
 
 

Delft University of Technology

Classical solutions to the thin-film equation with general mobility in the perfect-wetting
regime

Gnann, Manuel V.; Wisse, Anouk C.

DOI
10.1016/j.jfa.2025.110941
Publication date
2025
Document Version
Final published version
Published in
Journal of Functional Analysis

Citation (APA)
Gnann, M. V., & Wisse, A. C. (2025). Classical solutions to the thin-film equation with general mobility in the
perfect-wetting regime. Journal of Functional Analysis, 289(8), Article 110941.
https://doi.org/10.1016/j.jfa.2025.110941

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jfa.2025.110941
https://doi.org/10.1016/j.jfa.2025.110941


Journal of Functional Analysis 289 (2025) 110941

Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Regular Article

Classical solutions to the thin-film equation with 

general mobility in the perfect-wetting regime

Manuel V. Gnann, Anouk C. Wisse ∗

Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, 
Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 
Delft, 2628 CD, Netherlands

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 8 November 2023
Accepted 14 March 2025
Available online 19 March 2025
Communicated by Maria Colombo

MSC:
35K65
35K25
35R35
76A20
76D08

Keywords:
Viscous thin films
Traveling waves
Maximal regularity
Stability

We prove well-posedness, partial regularity, and stability of 
the thin-film equation ht + (m(h)hzzz)z = 0 with general 
mobility m(h) = hn and mobility exponent n ∈ (1, 3

2 )∪ ( 3
2 , 3)

in the regime of perfect wetting (zero contact angle). After a 
suitable coordinate transformation to fix the free boundary 
(the contact line where liquid, air, and solid coalesce), the 
thin-film equation is rewritten as an abstract Cauchy problem 
and we obtain maximal Lp

t -regularity for the linearized 
evolution. Partial regularity close to the free boundary is 
obtained by studying the elliptic regularity of the spatial part 
of the linearization. This yields solutions that are non-smooth 
in the distance to the free boundary, in line with previous 
findings for source-type self-similar solutions. In a scaling-wise 
quasi-minimal norm for the initial data, we obtain a well-
posedness and asymptotic stability result for perturbations of 
traveling waves. The novelty of this work lies in the usage of 
Lp-estimates in time, where 1 < p < ∞, while the existing 
literature mostly deals with p = 2 at least for nonlinear 
mobilities. This turns out to be essential to obtain for the 
first time a well-posedness result in the perfect-wetting regime 
for all physical nonlinear slip conditions except for a strongly 
degenerate case at n = 3

2 and the well-understood Greenspan-
slip case n = 1. Furthermore, compared to [36] by Giacomelli, 
the first author of this paper, Knüpfer, and Otto, where a PDE 
approach yields L2

t -estimates, well-posedness, and stability 
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for 1.8384 ≈ 3 
17 (15 −

√
21) < n < 3 

11 (7 +
√

5) ≈ 2.5189, our 
functional-analytic approach is shorter while at the same time 
giving a more general result.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. The thin-film equation formulated as a classical free-boundary problem

We consider the following free-boundary problem to the thin-film equation

ht + (hnhzzz)z = 0 for t > 0, z > Z(t), (1.1a)

h = hz = 0 for t > 0, z = Z(t), (1.1b)

lim 
z↓Z(t)

hn−1hzzz = Zt(t) for t > 0, (1.1c)

describing the time evolution of the height h(t, z) of a viscous thin film on a one-
dimensional flat substrate, as visualized in Fig. 1. Here, the independent variables t and 
z denote time and lateral position, respectively. The fluid covers the interval (Z(t),∞), 
where the free boundary z = Z(t) is called the triple junction or contact line since this 
is the point where gas, liquid, and solid coalesce. The thin-film equation (1.1a) can be 
derived from the Navier-Stokes equations via a lubrication approximation [13,30,46,65], 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 1. A viscous thin film as described by (1.1). 

Fig. 2. Surface tensions acting at the triple junction. 

and the particular case n = 1 can be interpreted either as Greenspan’s slip condition [42] 
or as the lubrication approximation of Darcy’s law in the Hele-Shaw cell [33,55,56,61]. 

The exponent n in (1.1a) is called the mobility exponent and takes values in the 
interval [1, 3]. The value of this exponent is related to the choice of slip, that is, the 
boundary condition at the liquid-solid interface in the underlying Navier-Stokes system. 
We will focus on the cases 1 < n < 3

2 and 3
2 < n < 3. This is because for n = 3 (no slip) 

or n > 3, the free boundary of the film cannot move [48], while for n < 0 the propagation 
speed is infinite and if 0 < n < 1 the height of the film can become negative [14]. The 
case of linear mobilities n = 1 is by now well understood (see details on references below). 
Our choice of exponents in particular includes the case of linear Navier slip [13,30,64,65]. 
We exclude n = 3

2 due to resonances leading to logarithmic corrections in this case [9, 
Thm. 1.3 (b)].

The boundary condition h = 0 at z = Z(t) in (1.1b) determines the position of the 
contact line, while hz = 0 at z = Z(t) entails that the contact angle θ between the 
liquid-solid and the gas-liquid interfaces at the triple junction is zero. This implies that 
the fluid will eventually cover the entire solid. The latter is evident from Young’s law 
[70], that is,

γgs = γls + cos θγgl, (1.2)

where γgs, γls, and γgl are the surface tensions between the gas-solid, liquid-solid, and 
gas-liquid interfaces, respectively (see Fig. 2).

