In order not to discourage the 
reader, we postpone their treatment to subparagraph 1.5.7. 

1.5.5 Overview of extensible statical point-to-point networks 

This subparagraph gives an overview of extensible statical point-to-point net­
works. All networks discussed here have the following characteristics: 
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1. Their degree is bounded from above by a fixed positive constant. 

2. Their diameter is logarithmic with respect to their number of nodes. 

3. Their connectivity is larger than a tree's connectivity, i.e. larger than 1. 

4. Their structure is more or less.regular. 

The following networks will be considered: the butterfly (e.g. see [Ullman] or 
[Quinn]), the cube-connected-lines ([Parber]), the X-tree ([DesPat]), the hyper-
tree ([GooSeq]), the pyramid ([FrHeHe]), the binary cluster tree ([HoKuRe]), 
and the hypernet ([HwaGho]). 

The butterfly network (see figure 1.3) consists of ( r+l) .2 r nodes divided over 
r + 1 rows each containing q = 2r nodes. 

Figure 1.3 The butterfly. 

The rows are labeled from 0 up to r and the columns are labeled from 0 up to 
q - 1 . The nodes in a butterfly are labeled by 2-tuples. Label (i,j) refers to the 
node in row i and column j , where Osi<r and Osj<q. Node (i,j) in row i>0 is 
connected to two nodes in row i—1, i.e. nodes (i— l,j) and (i—l,m), where m is 
obtained from j by inverting the 1th most significant bit of j . The degree of any 
node in the butterfly is at most 4. 
A butterfly with (r+l) .2 r nodes is extended to a butterfly of (r + 2).2 r+1 nodes, by 
taking a copy of the first one and add a node to each of the nodes in row 0 of the 
copy and the original. Thereupon, the rows are renumbered: the newly added 
nodes get row label 0 and the other row labels are increased by 1. Finally, the 
nodes just added to the original/copy are connected to the nodes with row label 1 
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in the copy/original, following the 'butterfly connecting recipe'. This results in a 
new butterfly of 2(r + l).2 r + 2.2r = (r + 2).2 r+1 nodes. It is easily verified that the 
extension complexity of a butterfly with (r+l) .2 r nodes is (r + 3).2r. This is of 
the same order as the number of nodes in the network. 

The cube-connected-lines (see figure 1.4) of Parberry is actually a cube-
connected-cycles of which each cycle lacks an edge. An r-cube-connected-lines 
consists of 2r lines of r nodes each ( r ^ l ) . So, its total number of nodes is r.2r 

and the degree of the nodes is at most 3. 

( X ^ V ^ ) crTTYTY) 

ó—ó ó—o 6—6 ó—ó 
Figure 1.4 The cube-connected-lines. 

An (r+l)-cube-connected-lines is obtained from two r-cube-connected-lines and 
2 r + 1 nodes, by lengthening each of the 2.2r lines in both r-cube-connected-lines 
with one node. Thereupon, the just added node in the 1th line of the first r-cube-
connected-lines is connected to the just added node in the i* line of the other r-
cube-connected-lines. From the above extension procedure it is easily deduced 
that the extension complexity of the r-cube-connected-lines is equal to (r + 2).2r. 
This is of the same order as the number of nodes in an r-cube-connected-lines. 

The X-tree is a complete binary tree, augmented with extra edges. The reason to 
attach these edges, is to obtain a connectivity larger than that of a binary tree (1). 
Despain and Patterson propose in [DesPat] several patterns to install these edges, 
resulting in the threaded tree, the double threaded tree, the half-ringed tree, and 
the half-ringed tree with shuffle. These structures all have degree 4. They also 
introduce X-trees with degree 5, such as the full-ringed tree with shuffle and 
without shuffle (see figure 1.5). 
Except in the threaded trees the augmented edges only connect nodes at the same 
tree levels. X-trees are extended by increasing their number of levels. Since each 
level of a complete binary tree consists of the same order of nodes as the total 
number of nodes at a higher level, the extension complexity of an X-tree is of the 
same order as the total number of nodes in it. Most X-trees described in 
[DesPat] are not very regular. 

X-trees somewhat more regular are introduced by Goodman and Sequin in 
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Figure 1.5 The full-ringed tree without shuffle. 

[GooSeq], and called hypertrees. Again, in such trees all augmented edges only 
connect nodes lying at the same tree levels. The edges are defined by first label­
ing a binary tree in the standard way, i.e. the root label is 1 and the two children 
of a node with label x have labels 2x and 2x+ 1 respectively. A hypertree is a tree 
in which the augmented edges connect only nodes of which the labels differ by 1 
bit. The actual number of edges to be augmented depends of the node degree 
aimed at. If the degree is 4 respectively 5, then at most 1 respectively 2 edges are 
attached to each node, resulting in the hypertree I respectively the hypertree II. 
Since each node label often differs by 1 bit from several other node labels at the 
same tree level, several hypertrees are possible. The hypertrees considered by 
Goodman and Sequin exhibit a regular pattern. As with the X-trees, hypertrees 
are easily extended by increasing their number of levels. The extension complex­
ity of a hypertree is of the same order as the total number of nodes in it. 

The well-known pyramid (see figure 1.6) described in [FrHeHe] is based on a 
tree of which all nonleaf nodes have four sons. On each level the nodes are con­
nected as a 2-dimensional mesh. The degree of its nodes is at most 9. The 
pyramid is often used for image processing, pattern perception, and other areas 
of AI where information should be simultaneously transformed and converged, 
or, moving in the other direction, broadcast and diverged (see [Uhr; p. 114]). A 
pyramid is extended by increasing its number of levels. The extension complex­
ity of a pyramid is of the same order as its number of nodes. 

The binary cluster tree is a binary tree, with its root replaced by a regular struc­
tured cluster of 2t nodes and each of the other nodes replaced by a regular struc­
tured cluster of 3t nodes. Each cluster is connected to its ancestor cluster through 
t edges, and to each of its child clusters through t edges. Hosseini, Kuhl and 
Reddy choose in [HoKuRe] a circuit as cluster (we call the resulting structure the 
binary cycle tree). A binary cycle tree with r levels of cluster consists of 
2 t + 6 t ( 2 r - 1 - l ) nodes and has degree 3. Figure 1.7 depicts a binary cycle tree 
with parameters t=2 and r=3 . A binary cluster tree can easily be extended by 
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Figure 1.6 The pyramid. 

increasing its number of cluster levels. Extension of a binary cluster tree with r 
levels to one with r+ 1 levels takes 6t.2 r_1 nodes to add. 

A hypernet or (d,h)-net, described in [HwaGho], is a network that is recursively 
built up of smaller hypernets, (d,h—l)-nets. The smallest hypernets possible, 
(d,l)-nets, are the building blocks. A building block in a (d.h)-net can be a d-
cube, a complete binary tree of d levels or 2d processors connected to a bus. Only 
one type is used simultaneously in a hypernet. To the nodes in building blocks 
loose edges are attached. They are used for I/O or to make connections to other 
building blocks. 
The degree of a (d,h)-net depends of the building block used. If the building 
block is a cube then the degree is cH-1; if it is a tree then the degree is 4; if it is a 
bus with 2d processors then the degree is 2. The number of nodes in a (d.h)-net 
is equal to 

N(d,h) = 22k:,(««-2)+»>+i. 

Extension of a (d.h)-net to a (d,h + l)-net requires 
22h-1(d-2)+h+l|22h-1(d-2) + l_ î 

nodes to add, which is approximately the square of the number of nodes in a 
(d.h)-net. Hence, the extension complexity of a (d.h)-net is not of the same 
order as the total number of nodes in a (d.h)-net. That is to say, hypernets don't 
satisfy demand no. 1 in subparagraph 1.5.3. 
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Figure 1.7 The binary cycle tree (t=2 and r=3). 

1.5.6 Hosts and peripherals of extensible computers 

This subparagraph deals with configurations based on extensible computers. 
Obviously, the main part of such a configuration is constituted by an extensible 
network of processors each of which is equipped with a local memory. The loose 
edges of the network will be used as interconnections to so-called peripheral com­
puters. Peripheral computers present jobs to the extensible computer and receive 
the output of the jobs (see figure 1.8). 
Presenting jobs and receiving their output will not be done by a single host. The 
reason for the absence of a host is straightforward: a host causes a bottleneck in 
the sense of [LipMal; p.45, Theorem 2] (see subparagraph 1.5.4). It is called on 
by each processor with a probability larger than a fixed positive constant. 
If a sufficient number of peripheral computers is available, no input and output 
bottlenecks will arise. As will be seen in this dissertation, extensible computers 
based on a statical network with logarithmic diameter can be connected to suffi­
ciently many peripheral computers. The number of loose edges in extensible net­
works exhibiting logarithmic diameters, will appear to be of the same order as the 
total number of processors in the network. So, the number of peripherals that 
can be connected to a network is allowed to grow linearly with the number of pro­
cessors. This is indeed necessary when the supply of jobs increases in the course 
of time, and the average sizes of the jobs remain equal. In practice this situation 
is not very likely to occur, however. To be sure, there is a steady increase of the 
number of jobs as a computer's capacity increases, but it is very likely to be 
exceeded by the increase of computing capacity required by each single job. In 
that case, the number of peripherals only need to grow sublinearly with the 
number of processors. 
The choice for several peripherals instead of one host has consequences for the 
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Figure 1.8 Extensible computer with its peripherals. 

control of an extensible computer. Controlling any computer is most easily done 
by a single host. Control by a multitude of (different) peripherals is much 
harder, however. Concurrent execution of the operating system on the peri­
pherals causes a lot of complications. Therefore, extensible computers should 
control themselves. 

1.5.7 Marginalia to extensibility 

We conclude the paragraph about extensibility with some marginal notes. 
Though extensibility has much to offer, it has some disadvantages. Subpara-
graph 1.5.4 dealt with some factors that limit the performance of extensible com­
puters. They were mainly caused by the hardware and software of extensible 
computers. There are also external factors which may subdue the enthusiasm for 
extensible computers, however. 

A supplier's opinion about extensibility might be negative, because he might 
experience a decrease of his sales by it. In current practice a customer can often 
be persuaded to purchase a (conventional) computer that is large enough to com­
ply with his computing demands over the next two or so years. However, to the 
owner of an extensible computer, no more hardware can be sold than is strictly 
needed by him, provided the extensions are reasonably small. The owner will 
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wait procuring additional computing capacity up to the moment he really needs it. 
There is still another factor that may decrease the sales. Whereas completely new 
computers could often be sold when a customer's needs for computing capacity 
increased, for extensible computers only extensions will be sold. An extension 
will represent a lower economical value than a complete computer. Conse­
quently, though extensibility may result in higher sales measured in units of com­
puting capacity, the sales in economical units are very likely to be lower. 

The opinion of customers about the above matters will be opposite to that of sup­
pliers. The interests of both are incompatible. However, objections to extensibil­
ity can also be expected from customer's sides. 
To a customer, the long life-cycle of extensible computers is disadvantageous. 
According as a computer is extended ever more, switching to another supplier 
becomes more and more difficult. A big investment in a multiply extended com­
puter would be wasted. The advantages of extensible computers are clouded by 
the bogey of years (or even decades) of dependency of a particular supplier. 
A drawback to the long life cycle of extensible computers, which was mentioned 
before (subparagraph 1.5.4), concerns the technological advancement of exten­
sions. Extension of a computer by processors being of the same technological 
standard as the original computer will result in a technologically outdated com­
puter. Even if up-to-date components are used for extension, the user is con­
fronted with an outdated core of the computer, which decreases its performance. 
The longer the life-cycle of a computer is, the more serious this problem is. 

Although the advantages of extensibility are accompanied by some disadvantages, 
the concept is worth to be investigated in more detail. 

1.6 Can extensible computers based on statical networks be efficient? 

1.6.1 Introduction 

The preceding paragraphs dealt with several aspects of extensible massively paral­
lel computers. First, it was pointed out that massively parallel computers should 
be capable of executing jobs of different sizes, and moreover, to execute them in 
parallel. Thereupon, three important issues in massively parallel computers were 
treated: the processors, communication between them, and extensibility. In these 
paragraphs a number of demands on extensible massively parallel computers 
were stated. It is unclear, however, whether computers satisfying these demands 
are able to process jobs efficiently. The current paragraph gives an indication of 
which factors the efficiency, by which jobs are processed by massively parallel 
computers, depend. 
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1.6.2 Factors influencing performance of parallel computers 

Agrawal, Janakiram and Pathak distinguish in [AgJaPa] three factors having 
bearing on performance of parallel computers with statical communication net­
works: 

1. The mechanism for detecting parallelism and partitioning each job into 
processes. 

2. The topology of the interconnection network. 

3. The scheduling and mapping of the processes on the architecture. 

The first issue is of concern for any parallel computer irrespective of its commun­
ication mechanism and its other characteristics. Automatic detection of parallel­
ism is quite involved and beyond the scope of this dissertation. 
In some systems, the mechanism for automatic detection of parallelism is simply 
omitted. It is left to the users to specify parallelism in their jobs. For example, in 
the OCCAM-language the job of specifying data dependencies between parallel 
subtasks is on account of users. They are responsible for the optimal paralleliza-
tion of their programs. 

The efficiency with which parallelism in a job is transformed in speedup depends 
of the other two factors in the list, i.e. the network topology and the scheduling of 
jobs on it. 
Construction of efficient network topologies is one of the main issues of this 
dissertation and runs to chapters 2, and 4 up to and including 8. 

Scheduling of the processes on the architecture is divided into two subscheduling 
problems: 

1. Scheduling jobs on the processors. 

2. Scheduling processes within jobs on the processors. 

These two subscheduling problems are not the topics of this dissertation. 
Nevertheless, the next two subparagraphs deal with the two subscheduling prob­
lems. 

1.6.3 Scheduling jobs on the processors 

The scheduler of jobs on processors establishes which processors are to be used 
for each job. The set of processors on which a particular job is scheduled is 
called the chunk of processors belonging to that job. 
The demands to which chunks and jobs should conform are listed below. The 
first three demands have been encountered before in the context of whole 
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extensible networks, rather than chunks in them. 

1. Processors executing a particular job should be packed tightly, i.e. the diame­
ter of the chunk should be low. 
As a result of a low diameter of a chunk, the processes within the 
corresponding job lie close together (see also demand no. 8 in subpara-
graph 1.4.2, and demand no. 2 in subparagraph 1.4.5). 

2. Communication within a job should be independent of the communication in 
other jobs (see demand no. 12 in subparagraph 1.4.2). 

3. The time a processor is computing should be well-balanced with the time it is 
communicating or waiting for communication (see demand no. 11 in sub-
paragraph 1.4.2). This demand is closely related to the next demand. 

4. The number of processors in a chunk should be dynamically adaptable to the 
needs of a job. 
At moments that the number of parallel processes in a job increases, the 
corresponding chunk should expand up to the point that the balance between 
communication and computation is restored (see demand no. 11 in subpara­
graph 1.4.2). Analogously, if the number of processes decreases, then the 
chunk should be reduced. By releasing processors at moments at which they 
are not needed by a job, they will become available for other jobs. 
When this demand is satisfied, the efficiency by which processors are used in 
a job will improve. Nevertheless, the speedup of the job will remain approxi­
mately equal. Amdahl's law can not be sidestepped. 

5. The maximal sized chunk which fits in a network, should fit exactly in the 
network, i.e. the shapes of the maximal sized chunk and the network are 
equal. 
A computation intensive highly parallel job should be able to allocate all pro­
cessors of a network. This demand is not as trivial as it seems to be. A 
chunk is not allowed to have any arbitrary shape, neither does a network (see 
demand no. 15 in subparagraph 1.5.3). The factors which determine the 
shapes of networks and chunks will be elaborated in chapter 2. 

6. Jobs should be allocatable anywhere in the computer. 
This demand amounts to requiring that the network is identical to each pro­
cessor. Stated in another way, the network should be node-transitive (see 
appendix A), and all processors should be logically identical. The demand 
guarantees flexibility of scheduling. 

7. Jobs should be distributed homogeneously among the network. 
This demand discourages situations in which processors are overloaded while 
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others are idle. 

There exists a relationship between the shape of extensible networks and the 
shape of chunks. This relationship will become clear in paragraph 2.7. In partic­
ular, the questions 

1. Which shape should a chunk have, in order to have a low diameter? 

2. Which shape should a chunk have, in order that its communication is 
independent of communication in other chunks? 

are respectively equivalent with the questions 

1. Which shape should an extensible network have, in order to have a low 
diameter? 

2. Which shape should an extensible network have, in order that there exists a 
routing function, which is maintained under extension, and which only 
routes via paths inside the network? 

The latter two questions, and so, also the former two questions, will be answered 
in the next chapter. 

1.6.4 Scheduling processes within jobs on the processors 

The second subscheduling problem concerns the mapping of processes within a 
job onto the corresponding chunk of processors. The diameter and shape of this 
chunk are given. They are set by the first subscheduling process and can not be 
influenced directly by the second. The only task of the second subscheduling 
process is to find an optimal allotment of the processes among the processors so 
that the speedup or some other performance parameter is optimized. For this, 
processes frequently exchanging data should be mapped onto processors which lie 
close together, or even better, are directly connected. A low diameter of the 
chunk is of help to minimize the average distance over which processes commun­
icate. 
The structure determined by the processes and their communication interrelation­
ships should be mapped optimally onto the chunk of processors. To complicate 
these matters, in most general purpose computers no information is available on 
the nature of the processes to be executed on it. The mapping should be done at 
run time. Unfortunately, dynamical mapping pushes down the total performance 
of a system. 
In literature a limited number of articles have appeared describing research on 
scheduling and mapping of processes on processors. In [Stone2] Stone describes 
an optimal assignment of processes to a two-processor system. Bokhari proposed 
in [Bokhar] a more complete solution for an arbitrary number of processors. A 
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method applicable to large homogeneous multiprocessor systems, called wave-
scheduling is described by van Tilborg and Wittie in [TilWit]. It assumes that any 
process can be executed on any one of the processors. A more elaborate treat­
ment of these methods may be found in [AgJaPa] or in the original articles. 
Finally, we mention [Hilber], in which Hilbers describes a theory about mappings 
of processes onto processors. These mappings minimize the largest distance 
between the processors at which two neighbour processes are mapped. 
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2 

A method to construct efficient extensible networks 

Géronte: It seems to me you are locating them wrongly: the heart 
is on the left and the liver is on the right. 

Sganarelle: Yes, in the old days that was so, but we have changed 
all that, and now we practise medicine by a completely new 
method. 

Molière (1622-1673) 

2.1 Introduction 

This chapter describes a method suitable to construct extension sequences of 
which each element has the following properties: 

1. There is no bound to the number of extensions that can be made to the net­
work. 

2. The degree of the network and of all its extensions is bounded from above 
by a fixed positive small constant. 

3. The network's diameter is logarithmic and remains logarithmic after exten­
sion. 

4. The network's connectivity is reasonably high and is maintained under 
extension. 

5. The network's structure is regular and is maintained under extension. 

6. Any optimal routing function of the network routes only via paths inside the 
network, and is maintained under extension. 

7. The network's extension complexity is minimal with respect to the above 
properties. 

Furthermore, the relationship between extensible networks and chunks, which 
were introduced in subparagraph 1.6.3, is discussed. 
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The next paragraph first gives a rough outline of the construction method and 
then relates it to the properties listed above. It appears that the first two proper­
ties are easily provided by the method. The subsequent paragraphs put in the 
other details of the method. Paragraph 2.3 discusses the preconditions to obtain 
extensible networks with logarithmic diameters. Regularity and connectivity, 
which will appear to be closely related, are studied in paragraph 2.4. Para­
graph 2.5 gives more details about the actual shape of the network and relates it 
to routing functions. The method itself is described in full detail in para­
graph 2.6. Paragraph 2.7 relates the shapes of chunks to the shapes of extensible 
networks constructed with the method. 

2.2 Fundamentals of constructing extensible networks 

This paragraph describes the fundamentals of constructing extensible networks 
with the properties listed in the introduction. First of all, a method to construct 
such networks is sketched. The method consists of two stages: 

• Construct an infinite connected graph Y. 

• Cut out subgraphs of I \ 

The subgraphs cut out of T will constitute the extensible networks. To obtain 
properly extensible networks, the subgraphs are cut out such that they constitute 
an extension sequence SE(AJ) = (AQ.AJ .AJ , . . . ) , each member of which is an 
induced subgraph (see appendix A) of T. T will be called an underlying graph of 
the sequence SgCAj). The way the extensible networks are cut out of T deter­
mines their shape. 
In the remainder of this paragraph we deal briefly with the conditions that T and 
Aj should satisfy in order to have the properties listed in the introduction. The 
precise conditions they should satisfy will become clear in the course of this 
chapter. 

The first property, stated in the introduction, concerns unboundedness of extensi­
bility. It is easily incorporated in extensible networks constructed by the con­
struction method. The sequence S^A;) can be of infinite length, since T is an 
infinite connected graph. Consequently, there is no bound to the number of 
times Aj can be extended. 

The second property concerns the degree of extensible networks. This property is 
also easily imposed to the members of an extension sequence S^A;), by assuming 
the degree of T to be finite and low. In addition to this we assume that all nodes 
of T have the same degree. Clearly, the degree of any node in any A; is bounded 
from above by the degree of T, since the total number of loose and non-loose 
edges any node in A; is incident with, is equal to deg(T). This implies that the 
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degree of any node in any A; is finite and low. 

The third property concerns the diameter of extensible networks. The diameter 
of an extensible network A; depends on two factors: 

• The node density of T. 

• The shape of Ai. 

Informally, the node density of T is the number of nodes within some distance 
from some node in T. This number is bounded from above by the Moore-bound 
(see subparagraph 1.4.5). The node density of T is high if the above number lies 
close to the Moore-bound. In paragraph 2.3 a formal measure for node density 
of T will be defined. Furthermore, in that paragraph it is proved that a high node 
density of T is a precondition to construct extensible graphs with low diameters. 
The shape of A; is determined by the way it is cut out of T. The relation between 
the shape of A( and its diameter will be elaborated in paragraph 2.5. In particu­
lar, this paragraph points out how extensible networks with low diameters should 
be constructed. 

The fourth property, stated in the introduction, concerns the connectivity of A;. 
The connectivity of A; depends on four factors: 

• The structure of r . 

• The connectivity of T. 

• The shape of A;. 

• The placement of A; on T. 

In general, the connectivity of A; is neither bounded from below nor bounded 
from above by the connectivity of I \ 
If Aj is placed on a part of T of which all nodes have high mutual local connec­
tivity relative to other parts of T, then the connectivity of A; might be larger than 
the connectivity of T. For, T's connectivity is determined by its smallest separat­
ing set (see appendix A). This set is located at the parts of T of which the nodes 
have relatively low mutual local connectivities. 
On the other hand, if Aj is placed on a smallest separating set of T then its con­
nectivity is not greater than T's connectivity. 

If T's connectivity is optimal, then it is always greater than the connectivity of Aj. 
For, the degrees of the border nodes of A; are lower than deg(r), and the connec­
tivity of A; can never be greater than deg~(A;). In the case of optimal connec­
tivity of T, Aj's connectivity is less sensitive to the structure of T and the place­
ment of A; on T. 
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A high connectivity of T promotes a high connectivity of A;. For this reason, we 
aim at optimization of T's connectivity. In paragraph 2.4 some sufficient condi­
tions are deduced for optimal connectivity of T. 
No general results about the precise connectivity of A; shall be given in this 
dissertation. We confine ourselves to remarking that each A; constructed by the 
method has a relatively high connectivity. It is a result of the prescription of A;'s 
shape by the requirements concerning the diameter and the routing function 
of A;. 

The fifth property, stated in the introduction, concerns the structure of A;. The 
structure of A; depends on two factors: 

• The structure of T. 

• The shape of A;. 

The regularity of T's structure is described by automorphism groups (see 
appendix A). It will appear that it is very convenient to choose T to be sym­
metric. 
Classification based on automorphism groups does not apply to A;. Any A; is not 
even node-transitive, since the loose edges of A; can not be matched onto the 
other edges of A;. Therefore, in order to obtain a regular shape of A;, we shall 
concentrate on the way A; is cut out of T. This will be investigated in para­
graph 2.5. 

The sixth property, stated in the introduction, concerns the routing function. The 
routes via which an optimal routing function is allowed to route depend on the 
shape of A;. Fortunately, the shapes allowing optimal routing functions to route 
inside extensible networks, will appear to guarantee maintenance of optimal rout­
ing functions under extension (see paragraph 2.5). 

The seventh property, stated in the introduction, concerns the extension complex­
ity. The extension complexity of A; can not be made arbitrary small. Extension 
of Aj by too small a number of nodes may result in a loss of (a part of) the pro­
perties of A;. Extension complexity will be investigated in paragraph 2.5. 

From the above remarks it may be concluded that there should exists a close rela­
tionship between T and A;. Only then the impositions made on A; by T are strict. 
Which conditions should be satisfied by T and A; in order to make their relation­
ship as close as possible is made clear by theorem 2.2. First, some additional 
notions are defined. 

The underlying graph T is called a minimal underlying graph of the sequence 
Sg(Ai) = (A0,A1,A2,...) if T is a (not necessarily proper). subgraph of every 
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underlying graph of SE(A;). Every extension sequence has a uniquely defined 
minimal underlying graph. To prove this we first need a lemma. 

(2.1) Lemma. T is a minimal underlying graph of an extension sequence 
SgCAj) = (A0.Aj.A2,...) if and only if for each node u in T there exists some 
natural number N such that Vi>N: u€V(Aj). 

Proof. 

• Suppose T is a minimal underlying graph of S^A;). 
Suppose that there exists a node u in T such that 

VN€lN3i>N:u£V(Ai) . 

It is to be proved that this condition implies a contradiction. 
If i>N, then A{ D AN. Hence, if i>N and u«V(A;), then u«V(AN). 
Since for any N there exists such an i^N we obtain: ugV(Aj) for i=0,l ,2, 
Then, T —{u} is an underlying graph of the sequence S^A;) contradicting with 
the minimality of T. 

• Suppose for each node u in T there exists some N such that Vi^N: u€V(A;). 
If T is not minimal then there exists some nonempty subgraph A of T such 
that T - A is a minimal underlying graph of S^A;). Then, for all i=0,l ,2, . . . 
and for all w€V(A): w£V(A;), otherwise T - A would not be an underlying 
graph of S^A;). This is a contradiction. o 

(2.2) Theorem. Every extension sequence SE(A;) has a unique minimal underly­
ing graph T, defined by 

T = lim A:. 

Proof. For all i€N: A; C lim A:, since A; C A i+1. 
j-oc I Hence, T = lim A: is an underlying graph of S^Aj). 

j-00 

Trivially, each node u in T lies in AN for some N, and so u lies also in A; for all 
i>N. Then, by lemma 2.1, T is a minimal underlying graph of SE(AJ). 
In order to prove that T is unique, suppose T' is a minimal underlying graph of 
S^A;), different from T. Then, lemma 2.1 implies that for each node u in T' 
there exists an N such that -

uÉV(Aj) fora l l i^N. 

Hence, each node u of T' lies in lim A: = I \ 
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which implies T' C T, and so, T' = T. □ 

If an underlying graph T used for the construction of an extension sequence 
SECA;) is not the minimal underlying graph of SE(A;) , then S^A;) does not take 
full advantage of all features of I \ Though this might result in extensible net­
works with favourable characteristics, we prefer to construct extension sequences 
by using underlying graphs which are minimal. Each extension sequence con­
structed in this dissertation is obtained from its minimal underlying graph. 

2.3 Node density 

This paragraph describes a measure for node density in an infinite connected 
graph, and proves some properties of the measure. The measure is called the 
exponentiality of a graph. Informally, it considers the function description of the 
number of nodes lying within a distance d from some node v as function of d. If 
this function is an exponential function, then the value of the base determines the 
exponentiality. If this function is not exponential, then the exponentiality is set 
equal to 1. 
In the formal definition of the exponentiality of a graph, the sequence 
D = (d0,d1,d2,...) consists of all distances d at which the function is considered. 
D is assumed to be an infinite increasing sequence of positive integers. 

(2.3) Definition. The exponentiality of an infinite connected graph T is defined by 
d ' A 

exp(r) := sup{b | 3v€V(r ) 3c€R + 3D VdjÉD: 2 l r i ( v ) l ^ c-b }■ 
i=0 

T is exponential if exp(T)>l and non-exponential if exp(T) = l. T will be called 
super-exponential if no supremum exists. 

Clearly, superexponential graphs have not a bounded degree. 
Whenever we speak in the rest of this dissertation of the exponentiality of a 
graph, D = (d0,d1,d2,...) will supposed to be a sequence of integers that, when 
substituted in the above definition, results in the supremum equal to the exponen­
tiality of the graph. A special case occurs when D = (1,2,3,...). 

(2.4) Definition. The uniform exponentiality of an infinite connected graph T is 
defined by 

ëxp(D := sup{b | 3v€V(D 3 c ë R + Vn^IN: 2 | r ; ( v ) | > c.bn }. 
i=0 

T is uniform exponential if ëxp(T)>l and uniform non-exponential if Sxp(T) = 1. T 
will be called uniform superexponential if no supremum exists. 
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A s a matter of fact, uniform exponentiality never exceeds the exponentiality of a 
graph. 

The above definitions are not restricted to a specific node v. An arbitrary choice 
for v can be made, as the following lemma shows. 

(2.5) Lemma. The value of exp(T) is independent of the choice for v in defini­
tion 2.3. 

Proof. Let v be a node for which the supremum equals exp(T) in definition 2.3, 
let u be an arbitrary node of V(T) and let d = d(u,v). Define a new sequence 
D': = (d,5,d{,d£,...) by d/: = d j+d and a new c' by c': = c /b d . 

Then ^ | r i ( u ) | = 2 l^iCu)! s 2 |r i (v) | ^ c.bd< = c'.bdJ 
i=0 i=0 i=0 

Hence, the replacement of v by u in definition 2.3 results in the same value of 
exp(r). ü 

An analogous lemma can be formulated for uniform exponentiality. 

(2.6) Lemma. The value of exp(T) is independent of the choice for v in defini­
tion 2.4. 

Proof. Let v, u, d, c, and n be as in lemma 2.5, define n' by n': = n, and define 
c 'by 

c ' : = m i n ( - § - min {J- £ | r > ) | } ). 
b l s r<d b i = 0 

The definition of c' is more complicated than in lemma 2.5 to cope with the case 
n '<d . In a similar way to lemma 2.5 we deduce: 

2 | r j ( u ) | > c'.bn ' forn' = l,2 
i=o D 

If extensible networks have a high node density then the exponentiality of the 
corresponding minimal underlying graph is high. A high exponentiality might be 
an indication that the diameters of the extensible networks corresponding to the 
underlying graph are low. Might be, because the diameters also depend on 
another factor (see paragraph 2.5). Nevertheless, a high exponentiality of an 
underlying graph is of help to construct extensible networks with low diameters. 
In that perspective it is important to know some upper bounds to the exponential­
ity of a graph. The next theorem gives such an upper bound. 
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(2.7) Theorem. If T is an infinite graph of degree k (k>2), then exp(r)^k— 1. 

Proof. Let v and D be as in definition 2.3. Define (A0.Aj.A2,...) to be a 
sequence of induced subgraphs of T, for which 

di 
V(A;) := U I » . 

1=0 

Since T is exponential there exist constants c€lR + and b€(l,°°) such that 

|V(Aj)| > c.bd| foral l i=0, l ,2 

|V(A;)| is bounded from above by n(k,dj) (see subparagraph 1.4.5), giving 

|V(A,,| s ltt=i£=l. 
Combining these two expressions and rewriting gives: 

c ( k - 2 ) - k ( ^ k ~ ^ ) d ' + 2 . b ~ d | < 0 b 
If b > k - l then the left hand of this expression will be larger than 0 as i 
approaches °°, which is a contradiction. Hence, the supremum of all b's satisfy­
ing this expression is not larger than k— 1. o 

The next theorem is useful for determining a graph's exponentiality. It gives a 
relationship between the exponentialities of two graphs. 

(2.8) Theorem. If T and A are two infinite connected graphs, then TCA implies 

• exp(0 < exp(A). 

• ëxp(r) < ëxp(A). 

Proof. Let TCA and v be a node in T, then for all nCIN: 

UlVv) C UA:(v). 
i=0 i=0 

Then, definitions 2.3 and 2.4 directly imply the required results. □ 

We shall now determine the exponentialities of the minimal underlying graphs of 
a tree and a mesh, and of extensible networks considered in subparagraph 1.5.5. 
The first two networks, to be considered, are the 2-dimensional mesh, and the 
infinite tree of which all nodes have degree k. It is easily seen that the mesh is 
not exponential. The tree has uniform exponentiality k— 1, which is optimal. We 
remark that halving such a tree by removing one edge does not affect its exponen­
tiality. Hence, infinite trees of which all nodes have degree k except one 'root' 
node, which has degree k—1, have uniform exponentiality k—1. Many networks 
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are based on such trees, such as the X-tree, the hypertree and the pyramid (see 
subparagraph 1.5.5). 

How about the exponentiality of the minimal underlying graphs of the extensible 
networks in subparagraph 1.5.5? 

The butterfly is the first network to be considered. Figure 2.1 shows that the 
infinite tree of which all nodes have degree 3 is a subgraph of the butterfly. 

Figure 2.1 Embedding of tree in butterfly. 

Theorem 2.8 implies that the uniform exponentiality of the butterfly is at least 2. 
Furthermore, by theorem 2.7, the uniform exponentiality of the butterfly is at 
most 3. The exact value of the butterfly's exponentiality is not known, but com­
putation of the quotient 

"ilri(v)| / i l l » ! (=Exp(D) 
i=0 i=0 

for the values n= 1,2 8 yields a sequence of numbers which seems to approach 
2 from above. This indicates that the uniform exponentiality of the butterfly is 2. 

The exponentiality of the cube-connected-lines is at most 2 (theorem 2.7). Con­
sidering the above quotient for n= l ,2 7, yields a sequence which seems to 
approach 1.7. 

The X-trees in [DesPat] are all based on an infinite tree of which all nodes have 
degree 3 except the root node which has degree 2. All but the threaded and the 
double threaded tree have only extra edges between nodes at the same level. 
These edges don't affect the exponentiality. We conclude that the underlying 
graphs of all X-trees but the threaded and double threaded trees have uniform 
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exponentiality 2. This is not optimal since the degrees of X-trees are 4 or 5. 

The underlying graphs of the hypertrees in [GooSeq] have uniform exponentiality 
2, since they are based on the same tree as the X-tree, and augmented edges only 
connect nodes at the same level. Since the degree of a hypertree is 4 or 5, this is 
not optimal. 

The pyramid in [FrHeHe] is based on an infinite tree of which all nodes have 
degree 5 except the root node which has degree 4. Mesh connections in the 
pyramid connect only nodes at the same tree level. This implies that the pyramid 
has uniform exponentiality 4. This is far from optimal because the maximum 
node degree in the pyramid is 9. 

Computing the exponentiality of the underlying graph of the binary cluster tree in 
[HoKuRe] is a bit harder. We notice the following facts: 

• Let a and b be nodes in a binary tree and Ca and Cb the corresponding clusters 
in the binary cluster tree. Then the minimal distance between Ca and Cb is at 
least 2 .d(a ,b) - l . 

• The number of nodes in a cluster is bounded by a constant. 

• The original binary tree has uniform exponentiality 2. 

From this we conclude that the underlying structure of the binary cluster tree has 
uniform exponentiality at most 21/2 (doubling of distances causes the uniform 
exponentiality to be square rooted). 

The next theorem shows the main reason for the introduction of exponentiality. 
It proves that extensible networks can only have logarithmic diameters when they 
have an exponential underlying graph. 

(2.9) Theorem. Let SE(A;) = (A0.Ai.A2,...) De a n infinite extension sequence 
with underlying graph T. If diam(Aj) < c.log2 |V(A;)| for some positive constant 
c, then r is exponential. 

Proof. First, remove A0 from SE(A,). As a result of this, the diameters of all ele­
ments in SE(Aj) are positive. 
Thereupon, consider the diameters of the remaining elements of SE(Ai). If there 
are elements in SE(A;) with an equal diameter, then remove those elements 
except one from SE(Aj). As a result of this, the diameters of all elements in 
S^A;) are different. 
Finally, renumber the remaining elements of SE(Ai), such that they constitute a 
new extension sequence (A0.Ai.A2,...). This sequence has infinite length. 
Let di=diam(Ai), then 0<d 0 <di< . . . . Hence, D = (d0,d1,d2,...) is an infinite 
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increasing sequence of positive integers. 
Let v be a node of V(A0), then v6V(Aj) and 

d> d i a m ( A , ) . , • , * • > 2irj(v) | = 2 |rj(v)| ^ |v(A;)| > ( 2 1 / c ) d i a m ^ = (21/c)d' 
j - 0 j=0 

for i = 0,1,2 This implies that T is exponential. Q 

The reverse of theorem 2.9 is not true as the following example shows. 

(2.10) Example. Let Tk be an infinite tree of which all nodes have degree k and 
let Aj be a subgraph of Tk, defined as a path in Tk of length i, beginning in some 
fixed node v of Tk. Tk is exponential but diam(Aj) = i, which is not logarithmic. 

Up to now it remained unclear why uniform exponentiality was defined in addi­
tion to exponentiality. The reason is that exponentiality is not strict enough to 
our purposes. There may be huge 'gaps' between subsequent elements of the 
sequence D belonging to a graph. These gaps may even be so big that an 
exponential graph is uniform non-exponential. A graph belonging to such a 
sequence is not suitable as underlying graph for extensible networks with low 
diameter. The reason for this is three-fold. 
First, there would be huge gaps between the diameters of subsequent elements of 
an extension sequence based on such an underlying graph. For, theorem 2.9 
implies that if there are no large gaps between the diameters of the elements of 
the extension sequence, then there are no large gaps in D. Huge gaps between 
the diameters cause the extension complexity of each element of the sequence to 
be no longer a linear or sublinear function of the number of nodes. 
Second, there would be much variety in the node density of extensible graphs. 
This would conflict with the desire of regularity of extensible graphs. 
Third, uniform non-exponentiality troubles establishing of logarithmic diameters 
of extensible networks by a theorem (2.19) which shall be dealt with in para­
graph 2.5. 
So, when constructing underlying graphs we should always aim at uniform 
exponential graphs. 

In order to ease the construction of uniform exponential graphs, it would be con­
venient to have some knowledge about the relationship between exponential and 
uniform exponential graphs'. This relationship will be elucidated in the remaining 
part of this paragraph. It appears to be a very close relationship for node-
transitive graphs. To prove this we first need a lemma. It gives a lower bound 
for exp(T) expressed in terms of exp(T) and the gaps between the elements in D. 
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(2.11) Lemma. If D = (d0,d1,d2»--) is a sequence belonging to an exponential 
graph T, and a€(l,°°) is a constant bounding the elements of D according to 

d j+i < a.dj for all j=0,l ,2, . . . 

then ëxp(0 > exp(D1/a 

Proof. Define a number b by 

b : = i n f { a | a > d j + 1 / d j } , 

then, dj+1 < b.dj and V t > l V a > d j + 1 / d j 3e>0: ( t -e ) 1 / b = t1/a. 
Setting t=exp(T) gives: 

dj 
V a > d j + 1 / d j 3 e > 0 Vv€V(D 3c€lR+ 2 l r i ( v ) l s c.(t-e)dj > 

i=0 

c.((t-e)1/b)di+1 = c.(t1/a)dj+1. 
Moreover, for all integers m€[0,dj+1—dj]: 

! s V i ( v ) | ^ 2 l r i ( v ) l and c.(t1/a)d'+1 > c.(t1/a)d '+m. 
i=0 i=0 

This implies 

V a > d j + 1 / d j Vv€V(D 3c€R + Vm€[0,d j + 1-dj]: 

2 |r4(v) | > c.(t1/a)di+m, 
i = 0 

and so, 

V a > d j + 1 / d j Vv€V(D 3c€R + V r € Z + : 2 l ri(v)l ^ c.(t1/a)r. 
i=0 D 

This lemma shows that an exponential graph is uniform exponential if dj is lim­
ited by an exponential function in j . 

(2.12) Theorem. Every exponential node-transitive graph is uniform exponential. 

Proof. Let Y be an exponential node-transitive graph, then there exists a node 
v€V(r ) , there exist constants b, c€lR + , b > l , and there exists an infinite increas­
ing sequence of positive integers D = (dg.dj,...) such that 

d, 
2 | r ; ( v ) | > c.bdj foralldjÉD. 
i=0 

If O l , c will be decreased to 1 (notice that this does not cause b, v and D to 
change). In the rest of this proof we assume c ^ l . Suppose D is maximal with 
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respect to b and c, i.e. for each r£D 

i|r;(v)| <C.br. 
i=0 

If D is not maximal, then add to D all numbers r not yet in D which do not 
satisfy the above equation. This results in a new infinite increasing sequence D 
of positive integers. The new D is maximal with respect to b and c. 
If D = (l,2,3,...) then T is uniform exponential, in which case we are finished. 
So, suppose T is not uniform exponential, then lemma 2.11 implies 

Va€(l,oo) 3j€{l,2,3,...}: dj > a .d j^ . 

Let a=4 and select a j for which dj>4.dj_1. The expression djS4.dj_1 will be 
used extensively in the rest of the proof. We now distinguish four independent 
stages: 

(1) Inasmuch as dj^:4.dj_1, we have dj_14-l^dj which implies d j . j+ lgD. 
Hence, 

|rdj.l+i(v)l = d ' ï + Vi(v) | - d f | r ; ( v ) | <c.bd'-'+1-c.bd'-i = 
i=0 i=0 

C ' b b 

(2) Let n€{0,l,...,j—1}, then dn is an element of D for which d ^ d j . ^ 
Then, 

dj-l + d n + 1 =S 2.dj_!+l < 4.dj_! =£ dj, 

implying 

Vn£{0,l j - l } : dj-Cdj.j + l) * d n . 

Hence, the number dj—(dj_1 + l) is not an element of D. This implies 
dj-Cdj-.+l) 

2 |r;(v)| < c.bd'_(d'-l+1) 

i=0 

(3) Let A be an induced subgraph of T with node set 
dj-Cdj-i+i) 

V(A) = UTI U TjCu), where U : = r d + 1 ( v ) . 

Clearly, A is a subgraph of the ball with radius dj—(dj_1 + l) + dj_1+l = dj 
around node v. Trivially, 

dj > 4.dj_! ^ 2.dj_! + 2, 

61 



A method to construct efficient extensible networks Ch. 2 

implying 

d j -Cdj^+l ) a <!,_!+1 (j=l,2, . . .) . 

Hence, each ball with radius dj—(dj_1 +1) around any node u of Uj overlaps 
Uj. Therefore, each node in Uj lies also in A. From this we conclude that A 
is the ball with radius d: around node v. 

(4) Node-transitivity of V implies that for all i^O and any node u in T: 
FidOl = |rj(v)|. 

From these four results we obtain: 
d, (3) (3)+(4) d , - (d t ,+ l ) (i)+(2) 
2lri(v)| = |v(A)| < |rdj_1+1(v)| . 2 IWI < 
i=0 i=0 

c.bzibO|-i+i.c<bd1-(dJ.I+i) = ^ k l b ^ c . ^ i 
b b 

from which we conclude that djgD, which is a contradiction. Hence T is uniform 
exponential. o 

Node-transitivity turns an exponential underlying graph automatically into a uni­
form exponential graph. We might wonder whether regularity of T has other 
positive side effects. Indeed, this will be the case. 
In the next paragraph we will focus our attention onto the regularity and connec­
tivity of T. 

2.4 Regularity and connectivity 

Distance-transitivity (see appendix A) is the highest degree of regularity con­
sidered in this dissertation, so it will be the first candidate structure. Macpherson 
gives in [Macphe] a characterization of infinite locally finite distance-transitive 
graphs (see appendix A), proving a conjecture of C D . Godsil. To state 
Macpherson's theorem, it is necessary to first introduce the notion of standard 
graphs. 

'Any standard graph arises in the following way. Let T be an infinite tree in 
which the vertices have alternating degree s and t + 1 . Then there is any standard 
graph G with parameters s and t whose vertices are the vertices of T with degree 
s, two vertices of G being connected if they lie at distance 2 in T. Informally, a 
standard graph is a tree-like form of complete graphs. Clearly, any standard 
graph is distance-transitive.' (Macpherson, [Macphe]). An infinite tree of which 
all nodes have degree k is standard with parameters s=k and t = l . We notice 
that the node-connectivity of a standard graph is 1. 
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(2.13) Theorem. (Macpherson, 1982). If Y is an infinite locally finite distance-
transitive graph, then it is standard. 

Proof. See [Macphe]. D 

This theorem shows that infinite locally finite distance-transitive graphs are 
exponential, except the one with degree 2. The low connectivity of standard 
graphs makes them unsuited for our purposes, however. 
The next class of regular graphs is the class of symmetric graphs (see 
appendix A). An example of a symmetric graph is the infinite d-dimensional 
mesh. Symmetric graphs are a bit less regular than distance-transitive graphs. 
On the other hand, symmetric graphs can be highly connective, as will be shown. 
To study connectivity of symmetric graphs we consider a class of graphs to which 
symmetric graphs belong: the class of edge-transitive graphs. 

Let's start with a theorem exploring finite edge-transitive graphs. It was indepen­
dently proved by Mader and Watkins, and shows that finite connected edge-
transitive graphs have optimal connectivity. 

(2.14) Theorem. (Mader, 1970; Watkins, 1970). If V is finite, connected, edge-
transitive and [V(D| 5: 2, then K(T) = deg -(T). 

Proof. See [Mader] or [Watkin]. a 

This theorem is not valid for infinite locally finite edge-transitive graphs as is 
shown by Macpherson's theorem. It can be adapted by adding an extra condi­
tion. 

(2.15) Theorem. If T is infinite locally finite, connected, edge-transitive and 
icd") > deg _ ( r ) , then K ( D = d e g - ( D . 

(For an explanation of K M ( 0 see the description of coherency in appendix A). 
The proof of this theorem is analogous to Mader's proof in [Mader]. Mader sub­
divided his proof into two lemmas ([Mader; Lemma 1 and Lemma 2]) and the 
main theorem ([Mader, Satz 2]). The extra condition has only impact to his first 
lemma. Only the (small) change in the proof of this lemma will be outlined here. 
First, some additional notions are given. 
Let S be a minimal separating set of T, then T —S consists of the components 
Cj, C2 C; (i>2). Let u.r(S) and |x(T) be defined by 

|x r(S):= .min. |V(C:)| 
j = l i ' 

| x (0 := min { u,r(S) | S is a minimal separating set of T } 
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Clearly, |V(S)|=K(r). Let SQ be an S for which u.r(S) is minimal, then 
Mr(So) = M'(r'). Let C be a component of T —SQ with the minimal number of 
nodes, i.e. |V(C)|=u,r(So). Then C is called a fragment. G(H will denote the 
automorphism group of T. 
The first lemma used by Mader in [Mader] states: 

(2.16) Lemma. (Mader, [Mader; Lemma 1]) 
Let S be the separating set belonging to a fragment C of the finite graph T. Then, 
for each <t)€G(r) satisfying <f>(S)nV(C)¥=0 the condition V(C)£<|>(S) holds. 