When γgs < γls + γgl, θ has to be strictly positive, an equilibrium can be obtained, 
and we are in the regime of partial wetting. If, on the other hand, γgs ≥ γls + γgl, we 
need to have θ = 0 and, at least for γgs > γls + γgl, the fluid film will not stop spreading. 
Hence, we are in the complete-wetting regime considered in this paper.
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In [36] it is shown that for n = 2, under a smallness condition for the initial value 
for a suitably transformed version of (1.1), the resulting problem has a unique classi-
cal solution. Furthermore, in [36, Rem. 3.4] it is explained how the result generalizes 
immediately to the range

1.8384 ≈ 3 
17 (15 −

√
21) < n < 3 

11 (7 +
√

5) ≈ 2.5189. (1.3)

In this paper, we generalize this result to cover the more natural and except for isolated 
points full range

1 < n < 3
2 and 3

2 < n < 3 (1.4)

(in particular up to Darcy dynamics, n = 1, and the no-slip case n = 3), by employing 
a functional-analytic approach relying on semigroup theory. Compared to the methods 
in [36], in which techniques from ordinary differential equations (ODEs) and a time-
discretization procedure were used, this shortens the arguments. A further benefit of our 
approach is that it immediately entails maximal Lp-regularity in time, with 1 < p < ∞. 
This is non-obvious from the methods in [36] and turns out to be the crucial ingredient 
to obtain the larger range (1.4) of mobility exponents n compared to (1.3), for which 
up to now no well-posedness results have been available. In the spatial variables still 
weighted Hilbert-Sobolev spaces are used, as is also the case for most of the existing well-
posedness results [15,26,35,36,39–41,52,53] except for [25,32,50,68]. We mention that a 
corresponding theory of weak solutions without uniqueness results in complete wetting 
has been developed in [4,8,10,11,44] while qualitative properties have been investigated 
in [6,7,21–23,27–29,31,34,43,45,49]. Results for partial-wetting boundary conditions are 
so far contained in [12,25,26,52–56,59,63,66].

1.2. Notation

We write a ≲P b if there exists a constant 0 < C < ∞ only depending on the 
parameters in the set P and n such that a ≤ Cb. Similarly, we write a ∼P b if both 
a ≲P b and b ≲P a. If P = ∅ or P = {n}, or if the dependence is specified in the text, 
the subscript P is omitted. Consistently, we will not specify the dependence of constants 
on the parameter n throughout the paper.

We define 1A(x) = 1 for x ∈ A and 1A(x) = 0 else, where A is some set.

For α ∈ R we write 
α� := max{m ∈ Z : m ≤ α} and �α := min{m ∈ Z : m ≥ α}.

We denote by L(X) the bounded linear operators X → X.

For a domain Ω ⊆ Rd and 1 ≤ p ≤ ∞, Lp(Ω) denotes the Lebesgue space of p-
integrable functions Ω → R and we write Lp(Ω;C) for their complex-valued analogue. 
The convention for Sobolev spaces Hk(Ω), W k,p(Ω), and Besov spaces Bs

p,q(Ω) is analo-
gous. In case of Bochner spaces, we write Lp(Ω;X) etc.
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For a domain Ω ⊆ Rd we write C∞
c (Ω) for the space of real-valued test functions, that 

is, functions Ω → R that are infinitely often differentiable and have compact support in 
Ω. We denote by C∞

c (Ω;C) their complex-valued analogue.

We denote by S(R) the complex-valued Schwartz space and use the conventions

(F f)(ξ) := (2π)−
1
2

∫
R 

f(x)e−ixξ dx for ξ ∈ R and f ∈ S(R),

(F −1f)(x) = (2π)−
1
2

∫
R 

f(ξ)eixξ dξ for x ∈ R and f ∈ S(R),

for the Fourier transform and its inverse.

1.3. Outline

The rest of the paper consists of the following parts:

In §2 the free-boundary problem (1.1) is transformed onto a fixed domain (cf. §2.1), 
the functional-analytic setting is introduced (cf. §2.2), and the main result, Theorem 2.3, 
is formulated and discussed (cf. §2.3).

§3 treats the maximal regularity for the linear Cauchy problem. This is divided in 
the following subsections: in §3.1 the inhomogeneous equation of the abstract Cauchy 
problem is treated. Then, in §3.2 the homogeneous equation of the abstract Cauchy 
problem is solved. §3.3 and §3.4 treat parabolic maximal Lp-regularity in time and 
higher regularity in the spatial variables, respectively.

In §4 the nonlinear problem is treated. This is split into suitable embeddings and 
nonlinear estimates in §4.1 and the proof of the main result in §4.2.

The paper ends with concluding remarks on coercivity in §5.

2. Setting and main result

2.1. Derivation of the nonlinear Cauchy problem

Here, we reformulate the free-boundary problem (1.1) as a nonlinear Cauchy problem 
using the von Mises transform and additional coordinate transformations for the range 
of mobility exponents n as in (1.4).

2.1.1. Reformulation for n ∈ (1, 3
2 )

In this case, the generic solution of the free-boundary problem has up to rescaling 
and translation the form h = z2

+. Note that a stationary solution being generic is not 
a contradiction to complete-wetting boundary conditions since we are only interested in 
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the behavior close to the contact line Z(t) and since for h = z2
+ it is the asymptotic 

as z → ∞ that keeps the contact line eventually at rest, see [15,35,50] for the case 
n = 1. For compactly supported droplets in complete wetting, however, the fluid film 
will indeed not stop spreading, see e.g. [16–18,39,62,68,69] for rigorous results if n = 1. 
See [3,9] for special solutions if n ∈ (1, 3

2 ), where close to the contact line the leading-
order behavior is the same as for h = z2

+. This stands in contrast to the partial-wetting 
regime, where for compactly supported solutions an inverted parabola is the stationary 
long-time asymptotic, see [59]. Considering the case of compactly supported droplets for 
general mobilities would introduce another length scale and would make special solutions 
non-explicit. This would greatly complicate the analysis on coercivity of the linearized 
dynamics, for which we find quite explicit characterizations below in Lemma 2.2.

We linearize around the profile h = z2
+ using the von Mises transform, that is, we 

introduce the new dependent variable Z = Z(t, y) through

h(t, Z(t, y)) = y2 for t, y > 0. (2.1)

Note that the profile y2 is strictly monotone for y > 0 so that Z = Z(t, y) is well defined 
through the implicit function theorem provided h(t, ·) is strictly increasing for any t ≥ 0
fixed. Differentiating equation (2.1) with respect to t gives by the chain rule

ht + hzZt = 0 (1.1a)⇐⇒ hzZt − (hnhzzz)z = 0 for t, y > 0. (2.2)

On the other hand, differentiating h(t, Z(t, y)) with respect to y using z = Z(t, y), we 
see that hy = hzZy and

∂z = Z−1
y ∂y. (2.3)

Using (2.1) and (2.3) in (2.2) we deduce (omitting parentheses here and in what follows, 
that is, differential operators act on everything to their right)

Zt − y−1∂yy
2n(Z−1

y ∂y)2Z−1
y y = 0 for t, y > 0. (2.4)

We now introduce the new variable

H := Z−1
y (2.5)

and note that Zyt = −H−2Ht. Note that in the new variables, the quadratic profile 
h = z2 corresponds to H = 1. Using the definition of H and differentiating (2.4) with 
respect to y, we get

Ht + H2∂yy
−1∂yy

2n(H∂y)2Hy = 0 t, y > 0,

which, on using the commutation relation
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y∂yy
γ = yγ(y∂y + γ) for γ ∈ R,

can be rewritten as

Ht + y2n−4H2(y∂y + 2n− 3)(y∂y + 2n− 1)Hy∂yH(y∂y + 1)H = 0 for t, y > 0. (2.6)

We apply a further change of variables by setting

x := y4−2n

(4−2n)4 , (2.7)

so that y∂y = (4 − 2n)D with D := x∂x. Rewriting (2.6) accordingly gives

Ht + x−1Mn(H,H,H,H,H) = 0,

where

Mn(H1, H2, H3, H4, H5) = H1H2
(
D + 2n−3

4−2n
)(
D + 2n−1

4−2n
)
H3DH4

(
D + 1 

4−2n
)
H5.

Linearizing around the quadratic profile

u := H − 1 (2.8)

gives the nonlinear Cauchy problem

ut + x−1pn(D)u = Nn(u) for t, x > 0, (2.9a)

u = u(0) for x > 0 and at t = 0, (2.9b)

with the linear operator

pn(D)u = Mn(u, 1, . . . , 1) + · · · + Mn(1, . . . , 1, u)

= D
(
D − 3−2n

4−2n
)(
D − 1−2n

4−2n
)(
D − −1 

2−n

)
u (2.10)

and the nonlinearity

Nn(u) = −x−1Mn(u + 1, . . . , u + 1) + x−1pn(D)u. (2.11)

Hence, pn(ζ) =
∏4

j=1(ζ − γj) is a fourth order polynomial with roots in increasing order 
given by

γ1 := − 1 
2−n , γ2 := 1−2n

4−2n , γ3 := 0, γ4 := 3−2n
4−2n .

Finally, we note that we do not have to impose boundary conditions on the Cauchy 
problem (2.9) since the boundary conditions (1.1b) and (1.1c) are implicitly fulfilled 
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through (2.1) provided supt,x>0 |u| is sufficiently small, which through (2.5) and (2.8) in 
particular entails that Z is a small Lipschitz perturbation of Z = y + const. Smallness 
of supt,x>0 |u| is a natural assumption to ensure that the von Mises transform (2.1) is 

diffeomorphic. Also observe that otherwise Zx
(2.5),(2.8)= 1/(1+u) can become unbounded.

2.1.2. Reformulation for n ∈ (3
2 , 3)

For mobility exponents n ∈ (3
2 , 3) the generic solution of the free-boundary problem 

(1.1) is a traveling wave h(t, z) = hTW(x), where x = z − V t, with Zt(t) = V < 0 the 
constant velocity of the fluid film. This change of coordinates implies

∂zh = dhTW
dx and ∂th = −V dhTW

dx ,

which turns (1.1) into the ordinary boundary-value problem

−V dhTW
dx + d 

dx
(
hn

TW
d3hTW

dx3

)
= 0 for x > 0, (2.12a)

hTW = dhTW
dx = 0 at x = 0, (2.12b)

hn−1
TW

d3hTW
dx3 = −V at x = 0, (2.12c)

where we have assumed Z(0) = 0 by translation invariance. Integrating the ODE (2.12a)
and appealing to the boundary conditions (2.12b) and (2.12c) gives

hn−1
TW

d3hTW
dx3 = V for x > 0, (2.13a)

hTW = dhTW
dx = 0 at x = 0. (2.13b)

By a rescaling of x we may assume without loss of generality that the velocity V of the 
traveling wave only depends on n. In particular, we may assume that this velocity is 
V = − 3 

n ( 3 
n − 1)(2 − 3 

n ). This particular choice of V ensures that

hTW = x
3 
n (2.14)

solves (2.13). Note that this choice reduces for linear Navier slip, i.e., n = 2, to the 
velocity V = −3

8 of the traveling wave, see e.g. [36].