In the proof of this lemma a set of nodes P = V(C)n4>(S) and a number p=|P| 
are defined. The proof operates by proving that the condition p<|V(C)| gives a 
contradiction. This procedure does not work when T is an infinite locally finite 
graph. Problems will arise when a finite minimal separating set S separates T 
into components which are all infinite. In that case |V(C)|=°°, obstructing the 
deduction of a contradiction. This flaw can be repaired by adding an extra condi­
tion. 

(2.17) Lemma. Let S be the separating set belonging to a fragment C of the infin­
ite locally finite graph T for which Koo(r)>deg~(r). Then, for each <)>€G(r) 
satisfying 4>(S)nV(C)9 t0, the condition V(C)C(f>(S) holds. 

Proof. We first show that C is a finite component. 
If C is an infinite component, then S separates T into sheer infinite components, 
since C is the smallest component of I \ This implies K(r) = K00(r). Combining 
this with the added condition in lemma 2.17, we obtain K ( 0 > d e g - ( r ) , which is 
impossible. 
The essential point is that C is a finite component. This enables the deduction of 
a contradiction in a similar way as in lemma 2.16. The rest of this proof proceeds 
in the same way as Mader's proof of lemma 2.16.t o 

The proofs of Lemma 2 and Satz 2 in [Mader] don't have to be changed to apply 
to infinite locally finite graphs. Together with lemma 2.17 they constitute the 
proof of theorem 2.15. 
In chapters 4 and 6 infinite locally finite symmetric graphs with high node-
coherency will be constructed. Theorem 2.15 permits us to immediately decide to 
optimal node-connectivity of these graphs. 

In the second stage of the construction method described in paragraph 2.2, 

t Watkins' proof can not be adapted in this way. The main problem seems to be the 
use of |J?a| and \R2\ in the proof of [Watkin; lemma 3.3], which are infinite for 
infinite graphs, even if the extra condition is added. 
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extensible networks are cut out of an underlying graph. This implies that the net­
works have border nodes with loose edges. Hence, the cut process results in a 
decrease of the degree of these nodes. Consequently, the connectivity of the 
actual networks is not as high as the connectivity of the underlying graph. If the 
shape of the networks is selected with some care low local connectivity (see 
appendix A) can often be restricted to the border nodes. This will indeed be the 
case for the networks constructed in chapter 4 (and probably also the networks in 
chapter 8), as will be shown in chapter 5. In the next paragraph we give some 
attention to the shape of extensible networks in general. 

2.5 Cutting out subgraphs of T 

In paragraph 2.2 we pointed out that the shapes of extensible networks, deter­
mined by the way they are cut out of T, have impact on their following charac­
teristics: 

• Their diameters. 

• Their routing functions. 

• Their structure. 

• Their connectivities. 

In the current paragraph, the diameter, the routing functions, and the structure 
will be investigated in more detail. In particular, a recipe is given to cut the ele­
ments of an extension sequence SE(AJ) out of T, such that the diameters of the 
elements of SE(A;) are low, the elements all have the same optimal routing func­
tion which only routes via paths inside each network, and each cutout is regular. 
Furthermore, it will be pointed out, how to construct a new extension sequence 
from SE(A;) with the same properties but lower or equal extension complexities. 
No general results about the connectivity of extensible networks will be given in 
this chapter. It seems, however, that the shape of A; determined by the first two 
characteristics, results in a reasonable connectivity. In chapter 5 it is shown that 
the local connectivities of a class of extensible networks, constructed by our 
method, are optimal. 

The first characteristic to be dealt with is the diameter of an extensible network. 
Example 2.10 showed an exponential underlying graph of an extension sequence 
of which all elements have a non-logarithmic diameter. Apparently, exponential­
l y of an underlying graph is not a sufficient condition to impose a logarithmic 
diameter onto extensible networks. The reason for the high diameters of the net­
works in example 2.10 is their 'oblongness': their 'length' is much larger than 
their 'width'. A formal measure for the oblongness of an extensible network is 

65 



A method to construct efficient extensible networks Ch.2 

its so-called R/r-ratio. 

(2.18) Definition. The R/r-ratio of a subgraph A of a graph T is defined to be the 
quotient R^/T^, where RA and rA are the radii of the circumscribed and the 
inscribed ball (see appendix A) respectively of A in T. 

This concept plays an important role in this dissertation. A high value of the 
R/r-ratio of A indicates that A is oblong, and a low R/r-ratio indicates the oppo­
site. Trivially, the R/r-ratio of a graph is at least 1. The following theorem states 
that if the subgraphs A; of a uniform exponential graph are not too oblong, then 
their diameter is logarithmic. 

(2.19) Theorem. Let T be an uniform exponential graph, then for all induced 
subgraphs A of T having a non-trivial inscribed ball: 

diam(A) = O ( RA/rA . log |V(A)| ). 

Proof. Since T is uniform exponential there exists some b > l for which 
ëjcp(D>b. 
Suppose vA is the centre node (see appendix A) of the inscribed ball of A, then 

|V(A)| ^ 2 l ^ i ( v A ) | ^ c.blA for some positive constant c. 
i=o 

S o , r A < logb( |V(A)| / c ) . 
Moreover, diam(A) < 2.RA < 2. RA/rA . rA < 2 . RA/rA . logb ( |V(A)| / c ) , 
which gives the required result. E 

This theorem guarantees a low diameter of A when the R/r-ratio of A is low and 
the uniform exponentiality of A is high. 
The important implication of this theorem is, that if the R/r-ratios of the elements 
of an extension sequence are bounded from above by a constant, then the diame­
ters of the elements are logarithmic, provided that they have a uniform exponen­
tial underlying graph. That is, their diameters are not only logarithmic; they 
remain logarithmic under extension. 

The reader might wonder: why not set an extensible network Aj equal to a ball 
with radius i in the underlying graph? The R/r-ratios of a ball is 1, which is 
optimal. The reason not to do this, is that the shape of Aj should also support 
ease of routing. 
More in particular, any optimal routing function of A, should only route via paths 
inside A;, and it should be maintained under extension. These demands can both 
be satisfied by putting one single imposition onto the shapes of the elements of an 
extension sequence. Informally, this imposition states that there should be no 
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'holes' and 'inlets' in an extensible network. Holes and inlets are obstacles to 
easy routing of messages through the network. Lack of holes and inlets is 
denoted by convexity. 

(2.20) Definition. An induced subgraph A of T is convex if for each two nodes 
u,v€V(A) the condition d(u,w) + d(w,v) = d(u,v) for any w€V(T) implies 
w€V(A). 

Stated in another way, A is convex if all shortest paths between u and v lie in A. 
Convexity as defined above is equivalent to the so-called 'g-convexity of a set of 
nodes in a graph', described in [FarJam] or 'd-convexity' in [SolChe]. 
Convexity is not an absolute characteristic of a subgraph, but depends on the 
graph of which it is a subgraph. A subgraph can be convex in one graph and 
non-convex in another. Extensible networks will be called convex in short when­
ever they are convex subgraphs of their minimal underlying graph. 

Any optimal routing function r r of a graph T can be used to route in a convex 
subgraph A of T. Since r r routes via shortest paths between any two nodes in T, 
it also routes via shortest paths between any two nodes in A. Hence, each route 
established by r r between any two nodes of A lies inside A. More formally: 

(2.21) Theorem. Let T be a graph and A a convex induced subgraph of T. If r r 

is an optimal routing function of T, then the following two conditions hold: 

1. Forallu,v€V(A): 

R r i(u,v)CV(A),(i=0,l,2,. . . ,d(u,v)), 

i.e. r r routes inside A. 

2. r r is an optimal routing function for A. 

Proof. Let u and v be nodes of A. 

1. Optimality of the routing function r r implies that for all w€R r i(u,v): 

d(u,w) = i and d(w,v) = d(u,v)-i . 
That is, d(u,w) + d(w,v) = d(u,v). 
This implies w€V(A), since A is convex. 
So, Rr i(u,v) C V(A), (i=0,l,2 d(u,v)). 

2. If u,v£V(A), then by optimality of r r: Rrdr(u,v)(u>v) = {v}- S i n c e A is convex 
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dA(u,v) = d r(u,v). Hence, Rrdi(u,v)(u'v) = M» implying that r r is an optimal 
routing function of A. o 

The implication of this theorem is that if an extension sequence SE(AJ) consists of 
sheer convex elements, then an optimal routing function of the minimal underly­
ing graph T is an optimal routing function of any element A;. Hence, optimal 
routing functions of A; are maintained under extension of A;. 

In addition to simplifying routing, convexity may also reduce the R/r-ratios of the 
networks. Convexity guarantees networks to be free of holes and inlets. The 
radius of a network's inscribed ball is substantially reduced by holes and inlets. 
They hinder an easy conclusion of logarithmic diameter by use of theorem 2.19. 
Though convexity may be of help to achieve a low R/r-ratio, it does not guarantee 
a low R/r-ratio. The extensible networks in example 2.10 are convex but have a 
high R/r-ratio (which is even °°). 
Balls have a low R/r-ratio but they may be non-convex. In order to obtain convex 
networks with a low R/r-ratio, we shall 'convexify' balls. For this, we need an 
additional notion. 

(2.22) Definition. The convex hull of a subgraph A of T, denoted by [A], is a con­
vex subgraph of T for which 

1. A is a subgraph of [A], 

2. A is not a subgraph of any proper convex subgraph of [A]. 

Informally, the convex hull of a subgraph A of T is the smallest convex subgraph 
of T containing A. 
A ball is convexified by determining its convex hull. The following theorem 
shows that convex hulls of balls have low R/r-ratios. 

(2.23) Theorem. For every subgraph A of a graph T there exists a ball B in T 
such that R[B]/r[B] < R[A]/r[A]. 

Proof. Let B be the inscribed ball of [A], then rjB] 2: rB=r|-A]. Furthermore, 
[B]C[A] since BC[A], giving R[B] < R[A]. □ 

This theorem does not imply that the R/r-ratio of the convex hull of every ball is 
smaller than the R/r-ratio of the convex hull of any subgraph A of T. Neverthe­
less, it indicates that convex hulls of balls are a good choice to obtain subgraphs 
of r with low R/r-ratios, and so, to obtain subgraphs of T with low diameters. 

We are now in a position to cut extension sequences with favourable characteris­
tics out of underlying graphs. Consider the sequence (A0,A1,A2,...) of which the 
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elements are defined by Ai:=[Bj(v)], where B;(v) is a ball with radius i around 
some node v in the underlying graph. All elements of this sequence are convex 
and have relatively low R/r-ratios. This sequence is an extension sequence since 
A;CAi+1. We notice that defining extensible networks in this way guarantees the 
underlying graph to be minimal. 
In order to be a suitable extension sequence, the R/r-ratios of all elements of 
SE(Aj) must be bounded from above by a fixed small constant (^1) . Whether 
the R/r-ratios of convex hulls of balls are indeed bounded by a fixed small con­
stant depends on the underlying graph T. The conditions which should be satis­
fied by T with respect to this, will be investigated later on in this paragraph. 

Convex hulls of balls are regular cutouts of T, contributing to regularity of the 
elements in SgCAj). So, the third characteristic of Aj, regular structure, is 
automatically imposed by the other two characteristics of A,, a low diameter and 
maintenance of optimal routing functions under extension. 

How about the extension complexity of the elements of SgCAj) defined above? 

The extension complexity of A; depends on the R/r-ratio of A; and the structure of 
T. No general results will be given for the extension complexity. Instead, we 
show a technique to reduce the extension complexity of extensible networks. 
CE(A;) can be reduced in the following way: 

• Find convex subgraphs ^ of T for which 

BieiN: AjC¥CA i + 1 . 

• Find sequences *io,'*'ii.^fi2.-■•.'*'ir among these subgraphs for which 

3K1N: A i C¥ i 0 C* i l C. . .C¥ i r CA i + 1 . 

• Add the longest sequences to SgCA;), giving a new sequence S^A/). 

Though this procedure reduces extension complexities, it may increase R/r-ratios. 
For, suppose R/r; is the R/r-ratio of A;. Then, the R/r-ratio of A;' is at most 
Rj+1/r;, which is of course larger. If, however, the increase of r; as function of i 
is limited and the quotient R/rj is bounded from above by a constant c, then the 
quotient Rj+i/r, is also bounded from above by a constant. This can easily be 
seen. Suppose, r i + 1 ^d.r ; for some constant d, then Rj+i/r; ^ c.d. 

Summarizing, suitable networks can be constructed by 

1. Constructing an extension sequence S^A,) consisting of convex hulls of 
balls. 
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2. Filling the gaps between the elements of SE(A;) by additional (finite) exten­
sion sequences. 

Whether the extensible networks constructed by this procedure have good charac­
teristics depends on the underlying graph used. The procedure guarantees that, 
given the underlying graph, the constructed extension sequences can hardly be 
improved. If the underlying graph is not selected with some care, the resulting 
extension sequences do not have desirable properties. Whether a particular 
underlying graph T enables construction of good extensions sequences depends 
on the R/r-ratios of the convex hulls of balls in T: these should be low. 
It remains to be investigated on which factors the R/r-ratio of a ball's convex hull 
depends. Theorem 2.26 gives an answer to this. First, we define a number 
which tells something about the complexity of convex hulls of subgraphs of T (see 
[HarNie]). 

(2.24) Definition. Let T be a graph, A be a subgraph of I \ and let (A) be the 
induced subgraph of T with node set all nodes lying on a shortest path between 
two nodes of A. Let °A: = A and 1+1A: = ('A). The geodetic iteration number of A, 
denoted by gin(A), is the minimum n for which n+1A = nA. 

This definition may be clarified by remarking that 'geodesic' is just another word 
for 'shortest path' in graph theory. Trivially, [A] = gin(A)A. 

(2.25) Lemma. For every ball Br(v) with radius r around a node v in a graph T: 

Vk€lN Vu(kB r(v): d(u,v) < r.2k. 

Proof. (By induction on k). 
The lemma is trivially true for k = 0. 
Suppose it is true for all k ^ n . Let w be a node in n+1B r(v), then w lies on a geo­
desic between two nodes u1 and u2 in nBr(v). 
Then, 

d(u1(u2) < d(Ul,v) + d(v,u2) < r .2n + 1 . 

Hence, 
d(u!,w) < r.2n or d(u2,w) <= r.2n. 

From this we conclude 
d(w,v) < d(w,Ui) + d(Ui,v) < r .2n + 1 ( i=l or 2). D 

(2.26) Theorem. Let A = Br(v) be a ball with radius r around a node v in a graph 
T such that gin(A)<oo, then R[A/r[A] - 2*inW. 
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Proof. Lemma 2.21 implies 

Vu€[A]: d(u,v) < r.28in<A) < r[A].2*in(A). 

Hence, R^ < r[A].2gin^A\ giving the required result. o 

From this theorem we conclude that the geodetic iteration number of balls in an 
infinite connected graph T should be small or at least be finite in order that T is 
suitable to be used as underlying graph for extensible networks. Unfortunately, it 
is not known which graphs guarantee the geodetic iteration number of their balls 
to be small, or even to be finite. 

Two infinite classes of underlying graphs, to be constructed in chapters 4 and 6, 
contain only convex hulls of balls with finite geodetic iteration numbers. In 
chapter 6 the iteration numbers will even appear to be at most 1. This provides 
networks with low R/r-ratios. 

2.6 The construction method 

In this paragraph the preceding results are put systematically together, to consti­
tute a recipe for the construction of efficient extensible networks. The recipe con­
sists of three stages: 

1. Find an infinite connected graph T which satisfies the following conditions: 

• deg(r) = deg~(r) is finite and low. 

• exp(T) lies close to deg(T) - 1. 

• T is node-transitive and edge-transitive. 

• K00(D>deg(r). 

• The geodetic iteration numbers of the balls in T are bounded from above 
by a fixed finite constant. 

2. Cut subgraphs out of T in the following way: 

• Construct an extension sequence SE(A;) of T defined by 

Ai := [B;(v)], 
where B;(v) is a ball with radius i around some node v in T. 

• Consider CE(A;). If it is sufficiently low, then continue with step 3. Oth­
erwise find extension sequences (^io.^ii ^ i r) of convex elements 
satisfying 

A i C¥ i 0 C¥ i l C. . .C¥ i r CA i + 1 , 
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and r is maximal. 
Add those sequences to S^A;), resulting in a new S^A;). If the resulting 
extension complexities are still too large, or if there are no sequences 
between consecutive elements of S^A;), then try another I\ 

3. Construct an optimal routing function of T. It is also an optimal routing 
function of all elements of S^A;). 

For an explanation of this method we notice the following. 

1. Concerning T: 

• A finite and low value of deg(T) guarantees a finite and low value of 
deg(Ai). 

• The condition deg(r) = deg~(r) implies that all nodes of T have the same 
degree. 

• Exponentiality combined with node-transitivity of T guarantees T to be 
uniform exponential (see theorem 2.12). 

• High uniform exponentiality of T enables low diameters of A; (see 
theorem 2.19). 

• Edge-transitivity of T combined with the condition K00>deg(r) = deg~(r) 
implies that K.(r) = X(r) = deg(r) (see theorem 2.15). This guarantees a 
reasonable connectivity of subgraphs A; of T, as constructed in stage 2. 

• Finite geodetic iteration numbers of balls in T guarantee the existence of 
finite subgraphs A; of T, as constructed in stage 2 (see definition 2.24). 

• Boundedness of the finite geodetic iteration numbers guarantees the R/r-
ratios of the A; to be bounded from above by a constant (see 
theorem 2.26). 

Instead of assuming T to be node-transitive and edge-transitive, we assume it 
to be symmetric. Symmetry implies node-transitivity and edge-transitivity 
(but not the other way around). 

2. Concerning A;: 

• Convexity of A; guarantees any optimal routing function of T to be an 
optimal routing function of any A; (see theorem 2.21). 

• Being a convex hull of a ball guarantees convexity and a relatively low 
R/r-ratio of A; (see theorem 2.23). 
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• A low R/r-ratio guarantees a low diameter in an underlying graph with a 
high uniform exponentiality (see theorem 2.19). 

• Being a convex graph interjacent to two subsequent convex hulls of balls 
guarantees convexity and may guarantee a low R/r-ratio. Furthermore, it 
reduces extension complexity. 

3. Concerning the routing function: 

• Optimality guarantees a low worst-case communication time in networks 
with low diameters. 

• Optimality guarantees a routing function of T to be an optimal routing 
function of all convex subgraphs of T (see theorem 2.21). 

This completes the description of the construction method. It will be used to con­
struct two infinite classes of extensible networks with desirable properties. 
The first class, the tree-mesh, which will be described in chapters 4 and 5, does 
not perform much better with respect to diameters than the extensible networks 
described in subparagraph 1.5.5. However, a tree-mesh has meshes and trees as 
subgraphs, enabling the implementation of many parallel algorithms on it. 
The second class, supersymmetric graphs which will be described in chapters 6, 7 
and 8, consists of networks being almost optimal. Their uniform exponentialities 
lie very close to the upper bound stated in theorem 2.7 and the R/r-ratios of con­
vex hulls of balls in them lie very close to 1. In addition, they are planar and 
have optimal extension complexity. 

2.7 Relationship between extensible networks and chunks 

We conclude this chapter with a discussion of the relationship between chunks of 
processors (see subparagraph 1.6.3) and extensible networks which can be con­
structed by our method. 

Let A; be an extensible network having the properties listed in the introduction of 
this chapter, and v be some fixed node in A;. Suppose that the minimal underly­
ing graph T of S^Aj) is node-transitive, and u is an arbitrary node of T. Then, 
there is always a placement of A; on T such that u and v coincide. Consequently, 
A; can be placed anywhere on T if T is node-transitive. 
Let -y be a chunk in A; having the same shape as Aj for some j ^ i . Then, 7 can be 
placed anywhere on V. Consequently, 7 can also be placed anywhere on A;, pro­
vided YCAJ. There is at least one placement of 7 on A; for which the condition 
yQAi holds, since AjCA; for j ^ i . 
Clearly, a chunk defined in this way inherits all the properties of the members of 
SE(AJ). In particular: 
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• The diameter of the chunk will be logarithmic, since the diameter of any A; is 
logarithmic. 

• The communication within a chunk is not disturbed by the communication of 
chunks disjunct from it, since any optimal routing function of A; only routes 
via paths inside A:. 

In addition, a chunk has the following properties: 

• The size of a chunk can be adapted dynamically by reducing it to A:_p (for 
some p) or expanding it to Aj+p (for some p). 

• The maximal sized chunk fits exactly in the network, because it has the shape 
of Aj. 

• A job can be allocated anywhere on A;, because its corresponding chunk can 
be placed anywhere in Aj. 

Inspection of the list of demands in subparagraph 1.6.3 yields that demands no. 1 
up to and including 6 are satisfied in this way. To satisfy demand no. 7, a stra­
tegy is needed to spread chunks homogeneously among the network. The 
development of such a strategy is beyond the scope of this dissertation. 
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A technological solution to space deficiencies 

O God! I could be bounded in a nut-shell, 
and count myself a king of infinite space, 
were it not that I have bad dreams. 

William Shakespeare (1564-1616) 

3.1 Introduction 

Paragraph 1.4.3 showed that in any communication model worst-case communi­
cation times of less than 0(n1/3) can not be combined with the constant space 
assumption for processors. In literature many attempts have been made to cope 
with this problem in network models. All approaches assume constant space for 
processors. As a consequence, resulting networks can not be extended unlimit-
edly, or the lengths of wires between processors are not constant. In models with 
variable length wires two approaches can be distinguished. 

1. Wires become shorter as we move away from some central processor. This 
is the most common approach ([HorZor]). This restricts extensibility of the 
resulting networks, however. At some point wires can not be made shorter 
than a certain minimum length. 
Furthermore, the space problem for processors is not really solved in this 
way. In fact, it is even made worse. 

2. Wires become longer as we move away from some central processor. At 
least this solution may create enough space for the processors. The philoso­
phy behind this solution is that delay-times of wires are very small with 
respect to the times needed in processors to start up send and receive actions. 
According to this, it is the distance in graph-theoretical sense rather than the 
physical distance which determines communication times. 
The question remains, however, whether enough physical space is available 
for the wires, becoming longer and longer. If it is not, we throw out the baby 
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with the bath-water by replacing space deficiencies for processors by the even 
worse space deficiencies for wires. 
Another thwart is that as delay times grow with the length of wires they will 
dominate the total time needed to send and receive. This situation inescapa­
bly occurs at some point. The resulting communication times are not the low 
ones we hoped to achieve. 

We conclude that variation of wires lengths offers no satisfactory solution for 
space deficiencies in networks with low communication times. Nevertheless, in 
chapter 2 we made the first preparations to construct such networks. Were these 
preliminaries useless? Not at all, there exist other possibilities to achieve low 
communication times. For this, we should abandon the constant-space assump­
tion for processors. It amounts to the use of processors ever decreasing in size as 
a computer is extended. This chapter deals with the consequences of this. 

3.2 Extensibility, technological advances, and computation capacity 

In the introduction of this chapter we pointed out that parallel computers with 
physical identical processors connected by extensible networks with logarithmic 
communication times are not feasible. Stated in another way, exponential inter­
connection networks cannot be applied in parallel computers which satisfy the 
constant space assumption and for which the (physical) lengths of edges do not 
exceed a fixed constant. The number of nodes increases as an exponential func­
tion of the graph-distance from some central node v. Inasmuch as the length of 
edges is bounded from above by a constant, the number of nodes also increases 
as an exponential function of the physical distance from v. This is incompatible 
with the constant space assumption, since we live in Euclidean space. The only 
alternative is to decrease the space available for a processor as we move away 
from v. It follows that processors can not be physical identical under the above 
assumptions. 
In paragraph 1.3 we pleaded for identity of processors. There are no fundamen­
tal impediments to logical identity. Because of space deficiencies the situation is 
quite different for physical identity. This is the reason why we differentiated 
between the two kinds of identity. 

In practice, it is impossible to fill in an infinite exponential network with proces­
sors ever decreasing in size as they lie more to the 'outside' of the network. Even 
when infinitely many processors were available, the state of technology at that 
moment would put a lower bound to the size of processors, permitting only a fin­
ite part of the network to be realized. Instead of infinite networks we shall con­
sider finite subnetworks of them. They are the base of parallel extensible com­
puters. 
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As more extensions are made, the size of the processors added to a computer 
should decrease. This is only possible when we make use of technological 
advances in the manufacture of chips. The ever-increasing number of electronic 
components per unit area enables the implementation of processors on ever-
decreasing areas. It results in smaller processor chips or more processors per 
chip. 

What are the consequences of physical non-identity of processors in a computer? 

One of the most important incentives for continued advances in VLSI technology 
is gain in processor speed. Increasing integration density by a factor 100 enables 
a 10-fold increase of a processor's clock frequency in the ideal case ([Seitz]). 
Since a processor's clock frequency is directly related to its computational speed, 
higher integration density results in more powerful processors. 
We can make use of this effect to obtain a more than proportional increase in 
computation capacity while extending a parallel computer. The extension of a 
computer with low communication times requires processors ever-decreasing in 
size, thus enabling the processors to work under increased clock frequency. This 
means that newly added processors have the potency to run faster than processors 
already existent in the computer. 
Use of this effect results in the satisfaction of demand no. 6 in subpara-
graph 1.5.3 to extensible computers. It concerned the long life-cycle of extensible 
computers, and related with that the inability to keep these computers technologi­
cally up to date. When components used for extension are technologically as 
advanced as the core-computer purchased 10 years ago, the resulting computer 
runs of course faster, but not as fast as would be possible with more modern 
components. Consequently, a computer should be extended by the most up to 
date components deliverable. The effect described above is compatible with this 
need. 
Whether smaller clock times are indeed put on newly added processors depends 
of the timing model used. If all processors work under a global clock no speed 
gain will be obtained. On the other hand local clocks enable optimal adaptation 
of clock frequency to a processor's power. We conclude that local timing enables 
us to reap the fruits of technological advances in extensible computers with low 
communication times. A more quantitative description of the additional increase 
in computation capacity of an extensible computer by extension with processors 
with higher clock frequencies shall be given in the next paragraph. 
In paragraph 1.3 a global clock appeared to have major disadvantages for extensi­
ble computers. As described above other disadvantages emerge from a global 
clock. It affirms again our preference for local timing of processors. 

As a consequence of the need to extend computers with processors ever 
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decreasing in size, the situation may arise that a customer buys a computer of 
which the processors needed for extension are not yet deliverable, because they 
still have to be designed and can not even be manufactured given the state of 
technology at that moment. The customer will be faced with the situation that his 
computer can only be extended when state of technology permits it. So, the rate 
at which technology is developing sets the pace at which a parallel computer with 
low communication times can be extended. The relation between these two rates 
will be investigated in paragraph 3.4. 

In this paragraph we referred to advances in chip-technology. As a matter of 
fact, not only advances in VLSI should be considered but also developments in 
off-chip technology, such as chip-packages and pins. For, most space consumed 
by chips is on account of pins and packages, and to make it worse, off-chip tech­
nology is developing less quickly than VLSI. This can only be met partly by 
integrating more and more processors on chips becoming larger and larger. 

3.3 Effective exponentiality 

In the previous paragraph we pointed out that as a result of decrease of the size of 
processors their clock frequency may increase. Consequently, the computation 
capacity of an extensible computer with low communication times is super-linear 
in its number of processors. In this paragraph a measure will be developed to 
quantify the additional increase in computation capacity with respect to the 
number of processors. It will be denoted by the effective exponentiality of a net­
work of processors. We shall deduce the relation between this measure and the 
exponentiality of a network. 

First of all, we make three assumptions for the rest of this chapter. 
The first assumption is that the technology used has the same characteristics as 
our current technology. Results in this chapter are based on the features of 
VLSI-technology, and in particular of CMOS-technology. The specific properties 
of other technologies, such as optics, are so divergent that phenomena we make 
use of do not occur, or occur at least at a different scale in those alternative tech­
nologies. For example, the relation between clock frequency and area of a pro­
cessor in optical technology will be quite different from that in CMOS-
technology. 
The second assumption is that phenomena, such as the effect of a processor's 
area on its clock frequency, occur in the same degree in chips with higher 
integration densities. Hence, we extrapolate characteristics of the technology 
used to smaller scales. 
The third assumption is that the networks in this chapter are uniform exponential. 
This does not impose a severe restriction to the validity of the analyses in this 
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chapter and simplifies them to a great extent. It is just the uniformity of 
exponentiality that makes networks interesting for application in parallel comput­
ers. All exponential networks constructed in this dissertation are uniform 
exponential. 

To obtain a usable definition of effective exponentiality we put an imaginary case 
of filling an infinite exponential network with processors just small enough to fit 
into space. As is noted before, this is impossible in practice. Although only a 
finite part of the network is needed for a computer, the effective exponentiality is 
determined by all processors in an infinite network. Consequently, to define 
effective exponentiality we use a hypothetical infinite network entirely filled with 
processors. 
The features of all processors in the infinite network are not known in advance. 
Yet to make meaningful predictions about those features, we use our second 
assumption. That is, the features of the processors are extrapolated from the 
features of processors customary today. 
For the definition of effective exponentiality a unit of computation capacity is 
needed. The progress of computation capacity of one processor with respect to 
others is only a relative notion. We are not interested in an absolute notion of 
computation capacity. So, it makes not much difference what measure should be 
chosen as unit. We therefore define the unit of computation capacity in a net­
work of processors to be the computation capacity of the least powerful proces­
sor. This processor will be denoted by v in this chapter. 
In the following definitions D = (d0,d1,...) denotes an infinite increasing sequence 
of positive integers, and cap(u) denotes the computation capacity of the processor 
at node u with respect to the computation capacity of v (hence, for all nodes u: 
cap(u)S:cap(v)=l). 

(3.1) Definition. The effective exponentiality of a network N r filled with proces­
sors and based on the graph T is defined by 

expc(Nr) := sup{b | 3c€R + 3D VdjêD: 2 2 cap(u) s= c.bd' }. 
i=o uer,(v) 

(3.2) Definition. The uniform effective exponentiality of a network N r filled with 
processors and based on the graph T is defined by 

ëxp^(Nr) := sup{b | 3c€R + VnÉlN: 2 2 cap(u) > c.bn }. 
i=0 uÉTiCv) 

Effective exponentiality depends on the clock frequencies of the processors in a 
network with respect to each other, and of course of the exponentiality of the net­
work itself. The clock frequency of a processor is inversely proportional to the 
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square root of its area ([Seitz]) in the ideal case, where the number of gate 
equivalents per processor is assumed to be constant. According to Seitz 
([Seitz; p.1251]), to attain these figures in practice a few things go wrong, 'but', 
as he points out, 'these are only difficulties, not disasters'. There is no funda­
mental reason why these performances are impossible. Therefore, we shall 
assume that the above relation holds. We should realize, however, that these 
marks represent an ideal situation. The effective exponentialities, determined in 
this chapter, are upper bounds to expected increases of computation capacity of 
processors, when their sizes are reduced. 

Inasmuch as the area of a processor is related to its clock frequency, it is also 
related to the effective exponentiality of a network. Hence, to determine the 
effective exponentiality of a network, the available area per processor should be 
known. For this reason we are interested in the sizes of processor's areas in this 
paragraph. 
The size of the area available for a processor depends of the way it is embedded 
in Euclidean space. To obtain its value, it is important to know the dimension of 
the space the network is embedded in. In 2-dimensional space a processor will 
have to be content with less area than in 3-dimensional space. 
The structure of the network determines the efficiency of the usage of the space 
available. So, it indirectly influences the size of the space available for proces­
sors. For reasons of simplicity we suppose that the structure of the network has 
no impact on the space available for processors. That is, the available space is 
distributed in the most efficient way among the processors. 

We are now in the position to relate the effective exponentiality to the exponen­
tiality of a network. First of all, we shall consider the 2-dimensional case. 

3.3.1 Effective exponentiality in 2-dimensional space 

The processors are placed onto the plane such that each of them lying at graph 
distance rg from v lies on a circle with physical radius rf around v. Since physical 
lengths of edges are constant we have 

rf~C!.rg for some constant c1. 

If the uniform exponentiality of the network is e, then the number of nodes at 
distance rg from v is about p ^ ^ . e ^ , where pj is a subexponential function. For 
simplicity we suppose that pj is a polynomial. Hence, about p^r^ .e • processors 
lie on the circumference of the circle with radius rf. Consequently, the 'piece of 
circumference' available for each processor is 

2irr f /(P l(rg) .e r ' ) . 
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Assuming that a processor is a square and one of its sides lies against the circle, 
its area is about 

4ir2rf
2/(p2(rg).e2r«). 

Suppose the clock frequency of this processor is at most K. We shall determine 
the maximal clock frequency of processors lying at distance r g + l from v. They 
lie with one of their sides against a circle with radius about rf+Cj. Hence, the 
area of such a processor is about 

4ir2(r f+Cl)2/(p?(rg+l).e2( r«+1)). 

Applying the inverse relation between the square root of a processor's area and its 
clock speed we obtain a clock frequency of these processors of at most 

p 2 ( r s + l ) ^ rf
2 2(r,+ l - r , ) } 1 / 2 K -

p2(rg) (r f+C l)2 

For large rf (and large rg) both quotients in this expression approximate 1, 
because pj is a polynomial. Hence, the clock frequency of processors at distance 
rg+ 1 from v is at most e.K. We conclude that the clock frequency of a processor 
is multiplied by the factor e as we move one graph step away from v. 
Inasmuch as the computation capacity of a processor is directly proportional to its 
clock frequency, the total computation capacity of the joint processors lying at 
graph-distance at most r from v is about 

tpiCO.e'.e^ iPl(i).e2i 

i=0 i=0 

(Notice that the computation capacity of v equals 1). 

We conclude that for a network of processors with uniform exponentiality e, 
when optimally embedded in 2-dimensional space, the uniform effective 
exponentiality is about e2. 

3.3.2 Effective exponentiality in 3-dimensional space 

In the 3-dimensional case we assume that the processors lying at graph-distance rg 

from v are 'glued' onto a ball around v with physical radius rf. That is, the sur­
face of the ball lies locally parallel to the surface of the processor. This assump­
tion seems to be a reasonable one. For, the height of a chip will not decrease 
much by technological developments, in contrary to the area of a chip. Since the 
area available for a chip on a ball decreases as rf becomes larger, the most effi­
cient way to embed a chip in space is the above one. 
In a way similar to the 2-dimensional case we deduce that the area of a processor 
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lying at graph-distance rg from v is about 

4Tr f
2/(Pl(rg).e r«). 

Analogously to the 2-dimensional case it can be deduced that the clock frequen­
cies of processors are multiplied by a factor of at most e1/2 when we move one 
graph step away from v in a network with uniform exponentiality e. Conse­
quently, a network of processors with uniform exponentiality e has, when 
optimally embedded in 3-dimensional space, uniform effective exponentiality of 
about e3/2. 

In paragraph 3.3 we aimed to show that space deficiencies don't have sheer nega­
tive effects. We tried to make a virtue of necessity. Though shortage of space 
results in serious problems in the construction of computers, it also results in 
computation capacities which are larger than we can expect from only the 
exponentialities of underlying networks. The figures deduced in this paragraph 
should not be considered as absolute standards. They should rather give an 
impression how space deficiencies can be explored. 
Although embeddings of networks in 2-dimensional space result in larger effec­
tive exponentialities than in 3-dimensional space, there is no reason to prefer 
embeddings in the plane. For, the higher effective exponentialities just show that 
embeddings in the plane suffer more seriously from space deficiencies. From 
that point of view embeddings in 3-dimensional space should rather be preferred. 

Having described some virtues of space deficiencies, we shall investigate their 
influence upon the rate at which customers may wish to extend their computers. 

3.4 Restrictions to the growth of extensible computers 

In paragraph 3.2 we pointed out that the rate at which a computer can be 
extended is limited by the rate at which technology develops. In the current para­
graph the relationship between these two rates will be considered in more detail. 
The rate of a computer's growth and of technological development will be 
expressed by functions. These functions are first related to the exponentiality and 
uniform exponentiality of the underlying graph at which a computer is based. 
Thereupon, they are related to each other. Exponentiality and effective exponen­
tiality will appear to play hardly any role in the relations between these two rates. 
On the other hand R/r-ratios of the networks under consideration do have influ­
ence on the relations. 

Before determining these relations, we first define the growth functions of exten­
sible computers. There are two kinds of growth functions. The first one speci­
fies a customer's needs for processors in his computer as a function of time, and 
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the second one specifies a customer's need for computation capacity as a function 
of time. 

(3.3) Definition. The function growthp: 1R-1N specifies the number of processors 
as required by the owner of a computer as a function of time (in years). 

(3.4) Definition. The function growthc: 1R-1R specifies the computation capacity 
as required by the owner of a computer as function of time (in years). 

There is a clear difference between both functions. As described in the previous 
paragraph, processors may have a higher clock frequency when their area is 
smaller. In that case, a computer's computation capacity is super-linear in the 
number of processors. As a result, the two growth functions will behave dif­
ferently. 

We assume that both growth functions behave as an exponential function in time. 
This assumption seems to be a reasonable one for the following reasons. If a 
computer consists of, say, 10000 processors, then it is not very meaningful to 
extend it with 1, 10, 100 or even 1000 processors (see also demand no. 2 in sub-
paragraph 1.5.3). In all cases the increase in computation capacity is very small 
in proportion to the computation capacity already existent. In practice extension 
of the capacity by these small numbers of processors will scarcely occur. We con­
clude that the size of extensions should be of the same order as the size of the 
computer. Furthermore, it is to be expected that extensions to a computer are 
made in a regular pattern, say every two or so years. The above is just a different 
way of stating that the number of processors and the capacity of a computer grow 
exponentially in time. 

It is difficult to give an exact specification of growth functions. We supposed that 
they contain an exponential function as factor, but do they also contain, for 
example, polynomial factors? Since we only aim to gather a global impression of 
the relation between growth functions and the rate of development of technology, 
and since it is hard to specify all details of growth functions, we assume that the 
growth functions can be expressed as simple exponential functions. That is, 

growthp(t) = Cp.gJ, 
growthc(t) = cc.gj, 

where cp, cc, gp and gc are positive constants (gp and gc larger than 1). 

The function which describes the rate at which technology develops is defined as 
follows. 
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(3.5) Definition. The function tech: 1R-1R specifies the number of electronic 
components per unit area as function of time (in years). 

Up to now, this function has always been an exponential function. Hence we 
express it by 

tech(t) = ca.al. 

where ca and a are positive constants (a> l ) . The constant ca depends on the 
technology used and the choice of the unit of area. Several values for a are given 
in literature. In [Leiser] and [Seitz] integration density is assumed to double 
every two years, which corresponds to a=21/2. In [Queyss] integration density 
quadruples every three years, resulting in a=41/3, and in [Uhr; p. 27] integration 
density is even assumed to double every year (a=2). 

To obtain relations between the growth functions and the tech function, we first 
relate the growth functions to the exponentiality and the effective exponentiality 
of the network at the basis of the computer. It is assumed that a computer is 
made as large as is needed to meet its owner's demands for processing power. 
That is, the number of processors in the computer is larger than or equal to the 
number of processors required by its owner at that time. The same holds for the 
computation capacity of a computer. 
Suppose the computer is based on an extensible network having an inscribed ball 
with radius r. The number of processors in this network depends on its R/r-ratio, 
the exponentiality e of the underlying network, and the radius r of the ball. This 
number is about 

P2(r).ear, 

where l ^ a ^ R / r , and p2 is a subexponential function. It follows that 

c p . g ^ P 2 ( r ) . e a r . 

Similarly, 

c c .gJSp2(r) .eP a r , 

where e^ is the effective exponentiality of the network (embedding the network in 
2-dimensional space yields 0 = 2 and embeddings in 3 dimensions yield (3 = 3/2). 
The above relations imply 

(3.6) r > -L.10&-SÊ- + -L. t . l o g g 
a p2(r) a v 

and 

(3.7) r > - ! _ loge-^L- + -L- . t . log e gc . 
a .p p2(r) a.(3 
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Concerning the relation between technological development and effective 
exponentiality of a network we make two suppositions. 
First, the number of electronic components in a processor is assumed to be a con­
stant np, independent of the processor's size. The ground for this assumption is 
that all processors are logically identical. This implies that they all have the same 
complexity without regard to their sizes. 
Second, a computer can not be made larger than technology permits (notice that 
integration density increases as a computer's size increases). That is, the number 
of electronic components per unit area anywhere in the computer is less than or 
equal to integration density permitted by technology at that moment. 

Integration density depends of the dimension of the space the computer is embed­
ded in. We differentiate between the 2-dimensional and the 3-dimensional case. 

3.4.1 Relations for 2-dimensional embeddings 

From the area available for a processor (see paragraph 3.3.1) it is easily deduced 
that the number of electronic components per unit area in a processor, which lies 
at the inscribed ball of the network, equals 

P l ( f ) - n P c2r 
4ir2rf

2 

Integration density enabled by technology at that moment must exceed this. 
Hence, 

c a < > P?<r>-np e2r 

Substituting r = rg and applying relations 3.6 and 3.7 respectively to the exponent 
of e results in: 

~ c a 4*V • (
 P2(rg) } ■ g" ' 

and 

p f O r ^ Cg_ - ^ fp . t = p2(rg).np _^_i f< 
ca4ir2r2 • P2(rg)J ' g c ca4Tt2rf

2 ' P2(rg) " Sc ' 

because (3 = 2 in 2-dimensional space. 
Inasmuch as pj and p2 are subexponential functions and r=rg is a sublinear func­
tion oft in both 3.6 and 3.7, the above expressions can be rewritten to 

- 2. 
a ^ ^ . q ^ W . g / ' 1 , 

ca4irz 
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and 

n 0 - c c
a - - t 

a - p , 2 - q i c W - g c 0 1 . 
ca4irz 

i . • X 
where q2p(t) = p2(rg)/((p2(rg)) « .rf

2) and q2c(t) = p2(rg)/((p2(rg)) a .rf
2) are subex-

ponential functions in t. 

The above inequalities can only be valid for all t if 

(3.8) gp < aa/2 

and 
(3.9) gc < a». 

The least favourable value of a for the growth factors is a = l . The networks 
constructed in chapter 8 have an R/r-ratio lying very close to 1. The choice a = l 
is justifiable for them. For networks which have a larger R/r-ratio, and conse­
quently, which may have a larger value of a, setting a to 1 results in upper 
bounds to the growth factors, which hold for the least favourable case. 
Substituting a=21 /2 and a = 1, the most conservative estimates, results for the 2-
dimensional case in 

g p ^ 1 ' 4 

and 

Hence, the rate of technological development permits doubling of the number of 
processors every 4 years in a 2-dimensional computer and doubling of the compu­
tation capacity every 2 years. 

3.4.2 Relations for 3-dimensional embeddings 

Analogously to the 2-dimensional case it is deduced that 
Px(r).np ca.al > — — ^ - . é . 

4irrf 

Substituting r=r g and applying relations 3.6 and 3.7 respectively to the exponent 
of e results in 

, t f e
 pi(V-"p ( - i n - r g^'1 

ca4iTr2 p2(rg) p 

and 
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1 2 

t > Pi(rff).np cc 3^ 3̂ .« 
cB4irrf " p 2 ( r g ) ; - g c 

(notice that (3 = 3/2 in this case). 

These inequalities can be rewritten to 

x 
ca4ir 

and 
2 

n„ . c r
3 a 

a1 > p -
C84TT 

• qspW-gp 0 1 

■±-.x 
• q3 c(0 • gc3" 

L A. 
where q3p(t) = p ^ / a p ^ ) ) a .rf

2) and q3c(t) = Pi(rg)/((p2(rg))3« .rf
2) are subex-

ponential functions in t. 
The above inequalities can only be valid for all t if 

(3.10) gp<a a 

and 
(3.11) gc<a3a/2. 

Once again setting a=21/2 and a = 1 gives 

and 

Hence, the rate of technological development permits doubling of the number of 
processors every 2 years in a 3-dimensional computer and increasing its computa­
tion capacity to the eightfold every 2 years. 

3.5 Concluding remarks 

In this chapter we studied the consequences of space deficiencies. The only solu­
tion to these problems which maintains low communication times under exten­
sion, is a decrease of processor's sizes. From a technological point of view, this 
solution has positive as well as negative consequences. 
Diminution of processors positively effects their computation capacity, since it 
enables higher clock frequencies. On the other hand, the need to scale down pro­
cessors prevents a computer from being unrestrainedly extensible. The rate at 
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which extension can take place is limited by the rate of technological develop­
ment. 

The more space deficiencies come into prominence, the more their positive 
aspects become explicit. Consequently, embedding a network of processors in 2-
dimensional Euclidean space results in a larger effective exponentiality than its 
embedding in 3-dimensional space. In both cases effective exponentiality exceeds 
the corresponding exponentiality. Asa consequence, the computation capacity of 
a computer with low communication times is a super-linear function of its 
number of processors. 

Concerning the technological limitation to a computer's growth, the value of the 
corresponding computer's exponentiality or effective exponentiality plays no role. 
Of more influence is the rate at which chips are scaled down, a network's R/r-
ratio, and the dimension of the space the network is embedded in. Given a tech­
nological development factor of about 21/2, which corresponds to doubling 
integration density every two years, and the least favourable R/r-ratio (i.e. 1), the 
number of processors in a 2-dimensional computer can be doubled every 4 years 
and the computation capacity can be doubled every 2 years. These marks are 
even more propitious for 3-dimensional computers. Doubling the number of pro­
cessors every 2 years and increasing the computation capacity to the eightfold 
every 2 years is in prospect for these computers. 

The marks determined in this chapter should not be considered as ultimate 
truths. They came into being by considerable simplifications, and rather should 
give a first global impression of the consequences of space deficiencies. The 
finality in regard to this matter has not yet been reached. 
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4 

Construction of the tree-mesh 
and its convex subgraphs 

You can't be suspicious of a tree, 
or accuse a bird or a squirrel of subversion 
or challenge the ideology of a violet. 

Hal Borland (1964) 

4.1 Introduction 

In this chapter we use our construction method to design an infinite class of 
extensible networks, the tree-meshes. Tree-meshes are a crossbreeding between 
trees and meshes. They combine the optimal connectivity of the minimal under­
lying graphs of meshes with the logarithmic diameters of trees. 

An important tool used in this chapter is the Cartesian graph product, which was 
defined by Sadibussy in [Sadibu]. 

(4.1) Definition. The Cartesian product of the graphs T1 and T2 is the graph 
TjXr^ with node set V( r 1 )xV( r 2 ) , and two nodes (u1,u2) and (v1(v2) being 
adjacent whenever (u1 = v1 and (u2,v2)€E(r2)) or (u2=v2 and (u1 ,v1)€E(ra)). 