The next step is to study perturbations of solutions to (1.1) around the traveling wave 
x

3 
n with the von Mises transform

h(t, Z(t, x)) := x
3 
n , (2.15)

which is carried out in [36, § 1.3, App. A.1] for n = 2. From (2.15) we infer

hzZx = ∂xh = 3 
nx

3 
n−1 and ht + hzZt = 0.

Using this in (2.15) together with (1.1a), we obtain
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Zt = n
3 x

1− 3 
n ∂xx

3(Z−1
x ∂x)3x 3 

n . (2.16)

We again introduce the variable

H := Z−1
x (2.17)

and thus ∂tH = −H2Zxt. Note that the constant solution H = HTW = 1 corresponds to 
the traveling-wave profile hTW. Writing D = x∂x and using the commutation relation

Dxγ = xγ(D + γ) for γ ∈ R,

we obtain

∂tH + x−1Mn(H,H,H,H,H) = 0,

where

Mn(H1, H2, H3, H4, H5) := H1H2D(D + 3 
n )H3(D + 3 

n − 2)H4(D + 3 
n − 1)H5.

Linearizing around

u := H − 1 (2.18)

gives the nonlinear Cauchy problem

ut + x−1pn(D)u = Nn(u) for t, x > 0, (2.19a)

u = u(0) for x > 0 and at t = 0, (2.19b)

with the linear operator

pn(D)u := Mn(u, 1, . . . , 1) + · · · + Mn(1, . . . , 1, u)

= D(D + 3 
n )

(
D2 + ( 9 

n − 4)D − 3(2 − 3 
n )( 3 

n − 1)
)
u

= D
(
D + 3 

n

)
(D − ω1) (D − ω2)u, (2.20)

where

ω1 := 4n−9−
√
−27+36n−8n2

2n and ω2 := 4n−9+
√
−27+36n−8n2

2n ,

and the nonlinearity

Nn(u) = −x−1Mn(u + 1, . . . , u + 1) + x−1pn(D)u. (2.21)

Hence, pn(ζ) is a fourth-order polynomial and for n ∈ (3
2 , 3) the zeros are in ascending 

order
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γ1 := − 3 
n , γ2 := ω1, γ3 := 0, γ4 := ω2.

Again, we note that (2.19) does not require boundary conditions as these are implicitly 
fulfilled through (2.15) provided supt,x>0 |u| is sufficiently small, which through (2.17)
and (2.18) in particular entails that Z is a small Lipschitz perturbation of Z = y+const.
Smallness of supt,x>0 |u| ensures that the von Mises transform (2.14) is diffeomorphic. 

Further consider that otherwise Zx
(2.17),(2.18)= 1/(1 + u) can become unbounded.

2.1.3. The nonlinear Cauchy problem
Both (2.9) and (2.19) result in the Cauchy problem

ut + x−1p(D)u = N (u) t, x > 0, (2.22a)

u|t=0 = u(0) x > 0, (2.22b)

where (cf. (2.10) and (2.20))

p(D) := pn(D) = (D − γ1)(D − γ2)(D − γ3)(D − γ4) (2.23)

with

γ1 = − 1 
2−n , γ2 = 1−2n 

2(2−n) , γ3 = 0, γ4 = 3−2n 
2(2−n) =: β for n ∈ (1, 3

2 ), (2.24a)

and

γ1 = − 3 
n , γ2 = 4n−9−

√
−27+36n−8n2

2n , γ3 = 0,

γ4 = 4n−9+
√
−27+36n−8n2

2n =: β for n ∈ (3
2 , 3). (2.24b)

The fact that in both cases n ∈ (1, 3
2 ) and n ∈ (3

2 , 3) we have the root γ3 = 0 is in line 
with (1.1a) being in divergence form. The nonlinear right-hand side is given by

N (u) := Nn(u) = −x−1Mn(u + 1, . . . , u + 1) + x−1pn(D)u, (2.25)

where

Mn(H1, H2, H3, H4, H5) = (2.26){
H1H2

(
D + 2n−3

4−2n
)(
D + 2n−1

4−2n
)
H3DH4

(
D + 1 

4−2n
)
H5 for n ∈ (1, 3

2).
H1H2D

(
D + 3 

n

)
H3

(
D + 3 

n − 2
)
H4

(
D + 3 

n − 1
)
H5 for n ∈ (3

2 , 3).

In what follows, the subscripts n will usually be omitted.
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2.2. Norms and spaces

2.2.1. Weighted Sobolev spaces
For k ∈ N0 and α ∈ R we use the weighted inner products

(φ, ψ)k,α =
k∑

j=0 

∞ ∫
0 

x−2αDjφDjψ dx
x , (φ, ψ)α := (φ, ψ)0,α, (2.27)

where φ, ψ ∈ C∞
c ((0,∞);K) with K ∈ {R,C}. We write |·|k,α and |·|α := |·|0,α, where 

|φ|k,α :=
√

(φ, φ)k,α, for the induced norms. The space HK
k,α is defined as the closure of 

C∞
c ((0,∞);K) with respect to |·|k,α. For k ≥ 1 we define inductively HK

−k,α as the dual 
of HK

k,α−1 relative to HK
0,α− 1

2
. We write HK

α := HK
0,α and

Hk,α := HK
k,α− 1

2
∩HK

k+2,α. (2.28)

For α = 0 we obtain an isometry with the standard Sobolev spaces HK
k,0 � Hk(R;K) =

W k,2(R;K) on mapping u �→ (s �→ u(es)), and for k = 0 and α = 0 it holds HK
0 �

L2(R;K). We write Hk,α := HR
k,α and Hα := H0,α, where k ∈ Z and α ∈ R in the 

real-valued case.