An example of a Cartesian product graph is the nXm-mesh: it is the Cartesian 
product of a linear array of n nodes and a linear array of m nodes. 
We have the following convention for Cartesian products. Let T be the Cartesian 
product of r a , r 2 r m ( r = r x x r 2 x . . . r m ) , then any node u of T is represented 
by an m-tuple (u!,u2 um) , where u; is a node in T{. The i* coordinate of u will 
be denoted by coordj(u). 

The Cartesian product is used in paragraph 4.2 to construct symmetric uniform 
exponential underlying graphs with fixed degree and optimal connectivity. Para­
graph 4.3 describes the shapes of convex hulls of balls and convex graphs 
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between convex hulls of balls in these underlying graphs. Finally, in para­
graph 4.4 optimal routing functions for the underlying graphs are constructed. 

4.2 The underlying graph 

In this paragraph infinite connected graphs, denoted by T, with the following pro­
perties are constructed: 

• r is the Cartesian product of two infinite connected graphs. 

• deg(r) = deg"(r) is a composite number. 

• Exp(r)>l . 

• r is symmetric. 

• The geodetic iteration numbers of the balls in T are bounded from above by a 
finite constant. 

T is constructed by applying the Cartesian product operator to two infinite con­
nected exponential graphs. We start with a theorem about the degree of Carte­
sian product graphs. 

(4.2) Theorem. degCI^xTj) = deg(r1) + deg(r2). 

Proof. Directly from definition 4.1. o 

We next consider the exponentiality of Cartesian product graphs. It is deter­
mined according to the following theorem. 

(4.3) Theorem, expCT^xT^) = max(exp(r<1)),exp(r<2>)). 

Proof. Let r = r W x r ( 2 ' , tm=exp(r(m)) (m=l ,2) , and t=max(t1,t2). 

1. r has subgraphs isomorphic to rW and r ® respectively, so by theorem 2.8: 
exp(r)>t. 

2. Since exp(r(m)) = tm and ^ ( r ^ S ^ (m= 1,2): 

VvraSV(r(ra)) V€<ER+ 3 c m € I R + V r ^ + 2 |lYm)(vm)| < c ^ + e)'. 
i=0 

Then, 

Vv=(v1 ,v2)€V(r) Ve€R + 3 c m € R + Vr€2Z+ 2 | r j (v ) | = 
i=0 

2 rp)(v!) 2 r}2)(v2) < 2 c^+e)* 2 c^+e)* < 
i=0 j=0 i=0 j=0 
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clC2 2 (t+ev 2 ( t+e) j = wi 2 (t+«)' ((t+*2r ' . *) < 
i=0 j=0 i=0 t + € - l 

T ^ T 2 (t+«)r+1 = -p-rir+V.it+ey+K t+e—1 (T0 t + e - 1 

Since this is valid for all e>0, exp(T)<t. 

From 1 and 2 we conclude that exp(r) = max(t1,t2). o 

The equivalent of this theorem for uniform exponentiality is: 

(4.4) Theorem. ëxpCr^xT®) = max(ëxp(r<1\ëxp(r<2>). 

Proof. Identical to the proof of theorem 4.3 with exp replaced by exp. □ 

Next, we consider the structure of Cartesian product graphs. For this we first 
introduce an additional notion: 

(4.5) Definition. The m01 Cartesian power of a graph T, Tm, is defined by 

ra:= r 
r m . = r m - l x r i f m > 2 . 

Symmetry of graphs is preserved under this kind of involution. 

(4.6) Theorem. If T is symmetric, then Tm is symmetric (m>l ) . 

Proof. Trivially, T1 is symmetric, so we have to prove the theorem for m ^ 2 . 
It is sufficient to prove that r r a is node-transitive and the vertex stabilizer Gv of 
any node v€V(rm) is transitive on the set of neighbours of v (see appendix A). 
Let u = (u! um) and v=(v1 vm) be two arbitrary nodes in r m and 
a1 ,am be automorphisms in G(T) for which ai(ui) = vi. 
Let Pj p m be defined by 

Pi(Ul xm)) = ^xl x^j.a^x^.Xi+j xm). 

Then, P; is an automorphism in G(rm ) . Hence, P1.P2.--Pm i s a l s o a n automor­
phism in G(rm) and it maps u to v. From this we conclude that r m is node-
transitive. 
To prove symmetry of r m , again let v=(v1 vra) be a node in r m . Suppose 
u = (uj um) and w=(wj wm) are neighbours of v (u#w). We have to find 
an automorphism a€G(r m ) for which a(v) = v and a(u) = w. Since u and w are 
neighbours of v they differ in one coordinate from v. So, u and w differ in at 
most two coordinates from each other. Suppose without loss of generality that 
Uj=Vj and Wj=Vj for l< j<m — 2. 
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There are two main cases. 

1. Nodes u and w differ in the same coordinate from v. 
Suppose without loss of generality that um=tvm and wmTtvm. Then, 
«B-rWin-rv,,,.!. 
Since T is symmetric there exists an a '€G(T) such that a'(vm) = vm and 
a'(um) = wm. 
LetaCCx^Xj xm_1,xm)) = (x1,x2, xm_a ,a '(xm)). 
Since a preserves adjacencies, a€G( r m ) . 

2. Nodes u and w differ in a distinct coordinate from v. Suppose without loss 
of generality that um_19fcvm_1 and wm#vm . Then, um=vm and 
wm-l = Via-i- Within this case there are two subcases: 

a- vm=vm_1 . 
Let p: V( r m ) -V( r m ) be defined by 

P ( ( x l >xm-2>xm-l>xm)) = ( x l > x m-2> x m' x m-l) -

Since (um_1 ,vm_1)€E(r) and (wm,vm_1) = (wm ,vm)€E(r), and T is 
symmetric, there exists a y'ZG(T) for which 

' / ' (vm-i) = vm_1 

'Y'(um-i) = wm 

Let -y: V( r m ) -V( r m ) be defined by 

7((«i xm_1,xm)) = (x1 xm_1,7'(xm))-

Since both (3 and -y preserve adjacencies p ,7€G(r m ) . It is easily veri­
fied that 7.p(v) = v and 7.p(u) = w. Hence, 01 = 7.p suffices. 

Since T is node transitive, there exists a 8'€G(r) such that 
8'(vn) = vm_j. 
Define 8 by 

8((Xi x m - l ' x m ) ) = = ( x l x m - l ' 8 ' ( x m ) ) -

Since 8 preserves adjacencies, 8ÉG(rm) , so 8 - 1 ÉG(r m ) . After apply­
ing 8, the same situation as in 2a occurs. 
Let p be defined as in 2a and 7 by 

-Y((xl x m - l . x m ) ) = ( x l ^ - l ' V ^ m ) ) 

where 7'(vm-i) = vm_i and 7'(um-i) = 8 '(wm)- S i n c e (wm ,vm)€E(r), 
(8'(wm),vm_1) = (8'(wm),8'(vm))€E(r). So, 7 ' is a rotation around 
vm-i preserving adjacencies. Application of 8 - 1 .7.p.8 to u gives: 
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8_1.7.p.8(u) = B-^.p.BCOi! um_ l fvm)) = 

8"1.'Y-P((ui um-!fi'(vm))) = 
8_1.'y((u1,...,Um_2>8'(vm),Um_:l)) = 

8-1((u1,...,um_2,8'(vm),-/'(um_1))) = 
8_1((U! um_2,vm_1,8'(wm))) = 
(ui um_2,vm_1,wm) = w. 

In a similar way it is deduced that 8-1.7.(3.8(v) = v. 
Hence, a = 8 - 1 .7.p.8 suffices. D 

Finally, we consider the connectivity of a Cartesian product graph. Cattermole 
proved the following theorem in [Catte2] (see also [Cattel]). 

(4.7) Theorem. (Cattermole, 1972). K( r 1 xr 2 ) > K(r1) + K(r2). 

Proof. See [Catte2]. D 

This theorem implies optimal connectivity of T 1 x r 2 in case I^ and T2 are 
optimal connective, otherwise it gives a reasonable lower bound of K(T1xr2) . If 
r j X r 2 is edge-transitive we can do better, however. To see this we first prove a 
lemma. 

(4.8) Lemma. If Tj and T2 are connected infinite locally finite graphs, then 
■cxd^xra) = « . 

Proof. Suppose K ^ I ^ X ] ^ ) is finite, then there is a minimum node set K with 
cardinality K0 0(r1xr2), dividing T 1 x r 2 into at least 2 components each being an 
infinite graph. Let R, Sj, $2 an<^ T be defined by 

R = {(vj.vaHVd^xra)! VxÉVd^): (x,v2)gK and VyeV(r 2 ) : (vlfy)(EK} 
Si = { ^ ^ ^ ( r j x r ^ l 3 x ^ ( 1 ^ ) : (x,v2)€K and Vy€V(r2) : (ylty)tK) 
Sz = { ^ ^ ^ ( r j x r ^ l Vx^V(r1): (x,v2)*K and3yÉV(r 2 ) : (v lfy)€K} 
T = { ( V i . v j J C V ^ x ^ - K l 3x€V(r 1 ) : (x,v2)€K and 3y€V(r 2 ) : (v1>y)€K} 

All nodes of R belong to the same component C of I^xl^—K. For, if 
u = (u1,u2)€R and v=(v1,v2)€R and u—Uio^ij.-.-.v; is a path between Uj and v; 

in Tj ( i=l ,2) , then 
(u1,u2) = (u1>0,u2),(u11,u2),...,(v1,u2) = (v1,u2>0),(v1,u2)1),...,(v1,v2) 

is a path from u to v not separated by K. 
All nodes of Sj and S2 also belong to C. For, if u = (u1,u2)€S1 and v=(v1,v2)€S2 
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then w=(u1(v2)ÉR. The path 
u = (u1,u2) = (u1 ,u2 0), (u1,u2jl),...,(u1,v2) = w 

is not separated by K. There is also such a path from v to w. So, all nodes of S1 

and S2 belong to C. 
|T| is finite since |K| is finite (|T|<|Kp). Since V ( r 1 x r 2 ) = RUS1US2UTUK, 
and r j X ^ — K must contain at least two infinite components, we obtain a con­
tradiction. D 

Theorem 2.15 directly implies the following corollary. 

(4.9) Corollary. If an infinite locally finite edge-transitive graph T is the Carte­
sian product of two connected infinite locally finite graphs, then 

K(r) = \ ( D = deg- ( r ) . 

From theorem 4.6 and corollary 4.9 we obtain 

(4.10) Corollary. If T is a connected infinite locally finite symmetric graph, then 
K(rm) = \ ( r m ) = deg(rm) form>2. 

By using theorems 4.2, 4.4, 4.6, and corollary 4.10 we can now construct suitable 
underlying graphs. If I* is a connected symmetric exponential infinite graph with 
bounded degree, but not necessarily with high connectivity, then Tm (m^2) has 
the same qualifications and there is the added advantage of optimal connectivity. 
Let Tk be an infinite tree of which all nodes have degree k (k^3) , then T™ 
(m^2) has the following properties: 

1. deg(Tf) = k.m (theorem 4.2). 

2. ëxp(Tf) = k - l (theorem 4.4). 

3. It is symmetric, because Tk is distance-transitive (theorem 4.6). 

4. K(Tk
n) = \ ( T f ) = deg(Tk

n) (corollary 4.10). 

TJf will be called an m-dimensional tree-mesh, not to be confused with the mesh of 
trees and the tree of meshes, both introduced by Leighton in [Leight]. Clearly, 
Tf is the m-dimensional mesh. Trivially, Tk is a subgraph of Tf. Since T2 (the 
two-sided infinite linear array) is a subgraph of Tk, Tf is a subgraph of T™. 
A Part of the 2-dimensional tree-mesh Tf is depicted in figure 4.1. 
We notice that of all the optimal connective tree-meshes, Tk has the largest 
exponentiality with respect to its degree. 

Without proof we mention that the geodetic iteration number of balls in T™ is m, 
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giving an upper bound of 2m to the R/r-ratio of convex hulls of balls in T™. In 
the next paragraph, the R/r-ratio will appear to be much lower, namely m. 

4.3 Cutting out suitable subgraphs 

In this paragraph we determine suitable convex subgraphs of the tree-mesh. We 
have seen (theorem 2.23) that convex hulls of balls are a good choice for such 
subgraphs. Before determining the convex hull of a ball in a tree-mesh, we give 
two lemmas which simplify this job. 
The next lemma facilitates the construction of convex subgraphs of the Cartesian 
product of two graphs. 

(4.11) Lemma. Let Tj and T2 be graphs and Ax and A2 be subgraphs of Tj and 
T2 respectively, then AjX A2 is convex in I ^ x l ^ if and only if Aj is convex in T1 

and A2 is convex in T2. 

Proof. 

1. Let AjX A2 be convex in T j X ^ . If Aj is not convex in T1 then there are two 
nodes u,vCV(A1) and a node w€V(r1)-V(A1) such that w lies on a shortest 
path between u and v. Let z£V(A2), then node (w,z) lies on a shortest path 
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between nodes (u,z) and (v,z). However, (u,z),(v,z)€V(A1xA2) and 
(w,z) iW(A.1xA2), which is a contradiction. In the same way it is proved that 
A2 is convex in T2. 

2. Let Aj and A2 be convex in T1 and T2 respectively. Suppose AjXA2 is not 
convex in I ^ x l ^ . Then there exist two nodes u = (u1,u2) and v=(v1,v2) in 
T1xT2 for which u^v^VCAi) ( i=l ,2) , and a shortest path P in rlxT2 

between them not lying entirely in A1xA2. That is, there exists a w=(w1(w2) 
on P such that w € V ( r 1 x r 2 ) - V ( A 1 x A2). Then WjgVCAj) or w2f5V(A2). 
Suppose w^VCAi). Let P be: 

(u1,u2) = (uli0,U2>0), (u l i l tu2 t i) , . . . , (ui,r,u2jr) = (v1>v2). 

Consider the sequence of nodes P ^ U j 0.---»Ui r , and call it Pj. Construct a 
new sequence PJ of nodes in Aj, being equal to P^XQ.XJ xk , by joining 
identical nodes of Pj to one node in P{, and leaving the ordering intact. 
Then, P{ is a path between Uj and Vj in Aj. 
In the same way a path P2 equal to yo.yi yt2 is constructed from the 
second coordinates of the nodes in P. P2 is a path between u2 and v2 in A2, 
and r = k1 + k2. 
Moreover, P{ is a shortest path between Uj and Vj, for otherwise there would 
be a path Q = q0,...,qs between Uj and v1 of length s<k!. Then, 

(qo.yo). (qi.yo) (q s .yo). (qs>yi)> (qs>v2) >••■> (qs»yk2) 
would be a path between u and v of length s + k2<r, which is impossible. 
Node Wj lies on T{, since w lies on P. However, A1 is convex and 
UjjVj€V(Aj), so WJÉVCAJ), which is a contradiction. 
In a similar way it is proved that w2gV(A2) is impossible. So, AiXA2 is con­
vex in I^xl^. D 

(4.12) Lemma. Let A be a subgraph of r = r 1 x r 2 . If A is convex in T then there 
exist two convex subgraphs Aj and A2 of I \ and T2 respectively such that 
A = AjXA2. 

Proof. Let A be a convex subgraph of T and suppose there are no Aa and A2 for 
which A = AjXA2. Then there exist nodes (uj ,^) and (vltv2) in A such that 
(u1,v2)?V(A). This node lies on a shortest path between (u1(u2) and (v1(v2) in 
T 1 xr 2 , implying that A is not convex. From this contradiction we conclude that 
A can be written as A = AjXA2. Then, lemma 4.11 implies that A} and A2 are 
convex. D 
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We are now in a position to determine the shapes of convex hulls of balls in tree-
meshes. 
Let 3i(v0) be a ball with radius i around some node v0 in Tk. Then, the m-tuple 
v=(v0 v0) is a node in T™, and Pj(v0)ra is a subgraph of T™. Clearly, the 
degree of Pi(v0)m is k.m and its number of nodes is 

|VOi(v0)m)| = ( k ( k ~_ 1 )
2 '~ 2 ) m -

By lemma 4.11 Pj(v0)m is convex in T™, because (3; is convex in Tk. Moreover, 
Pi(v0)m is the convex hull of its inscribed ball as is proven by the following 
theorem. 

(4.13) Theorem. Pi(v0)m is the convex hull of its inscribed ball. 

Proof. It follows from the definition of Cartesian product that the ball with 
radius i around node v lies inside 0j(vo)m. Hence, the radius of the inscribed ball 
of Pi(v0)m is at least i. 
Let 0 be the convex hull of the inscribed ball of Pj(v0)m. Then, by lemma 4.12 
there exist convex subgraphs ©j, 0 2 ®m °f Tk

 s u c n t n a t ®=®iX®2X . . .x©m . 
Suppose 0 is a proper subgraph of Pi(v0)m, then ©j is a proper subgraph of Pi(v0) 
in Tk for at least one j in {1 m}. Then, the nodes in P;(v0) —0: lie in the outer 
layer of Pi(v0), otherwise 0j would not be a connected graph in Tk (notice that 0j 
is convex in Tk, and Tk is a tree). The distances of these nodes to v0 are i. This 
implies that the inscribed ball of P^VQ)"1, which has radius at least i, is not a sub­
graph of 0. This is a contradiction. Hence, 0 is not a proper subgraph of 
Pi(v0)m, implying 0 = Pi(v0)m. o 

In the proof of the previous theorem it was stated that the inscribed ball of 
Pi(vo)m n a s radius at least i. Moreover, the radius of the inscribed ball is at most 
i. For, let u0 be a node in Tk for which d(u0,v0) = i + l . Then, (u0,v0 v0) lies at 
distance i+ 1 from v0, but it does not lie in Pi(v0)m. We conclude that the radius 
of the inscribed ball of Pi(v0)m is i. 

To obtain the radius of the circumscribed ball of Pi(v0)to, we notice the following. 
If ua and v1 are nodes in a graph Tj and u2 and v2 are nodes in a graph r 2 , then 
(u1(u2) and (vl7v2) are nodes in T 1 x r 2 , and 

dr.xr^Cui.u^XVi.vj)) = d ^ u ^ v ^ ^ - d p / u ^ ) 

(see also part 2 of the proof of lemma 4.11 for this). Hence, if w0 is a node in Tk 

for which d(v0,w0) = i, then d((v0 v0),(w0 w0)) = m.i. Furthermore, node 
(w0,...,w0) lies inside Pj(v0)m, which implies that the radius of the circumscribed 
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ball of 3j(v0)m is at least m.i . 
If there exists a node in Pi(v0)m at distance greater than m.i from v, then there 
exists a node in P;(v0) at distance greater than i from v0 by the above formula 
describing d r i X p 2 , which is impossible. From the above discussion we conclude 
that the radius of the circumscribed ball of Pj(v0)m is m.i . This implies that the 
R/r-ratio of 3j(v0)m is m.i / i = m. Then by theorem 2.19 the diameter of 0j(vo)m 

is logarithmic. In fact, 

diam(Pi(v0)m) = 2.m.i. 

The next stage in the construction of suitable subgraphs of T{F is to find convex 
subgraphs of TjF interjacent between two consecutive members of S^pjCv^™). 
For this we use the following theorem. 

(4.14) Theorem. Let S^ot;) be an extension sequence of convex networks with 
underlying graph T and C E ( a i ) < 0 ( | V ( a j ) | ) . If (A0 ,A1(A2,....) is a sequence of 
subgraphs of T m defined by 

A, : = «frm? m o d m )X «lüSf+1 (m € IN), 

then 

1. SgCAj) is an extension sequence of which the elements are convex in r m . 

2. r m is the minimal underlying graph of SgCA;). 

3. CE(A i) = C E (a L i / m j ) .0 ( |V(A i ) | <"»-!)*»). 

Proof. 

1. It is easily verified that A; is a proper subgraph of A i + 1 (consider 
i = m - l ( m o d m) as a separate case). Convexity of A; follows directly from 
lemma 4.11. 

2. Consider the sequence (A0 ,Am ,A2 r a , . . . . ) . If there is a node v € r m such that 
v=(v 1 , . . . ,v m ) is not in A i m =ai m for all i, then there exists a j € [ l ,m] such that 
for all i: Vjga;, implying non-minimality of Y with respect to the a ; . So, Tm 

is the minimal underlying graph of (A0 ,Am ,A2 m ,A3 m ) and hence of 
( A Q . A J . A J , . . . . ) . 

3. CE(Ai) = |V(A i + 1 ) | - |V(A ;)| = 

|V(a l (i+i)/mj)l m - ( i + l m o d m ) - | V ( a l ( i + i ) / m J + 1 ) | i + l m o d m -
|V(" l i / m J ) | ra-(imodm).|V(ali/mJ + 1 ) | i m o d « = 

C E (a l i / m j ) . |V(a l i / m J ) | »-1-<"*>d»>.|V(a l j> t a J + 1 ) | i r a o d m 
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(Consider i=m —l(mod m) as a separate case to verify this). 
Since CE(aLi/mJ) < 0(|V(aLiAnJ)|) we have |V(a l i /mJ + 1 ) | = 0( |V(a l i / m J) |) . 
Moreover, 

|V(aLi/mJ)| < |V(A;)1/ra|, 

which implies 

|V(ali/mJ + 1 ) | = 0(|V(Ai)| l to. 

Substituting IVCa^mj)! and |V(aLj/mj+1)| in the above expression of CE(A;) 
gives the required result. □ 

Consider any connective subgraph A of Tk. Since there exists only one shortest 
path between any two nodes in A and since A is connective, this path lies in A. 
Hence, A is convex in Tk. This implies the existence of extension sequences 
SgCot;) consisting of convex subgraphs of Tk for which CE(aj) = l. In fact, 0j(vo) 
can be extended in k.(k—l)1 steps of 1 node to Pi+i(v0), all the intermediate sub­
graphs being convex. Let (7i,o>'Yi,i'---»'Yik(k-iy) ^ e t n e corresponding extension 
sequence, where 3i(v0) = 7 i 0 and Pi+i(v0) = 7iik(k_1y. Putting the extension 
sequences (70,0.70,1.-••.'Yo,k)> (7i,o.7i,i.---.7i,k(k-l)) i n succession and adjoin­
ing them (notice that 'Yjik(k_i)i='Yi+i>o) results in a new extension sequence with 
extension complexity 1, the elements of which are convex subgraphs of Tk. Let 
SgCa;) be this sequence, ot; being equal to -yP)q, where 

Then, by theorem 4.14 the sequence (AQ.AJ ), defined as in the theorem, is an 
extension sequence of convex elements with minimal underlying graph TJ? and 
extension complexity 

CE(A;) = CE(a l i /mJ).0(|V(A i)|(m-^ / ra) = 0(|V(A i)|(m-1) /m). 

For m = 2 we obtain CE(Aj) = 0(|V(A;)|1/2), and a larger extension complexity 
for larger m. We conclude that, with respect to the extension complexity, Tk is 
an optimal tree-mesh. This is a pleasant coincidence with the fact that Tjf has the 
largest exponentiality with respect to its degree for m = 2 (see paragraph 4.2). 

The R/r-ratio of A; (i^m) is at most 

m( [i/mj + l)/Li/mJ = m(l + l/[j/mj) ~ m for large i. 

Hence, the diameter of A, is logarithmic. 

Finally, we consider the connectivity of A;. Since K(aj) = l, by theorem 4.7 the 
connectivity of A; is at least m. Moreover, the lowest degree in a ; is 1 (a leaf 
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node), so the lowest degree in A; is m (a 'corner' node). Thus, K(A;) = m. 
The rather large difference between the connectivities of A; and T™ is not as seri­
ous as it seems to be. The lowest local connectivity (see appendix A) is only con­
fined to the borders of A;. Local connectivity between nodes in the interior of Aj, 
i.e. the nodes at distance at least 1 from any border of Aj, is k.m. We shall prove 
this in chapter 5. Moreover, it is proved that local connectivity between any two 
nodes in A; is optimal. 

The tree-mesh is not brand new. As far as I know it appeared once in literature, 
namely in the book by Akl [Akl; section 2.2], where it is used for a parallel 
enumeration sorting algorithm. Akl uses an induced subgraph of Tf with a shape 
differing from Aj for this. Akl's network is the Cartesian product of a complete 
binary tree with itself. In contrast to a ; in Tk, the complete binary tree has two 
kinds of border nodes, i.e. leaf nodes and the root. Consequently, compared to 
A; in T|, there is more variety in the nodes of Akl's network. From this cause 
the latter is a bit less regular than our subgraphs of T| . Nevertheless, it is con­
vex, local connectivity between any two of its nodes is optimal, and its diameter is 
only slightly larger than that of our networks. Akl applied his network not 
because of its extensibility but simply because of its low diameter and its ability to 
route data efficiently in the described sorting algorithm. 

4.4 An optimal routing function for the tree-mesh 

In the last stage of the construction method we construct an optimal routing func­
tion of the tree-mesh. In order to obtain a routing function we first need to have 
a labeling of the tree-mesh to address the nodes. A labeling of a network must 
satisfy the following requirements, in order that we can use it in an efficient way 
to address processors: 

1. Each node has a unique label. 

2. Given two labels of the network, it is easy to establish whether the nodes 
corresponding to them are connected by an edge. 

3. The labeling is efficient, i.e. the memory space required to represent each 
label is of the same order as the space needed to represent the number of 
nodes in the network. 

4. Given two labels it is easy to find a shortest path between the nodes 
corresponding to them. 

In order to obtain an efficient labeling of a tree-mesh we shall first design an effi­
cient labeling for Tk. Having done this, an efficient labeling for T™ is easily 
obtained by assigning m-tuples to the nodes in accordance with the conventions in 

102 



Par. 4.4 An optimal routing function for the tree-mesh 

definition 4.1. 

In order to obtain efficient labelings of infinite trees, we use a method, described 
in [DoRaSl; Theorem 8], to label finite trees. To construct an efficient labeling of 
Tk, Tk is first split in k infinite subtrees by removing one of its nodes. Call this 
node v, and let S1( S2,..., \ be the resulting subtrees. They are k-ary trees, i.e. 
the degree of the root is k - 1 , and the degree of all other nodes is k. Thereupon, 
we label each Sj in the usual way, i.e. the label of the root of S; is 1 and if the 
label of a node in S; is r then its childs are labeled by the labels k(r—1) + 2, 
k ( r - l ) + 3 k ( r - l ) + k + l . We denote the label of a node x in Sj by fj(x). A 
labeling g on Tk is defined by 

g(x) :=k . f j (x ) - ( j - l ) ifxÉV(Sj). 

g(v) := 0. 

Figure 4.2 shows such a labeling for T4. 

It is easily seen that this is a unique labeling of Tk, since fj is a unique labeling of 
Sj. So, requirement 1 is satisfied. 
Requirement 2 is also satisfied, because it is satisfied for Sj. 
Concerning requirement 3, the labeling of Sj is efficient since for a complete fin­
ite k-ary subtree of Sj with r levels, all labels in the range 1,2,..., ( k r + 1 - l ) / ( k - 1 ) 
are used. That is, there are no 'holes' in the labeling of Sj. From this it is easily 
proved that the labeling g of Tk has neither holes. There is no labeling being 
more efficient than labeling g. So, the labeling g satisfies requirement 3. 
In order to prove that the labeling g also meets requirement 4 we design an 
optimal routing function for TJf. First, an optimal routing function is designed 
for routing in Tk. 

To obtain an optimal routing function for routing between two arbitrary nodes u 
and w in Tk, we distinguish two cases: 

1. The nodes u and w lie in the same subtree Sj. 

2. Otherwise, i.e. each path from u to w passes through v. 

It is easy to distinguish between these cases, for, u and w lie in the same subtree 
if and only if g(u) = g(w) (modk). 
The first case amounts to routing with an optimal routing function in a subtree Sj. 
It is well-known how this can be done. 
If the second case occurs, we only need to route from u to the root of the subtree 
to which u belongs. From the root we route via v to the root of the subtree to 
which w belongs. From that point we route to w. 
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O 33 

Cfc—Or-rP 

Figure 4.2 Labeling of T4. 

An optimal routing function of TJf can easily be obtained from the routing func­
tion of Tk. To see this, we express a shortest path between two arbitrary nodes 
u = (u1(...,um) and v=(v1,...,vm) in T™ as a subsequence of shortest paths 
between Uj and v; (i= l,...,m). A shortest path from u to v is 

(Ul,u2 um),P1((v1(u2 um),P2,(v1,v2,u3,...,um) Pm,(vltV2 vm) 
where Pj is a shortest path between u; and v; in Tk. Hence, optimal routing from 
u to v can be done by first routing via the first 'dimension', then routing via the 
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second 'dimension', etc. Trivially, this is not the only optimal routing strategy. 
There are many others: they are easily obtained from the paths P; (i= l,.. . ,m). 

4.5 Concluding remarks 

Tree-meshes have many good properties such as symmetry and optimal connec­
tivity. The uniform exponentiality of tree-meshes is lower than we wished: 
ëxp(Tf) = k - l while deg(T^) = k.m. The latter is a motive to keep m in If 
small, i.e. to let m = 2. A pleasant side-effect of this choice is that if A; is defined 
as in paragraph 4.3, i.e. if A; is a convex hull of a ball in T^ or a convex subgraph 
of Tj[ interjacent between the convex hulls of two subsequent balls, then the ele­
ments of SECA;) have small extension complexity. 
The extension complexity of extensible networks based on tree-meshes is not 
optimal, but small enough to meet our requirements. It is a sublinear function of 
the number of nodes in the networks. 
The reason to describe tree-meshes after all, was three-fold: 

1. To illustrate the use of operations on graphs in the construction of underlying 
graphs. 

2. The straightforward labelings and optimal routing functions of tree-meshes 
enable the simple design of algorithms on tree-meshes. 

3. A tree-mesh has meshes and trees as subgraphs, enabling the implementation 
of many algorithms on it. 

In the next chapter we continue with tree-meshes and determine the exact values 
of the local connectivities in convex subgraphs of tree-meshes. 
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Local connectivities in convex subgraphs of 
the tree-mesh 

It is to be noted that when any part of this paper appears dull 
there is a design in it. 

Sir Richard Steele (1672-1729) 

5.1 Introduction 

In the previous chapter it was proved that the tree-mesh has optimal connectivity. 
In this chapter we investigate the local connectivity (see appendix A) in convex 
subgraphs of the tree-mesh. Unfortunately, local connectivity between nodes in 
convex subgraphs of T{? is not as high as the connectivity of Tjf itself. The main 
culprit to this is the fact that the degrees of the border nodes of the subgraphs are 
less than deg(T|F). In this chapter conditions are determined which must be 
satisfied by convex subgraphs of the tree-mesh in order that the local connectivity 
between any two nodes of the subgraph is optimal. In addition, it will be proved 
that convex subgraphs satisfy these conditions, provided their shape is chosen 
with some care. The following two kinds of subgraphs of tree-meshes, which 
were introduced in the previous chapter, have a proper shape. 

p f for i= 1,2,3 

where [}; is a ball with radius i in Tk, and 

Ai= aji/m? mod m) X alitof+i for i>k2m + 1 , 
where ctj is as defined in paragraph 4.3. 

Determining the local connectivity between two different nodes u and v amounts 
to finding the maximum number of paths between u and v having only u and v in 
common. We call such paths node-disjoint (see appendix A). If u and v lie in a 
subgraph A of a graph T, then the local connectivity of u and v in A, KA(U,V), is 
determined by the maximum number of node-disjoint paths between u and v 
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lying entirely inside A. If u or v is a border node in A, then a part of the node-
disjoint paths between u and v in T do not lie inside A. If both u and v are inter­
nal nodes in A and their distances from the border nodes in A are sufficiently 
large, then there exists a set of node-disjoint paths between u and v in T that do 
lie inside A. 

In this chapter it will appear that for all convex A (except for some pathological 
cases) and all u and v in A lying at distance at least 1 from each border node of 
A, there exists a set of node-disjoint paths between u and v lying entirely inside 
A. To prove this we consider the convex hull of the induced subgraph of A based 
on the subgraph of A with node set {u,v}. This convex hull is denoted by 
[<{u,v}>] (see also appendix A). Thereupon, a set of node-disjoint paths 
between u and v is constructed such that 

• the number of paths in the set inside [<{u,v}>] is maximal, 

• the paths in the set outside [<{u,v}>] lie as 'close' as possible to [<{u,v}>]. 

The paths inside [<{u,v}>] lie inside A, since A is convex. The paths outside 
[<{u,v}>] lie inside A, if the distance of any node on them to [<{u,v}>] is less 
than the minimal distance of u and v to any border node of A. A measure of 
'closeness' of a path to [<{u,v}>] is the so-called deflection. For a formal defini­
tion of this notion we first need an extension of the distance function. 

(5.1) Definition. The distance of a node u to a set A of nodes is defined by 

d(u,A) := min d(u,v). 

(5.2) Definition. The deflection 8 of a subgraph A to a subgraph 0 of T is defined 
by 

8(A,0) := max d(u,V(0)). 
u€V(A) 

Notice that 8 is not a symmetric function, i.e. 8(A,0)^8(0,A). In its most com­
mon use, the deflection of a path P to [<{u,v}>] is the maximum distance of any 
node on P to [<{u,v}>]. The definition of deflection is local to this chapter, and 
will not be used in other chapters. Other definitions of which the use is limited to 
this chapter are the following definitions. 

(5.3) Definition. If T = r 1 x r 2 X . . . x r r a , then the distance in dimension i between 
two nodes u and v in T is defined to be 

d;(u,v) := dri(coordi(u),coordi(v)). 
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(5.4) Definition. The distance in dimension i of a node u to a set A of nodes is 
defined to be 

dj(u,A) := min dj(u,v). 
vfA 

(5.5) Definition. The deflection in dimension i of a subgraph A to a subgraph © is 
defined to be 

8i(A,@) := max di(u,V(0)). uev(A) 

(5.6) Definition. Two paths P1 = xa,x2,...,xr and P2=yi»y2»- -»yr m F a r e Parallel 
if 

Vt€{l,...,m} Vi,j€{l,...,r} dt(xi>yi) = dt(xj,yj). 

(5.7) Definition. The dimension difference between two nodes u and v in T is 
defined by 

D(u,v):= {i|d;(u,v) > 0 } . 

Dimension differences are depicted graphically as in figure 5.1. The configura­
tion in figure 5.1 (a) denotes D(x,y) = {i}. Figure 5.1 (b) means that the condi­
tion 

Vx€X 3y€Y: D(x,y) = {i} and Vy€Y 3x€X: D(x,y) = {i} 

holds. 

i 

(b) 
Dimension differences. 

(5.8) Definition. The sets of nodes N(u), N^u), NN(u) and NN;(u) in Tf are 
defined by 

N(u) := {v|d(u,v) = l}, 
Nj(u) := {v| d(u,v) = l and i€D(u,v)}, 
NN(u) := {v| d(u,v) = 2}, 
NNj(u) := {v| d(u,v) = 2andi€D(u,v)}. 

In paragraph 5.2 we determine a set of node-disjoint paths between any two 

O : O 
x ' y 

(a) 
Figure 5.1 
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nodes u and v in T™ (m^2) such that the deflection of each of the paths to 
[<{u,v}>] is minimal. The results of that paragraph are used in paragraph 5.3 to 
determine the local connectivities between non-border nodes of convex subgraphs 
of T™ (m^2) . In paragraph 5.4 the same is done for border nodes of convex 
subgraphs of T™. Finally, in paragraph 5.5 the results of paragraphs 5.3 and 5.4 
are applied to the convex subgraphs of T™ (m&2) mentioned in the introduction 
of this chapter, 3™ and A;. 

5.2 Node-disjoint paths and their deflections to convex hulls 

In this paragraph we make the preparations to construct the maximum number of 
node-disjoint paths between any two nodes in a convex subgraph A of T™ (m^2) 
which lie entirely in A. In order to determine such paths we start with two arbi­
trary nodes u and v in T{?, and construct a set of node-disjoint paths between u 
and v such that the deflection of each path to [<{u,v}>] is minimal. In para­
graphs 5.3 and 5.4 it will appear that such constructs guarantee the placement of 
u and v in a convex subgraph A of T™ such that the number of node-disjoint 
paths between u and v fitting into A is maximal, even if u or v lie close to but not 
onto border nodes of A. 

We mark off three cases: 

A. c a s e r n e , |D(u,v)|>2. 

B. casem>3, |D(u,v)|=l. 

C. casem = 2, |D(u,v)|=l. 

In all cases and the rest of this chapter we assume that the dimensions are 
ordered such that D(u,v) = {l,2 |D(u,v)|} (u=Év). 

A.casem>2, |D(M,V) |>2 

In the next two lemmas we determine a set of node-disjoint paths between u and 
v lying in an n-dimensional mesh TJ at minimal deflection from [<{u,v}>], 
where |D(u,v)|=n and n ^ 2 . 

(5.9) Lemma. If u and v are two nodes in an n-dimensional mesh TJ (n^:2) such 
that di(u,v)=l ( i= l n), then there are 2.n node-disjoint paths from u to v, n 
of which lie inside [<{u,v}>] and n of which have deflection at most 1 from 
[<{u,v}>] in each of the n dimensions. 
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Proof. Clearly, [<{u,v}>] is an n-cube. Cubes are distance-transitive, implying 
that they have connectivity n (see theorem 2.14). Hence, there are n node-
disjoint paths lying inside [<{u,v}>]. For convenience in the proof of lemma 5.2 
we denote these paths by Q1 Qn. 
To prove the existence of yet other n node-disjoint paths with deflection at most 1 
from [<{u,v}>] in all n dimensions, we assume that the nodes in Tf are identi­
fied by n-tuples in the usual way in Cartesian graph products (i.e. the tuples 
corresponding to two adjacent nodes differ by 1 in exactly one element). Suppose 
u = 0 (all zero tuple) and v = l (all one tuple). Let e; be the tuple of which all 
coordinates are 0 except the i* which is 1. The ej will be used for easy denotation 
of nodes. Any node can be represented in a unique way by a sum of e's. 
Let f:{l n}-i{l,...,n} be a bijective function for which f(i)T^i. Suppose j=f(i). 
We construct n paths Pi,...,Pn, having deflection at most 1 from [<{u,v}>] in all 
n dimensions. P; is defined by 

u = 0, - e j , ej—e;, 2ej—ei( 2ej, ti + le^, e1 + e2+2ej,..., e1+... + ej_1 + 2ej, 
n 

el + ... + ej_1 + 2e j+e j+1 e1+... + ej_1 + 2ej-l-ej+1-l-... + en, 2 e t = v -
t=i 

Then, for each intermediate node x on path P;: 

(coordj(x) = —1 or coordfQ(x) = 2) 
and 

(coordt(x) ¥= — 1 for t=£ i and coordt(x) =£ 2 for t¥= f(i)) 

Using the above relation it is easily verified that all paths Pj Pn are node-
disjoint. 
Furthermore, P; does not pass through [<{u,v}>], and it has deflection 1 from 
[<{u,v}>] in dimensions i and f(i) and deflection 0 from [<{u,v}>] in all other 
dimensions. o 

As we have seen in this lemma, a path in a mesh can be described by a sequence 
of additions or subtractions of e; ( i=l , . . . ,n) . Such a sequence will be called the 
e-sequence of the corresponding path. The e-sequence of P; in the previous 
lemma is " - e j , +e j ; +ej, +e ;, -t-e^ H-e^..., +ej_1( +e j + 1 +en , - e j " . 

(5.10) Lemma. If u and v are two nodes in an n-dimensional mesh TJ (n^2) 
such that |D(u,v)|=n, then there are 2.n node-disjoint paths from u to v, n of 
which lie inside [<{u,v}>] and n of which have deflection at most 1 from 
[<{u,v}>] in each of the n dimensions. 
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Proof. The proof is similar to that of lemma 5.9. Suppose u = (0 0) and 
v=(d1,...,dn) (dj>l), dj being defined by dj=dj(u,v). Let E^-.-.E,, be the e-
sequences of the paths Qx Qn respectively inside the n-cube in lemma 5.9. We 
shall construct a set of n node-disjoint paths Q{ Q^ between u and v inside 
[<{u,v}>] which are based on Q!,...,Qn. This is done by substituting the subse­
quence " + et" in E; (see proof of lemma 5.9) by the subsequence " + et,..., + et" of 
length dt for all t=l , . . . ,n . It results in e-sequences E/corresponding to the paths 
Qi' from u to v inside [<{u,v}>]. None of these paths coincide, for otherwise the 
Qi in lemma 5.1 wouldn't be node-disjoint. 

To prove the existence of the remaining n node-disjoint paths with deflection at 
most 1 from [<{u,v}>] in all n dimensions, we suppose that f:{l n}-{l,...,n} 
is again a bijective function for which f(i)#i and j —f(i). 
Let Pj be a path from u to v defined by: 

u = 0, - e i ( e p ^ , 2ej-ei,..., (dj+l)ej-e;, (dj+ l)ejf e^Cdj+ l )^ , 

2e1 + (d j+l)e j d ^ + Cdj+Dej 2 d A + ( d j + l ) e j 
t=i 

2d te t+(d j+l)e j+ 2 dtet, i d t e t = v . 
t = i t = j + l t= l 

We notice that for each intermediate node x on Pj: 

(coord;(x) = - l or coordf(i)(x) = df(i)+1) 
and 

(coordt(x) i= - 1 for t ^ i and coordt(x) =£ d t+1 for tï f(i)) 

which gives an easy verification of the P; being node-disjoint. 
Furthermore, Pj does not pass through [<{u,v}>], and it has deflection 1 from 
[<{u,v}>] in dimensions i and f(i) and deflection 0 in all other dimensions. o 

We can now establish a set of node-disjoint paths between two nodes in T™ (k^2 , 
m^2) such that each path has minimal deflection to [<{u,v}>]. To obtain these 
paths, we notice that meshes are proper subgraphs of tree-meshes, provided the 
dimension of the former does not exceed that of the latter. We use this observa­
tion in the proof of the following lemma. 

(5.11) Lemma. If u and v are nodes in TJJ1 (m>2, k5:2) for which |D(u,v)|>2, 
then there are k.m node-disjoint paths from u to v, |D(u,v)| of which lie inside 
[<{u,v}>] and the rest having deflection at most 1 from [<{u,v}>] in each of the 
m dimensions. 
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Proof. Let w; (l<i<|D(u,v)|) be a node in T{? defined by 

D(u,wj) := {i} 
D(v,Wi) := D(u,v)-{i} 

This is a unique characterisation of Wj. Let A; and Bj be defined by 

A i :=N i (u)-V([<{u,w i}>]) 
Bi — NKw^-VC^tu.Wj^]) 

Then, A; consists of all neighbours of u differing in dimension i from u and not 
lying on the shortest path between u and w;. B, is determined analogously. 
Hence, |Ai |=|Bi |=k-l . 
Let a^.a^ ^ik-i be the elements of Aj and bji,bj2 bjk-i be t n e elements of 
B;. Let Rjj (l<j<k—1) be a two way infinite path in TJF through ay, by and 
V([<{u,Wj}>]) such that for each node x in Ry: D(u,x)C{i}. Note that the part 
of R;J outside V([<{u,Wi}>])U{ay,by} is not uniquely determined by this. We 
know that j 1 # j 2 implies RijinRij2=[<{u,wi}>] (l<i<|D(u,v) |) , since all Ry lie in 
a particular subtree Tk of T{?. 
We define meshes Mj ( j= l , . . . , k -1 ) to be subgraphs of T™ equal to 

M J : = R1jXR2jX...XR|D(uv) |j. 

Mj is a mesh of dimension |D(u,v)| comprising ay, by and [<{u,w;}>] for 
i=l,. . . , |D(u,v)|. By lemma 5.10 there are 2.|D(u,v)| paths from u to v in Mj, 
|D(u,v)| of which lie inside [<{u,v}>] and the rest having deflection at most 1 
from [<{u,v}>] in dimensions 1 to |D(u,v)|. All (k-l) . |D(u,v) | paths from u 
to v in all Mj (l<j<k—1) outside [<{u,v}>] are node-disjoint since the Mj are 
disjoint outside [<{u,v}>]. For, Ji#J2 implies 

M h n M j 2 = (Rlj1
X---RWu,v)y1)n(RiJ2X...R|D(U)V)y2 = 

(R1j inR l j j)x...x(R|D(uv) | j inR|D(U)V)|j2) = 
[<{u,w1}>]x...x[<{u,W|D(UiV)|}>] = [<{u,v}>]. 

Since there are k - 1 of such meshes, there are (k-l) . |D(u,v) | node-disjoint 
paths from u to v outside [<{u,v}>] having deflection at most 1 from [<{u,v}>] 
in each of the m dimensions (in fact, the deflection is 1 in exactly two dimen­
sions). Since the meshes coincide inside [<{u,v}>], there are only |D(u,v)| 
node-disjoint paths from u to v inside [<{u,v}>]. 

The remaining k . (m- |D(u,v)|) paths from u to v are constructed as follows. 
Define X j j ^ xik to be the nodes in N;(u) and yü,yj2 yuc t 0 ^ e t n e nodes in 
Nj(v) (|D(u,v)|<i<m), ordered in such a way that igDCxy.yjj) ( l< j<k ) . Such 
an ordering is possible, since i>D(u,v). We notice that by this definition i i 1 ^ or 
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J!*J2 implies D(x i l j l ,x i j l)#0. 
Let P be a shortest path from u to v (so, P lies inside [<{u,v}>]) and let P;J be the 
path parallel to P and starting in x^ (and so ending in y;j). All PJJ are node-
disjoint with respect to each other, since they are parallel and they have different 
start nodes. Moreover, Py has deflection 1 from [<{u,v}>] in dimension i and 0 
in all other dimensions. Each Pjj differs in dimension i from the k.|D(u,v)| 
paths constructed above. The start- and end-nodes of Pj: are incident to u and v 
respectively, resulting in the k.(m— |D(u,v)|) paths from u to v which remained 
to be constructed. a 

B. casem>7>, |D(u,v)|=l 

The construction of node-disjoint paths between u and v in this section is more 
direct than in the previous case. 

(5.12) Lemma. If u and v are nodes in T{? (m>3, k>2) for which |D(u,v)|=l, 
then there are k.m node-disjoint paths from u to v having deflection at most 1 
from [<{u,v}>] in each of the m dimensions. 

Proof. There is one shortest path P from u to v. Let x^.x^ xik be the nodes in 
N;(u) and y ^ ^ y;k be the nodes in N;(v) ( 2 ^ i ^ m ) , ordered in such a way 
that i€D(xij,yij) ( l < j < k ) . Let Pjj be the path parallel to P and starting in Xjj (and 
so ending in y;p. There are k(m— 1) of such paths. All P^ are node-disjoint with 
respect to each other and to P, and P;: has deflection 1 from [<{u,v}>] = P in 
dimension i and 0 in all other dimensions. The start- and end-nodes of Pj: are 
incident to u and v respectively, which completes the construction of the paths 
through Nj(u) and N;(v) (i=2,...,m). 

Define sets of nodes A and B as 

A := N1(u)-V([<{u,v}>]), 
B:=N 1 (v)-V([<{u,v}>]) . 

Then, |A |= |B |=k - l . There remains k—1 paths to be constructed from u to v 
passing through A and B. These paths must be node-disjoint from the paths con­
structed above. 
Let C be a subset of N2(u) with cardinality k - 1. Let A ' be defined as the unique 
subset of 

{x€V(T{f)| 3y€A: D(x,y) = {2} and 3z€C: D(x,z) = {l}} 

such that for each two nodes x and y in A': D(x,y) = {l,2}. Analogously, define 
B' as the unique subset of 
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{x€V(Tf)| 3yÉB: D(x,y) = {2} and 3z€C: D(x,z) = {l}} 

such that for each two nodes x and y in B': D(x,y) = {l,2}. 

Then |A'|= | B ' | = k - 1 , d:(x,u) = d2(x,u) = 1, di(x,u) = 0 (2<i<m) for each node 
x€A' , and d1(x,v) = d2(x,v) = 1, di(x,v) = 0 (2<i<m) for each node x€B'. All 
shortest paths from A ' to B' coincide with the paths P2: ( j=l , . . . ,k) . So, to con­
struct the remaining k —1 node-disjoint paths between u and v, a diversion in 
dimension 3 is needed. 
Let w be a node in N3(u). A " and B " are defined by 

A " : = {x€V(Tf)| 3y€A':D(x,y) = {3}andD(x,w) = {l,2}} 
B " : = {x€V(Tf)| 3yÉB':D(x,y) = {3}andD(x,w) = {l,2}} 

Then | A " | = | B " | = k - l , d1(x,u) = d2(x,u) = d3(x,u) = lf di(x,u) = 0 (3<i<m) for 
each node x€A" , and d1(x,v) = d2(x,v) = d3(x,v) = l, di(x,v) = 0 ( 3 s i ^ m ) for 
each node x€B" . See figure 5.2. 

Q,.-..CL 

Figure 5.2 Situation occurring in lemma 5.12. 

Now, there are k—1 paths Qj Qk-i from A to B having different start- and 
end-nodes. These paths have P in common. Let Qt'be a path starting in A " and 
parallel to Qt ( t = l , . . . , k - l ) . This path ends up in B " . Each node in A " and 
each node in B " lies in one of these paths. Every node in Qt' differs at least in 
dimensions 2 and 3 from P. So, Qt' is node-disjoint from P. Since each P;J differs 
only in one dimension from P, Qt' is node-disjoint from P;J. Moreover, if t j ï ^ 
then Q^ is disjoint from Qt'2. They differ at least in dimension 2, since their start 
nodes (in A") differ in dimension 2. Concatenation of 

• the shortest paths from u to A " via A and A', 

• theQ t ' ( t= l k - l ) , a n d 
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• the shortest paths from B " to v via B' and B 

completes the construction of the remaining k—1 paths. These paths are node-
disjoint from P and P;J (i=2 m; j = l k) since A, A' , A " , B, B' and B " are 
node-disjoint from P and P;J. o 

C. casem=2, |D(u,v)|=l 

This case is similar to the previous case, except that there is no third dimension 
for diversion of node-disjoint paths between u and v, passing through the sets A " 
and B" . Therefore, we make a longer detour through dimension 2. 

(5.13) Lemma. If u and v are nodes in T^ (k^2) for which |D(u,v)|=l, then 
there are 2.k node-disjoint paths from u to v having deflection at most 1 from 
[<{u,v}>] in dimension 1 and deflection at most 2 from [<{u,v}>] in dimen­
sion 2. 

Proof. The proof is similar to that of lemma 5.12 up to the point of the introduc­
tion of C. For the remaining k— 1 paths there is no third dimension via which the 
paths can be diverted. The only alternative is the second dimension but this will 
increase the deflection by 1 in dimension 2. 
Suppose S is a set of k—1 nodes such that for each s€S: D(u,s) = {2} and 
d(u,s) = 2. Let A " be defined as the unique subset of 

{x€V(Tf)| 3ySA: D(x,y) = {2} and 3s£S: D(x,s) = {l}} 

such that for each two nodes x and y in A " : D(x,y) = {l,2} (No A' is defined in 
this proof). Then, |A"|=k—1 and for each node z in A there is exactly one 
node z" in A " only differing in dimension 2 from z. Consider the shortest path 
from node z to z". There are exactly k— 1 of such paths from A to A " and they 
differ in dimension 1 from each other. 
Again, let Qt' be a path starting in A " and parallel to Q t ( t= l , . . . , k -1 ) . The 
paths Qj Qk_i end up in a set that will be denoted by B " . Qt'has deflection 1 
from P in dimension 1 and deflection 2 in dimension 2. Furthermore, Qt' is dis­
joint from P and P2j ( j=l , . . . ,k) , and Q^ is disjoint from Qt'2, if tj^t2-
As with the shortest paths from A to A " , there are k - 1 mutually disjoint shor­
test paths from B to B " differing in dimension 1. Concatenation of 

• the shortest paths from u to A " via A, 

• theQ t ' ( t= l k - 1 ) , and 

• the shortest paths from B " to v via B, 
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completes the construction of the remaining k—1 paths. As in the previous 
lemma these paths are node-disjoint from P and P2j ( j=l k). D 

We are now in the position to formulate necessary conditions for optimal connec­
tivities in convex subgraphs of the tree-mesh. 

5.3 Non-border nodes 

Lemmas 5.11, 5.12, and 5.13 will be used in this paragraph to prove that the local 
connectivity between two non-border nodes in any convex subgraph A of T™ 
(k>2, m^2) is optimal, except for a few pathological subgraphs A. 

(5.14) Theorem. Let u and v be non-border nodes in a convex subgraph A of Tjf 
(k>2). If m s 2 a n d |D(u,v)|>2, then KA(u,v) = k.m. 

Proof. If u and v are non-border nodes of A then the deflection of each border 
node to [<{u,v}>] is at least 1 in each of the m dimensions. This means that any 
path having deflection at most 1 from [<{u,v}>] lies inside A. Then, 
lemma 5.11 implies the existence of k.m node-disjoint paths from u to v in A, 
giving the required result. o 

(5.15) Theorem. Let u and v be non-border nodes in a convex subgraph A of T™ 
(k>2). If m > 3 and |D(u,v)|=l, then KA(u,v) = k.m. 

Proof. Similar to the proof of theorem 5.14. o 

If u and v are nodes in a convex subgraph A of Tj* (ks2) at distance 1 from any 
border node of A and D(u,v) = {l}, we might conclude that KA(U,V) is not 
optimal, since by lemma 5.13 distance 2 from any border is needed for optimal-
ity. This conclusion is justifiable. Special shape of A, however, results in 
optimality of KA(U,V) in case of unit distance of u and v from any border node 
of A. 

(5.16) Theorem. Let u and v be non-border nodes in a convex subgraph A of Tj[ 
(k>2). If |D(u,v) |=l and 

|(NN(u)-NN1(u))DV(A)| > k - l , 

then KA(u,v) = 2.k. 
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Proof. We let S C (NN(u)-NN1(u))riV(A) such that | S | = k - l . Then, the 
constructions in the proof of lemma 5.13 are applicable, leaving all node-disjoint 
paths between u and v inside A. o 

5.4 Border nodes 

If one or both of the nodes u or v is a border node of a subgraph A of T™ (k^2 , 
m^2) , then K A (U,V)<K(T™). Optimality of KA(U,V) is less easily proved in that 
case. In order to prove that KA(U,V) is optimal, we have to construct 
min(|N(u)nV(A)|,|N(v)nV(A)|) node-disjoint paths from u to v lying entirely 
inside A. We start with the case in which nodes u and v differ in only one 
dimension. 

(5.17) Theorem. Let u and v be nodes in a convex subgraph A of TJF (k^2 , 
m^2) . If u or v is a border node of A, |D(u,v)|=l, and 

|(NN(u)-NN1(u))nV(A)| > min ( |N1(u)nV(A)| , |N1(v)nV(A)|)- l , 

then KA(U,V) is optimal. 

Proof. We have to prove that the number of node-disjoint paths between u and v 
lying entirely inside A is equal to 

min(|N(u)nV(A)|,|N(v)nV(A)|). 

First, we notice that the shortest path from u to v lies inside A. Call this path P. 
Second, we construct the paths via N;(u)nV(A) and Ni(v)nV(A) (for all i>2). 
Let w€Ni(u) and w'ÉNj(v), such that if?D(w,w'). Then w£V(A) if and only if 
w'€V(A), since A is convex. If w£V(A), then a path from w to w', parallel to 
P, is constructed in the same way as the paths Py in lemma 5.12 are constructed. 
Doing this for all nodes w in Ni(u)nV(A), we obtain a set of node-disjoint paths 
from u to v viaNi(u)nV(A) and Nj(v)nV(A) (i=2 m). 

The paths passing through the sets of nodes (N1(u)-V([<{u,v}>]))nV(A) and 
(N1(v)-V([<{u,v}>]))nV(A) remain to be constructed. We have 

|(NN(u)-NN1(u))nV(A)| = |(NN(v)-NN1(v))nV(A)|, 

since A is convex. Suppose without any loss of generality that |N1(u)nV(A)| ^ 
|N1(v)nV(A)|. Let A " be defined as a subset of 

{xeV(Tf)| 3y€(N1(u)-V([<{u,v}>]))nV(A): l«D(x,y) 
and 3z€(NN(u)-NN1(u))nV(A): D(x,z) = {l}}, 

such that for each two nodes x and y in A" : 

D O c , y ) - { l } # 0 
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In the same way as in lemmas 5.12 and 5.13 we construct |N1(u)nV(A)|—1 
paths starting in A " and being one-by-one parallel to the |N1(u)DV(A)|—1 
shortest paths starting in the set of nodes (N1(u)-V(t<{u,v}>]))DV(A) arid 
ending in the set of nodes (N1(v)-V([<{u,v}>]))nV(A). These paths have dif­
ferent start- and end-nodes and so are node-disjoint. They have deflection 2 
from [<{u,v}>] in dimension 2 if m = 2. If m ^ 3 then the deflection of a path 
from [<{u,v}>] is 1 in two dimensions or 2 in one dimension. It is possible to 
construct these paths since 

|(NN(u)-NN1(u))nV(A)| > min ( |N1(u)nV(A)|, |N1(v)nV(A)|)-1, 

implying that the set A " consisting of min (|N1(u)nV(A)|,|N1(v)DV(A)|)-1 
nodes is constructible. 
All paths from u to v inside A which we have constructed, are node-disjoint 
because of the similarity with lemmas 5.12 and 5.13. We conclude that KA(U,V) 
is optimal. o 

(5.18) Theorem. Let u and v be nodes in a convex subgraph A of T™ (k^2, 
m&2). If u or v is a border node of A, |D(u,v)|>2, and for all i in the set 
{1 |D(u,v)|}: 

|(NN(u)-NNi(u))nV(A)| > min ( |N i(u)nV(A)|, |N i(v)nV(A)|)-l , 

then KA(U,V) is optimal. 

Proof. In lemma 5.11 three classes of paths from u to v in T™ are distinguished: 

1. The paths inside [<{u,v}>], 

2. The paths with deflection 1 from [<{u,v}>] in two of the dimensions in 
{l,...,|D(u,v)|} and deflection 0 in all other dimensions, 

3. The paths with deflection 1 from [<{u,v}>] in one of the dimensions in 
{|D(u,v)|+l m} and deflection 0 in all other dimensions. 

The paths in class 1 lie inside A since A is convex. 
The number of class 2 paths inside A is determined by 

min, | (( u" Ni(x))-V([<{u,v}>]))nV(A)|. 

Assume u is a border node of A. If v is not a border node, the minimum is 
achieved for x=u, otherwise we assume without any loss of generality that x=u 
gives the minimum. 

We shall relate each node in (Ni(u)-V([<{u,v}>]))nV(A) ( i=l |D(u,v)|) 
to a unique node in (Nj(v)-V([<{u,v}>]))nV(A) for some j not equal to i 
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( l^j^ |D(u,v) | ) , if possible. In this way node-disjoint paths in A with deflection 
1 in dimensions i and j are constructed in the same way as in lemmas 5.9 to 5.11. 
This might cause a problem, however. The problem arises if there exists an i in 
the set{l,...,|D(u,v)|} for which 

|(N i(u)-V([<{u,v}>]))nV(A)| > | ((UN t(v))-V([<{u,v}>]))nV(A)| , 

where t runs from 1 to |D(u,v)|. 
In this case not enough nodes in the set S;, defined by 

S; := (( U N t(v))-V([<{u,v}>]))nV(A), 

are available for paths from u to v through (Ni(u)-V([<{u,v}>]))nV(A) for 
some i. 
We have to find alternative routes for the paths passing through the set of nodes 
(Nj(u)-[<{u,v}>])nV(A) and not passing through S,. First, we notice that 
there is only one i causing trouble (if there is one). For, if there are two, say ij 
and i2 (i1¥=i2), then 

|(N i i(u)-V([<{u,v}>]))nV(A)| + |(N i 2(u)-V([<{u,v}>]))nV(A)| > 

| ( (UN t(v))-V([<{u,v}>]))nV(A)|+ | ((uN t(v))-V([<{u,v}>])nV(A)| > 
t*ii t*i2 

, |D(u,v)| 
|(( ^ N t(v))-V([<{u,v}>]))nV(A)| > 
, [D(u,v)| 
|(( tU N t(u))-V([<{u,v}>]))nV(A)| > 

K N ^ - V U ^ u . v l ^ n V C A ) ! + |(N i2(u)-V([<{u,v}>])nV(A)|, 

which is a contradiction. 

Suppose in is the one causing trouble. Then, we must construct paths passing 
through N io(u)-V([<{u,v}>]) and N io(v)-V([<{u,v}>]). Let R0 be the subset 
of nodes of Ni()(u) —V([<{u,v}>]) through which no one of the paths passing 
through S;o passes. The paths to be constructed should pass through R0. In order 
to obtain these paths we first construct 

min(|N io(u)nV(A)|,|N io(w io)nV(A)|)-l 

paths from u to wio in exactly the same way as the paths through N1(u)DV(A) 
and N!(v)nV(A) in theorem 5.17, where wio is a node uniquely defined by 

D(u,wio) := {i0} 
D(v,wio) :=D(u,v)-{i0}. 
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These paths have deflection 2 from [<{u,wio}>] and hence from [<{u,v}>] in 
one dimension different from io- It is possible to construct these paths, since 

|NN(u)-NN io(u))DV(A)| > min (|N io(u)DV(A)|,|N i()(v)nV(A)|)-l 

and (since A is convex) 

|Nio(wio)nV(A)| = |Nio(v)nV(A)|. 

We are only interested in the subset of these paths of which the elements pass 
through R0. We select the paths through R0 and break them off in Nio(wio). This 
results in a set R1 of |R0| node-disjoint paths from u to a subset of 
Ni(j(wio)riV(A) with separate end-nodes. Each path in Ra will be extended by a 
path, starting in an end-node in Njo(wio)nV(A) and being parallel to a shortest 
path between wio and v. An extended path ends up in N io(v)nV(A), which is 
incident to v. The set of extended paths is denoted by R2. Concatenation of R1( 

R2 and the edges between v and the end nodes in Nio(v)DV(A) of the paths in R2 

results in the required set of node-disjoint paths. We call this set R in the rest of 
this proof. All paths in R are node-disjoint. 

Finally, the paths in the third class, having deflection 1 in one of the dimensions 
of {|D(u,v)|+l,...,m} via N;(u)nV(A) and Ni(v)nV(A) (i>|D(u,v)|), are 
constructed in the same way as in theorem 5.17. 

Because of the similarity with lemma 5.11 all constructed paths from u to v are 
node-disjoint, with a possible exception for the paths in R. 
As a matter of course a path in R is node-disjoint from class 1 paths. 
Disjointness of the paths in R from class 2 paths not being paths in R is proved by 
noting that for each node x in any path of R: 

a. di(x,V([<{u,v}>])) = 2, for some i€{l,...,m}-{i0}, and for each node x 
lying on a subpath in R1 (notice that di(x,V([<{u,wi}>])) = 2), 

b. dio(x,V([<{u,v}>])) = l, for each node x lying on a subpath in R2. 

Condition a immediately implies that any class 2 path P not being a path in R is 
node-disjoint from any subpath in R :, since no node in P has distance 2 from 
V([<{u,v}>]) in any dimension. 
Concerning condition b, let z be a node on a subpath in the set of subpaths R2. 
Then, dio(z,V([<{u,v}>])) = l. This implies that for each node y in a class 2 path 
P not being a path in R: i0€D(z,y), otherwise P and R would have common nodes 
in N io(u)-V([<{u,v}>]) and N io(v)-V([<{u,v}>]), which is impossible since P 
does not pass through R0. 
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For each node y on a class 3 path: di(y,V([<{u,v}>])) = 1 for exactly one 
i>|D(u,v)|. For any other i we have di(y,V([<{u,v}>])) = 0. It is easily seen 
that no node on a path in R satisfies these conditions. o 

Putting lemmas 5.17 and 5.18 together we obtain the following corollary. 

(5.19) Corollary. Let u and v be nodes in a convex subgraph A of T{F (k>2, 
m^2) . If u or v is a border node of A and for all i€{l,...,|D(u,v)|}: 

|(NN(u)-NNj(u))nV(A)| > min ( |N i(u)nV(A)| , |N i(v)nV(A)|)-l , 

then KA(U,V) is optimal. 

5.5 Local connectivities of some convex subgraphs of T™ 

In this paragraph the theorems of the preceding paragraphs are applied to the 
convex subgraphs in chapter 4, i.e. the subgraphs pf" and A; of T™ in para­
graph 5.1. 

(5.20) Lemma. Let A; (i>k2m + 1) be a convex subgraph of T{f as defined in the 
introduction (k>2, m^2) . Then, for each node u in A; and for each j€{l,...,m}: 

|(NN(u)-NNj(u))nV(Ai)| > k - l . 

Proof. Let "yr denote a subgraph of Tk having a ball Pr with radius r as subgraph 
and being a proper subgraph of a ball 3 r + 1 with radius r+ 1, both balls centered 
around the same node. Then, for each node z in 7r (r>2): 

|NN(z)nV(-yr)| > k - 1 . 

Let Tn(u) be an induced subgraph of T{? with node set {v| D(u,v)C{n}}. Clearly, 
Tn(u) is isomorphic to Tk. Then, 

NN(u)riTn(u) = NN(u) - U NNt(u) C NN(u)-NN=(u) (j¥=n). 
te{l m}-{n} 

Hence, 
NN(u)nTn(u)nV(Ai) C (NN(u)-NNj(u))nV(Ai) ( j#n) , 

for any subgraph A; of Tf. If i>k2m + l and n is equal to m - 1 or m, then 
Tn(u)nA; has a subgraph which is a ball with radius at least 2. For, if i>k2m+ 1, 
then a$+iX0tk2+2 = ak l 2+i xP 2 -1S a subgraph of A;. Hence, for n = m - l , m : 

|NN(u)n(Tn(u)nV(Ai))| > k - l . 

Combining this with 
|(NN(u)-NNj(u))nV(Ai)| s |NN(u)n(Tn(u)nV(Ai))| 
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we obtain 
|(NN(u)-NNj(u))riV(Ai)| ^ k - 1 foral l j=l m. a 

(5.21) Corollary. If u and v are nodes in the convex subgraph A; (i>k2m + 1) of 
Tf (k>2, m>2) , then KA|(U,V) is optimal. 

Proof. Corollary 5.19 and lemma 5.20 directly imply that KA|(U,V) is optimal. a 

(5.22) Lemma. If u and v are nodes in the convex subgraph A; ( l ^ i ^ m . ( k + 1)) 
of T{? (k>:2, m>2), then KA|(U,V) is optimal. 

Proof. There is only one non-border node in A;, since i ^ m ( k + l ) . Hence, at 
least one of u and v is a border node. Assume without loss of generality that u is 
a border node. 
Then, for all j€{l |D(u,v)|}: |N j(u)nV(A i)|=l. 
Hence, min (|N j(u)nV(A i)|,|N j(v)riV(A i)|)-1 = 0, implying that 

|(NN(u)-NNi(u))nV(Ai)| > min (|N i(u)nV(A i)|, |N i(v)nV(A i)|)-1, 

for all j=l, . . . , |D(u,v)| . Then, KAI(U,V) is optimal by corollary 5.19. Q 

Lemma 5.20 and corollary 5.21 give rise to the following corollary. 

(5.23) Corollary. Let u and v be nodes in the convex subgraph A; ( i sm. (k+ l ) 
or i>k 2 m+l) of Tf (k>2, m>2), then KAI(U,V) is optimal. 

This corollary immediately implies the following. 

• Any two nodes in A—pj11 (j=l,2,...) have optimal local connectivity, where 

i ^ m . k . ^ - ^ + m . k - 2 
For, if j = l , then i=m(k+ l ) , and if j=2, then i=k2m + m>k2m + 1. 

• Any two nodes in A — a j ^ ' modm)Xct|i^jd
+^ have optimal local connectivity 

if i>k2m + l. 

5.6 Concluding remarks 

Local connectivities between any two nodes in A; are optimal if i>k2m + l. 
Thence, the sequence (Ak2m+1,Ak2m+2,Ak2m+3 ) is a proper choice to obtain 
extensible networks with optimal local connectivities. The local connectivities of 
the networks in the sequence (Pf.p^.P™ ) are also optimal. 
If the theorems in sections 5.3 and 5.4 are applied to the networks of Akl (see the 
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end of paragraph 4.3), which are defined as the Cartesian product of a complete 
binary tree with itself, optimal local connectivities are also achieved, provided the 
tree has height at least 3. The 3x3 network of Akl has also optimal connectivity, 
but the 7x7 network has not. 
Local connectivity between two internal nodes of A; (i>k2m + l) attains the high 
connectivity of T™. Local connectivity between any two nodes of a network in 
the above sequences is not as large as K(T™), if not both of the nodes lie in the 
interior of the network. Unfortunately, the interior of a network constitutes only 
a small part of the total number of nodes. Especially the exponential character of 
an underlying graph reduces the interior substantially. Consequently, only a 
small percentage of the nodes in A; have mutual local connectivity equal to 
K.(T") . For example, the fraction of interior nodes in (3™ is 
|VOim)| / |V<Pi™i)l ~ ( k - l ) " m (is=l). That is, for k=3 and m = 2 only 25 per­
cent of the nodes of (3™ have mutual local connectivity 6. 
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Planar extensible networks 



6 

Supersymmetric graphs and some of their properties 

To the artist the communication he offers is a by-product. 

W. Somerset Maugham (1938) 

6.1 Introduction 

In the next three chapters our construction method will be used to design extensi­
ble networks which are planar (see appendix A) in addition to all the properties 
stated in paragraph 2.1. Planarity of a network eases its implementation on chips 
and printed circuit boards. It stimulates minimization of the number of wires 
that need to cross. Such crossings can easily be made on a chip, by burrowing 
wires down into different layers. However, crossings are expensive. They 
enlarge the area of a chip and complicate the design of a chip (see for example 
[Leiser]). For these reasons we are interested in planarity of networks. 

The current chapter describes underlying graphs for planar extensible networks. 
We assume underlying graphs to be planar. Planarity of underlying graphs 
directly implies planarity of extensible networks, since any subgraph of a planar 
graph is planar. 
We are merely interested in symmetric planar underlying graphs, and in particu­
lar in a subclass of them, the so-called supersymmetric graphs. They are intro­
duced in paragraph 6.2 after describing some general properties of symmetric 
planar graphs. In paragraph 6.3 supersymmetric graphs are classified according 
to a theorem of Griinbaum and Shephard. Thereupon, in paragraphs 6.4 and 6.5 
preparations are made to chapter 7, in which the uniform exponentiahties of 
supersymmetric graphs are determined. In chapter 8 convex subgraphs are cut 
out of supersymmetric graphs, resulting in the planar extensible networks. 

In chapters 6, 7, and 8 we shall often use a notion which is defined as follows. 
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(6.1) Definition. A circuit C in an infinite connected planar graph T surrounds a 
node u in T whenever every 1-way infinite path (see appendix A) starting in u 
intersects C in some node. C surrounds a subgraph A of T whenever C sur­
rounds every node of A. The subgraph A is properly surroundedby C if it is sur­
rounded by C and disjunct from C. 

6.2 Symmetric planar graphs 

In this paragraph the class of supersymmetric graphs, which will be used as 
underlying graphs, are introduced. First, we discuss some general properties of 
symmetric planar graphs. The symmetric planar graphs discussed here are 
assumed to have degree at least 3; the only infinite symmetric planar graph with 
degree 2, the 2-way infinite path, is of no use to us. Additionally, symmetric 
planar graphs are assumed to have optimal connectivity. This implies that their 
connectivity is at least 3. The next two lemmas give a hint about the structure of 
planar graphs with connectivities at least 3. 

(6.2) Lemma. (See [Flelmr; p.99]). 
If T is a planar graph for which K ( F ) ^ 3 , then any two facial circuits of T have at 
most one edge in common. 

Proof. Let F1 and F2 be two facial circuits in T which have two edges in com­
mon. If these edges are adjacent, then the situation in figure 6.1 (a) occurs (the 
two adjacent edges are the ones between nodes u and v). 
If the edges are non-adjacent, then the situation in figure 6.1 (b) occurs. 

\ 
u \ 

F1 Q F2 

/ 
* / 

/ 

(a) (b) 

Figure 6.1 Common edges in facial circuits Fj and F2. 
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In both cases, deletion of nodes u and v disconnects T, contradicting with the fact 
that T has connectivity at least 3. ü 

In an analogous way the following lemma is proved. 

(6.3) Lemma. If T is a planar graph for which ic ( r ) s3 , then any two nodes com­
mon to two facial circuits are adjacent, and the edge incident to the nodes is com­
mon to both circuits. 

Having some knowledge about the positions of facial circuits with respect to each 
other in planar graphs, we are interested in the facial circuits themselves, and in 
particular in the number of different kinds of facial circuits that may occur in 
symmetric planar graphs. It will appear that for any g>3 there exists a sym­
metric planar graph with facial circuits of length g. There is not much variety in 
the length of facial circuits in one particular symmetric planar graph, however. 
To show this we consider a lemma about edge-transitive graphs. 

(6.4) Lemma. Let T be a planar edge-transitive graph with deg~(r)>2, then 

1. All facial circuits of T are of at most two different lengths. 

2. If T contains a node of odd degree, then all facial circuits of T have the same 
length. 

Proof. 

1. Suppose T contains facial circuits of at least three different lengths. Then, 
there exist facial circuits Fj and F2 of different lengths, having an edge ej in 
common. But also, there exist facial circuits F3 and F4 of different lengths 
with a common edge e2 such that the length of F3 is different from the 
lengths of ¥1 and F2. This implies that e2 cannot be mapped onto e l t contrad­
icting with the edge-transitivity of T. 

2. Let there be facial circuits of two different lengths and suppose v is a node in 
T with odd degree. Then there exist at least two adjacent facial circuits of the 
same length, both containing v. However, the edge lying on both circuits 
cannot be mapped onto an edge lying in two adjacent facial circuits of dif­
ferent length. This contradicts with the edge-transitivity of T. o 

Since symmetric graphs are edge-transitive, the following holds for a symmetric 
planar graph T with optimal connectivity and degree at least 3. 

• All nodes of T have the same degree. 
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• Every two facial circuits in T have at most one edge in common. 

• If two facial circuits in T have two nodes in common, then these nodes are 
adjacent and the edge incident to the nodes is common to both circuits. 

• The facial circuits in T are of at most two different lengths. 

• If deg(T) is odd, then all facial circuits in T have the same length. 

Figures 6.2 (a), (b) and (c) show some infinite locally finite symmetric planar 
graphs. 

(a) (b) (c) 

Figure 6.2 Infinite locally finite symmetric planar graphs. 

The 2-dimensional mesh and the infinite tree Tk, described in chapter 4, are 
other examples of symmetric planar graphs. 
Symmetric planar graphs of which all facial circuits have the same length will be 
called supersymmetric graphs. Figures 6.2 (b) and (c) depict such graphs. 
Clearly, supersymmetric graphs are highly regular, which is the reason for their 
name. We are interested in supersymmetric graphs with finite facial circuit 
length. This length is called the girth of a supersymmetric graph. The girth of a 
supersymmetric graph will be denoted by g and the degree of the graph by k. A 
supersymmetric graph with parameters g and k will be denoted by Sgk. 

In order to be suitable candidates for underlying graphs, supersymmetric graphs 
should be exponential. Though exponentiality of supersymmetric graphs will be 
investigated in chapter 7, we give an impression about their exponentiality in this 
paragraph. 
Consider supersymmetric graphs of degree 3. The two extremes of these graphs 
are S63 and S ^ (g<6 is impossible if k=3 , as will be shown in paragraph 6.3). 

130 



Par. 6.2 Symmetric planar graphs 

The hexagonal grid, S63, is not exponential. The infinite tree SM3, however, is 
exponential. The important difference between them is their girth. Apparently, 
increase of the girth results in exponentiality. For supersymmetric graphs with 
degree 3, a girth equal to 7 is sufficient to effect exponentiality - the uniform 
exponentiality of 873 will appear to be about 1.55603. Exponentiality of S73 may 
also be concluded from the space deficiencies of the outer nodes in figure 6.3. 
S73 can not be embedded in the Euclidian plane without meeting 'space prob­
lems'. 

Figure 6.3 873. 

The supersymmetric graph Sg3 can be obtained from Escher's picture at the cover 
of this dissertation by placing nodes on all points adjoining to three different 
colours, and connecting them by edges according to figure 6.4. 

Figure 6.4 Construction of Sg3 from Escher's Circle limit II. 
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Sg3 also suffers from space deficiencies, which indicates that it is exponential. 
Indeed, exp(Sg3)~ 1.72208. 

The observation of space deficiencies is of course not a formal proof that a graph 
is exponential. The graph in figure 6.5 indicates that some care must be exer­
cised to conclude exponentiality from space deficiencies. This graph cannot be 
embedded into the Euclidian plane, but embedding it into 3-dimensional Eucli­
dian space raises no problems. 

Figure 6.5 A non-exponential planar graph. 

An opposite observation can be made without risk, however: if a graph can be 
embedded in the Euclidian plane without space problems, then it is not exponen­
tial. For this reason, we directly conclude that S63 (the hexagonal grid), S44 (the 
2-dimensional mesh), and S35 (the triangular grid) are not exponential. 

6.3 Classification of supersymmetric graphs 

In this paragraph supersymmetric graphs are classified by using a theorem of 
Grünbaum and Shephard, described in [GruShe]. In their book, Grünbaum and 
Shephard encounter supersymmetric graphs in the context of tilings. We can 
establish a one-to-one relation between tilings and supersymmetric graphs by 
making each tile uniquely correspond to a facial circuit. 

Before stating the theorem of Grünbaum and Shephard, we formally define the 
absence of space problems of a graph when drawn on the Euclidian plane. 

(6.5) Definition. A planar graph is uniformly bounded it there exist two fixed posi­
tive numbers p and P for which the graph can be drawn on a Euclidian plane, 
such that each face contains a circle of radius p and is contained in a circle of 
radius P. 
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(6.6) Theorem. (Gru'nbaum, Shephard; 1987). 
For every pair of positive integers g and k with 
(6.7) 1/g + 1/k < 1/2 
there exists a supersymmetric graph with girth g and degree k. Such a graph is 
only uniformly bounded if equality holds in 6.7, that is if (g,k) is (3,6), (4,4) or 
(6,3). If g and k do not satisfy inequality 6.7, then no supersymmetric graph 
with girth g and degree k exists. 

Proof. See [GruShe; 4.7.1]. □ 

In order to prove that a supersymmetric graph with parameters g and k exists, 
Gru'nbaum and Shephard give an explicit construction for it. The construction is 
used in the next paragraph, a reason to describe it here. 

First, the case g=3 , k>6 is considered. With a node v as centre, draw circles Cj, 
C2, C3>... of radii 1, 2, 3 construct k nodes on C : and connect them to v by 
edges. Each of the circle segments between two nodes on C^ will be considered 
as an edge. 
Suppose the construction has proceeded as far as determining all the vertices and 
edges in the closed disk determined by the circle Cr Let X; respectively Wj be 
the set of nodes on C; which are connected to 1 respectively 2 nodes on Ci_1 by 
edges (i^2). Let X1 consist of all nodes in Cj and let Wj be empty. Let x,= |X;|, 
W;=|Wj| ( i > l ) . 
Now, construct 

w i + i = x i + w i 

nodes on C i + 1 and join each of them by edges to two adjacent nodes on Ci( such 
that each node on C; is connected to two nodes on C i + 1 and no edges intersect. 
Thereupon construct for each node u in X; k —5 nodes on C i + 1 lying between the 
two nodes on C i + 1 adjacent to u, and join them by edges to u. In an analogous 
way, for each node u in Wj we construct k —6 nodes on C i + 1 lying between the 
two nodes on C i + 1 adjacent to u and connect the k —6 nodes to u. The number of 
nodes introduced in the latter two stages is 

xi+l = (k-5)Xj + (k-6)w;. 
Each of the line segments and arcs of C i + 1 determined by the nodes we have con­
structed will be an edge of the graph. This process goes on indefinitely whenever 
k>6 . 

For g=3 and k=7 this process results in the construction in figure 6.6. 

In the case g>4 again circles C1( C2, C3>... are drawn around a node v, and k 

133 



Supersymmetric graphs and some of their properties Ch. 6 

Figure 6.6 Construction of S37. 

nodes on Cj are constructed and connected by edges to v. Let Xt be the set of 
this nodes. Thereupon, between each two neighbouring nodes in Xx we construct 
g—3 nodes on Cj. The resulting k.(g—3) nodes on Cj constitute the set Yj. 
Each of the circle segments between two nodes on C^ will be considered as an 
edge. Suppose the construction has proceeded as far as determining all the ver­
tices and edges in the closed disk determined by the circle Cr Let X; be the set of 
nodes on Q that are joined by edges to nodes on C ^ , and Yj be the set of nodes 
on Q not so joined (i>2). LetXj=|X;|, yi=lYil f o r i > l . 
Then construct for each node u in X; respectively Yj, k—3 respectively k - 2 
nodes on C i+1 , and connect each member of such a group to u by edges so that 
no edges intersect. The group members lie consecutively on C i+1. This results in 

x i+1 = (k-3)Xj + (k-2)y; 

nodes on C i+1. Next, we choose g—4 or g—3 nodes on C i + 1 between each two 
adjacent nodes of the x i + 1 so far constructed. It is done in such a way that each 
of the x i + 1 regions lying between C; and C i + 1 has g nodes. 
It is easily seen that the number of nodes introduced at this stage is 

y i+i = (g-3) (x i + 1 - (x i + yi)) + (g-4)(x i + yi). 

As in the previous case each of the line-segments and arcs of C i+1 determined by 
the nodes constructed will be edges of the graph. This process goes on indefin­
itely whenever g£:4 and k>4 or g>6 and k s 3 . 
Figure 6.7 illustrates the graphs S45 and $73 constructed in this way. The reader is 
invited to compare these graphs with the graphs in figures 6.2 (c) and 6.3 respec­
tively. 
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(a) S45 (b) 873 

Figure 6.7 Constructions of Grü'nbaum and Shephard. 

Up to this point we didn't make profound use of the interpretation of Gru'nbaum 
and Shephard of supersymmetric graphs as tilings. Inasmuch as supersymmetric 
graphs with finite length facial circuits can be viewed as a tiling with finite tiles, 
they have infinite node- and edge-coherency (see appendix A). For, a plane tiled 
with finite tiles, each node being incident with but finitely many tiles, can only be 
split into two disjunct infinite subplanes by removing infinitely many tiles. From 
this we immediately conclude by using theorem 2.15, that supersymmetric graphs 
have optimal connectivity. 

6.4 Extreme nodes 

Having characterized supersymmetric graphs we are appointed to the task of 
determining their uniform exponentiality. For this purpose we shall draft a sys­
tem of recurrence equations in chapter 7 to express the number of nodes at dis­
tance d from some node v in a supersymmetric graph as function of the number 
of nodes at distance d—1 from v. The reason that a system of equations rather 
than a single equation must be drafted is that not all nodes can be dealt with 
identically. To cope with this, the nodes are grouped into classes; nodes within 
one class 'behave' in a uniform way with respect to v. Each equation describes 
the number of nodes in one of the classes at distance d from v. 
Every node will be marked by a combination of labels according to some algo­
rithm. Each combination is the representative of a class. There appears to be 
only a limited number of classes for supersymmetric graphs. To determine all 
possible combinations of labels we need to do some work in advance. This work 
is done in the remainder of this chapter. The actual computation of the uniform 
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exponentialities of supersymmetric graphs will be done in chapter 7. 
In the current paragraph we consider a property of supersymmetric graphs which 
will appear to be very useful in the deduction of all possible combinations of 
labels on nodes in supersymmetric graphs. This property is called smoothness 
and is described formally in the following definition. 

(6.8) Deflnition. Let u and v be nodes in a graph I \ then u is an extreme node 
with respect to v, if u has no neighbour win T lying at distance d(u,v) + 1 from v. 
A node will be called an extreme node in short if it is an extreme node with respect 
to some node in V. A smooth graph is a graph without extreme nodes. 

Trivially, each component of a smooth graph has infinitely many nodes. Fig­
ure 6.8 illustrates a (symmetric) graph with extreme nodes. The black nodes are 
extreme with respect to the node v. 

Figure 6.8 Extreme nodes in a symmetric graph. 

In this paragraph we prove the following theorem. 

(6.9) Theorem. Supersymmetric graphs are smooth. 

The proof of this theorem is subdivided in the following cases: 

A. case g=3, k^:6. 

B. case g^4, k s 4 . 

C. case g^6, k = 3. 

1. subcase g^=7, k = 3. 

2. subcase g=6, k = 3. 

By theorem 6.6 these cases cover all admitted g,k-values of supersymmetric 
graphs. We shall first prove some lemmas for these cases and then give the proof 
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of theorem 6.9. 
The general strategy followed in all cases is to prove that for each two nodes v 
and u in a supersymmetric graph T there exists a node x in T such that 
d(v,x) = d(v,u) + l. In all cases we assume T to consist of concentric circles C l f 

C2, C3 around a node v with cross-connections as defined by the construc­
tions of Griinbaum and Shephard in theorem 6.6. 

A. case g=3, fc>6 

(6.10) Lemma. If u is a node on C, ( i ^ l ) in ^ (k^6) , then d(u,v) = i. 

Proof. The construction of Griinbaum and Shephard yields immediately that 
each node on Cj is adjacent to (and only to) nodes on C ; ^ , C; and C i + 1 ( i^2) . 
Hence, a shortest path from v to u hits each Cj for l < j < i exactly once. o 

For the remaining cases ((g^4, k^4) and (gS:6, k = 3)) we first prove an addi­
tional lemma. 

(6.11) Lemma. Let u;, w; be nodes on C;, and u i + 1 , w i+1 be nodes on C i + 1 ( i ^ l ) 
in Sgk (g^3) , such that (u i ,u i+1),(w i ,w i+1)€E(r). Let P i + 1 be a shortest path on 
C i + 1 between u i+1 and w i+1. Then there exists a shortest path P; on Q between Uj 
and w; such that each node on C i + 1 adjacent to a node on P, lies on P;+i. 

Proof. Let Qj be the alternative path between u: and W: on C: (j=i or i+ 1). From 
the construction for the case g=£3 in theorem 6.6 we directly conclude that the 
situation in figure 6.9 will not arise, unless the length of P i + 1 equals the length of 
Qi+i-

W , . 1 

Figure 6.9 Situation occurring in lemma 6.11. 

In that case, however, the length of P; is equal to the length of Qj, so that their 
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names can be interchanged. Hence, the shortest paths P; and P i + 1 pass via the 
'same sides' of Q and C i+1 respectively. G 

B. case g^4 , k>4 

(6.12) Lemma. Let u; and w; be nodes on C; and u i + 1 and w i+1 be nodes on C i + 1 

( i> l ) in Sgk (g>4, k>4) , such that (u i ,u i+1),(w i ,w i+1)€E(r). Then, 
dci+1(Ui+i.wi+1) ^ dc/uj.Wj). 

Proof. Let d = dC((ui,wi). 
If d = l , then d C i i (u i + 1 ,w i + 1 ) s l , otherwise there would be a node on C i + 1 adja­
cent to two nodes on C;. 
If d > l , there lie at least d— 1 nodes between u; and w; on C;, thence the number 
of nodes on C i + 1 between u i + 1 and w i+1 is at least ( d - l ) . ( k - 3 ) . (Notice that 
lemma 6.11 is used implicitly here). From this we immediately deduce that 
dC1+l(ui+l>wi+l) s= ( d - l ) . ( k - 3 ) + l > d. □ 

(6.13) Lemma. Let u and w be two nodes on Q ( i^ l ) in Sgk (gs4, k ^ 4 ) , then 
there is no shortest path between them through Cj for j>i . 

Proof. Define n: = max {j | shortest path between u and w passes through C-. }. 
Suppose n>i , and let P be a shortest path between u and w passing through Cn. 
Let un and wn be nodes on C n nP having neighbours un_j and wa-i respectively 
on Cn_!nP. 
As a matter of fact such nodes un and wn exist. The previous lemma yields 
dCn(un,wn)S:dC|i_i(un_1,wn_1) from which we conclude that the path from un_i to 
wn_! via Cn is a roundabout route. This is in contradiction with the definition of 
P. □ 

(6.14) Lemma. If u ^ C ; ( i s l ) in Sgk (g>4, k>4) , then d(v,u i+1) = d(v,ui) + 1 for 
each u i + 1€C i + 1 for which (Uj,ui+1) êE(T). 

Proof. Let d = d(v,u;) and suppose d(v,u i + 1)^d for a neighbour u i + 1 of u; on 
C i + 1 . Let P be a shortest path from v to Uj+1. Then P does not pass through Cj 
for j > i + l , because of the previous lemma, and P does not pass through uj7 

because d(v,u;) = d. Suppose P lies on C i + 1 from u i + 1 up to a node w i+1. Then 
there is a node w; on C ;nP adjacent to w i+1. 
Since wi+1 lies on P and P is a shortest path, the following condition holds: 

d(v,wi+1) + d(w i+1,u i+1) = d(v,u i+1). 

In addition, d(u i+1,w i+1) = dC m(u i + 1 ,w i + 1) , giving 
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d(v,w i+1) < d-dC | + i(u i + 1 ,w i + 1) . 

From this it follows immediately that 

d(v,Wi) < d-d C i + i (u i + 1 ,w i + 1 ) - l . 

Furthermore, by Cauchy-Schwartz 

d(v,u;) < dCv.w^ + dqCwi.Ui). 

Combining the last two formulas we obtain 
d(v,Ui) < dCv.w^ + dc/Wi.U;) < 

d - d c i + 1 ( u i + i ' w i + i ) - 1 + dcK l(w i+i.u i + i) = d - 1 , 

which is a contradiction. D 

C. case g^-6, k=3 

Supersymmetric graphs of degree 3 need a special treatment, because some of the 
nodes on C; have no neighbours on C i + 1 . 
We remark the following: 

1. Of each two adjacent nodes on C, at least one has a neighbour on C i + 1 ( i ^ l ) . 

2. Two kinds of facial circuits between C; and C i+1 can be distinguished ( i ^ l ) : 

a. Circuits with 3 nodes on C; and g—3 nodes on C i + 1 . 

b. Circuits with 2 nodes on Q and g - 2 nodes on C i + 1 . 

We shall denote them by type a and type b circuits respectively. 

(6.15) Lemma. Let ui; w; be nodes on C;, and u i+1, w i+1 be nodes on C i + 1 ( i ^ l ) 
in Sg3 (g^6) , such that (Ui,ui+1),(Wj,wi+1)€E(r). Let P; be a shortest path on C; 

between u; and w; and let r be the number of nodes on P, which have no neigh­
bours on C i + 1 . Then, 

dc i+1(u i+1,w i+1) > (dCi(u i ,w i)-2.r)(g-3) + r(g-4) 
and 

r < dc.Cuj.Wj)^. 

Proof. There are dpCu^W;) — 2.r facial circuits of type b between Q and C i + 1 hav­
ing 2 nodes in common with P;. Each of them contributes g—2—1 to 
dc,+1(ui+i»wi+i)- Furthermore, there are r facial circuits of type a between Cj and 
C i + 1 having 3 nodes in common with P;, each of them contributing g— 3—1 to 
dcl+1(Uj+i,wi+1) (lemma 6.11 is used implicitly here). The first formula can 
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immediately be deduced from this. 
For the second part we notice that of each two adjacent nodes on C; at least one 
has a neighbour on C i+1 (remark 1). Hence, each node on C; having no neigh­
bour on C i + 1 is adjacent to a node on C; which has a neighbour on C i+1. So, 
r < dCi(Ui,Wi)/2. □ 

An easy calculation shows that 

dc1+1(Ui+i.wi+i) ^ -^-.dqCui.Wi) 

for r > l , and 
dc1+1(u i+i,w i+1) > (g-3).dC|(u i,w i) 

otherwise. Using this relations, we can easily prove the following two lemmas. 

(6.16) Lemma. Let u and w be two nodes on C; ( i s l ) in Sg3 (g>6), then there is 
no shortest path between them through C: for j>i . 

Proof. Identical to the proof of lemma 6.13. □ 

For nodes on C; having a neighbour on C i + 1 we have the following lemma. 

(6.17) Lemma. If u;£Cj has a neighbour u i + 1 €C i + 1 ( i ^ l ) in Sg3 (g2:6), then 
d(v,u i+1) = d(v,Uj) + l. 

Proof. Analogously to the proof of lemma 6.14. o 

For the nodes on C; having no neighbours on C i + 1 we need to distinguish two 
subcases. 

1. subcase g^7. 

2. subcase g=6. 

In both subcases we assume the remarks stated at the beginning of case C to be 
valid. 

Cl. subcase g^ 1, k = 3 

(6.18) Lemma. No two circuits of type a between C; and C i + 1 lie side by side in 
Sg3 (g^:7), i.e. two circuits of type a have no edge in common between Q and 
C i + 1 ( i > l ) . 
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Proof. There are 3 nodes on C1 having no neighbour in C2, thence 3 circuits of 
type 1 lie between Cj and C2. It is easily verified that they don't lie side by side. 
For the case i> 1 let Fj and F2 be two circuits of type a lying side by side between 
C; and C i+1 . Let mj be the middlemost node of the 3 nodes of F: on C; (j=l ,2), 
then it has no neighbours on C i+1 , otherwise Fj wouldn't be facial. Hence, mj has 
a neighbour on Ci_1. Let's call it mj (see figure 6.10). 

Figure 6.10 Situation occurring in lemma 6.18. 