2.2.2. Interpolation spaces
For k ∈ N0, α ∈ R, ϑ ∈ (0, 1), and 1 < p < ∞, we introduce the real interpolation 

space

Hk+2−4ϑ,α−ϑ,p := (Hk−2,α−1, Hk+2,α)1−ϑ,p (2.29)

(cf. [58, Def. 1.2.2]) with norm

|u|k+2−4ϑ,α−ϑ,p := |u|(Hk−2,α−1,Hk+2,α)1−ϑ,p
, (2.30)

where we use the K-method of real interpolation in what follows (cf. [58, § 1.2.1]). We 
define for k > 0, k / ∈ N, and α ∈ R the fractional weighted Sobolev space

Hk,α := (H�k�,α, H�k�+4,α) k−�k�
4 ,2 (2.31)

with induced norm |·|k,α.

Note that the real interpolation of weighted Lp-spaces with respect to (·, ·)θ,q in the 
non-diagonal case p �= q is a delicate matter of interpolation of operators, see e.g. [38]. 
We have the following characterization and embeddings of the interpolation norm in 
terms of fractional Sobolev spaces that can be deduced by direct elementary arguments:
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Lemma 2.1. For k ∈ N with k ≥ 2, α ∈ R, ϑ ∈ (0, 1), and 1 < p < ∞ it holds

|u|k+2−4ϑ,α−ϑ,p ≳k,α,ϑ,p

⎧⎨
⎩
∥∥s �→ e−(α−ϑ)su(es)

∥∥
Wk+2−4ϑ,2(R) for p ≤ 2,∥∥s �→ e−(α−ϑ)su(es)

∥∥
W

k+ 3
2+ 1 

p
−4ϑ,p(R)

for p > 2,
(2.32)

where u ∈ Hk+2−4ϑ,α−ϑ,p and equivalence holds for p = 2, that is, we have 
Hk+2−4ϑ,α−ϑ,2 = Hk+2−4ϑ,α−ϑ with equivalence of norms. Additionally, we have

|u|k+2−4ϑ,α−ϑ,p ≳k,α,ϑ,p

∥∥s �→ e−(α−ϑ)su(es)
∥∥
Wm,∞(R) for u ∈ Hk+2−4ϑ,α−ϑ,p, (2.33)

where m = k + 3
2 − 4ϑ if k + 3

2 − 4ϑ / ∈ Z, and m < k + 3
2 − 4ϑ otherwise. Furthermore, 

for η(x) := xκ1[0,1](x) + x−κ(1 − 1[0,1](x)), where κ > 0, we have for p > 2

|u|2k+2−4ϑ,α−ϑ,p ≳k,κ,α,ϑ,p

m ∑
j=0 

∞ ∫
0 

η2x−2(α−ϑ)(Dju)2 dx
x (2.34)

for m := 
k + 3
2 + 1 

p − 4ϑ� and u ∈ Hk+2−4ϑ,α−ϑ,p.

The proof of Lemma 2.1 is given in §3.2.

2.2.3. Parabolic spaces
For treating the nonlinear problem in §4, we introduce norms | | |·| | | for the solution 

u, | | |·| | |1 for the right-hand side f , and | | |·| | |0 for the initial data u(0) appearing in (2.22). 
Therefore, let β = γ4 be the largest zero of p(D), as defined in (2.24). Suppose k, k̃ ∈ N0, 
1 < p < ∞ such that 1 

p < β, and 0 < δ < δ̃ < min{ 1 
p , β − 1 

p}. We define

| | |u| | |p := sup
t≥0 

[
|u|p

k̃+8− 4 
p ,−δ̃,p

+ |u− u0|pk̃+8− 4 
p ,δ̃,p

]

+
∞ ∫
0 

[
|∂tu|pk̃+4,−1+ 1 

p−δ̃
+ |∂tu|pk̃+4,−1+ 1 

p+δ̃
+ tpβ−1|∂tu|pk+4,β−1−δ

+ tpβ−1|∂tu|pk+4,β−1+δ + |u− u0|pk̃+8, 1 p−δ̃
+ |u− u0|pk̃+8, 1 p+δ̃

+ tpβ−1|u− u0|pk+8,β−δ + tpβ−1|u− u0 − uβx
β |pk+8,β+δ

]
dt, (2.35a)

| | |u(0)| | |p0 :=|u(0)|p
k̃+8− 4 

p ,−δ̃,p
+ |u(0) − u

(0)
0 |p

k̃+8− 4 
p ,δ̃,p

, (2.35b)

| | |f | | |p1 :=
∞ ∫
0 

[
|f |p

k̃+4,−1+ 1 
p−δ̃

+ |f |p
k̃+4,−1+ 1 

p+δ̃
+ tpβ−1|f |pk+4,−1+β−δ

+ tpβ−1|f |pk+4,−1+β+δ

]
dt. (2.35c)
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Here, u0(t) := limx↘0 u(t, x) for t ≥ 0, uβ(t) := limx↘0 x
−β(u(t, x) − u0(t)) for t ≥ 0, 

and u(0)
0 := limx↘0 u

(0)(x) are spatial boundary traces of u and u(0). The norms (2.35)
are well-defined if

u(0) ∈ Hk̃+8− 4 
p ,−δ̃,p, u(0) − u

(0)
0 ∈ Hk̃+8− 4 

p ,δ̃,p
,

f ∈ Lp
(
0,∞;Hk̃+4,−1+ 1 

p−δ̃ ∩Hk̃+4,−1+ 1 
p+δ̃

)
,(

t �→ tβ−
1 
p f(t)

)
∈ Lp

(
0,∞;Hk+4,−1+β−δ ∩Hk+4,−1+β+δ

)
,

u ∈ BC0([0,∞);Hk̃+8− 4 
p ,−δ̃,p

)
,

u− u0 ∈ BC0([0,∞);Hk̃+8− 4 
p ,δ̃,p

)
,

∂tu ∈ Lp
(
0,∞;Hk̃+4,−1+ 1 

p−δ̃ ∩Hk̃+4,−1+ 1 
p+δ̃

)
,(

t �→ tβ−
1 
p ∂tu(t)

)
∈ Lp

(
0,∞;Hk+4,β−1−δ ∩Hk+4,β−1+δ

)
,

u− u0 ∈ Lp
(
0,∞;Hk̃+8, 1 p−δ̃ ∩Hk̃+8, 1 p+δ̃

)
,(

t �→ tβ−
1 
p (u(t) − u0(t))

)
∈ Lp(0,∞;Hk+8,β−δ),(

t �→ tβ−
1 
p (u(t) − u0(t) − uβ(t)xβ)

)
∈ Lp(0,∞;Hk+8,β+δ).

In this case, u(0)
0 , u0, and uβ are uniquely determined. We denote the corresponding 

Banach spaces for the initial data u(0), solution u, and right-hand side f by U (0)(k̃, δ̃, p), 
U(k, k̃, δ, δ̃, p), and F (k, k̃, δ, δ̃, p), respectively. On a finite time interval I = [0, T ) with 
T ∈ (0,∞), we write U(k, k̃, δ, δ̃, p, I) and F (k, k̃, δ, δ̃, p, I) (see Proposition 3.12 below). 
Relevant embeddings are listed in Lemma 4.1.

2.3. The main result

2.3.1. Well-posedness and asymptotic stability
In order to prove our main result, Theorem 2.3, we need the following characterization 

of coercivity, which is proved in §3.1.

Lemma 2.2 (Coercivity). Let w ∈ HC
α . There exists a constant Kα > 0 such that

�(w, p(D)w)α ≥ Kα|w|22,α for all w ∈ C∞
c ((0,∞);C) (2.36)

if

α ∈
( 1−2n 

2(2−n) , 0
)
∩
[ 1−2n− 1 √

3

√
13−12n+4n2

4(2−n) ,
1−2n+ 1 √

3

√
13−12n+4n2

4(2−n) 

]
for n ∈

(
1, 3

2
)
, 

(2.37a)

α ∈
( 4n−9−

√
−27+36n−8n2

2n , 0
)
∩
[
n−3
n − 1 √

2n ,
n−3
n + 1 √

2n

]
for n ∈

( 3
2 , 3

)
. 

(2.37b)
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Fig. 3. For the two different cases of n the zeros γ1, . . . , γ4 = β of p(D) (solid lines) and the upper and lower 
bound in (2.37) (dashed lines) are shown. The coercivity range for α contains the shaded area.

We will refer to the set of all α ∈ R for which (2.36) holds true with some Kα > 0 as 
the coercivity range of p(D) = pn(D), see Fig. 3.

A full characterization of the coercivity range of p(D) (which is analytically rigorous 
at least for n < 3

2 ) is carried out in §5, but is not necessary for the main result of this 
paper, Theorem 2.3:

Theorem 2.3. For every n ∈ (1, 3) \ {3
2}, choose 1 < p < ∞ such that 1 

p < β = γ4. 
Take δ̃ > δ > 0 such that 0 < δ̃ < min{−γ2, β − 1 

p ,
1 
p , 1 − 1 

p}. Let k, k̃ ∈ N0 such that 
k̃ > k+ 1

2 + 3 
p . Further suppose that α ∈ { 1 

p − 1± δ̃, β− 1± δ} are in the coercivity range 
(cf. (2.37) of Lemma 2.2 for a sufficient criterion).

Then there exists an ε = ε(k, k̃, δ, δ̃, p) > 0 such that for all u(0) ∈ U (0)(k̃, δ̃, p)
with | | |u(0)| | |0 < ε, the nonlinear Cauchy problem (2.22) has a unique classical solution 
u ∈ U(k, k̃, δ, δ̃, p). This solution satisfies the a-priori estimate

| | |u| | | ≲k,k̃,δ,δ̃,p | | |u(0)| | |0. (2.38)

Furthermore, [0,∞) � t �→ | | |u(t)| | |0 is continuous and | | |u(t)| | |0 → 0 as t → ∞, which 
implies that the stationary solution y2 or traveling wave (2.14), respectively, is asymp-
totically stable.