Clearly, there are no nodes between m{ and m2 on C ^ with neighbours on Q. 
Hence, the circuit between C; and C J . J containing m1( m2, m[ and m2 is facial. 
This circuit contains only 3 nodes on Q. If it is a circuit of type a, then g—3=3, 
which is impossible. If it is a circuit of type b, then g—2=3, which is also impos­
sible. We conclude that Fj and F2 don't lie side by side. o 

(6.19) Lemma. If UJÉCJ has no neighbours on C i + 1 ( i ^ l ) in Sg3 (g^7) , then 
there exists a node XjÉCj for which (Xj.UjKEtr) and d(v,X;) = d(v,Uj) + l. 

Proof. The case i= 1 is easily verified. 
For the case i > l we notice that u; is part of two facial circuits between Q and 
Ci_1. The previous lemma implies that at least one of them contains g—2 nodes 
on C;. Let F be a circuit satisfying this, and let x; be the neighbour of u; on C; 

lying on F. Let u;_j be the neighbour of u; on C ^ . 
Let d = d(v,Uj) and suppose d(v,Xj)<d. This causes a contradiction in the follow­
ing way. Let P be a shortest path between x; and v. It does not intersect Cj for 
j> i because of lemma 6.16. P crosses C; from x; through at least one node which 
has a neighbour in C ^ . Let y; be the unique node on PHQ with a neighbour on 
c i- i> Yi l v m g a t minimal distance from x; (y^Uj). Clearly, y; lies on F and 
d(Xj,yj) = g - 4 (see figure 6.11). Since P is a shortest path, we obtain 
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d(v,yi) = d(v,x i)-d(x i,y i) < d - ( g - 4 ) . 

— c, 

" ~ - c M 

Figure 6.11 Situation occurring in lemma 6.19. 

Lemma 6.17 implies dCv^.^) < d —(g-3) and dCv.Ui.j) = d—1. Hence, 

dCui.j.yi.j) > dCv.Ui.^-dCv.yi.j) > d - l - ( d - ( g - 3 ) ) = g - 4 . 

Each node between u ^ and y;_j on Ci_1 has no neighbours on C;, because F is 
facial. Then, by remark 1 there exists at most 1 node on C ^ between Uj.j and 
yi_! having no neighbours on C;. Hence, d(u i_1,y i_1)^2 implying g - 4 ^ 2 , 
which is a contradiction. o 

C2. subcaseg=6, k = 3 

To cope with the subcase g=6, first some general lemmas must be proved. 

(6.20) Lemma. Let T be an infinite locally finite planar graph in which all facial 
circuits have finite even length. Then all finite circuits have even length. 

Proof. Suppose T contains an finite odd circuit C. Then C is not a facial circuit. 
Hence, there exist two nodes u and w on C connected by a path P which is sur­
rounded (see definition 6.1) by C. P divides C into an odd and an even circuit, 
i.e. one of the circuits being a proper subgraph of CUP has odd length and the 
length of the other is even. Repeating the division of the odd circuit, results 
again in an odd and an even circuit. Since C surrounds only a finite number of 
facial circuits, this process must stop at some moment, resulting in an odd facial 
circuit. This is a contradiction. o 

This lemma will also be used in the proof of lemma 6.33. 

(6.21) Lemma. Let x, y and z be nodes in an infinite locally finite planar graph 
with facial circuits of even length, z being a neighbour of x, then d(y,z):?td(y,x). 
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Proof. Suppose d(y,z) = d(y,x). Let Pz and Px denote the shortest paths from y to 
z and x respectively. Let y' be the unique node in PZHPX having the maximum 
distance to y (PznPx^=0 since it contains y). Let Pz be the part of P2 lying 
between y' and z, and let Px be defined analogously. Then, the circuit y'PzzxPxy' 
has odd length, which is a contradiction. Q 

(6.22) Corollary. If x is extreme with respect to y in the previous lemma, then 
d(y,z) = d(y ,x) - l . 

This corollary will be used in lemma 6.23, which is tailored to the subcase k = 3, 
g=6. The hexagonal grid distinguishes itself by the other supersymmetric graphs 
of degree 3 in that two circuits of type a lying between Cj and Cj+ 1 are allowed to 
lie side by side (see figure 6.12). 

Figure 6.12 Type a and b circuits in the hexagonal grid. 

(6.23) Lemma. If the node U;€Cj has no neighbours on C i + 1 ( i s l ) in S63, then 
d(v,xi) = d(v,ui) + l for each neighbour x, of u; on Q. 

Proof. The case i= 1 is easily verified. 
For the case i > l let F; be the facial circuit between Q and C i + 1 containing Uj. 
Then, F; is a circuit of type a and u; is the middlemost node of the 3 nodes on 
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FiRC;. 
Let d = d(v,Ui), and suppose x; is a neighbour of uj on Ci not lying at distance d + 1 
from v. Then d(v,x;) = d - l because of corollary 6.22. On account of remark 1 
x, has a neighbour on C i+1 , and so, x; has no neighbours on C ^ . It is proved 
that the condition d(v,Xj) = d - 1 causes a contradiction in the following way. 
Let y; be the neighbour of x; on C; not equal to u;. The shortest path from x; to v 
does not pass through Cj (j>i) because of lemma 6.16, and it does not pass 
through u; either. Hence, it passes through yi; which implies d(v,yi) = d —2. Let 
tj—! be the neighbour of u; on C ^ j . Then, d(v,ti_1) = d - l (lemma 6.17). The 
facial circuit between C ^ and Q which contains ui( xi7 yj and tj_j will be denoted 
by Fi - j . 
We shall prove that FJ_J is a circuit of type a, i.e. that the situation in figure 6.13 
occurs. If Fi_j is of type b, then four of its nodes lie on C;. Then y; does not 
have neighbours on Ci_1 but y; does have a neighbour Z; on C; not equal to xi( 

and z; has a neighbour on C ^ . We shall denote the latter by si_1. 
Inasmuch as the shortest path between x; and v passes through Z;, d(v,Zj) = d —3. 
Lemma 6.17 implies d(v,si_1) = d - 4 . Nodes si_1 and tj_i are both part of Fi_1( 

thence d(ti_1,si_1) = 1, implying d(v , t i _ 1 )<d-4+l = d - 3 , which is a contradic­
tion. Hence, Fi_1 is a facial circuit of type a and y; has a neighbour on Cj.j 
(which shall be denoted by x^j) . 
Since Fj . j is of type a, there exists a node on Q . j between ti—1 and Xj.j. It will 
be denoted by ui_1 (see figure 6.13). From lemma 6.17 we conclude 
d(v,xi_i) = d — 3. Together with the knowledge that d(v,ti_1) = d - 1 this implies 
d(v,u i_1) = d - 2 . 

Figure 6.13 Situation occurring in lemma 6.23. 

We just proved that if u; is a node on C; (is2) without neighbours on C i + 1 and 
with a neighbour x; on C; for which d(v,Xi) = d(v,Ui)-l, then there exists a node 
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U;_j on Ci^1 without neighbours on C; and with a neighbour xi^1 on C^j for 
which d(v,xi_1) = d(v,ui_1) — 1. Using Descente Infinie (see appendix A) we 
deduce that there exists a node u^ on Cj with a neighbour Xj on C1? for which 
d(v,x1) = d(v,u1) —1. Since uj has no neighbours on C2, it is adjacent to v. Hence 
d(v,x1) = 0, which is a contradiction. We conclude that d(v,Xi) = d+ 1. □ 

At this point we can prove theorem 6.9. 

Proof of theorem 6.9. 
Let v be an arbitrary node in a supersymmetric graph I \ It is considered the cen­
tre node of the circle constructions of Grünbaum and Shephard. We reconsider 
the main cases ( i ^ l ) : 

A. caseg=3 ,k^6 . 
It is easily verified that each node u; on C; has a neighbour u i + 1 on C i+1 . 
Lemma 6.10 implies d(v,ui+1) = d(v,U;) + 1 . 

B. case gS4, k ^ 4 . 
Lemma 6.14 states that each node u; on Cj has a neighbour u i + 1 on C i + 1 for 
which d(v,u i+1) = d(v,ui) + l. 

C. caseg>6,k = 3. 
Lemma 6.17 states that for each node U; on Cj having a neighbour u i + 1 on 
C i+1 the following holds: d(v,u i+1) = d(v,Uj)4- 1. If u; has no neighbours on 
C;, the following subcases must be considered. 

Cl. subcase g>7, k = 3. 
Lemma 6.19 states that for each node u; on C, having no neighbours 
on C i + 1 there exists a neighbour x, of u; on C; for which 
d(v,xi) = d(v,ui) + l. 

C2. subcase g=6, k = 3. 
Lemma 6.23 states that for each node u; on C, having no neighbours 
on C i+1 and each neighbour Xj of u; on C; the following holds: 
d(v,xi) = d(v,ui) + l. 

In all cases we conclude that for each node u in T there exists a node x in T such 
that d(v,x) = d(v,u) + l. This implies that T has no extreme nodes with respect to 
v. Hence, T is smooth. D 

The interest of theorem 6.9 will become clear after the next lemma, which is a 
powerful extension of our equipment. This lemma will be used in the remainder 
of this chapter and in chapters 7 and 8. 
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(6.24) Lemma. Let T be an infinite locally finite connected smooth graph and S 
be a separating set in T which separates a finite component K from T. Then for 
each node x € V ( D - V ( K ) and each node y in K: 

d(x,y) < max d(x,z). 
z€S 

Proof. Suppose there exist an x€V(r ) -V(K) and a y€V(K) such that 

d(x,y) ^ max d(x,z). 
zes 

The absence of extreme nodes in T implies the existence of a neighbour ua of y 
for which d(x,u1) = d(x,y) + 1 . Inasmuch as 

d(x,Ui) > max d(x,z), 
zes 

Uj does not lie on S. Then, it lies in K since y does not lie in S. Analogously, u : 

has a neighbour u2 for which d(x,u2) = d(x,u1) + l, implying that u2 lies in K. 
Continuing this process results in a 1-way infinite path y,u1,u2,u3,... lying 
entirely in K. This causes a contradiction since K consists of only finitely many 
nodes. o 

Lemma 6.24 is applicable to supersymmetric graphs since they are smooth. It 
will be used in the following way. 
Let C be a non-facial finite circuit in a supersymmetric graph T. Since T is 
planar, C is a separating set separating a finite component K from T. By defini­
tion C surrounds K. Lemma 6.24 rules out all configurations which give rise to a 
node v in r and a circuit C properly surrounding a node w such that 

d(v,w) S: max d(v,u). 
u€V(C) 

Such configurations will frequently occur in a large number of lemmas in para­
graph 6.5 and chapters 7 and 8 as a result of suppositions made in the lemmas. 
Then, the contradictions caused by lemma 6.24 prove that these suppositions are 
false. 

6.5 Relative Distance labelings of smooth planar graphs 

In this paragraph we define labelings for supersymmetric graphs and deduce 
some properties of the labelings. As was stated in the previous paragraph, these 
labelings will be used to differentiate between nodes in supersymmetric graphs. 
This is necessary because not all nodes 'behave' identically with respect to a par­
ticular node v. Labelings ease the draft of recurrence equations describing the 
number of nodes as function of the distance to some central node v. The label­
ings will also be used in chapter 8 to construct convex hulls of balls in supersym­
metric graphs. 
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(6.25) Definition. The Relative Distance labeling (abbreviated as RD-labeling) of a 
planar connected graph T with respect to a node v€V(r) is a labeling which 
attaches to each tuple (u,F), F being a facial circuit in Y and u€V(F), a label 
RD-1 defined by 

RD-l(u,F) := d(u ,v) - min d(w,v). 
w6V(F) 

This label is called the RD-label of u in F. If uj£V(F), then RD-l(u.F) is not 
defined. 

Figure 6.14 shows the RD-labelings of four planar graphs with respect to a 
node v. 
All RD-labelings in this dissertation are labelings with respect to a particular 
node v. In each facial circuit F in a graph T, an RD-label 0 occurs at the nodes of 
F lying the most nearby to v. These nodes will be called the zeros of F. Trivially, 
the RD-labels of all other nodes in F are greater than 0. 
We are interested in the combinations of the RD-labels attached to the nodes of 
supersymmetric graphs. In the graphs in figure 6.14 some combinations occur at 
many nodes and others do not occur at all. Which combinations occur in super-
symmetric graphs will be investigated in detail in chapter 7. To determine all 
feasible combinations, we need to have some knowledge about the RD-labels in 
facial circuits. This will be investigated in the subsequence of this paragraph. 
We shall consider the RD-labels in the finite facial circuits of smooth planar 
graphs. 
Let's first consider the zeros in facial circuits of smooth planar graphs. 

(6.26) Lemma. If T is a smooth planar graph, then every two zeros of a facial 
circuit F in T are adjacent. 

Proof. Suppose zx and Z2 are two non-adjacent zeros in F. Let P and Q be the 
two paths connecting zx and Zj on F. Let Qx and G2 be the shortest paths from zx 
and Z2 respectively to v, and v' be the unique node on G1nG2 with maximum 
distance from v. The subpaths of G: from v' to z-. will be called G| (j= 1,2). This 
way of constructing a node v' and subpaths G{ and G2 from the paths Gj and G2 

will very frequently occur in proofs in the remainder of this chapter and in 
chapter 7. 
Two cases can be distinguished: 

1. Q is surrounded by the circuit v'Giz1Pz2G2v'. 

2. P is surrounded by the circuit v'G{z1Qz2G2v', 

Without loss of generality we assume the first case occurs (see figure 6.15). 
Let x be the node with the largest distance from v, of all the nodes on Q not equal 
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(c) a symmetric graph (d) a finite planar graph 

Figure 6.14 RD-labelings of four graphs with respect to node v. 

to zi and zj. Then, d(v,x)2:d(v,Zj) (j=l,2), because zj and Z2 are zeros in F. 
Since d(v,u)^d(v,Zj) for each node u on Gj (j=l ,2), x is a node on the circuit 
v'GiZ1Qz2G2v' lying at maximal distance from v. Since T is smooth there exists 
a node y which is adjacent to x and for which d(v,y) = d(v,x) + l. This node does 
not lie on the circuit v'GjZjQ^G^v'. 
Since F is a facial circuit, node y is properly surrounded by the circuit 
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Figure 6.15 Situation occurring in lemma 6.26. 

v'GiZ1Qz2G2v'. Applying lemma 6.24 we obtain a contradiction. Hence, z1 and 
Z2 are adjacent. o 

(6.27) Lemma. If T is a smooth planar graph, then every facial circuit F in T 
contains at most two zeros. 

Proof. If F contains more than 2 zeros, then by the previous lemma it is a trian­
gle. Let x, y and z be the nodes of F and G1( G2 and G3 respectively the shortest 
paths from v to them. One of the nodes of F is properly surrounded by the cir­
cuit made up by the shortest paths to the other two nodes and the edge which con­
nects these two (see figure 6.16). 

Figure 6.16 Situation occurring in lemma 6.27. 

Furthermore, 

d(v,x) = d(v,y) = d(v,z)>d(v,u) 
for any node u on G1? G2 or G3. Application of lemma 6.24 causes a contradic­
tion . n 

In the subsequence of this chapter and in chapters 7 and 8, the maximum RD-
label in a facial circuit will be denoted by 'm'. 
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(6.28) Lemma. If T is a smooth planar graph, then each node with RD-label i, 
( i^m — 1) in a facial circuit F in T has a neighbour with RD-label i+ 1 in F. 

Proof. The case i=0 is directly implied by lemma 6.27. 
In the case i>0, we suppose that there exists a node y with RD-label i in F having 
two neighbours Xj and x2 with RD-labels i— 1 or i in F. Let Gx and G2 be the 
shortest paths from v to xx and x2 respectively. We define v', G{ and G2 in the 
usual way. The path on F between Xj and x2 not passing through y contains a 
node with RD-label m. This node is different from Xj and x2, because i ^ m - 1 . 
The circuit v'GJx1yx2G2v' does not surround this node because of lemma 6.24. 
Hence, this circuit properly surrounds a neighbour z of y at distance d(v,y) + l 
from v (see figure 6.17). There must be such a neighbour since T is smooth. 

x2 

Figure 6.17 Situation occurring in lemma 6.28. 
Then, application of lemma 6.24 gives a contradiction. From this contradiction 
we conclude that y has a neighbour with RD-label i-t-1 in F. n 

(6.29) Lemma. If T is a smooth planar graph, then each node with RD-label i, 
( l^ i^m—1) in a facial circuit F in T has a neighbour with RD-label i - 1 in F. 

Proof. Let y be a node with RD-label i in F having two neighbours Xx and x2 with 
RD-label i or i+ 1 in F. Assume that z is a zero on F and G1 and G2 are shortest 
paths from v to y and z respectively. Gj, G2 and v' are defined in the usual way. 
Let Pj be the path y, Xj,...,z on F (j=l,2). Two cases can occur: 

1. Pa is surrounded by the circuit v'GiyP2zG2v'. 

2. P2 is surrounded by the circuit v'GJyPjzG^v'. 

Without any loss of generality assume the first case occurs (see figure 6.18). 
Repeated application of lemma 6.28 yields a node on Pj with RD-label m in F. It 
is properly surrounded by the circuit v'GJyP2zG2v' and its distance to v is larger 
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Figure 6.18 Situation occurring in lemma 6.29. 

than or equal to the distance to v of any node of the circuit, which is impossible 
by lemma 6.24. From this contradiction we conclude that y has a neighbour with 
RD-labeli-1 in F. □ 

(6.30) Lemma. If T is a smooth planar graph, then every two nodes with RD-
label m i n a facial circuit F are adjacent. 

Proof. Let x and y be two non-adjacent nodes with RD-label m in F. Let F1 and 
P2 be the two paths between x and y on F and Zj be a node on Pj ( j=l ,2) , not 
equal to x and y, z} having the smallest RD-label in F of all nodes on Pj. The 
nodes Zj and z^ exist since x and y are not adjacent. Let Gj be a shortest path 
from v to Zj (j=l,2) and let G[, G£ and v' be defined in the usual way. Then, 
d(u,v)sd(w,v) for any node u on Gj and any node w on F. Furthermore, x.ygGj 
(j=l,2). Hence, one of the following situations occurs: 

1. The circuit v'GjZj.-.Cvia F)...y...(via F^.-ZjG^v' properly surrounds node x. 

2. The circuit v'G[zi...(y'm F)...x...(via F)...Z2G2v' properly surrounds node y. 

Both situations are impossible by lemma 6.24. Hence, each two nodes with RD-
label m in F are adjacent. o 

(6.31) Lemma. If T is a smooth planar graph, then every facial circuit F of T 
contains at most two nodes with RD-label m. 

Proof. The previous lemma implies that if F contains three nodes with RD-label 
m, then it is a triangle. In that case, however, all nodes in F have RD-label m, 
which is impossible. E 

In the preceding lemmas we have proved that for every facial circuit F in a 
smooth graph T: 
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1. F has at most two zeros. 

2. If F has two zeros, they are adjacent. 

3. Each node with RD-label i ( l ^ i ^ m - 1 ) in F has two neighbours with RD-
labels i - 1 and i+ 1 respectively in F. 

4. F contains at most two nodes with RD-label m. 

5. If F contains two nodes with RD-label m, then they are adjacent. 

This immediately implies the following corollary. 

(6.32) Corollary. If T is a smooth planar graph, then the only feasible RD-
labelings of its even facial circuits are the ones in figure 6.19 and the only feasible 
RD-labelings of its odd facial circuits are the ones in figure 6.20 (m is the max­
imum RD-label in the circuit under consideration). 

(a) Type I facial circuit 

O O O 
0 1 2 

0 1 2 
O O O 

O O O 
m-2 m-1 m 

m-2 m-1 m 
— O — O — O 

(b) Type II facial circuit 

Figure 6.19 Admitted RD-labelings of even facial circuits in a smooth graph. 

Smoothness of a graph forces the RD-labelings of its facial circuits to have the 
description imposed by corollary 6.32. Indeed, the smooth graphs in fig­
ures 6.14 (a) and (b) have the labelings as described in corollary 6.32. The graph 
in figure 6.14 (c) contains facial circuits with three zeros, proving that this graph 
is not smooth. 
Facial circuits with one respectively two zeros will be called type /respectively type 
II facial circuits. 
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—o—o—o 
m-2 rn-1 

m-2 m-1 m 

—o—o—o 
(a) Type I facial circuit 

(b) Type II facial circuit 

Figure 6.20 Admitted RD-labelings of odd facial circuits in a smooth graph. 

(6.33) Lemma. If T is a smooth planar graph of which all facial circuits have 
even length, then the facial circuits are of type I. 

Proof. Suppose F is an even facial circuit in T with two zeros z-^ and Z2- Let Gx 

and G2 be the shortest paths from v to Zj and Zj respectively. G{, G2 and v' are 
defined in the usual way. Then, the circuit v 'GJz^G^v' has odd length, which 
is in contradiction with lemma 6.20. Hence, F contains only one zero. □ 

(6.34) Lemma. Let T be a smooth planar graph of which all facial circuits have 
odd length, then T contains facial circuits of both types. 

Proof. T contains type I facial circuits since all facial circuits containing v are of 
type I. Let Cj be a type I facial circuit and u and w be the nodes with maximum 
RD-label in Cj. Let C2 be the facial circuit having u and w in common with Cj. 
Then, RD-l(u,C2) = RD-l(w,C2) = 0 or RD-l(u,C2) = RD-l(w,C2) = m, where rn is 
the maximum RD-label in C2. ' 
Suppose that C2 is of type I, i.e. RD-l(u,C2) = m. Let zx and Z2 be the zeros in Cj 
and C2 respectively and let the shortest paths from v to them be Gj and G2 

respectively. Define G[, G2 and v' in the usual way. Let P; and Q ; be the paths 
on C; from zj to u and w respectively (i= 1,2). Then there are two cases: 

• The circuit v'G{z1P1uP2Z2G2v' properly surrounds w, 

• The circuit v'GÏZjQjwQ^^G^v' properly surrounds u. 
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Both cases give a contradiction by lemma 6.24. Hence, RD-l(u,C2) = RD-
l(w,C2) = 0, i.e. C2is of type II. o 

Application of corollary 6.32, lemma 6.33, and lemma 6.34 to supersymmetric 
graphs with girth g yields m = g/2 for even g and m = (g- l ) /2 for odd g. When­
ever any RD-label m is used in a supersymmetric graph in chapters 7 and 8, it is 
supposed to be defined in the above way. The characteristics of RD-labels within 
a facial circuit of a supersymmetric graph, given by corollary 6.32, lemma 6.33, 
and lemma 6.34, are implicitly assumed and used in chapters 7 and 8. 

6.6 Concluding remarks 

In this chapter we introduced an infinite class of infinite planar graphs with fixed 
finite degree and optimal connectivity, the class of supersymmetric graphs. 
These graphs are highly regular. The uniform exponentialities of these graphs 
are not known yet: they will be determined in the next chapter. The preliminaries 
for this have been made in paragraph 6.4, by considering a special property of 
graphs, smoothness, and in paragraph 6.5 by dealing with special labelings of 
planar graphs, their RD-labelings. 
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7 

Uniform exponentialities of supersymmetric graphs 

Tyger! Tyger! burning bright 
In the forest of the night, 
What immortal hand or eye 
Could frame thy fearful symmetry? 

William Blake (1757-1827) 

7.1 Introduction 

In this chapter the uniform exponentialities of all supersymmetric graphs are 
determined. This is done in two stages. 
In the first stage we draft recurrence equations which describe the number of 
nodes at a certain distance d from a node v in a supersymmetric graph as func­
tion of d. These recurrence equations will appear to be linear equations. Conse­
quently, the system of equations corresponding to the supersymmetric graph Sgk 

can be written as N(d) = Agk.N(d —1), where N(d) is a vector and Agk is a matrix. 
In the second stage we consider the eigenvalue of the matrix Agk. The largest 
eigenvalue of Agk will appear to be equal to the uniform exponentiality of the 
corresponding supersymmetric graph Sgk. 

To draft the recurrence equations, we need to differentiate between the nodes of 
supersymmetric graphs. For this reason we introduced RD-labelings. The nodes 
are differentiated according to the combinations of RD-labelings attached to 
them. In general, an RD-labeling attaches deg(u) RD-labels to a node u. A rota­
tion around u, which starts in one of the labels, results in a sequence of deg(u) 
consecutive RD-labels. We call such a sequence an RD-combination of u. Two 
different RD-combinations of some node which arose from choosing a different 
starting label or direction of rotation, will be considered identical. More for­
mally: 
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(7.1) Definition. The Relative Distance combination (abbreviated as RD-combina­
tion) of a node u in a planar connected graph T with respect to a. node v^V(r) is a 
sequence of RD-labels of u with respect to v, (RD-l(u,F1),RD-l(u,F2),...,RD-
l(u,Fdeg(u))), such that facial circuit F; is adjacent to F i + 1 (l<i<deg(u)) and Fj is 
adjacent to F d e g ^ . All possible sequences of RD-labels of u defined in this way 
are considered to be identical, thus constituting a unique RD-combination of u. 
The RD-combination of u is denoted by RD-c(u). 

All RD-combinations discussed in this dissertation will be RD-combinations with 
respect to the node v. For convenience, we leave the commas and the brackets 
out of RD-combinations. 
It is easily seen that v is (the only node) completely labeled by zeros. Hence, the 
RD-combination of v is always 0 d e g ^ (in analogy to language theory a superscript 
k denotes a k-fold succession of the character being superscripted). Any neigh­
bour of v in the graph in figure 6.14 (c) has RD-combination 0011, which is 
identical to 1001, 1100 and 0110 but not to 1010. 
Each RD-combination will give rise to a variable denoted by 'N' with the RD-
combination as subscript. We consider variables identical if the RD-combina­
tions in their subscripts are identical, e.g. N012=N102=N210. The number of 
nodes at distance d from v and labeled with a particular RD-combination comb 
will be denoted by Ncomb(d). For example, N011(l) = 3 in figures 6.14 (a) and 
6.14 (b). In the recurrence equations corresponding to a supersymmetric graph 
Ncomb(d) w i l 1 b e expressed as function of N c o m b i (d - l ) , N c o m b 2(d-l) 
Ncomb(d— 1), where r is the total number of different RD-combinations occurring 
in the graph and 'comb' is one of these combinations. The variable r appears to 
be finite for supersymmetric graphs, i.e. each supersymmetric graph exhibits only 
a finite number of different RD-combinations. 
In paragraph 7.2 we make some preparations to determine the feasible RD-com­
binations. In paragraph 7.3 we determine the feasible RD-combinations of the 
nodes in supersymmetric graphs with even girth, and draft the systems of 
recurrence equations corresponding to them. In paragraph 7.4 the same will be 
done for supersymmetric graphs with odd girth. Thereupon, in paragraph 7.5 
the uniform exponentialities of supersymmetric graphs are deduced from the 
recurrence equations. 

7.2 Preparations for the draft of recurrence equations 

The examples in figures 6.14 (a) and (b) suggested that only a limited number of 
RD-combinations may occur in supersymmetric graphs. Indeed, most combina­
tions are not permitted in supersymmetric graphs. We shall deduce a complete 
description of all feasible RD-combinations in supersymmetric graphs. To 
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determine all feasible RD-combinations in a particular supersymmetric graph T, 
a kind of induction method will be used. From the RD-combination of a node 
uCTjj.^v) we determine the RD-combinations of all neighbours of u in rd(v). 
When started in v, this process results in the fixed set of all feasible RD-combina­
tions in the supersymmetric graph under consideration. 
During this process it is often necessary to rule out infeasible RD-combinations. 
We prove an RD-combination to be infeasible by considering two of its RD-la­
bels, and proving that they can not occur together in the RD-combination. The 
two RD-labels considered in an RD-combination are often chosen such that they 
belong to two adjacent facial circuits. If the two RD-labels are i and j , then the 
resulting configuration will be denoted by adj j/'(see figure 7.1). 

> 

Figure 7.1 Adj ij. 

Whenever we refer in this chapter to adj ij for some values of i and j , such a con­
figuration is meant. When proving results about RD-combinations we shall often 
refer to pictures rather than writing long-winded stories. 
The following lemma will be used very often for establishing whether an RD-
combination is feasible. 

(7.2) Lemma. Let x be a node in a supersymmetric graph T and Zj z,. and 
vl'---> Yk-r be the neighbours of x, and let a, b, c, p, q, i, i + 1, j , and j+1 be 
RD-labels in T according to figure 7.2 ( l < i < m - l , l < j < m - l , l < r < k - 2 , 
l < s < k - r - l ) . 

Figure 7.2 Situation occurring in lemma 7.2. 

Then,a=0. 
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Proof. It is sufficient to prove that b = c = a + 1 . 
If s = l , then b = a + l . 
If s > l , then b = a + l too. For, suppose b s a . Then, let Gj and G2 be the shortest 
paths from v to zj and ys respectively. Define G{, G2, and v' in the usual way 
(see the proof of lemma 6.26). Trivially, node x does not lie on Gj and G2, since 
d(v,x)>d(v,u) for any node u on Gj or G2 (notice that p ^ i and q^j) . This 
implies that v'GjZjxysG^v' is a circuit. It properly surrounds either y1 or y^-r, 
both yielding a contradiction by lemma 6.24. Hence, b = a + l . 
In an analogous way it is proved that c= a + 1 . Hence, a=0. o 

This lemma immediately implies the following lemma. 

(7.3) Lemma. If g>3, then the neighbours of v have RD-combination 0 k _ 2 l l . 

Proof. Let r = l in lemma 7.2 and z^ be equal to v. Then, i= j= l and x is a 
neighbour of v. Since g>3, d(y1,v) = d(yk_1,v) = 2, hence lemma 7.2 can be 
applied. It implies that a=0 for any a placed between ys and y s+1 like in fig­
ure 7.2 (s= l , . . . , k -2 ) . Hence, RD-c(x) = 0 k _ 2 l l . o 

This lemma is valid for supersymmetric graphs with even girth as well as super-
symmetric graphs with odd girth. The RD-combinations of nodes at distance at 
least 2 from v will be determined in the next two paragraphs. 

7.3 Equations for supersymmetric graphs with even girth 

In this paragraph the recurrence equations for supersymmetric graphs with even 
girth are designed. Before drafting the equations corresponding to a particular 
supersymmetric graph, we need to know all feasible RD-combinations in the 
graph. To determine all feasible RD-combinations in supersymmetric graphs 
with even girth, we consider the following cases: 

A. case g=4, k ^ 4 . 

B. ca seg>6 ,k>3 . 

1. subcase g^6 , k ^ 4 . 

2. subcase g^6 , k=3 . 

a. subsubcase g&8, k = 3. 

b. subsubcase g=6, k = 3. 

By theorem 6.6 these cases cover all feasible g,k-values for supersymmetric 
graphs with even girth. 
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In all the cases we assume that the RD-combinations are with respect to the 
node v. We know that for all cases, RD-c(v) = Ok and RD-c(w) = 0 k - 2 l l for each 
neighbour w of v. 

A. case g=4, k^.4 

(7.4) Lemma. Adj 22 is not feasible in S4k (k>4). 

Proof. If adj 22 occurs in S4k (k&4), then the situation in figure 7.3 will arise 
(nodes u and x2 coincide if k=4). 

_,Q; i? 

Figure 7.3 Situation occurring in lemma 7.4. 

If d(v,z) = 2 then Xj and x2 would coincide with v (and so they would also coin­
cide with nodes w, u, etc.). In that case the degree of node y would be 2, which 
is a contradiction. Hence, d(v,z)>2. Let G: be the shortest path from Xj to v 
(j=l,2). G{, G2 and v' are defined as usual. The circuit v'GjX-jyx^^v' sur­
rounds node w properly, because it does not surround node z properly by 
lemma 6.24. Applying lemma 6.24 again gives b<a, which implies a = 2. In the 
same way it is proved that c=2. 
We have proved that any subcombination adj 22 at a node at distance d from v 
implies the existence of the same subcombination at a node at distance d— 1 from 
v (d&3). Then, using Descente Infinie we obtain the subcombination adj 22 at a 
node at distance 2 from v. This is a contradiction. o 

(7.5) Lemma. If w is a node in S4k (k>4) for which RD-c(w) = 0 k _ 2 l l and 
d(w,v)>l, then w has k— 1 neighbours at distance d(w,v) + l from v, of which 

• 2 have RD-combination 0k_3121, 

• k - 3 have RD-combination O*-2!!. 

The remaining neighbour of w lies at distance d(w,v) —1 from v. 

Proof. RD-c(w) = Ok - 2 l l induces the situation in figure 7.4. It follows directly 
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Figure 7.4 Situation occurring in lemma 7.5. 

that d(uj,v) = d(w,v) + l for j = l k - 1 . Clearly, the remaining neighbour of w 
lies at distance d(w,v)- l from v. 
The previous lemma implies a<2. Furthermore, since a—1 is an RD-label we 
have a—1>0. From this we deduce that a = l , and so b = 2. Then, lemma 7.2 
implies RD-c(u1) = RD-c(uk_1) = 0k - 3121. Furthermore, lemma 7.2 implies RD-
c(uj) = Ok_2ll for j = 2 k - 2 . a 

(7.6) Lemma. If w is a node in S4k (k>4) for which RD-c(w) = 0k_3121 and 
d(w,v)>:2, then w has k - 2 neighbours at distance d(w,v) + l from v, of which 

• 2 have RD-combination 0k - 3121, 

• k —4 have RD-combination O1 '-2!!. 

The remaining 2 neighbours of w lie at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = 0k-3121 induces the situation in figure 7.5. It follows directly 
that d(Uj,v) = d(w,v) + 1 for j = l k —2. Clearly, the remaining two neighbours 
of w lie at distance d(w,v) — 1 from v. 
In a way similar to the previous lemma we obtain a = l and b=2. Then, 
lemma 7.2 implies RD-c(u1) = RD-c(uk_2) = 0k - 3121. This lemma also implies 
RD-c(uj) = 0 k _ 2 l l fo r j=2 k —3. □ 

We have proved that RD-combinations 0 k - 2 l l or 0k-3121 at nodes in rd_!(v) 
(d^:2) give rise to RD-combinations 0 k - 2 l l or 0k-3121 at nodes in Td(v). 
Inasmuch as all neighbours of v have RD-combination O11-211 and these neigh­
bours 'generate' RD-combinations 0 k - 2 l l and 0k-3121 at distance 2 from v, the 
only RD-combinations occurring in supersymmetric graphs with parameters g=4 
and k > 4 are 0 k _ 2 l l and 0k_3121. 

160 



Par. 7.3 Equations for supersymmetric graphs with even girth 

Figure 7.5 Situation occurring in lemma 7.6. 

Lemmas 7.5 and 7.6 result in the following remarks. 

1. For each node w$.Td-.1(v) (d^2) its number of neighbours in Td(v) with 
RD-combination O111-211 is equal to 

• k-3ifRD-c(w) = 0 k - 2 l l , 

• k-4ifRD-c(w) = 0k_3121. 

Furthermore, each node in rd(v) (d> l ) with RD-combination &~2ll has 
exactly 1 neighbour in rd_1(v) . Hence, 

Nok-,n(d) = (k-3) .N 0 k - 2 l l (d- l ) + (k-4).N0 k-31 2 1(d-l) . 

2. Each node w ^ I ^ ^ v ) (dè:2) has 2 neighbours in rd(v) with RD-combina­
tion 0k - 3121. Moreover, each node in Td(v) with RD-combination Ok-3121 
has exactly 2 neighbours in Td_1(v). Hence, 

No»-.m(d) = |rd_i(v)| = N0 k-2 l l(d-l) + N0k-3121(d-l). 

If we define the vector N by 

N(d) := (N0k-2n(d),Nok-3121(d))T 

then the system of recurrence equations can be expressed as: 

N(d) = A 4 k N ( d - l ) (k>4), 

where 

A = fk-3 k-4l A4k [ i l J 
The computation of the uniform exponentiality of supersymmetric graphs with 
girth 4 and degree k ^ 4 from this matrix will be postponed until paragraph 7.5. 
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B. case g>6, /t>3 

(7.7) Lemma. If w is a node in Sgk (g==6, k>3) for which RD-c(w) = 0 k - 2 l i 
( l < i < m —2) and d(w,v)>l, then w has k—1 neighbours at distance d(w,v) + l 
from v, of which 

• 1 has RD-combination 0k-212, 

• 1 has RD-combination Ok - 2 l i+ 1, 

• k - 3 have RD-combination O*-2!!. 

The remaining neighbour of w lies at distance d(w,v)— 1 from v. 

Proof. RD-c(w) = Ok-2li induces the situation in figure 7.6. 

Figure 7.6 Situation occurring in lemma 7.7. 

It follows directly that d(u:,v) = d(w,v) + l for j = l k— 1. Clearly, the remain­
ing neighbour of w lies at distance d(w,v) — 1 from v. 
Lemma 7.2 immediately implies RD-c(u1) = 0 k " 2 l i+ l , RD-c(uk_1) = 0k-212 and 
RD-c(uj) = Ok_2ll for j=2, . . . ,k -2 . a 

(7.8) Lemma. If adj im (2<i<m) occurs in Sgk (g^6, k>3) at a node at distance 
d (d^3) from v then adj m— lm occurs at a node at distance d— 1 from v. 

Proof. If adj im occurs at a node z, then the situation in figure 7.7. will arise. 
We shall prove that a=m. 
If k = 3 , nodes w and Xj will coincide, implying b = a - l , and so, a=m. 
Otherwise, let Gj be the shortest path from Xj to v (j=l,2). G{, G2 and v' are 
defined as usual. The circuit v'GiX1yx2G2v' does not surround node z properly 
by lemma 6.24, since d(z,v)>d(u,v) for any node u on the circuit. Hence, the 
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Figure 7.7 Situation occurring in lemma 7.8. 

circuit surrounds node w properly. Then, lemma 6.24 implies b<a. From this 
we conclude that a=m. □ 

(7.9) Corollary. Adj im (2<i<m) is infeasible in Sgk (g^6, k>3). 

Proof. When i=m— 1 is substituted in the previous lemma, we can prove by 
using Descente Infinie that adjm—lm occurs at a node at distance 2 from v, 
which is a contradiction, since m S 3 . Then, infeasibility of adj im (2^ i^m) fol­
lows directly from infeasibility of adj m— lm. Q 

(7.10) Lemma. If w is a node in Sgk (gs=6, k==3) for which RD-c(w) = 0 k _ 2 l m - 1 
and d(w,v)>2, then w has k—1 neighbours at distance d(w,v) + l from v, of 
which 

• 1 has RD-combination 0k - 212, 

• 1 has RD-combination 0 k - 3 l m l , 

• k - 3 have RD-combination O* -2!!. 

The remaining neighbour of w lies at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = 0 k - 2 l m - l induces the situation in figure 7.8 (If k = 3, node x 
and y coincide). 
It follows directly that d(Uj,v) = d(w,v) +1 for j = 1 k — 1. Clearly, the remain­
ing neighbour of w lies at distance d(w,v) — 1 from v. 
By corollary 7.9, a<2. From a-1==0, we deduce that a = l . Hence, b = 2. Then, 
lemma 7.2 implies RD-c(u1) = 0 k _ 3 lml . Furthermore, lemma 7.2 implies RD-
c(uk_1) = 0k_212andRD-c(u j) = 0 k _ 2 l l for j=2 k - 2 . □ 

At this point we differentiate between two subcases. 
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Figure 7.8 Situation occurring in lemma 7.10. 

Bl. subcase g^S, k^-A 

(7.11) Lemma. If w is a node in Sgk (g>6, k>4) for which RD-c(w) = 0 k - 3 lml 
and d(w,v)&3, then w has k —2 neighbours at distance d(w,v) + l from v, of 
which 

• 2 have RD-combination 0k - 212, 

• k - 4 have RD-combination 0 k - 2 l l . 

The remaining 2 neighbours of w lie at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = O k - 3 lml induces the situation in figure 7.9. 

3( 

Figure 7.9 Situation occurring in lemma 7.11. 

It follows directly that d(Uj,v) = d(w,v) + l for j = l k —2. Clearly, the remain­
ing two neighbours of w lie at distance d(w,v) — 1 from v. 
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Lemma 7.2 immediately implies that RD-c(u1) = RD-c(uk_2) = 0k 212 and RD-
c(uj) = 0 k _ 2 l l f o r j = 2 , . . . , k - 3 . a 

Lemmas 7.7, 7.10 and 7.11 imply that RD-combinations 0 k _ 2 l l , 0k_212, 
O * - ^ 0 k _ 2 l m - l and 0 k _ 3 lml at nodes in rd_!(v) (ds=2) give rise to the 
same set of RD-combinations at nodes in Td(v). By lemmas 7.3, 7.7, 7.10 and 
7.11 these RD-combinations indeed occur in supersymmetric graphs with girth 
g2:6 and degree k2:4. 
The above lemmas result in the following remarks: 

1. Each node in rd(v) (d^:l) has 1 neighbour in T j .^v) except when its RD-
combination is 0 k - 3 lm l . 

2. For each node w^T^^v) (d^2) its number of neighbours in Td(v) with 
RD-combination 0 k _ 2 l l is equal to 

• k-3ifRD-c(w) = 0k _ 2 l i , for i= 1,2 m - 1 , 

• k - 4 if RD-c(w) = Ok_3lml (i.e. otherwise). 

Together with remark 1 this implies 

Nok.2n(d) = (k -3 ) .N 0 k - 2 n (d - l ) + (k-3) .N o t - 2 l 2 (d- l ) + ... + 

(k-3) .N o k- 2 l m_ 1(d- l) + (k-4) .N 0 k-3 l m l(d- l) . 

3. For each node w^Tj .^v) (d>2) its number of neighbours in Td(v) with 
RD-combination 0k-212 is equal to 

• 2ifRD-c(w) = 0 k _ 2 l l o r 0 k _ 3 l m l , 

• 1 otherwise. 

Together with remark 1 this implies: 

N0k-2l2(d) = 2.No k-2 l l(d-l) + N0k.2l2(d-1) + ... 4- N o . - ^ . j C d - l ) + 

2 . I V , l m l ( d - l ) . 

4. For each node w^rj.jCv) (d^2) its number of neighbours in rd(v) with 
RD-combination O ^ l i ( 3 < i < m - l ) is equal to 1 if RD-c(w) = 0 k _ 2 l i - 1 and 
0 otherwise. Together with remark 1 this implies 

N0k.2li(d) = N0 k-2 l i_1(d-l) . 

5. For each node w€rd_j(v) (d>2) its number of neighbours in Td(v) with 
RD-combination 0 k _ 3 lml is equal to 1 if RD-c(w) = 0 ' c~2 lm-l and 0 other­
wise. Furthermore, each node in Td(v) with RD-combination 0 k - 3 lm l has 2 
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neighbours in ^ . ^ ( v ) with RD-combination 0k_2lm— 1. Hence, 

No*-.imi(d) = 1 / 2 . ^ - ^ . ^ - 1 ) . 

If we define the vector N by 

N(d) := (N0k-2n(d)(N0k-2l2(d),.,.>N0k-2lm_1(d))N0k-3lml(d))T, 

then the system of recurrence equations can be expressed as 

N(d) = A g k . N ( d - l ) ( g > 6 , k > 4 ) , 

where Agk is an mXm matrix, equal to: 

Ch. 7 

gk -

k - 3 
2 
0 
0 

0 
0 

k - 3 
1 
1 
0 

Ó 
0 

k - 3 
1 
0 
1 

Ó 
0 

k - 3 .. 
1 
0 
0 

Ó ;; 
0 

k - 3 
1 
0 
0 

i 
0 

k - 3 
1 
0 
0 

Ó 
1/2 

k - 4 
2 
0 
0 

Ó 
0 

For the uniform exponentiality of supersymmetric graphs with even girth g>6 
and degree k^4 we refer to paragraph 7.5. 

B2. subcase g^6, k=3 

(7.12) Lemma. If w is a node in Sg3 (g5:6) for which RD-c(w) = l lm and 
d(w,v)>3, then w has exactly 1 neighbour at distance d(w,v) + l from v, of which 
the RD-combination is 022. The other 2 neighbours of w have distance 
d(w,v) - l from v. 

Proof. RD-c(w)= 11m induces the situation in figure 7.10. 

Figure 7.10 Situation occurring in lemma 7.12. 

It follows directly that w has 1 neighbour at distance d(w,v) + l from v and 2 
neighbours at distance d(w,v)- l from v. Lemma 7.2 directly implies that a=0. □ 

Again, the hexagonal grid asks for a special treatment. First we deal with the 
subsubcase g^8. 
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B2a. subsubcase £>8, k=3 

(7.13) Lemma. If g>8 and w is a node in Sg3 (g>8) for which RD-c(w) = 022 
and d(w,v)2:2, then w has exactly 2 neighbours at distance d(w,v) + l from v. 
Both have RD-combination 013. The remaining neighbour of w lies at distance 
d(w,v)- l from v. 

Proof. RD-c(w) = 022 gives rise to the situation in figure 7.11. 

Figure 7.11 Situation occurring in lemma 7.13. 

It follows directly from the figure that 2 neighbours of w lie at distance d(w,v) + 1 
from v and the other neighbour of w lies at distance d(w,v) —1 from v. 
Lemma 7.2 implies a=0. □ 

In supersymmetric graphs with degree 3 the only nodes with RD-combination Oil 
are the three neighbours of v. We have proved that RD-combinations 022, 012, 
013 01m —1 or 11m at nodes in rj.jCv) (d>3) give rise to the same set of 
RD-combinations at nodes in r d(v) . Inasmuch as all nodes in T2(v) have RD-
combination 012 (by lemmas 7.3 and 7.7), the above RD-combinations indeed 
occur by lemmas 7.7, 7.10, 7.12 and 7.13. 
The above lemmas result in the following remarks: 

1. Each node in rd(v) ( d ^ l ) except the ones with RD-combination 11m has 1 
neighbour in rd_!(v). 

2. For each node w€rd_j(v) ' (d^3) its number of neighbours in Td(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = 01i for i=2 ,3 , . . .m- l and 0 
otherwise. Together with remark 1 this implies 

N0i2(d) = N012(d-1) + N0 1 3(d-1) + N014(d-1) + ... + ^ „ ^ ( d - l ) . 

3. For each node w6rd_j(v) (d>2) its number of neighbours in Td(v) with 
RD-combination 013 is equal to 
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• 1 ifRD-c(w) = 012, 

• 2ifRD-c(w) = 022, 

and 0 otherwise. Together with remark 1 this implies 

N0i3(d) = N0 1 2(d-1) + 2.N0 2 2(d-l) . 

4. For each node w E r ^ ^ y ) (d>2) its number of neighbours in Td(v) with 
RD-combination Oli, 4 < i < m - l , is equal to 1 if RD-c(w) = 01 i - l and 0 oth­
erwise. Together with remark 1 this implies 

Noii(d) ^ N o n . ^ d - l ) , f o r 4 < i < m - l . 