2.3.2. Discussion
Note that Theorem 2.3 is the generalization of [36, Thm. 3.1], which (cf. [36, Rem. 3.4]) 

applies for the range (1.3) of mobility exponents n. Notice that the proved regularity is 
sufficient to control four classical derivatives in space of u for x > 0. The time derivative 
is attained in terms of semi-group theory in the strong sense with values in a Banach 
space with point-wise control, thus ensuring classical differentiability in time for x > 0. 
Hence, the regularity attained is sufficient to satisfy the boundary conditions (1.1b) and 
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(1.1c) classically (see also §2.3.3 and §2.3.4). The main difference between [36, Thm. 3.1] 
and Theorem 2.3 is that here, a larger range n ∈ (1, 3) \ {3

2} of mobility exponents is 
covered (in particular, up to the boundary values n = 1, Greenspan’s slip condition [42] 
or the lubrication approximation of Darcy’s law in the Hele-Shaw cell [19,33,55,56,61], 
and n = 3, the no-slip case [46]). This is possible because we use Lp-norms in time 
(cf. (2.35)), allowing to meet 1 

p < β, in comparison to L2-norms in time in [36] leading 
to the constraint β > 1

2 in [36]. From (2.24a) we infer that β < 1
2 for n ∈ (1, 3

2 ) and that 
β → 0 as n → 3

2 , explaining the lower bound in (1.3) using the L2 in time approach of 
[36]. Furthermore, our analysis requires that both β − 1 and 1 

p − 1 are in the coercivity 
range of p(D) (cf. Lemma 2.2). The latter constraint for p = 2 leads to the upper bound 
on n in (1.3), which is necessary for the approach of [36] to apply. Choosing p ∈ (1,∞)
suitably also removes this constraint, so that Theorem 2.3 applies for the natural range 
(1.4). For these reasons, and in order to simplify the arguments, the Lp in time approach 
appears natural in our situation to cover the physically natural range of slip conditions 
determined by (1.4).

Notice that because of (2.33) of Lemma 2.1, (2.35a), (2.35b), and (2.38) of The-
orem 2.3, the norm supt,x≥0|u(t, x)| is controlled and sufficiently small if | | |u(0)| | |0 is 
sufficiently small. Because of (2.5), (2.7), and (2.8), this entails that for n ∈ (1, 3

2 ) the 
function [0,∞) � x �→ Z(t, x) is for fixed t ≥ 0 strictly increasing in x, so that the 
transformation (2.1) is well defined. Likewise, because of (2.17) and (2.18) the function 
[0,∞) � x �→ Z(t, x) is for fixed t ≥ 0 strictly increasing in x, so that the transformation 
(2.15) is well-defined. An optimal result, in the flavor of [50,68] for the thin-film equation 
and [51,57] for the second-order degenerate-parabolic porous-medium equation, would 
only require supx≥0|u(0)(x)| to be small and is left open for future work.

2.3.3. Regularity at the free boundary
In view of Lemma 4.1 and the definition of the norm | | |·| | | in (2.35a), it follows from 

Theorem 2.3 that the solution u has an expansion

u(t, x) = u0(t) + uβ(t)xβ + o(xβ+δ) as x ↘ 0, almost everywhere in time t, (2.39)

where [0,∞) � t → u0(t) is continuous with u0(t) → 0 as t → ∞ and uβ(t) = o(t−β)
as t → ∞. Note that the asymptotic expression (2.39) as well as asymptotic expressions 
below are understood to hold also on taking a controlled number of derivatives in x. The 
asymptotic (2.39) is in line with findings in [3,37], where, after factoring off the leading-
order behavior, source-type self-similar solutions were extended to analytic functions in 
(x1, x2) on identifying x1 = x and x2 = xβ . A corresponding regularity result for (1.1)
with n = 2 was proved in [40], that is, a generalized Taylor expansion of u in terms of 
x1 and x2 was proved to any order for positives times t > 0, but does not have to be 
controlled at time t = 0. In this sense, (2.39) is a partial-regularity result and a result 
analogous to [40], a generalized degenerate-parabolic higher-order smoothing effect, is 
expected to be true also for n ∈ (1, 3) \ {3

2}. Yet, the proof of [40] does in general not 
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carry over to other mobilities than the quadratic one, as there it was crucial that the 
coercivity range contains the interval (−1, 0) (see (2.37b) in Lemma 2.2 and the more 
general characterization and discussion in §5).

2.3.4. Transformation into the original variables
Case n ∈ (1, 3

2 ) We deduce that

H
(2.8)= 1+u

(2.7),(2.24a),(2.39)= 1+u0(t)+ uβ(t) 
(4−2n)2

3−2n
2−n 

y3−2n +o(y3−2n+(4−2n)δ) as y ↘ 0,

(2.40)
almost everywhere in time t. From (2.4) and (2.5) we get

Zt = y2n−3(y∂y + 2n− 1)Hy∂yH(y∂y + 1)H,

so that with (2.40) and analogous expressions for y∂y derivatives, we obtain the velocity 
of the contact line as

Zt(t, 0) = 2(3−2n)(5−2n)(1+u0(t))2uβ(t)

(4−2n)2
3−2n
2−n 

,

almost everywhere in time t. We infer that Zt(t, 0) = o(t−β) as t → ∞. From (2.5) and 
(2.40) we obtain

Zy = 1 
1+u0(t) −

uβ(t) 
(4−2n)2

3−2n
2−n (1+u0(t))2

y3−2n + o(y3−2n+(4−2n)δ) as y ↘ 0,

almost everywhere in time t, that is,

Z(t, y) = Z(t, 0) + 1 
1+u0(t)y −

uβ(t) 
(4−2n)

8−5n
2−n (1+u0(t))2

y4−2n + o(y4−2n+(4−2n)δ) as y ↘ 0,

almost everywhere in time t, so that, introducing the distance z̃ := Z(t, y) − Z(t, 0) to 
the contact line, by inversion

y = (1 + u0(t))z̃ + (1+u0(t))3−2nuβ(t)