5. For each node wêTd^Cv) (d>2) its number of neighbours in Td(v) with 
RD-combination 11m is equal to 1 if RD-c(w) = 01m — 1 and 0 otherwise. 
Furthermore, each node in Td(v) with RD-combination 11m has 2 neigh­
bours in rd_1(v) with RD-combination 01m—1. Hence, 

N l l m(d) = l ^ . N o ^ - i C d - l ) . 

6. For each node 'w^Té_1{\) (d^2) its number of neighbours in Td(v) with 
RD-combination 022 is 1 if RD-c(w) = llm and 0 otherwise. Together with 
remark 1 this implies 

N022(d) = N l l m ( d - l ) . 

If we define the vector N by 

N(d) := (N012(d),N013(d),...,Nolm_1(d),N l l in(d),N022(d))T, 

and the system of recurrence equations in the usual way, then we obtain the 
mXm matrix Ag3 (g^8) , equal to 

1 
1 
0 

Ó 
0 
0 

1 
0 
1 

Ó 
0 
0 

1 . 
0 . 
0 . 

Ó '. 
0 . 
0 . 

. 1 

. 0 

. 0 

'. i 
. 0 
. 0 

1 
0 
0 

Ó 
1/2 
0 

0 
0 
0 

Ó 
0 
1 

For the uniform exponentiality of supersymmetric graphs with even girth g^8 
and degree 3 we refer to paragraph 7.5. 

B2b. subsubcase £=6, k=3 

(7.14) Lemma. If w is a node in S63 for which RD-c(w) = 022 and d(w,v)>2, 
then w has exactly 2 neighbours at distance d(w,v) + l from v. Both have RD-
combination 113. The other neighbour of w has distance d(w,v)- 1 from v. 
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o 
w 

Figure 7.12 Situation occurring in lemma 7.14. 

Proof. If RD-c(w) = 022, then the situation in figure 7.12 arises. 
It follows directly that w has 2 neighbours at distance d(w,v) + l from v and 1 
neighbour at distance d(w,v) — 1 from v. 
In the same way as in the proof of lemma 7.5 we deduce that a= 1. o 

We have proved that RD-combinations 012, 022 or 113 at nodes in r ^ ^ v ) 
(d^3) give rise to the same set of RD-combinations at nodes in rd(v). Inasmuch 
as all nodes in r2(v) have RD-combination 012 (by lemmas 7.3 and 7.7) lem­
mas 7.10, 7.12 and 7.14 imply that the above RD-combinations indeed occur in 
S63-
The above lemmas result in the following remarks: 

1. Each node in rd(v) ( d ^ l ) with RD-combination 012 or 022 has 1 neighbour 
inr d_!(v) . 

2. For each node w€Td_1(v) (d^3) its number of neighbours in Td(v) with 
RD-combination 012 is 1 if RD-c(w) = 012 and 0 otherwise. Together with 
remark 1 this implies 

N012(d) = N 0 1 2 (d - l ) . 

3. Each node in r^ -^v ) (d^3) with RD-combinations 012 respectively 022 has 
1 neighbour respectively 2jneighbours in Td(v) with RD-combination 113. 
Each node in Td(v) with RD-combination 113 has 2 neighbours in rd_j(v). 
Each of them has RD-combination 012 or 022. We conclude that 

N113(d) = 1/2 . N012(d-1) + N0 2 2(d-1). 

4. For each node w€Td_1(v) (d>2) its number of neighbours in Td(v) with 
RD-combination 022 is 1 if RD-c(w) = 113 and 0 otherwise. Together with 
remark 1 this implies 

N022(d) = N m ( d - l ) . 
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If we define the vector N by 
N(d) := (N012(d),N113(d),N022(d))T, 

and the system of recurrence equations in the usual way, then we obtain the 
matrix A63, equal to 

Tl 0 0] 
A63 = 1/2 0 1 

Lo i oj 
To prove what we already knew, i.e. that the uniform exponentiality of the hex­
agonal grid is 1, we refer to paragraph 7.5. 

7.4 Equations for supersymmetric graphs with odd girth 

To design recurrence equations for supersymmetric graphs with odd girth we use 
an analogous method as the method in the previous paragraph. The situation for 
supersymmetric graphs with odd girth is more complex, however, because there 
exist two types of facial circuits, type I and type II facial circuits. We differen­
tiate between the circuits by underlining the RD-labels in type II facial circuits. 
Underlined labels can just be handled as conventional numbers, i.e. they can be 
added, subtracted, etc. For convenience we assume they can also be added to 
conventional numbers. This results in underlined numbers, i.e. 1 + 1 = 2. The 
absolute value operator will scrape away the underline, for example 12 | = 2. 

To determine all feasible RD-combinations in supersymmetric graphs with odd 
girth, we consider the following cases: 

A. case g=3 , k>6. 

B. caseg=5,k>4. 

C. caseg>:7, k>3 . 

1. subcase g^7, k>4. 

2. subcase g>7, k=3 . 

a. subsubcase g>7, k = 3. 

b. subsubcase g=7, k = 3. 

By theorem 6.6 these cases cover all feasible g,k-values for supersymmetric 
graphs with odd girth. 
For these cases we need a lemma like lemma 7.2. Since some RD-labels may be 
underlined in supersymmetric graphs with odd girth, we shall use a counterpart 
of lemma 7.2. It is exactly the same as lemma 7.2 except that the RD-labels p, q, 
i, i+1 , j , and j+1 may be replaced by their underlined equivalents, and i is 
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limited according to 0<i<m—1 if i is underlined, and j is limited according to 
0<j<m— 1 if j is underlined. The conclusion remains unchanged, i.e. a=0. 
When referring to the counterpart of lemma 7.2 we shall simply refer to 
lemma 7.2. 

A. case g=2>, k^6 

For this case we refer to the construction of Gru'nbaum and Shephard and to 
lemma 6.10. From the former we have 

xi+i = (k-5).Xi+(k-6).w; 

Wi+l = x i + w i 

Lemma 6.10 implies |r;(v)|=Xi+Wj. Writing the vector (xd,wd)T as N(d) we 
obtain 

N(d) = A 3 k . N ( d - l ) , (k>6), 

where 

A* - [V V] 
For the exponentiality of supersymmetric graphs with girth 3 and degree k £ 6 , we 
refer to paragraph 7.5. 

B. case g=5, Jts4 

(7.15) Lemma. If w is a node in S5k (k>4) for which RD-c(w) = 0 k - 2 l l and 
d(w,v)&l, then whas k—1 neighbours at distance d(w,v) + l from v, of which 

• 2haveRD-combination Ü0k_312, 

• k - 3 have RD-combination 0 k _ 2 l l . 

The remaining neighbour of w lies at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = 0 k _ 2 l l induces the situation in figure 7.13. 
It follows directly that d(Uj,v) = d(w,v) +1 for j = l k - 1 . Clearly, the remain­
ing neighbour of w lies at distance d(w,v) — 1 from v. 
Lemma 7.2 implies RD-c(u1) = RD-c(uk_1)=Q0k_312 and RD-c(Uj) = 0k~2ll for 
j=2 , . . . , k -2 . n 

(7.16) Lemma. If w is a node in S5k (k>4) for which RD-c(w) = Q0k_312 and 
d(w,v)>2, then whas k - 2 neighbours at distance d(w,v) + l from v, of which 

• 1 has RD-combination 0_0k""312, 
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Figure 7.13 Situation occurring in lemma 7.15. 

• 1 has RD-combination &-~2\1, 

• k - 4 have RD-combination 0 k - 2 l l . 

One of the remaining two neighbours of w lies at distance d(w,v)— 1 from v and 
one lies at distance d(w,v) from v. 

Proof. RD-c(w) = Q0k-312 induces the situation in figure 7.14. 

Figure 7.14 Situation occurring in lemma 7.16. 

It follows directly that d(Uj,v) = d(w,v) +1 for j = l k - 2 . Clearly, 1 of the 
remaining 2 neighbours of w lies at distance d(w,v) —1 from v, and the other lies 
at distance d(w,v) from v. 
Lemma 7.2 implies RD-c(u1) = Q0k-312, RD-c(uk_2) = 0k~2U and RD-
c(uj) = 0 k _ 2 l l f o r j = 2 k - 3 . o 

To investigate the next RD-combination we need some lemmas first. 
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(7.17) Lemma. If adj i2 (i=2 or i=2) occurs at a node in S5k (k>4) at distance d 
(d>:3) from v then adj 22 occurs at a node at distance d— 1 from v. 

Proof Adj i2 induces the situation illustrated by figure 7.15 (if k = 4 then u and 
w coincide). 

< 

Figure 7.15 Situation occurring in lemma 7.17. 

We obtain a=2 and c=2 by applying lemma 6.24 in the usual way (see for exam­
ple proofs of lemmas 7.4 and 7.8). □ 

(7.18) Corollary. Adj 22 is infeasible in S5k (k>4). 

Proof. When i=2 is substituted in the previous lemma, Descente Infinie yields 
adj 22 at distance 2 from v. However, then there exists a type II facial circuit 
containing v, which is a contradiction. o 

(7.19) Corollary. Adj 22 is infeasible in S5k (k>4). 

(7.20) Lemma. Adj 12 is infeasible in S5k (k>4). 

Proof. Adj 12 results in the situation illustrated by figure 7.16 (if k = 4 then u and 
w coincide). 

2 

7° 

Figure 7.16 Situation occurring in lemma 7.20. 

We obtain b<a in the usual way by lemma 6.24. Hence, a=2- This results in the 
infeasible combination adj 22- D 

We can now investigate the third RD-combination for the case g=5, k>4. 
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(7.21) Lemma. If w is a node in S5k (k>4) for which RD-c(w) = 0 k " 2 U and 
d(w,v)^l , then w has k— 1 neighbours at distance d(w,v) + l from v, of which 

• 1 has RD-combination Q C ^ n , 

• 1 has RD-combination Ok_3121, 

• k - 3 have RD-combination O*-2!!. 

The other neighbour of w lies at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = Ok _ 2 l l induces the situation in figure 7.17. 

2Qo 

Figure 7.17 Situation occurring in lemma 7.21. 

It follows directly that d(Uj,v) = d(w,v) + l for j = l k—1. Clearly, the remain­
ing neighbour of w lies at distance d(w,v) — 1 from v. 
Corollaries 7.18 and 7.19 imply |a|<2. Since | a - l | ^ 0 we obtain a = l or a = l . 
The latter is impossible by lemma 7.20. Hence, a = l and b=2. Then, by 
lemma 7.2 RD-c(u1) = ÜOk_312, RD-c(uk_1) = 0k_3121 and RD-c(uj) = 0 k _ 2 l l for 
j=2 k - 2 . a 

(7.22) Lemma. If w is a node in S5k (k>4) for which RD-c(w) = 0k_3121, then w 
has k —2 neighbours at distance d(w,v) + 1 from v, of which 

• 2 have RD-combination Q0k"312, 

• k —4 have RD-combination C^-211. 

The other neighbour of w lies at distance d(w,v)- 1 from v. 

Proof. RD-c(w) = 0k_3121 induces the situation in figure 7.18. 
It follows directly that d(Uj,v) = d(w,v) + l for j = l k - 2 . Clearly, the remain­
ing 2 neighbours of w lie at distance d(w,v) — 1 from v. 
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Figure 7.18 Situation occurring in lemma 7.22. 

Lemma 7.2 implies RD-c(u1) = RD-c(uk_2) = Q0k-312 and RD-c(uj) = 0k~2ll for 
j = 2 , . . . , k - 3 . ü 

Lemmas 7.15, 7.16, 7.21 and 7.22 imply that RD-combinations &~2\\, Q0k-312, 
&~2\1. and 0k-3121 at nodes in rd_j(v) (d>2) give rise to the same set of RD-
combinations at nodes in rd(v). By lemmas 7.3, 7.15, 7.16, 7.21 and 7.22 these 
RD-combinations indeed occur in supersymmetric graphs with girth g=5 and 
degree k>4. 
The above lemmas result in the following remarks. 

1. Each node in Td(v) ( d ^ l ) has 1 neighbour in rd_!(v) except when it has 
RD-combination 0k - 3121. 

2. For each node wtT^^v) (ds2) its number of neighbours in Td(v) with 
RD-combinations &-~2\\ is equal to 

• k - 3 if RD-c(w) = Ok_2ll or RD-c(w) = 0 k _ 2 U, 

• k-4ifRD-c(w) = Q0k-312orRD-c(w) = 0k - 3121. 

Together with remark 1 this implies 

Nok-ni(d) = (k-3) .N o k - 2 l l (d- l ) + (k-4).NQ0k-312(d-l) + 
(k-3).No k .2 1 1(d-l) + (k-4).N0 k-31 2 1(d-l). 

3. For each node w^rd_j(v) (d>2) its number of neighbours in Td(v) with 
RD-combination QC^ - 3^ is equal to 

• 2ifRD-c(w) = 0 k- 2 l lorRD-c(w) = 0k_3121, 

• 1 if RD-c(w) = QOk-312 or RD-c(w) = 0 k _ 2 U. 
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Together with remark 1 this implies 

NQ0k-3i2(d) = 2.N0 k-2 l l(d-l) + NQ0k-312(d-l) + N0 k-2 l l(d-l) + 
2.N0k-,121(d-l). 

4. For each node weTd.^v) (d^3) its number of neighbours in rd(v) with 
RD-combination O* - 2!! is equal to 1 if RD-c(w) = ÜOk_312 and 0 otherwise. 
Together with remark 1 this implies 

N0k-2ll(d) = NQ 0 k-3 l 2(d-l). 

5. For each node wêr^jCv) (d>2) its number of neighbours in Td(v) with 
RD-combination 0k_3121 is equal to 1 if RD-c(w) = 0 k - 2 U and 0 otherwise. 
Furthermore, each node in rd(v) with RD-combination &~*\2\ has 2 neigh­
bours in T j . ^v ) with RD-combination 0 k - 2 l l . Hence, 

Nok-3U1(d)= l / 2 .N 0 k . 2 l l (d - l ) . 

If we define the vector N by 

N ( d ) := (N 0 k . 2 l l (d ) ,N Q 0 k -3 1 2 (d ) ,N 0 k - 2 l l (d ) ,N 0 k -3 1 2 1 (d ) ) T , 

and the system of recurrence equations in the usual way, we obtain the 4x4 
matrix A5k (k>4) equal to: 

k - 3 k - 4 k - 3 k - 4 
A = 2 1 1 2 
A 5 k 0 1 0 0 

0 0 1/2 0 
For the exponentiality of supersymmetric graphs with girth 5 and degree k s 4 we 
refer to paragraph 7.5. 

C. case g>l, lc>3 

(7.23) Lemma. If w is a node in Sgk (g>7, k>3) for which RD-c(w) = 0k_2li 
( l < | i | < m - 2 ) and d(w,v)>l, then w has k—1 neighbours at distance d(w,v) + l 
from v, of which 

• 1 has RD-combination 0k-212, 

• 1 has RD-combination 0 k - 2 l i+J , 

• k - 3 have RD-combination 0 k _ 2 l l . 

(Notice that i may be an underlined RD-label). The remaining neighbour of w 
lies at distance d(w,v) — 1 from v. 
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Figure 7.19 Situation occurring in lemma 7.23. 

Proof. RD-c(w) = 0k _ 2 l i induces the situation in figure 7.19. 
It follows directly that d(Uj,v) = d(w,v) + l for j= l , . . . ,k—1. Clearly, the remain­
ing neighbour of w lies at distance d(w,v) — 1 from v. 
Lemma 7.2 implies RD-c(u1) = 0 k _ 2 l i+ 1, RD-c(uj) = 0 k _ 2 l l for j = 2 k - 2 and 
RD-c(uk_1) = 0k_212. G 

(7.24) Lemma. If w is a node in Sgk (g==7, k>3) for which RD-c(w) = 0 k - 2 l m - l 
and d(w,v)>:2, then w has k—1 neighbours at distance d(w,v) + l from v, of 
which 

• 1 has RD-combination 0k_212, 

• 1 has RD-combination Q0k-3lm, 

• k - 3 have RD-combination 0 k - 2 l l . 

The remaining neighbour of w lies at distance d(w,v) - l from v. 

Proof. RD-c(w) = O k - 2 l m - l induces the situation in figure 7.20. 
It follows directly that d(Uj,v) = d(w,v) +1 for j = l k—1. Clearly, the remain­
ing neighbour of w lies at distance d(w,v) — 1 from v. 
Lemma 7.2 implies RD-c(u1) = Q0k-3lm, RD-c(uk_1) = 0k^212 and RD-
c(Uj) = 0 k - 2 l l f o r j=2 k - 2 . o 

To investigate the RD-combination 0 k ~ 2 lm- l in Sgk (g2=7, k>3) , we need some 
lemmas first. 

(7.25) Lemma. If adj im. (2s | i |<m and i may be an underlined RD-label) 
occurs in Sgk (g^7, k^3) at a node at distance d (d^3) from v, then adj m - l m 
occurs at a node at distance d— 1 from v. 
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Figure 7.20 Situation occurring in lemma 7.24. 

Proof. Similar to proof of lemma 7.8. ü 

(7.26) Lemma. Adj im (2<| i |sm; i may be an underlined RD-label) is infeasi­
ble in Sgk(g>:7, k>3). 

Proof. In a similar way as in the proof of lemma 7.8 it is deduced that adj im 
( 2 s |i|^m) at a node at distance d from v implies the subcombination adj m— lm. 
at a node at distance d - 1 from v. Then, by lemma 7.25 adj m - l m occurs at a 
node at distance d - 2 from v. 
Substitution of i=m— 1 in lemma 7.25 and using Descente Infinie, we easily 
deduce that adj m - l m is infeasible in Sgk (g^7 , k>3). Hence, adj im 
(2<|i |<m) is infeasible. o 

(7.27) Lemma. Adj l m is infeasible in Sgk (g^7 , k>3) . 

Proof. Adj lm. induces the situation in figure 7.21. 

Figure 7.21 Situation occurring in lemma 7.27. 

If k = 3 , then x, y and z coincide, resulting in adj m - l m . which is infeasible by 
lemma 7.26. Hence, adj l m is infeasible in Sg3 (g^7) . 
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If k=4 then x and y coincide, from which we directly conclude b = a— 1. This 
implies a=m, inducing the subcombination adj mm at node u, which is infeasible 
by lemma 7.26. 
If k>4, then construct shortest paths G1 and G2 from v to x and z respectively. 
We define GJ, G£ and v' in the usual way. The circuit v'GJxuzG^v' does not 
properly surround node w by lemma 6.24. Hence, it properly surrounds node y, 
implying b=a— 1. Hence a=m, inducing the subcombination adj mm at node u, 
which is infeasible by lemma 7.26. □ 

(7.28) Lemma. If w is a node in Sgk (g£=7, k>3) for which RD-c(w) = 0 k - 2 lmz i l 
and d(w,v)>2, then w has k - 1 neighbours at distance d(w,v) + l from v, of 
which 

• 1 has RD-combination 0k-212, 

• 1 has RD-combination Ok-3lm.l, 

• k - 3 have RD-combination 0 k - 2 l l . 

The remaining neighbour of w lies at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = 0k_2lmjr_L induces the situation in figure 7.22 (if k = 3, nodes x 
and y coincide). 

Figure 7.22 Situation occurring in lemma 7.28. 

It follows directly that d(uj(v) = d(w,v) + l for j = l k - 1 . Clearly the remain­
ing neighbour of w lies at distance d(w,v)— 1 from v. 
By lemma 7.26, |a|<2. From |a - l | s :0 , we deduce that a= l or a = l . The latter 
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is impossible because of lemma 7.27. Hence, a = l and b=2. Then, lemma 7.2 
implies RD-c(u1) = Ok"3lm.l, RD-c(uk_1) = 0k_212 and RD-c(Uj) = O ^ l l for 
j=2 k - 2 . D 

C1. subcase g^-1, fc>4 

(7.29) Lemma. If w is a node in Sgk (g>7, k>4) for which RD-c(w) = Q0k_3lm 
and d(w,v)>3, then w has k - 2 neighbours at distance d(w,v) + l from v, of 
which 

• 1 has RD-combination O*"2!.!, 

• 1 has RD-combination 0k_212, 

• k —4 have RD-combination 0 k - 2 l l . 

One of the remaining two neighbours of w lies at distance d(w,v) —1 from v and 
one lies at distance d(w,v) from v. 

Proof. RD-c(w) = QOk_3lm induces the situation in figure 7.23. 

Figure 7.23 Situation occurring in lemma 7.29. 

It follows directly that d(Uj,v) = d(w,v) + 1 for j = l , . . . , k - 2 . Clearly, one of the 
remaining two neighbours of w lies at distance d(w,v) —1 from v and the other 
lies at distance d(w,v) from v. 
Lemma 7.2 immediately implies RD-c(u1) = 0k~2U, RD-c(uk_2) = 0k-212 and 
RD-c(uj) = 0 k - 2 l l forj=2 k - 3 . □ 

(7.30) Lemma. If w is a node in Sgk (g^7 , k>4) for which RD-c(w) = 0k-3lm.l 
and d(w,v)>3, then w has k - 2 neighbours at distance d(w,v) + l from v, of 
which 

• 2 have RD-combination 0k_212, 
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• k - 4 have RD-combination O11-2!!. 

The remaining 2 neighbours of w lie at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = Ok-3lm_l induces the situation in figure 7.24. 

Figure 7.24 Situation occurring in lemma 7.30. 

It follows directly that d(Uj,v) = d(w,v) + l for j = l , . . . , k - 2 . Clearly, the remain­
ing 2 neighbours of w lie at distance d(w,v) — 1 from v. 
Lemma 7.2 immediately implies RD-c(u1) = RD-c(uk_2) = 0k - 212 and RD-
c(uj) = 0 k - 2 l l f o r j = 2 k - 3 . o 

Lemmas 7.23, 7.24, 7.28, 7.29 and 7.30 imply that RD-combinations 0 k _ 2 l l , 
0k_212 0 k - 2 l m - l , 0 k - 2 U, 0k~212 0 k ~ 2 1m-1 . Q0k"3lm and 0k-3lm.l at 
nodes in Td_1(v) (dS:2) give rise to the same set of RD-combinations at nodes in 
Td(v). By lemma 7.3 and the forementioned lemmas these RD-combinations 
indeed occur in supersymmetric graphs with girth g^7 and degree k>4 . 
The above lemmas result in the following remarks. 

1. Each node in rd(v) ( d ^ l ) has 1 neighbour in Td_1(v) except when it has 
RD-combination C^-3!!]!!. 

2. For each node WÉT^JCV) (d>2) its number of neighbours in rd(v) with 
RD-combination 0 k - 2 l l is equal to 

• k - 3 if RD-c(w) = 01ifor l < | i | < m - l , 

• k - 4 if RD-c(w) = ÜOk_3lm or RD-c(w) = 0 k _ 3 lml . 

Together with remark 1 this implies 

Nok-ni(d) = (k -3 ) .N o k - J n (d - l ) + (k-3) .N o k . 2 l 2 (d- l ) + ... + 
(k-3) .N 0 k- 2 l m_ 1(d- l) + (k-4).Nü 0 k-3 1 m(d-l) + 
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( k - 3 ) . N 0 k - 2 l l ( d - l ) + ( k - 3 ) . N o k - , 1 2 ( d - l ) + . . . + 

( k - 3 ) . N o k - : l n ^ 1 ( d - l ) + ( k - 4 ) . N 0 k - 3 l D l l ( d - l ) . 

3. For each node w € r d _ 1 ( v ) (d>2) its number of neighbours in r d (v) with 
RD-combination 0 k - 2 12 is equal to 

• 2 if RD-c(w) = 0 k _ 2 l l or RD-c(w) = 0 k _ 3 l n i l , 

• 1 if w has another RD-combination. 

Together with remark 1 this implies 

N0k.2l2(d) = 2 . N 0 k . 2 l l ( d - l ) + N 0 k . 2 l 2 (d -1) + ... + N o ^ ^ C d - l ) + 

NQO^imCd-1) + N o k - 2 l l ( d - l ) + N Q k - 2 l 2 (d - l ) + ... + 
N o - i n ^ i ( d - D + 2 . N o k . 2 l m l ( d - l ) . 

4. For each node W É T ^ ^ V ) ( d>3) its number of neighbours in Td(v) with 
RD-combination O k - 2 l i , 3 < i < m - l , is equal to 1 if RD-c(w) = O k - 2 l i - 1 and 
0 otherwise. Together with remark 1 this implies 

Nok-2li(d) = N o k - 2 l i _ 1 ( d - l ) . 

5. For each node vj(.rd_1(\) ( d > 2 ) its number of neighbours in r d (v ) with 
RD-combination Q0 k - 3 lm is equal to 1 if RD-c(w) = 0 k _ 2 l m - 1 and 0 other­
wise. Together with remark 1 this implies 

NQ0-'im(d) = N o . - ^ . j C d - l ) . 

6. For each node w C T ^ ^ y ) (d>2) its number of neighbours in Td(v) with 
RD-combination 0 k - 2 l l is equal to 1 if RD-c(w) = Q0 k - 3 lm and 0 otherwise. 
Together with remark 1 this implies 

N o ^ U = N Q 0 ' - W d _ 1 ) -

7. For each node w ê l ^ . j O ) ( d ^ 2 ) its number of neighbours in Td(v) with 
RD-combination Ok _ 2 lL 2 < i < m - l , is equal to 1 if RD-c(w) = 0 k _ 2 l i n l and 
0 otherwise. Together with remark 1 this implies 

NQ k-2 l i= N ^ ^ d - l ) . 

8. For each node w ^ r ^ ^ y ) ( d ^ 3 ) its number of neighbours in r d (v ) with 
RD-combination (^~31T[II is equal to 1 if RD-c(w) = 0 k " 2 l m - l and 0 other­
wise. Furthermore, each node in r d (v) with RD-combination O151-3lml has 2 
neighbours in r d _ 1 (v ) with RD-combination 0 k ~ 2 l m - l . Hence, 

N 0 - l m l ( d ) = M.Np.tla=1<id-l). 
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When the vector N(d) is equal to 

(N0*-»il(d),... ,N0
k-2im- i(d) ,NQ0

k-3lm(d) ,N0
k-2u(d) Ntf-hm^d) ,N0

k-3inil(d))T, 
and when we write the system of recurrence equations in the usual way, we 
obtain the 2mx2m matrix Agk (g^7 , k>4) equal to 

[7-3 k-3 k-3 ... k-3 k-4 k-3 ... k-3 k-3 k -4 

A g k = 

2 
0 
0 

0 
0 
0 

0 
0 

1 
1 
0 

0 
0 
0 

0, 
0 

1 
0 
1 

0 
0 
0 

0 
0 

1 
0 
0 

1 
0 
0 

0 
0 

1 
0 
0 

0 
1 
0 

0 
0 

1 
0 
0 

0 
0 
1 

0 
0 

1 
0 
0 

0 
0 
0 

1 
0 

1 
0 
0 

0 
0 
0 

0 
1/2 

2 
0 
0 

0 
0 
0 

0 
0 

The matrix element in bold font lies in row m + 1 and column m. For the 
exponentiality of the graphs dealt with above we refer to paragraph 7.5. 

C2. subcase g>l, k=3 

(7.31) Lemma. If w is a node in Sgk (g^7 , k = 3) for which RD-c(w) = 0_lm and 
d(w,v)^3, then w has 1 neighbour at distance d(w,v) + l from v, 1 neighbour at 
distance d(w,v) from v, and 1 neighbour at distance d(w,v) —1 from v. The 
neighbour at distance d(w,v) + 1 from v has RD-combination 012. 

Proof. RD-c(w) = Qlm induces the situation in figure 7.25. 

-On 

Figure 7.25 Situation occurring in lemma 7.31. 

The distances from v of the neighbours of w follow directly from figure 7.25. 
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Application of lemma 7.2 gives a = 0. D 

(7.32) Lemma. If w is a node in Sg]c (g^7, k = 3) for which RD-c(w) = llm_ and 
d(w,v)>3, then w has 1 neighbour at distance d(w,v) + l from v and 2 neigh­
bours at distance d(w,v) — 1 from v. The neighbour of w at distance d(w,v) + l 
from v has RD-combination 022. 

Proof. RD-c(w) = 11m induces the situation in figure 7.26. 

Figure 7.26 Situation occurring in lemma 7.32. 

The distances from v of the neighbours of w follow directly from figure 7.26. 
Application of lemma 7.2 gives a=0. o 

C2a. subsubcase g^9, k=7> 

(7.33) Lemma. If w is a node in Sg3 (gs=9) for which RD-c(w) = 012 and 
d(w,v)>2, then w has 2 neighbours at distance d(w,v) + 1 from v, of which 

• 1 has RD-combination 012, 

• 1 has RD-combination 013. 

The remaining neighbour of w lies at distance d(w,v) — 1 from v. 

Proof. RD-c(w) = 0JL2 induces the situation in figure 7.27. 

Figure 7.27 Situation occurring in lemma 7.33. 

The distances from v of the neighbours of w follow directly from figure 7.27. 
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Application of lemma 7.2 gives a=b=0. o 

(7.34) Lemma. If w is a node in Sg3 (gs=9) for which RD-c(w) = 022 and 
d(w,v)>2, then w has 2 neighbours at distance d(w,v) + l from v and 1 neigh­
bour at distance d(w,v) —1 from v. The neighbours of w at distance d(w,v) + l 
from v have RD-combination 013. 

Proof. RD-c(w) = 022 induces the situation in figure 7.28. 

Figure 7.28 Situation occurring in lemma 7.34. 

The distances from v of the neighbours of w follow directly from figure 7.28. 
Application of lemma 7.2 gives a = 0. o 

As noted before, in supersymmetric graphs with degree 3 the only nodes with 
RD-combination Oil are the three neighbours of v. Lemmas 7.23, 7.24, 7.28, 
7.31, 7.32, 7.33 and 7.34 imply that RD-combinations 012, 013,..., 0 1 m - 1 , 
Qlm, 012, 012, 013. 0 1 m - 1 . 11m and 022 at nodes in T j . ^ v ) (d>3) give rise 
to the same set of RD-combinations at nodes in Td(v). Inasmuch as all nodes in 
T2(v) have RD-combination 012 (by lemmas 7.3 and 7.23), the above RD-combi­
nations indeed occur in supersymmetric graphs with girth g5:9 and degree 3. 
The above lemmas result in the following remarks. 

1. Each node in Td(v) ( d s l ) has 1 neighbour in rd_j(v) except when it has 
RD-combination 11m. 

2. For each node w€rd_j(v) (d==3) its number of neighbours in Td(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = 01i for 2 < | i | < m - l and 0 
otherwise. Together with remark 1 this implies 

N0i2<d) = N0 1 2(d-1) + ... + Noim_i(d-l) + N o u ( d - l ) + ... + 

3. For each node w€rd_x(v) (d^3) its number of neighbours in Td(v) with 
RD-combination 013 is equal to 
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• 1 ifRD-c(w) = 012orRD-c(w) = 012, 

• 2ifRD-c(w) = 022, 

and 0 otherwise. Together with remark 1 this implies 

N013(d) = N012(d-1) + N012(d-1) + 2.N0 2 2(d-l) . 

4. For each node w€rd_!(v) (d2:4) its number of neighbours in Td(v) with 
RD-combination Oli ( 4 < i < m - l ) is equal to 1 if RD-c(w) = 01i-1 and 0 oth­
erwise. Together with remark 1 this implies 

Noii(d) = N 0 1 i _ 1 (d - l ) . 

5. For each node w€rd_1(v) (d^3) its number of neighbours in rd(v) with 
RD-combination Qlm is equal to 1 if RD-c(w) = 01m- 1 and 0 otherwise. 
Together with remark 1 this implies 

NQlm(d) = N 0 1 r a _ 1 (d- l ) . 

6. For each node w€rd_!(v) (d>4) its number of neighbours in Td(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = Qlm and 0 otherwise. 
Together with remark 1 this implies 

N012(d) = N Q l m (d - l ) . 

7. For each node wdr^jCv) (d>3) its number of neighbours in Td(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = 012 and 0 otherwise. 
Together with remark 1 this implies 

N0i2(d) = N 0 1 2 (d - l ) . 

8. For each node w€Td_1(v) (d>3) its number of neighbours in rd(v) with 
RD-combination Oli, 3 < i < m - l , is equal to 1 if RD-c(w) = 01i^ l and 0 oth­
erwise. Together with remark 1 this implies 

Noli(d) = No l i ; r l (d - l ) . 

9. For each node w€Td_1(v) (d>3) its number of neighbours in Td(v) with 
RD-combination 11m. is equal to 1 if RD-c(w) = 01m^^l and 0 otherwise. 
Furthermore, each node in rd(v) with RD-combination 11m has 2 neigh­
bours in r ^ ^ v ) with RD-combination 01m —1. Hence, 

N l l m(d) = l / 2 . N 0 1 m _ 1 ( d - l ) . 

10. For each node w^r^jCv) (ds4) its number of neighbours in Td(v) with 
RD-combination 022 is equal to 1 if RD-c(w) = llm_ and 0 otherwise. 
Together with remark 1 this implies 
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No22(d) = N l l B l ( d - l ) . 

When the vector N(d) is equal to 

(N 0 1 2(d) . . . . ,N 0 im- i(d) ,NQ im(d) ,Noi2(d) , N 0 U ( d ) , . . . ,N 0 i I f t = i (d) , N l l m ( d ) ,N022(d))T , 

and when we write the system of recurrence equations in the usual way, we 
obtain the 2mX2m matrix Ag3 (g^9) equal to 

g3 -

1 
1 
0 
0 

0 
0 
0 

1 
0 
1 
0 

0 
0 
0 

1 
0 
0 
1 

0 
0 
0 

1 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
1 
0 
0 

0 
0 
0 

1 
0 
0 
0 

0 
0 
0 

1 
0 
0 
0 

0 
0 
0 

1 
0 
0 
0 

1 
0 
0 

1 
0 
0 
0 

0 
1/2 
0 

0 
0 
0 
0 

0 
0 
1 

0 
2 
0 
0 

0 
0 
0 

The matrix element in bold font lies in row 4 and column m. For the exponen­
tially of Sg3 (g^9) we refer to paragraph 7.5. 

C2b. subsubcase g=l, k=3 

(7.35) Lemma. If w is a node in S^ for which RD-c(W) = 012 and d(w,v)>2, 
then w has 2 neighbours at distance d(w,v) +1 from v, of which 

• 1 has RD-combination 012, 

• 1 has RD-combination Q13. 

The remaining neighbour of w lies at distance d(w,v) - 1 from v. 

Proof. RD-c(w) = 012 induces the situation in figure 7.29. 

Figure 7.29 Situation occurring in lemma 7.35. 
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The distances from v of the neighbours of w follow directly from figure 7.29. 
Application of lemma 7.2 gives a = 0. o 

(7.36) Lemma. If w is a node in S^ for which RD-c(w) = 022 and d(w,v)s2, 
then w has 2 neighbours at distance d(w,v) + 1 from v and 1 neighbour at distance 
d(w,v) —1 from v. The neighbours of w at distance d(w,v) + l from v have RD-
combinations 013. 

Proof. RD-c(w) = 022 induces the situation in figure 7.30. 

Figure 7.30 Situation occurring in lemma 7.36. 

The distances from v of the neighbours of w follow directly from figure 7.30. o 

The only nodes with RD-combination Oil are the three neighbours of v. Lem­
mas 7.23, 7.24, 7.28, 7.31, 7.32, 7.35 and 7.36 imply that RD-combinations 012, 
Q13, 012, 012, 113. and 022 at nodes in Td_:(v) (d>3) give rise to the same set of 
RD-combinations at nodes in Td(v). Inasmuch as all nodes in T2(v) have RD-
combination 012 (by lemmas 7.3 and 7.23), the above RD-combinations indeed 
occur in S73. 
The above lemmas result in the following remarks. 

1. Each node in Td(v) ( d ^ l ) has 1 neighbour in rd_j(v) except when it has 
RD-combination 112-

2. For each node wêTj .^v) (d^3) its number of neighbours in Td(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = 012 or RD-c(w) = Q12 and 0 
otherwise. Together with remark 1 this implies 

N0i2(d) = N012(d - 1 ) + No u(d - 1 ) . 

3. For each node w€rd_1(v) (d>:3) its number of neighbours in Td(v) with 
RD-combination 0.13 is equal to 
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• lifRD-c(w) = 012orRD-c(w) = 012, 

• 2ifRD-c(w) = 022, 

and 0 otherwise. Together with remark 1 this implies 

NQ13(d) = N0 1 2(d-1) + N0 1 2(d-1) + 2.N 0 2 2(d- l) . 

4. For each node w^rd_1(v) (ds:4) its number of neighbours in rd(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = 0_13 and 0 otherwise. 
Together with remark 1 this implies 

N012(d) = NQ 1 3 (d- l ) . 

5. For each node w€rd_1(v) (d>3) its number of neighbours in rd(v) with 
RD-combination 012 is equal to 1 if RD-c(w) = 012 and 0 otherwise. 
Together with remark 1 this implies 

N0i2(d) = N 0 1 2 (d - l ) . 

6. For each node w€rd_1(v) (d>3) its number of neighbours in Td(v) with 
RD-combination 113. is equal to 1 if RD-c(w) = 012 and 0 otherwise. Furth­
ermore, each node in Td(v) with RD-combination 112 has 2 neighbours in 
rd_!(v) with RD-combinations 012- Hence, 

N112(d) = l / 2 . N 0 1 2 ( d - l ) . 

7. For each node w€Td_1(v) (d^4) its number of neighbours in Td(v) with 
RD-combination 022 is equal to 1 if RD-c(w) = 113_ and 0 otherwise. 
Together with remark 1 this implies 

N022(d) = N 1 1 2 (d - l ) . 

When we define the vector N by 
N(d) := (No12(d),NQ13(d))N012(d))N012(d),N112(d),No22(d))T, 

and the system of recurrence equations in the usual way, we obtain the 6x6 
matrix A73, equal to 

1 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 

0 
1 
0 
1 
0 
0 

1 
0 
0 
0 

1/2 
0 

0 
0 
0 
0 
0 
1 

0 
2 
0 
0 
0 
0 

For the exponentiality of S73 we refer to the next paragraph. 
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7.5 The uniform exponentialities of supersymmetric graphs 

In this paragraph we deduce the uniform exponentialities of supersymmetric 
graphs from their recurrence equations. This will be done in the following way. 
First, we deal with the solution of a general system of linear recurrence equations 
N(d) = A.N(d—1), describing the number of nodes in a graph T as function of 
the distance to a certain node. It will be pointed out how the solution can be 
related to the uniform exponentiality of the corresponding graph. 
Second, a general result is deduced about the 'behaviour' of the solutions of such 
a system of recurrence equations. It will appear that a real eigenvalue of the 
matrix A in the interval [l,00) determines the solution. This eigenvalue equals 
the uniform exponentiality of T. 
Third, the characteristic polynomial of Agk will be determined. It appears to have 
one root in the interval [1,°°). Consequently, the uniform exponentiality of Sgk is 
equal to the largest root of the characteristic polynomial of Agk. 
This chapter is concluded by a theorem which states that the exponentiality of Sgk 

goes asymptotically to k— 1 as g increases. 

We start by considering the solution of the system of linear recurrence equations 
N(d) = A.N(d—1). It is well-known that the solution can be written as 

s m(r,)-l 
N ( d ) = 2 2 c j nv j nd»rf, 

j=l n=0 

where r} is one of the s eigenvalues of A, m(rp is the multiplicity of rj, Vjn is an 
eigenvector belonging to rj, and Cjn is a constant of which the value depends on 
the boundary conditions of the system. Defining N2(d) as the sum of all vector 
elements of N(d), it can be expressed as 

s m(rj)- l 
(7.37) N s(d) = 2 2 c|n dn rf, 

j=l n=0 

cjn being a constant. 

We notice that |rd(v) | = N2(d) for d>2. Hence, if for a certain j 

1. |rj| is maximal, and 

2. Cj'n=É0 for some value of n, 
then rj determines the behaviour of |rd(v)|. That is, if r and c are the r} and c|n 

respectively for which conditions 1 and 2 hold, then (see appendix A for the nota­
tion) 

|rd(v)| ~ c.dn . rd~ dn.rd. 

We now have the following lemma. 
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(7.38) Lemma. If |rd(v)| ~ dn.rd, for a certain node v in I \ for r€[l,°°), n€IN, 
and d e z + , then ëxp(r) = r. 

Proof. The condition pTd(v)| ~ dn.rd implies 

Vv€V(r) Ve>0 3 c > 0 V d € Z + : |rd(v)| < c.(r + e)d. 

This implies 

Vv€V(D Ve>0 3 c > 0 VdÉZ + : 2 | r s (v ) | < c . - ^ ± ^ — f - L , 
i=o r + e - 1 

from which we conclude that ëxp(r)Sr. Furthermore, 

i | r ; (v) | a=|rd(v)|, 
i=0 

which implies ëxp(T)>:r. Q 

Hence, to obtain the exponentiality of T, we need to study |rd(v)|. 
We might assert that |rd(v)| is determined by the eigenvalue of A with maximal 
modulus. This is not necessarily true, however. The constant coefficients of the 
terms corresponding to this eigenvalue in the description of N£(d) might vanish, 
because of the boundary conditions of the system of equations. So, the exponen­
tiality of T is determined by the eigenvalue with the largest modulus of A occur­
ring in a term in N2(d) of which the constant coefficient is non-zero. In 
lemma 7.40 we prove that this is a real eigenvalue in the interval [I»00)- To prove 
this, we first need a lemma. 

(7.39) Lemma. If for the n real numbers <(>! d>n and the n real numbers 
c i cn 

• <j>j#2kirforj=l,...,n ( k € Z ) , 
n 

• 3d€IN: 2cjcos<ic|>j > 0, 
j = l 

then there exist infinitely many d€IN such that 
n 

XCJCOS d(J>j < 0. 
j=i 

m 
Proof. We notice that the sequence ( 2 c, cos d<|>j)m is bounded for all m€IN. 

d=o 
For, 

!_e(ni+l)i<t>j 
2 C: cos d(|>j+i 2 ci s m d<|>j = 2 cj e cj 
d=o d=o d=o 1-e' 

'<l>i 
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The norm of this quotient is bounded for all m€!N, because c^j^21CTT, and so, the 
real part of the quotient is bounded for all m€!N. 
Hence, 

00 

2 C: cos dc|>j 
d=0 

is bounded. Clearly, 
n oo oo n 

2 2 C j C 0 S d<))j = 2 2ci c o s d^j 
j = l d = 0 d=Oj=l 

is also bounded. It is given that 
n 

2 C J cos d<t>j>e>0 
j = l 

for at least one d€lN and some €€R + . Let d0 be this d, and e0 be a correspond­
ing e. For reasons to become clear, we need to find infinitely many d for which 
the left-hand side of the above expression is larger than the (fixed) e0. To obtain 
such d, we notice that the topological compact space X = 1R/2Z X ...XIR/Z 
together with the continuous map T: X-X, defined by 

T(xj xn) := (ch + xj cf>n + xn), (xj xn)€X, 

constitute a dynamical system (X,T). In addition, this system is what is called a 
Kronecker system by Furstenberg in [Furste]. Then, by theorem 1.2 in [Furste] 
every point in X is recurrent ([Furste; definition 1.1]). In particular, for the 
point (d0<j>i d0<|>n) there exists a q € Z + and an e 1^R+ such that 

n 
2 Cj cos (d0+q)<J>j > €j > e0 > 0. 
j=i 

Let d1 be defined by d ^ d g + q . In this way, an infinite increasing sequence 
(d0.dj.d2,...) can be constructed such that 

n 
2 Cj cos di<t>j > e0 for i=0,l ,2 
j=i 

Summing this expression over i gives 00 in the right-hand side. Since the sum 
00 n 

2 SCjCOSdcfrj 
d=0j= l 

is bounded, there must be infinitely many d for which 
n 

2 C J cos dd)j<0, 
j = l 
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which was to be proved. D 

(7.40) Lemma. If T is an infinite locally finite connected graph for which |rd(v) | 
is an increasing function of d for some node v£V(r) , and N(d) = A . N(d— 1) is 
a system of linear recurrence equations such that the sum N2(d) of all the ele­
ments of the vector N(d) is equal to |rd(v)|, then the matrix A has a positive real 
eigenvalue r ^ l such that Ns(d) ~ dn.rd, for some n€{0,l m ( r ) - l } , where 
m(r) is the multiplicity of r. 

Proof. We notice the following: 

1. The matrix elements of A are real, because of the nature of the system of 
equations. Consequently, the coefficients of the terms of the characteristic 
polynomial f(t) of A are real. This implies that if a + bi (b^O) is a root of 
f(t), then a—bi is also a root of f(t). . 

2. If the term c.dn(a + bi)d (b#0) occurs in N2(d), then the term c.dn(a-bi)d 

occurs in N£(d) too, since N2(d) is a real positive number for all d. Summa­
tion of these two terms gives 

c.dn(a + bi)d + c.dn(a-bi)d = 2.c.dn(a2+b2)d/2.cos d<j>, 

where (j> = arccos a / (a2+b2)1/2. Hence, an eigenvalue a + bi (b¥=0) with mul­
tiplicity m(a + bi) gives rise to terms like 

2.Cj.dJ(a2+b2)d/2cos dcf> 

inN2(d) (0<j<m(a + b i ) - l ) . 

3. If r is a real negative eigenvalue of A with multiplicity m(r), then it gives rise 
to terms like 

CjdM = CjdJ |r|d cosdir 

i n N x ( d ) ( 0 < j < m ( r ) - l ) . 

Let t ^ d ) be the term Cj'ndnrd occurring in expression 7.37, and let Tpn(d) be 
defined by 

Tpn(d):= 2 t r „ ( d ) . 

Then, by 2 and 3, Tpn(d) can be written as 

Tpn(d) = dnpd2cjp„cosd(|) j pn , 

Clpn.^pn.--- b e m 8 n
Pn r e a l numbers , and <t>ipn.<}>2pn.--- b e i n ê n

P n r e a l numbers 
( h p n ^ Z + ) . Let p be the maximum p for which there exists an n such that T n(d) 
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is not identical to 0, and let n be the maximum n for which T. (d) is not identical 
toO. Then, 

N s(d) ~ T.fl(d) ~ dflpd. 

Since N 2 (d)>0 for all dCIN, there are infinitely many d for which 

2 cjwcos d*m > 0. 

If <(>j^#2kir ( k € Z ) for j = l h.fl, then by lemma 7.39 T.fl(d) < 0 for infin­
itely many d. This means that N2(d)<0 for an infinite subset of these d, which is 
impossible. Hence, d>..fl=2kir for some j , implying that p is a real positive eigen­
value of A. Furthermore, p€(0,l) is impossible, since it would imply that N2(d) 
is a decreasing function of d. Hence, p€[l,°°). o 

The previous lemma implies that some real eigenvalue of Agk in the interval [l,00) 
determines the exponentiality of Sgk. To obtain the eigenvalues of Agk> we shall 
determine the characteristic polynomial of Agk. This job can be done by standard 
techniques. Some of the matrices Agk determined in the previous two paragraphs 
require a special treatment, because some values of k might give rise to matrices 
of which some matrix elements vanish. For example, the case g even, g^6, k>4 
will ask for a special treatment of the subcase k = 4 because Agk contains some 
elements equal to k —4 in that case. 
We shall not describe the computation of fgk(t) from Agk, but merely give the 
result. 

(7.41) Theorem. The characteristic polynomial of Agk is equal to 
m - l 

• fgk(t) = ( - l ) r a ( t m - (k-2) 2 t ' + l ) (m = g/2),ifgiseven, 

2 m - l m - l . 
• fgk(t) = t2 r a-(k-2) 2 t1-(k-4)t ra - (k-2) 2 t'+l (m = (g-l)/2), if g is 

i=m+l i = l 
odd. 

Proof. By standard techniques. o 

For convenience, we use two polynomials flgk and f2gk instead of fgk. They are 
defined by 

figk(t) : = ( - l ) r a f g k ( t ) if gis even, 

f2gk(t) := fgk(t) if gis odd. 
Trivially, this doesn't affect any root. Both polynomials will appear to have 
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exactly one root r s l . To prove this, we first define the notion of sign changes. 

(7.42) Definition. The number of sign changes in the row o^, a2 an of real 
non-zero numbers is equal to 

| {i | a; . a i + 1 < 0 , l s s i s n - l } | 

Insertion of zeros in this row will leave the number of sign changes intact. 

(7.43) Lemma. (Descartes). 
If the row of coefficients an, an_j a0 of the nth degree equation 

anxn+an_1xn-1+ • • • +a0 = 0 (an#0, a0*0) 

has p sign changes, then the number of positive roots of the above equation is 
p—2s for some s (0^s^p/2) , where an n-fold root is counted n times. 

Proof. See for example [Perron]. o 

From this theorem we directly conclude that fjgk(t) ( i=l ,2) has at most two posi­
tive roots for all g and k except possibly when k = 3 and g is odd - the coefficients 
of the characteristic polynomial have 4 sign changes in that case. Furthermore, 

figk(0) = l > 0 (i=l ,2), 

f l g k ( l )= - ( m - l ) ( k - 2 ) + 2 < 0 for(g,k)#(4,4)and(g,k)*(6,3) , 

f2gk(D = - 2 ( m - l ) ( k - 2 ) - ( k - 6 ) < 0 for (g,k)#(3,6), 

figk(t) > 0 fort-oo(i=l ,2) . 

Hence, for (g,k) not equal to (3,6), (4,4) or (6,3) or for k=É3 or g is even, both 
the intervals (0,1) and (1,°°) contain exactly one root. The cases (g,k) = (3,6), 
(4,4) or (6,3) yield a root at t = l and no roots in ( l ,0 0) , again showing that the 
three corresponding grids are not exponential. Supersymmetric graphs with odd 
girth and degree 3 remain to be considered. For this we use a lemma which is a 
generalization of lemma 7.43. 

(7.44) Lemma. (Fourier-Budan). 
Let f(x) be an nth degree polynomial with real coefficients and let a and 3 be two 
real numbers for which a < 3 and f(ot)#0 and ^ 3 ) ^ 0 . Let Rf(x) denote the row 

f(x),f'(x) f^(x). 
If p respectively q denotes the number of sign changes in Rf(ot) respectively 
R f(p), then p>q and the number of roots of f(x) in the interval (a,3) is equal to 
p—q-2s for some s (0Ss<(p—q)/2), where an n-fold root is counted n times. 
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Proof. See for example [Perron]. □ 

This theorem enables us to determine the number of roots of f2g3(t) in the inter­
val (l.oo). First, we notice that f^3(t) > 0 when t~°° for n = 0,l,...,2m. Second, 
we have the following values of f ^ ( l ) for n = 0,l,...,2m. 

f2g3(l) = - 2 m + 4, 

f $ ( D = n!{(2
n

m) - ( n ^ 1 ) + ( ? : i
1 ) + ( ? ) - ( „ ? ! ) > for l ^ m - 1 , 

«(D-mKfï)-^)}, 
f ^ ( D = n !{ ( 2 ^ ) - ( n

2 ™ 1 )} form + l<n<=2m-l , 

f$?>(l) = (2m)!. 

It is easily established that f2g3(l) < 0 (notice that m>3), and f^3(l) > 0 for 
m < n < 2 m . For other n we first need a lemma. 

(ï)> 
(n) 

(7.45) Lemma. For all m and n for which l < n ^ m - 2 , or n = m - l and m ^ 4 

2n + 2 
2 m - 2 n - l ' 

Proof. Let n = m —r, then l < r S m - 1 . This yields an inequality which can be 
proved by induction on m. The induction basis is m = r+ 1 for rS:2 and m = 4 for 
r = l . □ 

The value of f£g3(l) for l^n^m— 1 can be rewritten to 
(2m\ 

„ , /m\ r\ n / -2m + 2n + l , „ , BVJ te\—"+1— 
The previous lemma implies that this value is negative for all m and n for which 
l < n ^ m —2, or n = m - l and m>4. The reader may verify that the above value 
is positive for the remaining m and n, i.e. for m = 3 and n = 2. In all cases there is 
one sign change in R f23(l). Hence, f2g3(t) has exactly one singular root in the 
interval [1,°°). 

So, we have the following corollary. 

(7.46) Corollary. The uniform exponentiality of Sgk is equal to the largest real 
eigenvalue of Agk. 
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Proof. By lemmas 7.43, 7.44, and 7.45, fgk(t) has one root in the interval [I»00) 
for all feasible g and k. Then, by lemma 7.40 and lemma 7.38 this root is equal 
to the uniform exponentiahty of Sgk. a 

Finally, we investigate the behaviour of the largest root of fgk(t) for fixed k when 
g increases. 

(7.47) Theorem. For the largest root t of fgk(t) there exist a constant c only 
depending on k, and a constant 8>0, such that 

k - l - t < c.(l + 8) - m , 

where m = g/2 for even g, and m = (g— l)/2 for odd g. 

Proof. We distinguish between even and odd girth. 

Even g. Suppose (g,k)#(4,4) and (g,k)9t(6,3). Multiplying flgk(t) by t - 1 and 
rewriting gives 

k _ l _ t = ( k - l ) t - l < ( k _ 1 ) t i - m 
tm 

Now, let 8 be such that flgk(l + 8)<0 for all (g,k)=£(4,4) and (g,k)*(6,3) 
(8=1/2 suffices). Then, l + 8<t because fig k(l)<0 for (g,k)#(4,4),(6,3), 
and f lgk(t)>0 for t-°°. Hence, 

k - l - t < ( k - l ) ( l + 8)(l + 8 ) _ m . 

Setting c=(k— l)(l + 8) proves the theorem for kS:5. 
For k = 4 set c equal to some number larger than 3(1 + 8) that makes the 
theorem valid for g=4. Clearly, this c also makes the theorem valid for 
k=4 and g^5 . 
The hexagonal grid is dealt with in a similar way. 

Odd g. In this case multiplying f2gk(t) by t - 1 and rewriting gives 

k _ ! _ t = 2 t r c + l - 2 t " + ( k ^ l ) t z ± < (k + l ) t i - . 

The rest of this case is analogous to the case even g. (We have to deal 
separately with (g,k) = (3,6)). G 

We conclude that increase' of g yields the uniform exponentiality of Sgk to get 
nearer to k—1. This result is just what we expected, because Sxk is a tree with 
uniform exponentiality k— 1. More importantly, the approach of the uniform 
exponentiality of Sgk to k - 1 as g increases is pretty fast, as can also be seen in the 
table in appendix B. 
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It is easily established that flgk(k—1)>0 and f2gk(k—1)>0, proving that the uni­
form exponentiality of Sgk is strictly less than k - 1 for finite g. 

7.6 Concluding remarks 

This chapter dealt with the uniform exponentialities of supersymmetric graphs. 
Knowing the two parameters of a supersymmetric graph, its girth g and its degree 
k, we can easily establish its uniform exponentiality. The uniform exponentiality 
of Sgk is equal to the largest root of the polynomial fgk(t) defined by 
theorem 7.41. The uniform exponentiality of Sgk approaches k—1 for large g. 
From this point of view supersymmetric graphs are 'almost optimal'. 

In the next chapter we investigate how to cut finite convex subgraphs with low 
R/r-ratios out of supersymmetric graphs. 

198 



8 

Convex subgraphs of supersymmetric graphs 

Measure a thousand times and cut once. 

Turkish Proverb 

8.1 Introduction 

In this chapter we construct extension sequences consisting of convex subgraphs 
of supersymmetric graphs. For this, two approaches will be followed, resulting in 
two classes of extension sequences. 
In the first approach, described in paragraph 8.2, we make use of the construc­
tions of Grünbaum and Shephard in paragraph 6.3. It results in extensible net­
works of which the R/r-ratios are bounded from above by a fixed constant. The 
R/r-ratios of the networks are equal to 1, if the underlying graph is Sjk (k>6). 
That is optimal. If other underlying graphs are used in the first approach, then 
the R/r-ratios of the constructed networks are not very close. 
In the second approach, described in paragraph 8.3, we construct convex hulls of 
balls in supersymmetric graphs. Theorem 2.23 guarantees that such subgraphs 
have low R/r-ratios. The R/r-ratios of convex hulls of balls are 1 in S^ (kS:6), 2 
in S44, and go asymptotically to 1 as r goes to » in the other supersymmetric 
graphs. 

8.2 Convex subgraphs of Sgk, a first approach 

In this paragraph we design convex subgraphs of Sgk which are based on the con­
structions of Grünbaum and Shephard in paragraph 6.3. These constructions will 
appear to be optimal constructions for supersymmetric graphs with girth 3, i.e. 
the R/r-ratios of the constructs based on S3k will appear to be 1. Other supersym­
metric graphs result in networks with less favourable R/r-ratios, as will be seen. 

In order to obtain the networks, we consider the largest subgraph of Sgk sur­
rounded by Cj (see paragraph 6.3). We call this subgraph a ;. So, o-j consists of 
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all nodes on Q plus all nodes properly surrounded by Q. To prove that o-j is con­
vex we refer to lemmas 6.13 and 6.16 which stated that between any two nodes 
on Q there exists no shortest path between them passing through Cj for j> i ( i s l , 
g>3). These lemmas immediately imply that CT; is convex. For ^ (kS:6) a simi­
lar lemma is valid. To see this, we first state a lemma which is the analogue of 
lemmas 6.12 and 6.15. 

(8.1) Lemma. Let u; and w; be nodes on Cj in S3k (k&6) and u i + 1 and Wj+j be 
nodes on C i+1 ( i ^ l ) , such that (u i ,u i+1),(w i ,w i+1)€E(r). Then, 

d C H 1 ( U i + l .W i + 1 ) == dC l(U;,W;). 

Proof. Let d = dCi(ui,wi). It is easily established that 

dC|+1(ui+l'wi+i) * ( d - l ) ( k - 4 ) + 2 > d. G 

For Sjk (k5:6) we now have the following lemma. 

(8.2) Lemma. Let u and w be two nodes on C; in &3k (ks6) , then there is no 
shortest path between them through Cj for j> i ( i ^ l ) . 

Proof. Similar to the proof of lemma 6.13. o 

This lemma implies that any subgraph a; in S3k (k>6) as defined above is con­
vex. So, S^o-j) is an extension sequence in Sgk consisting of convex networks. 
The R/r-ratio of a; is given by the following theorem. 

(8.3) Theorem. The R/r-ratio of 04 ( i ^ l ) is determined by 

(a) R ^ / r ^ l i f g = 3 a n d k > 6 , 

(b) Ra/ia = \g/2\ i f g > 4 a n d k > 4 , 

(c) Rffl*ffl= Lg/2J and Ra/Ta = (2. Lg/2j +( i -2) ( Lg/2j-l)) / ( 2 i - l ) (ia2) 
if g is odd, g>7 and k = 3. 

(d) R ( T /rC T i=(g/2+(i-l)(g/2-l))/(2i-l) if g is even, g>6 and k=3 . 

Proof. 

(a) Lemma 6.10 states that all nodes on Cj have distance i from v (i> 1). From 
this we conclude RC|=rCT = i , giving an R/r-ratio of 1. 

(b) In Sgk (g^4 , k>4) there exist nodes on C; at distance i from v ( i> l ) . 
Hence, rCTi=i. 
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To obtain RCTi first construct a node Uj on C^ at maximal distance from v. 
Since k s 4 and g^4 , there exists a facial circuit between C1 and C2 with u2 

as its only node on C : . Let fj be this circuit. Construct a node u2 on C2 

lying on fj at maximal distance from u1 (see figure 8.1). Node Uj lies on the 
shortest path from v to u2. 

Figure 8.1 Node u, and facial circuit f; in Sgk (g&:4, k>4) . 

Continuing this process results in a node U; on Ci and a facial circuit f; such 
that u; is the only node on Qrifj ( i=l ,2 , . . . ) . It is easily verified that u; is a 
node on Q at maximal distance from v. Furthermore, the distance between 
U;-! and u; is equal to Lg/2j. Hence, R ^ Lg/2j.i, giving the required R/r-
ratios. 

In Sg3 (g^7) each node on C; (i^2) is connected to either a node on C ^ or 
a node on C i + 1 but not to both. From this it is easily deduced that 
r „ - 2 i - l . 
To obtain Rai we first construct a node \ii on Cj at maximal distance from v. 
Node Ui has a neighbour u{ on C1 at distance dtv.Uj) from v. Let fj be the 
facial circuit between Cj and C2 containing both Uj and u{. Let u2 be the 
node on f1flC2 at maximal distance from Uj (and u{), let f2 be one of the 
facial circuits between C2 and C3 containing u2, and let u3 be the node on 
f2nC3 at maximal distance from u2 (see figure 8.2 (a)). 
More in general, let f; be one'of the facial circuits between C; and C i + 1 con­
taining Uj, and let u i + 1 be the node on fjnC i+1 at maximal distance from U; 
(i=2,3,...). Though u{ does nor lie on a shortest path from v to Uj (j>i), 
there exists no node on Q lying at distance larger than d(v,u;) from v. 
It is easily established that d(\,\i1)=[g/2\. With some more effort we 
obtain 

d(v,ui) = 2.lg/2j + ( i -2)(Lg/2j- l) ( i^2) . 
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(a) Odd g. (b) Even g. 

Figure 8.2 Node u; and facial circuit fj in Sg3 (g^6). 

Hence, R ^ [g/2\ and Rff |=2lg/2j + ( i -2)(Lg/2j- l) for i>2, giving the 
required R/r-ratios. 

(d) Similarly to (c) we obtain rCT)=2i-l in Sg3 (gS:6). 
Rai is determined as follows. 
Node Ui is determined in a similar way as in (b) (and (c)). Let fj be one of 
the facial circuits between Cj and C2 containing u1( and let u£ be the node 
on firiC2 at maximal distance from ux (see figure 8.2 (b)). Node u/has two 
neighbours on Cj (i=2,3,...). Let Uj be the one with the largest distance 
from v, and let f; be the facial circuit between C; and C i + 1 containing both u; 

and U;'. Furthermore, let u/+1 be the node on fjrïCj+1 at maximal distance 
from Uj. Node uj lies on a shortest path from v to U: ( l ^ i < j ) , and lies at 
maximal distance from v of all nodes on C;. Then, 

Rffi=d(v,ui) = g/2 + ( i - l ) ( g / 2 - l ) ( i = l , 2 , . . . ) , 

which gives the required R/r-ratios. o 

We conclude that the R/r-ratios of all CT; are bounded from above by a constant. 
The R/r-ratios of CTJ in S3k (k>6) are 1, and so, optimal. The R/r-ratios of CTJ in 
supersymmetric graphs with girth g>3 can be improved, as will be seen in the 
next paragraph. 

8.3 Convex subgraphs of Sgk, a second approach 

The convex subgraphs of Sgk constructed in this paragraph are convex hulls of 
balls. Theorem 2.23 indicated that such constructs promote low R/r-ratios. We 
shall prove that the R/r-ratios of convex hulls of balls 
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• are 1 if the underlying graph is S3k ( k s6 ) , 

• are 2 if the underlying graph is S44, 

• go asymptotically to 1 as r goes to °°, for all other supersymmetric underlying 
graphs. 

In order to prove this we construct a subgraph <|>r(v) of Sgk> which will appear to 
be equal to [Br(v)] for (g,k)Tt(4,4). It is constructed as follows. Let Br(v) be the 
ball with radius r around node v in Sgk. Consider all facial circuits of Sgk having 
nodes in r r(v) , in Tt_i(v) and in r r + 1 (v) . Let f be such a facial circuit. We call 
f a closed circuit with respect to Br(v) if there is a shortest path through f outside 
Br(v) between the two nodes in fnr r (v) . We define <|>r(v) as the subgraph of Sgk 

consisting of Br(v) plus all facial circuits which are closed with respect to Br(v). 
Figure 8.3 depicts B4(v) and c|>4(v) in 873. 

Figure 8.3 B4(v) and (|>4(v) in Sy3. 

In order to investigate the relationship between (j>r(v) and [Br(v)] we make exten­
sive use of results of chapter 6, especially lemma 6.24 and knowledge about RD-
labelings. For convenience, the feasible RD-combinations at nodes in rd(v) 
(d&2), deduced in chapter 7, are summarized in table 8.1. 

We shall prove the following theorem. 
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Even g: 

k = 3 , g = 6 : 012,113,022 
k = 3, ga:8: 012, 013,..., 0 1 m - l , 11m, 022 
k2=4, g=4: 0k-2ll,0k-3121 
k2:4, gs=6: 0k-2 l l , 0k-212,..., 0 k _ 2 l m - l , 0k-3lml 

Oddg: 

k = 3 , g = 7 : 012,013,012,012,112,022 
k = 3, ga:9: 012,..., 01m- 1, Qlm, 012, 012 O l m ^ l , 11m, 022 
k a 4 , g=5 : 0k _ 2 l l , Q0k-312, 0k_2U, 0k_3121 
k ^ 4 , g&7: 0k-2ll , . . . , 0 k - 2 l m - l , QO^lm, 0k-2U,..., 0k-2lm_-l, 0k-3lml 

Table 8.1 The feasible RD-combinations in Sgk (g>3) . 

(8.4) Theorem. The convex hull of Br(v) ( r=0 , l , 2 , . . . ) in Sgk is determined by 

[Br(v)] = <|)r(v) i f (g ,k )# (4 ,4 ) . 

(A yet incomplete) Proof. Theorem 8.3 implies that [Br(v)] = Br(v) for g = 3 . It is 
easily seen that <j>r(v) = B r(v), when g = 3 , proving theorem 8.4 for supersym­
metric graphs with girth 3. 
In the case g > 3 the ball Br(v) is not convex in Sgk. Then there exist two nodes Uj 
and u2 on Tr(v) and a shortest path P between them which lies entirely outside 
B r(v) . Let n be the subgraph of Sgk consisting of B r(v)UP and all the nodes prop­
erly surrounded by B r(v)UP. Let F be the set of facial circuits in II having one or 
more edges in common with P. We shall prove that F consists of one facial cir­
cuit. By definition of P and F, this facial circuit is closed with respect to B r(v). 
This result directly implies theorem 8.4. o 

So, in order to complete the proof of theorem 8.4, we need to prove that any set F 
as defined above, consists of exactly one facial circuit. The proof that F consists 
of one facial circuit covers lemmas 8.5 to 8.16. We assume g > 3 in these lem­
mas. In the first lemma we prove that all facial circuits in F lie side by side, as in 
figure 8.4 (a). 

(8.5) Lemma. For every two different facial circuits f j ^ C F : P U ^ does not sur­
round f2. 

Proof. Suppose fj and f2 are two different facial circuits in F such that PUfj sur­
rounds f2. Then, there exists a subgraph a of Sgk surrounded by PUf l t contain­
ing f2 and not surrounding f2. Let x2 and x2 be the two nodes on f jHPr ia (see 
figure 8.4 (b)). We know that dfi(x1,x2) = d f i n a (x 1 , x 2 )S [g/2j, otherwise P 
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(a) (b) (c) 

Figure 8.4 Illustration for lemma 8.5. 

wouldn't pass through X} and x2, but through the side of f1 not on a. Further­
more, dP(x1,x2)^dfi(x1,X2), since P is a shortest path. Inasmuch as 
(PDa)U(f1na) is a circuit and the length of each circuit in Sgk is at least g, we 
obtain 

dp(x1,x2) + dfinB(x1,x2) 2= g. 

Substituting dp(x1,x2) and dfina(x1,X2) in this expression, we conclude that g is 
even and dp(x1,x2) = d£inct(x1,x2) = g/2. Then, the smallest circuit C surrounding 
both fj and a has length g but is not facial, which is a contradiction (see 
figure 8.4(c)). D 

In order to reduce the number of facial circuits in F to one, we consider a node 
on P lying at maximal distance from v, and investigate its position with respect to 
the facial circuits in F. 
Let w be a node on P at maximal distance from v (there may be more of such 
nodes). Any node properly surrounded by Br(v)UP lies at distance smaller than 
d(w,v) from v, since Sgk is smooth (use lemma 6.24 in the standard way to prove 
this). 
Knowing that the facial circuits in F lie side by side, we conclude that w lies on P 
in one of the three ways depicted in figure 8.5. 
We now have the following lemmas. 

(8.6) Lemma. The situation in figure 8.5 (a) is impossible. 
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(a) (b) (C) 

Figure 8.5 Impossible (a,b) and possible (c) positions of w. 

Proof. Let fx and f2 be the two facial circuits in F containing w. Since w is a node 
in II at maximum distance from v, 

RD-l(w,fi) = m or m. ( i=l ,2) . 
Then, two m's, two m's or an m and an m. occur simultaneously in the RD-
combination of w, which is impossible for all g and k in table 8.1. o 

(8.7) Lemma. The situation in figure 8.5 (b) is impossible. 

Proof. Similar to the proof of the previous lemma. ü 

The situation in figure 8.5 (c) remains to be considered. Let f be the facial circuit 
in F to which w belongs. Clearly, RD-l(w.f) is m or m.. Let Wj and w2 be the 
nodes on PD f having only one neighbour in Pflf. For Wi and w2 we have the fol­
lowing lemma. 

(8.8) Lemma. If g is even, or g is odd and f is a type I circuit, then 

RD-l(w1,f) + RD-(w2,f) > [g/2"|. 

If g is odd and f is a type II circuit, then 

RD-l(w1,f) + RD-l(w2,f) 2: [g/2j. 

Proof. Since P is a shortest path, we have dfnP(w1,w2) :£ df_P(w1,w2). This 
implies 

dfnP(w1,w2) ^ g/2. 

Since w lies on fflP, we obtain 
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m-RD-Kwi.O+m-RD-Kwj.f) < g/2, if gis even, 

m-RD-Kwi.O + l + m-RD-Kwj.f) :£ g/2, if g is odd and f is a type I circuit, 

m.-RD-l(wlff) + m-RD-l(w2,f) =£ [g/2j, if g is odd and f is a type II circuit. 

Substitution of m = g/2 for even g and m = (g—1)/2 for odd g and some calcula­
tions gives the required results. o 

To prove that f is the only facial circuit in F, we have to prove that F contains no 
facial circuits lying next to f, i.e. that w^B^v) and w2€Br(v). If Wjf?Br(v) 
(i=l,2) then there exists a facial circuit f; in F next to f and containing w;. For 
this facial circuit we have the following lemma. 

(8.9) Lemma. If fj exists, then |RD-l(Wi,fi)| > |RD-l(Wj,f)| 

Proof. Suppose the lemma is not true, i.e. |RD-l(Wi,fi)|<|RD-l(Wiff)|. Let u; be 
a node in fj which has RD-label m or m in fj. Then d(Ui,Wj)>d(w,Wj), implying 
that d(u;,v)>d(w,v). This is a contradiction, since u; lies in II. o 

This lemma will be of help to rule out several situations in the rest of the proof of 
theorem 8.4. 
In the subsequence we prove that w1€Br(v) and w2€Br(v). It directly implies that 
F consists of only one circuit, which is the result we need. We consider the fol­
lowing cases: 

A. caseg^5. 

B. caseg=4. 

The first case is covered by lemmas 8.10 to 8.15. 

A. case £>5 

(8.10) Lemma. If (g,k)#(6,3) and g^5 , then the two conditions 

• W!EB,(v) 

• w2£Br(v) 

are equivalent. 

Proof. If wa€Br(v) and w22Br(v), then f2 exists. We consider two cases. 

Casek>4. Lemma 8.9 implies that if |RD-l(w2,f)|>l then |RD-l(w2,f2)|>l. 
This results in an RD-combination on w2 containing two RD-labels larger 
than 1, which is impossible by table 8.1. Hence, 
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RD-l(w2,f) ^ 1 or RD-l(w2,f) < 1. 
If RD-l(w2,f)<l, then RD-Kw^f)^ [g/2l~l by lemma 8.8. Analogously, 
RD-l(w2,f)<l implies RD-Kw^f)^ [g /2 j - l . In both cases we have RD-
l(w1(f)>RD-l(w2,f), implying that d(w1,v)>d(w2,v). Therefore, w2ëBr(v). 

Case k = 3. Using lemma 8.9 and table 8.1 we obtain in a similar way to the pre­
vious case: 

RD-l(w2,f) < 2 or RD-l(w2,f) < 1. 
The first part implies RD-Kwj.f) 2: fg/2"| — 2 and the second part implies 
RD-Kwj.f) > [g/2j - 1 by lemma 8.8. 

We conclude that RD-Kwj.f) > RD-l(w2,f) for all g>7, implying that 
d(w1,v)>d(w2,v). Therefore, w2€Br(v). 

In a similar way it is derived that w2€Br(v) implies w1€Br(v). o 

In order to show that F consists of only the facial circuit f, we have to prove that 
Wj€Br(v) or w2€Br(v), for (g,k):ït(6,3) and g2:5. In the next four lemmas we 
prove this. 

(8.11) Lemma. If k>4 and g>5, then w^B^v) or w2€Br(v). 

Proof. Suppose w1£Br(v) and w2iB r(v). Then f2 and f2 exist. By the relations in 
lemma 8.8 

RD-l(Wl,f) > [g/2j/2 or RD-l(w2,f) >: [g/2]/2, 

if g is odd and f is a type II circuit, and 

RD-Kwj.f) == Tg/21/2 or RD-l(w2,f) > Tg/2l/2 

otherwise. Let's assume without loss of generality that 

RD-l(w:,f) > Lg/2j/2 > 1, 

if g is odd and f is a type II circuit, and 

RD-l(Wl,f) > [g/2]/2 > 2, 

otherwise. From table 8.1 we directly conclude that R D - K w ^ ) must be 0, Q_ or 
1, which is in contradiction with lemma 8.9. o 

(8.12) Lemma. If k = 3 and g>9, then Wj€Br(v) or w2€Br(v). 

Proof. Suppose v/1iBI(\) and w2£Br(v). Then fj and f2 exist. By the relations in 
lemma 8.8 
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RD-l(w1(f) 2: [g/2j/2 or RD-l(w2,f) > [g/2j/2, 

if g is odd and f is a type II circuit, and 

RD-l(w1;f) > [g/2l/2 or RD-l(w2,f) > Tg/21/2, 

otherwise. Let's assume without loss of generality that 

RD-l(w1(f) > [g/2j/2 > 2, 

if g is odd and f is a type II circuit, and 

RD-l(Wl,f) > [g/2l/2 > 3, 

otherwise. From table 8.1 we directly conclude that RD-Kwj.fj) must be 0 or 1, 
which is in contradiction with lemma 8.9. G 

(8.13) Lemma. If k = 3 and g=8, then w^B^v) or w2€Br(v). 

Proof. Suppose WjgB^v) and w2£Br(v). Then fj and f2 exist. We know that 
RD-l(wi>f):?t4 ( i=l ,2) , since f contains only one node with maximal RD-label, 
i.e. node w. Furthermore, 

RD-l(w1,f) = 3 and RD-l(w2,f)>l or 
RD-l(w1,f)>2 and RD-l(w2,f)S:2 or 
RD-Kw^f)^! and RD-l(w2,f) = 3, 

otherwise P is not a shortest path. 
If RD-l(w;,f) = 3 for i = 1 or 2, then RD-l(wi(fi) must be 0 or 1 (see table 8.1), 
which is in contradiction with lemma 8.9. Hence, RD-l(w1,f) = 2 and RD-
l(w2,f) = 2. Then, lemma 8.9 and table 8.1 imply 

RD-l(w1,f1) = 2 and RD-l(w2,f2) = 2. 

Hence, the nodes with RD-label 4 in i1 and f2 lie at distance d(w,v) from v 
(notice that RD-l(w,f) = 4). This implies that all conditions we deduced for f can 
also be deduced for ix and f2. 
Doing the same for f, as we did for f results in a facial circuit other than f next to 
fj, of which both nodes with RD-label 2 lie on P. Continuing this process results 
in a sequence of facial circuits in F, of which all nodes with RD-label 2 lie on P 
(see figure 8.6). 
We conclude that for the two facial circuits in F containing Uj and u2 (which are 
called g! and g2 respectively) 

RD-l(Ui,gi) = 2 ( i=l ,2) . 

Since u; lies in Br(v), all nodes with RD-label 2 in a facial circuit of F lie in Br(v). 
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Figure 8.6 Illustration for lemma 8.13. 

This is a contradiction, since these nodes lie on P and P lies entirely outside 
Br(v). D 

(8.14) Lemma. If k = 3 and g=7, then w^B^v) or w2€Br(v). 

Proof. Suppose w1(EBr(v) and w21Br(v). Then fx and f2 exist. If f is a type II cir­
cuit, then w is the only node in f with maximal RD-label. Hence, RD-l(Wj,f)ïÉ3_ 
( i=l ,2) . Furthermore, 

RD-l(w1(f)>l and RD-l(w2,f) = 3 or 
RD-l(w1,f)>2 and RD-l(w2,f)>2 or 
RD-l(w1,f) = 3 and RD-l(w2,f)>:l or 
RD-Kwj . f ^ l and RD-l(w2,f) = 2 or 
RD-l(w1,f)=2and RD-l(w2,f):>l, 

otherwise P is not a shortest path. 
If RD-l(w;,f) = 3 for i = 1 or 2, then RD-l(w;,f;) must be Q_ or 1 (see table 8.1), 
which is in contradiction with lemma 8.9. If RD-l(Wj,f) = 2 for i = 1 or 2, then 
RD-l(wi(fi) must be 0 or 1 (see table 8.1), which is also in contradiction with 
lemma 8.9. 
Hence, RD-l(w1,f) = 2 and RD-l(w2,f) = 2. From this point on we obtain a con­
tradiction in the same way as in the proof of lemma 8.13. o 

The previous five lemmas proved that F consists of the facial circuit f only, for 
g^5 and (g,k)=£(6,3). The hexagonal grid must be considered as a separate case. 
Lemma 8.10 cannot be applied to it, but in this case we can manage without it. 
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(8.15) Lemma. If k=3 and g=6, then w^B^v) and w2€Br(v). 

Proof. Suppose w^B^v) , then fx exists. We know that RD-l(wi(f)¥=3 ( i=l ,2) , 
since f contains only one node with maximal RD-label, i.e. node w. Further­
more, 

RD-l(w1,f) = 2 and RD-l(w2,f)>l or 
RD-l(w1(f)>l and RD-l(w2,f) = 2, 

otherwise P is not a shortest path. 
In order to prove that RD-l(w2,f) = 2, we consider all facial circuits in F from f up 
to the facial circuit in F containing u1 (call the latter facial circuit gj). If RD-
l(w2,f) = l, then each node with RD-label 1 in any of these circuits does not lie on 
P. To see this, assume that f' is a facial circuit in F between f and gj having a 
node x with RD-label 1 on P, such that there is no facial circuit in F between f 
and f' having a node with RD-label 1 on P. Then, node x does not lie on the 
facial circuit in F next to f' between f' and f, for otherwise the distance to v of the 
node with RD-label 3 in f' would be greater than d(w,v). So, node x lies on f' in 
the way illustrated by figure 8.7. Then, the shortest path between x and w2 is not 
the one lying on P, but the one passing through the zeros of all facial circuits in F 
between f' and f. This is a contradiction. 

Figure 8.7 Situation occurring in lemma 8.15. 

We conclude that if RD-l(w2,f) = 1, then each node on P in any of the facial cir­
cuits from f up to gj has RD-label 2 or 3 in that circuit. This implies that RD-
l(u1,g1)>2. From this we conclude that all nodes with RD-label 2 on the facial 
circuits from gj up to f lie at distance at most d(u,v)<r to v. So, they lie in Br(v). 
Since they also lie on P, we obtain a contradiction. Hence, RD-l(w2,f) = 2. 

Since 1<RD-I(w1,f)<2, the condition w2€Br(v) implies w ^ B ^ v ) , which is a 
contradiction. Hence, w2£Br(v). Then by arguments of symmetry RD-

211 



Convex subgraphs of sup er symmetric graphs Ch.8 

l(w1,f) = 2. From this point on we obtain a contradiction in an analogous way as 
in the proof of lemma 8.13. o 

From lemmas 8.10, 8.11, 8.12, 8.13, 8.14 and 8.15 we conclude that the condi­
tion 

w1£BI(v) or w22Br(v) 
can not be satisfied when g s 5 . Hence, F consists of only the facial circuit f when 
g ^ 5 . The proof that this is also the case for g=4 is as follows. 

B. case g=A 

In this case f consists of four nodes: w, w1( w2 and a zero, called z. First of all, 
we have an almost trivial lemma. 

(8.16) Lemma. w^B^v) if and only if w2€Br(v). 

Proof. RD-l(w1,f) = RD-l(w2,f) = l. Hence, d(w1,v) = d(w2,v), directly giving the 
required result. ü 

(8.17) Lemma. If g=4 and k > 5 , then WjCB^v) orw2€Br(v). 

Proof. Suppose w^B^v) and w22Br(v). Node z lies at distance d(w,v)-2 from 
v. Lemmas 7.5 and 7.6 imply that there are at least k —2 neighbours of z at dis­
tance d(w,v)—l from v. Nodes w1 and w2 are two of them. Since k ^ 5 there is at 
least another one. Let x be this node. 
Node x does not lie on P because this would imply that the path x, z, w2 is shorter 
than the subpath x,..., w1( w, w2 of P, or the path x, z, Wj is shorter than the sub-
path x w2, w, wx of P. Node x does lie inside II-B r(v) because S4k is planar, 
w ^ P , w2€Pandd(x,v) = d(w;,v) ( i=l ,2) . 
Since S4k is smooth, node x has a neighbour y at distance d(w,v) from v. 
Inasmuch as x lies in II—P—Br(v) - and so, x is not a border node of II - node y 
does not lie outside II. By lemma 6.24 node y is not properly surrounded by the 
circuit consisting of the border nodes of Br(v)UP, because d(y,v) = d(w,v). 
Hence, node y lies on P. This implies that node y lies on a facial circuit of F and 
y has RD-label 2 in this circuit, since d(y,v) = d(w,v). However, the only possible 
situation is that in figure 8.5 (c) (see lemmas 8.6 and 8.7), i.e. the neighbour(s) 
of y at distance d(w,v)- 1 from v lie(s) on P or outside II. This implies that x lies 
on P or outside II, which is a contradiction. G 

We conclude that Wj€Br(v) and w2£Br(v) in the case g=4 and k==5. Hence, F 
consists of only the facial circuit f, if g=4 and k&5. 
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Reconsidering the incomplete proof of theorem 8.4, we notice that the only open 
piece to be filled in was proving that F consists of only one facial circuit. Since 
this is done for the cases g>5 and g=4 ((g,k)#(4,4)), the proof of .theorem 8.4 is 
completed. 

We may wonder whether [Br(v)] = c|>r(v) in S44. This is not true for r>:2. Fig­
ure 8.8 illustrates the case r=2 . 

— 9 < 

HK 

n 

fTTir^ 

^ ^ U 

<J>—1>— 
B2(v)] 

!<fc(v) 

#H» 

<j> Ó 

Figure 8.8 B2(v), <j>2(v) and [B2(v)] in S44. 

We are now in the position to prove the following theorem. 

(8.18) Theorem. If B;(v) is a ball in Sgk ( i > l ) , then 

(a) R(B,(v)]̂ [Bl(v)] = 2 ifg=k=.4, 

(b) R[B,(v)]/r[B,(v)] s l+Lg/4j/i otherwise. 

Proof. 

(a) S44 is identical to the tree-mesh T2. We concluded in paragraph 4.3 that 
convex hulls of balls in T2 have R/r-ratio 2. 

(b) If g=3 then from the convexity of Br(v) in S3k (k>6), we directly conclude 
that R[Br(v)]/r[Br(v)]= !• Supersymmetric graphs with girth g>3 ((g,k)#(4,4)) 
are dealt with as follows. 
For g>3 and (g,k)V=(4,4) we have [Bi(v)] = (()i(v). Every node on 
4>i(v)-Bi(v) lies on a shortest path between two nodes in r ;(v) lying on the 
same facial circuit. The length of this path is at most (g-1)/2 for odd g and 
2. [g/4j for even g. 
For odd g the maximum length of the path is achieved for type II circuits. 
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The distance to v of a node with RD-label m in such a type II circuit does 
not exceed [g/4j +i. 
For even g the maximum distance to v of a node on the shortest path is also 
Lg/4j + i. 
Hence, R[B.(v^<i+ [g/4\. Furthermore, rrB,(v)]—i. which gives the required 
result. D 

Figure 8.9 shows the subgraphs [B^v)], [B2(v)]( [B3(v)]t [B4(v)] and [B5(v)] of 
$73 ■ 

N ^ 

(a) [B,(v)] (b) [B2(v)] (c) [B3(v)] 

(d) [B4(v)] (e) [B5(v)] 

Figure 8.9 Convex hulls of balls in 873. 

It is easily verified that R p . M n ^ M H 1 . ^(v)]™*"1"1 a n d r[Bi(v)] = i f o r 
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1=2,3,4,5. 

For (g)k)9t(4,4) and %+7> the R/r-ratio of [B;(v)] goes asymptotically to 1 as i 
goes to oo. That is almost optimal. In chapter 7 we concluded that the exponen­
tially of Sgk is almost optimal too. Considering theorem 2.19, we conclude that 
the extension sequence SE([B}(V)]) is not subject to much improvement with 
respect to the diameters of its elements. The table in appendix C shows the 
number of nodes in <|>r(v). The reader is invited to compare <|>r(v) in Sgk with the 
balls Br(v) and BR(v) in Sxk, R being the radius of the circumscribed ball of d>r(v) 
in Sgk. In Sojj balls are optimal extensible networks with respect to their diameter. 

The extension complexity of [B;(v)] in Sgk is of the same order as the number of 
nodes in [B;(v)]. This is easily seen for (g,k) = (4,4) (see paragraph 4.3). To see 
it for the cases (g,k)9fc(4,4), we first compare the number of nodes in [B;(v)] with 
the number of nodes in Bj(v). The number of facial circuits which are closed 
with respect to B,(v) does not exceed |rj(v)|. Furthermore, the number of nodes 
outside B,(v) in each of these circuits is at most (g-3)/2 for odd g and 2. j.g/4j - 1 
for even g (see proof of theorem 8.18), which is constant. So, the number of 
nodes in [B,(v)] is of the same order as the number of nodes in B,(v). Further­
more, the number of nodes in Bi+1(v) is linear in the number of nodes in Bj(v), 
implying that the number of nodes in [Bi+1(v)] is of the same order as the 
number of nodes in [Bj(v)]. 

It seems that the extension complexity can even further be improved for sub­
graphs of supersymmetric graphs with girth g>3 , (g,k)#(4,4) and (g,k)¥=(6,3). 
To see this we notice that [Bi+1(v)] can be obtained from [B;(v)] by adding the 
facial circuits to [B;(v)] which are 

• not yet in [Bi+1(v)], 

• closed with respect to B i+1(v). 

The facial circuits can be added one by one without disturbing convexity, when­
ever g>3 , (g,k)#(4,4) and (g,k)^(6,3). This results in convex subgraphs of Sgk, 
being interjacent between [B;(v)j ajid [Bi+1(v)]. These convex subgraphs together 
with the convex hulls of balls constitute a new extension sequence of which the 
elements have smaller extension complexity. 
Figure 8.10 shows the nodes in [B4(v)]-[B3(v)] in 873. 
Each of the components in [B4(v)]-[B3(v)] can be independently added to 
[B3(v)], resulting in a sequence of convex subgraphs of 873 interjacent between 
[B3(v)] and [B4(v)]. Since the number of nodes in each of the components in 
[B4(v)] —[B3(v)] is constant, we can define a new extension sequence based on 
t^i(v)] . [B2(v)],... and their interjacent convex subgraphs. The extension 
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C 5 
Figure 8.10 [B4(v)]-[B3(v)] in S73. 

complexity of each of the networks in the new sequence is constant, and so, 
optimal. This seems to be true in general for supersymmetric graphs for which 
g>3, (g,k)#(4,4) and (g,k)#(6,3). 

8.4 Concluding remarks 

In this chapter we have constructed two classes of convex subgraphs of supersym­
metric graphs. The subgraphs in both classes have a constant upper bound to 
their R/r-ratio. 
The first class is a residue of the constructions of Grünbaum and Shephard in 
chapter 6. The upper bound for the R/r-ratio is 1 for the subgraphs of supersym­
metric graphs with girth equal to 3. For subgraphs of other supersymmetric 
graphs the upper bound is not very close, however. 
The subgraphs in the second class are convex hulls of balls. Their R/r-ratio is 
very close to 1 when (g,k)#(4,4). Since the exponentiality of supersymmetric 
graphs is almost optimal, we conclude that the diameter of these subgraphs is 
very low. The extension complexity of an element of an extension sequence of 
convex hulls of balls in a supersymmetric graph is of the same order as the 
number of nodes in the element. It seems that new extension sequences based on 
convex hulls of balls can be constructed, for which the extension complexity is 
optimal whenever g>3, (g,k)9t(4,4) and (g,k)=?t(6,3). 

216 



APPENDICES 





A 

Notions and notations used 

Graph-theoretical notions and notations 

General references for graph theory are [Harary] and [Wilson]. All graph-
theoretical notions in this dissertation concern undirected graphs. 

Node set and edge set. The node set of a graph T is denoted by V(T) and the 
edge set by E(T). 

Incidence, adjacency. A node v in a graph T is incident to an edge e€E(T) if 
there exists a node u€V(D such that (v,u) = e. An edge e is incident to a node v 
if v is incident to e. 
Two nodes in a graph T are adjacent if there exists an edge in T incident to both 
nodes. Two adjacent nodes are called neighbours. Two edges in T are adjacent if 
there exists a node in T incident to both edges. 

Subgraph, induced subgraph. A subgraph of a graph T is a graph, all of whose 
nodes belong to V(D and all of whose edges belong to E(T). The expression 
ACT denotes that A is a subgraph of T, and ACT denotes that A is a proper sub­
graph of T, i.e. that ACT and A^T. 
For any set SCV(D, the induced subgraph <S> is the maximal subgraph of the 
graph T with node set S. So, two nodes of S are adjacent in < S > if and only if 
they are adjacent in I\ 

Operations on subgraphs. If Aj and A2 are subgraphs subgraphs of a graph I \ 
then AjnA2 is an induced subgraph of T having node set V(A1nA2) = 
VCA^nVCAj). Furthermore, AiUA2 is an induced subgraph of V with node set 
VXAJUAJ) = V(A :)UV(A2), and Aj-A 2 is an induced subgraph of T with node 
setV(A1-A2) = V(Aj)-V(A2). 

Degree. The degree of a node u in a graph T, denoted by deg(u), is the number 
of edges in E(T) incident to u. The maximum of all node degrees in T is denoted 
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by deg(r), and the minimum of all node degrees in Y is denoted by deg~(r). If 
u is a node in a subgraph A of T, then the degree of u in A, denoted by degA(u), 
is equal to the number of edges in E(A) incident to u. 

Infinite graphs. A graph Y is infinite if |V(r) | or |E(r) | is infinite. A graph is 
infinite locally finite if it is infinite and all its nodes have finite degrees. 

Paths, circuits. The subgraph P of a graph T is a path if its node set can be writ­
ten as the set of different nodes {UQ.UJ un}, and its edge set can be written as 
the set of different edges {(u0,u1)>(u1,u2),...,(un-i»un)}- I* is a P a t n between the 
nodes u0 and un in T. If u 0=u n , then P is called a circuit in Y. 
The lengthof P is defined to be equal to |E(P)|. The length of the smallest circuit 
of a graph T is called the girth of I \ 
Two paths between two nodes u and v are node-disjoint if they have no nodes but 
u and v in common. Two paths between u and v are edge-disjoint if they have no 
edges but u and v in common. 
An infinite path is a path of infinite length. A 2-way infinite path or 2-way path or 
simply 2-path is an infinite path of which deletion of any node results in two 
infinite paths. A 1-way infinite path or 1-way path or simply 1-path is an infinite 
path which is not a 2-path. Clearly, deletion of any node of a 2-path results in 
two 1-paths. 

Distance. The distance between two nodes u and v in a graph Y, denoted by 
d(u,v), is the length of a shortest path in Y between u and v. The distance 
between two nodes u and v in a subgraph A of Y, denoted by dA(u,v), is the 
length of a shortest path in A between u and v. 

Diameter. The diameter of a graph Y is defined by 

diam(T) = max d(u,v). u,vev(r) 
Connectedness, components. A graph Y is connected if there exists a path 
between each two of its nodes. 
A component of Y is a connected maximal subgraph of Y. 

Separating set, disconnecting set. A separating set of a connected graph Y is a 
set of nodes of Y whose deletion disconnects Y (when we delete a node of Y then 
we also delete its incident edges). A disconnecting set of a connected graph T is a 
set of edges of Y whose deletion disconnects Y. 

Connectivity. The node-connectivity K(Y) of a connected graph Y is the size of the 
smallest separating set of Y. The node-connectivity of a graph is sometimes sim­
ply denoted as the connectivity of the graph. The edge-connectivity X.(T) of a con­
nected graph T is the size of the smallest disconnecting set of Y. For connectivity 
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the following relation is known: K(T) ^ X(T) < deg (T). The node-connectivity 
of r is optimal if K(r) = deg~(r). The edge-connectivity of Y is optimal if 
\(r) = deg-(r). 
Local connectivity. The local node-connectivity of two different nodes u and v in 
a graph T, denoted by K(U,V), is the maximum number of node-disjoint paths 
between u and v. The local edge-connectivity of two different nodes u and v in Y, 
denoted by X.(u,v), is the maximum number of edge-disjoint paths between u and 
v. For local connectivity the following relation is known: K(U,V) S X.(u,v) < 
min(deg(u),deg(v)). K(U,V) and \(u,v) are called optimal if they are equal to 
min(deg(u),deg(v)). 
The local node-connectivity of two different nodes u and v in a subgraph A of Y, 
denoted by KA(U,V), is the maximum number of node-disjoint paths in A between 
u and v. The local edge-connectivity of u and v in A, denoted by X.A(u,v), is the 
maximum number of edge-disjoint paths in A between u and v. KA(U,V) and 
XA(u,v) are called optimal if they are equal to min(degA(u),degA(v)). 

Coherency. The node-coherency of an infinite connected graph Y, denoted by 
Koo(r), is the size of the smallest node set which separates two infinite subgraphs 
ofT. 
The edge-coherency of an infinite connected graph Y, denoted by X^I"), is the 
size of the smallest edge set which disconnects two infinite subgraphs of Y. 

Balls. Let T be a graph and v a node in it, then Tj(v) denotes the set of nodes 
having distance i from v. A ball with radius r and centre nodev in a graph Y is an 
induced subgraph of Y with node set equal to 

Such a ball is denoted by Br(v). An inscribed ball of a subgraph A of Y is a sub­
graph of A being a ball with maximal radius. It is trivial if it consists of only one 
node. A circumscribed ball of a subgraph A of Y is a ball with minimal radius 
having A as its subgraph. 

Planarity. A graph is planar if it can be drawn on a plane so that no two edges 
intersect. The regions arising from drawing a planar graph in a particular way on 
the plane are called faces. The circuit adjoining a face is a facial circuit. Two 
facial circuits are adjacent if they have an edge in common. 

Automorphism groups on graphs. An automorphism on a graph T is a permuta­
tion or of V(D which has the property that (u,v)€E(D if and only if 
(Tr(u),ir(v))€E(r), for all nodes u,vÉV(r). The automorphism groupG(Y) of a 
graph T is the group of all automorphisms of Y. A stabilizer subgroup of G(T), 
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fixing a node v of T, is a subgroup of G(T) , denoted by G v ( 0 , such that for each 
automorphism i r € G v ( r ) : TT(V) = V. A subgroup G ' C G ( T ) is transitive on a subset 
V ' C V ( r ) if for each two nodes u ,v€V ' there exists an automorphism T T € G ' such 
that TT(U) = V. 
T is node-transitive if for each two of its nodes, u and v, there exists an automor­
phism IT such that U = TT(V). 

T is edge-transitive if for each two of its edges (u,v) and (x,y) there exists an auto­
morphism IT such that u = ir(x) and v=Tr(y) or u = tr(y) and V=TT(X). 

T is symmetric if for each four of its nodes u, v, x and y such that (u,v) CE(T) and 
( x , y ) € E ( r ) there exists an automorphism ir such that U = TT(X) and v= i r (y ) . A 
node-transitive graph is symmetric if and only if for each v€V(T) each stabilizer 
subgroup G v ( 0 of G(T) is transitive on ^ ( v ) . 
T is distance-transitive if for each four of its nodes u, v, x and y such that 
d(u,v) = d(x,y) there exists an automorphism TT such that u = Tf(x) and v=i r (y ) . 
More details about automorphisms and transitivity can be found in the book by 
Biggs [Biggs; chapters 15-17]. 

Parallel computing 

Speed-up, efficiency. The speed-up achieved by a parallel algorithm running on p 
processors is the ratio between the time taken by that parallel computer executing 
the fastest serial algorithm for a problem and the time taken by the same parallel 
computer executing the parallel algorithm on the same problem using p proces­
sors. 
The efficiency of a parallel algorithm running on p processors is the speed-up 
divided by p . 

General 

Order-notation. Let f,g: 1R + - R + be two functions, then 

1. f is of O-order or simply order g, denoted as f(x) = 0 (g(x) ) , if and only if for 
every constant a€IR+ there exists a real number ma£]R + such that 
f(x)Sa.g(x) for all x ^ m a . 

2. f is of ft -order g, denoted as f(x) = ft(g(x)), if and only if for every constant 
a £ R + there exists a real number ma€lR + such that f(x)^a.g(x) for all 
x > m a . 

Let f,g: R - M be two functions, then f is proportional to g, denoted as f (x)~g(x) , 
if and only if for every constant a € R + there exist two numbers e a ,m a €lR + such 
that 

| f (x ) -a .g (x ) | < € a 
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for all x>ma. 

Descente Infinie. Descente Infinie is an inverse induction method. It is used to 
prove that a certain logical predicate T: N~{0,1} is false. It proceeds by proving 
that 

a. -T(a) for some a€IN, 

b. T(n)-.T(n-l) for alln€IN. 

From this it follows directly that T(n) is false for all n£!N. 



B 

Table with uniform exponentialities 
of supersymmetric graphs 

This appendix contains a table of the uniform exponentialities of supersymmetric 
graphs. 

gVk 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

3 

1.000000 
1.556030 
1.722084 
1.831076 
1.883204 
1.926067 
1.946856 
1.965636 
1.974819 
1.983512 
1.987793 
1.991948 
1.994004 
1.996027 
1.997032 

4 

1.000000 
2.296630 
2.618034 
2.823202 
2.890054 
2.946995 
2.965573 
2.983067 
2.988825 
2.994452 
2.996316 
2.998163 
2.998777 
2.999389 
2.999593 
2.999797 
2.999864 

5 

2.618034 
3.506068 
3.732051 
3.897980 
3.938691 
3.975944 
3.985135 
3.994094 
3.996321 
3.998532 
3.999083 
3.999634 
3.999771 
3.999908 
3.999943 
3.999977 
3.999986 

6 
1.000000 
3.732051 
4.611582 
4.791288 
4.932826 
4.960693 
4.987046 
4.992273 
4.997433 
4.998462 
4.999488 
4.999693 
4.999898 
4.999939 
4.999980 
4.999988 
4.999996 
4.999998 

7 
2.618034 
4.791288 
5.677983 
5.828427 
5.952253 
5.972624 
5.992235 
5.995485 
5.998712 
5.999249 
5.999786 
5.999875 
5.999964 
5.999979 
5.999994 
5.999997 
5.999999 
5.999999 

8 
3.732051 
5.828427 
6.724268 
6.854102 
6.964266 
6.979836 
6.994984 
6.997139 
6.999286 
6.999592 
6.999898 
6.999942 
6.999985 
6.999992 
6.999998 
6.999999 
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g\k 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

9 
4.791288 
6.854102 
7.758593 
7.872983 
7.972235 
7.984530 
7.996574 
7.998076 
7.999573 
7.999760 
7.999947 
7.999970 
7.999993 
7.999996 
7.999999 

10 
5.828427 
7.872983 
8.785151 
8.887482 
8.977798 
8.987757 
8.997558 
8.998644 
8.999729 
8.999849 
8.999970 
8.999983 
8.999997 
8.999998 

11 
6.854102 
8.887482 
9.806352 
9.898979 
9.981838 
9.990071 
9.998198 
9.999010 
9.999820 
9.999901 
9.999982 
9.999990 
9.999998 
9.999999 

12 
7.872983 
9.898979 
10.823690 
10.908327 
10.984866 
10.991786 
10.998633 
10.999255 
10.999876 
10.999932 
10.999989 
10.999994 
10.999999 
10.999999 

13 
8.887482 
10.908327 
11.838144 
11.916080 
11.987194 
11.993092 
11.998938 
11.999425 
11.999912 
11.999952 
11.999993 
11.999996 
11.999999 

14 
9.898979 
11.916080 
12.850385 
12.922616 
12.989023 
12.994110 
12.999159 
12.999547 
12.999935 
12.999965 
12.999995 
12.999997 
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c 
Table with sizes of (j)r(v) 

This appendix contains a table which describes the number of nodes in the sub­
graph t|>r(v) of Sgk as function of r. In addition to that it describes the value of 
the radius R of the circumscribed ball of c(>r(v). 
To compute the number of nodes in 4>t(v), first the number of nodes in Br(v) is 
determined. Thereupon, the number of nodes outside Br(v) in the facial circuits 
being closed with respect to Br(v) is determined. The procedure for the latter is 
straightforward, since from the RD-combination of a node u in r r (v) , it can 
easily be established for each of the facial circuits to which u belongs whether the 
circuit is closed with respect to Br(v). 
For example, if g=12, k = 3, and u is a node in Tr(v) with RD-combination Oli 
(3^ i<5) , then u belongs to a facial circuit which is closed with respect to Br(v). 
If i=2, then each facial circuit to which u belongs is not closed with respect to 
Br(v). Noting that each facial circuit contains two nodes with RD-combination 
Oli (3<i^5) in S12>3, we obtain 

|V(* r(v))| = |V(Br(v))| + l/2{5.N013(r) + 3.N014(r) + N015(r)} 

for S123- The table starts at the next page. R denotes the radius of the cir­
cumscribed ball of <|)r(v). 
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Table with sizes of 4>r(v) App. C 

g=8,k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

|V(4>r(v))| 
5 
29 
81 
237 
697 
2009 
5813 
16809 
48573 
140389 

g=9,k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

|V(4»r(v))| 
5 
17 
61 
177 
525 
1565 
4601 
13565 
39985 
117829 

g=10,k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(cf>r(v))| 
5 
17 
65 
189 
561 
1669 
4961 
14705 
43613 
129345 

g=ll,k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(<t>r(v))| 
5 
17 
69 
201 
597 
1785 
5333 
15909 
47457 
141573 

g=12, k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(<|>r(v))| 
5 
17 
73 
213 
633 
1893 
5665 
16949 
50645 
151369 

g=13,k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

|V(c(>r(v))| 
5 
17 
53 
177 
525 
1569 
4701 
14081 
42193 
126325 

g=14, k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|V(<t>r(v))| 
5 
17 
53 
181 
537 
1605 
4809 
14413 
43193 
129437 

g=15, k = 4 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|v(4>r(v))| 
5 
17 

' 53 
185 
549 

1641 
4917 
14745 
44213 
132569 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

4,k = 5 
|V(<f>r(v))| 

11 
36 
101 
271 
716 
1881 
4931 
12916 
33821 
88551 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 

5, k = 5 
|V(cj>r(v))| 

6 
26 
101 
356 
1251 
4396 
15416 
54051 
189516 
664461 

g=6,k = 5 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

|V(<|>r(v))| 
6 
31 
116 
441 
1646 
6151 

22956 
85681 

319766 
1193391 

g=7,k = 5 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

|V(<j>r(v))| 
6 
36 
136 
536 

2091 
8156 

31801 
123956 
483186 
1883446 

228 



App. C Table with sizes of 4>r(v) 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

8,k = 5 
|V(4>r(v))| 

6 
41 
156 
616 
2441 
9606 
37841 
149056 
587076 
2312321 

g=9,k = 5 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 

. 2 
4 
5 
6 
8 
9 
10 
11 
12 

|V(4>r(v))| 
6 
26 
116 
456 
1816 
7241 
28776 
114416 
454921 
1808736 

g=10, k = 5 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V((f>r(v))| 
6 
26 
121 
476 
1896 
7561 

30146 
120126 
478721 
1907776 

8= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

11, k = 5 
|V(<j>r(v))| 

6 
26 
126 
496 
1976 
7896 

31546 
126001 
503256 

2010056 

g=12,k=5 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(«>r(v))| 
6 
26 
131 
516 
2056 
8216 
32841 
131266 
524566 
2096331 

g= 
r 
1 
2 
3" 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

L3,k=5 
|V(<|>r(v))| 

6 
26 
106 
446 
1776 
7096 
28376 
113466 
453731 
1814236 

g=14, k = 5 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|V(<j>r(v))| 
6 
26 
106 
451 

. 1796 
7176 
28696 
114761 
458946 
1835386 

g=15,k = 5 ' 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|V(<|>r(v))| 
6 
26 
106 
456 
1816 
7256 

29016 
116056 
464186 
1856586 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3,k=6 
|V(<|>r(v)j| 

7 
19 
37 
61 
91 
127 
169 
217 
271 
331 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
2 
3 
4 
5 
6 
7-
8 
9 
10 
11 

4,k=6 
|V(d>r(v))| 

13 
55 
211 
793 

2965 
11071 
41323 
154225 
575581 

2148103 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 

5,k = 6 
|V(<|>r(v))| 

7 
37 
181 
835 

3853 
17779 
81991 

378109 
1743691 
8041177 

g=6,k = 6 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

|V(tf>r(v))| 
7 
43 

■ 205 
991 

4747 
. 22753 
109015 
522331 

2502637 
11990863 

229 



Table with sizes of <}>r(v) App. C 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

7, k=6 
|V(4>r(v))| 

7 
49 
235 
1165 
5749 

28363 
139921 
690199 
3404641 
16794499 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

8,k = 6 
|V(<f>r(v))| 

7 
55 
265 
1315 
6541 

32437 
160915 
798265 
3959935 
19644031 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

9,k = 6 
|V(<J>r(v))| 

7 
37 
199 
985 

4915 
24535 
122341 
610123 
3042721 
15174187 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

L0,k=6 
|V(d>r(v))| 

7 
37 
205 
1015 
5065 

25291 
126277 
630397 

3147115 
15711265 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

ll,k = 6 
|V(cf>r(v))| 

7 
37 
211 
1045 
5215 

26065 
130267 
651007 
3253357 
16258435 

g=12,k=6 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(c|>r(v))| 
7 
37 
217 
1075 
5365 
26815 
134041 
670027 
3349087 
16740277 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

L3,k = 6 
|V(c|>r(v))| 

7 
37 
187 
961 

4795 
23965 
119815 
599017 
2994817 
14972527 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

L4, k = 6 
|V(<|»r(v))| 

7 
37 
187 
967 

4825 
24115 
120565 
602791 

3013777 
15067987 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3,k = 7 
|V(4>r(v))| 

8 
29 
85 
232 
617 
1625 
4264 
11173 
29261 
76616 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

4, k = 7 
|V(<t>r(v))| 

15 
78 
379 
1821 
8730 

41833 
200439 
960366 

4601395 
22046613 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 

5,k = 7 
|V(4>r(v))| 

8 
50 
295 
1674 
9507 
53992 

306566 
1740677 
9883546 

56118609 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
ii 

6, k = 7 
|V(c|>r(v))| 

8 
57 
330 
1933 

11264 
65661 
382698 

2230537 
13000520 
75772593 

230 



App. C Table with sizes of (|>r(v) 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=7 
R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k = 7 
|V(<t»r(v))| 

8 
64 
372 

2220 
13217 
78674 

468301 
2787436 
16591534 
98757002 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=8 
R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

,k = 7 
|V(<t>r(v))| 

8 
71 
414 
2472 
14785 
88292 

527339 
3149616 
18811458 

112353781 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=9 
R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

,k = 7 
|V(<J>r(v))| 

8 
50 
316 
1884 

11292 
67691 

405602 
2430464 
14563921 
87270436 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

10, k = 7 
|V(c|>r(v))| 

8 
50 
323 
1926 

11544 
69217 

415010 
2488172 
14917799 
89439456 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

ll,k = 7 
|V(4>r(v))| 

8 
50 
330 
1968 

11796 
70764 

424502 
2546475 
15275562 
91633704 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

12, k = 7 
|V(<t>r(v))| 

8 
50 
337 

2010 
12048 
72276 

433609 
2601362 
15606200 
93625477 

g= 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

13, k = 7 
|V(cj>r(v))| 

8 
50 
302 
1842 

11040 
66228 

397356 
2384054 
14303857 
85820050 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=3 
R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

,k = 8 
|V((|>r(v))| 

9 
' 41' 

161 
609 

2281 
8521 

31809 
118721 
443081 
1653609 

' r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=4 
R 
2 
3 

- 4 
5 
6 
7 
8 
9 
10 
11 

,k = 8 
|V(«>r(v))l 

17 
105 
617 
3601 

20993 
122361 
713177 

4156705 
24227057 
141205641 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=5 
R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 

,k = 8 
|V(4>r(v))| 

9 
65 
449 
3017 
20289 
136441 
917465 
6169281 

41483913 
278948961 

231 



Table with sizes of <|>r(v) App. C 

T 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=6 
R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k=8 
|V(*r(v))| 

9 
73 
497 
3417 
23417 
160513 
1100169 
7540681 
51684593 
354251481 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=7 
R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k=8 
|V(<f>r(v))| 

9 
81 
553 
3857 
26865 
187097 
1303009 
9074489 
63197169 
440121913 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=8 
R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

,k = 8 
|V(<}>r(v))| 

9 
89 
609 

4249 
29681 

207153 
1445897 

10092145 
70441497 

491670089 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=9 
R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

,k=8 
|V(«j)r(v))| 

9 
65 
473 

3297 
23065 
161369 

1128753 
7895609 

55229665 
386330601 

g=10,k = 8 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(cj)r(v))| 
9 
65 
481 
3353 

23457 
164137 

1148513 
8036289 

56231033 
393456385 

g=H,k = 8 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(<t>r(v))( 
9 
65 
489 
3409 
23849 
166929 
1168393 
8177929 
57239649 
400636649 

g=12, k = 8 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(<|>r(v))| 
9 
65 
497 
3465 
24241 
169673 
1187649 
8313097 
58188265 
407294097 

g=13,k=8 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

|v(4>r(v))| 
9 
65 
457 
3233 
22617 
158305 
1108121 
7756737 
54296417 
380069353 

g=14,k = 8 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

]V(4>r(v))| 
9 
65 
457 
3241 

22673 
158697 

1110865 
7775993 

54431505 
381017401 

232 



App. C Table with sizes of (J>r(v) 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=3 
R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

,k = 9 
lV(4>,(v))| 

10 
55 
271 
1306 
6265 
30025 
143866 
689311 
3302695 
15824170 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=4 
R 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k=9 
|V(<t>r(v))| 

19 
136 
937 
6427 

44056 
301969 

2069731 
14186152 
97233337 

666447211 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=^ 
R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 

>,k=9 
|V(4»r(v))| 

10 
82 
649 

5032 
39043 

302932 
2350324 
18235207 

141479560 
1097682301 

g=6,k=9 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

|V(«f)r(v))| 
10 
91 
712 

5617 
44218 
348139 

2740888 
21578977 
169890922 

1337548411 

g=7,k = 9 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

|V(c|>r(v))| 
10 
100 
784 

6256 
49879 
397648 

3170161 
25273252 

201484306 
1606280158 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=i 
R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

?,k=9 
|V(<|>r(v))| 

10 
109 
856 

6832 
54577 

435754 
3479293 

27780544 
221814568 
1771085089 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=< 
R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

?, k = 9 
|V(d>r(v))| 

10 
82 
676 

5392 
43120 

344845 
2757556 

22051000 
176332465 

1410055624 

g=10,k = 9 
- r 
1 
2 
3 ' 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 

, 5 
6 
7 
8 
9 
10 
11 
12 

|V(4»r(v))| 
10 
82 
685 

5464 
43696 
349489 
2795266 
22356730 
178810813 
1430142400 

g=ll,k = 9 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(<j>r(v))| 
10 
82 
694 

5536 
44272 
354160 

2833138 
22663909 
181301572 

1450335088 

233 



Table with sizes of 4>r(v) App. C 

g=12,k = 9 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(<f>r(v))| 
10 
82 
703 

5608 
44848 
358768 

2870065 
22959874 
183673450 

1469343439 

g=13,k = 9 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

|V(<|>r(v))| 
10 
82 
658 
5302 

42400 
339184 

2713456 
21707506 
173658943 

1389262240 

g=14, k = 9 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|V((j>r(v))| 
10 
82 
658 

5311 
42472 
339760 

2718064 
21744433 
173954818 

1391633362 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=3 
R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

k=10 
|v(4>r(v))| 

11 
71 
421 
2461 
14351 
83651 

487561 
2841721 
16562771 
96534911 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=4 
R 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k=10 
|V(<|>r(v))| 

21 
171 
1351 

10641 
83781 

659611 
5193111 

40885281 
321889141 

2534227851 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=5 
R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 

,k=10 
|V(<|>r(v))| 

11 
101 
901 

7911 
69501 

610591 
5364131 

47124701 
413997631 

3637031721 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=6 
R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k=10 
|V((j)r(v))| 

11 
111 
981 

8731 
77591 

689601 
6128811 

54469711 
484098581 

4302417531 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=7 
R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k=10 
|V((j>r(v))| 

11 
121 

1071 
9621 

86381 
775511 

6962401 
62507011 

561175321 
5038118591 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=8 
R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

,k=10 
|V(d>r(v))| 

11 
131 

1161 
10431 
93781 
842861 

7575431 
68086161 

611941851 
5499984691 

234 



App. C Table with sizes of (|>r(v) 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=9 
R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

,k=10 
|v(4>r(v))| 

11 
101 
931 
8361 

75231 
676931 

6090701 
54801431 

493079041 
4436507071 

g=10,k=10 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(*r(v))| 
11 
101 
941 
8451 
76041 
684271 

6157541 
55409501 

498610391 
4486817601 

g=ll,k=10 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(4>r(v))| 
11 
101 
951 
8541 

76851 
691641 

6224591 
56019651 

504161661 
4537318311 

g=12,k=10 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(<t>r(v))| 
11 
101 
961 

8631 
77661 

698931 
6290281 

56611631 
509496131 

4585388461 

g=13,k=10 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

|V(<j>r(v))| 
11 
101 
911 

8241 
74151 

667341 
6006051 

54054281 
486486961 

4378367971 

g=14,k=10 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|V(4»r(v))| 
11 
101 
911 
8251 
74241 

668151 
6013341 
54119971 

487078841 
4383701471 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=3 
R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

k=ll 
|V(«>r(v))| 

12 
89 
617 

4236 
29041 
199057 
1364364 
9351497 
64096121 

439321356 

r 
1 
2 
3 
4 
5 

- 6 
7 
8 
9 
10 

g=4 
R 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

,k—11 
|V(«j)r(v))| 

23 
210 
1871 
16633 

147830 
1313841 

11676743 
103776850 
922314911 

8197057353 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g=-
R 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 . 

5,k=ll 
|V(4»r(v))| 

12 
122 

1211 
11870 

116403 
1141504 

11193986 
109772169 

1076464566 
10556190657 
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Table with sizes of 4>r(v) App. C 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g= 
R 
1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

6, k=ll 
|V(4>r(v))| 

12 
133 

1310 
12981 
128492 
1271953 
12591030 
124638361 
1233792572 
12213287373 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g= 
R 
1 
3 
'4 
5 
6 
7 
8 
9 
10 
11 

7,k=ll 
|V(<)>r(v))| 

12 
144 

1420 
14180 

141549 
1412918 

14103541 
140779244 

1405235646 
14026834834 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g= 
R 
1 
4 
5 
6 
7 
8 
9 
10 
11 
12 

8,k=ll 
|V(<f>r(v))| 

12 
155 

1530 
15280 

152681 
1525272 

15237575 
152224480 

1520733270 
15192232661 

r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g= 
R 
1 
2 
4 
5 
6 
8 
9 
10 
11 
12 

9,k = ll 
|V(d>r(v))| 

12 
122 

1244 
12420 

124180 
1241615 
12413886 

124116488 
1240941241 

12407176332 

g=10,k=ll 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(<f>r(v))| 
12 
122 

1255 
12530 

125280 
1252681 

12525602 
125243592 

1252311875 
12521878480 

g=ll,k=ll 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
5 
6 
7 
8 
9 
10 
11 
12 

|V(<j)r(v))| 
12 
122 

1266 
12640 
126380 
1263780 

12637582 
126373567 

1263712902 
12636901520 

g=12,k=ll 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
6 
7 
8 
9 
10 
11 
12 
13 

|V(<|>r(v))| 
12 
122 

1277 
12750 
127480 

1274780 
12747681 

127475602 
1274743372 

12747307497 

g=13,k=ll 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
6 
7 
8 
9 
10 
12 
13 

|V(<|)r(v))| 
12 
122 

1222 
12266 

122640 
1226380 

12263780 
122637582 

1226373677 
12263714662 

g=14, k=ll 
r 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

R 
1 
2 
3 
7 
8 
9 
10 
11 
12 
13 

|V(c|>r(v))| 
12 
122 

1222 
12277 

122750 
1227480 

12274780 
122747681 

1227475602 
12274743922 

236 



References 

[AgJaPa] D.P. Agrawal, V.K. Janakiram, G.C. Pathak, 
"Evaluating the Performance of Multicomputer Configurations", 
IEEE Computer, Vol. 19, No. 5, May 1986, pp. 23-37. 

[Aki] S.G. Akl, 
"Parallel Sorting Algorithms", London: Academic Press, 1985. 

[Aupper] E.M. Aupperle, 
"MERIT Computer Network: Hardware Considerations", in: R. Rus-
tin (ed.), Computer Networks, New Jersey: Prentice-Hall, Englewood 
Cliffs, 1972, pp. 49-63. 

[BaBrKa] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, 
R.A. Stokes, 
"The ILLIAC IV Computer", IEEE Transactions on Computers, 
Vol. C-17, No. 8, August 1968, pp. 746-757. 

[Batche] K.E. Batcher, 
"The Flip Network in STARAN", Proceedings of the 1976 Interna­
tional Conference on Parallel Processing, August 1976, pp. 65-71. 

[BeBoPa] J.C. Bermond, J. Bond, M. Paoli, C. Peyrat, 
"Graphs and Interconnection Networks: Diameter and Vulnerability", 
in: E.K. Lloyd (ed.), Surveys in Combinatorics: Invited Papers for 
the 9th British Combinatorial Conference, 1983, London Mathemati­
cal Society Lecture Notes, Vol. 82, Cambridge: University Press, 
pp. 1-30. 

[BeDeWe] J. Beetem, M. Denneau, D. Weingarten, 
"The GF11 Parallel Computer", in: J.J. Dongarra (ed.), Experimen­
tal Parallel Computer Architectures, Amsterdam: North-Holland, 

237 



References 

1987. 

[BeDeQu] J.-C. Bermond, C. Delorme, J.-J. Quisquater, 
"Strategies for Interconnection Networks: Some Methods from Graph 
Theory", Journal of Parallel and Distributed Computing, Vol. 3, 
No. 4, December 1986, pp. 433-449. 

[Benes] V. Benes, 
"Mathematical Theory of Connecting Networks", New York: 
Academic Press, 1965. 

[Berge] C. Berge, 
"Graphs and Hypergraphs", Amsterdam: North-Holland Publishing 
Company, 1973. 

[Biggs] N. Biggs, 
"Algebraic Graph Theory", London: Cambridge University Press, 
1974. 

[Bokhar] S.H. Bokhari, 
"On the Mapping Problem", IEEE Transactions on Computers, Vol. 
C-30, No. 3, March 1981, pp. 207-214. 

[Cattel] K.W. Cattermole, 
"Class of communication networks with optimal connectivity", Elec­
tronic Letters, Vol. 8, No. 12, June 1972, pp. 316-319. 

[Catte2] K.W. Cattermole, 
"Bipartite communication networks with optimal connectivity", Elec­
tronic Letters, Vol. 8, No. 15, July 1972, pp. 385-388. 

[DeFrSm] L. Dekker, E.E.E. Frietman, W. Smit, J.C. Zuidervaart, 
"Optical Link in the Delft Parallel Processor - an Example of 
MOMI-Connection in MIMD-Supercomputers", Future Generations 
Computer Systems, Vol. 4, 1988, pp. 189-203. 

[DesPat] A.M. Despain, D.A. Patterson, 
"X-Tree: A Tree Structured Multiprocessor Computer Architecture", 
Proceedings of the 5th Annual Symposium on Computer Architec­
ture, IEEE, August 1978, pp. 144-151. 

[DoRaSl] S.J. Dow, D.F. Rail, P.J. Slater, 
"Convex Labelings of Trees", Journal of Graph Theory, Vol. 11, 
No. 1, Spring 1987, pp. 59-70. 

238 



References 

[FarJam] M. Farber, R.E. Jamison, 
"On local convexity in graphs", Discrete Mathematics, Vol. 66, 
No. 3, September 1987, pp. 231-247. 

[Feng] T-Y. Feng, 
"A Survey of Interconnection Networks", IEEE Computer, Vol. 14, 
No. 12, December 1981, pp. 12-27. 

[Flelmr] H. Fleischner, W. Imrich, 
"Transitive Planar Graphs", Mathematica Slovaca, Vol. 29, No. 2, 
1979, pp. 97-105. 

[Fisher] D.C. Fisher, 
"Your Favorite Parallel Algorithms Might Not Be as Fast as You 
Think", IEEE Transactions on Computers, Vol. 37, No. 2, February 
1988, pp. 211-213. 

[FisKun] A.L. Fisher, H.T. Kung, 
"Synchronizing Large VLSI Processor Arrays", IEEE Transactions 
on Computers, Vol. C-34, No. 8, August 1985, pp. 734-740. 

[FrHeHe] H. Fromm, U. Hercksen, U. Herzog, K.H. John, R. Klar, W. 
Klein b'der, 
"Experiences with Performance Measurement and Modeling of a Pro­
cessor Array", IEEE Transactions on Computers, Vol. C-32, No. 1, 
January 1983, pp. 15-31. 

[Furste] H. Furstenberg, 
"Recurrence in Ergodic Theory and Combinatorial Number Theory", 
Princeton, New Jersey: Princeton University Press, 1981. 

[Goldsc] L.M. Goldschlager, 
"A universal interconnection pattern for parallel computers", Journal 
oftheACM, Vol. 29, No. 3, July 1982, pp. 1073-1086. 

[GooSeq] J.R. Goodman, C.H. Séquin, 
"Hypertree: A Multiprocessor Interconnection Topology", IEEE 
Transactions on Computers, Vol. C-30, No. 12, December 1981, 
pp. 923-933. 

[GoGrKr] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. 
Rudolph, M. Snir, 
"The NYU Ultracomputer - Designing an MIMD Shared Memory 
Parallel Computer", 9th Annual International Conference on Com­
puter Architecture, Austin, 1982, pp. 27-42, see also [LipMal; 

239 



References 

Appendix B]. 

[GruShe] B. Grünbaum, G.C. Shephard, 
"Tilings and Patterns", New York: Freeman and Company, 1987. 

[Harary] F. Harary, 
"Graph Theory", Addison-Wesley, 1969. 

[HarNie] F. Harary, J. Nieminen, 
"Convexity in Graphs", Journal of Differential Geometry, Vol. 16, 
1981, pp. 185-190. 

[HarUll] A.C. Hartmann, J.D. Ullman, 
"Model Categories For Theories of Parallel Systems", in: Microelec­
tronics and Computer Corporation Technical Report PP-341-86, see 
also [LipMal; Appendix H]. 

[Hilber] P.A.J. Hilbers, 
"Mappings of Algorithms on Processor Networks", University of 
Groningen, January 1989. 

[Hillis] W.D.Hillis, 
"The Connection Machine", Cambridge: The MIT Press, 1985. 

[HocJes] R.W. Hockney, C.R. Jesshope, 
"Parallel Computers", Bristol: Adam Hilger Ltd, 1981. 

[HoKuRe] S.H. Hosseini, J.G. Kuhl, S.M. Reddy, 
"Distributed Fault-Tolerance of Tree Structures", IEEE Transactions 
on Computers, Vol. C-36, No. 11, November 1987, pp. 1378-1382. 

[HorZor] E. Horowitz, A. Zorat, 
"The Binary Tree as an Interconnection Network: Applications to 
Multiprocessor Systems and VLSI", IEEE Transactions on Comput­
ers, Vol. C-30, No. 4, April 1981, pp. 247-253. 

[HwaBri] K. Hwang, F.A. Briggs, 
"Computer Architecture and Parallel Processing", New York: 
McGraw-Hill, 1985. 

[HwaGho] K. Hwang, J. Ghosh, ' 
"Hypernet: A Communication-Efficient Architecture for Construct­
ing Massively Parallel Computers", IEEE Transactions on Comput­
ers, Vol. C-36, No. 12, December 1987, pp. 1450-1466. 

[Kowali] J.S. Kowalik, 
"Parallel MIMD Computation: HEP Supercomputers and Its 

240 



References 

Applications", Cambridge: The MIT Press, 1985. 

[Kung] H.T.Kung, 
'The Structure of Parallel Algorithms", in: M.C. Yovits (ed.), 
Advances in Computers, Vol. 19, New York: Academic Press, 1980. 
pp. 65-112. 

[LanSto] T. Lang, H.S. Stone, 
"A Shuffle-Exchange Network with Simplified Control", IEEE Tran­
sactions on Computers, Vol. C-25, No. 6, January 1976, pp. 55-65. 

[Lawrie] D.H.Lawrie, 
"Access and Alignment of Data in an Array Processor", IEEE Tran­
sactions on Computers, Vol. C-24, No. 12, December 1975, 
pp. 1145-1155. 

[Leight] F.T. Leighton, 
"New Lower Bound Techniques for VLSI", Proceedings of the 22nd 
Annual IEEE Symposium on Foundations of Computer Science, 
Nashville, Tennessee, October 1981, pp. 1-12. 

[Leiser] C.E. Leiserson, 
"Area-Efficient VLSI Computation", Dissertation, Cambridge: The 
MIT Press, 1982. 

[Levita] S.P. Levitan, 
"Measuring Communication Structures in Parallel Architectures and 
Algorithms", in: The Characteristics of Parallel Algorithms, L.H. 
Jamieson, D.B. Gannon, R.J. Douglas (eds.), Cambridge: The MIT 
Press, 1987, pp. 101-137. 

[LipMal] G.J. Lipovski, M. Malek, 
"Parallel Computing, Theory and Comparisons", New York: John 
Wiley & Sons, 1987. 

[Macphe] H.D. Macpherson, 
"Infinite distance transitive graphs of finite valency", Combinatorica, 
Vol. 2, No. 1, 1982, pp. 63-69. 

[Mader] W. Mader, 
"Uber den Zusammenhang symmetrischer Graphen", Archiv der 
Mathematik, Vol. 21, 1970, pp. 331-336. 

[Mazumd] P. Mazumder, 
"Evaluation of On-Chip Static Interconnection Networks", IEEE 
Transactions on Computers, Vol. C-36, No. 3, March 1987, pp. 365-

241 



369. 

[Parber] I. Parberry, 
"On Recurrent and Recursive Interconnection Patterns", Information 
Processing Letters, Vol. 22, No. 6, 1986, pp. 285-289. 

[Perron] O. Perron, 
"Algebra II, Theorie der algebraischen Gleichungen", Berlin: Walter 
deGruyter & Co., 1933. 

[Potter] J.L. Potter, 
"The Massively Parallel Processor", Cambridge: The MIT Press, 
1985. 

[PreVui] F. Preparata, J. Vuillemin, 
"The Cube-Connected Cycles: A versatile network for parallel com­
putation", CACM, Vol. 24, No. 5, May 1981, pp. 300-309. 

[Queyss] D. Queyssac, 
"Projecting VLSI's impact on microprocessors", IEEE Spectrum, 
Vol. 16, May 1979, pp. 38-41. 

[Quinn] M.J. Quinn, 
"Designing Efficient Algorithms for Parallel Computers", New York: 
McGraw-Hill, 1987. 

[Sadibu] G. Sadibussi, 
"Graph Multiplication", Mathematische Zeitschrift, Vol. 72, 1960, 
pp. 446-457. 

[Seitz] C.L. Seitz, 
"Concurrent VLSI Architectures", IEEE Transactions on Computers, 
Vol. C-33, No. 12, December 1984, pp. 1247-1265. 

[Shaw] D.E.Shaw, 
"Organization and Operation of a Massively Parallel Machine", in: G. 
Rabbat (ed.), Advanced Semiconductor Technology and Computer 
Systems, Van Nostrand Reinhold Company, 1987, see also [LipMal; 
Appendix G]. 

[ShiVil] Y. Shiloach, U. Vishkin, 
"Finding the maximum, merging and sorting in a parallel computa­
tion model", Journal of Algorithms, Vol. 2, No. 1, March 1981, 
pp. 88-102. 

242 



References 

[ShiVi2] Y. Shiloach, U. Vishkin, 
"An 0(log n) parallel connectivity algorithm", Journal of Algorithms, 
Vol. 3, No. 1, March 1982, pp. 57-67. 

[Snyder] L. Snyder, 
"Introduction to the Configurable Highly Parallel Computer", IEEE 
Computer, Vol. 15, No. 1, January 1982, pp. 47-56, see also [LipMal; 
Appendix F]. 

[SolChe] V.P. Soltan, V.D. Chepoi, 
"Conditions for invariance of set diameters under d-convexification in 
a graph", Cybernetics, Vol. 19, No. 6, November-December 1983, 
pp. 750-756. 

[Stonel] H.S. Stone, 
"Parallel Processing with the Perfect Shuffle", IEEE Transactions on 
Computers, Vol. C-20, No. 2, February 1971, pp. 153-161. 

[Stone21 H.S. Stone, 
"Multiprocessor Scheduling with the Aid of Network Flow Algo­
rithms", IEEE Transactions on Software Engineering, Vol. SE-3, 
No. 1, January 1977, pp. 85-93. 

[TilWit] A.M. van Tilborg, L.D. Wittie, 
"Wave Scheduling - Decentralized Scheduling of Task Forces in Mul-
ticomputers", IEEE Transactions on Computers, Vol. C-33, No. 9, 
September 1984, pp. 835-844. 

[Uhr] L. Uhr, 
"Multi-Computer Architectures for Artificial Intelligence, Toward 
Fast, Robust, Parallel Systems", New York: John Wiley & Sons, 
1987. 

[Ullman] J.D.Ullman, 
"Computational Aspects of VLSI", Maryland: Computer Science 
Press, 1984. 

[Vitany] P.M.B. Vitanyi, 
"Nonsequential Computation and Laws of Nature", in: F. Makedon, 
K. Mehlhorn, T. Papatheodorou, P. Spirakis (eds.), Lecture Notes in 
Computer Science 227, VLSI Algorithms and Architectures, Aegean 
Workshop on Computing, Loutraki, Greece, July 1986, pp. 108-120. 

[WanFra] D.F. Wann, M.A. Franklin, 
"Asynchronous and Clocked Control Structures for VLSI Based 

243 



References 

Interconnection Networks", IEEE Transactions on Computers, Vol. 
C-32, No. 3, March 1983, pp. 284-293. 

[Watkin] M.E. Watkins, 
"Connectivity of Transitive Graphs", Journal of Combinatorial 
Theory, Vol. 8, No. 1, January 1970, pp. 23-29. 

[Wilson] R.J.Wilson, 
"Introduction to Graph Theory", New York: Longman, 1985. 

[WuFeng] C. Wu, T. Feng, 
"On a Class of Multistage Interconnection Networks", IEEE Transac­
tions on Computers, Vol. C-29, No. 8, August 1980, pp. 694-702. 

244 



God was satisfied with his own work, 
and that is fatal. 

Samuel Butler (1912) 



Summary 

In this dissertation extensible massively parallel computers are discussed. These 
are computers which consist of many processors, and which can be extended with 
additional processors without changing their underlying structure. Such comput­
ers are in particular suited for computation intensive applications. In addition, 
their computation capacity can be tailored to the requirements of a user without 
the need to adapt software. 
The mechanism that provides for communication between processors, an impor­
tant issue in parallel computers, calls the tune in this dissertation. A number of 
fundamental problems of efficient communication models for extensible mas­
sively parallel computers are elucidated, and a few suggestions are made to the 
solutions of them. Furthermore, statical communication networks, which are 
often applied as communication mechanism in parallel computers, are studied. It 
is explained in which way extensible statical communication networks with suit­
able properties can be constructed. 

Besides a general treatment of the three main themes of this dissertation, massive 
parallelism, communication between processors, and extensibility, in chapter 1 a 
number of demands to extensible massively parallel computers are formulated. 

In chapter 2 a method is described to construct statical communication networks 
for extensible parallel computers. A network constructed by this method has 
suitable properties, such as 

1. the absence of a bound to the number of times a network can be extended, 

2. invariability of the complexity of the processors under extension (fixed 
degree), 

3. the ability to low communication times (low diameter), 
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4. vulnerability to the dropout of many processors or connections between pro­
cessors (high connectivity), 

5. a regular structure which is maintained under extension, 

6. maintenance of the routing function under extension, 

7. extensibility by a minimal number of processors while the above characteris­
tics are maintained. 

The construction method consists of two stages: 

• Construction of an infinite graph, 

• Cutting the extensible networks aimed at out of the infinite graph. 

A description is given of the properties the infinite graph should have in order to 
be a suitable basis for extensible networks. Besides it is explained which shapes 
of cutouts result in efficient extensible networks. In this chapter a measure is 
introduced which describes the node density of an infinite graph, the so-called 
exponentiality of the graph. Also a measure is introduced, which gives an indica­
tion about the efficiency of a cutout of the infinite graph. 

In chapter 3 a fundamental problem of communication mechanisms is con­
sidered. It concerns the space deficiencies that arise when processors of fixed 
sizes, and connection wires of a bounded length are used in an extensible parallel 
computer exhibiting low communication times. The only solution to these defi­
ciencies maintaining low communication times, is the use of processors with 
ever-decreasing sizes for subsequent extensions of a computer. The conse­
quences, a superlinear increase of the computation capacity under extension, and 
a limitation to the pace of extension of a computer by the pace at which technol­
ogy develops, are considered in a quantitative way. 

In chapter 4 the method in chapter 2 is used to construct an infinite class of exten­
sible networks, which are based on the Cartesian graph product. The well-known 
meshes and trees are subgraphs of these networks, suggesting that the networks 
are suited for implementation of many standard algorithms, such as sorting, 
matrix multiplication, etc. 
In chapter 5 a particular aspect of these networks is considered, the so-called local 
connectivities between the nodes. 

Thereupon, using the method in chapter 2 a second infinite class of extensible 
networks is constructed. These networks are planar, have a low nearly optimal 
diameter, and have a very regular structure. 
Chapter 6 describes the infinite graphs which are at the base of these networks, 
and deduces several properties of the infinite graphs. These properties are used 
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in chapter 7 to determine the exponentialities of the infinite graphs. 
Finally, in chapter 8 efficient cutouts of the infinite graphs are constructed, 
resulting in the planar networks. 
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Samenvatting 

In dit proefschrift worden uitbreidbare grootschalig parallelle computers bespro­
ken. Dit zijn computers die uit veel processoren bestaan en uitgebreid kunnen 
worden met extra processoren zonder dat hun onderliggende structuur verandert. 
Deze computers zijn met name geschikt voor rekenintensieve toepassingen. 
Bovendien kan hun rekencapaciteit op de wensen van een gebruiker toegesneden 
worden zonder dat software aangepast behoeft te worden. 
Het mechanisme dat communicatie tussen de processoren verzorgt, een 
belangrijk aspect bij parallelle computers, speelt een hoofdrol in dit proefschrift. 
Er worden een aantal fundamentele problemen belicht van efficiënte communica-
tie-modellen voor uitbreidbare grootschalig parallelle computers, en enkele sug­
gesties gedaan voor de oplossingen daarvan. Verder worden statische communi­
catie-netwerken, vaak toegepast als communicatie-mechanisme in parallelle com­
puters, bestudeerd. Er wordt uiteengezet hoe uitbreidbare statische communica­
tie-netwerken met geschikte eigenschappen geconstrueerd kunnen worden. 

In hoofdstuk 1 wordt naast een algemene behandeling van de drie hoofdthema's 
in dit proefschrift, grootschalig parallellisme, communicatie tussen processoren, 
en uitbreidbaarheid, een aantal eisen geformuleerd ten aanzien van de eigen­
schappen van uitbreidbare grootschalig parallelle computers. 

In hoofdstuk 2 wordt een methode beschreven om statische communicatie­
netwerken voor uitbreidbare parallelle computers te construeren. Een netwerk 
geconstrueerd met deze methode heeft gunstige eigenschappen, zoals 

1. het afwezig zijn van een grens aan het aantal malen dat het netwerk uitge­
breid kan worden, 

2. onveranderlijkheid van de complexiteit van de processoren bij uitbreiding 
(vaste graad), 
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3. de mogelijkheid tot lage communicatie-tijden (lage diameter), 

4. het bestand zijn tegen uitvallen van veel processoren of verbindingen tussen 
processoren (hoge connectiviteit), 

5. een regelmatige structuur die behouden blijft onder uitbreiding, 

6. behoud van de routeringsfunctie onder uitbreiding, en 

7. uitbreidbaarheid met een minimaal aantal processoren onder behoud van 
bovenstaande eigenschappen. 

De constructie-methode bestaat uit twee fasen: 

• Het construeren van een oneindige graaf, 

• Het uitsnijden van de beoogde netwerken uit deze graaf. 

Er wordt beschreven welke eigenschappen de oneindige graaf moet hebben om 
als basis te dienen voor uitbreidbare netwerken. Tevens wordt uiteengezet welke 
vorm een uitsnijding moet hebben om efficient te zijn als uitbreidbaar netwerk. 
In dit hoofdstuk wordt een maat geintroduceerd die de knoop-dichtheid van de 
oneindige graaf beschrijft, de zogenaamde exponentialiteit van de graaf. Tevens 
wordt een maat geintroduceerd die weergeeft hoe efficient een uitsnijding uit de 
oneindige graaf is. 

In hoofdstuk 3 wordt een fundamenteel probleem van communicatie-mechanis­
men beschouwd. Het betreft het tekort aan ruimte dat optreedt indien proces­
soren met een vaste grootte, en verbindingsdraden met een begrensde lengte wor­
den gebruikt in een uitbreidbare parallelle computer waarin de communicatie­
tijden laag zijn. De enige oplossing voor dit tekort die lage communicatie-tijden 
in stand houdt is het gebruik van steeds kleiner wordende processoren voor 
opeenvolgende uitbreidingen van een computer. De consequenties, een meer dan 
evenredige toename van de rekencapaciteit bij uitbreiding, en een begrenzing aan 
het tempo van uitbreiding van een computer door het tempo waarmee de techno­
logie zich ontwikkelt, worden kwantitatief beschouwd. 

In hoofdstuk 4 wordt met de methode uit hoofdstuk 2 een oneindige klasse uit­
breidbare netwerken geconstrueerd, die gebaseerd zijn op het Cartesisch graaf-
product. De welbekende meshes en bomen zijn subgrafen van deze netwerken, 
wat suggereert dat de netw.erken geschikt zijn voor implementatie van.veel stan­
daardalgoritmen, zoals sorteren, matrix-vermenigvuldigen, enzovoort. 
In hoofdstuk 5 wordt een bepaald aspect van deze netwerken beschouwd, de 
zogenaamde lokale connectiviteiten tussen de knopen. 

Met de methode uit hoofdstuk 2 wordt vervolgens een tweede oneindige klasse 
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uitbreidbare netwerken geconstrueerd. Deze netwerken zijn planair, hebben een 
lage bijna optimale diameter, en hebben een zeer regelmatige structuur. 
Hoofdstuk 6 beschrijft de oneindige grafen die ten grondslag liggen aan deze 
netwerken en leidt een aantal eigenschappen van de oneindige grafen af. 
Deze eigenschappen worden gebruikt in hoofdstuk 7 om de exponentialiteiten van 
de oneindige grafen te bepalen. 
Tenslotte worden in hoofdstuk 8 efficiënte uitsnijdingen uit de oneindige grafen 
geconstrueerd, wat resulteert in de planaire netwerken. 
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