(4−2n)
8−5n
2−n 

z̃4−2n + o(z̃4−2n+(4−2n)δ) as z̃ ↘ 0,

almost everywhere in time t. With (2.1) this entails for the film height

h(t, y) = (1 + u0(t))2z̃2
(
1 + 2(1+u0(t))2−2nuβ(t)

(4−2n)
8−5n
2−n 

z̃3−2n + o(z̃3−2n+(4−2n)δ)
)

as z̃ ↘ 0,

almost everywhere in time t. This is qualitatively the same leading- and next-to-leading 
order asymptotic behavior as in [3, Thm. 3.1] for source-type self-similar solutions.
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Case n ∈ (3
2 , 3) We note that

H
(2.18)= 1+u

(2.39)= 1+u0(t)+uβ(t)xβ+o(xβ+δ) as x ↘ 0, almost everywhere in time t.
(2.41)

From (2.16) and (2.17) we infer

Zt = (x∂x + 3 
n )H(x∂x + 3 

n − 2)H(x∂x + 3 
n − 1)H,

which entails with (2.41) and analogous expressions for x∂x derivatives

Zt(t, 0) = − 3 
n ( 3 

n − 1)(2 − 3 
n )(1 + u0(t))3

for the velocity of the contact line. In particular, we have Zt(t, 0) → − 3 
n (2 − 3 

n )( 3 
n − 1)

as t → ∞. From (2.17) and (2.41) it then follows

Zx = 1 
1+u0(t) −

uβ(t) 
(1+u0(t))2x

β + o(xβ+δ) as x ↘ 0,

almost everywhere in time t. Integration gives

Z(t, x) = Z(t, 0) + 1 
1+u0(t)x− uβ(t) 

(1+β)(1+u0(t))2x
1+β + o(x1+β+δ) as x ↘ 0,

almost everywhere in time t, so that after inversion it holds for the distance z̃ := Z(t, x)−
Z(t, 0) to the free boundary

x = (1 + u0(t))z̃ + uβ(t)(1+u0(t))β
1+β z̃1+β + o(z̃1+β+δ) as z̃ ↘ 0.

With help of (2.15) this amounts to

h = (1 + u0(t))
3 
n z̃

3 
n

(
1 + 3uβ(t)(1+u0(t))β−1

n(1+β) z̃β + o(z̃β+δ)
)

as z̃ ↘ 0.

This is in line with the asymptotics for source-type self-similar solutions as in [37, Thm. 1] 
in leading- and next-to-leading order.

2.3.5. Further questions
Here, we only mention two selected questions of interest for future work, the first 

concerning non-Newtonian thin-film equations as studied for instance in [2]. Power-law 
or Ostwald-de-Waele liquids lead to a changed degeneracy compared to the one in (1.1a), 
so that the leading-order terms in the dynamics around a steady state such as a stationary 
solution have features of a p-Laplacian including a degeneracy. It is widely open how to 
transfer the techniques developed here for fourth-order degenerate-parabolic equations 
to such settings.

The second question concerns droplet rupture as studied for instance in [19,20]. In 
[19] it is shown that under suitable boundary conditions, initially positive solutions to 
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(1.1a) with n = 1 pinch off in finite or infinite time. To our knowledge, a corresponding 
result for nonlinear mobilities is lacking so far. We further point out that our setting 
may allow for an extension of such solutions beyond pinch off.

3. Maximal regularity for the linear problem

Consider the linear inhomogeneous Cauchy problem

∂tu−Au = f for t, x > 0, (3.1a)

u = u(0) for x > 0 and at t = 0, (3.1b)

where

A = −x−1p(D) (3.2a)

and where p(D) is the fourth-order polynomial operator as introduced in §2.1.3. Here,

A : X ⊃ D(A) → X with X := HK
k−2,α−1 and D(A) := HK

k−2,α−1 ∩HK
k+2,α. (3.2b)

The next lemma characterizes the elliptic regularity and closedness of the operator A.

Lemma 3.1. Suppose k ∈ N with k ≥ 2, and α ∈ R \ {γ : γ is a root of p(ζ)}. Then we 

have for A (3.2a)= −x−1p(D) that

|Au|k−2,α−1 ∼k,α |u|k+2,α for all u ∈ D(A). (3.3)

In particular, A is a closed and densely defined operator.

Proof. We prove (3.3) by applying Hardy’s inequality [60, Thm. 1] iteratively for u ∈
C∞

c ((0,∞);K). Note that p(D) is a fourth-order polynomial which we will rewrite as 
p(D) = (D − γ)p̃(D), where γ is one of the zeros of p(D) and p̃(D) is the remaining 
third-order polynomial. Since we have γ �= α, by application of Hardy’s inequality we 
get

|Au|2k−2,α−1 = |x−1+γDx−γ p̃(D)u|2k−2,α−1

∼k,α |Dx−γ p̃(D)u|2k−2,α−γ

=
k−2∑
j=0 

∞ ∫
0 

x2γ−2α(Dj+1x−γ p̃(D)u)2 dx
x 

≳
k−2∑
j=0 

∞ ∫
0 

x2γ−2α(Djx−γ p̃(D)u)2 dx
x 
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=
k−2∑
j=0 

∞ ∫
0 

x−2α((D − γ)j p̃(D)u)2 dx
x ∼k,α |p̃(D)u|2k−2,α.

We also have

|Au|k−2,α−1 ∼k,α |(D − γ)p̃(D)|k−2,α ≥ |Dp̃(D)u|k−2,α − |γ||p̃(D)u|k−2,α,

and combining the two inequalities gives

|Au|k−2,α−1 ≳k,α |p̃(D)u|k−1,α.

Repeating this argument three more times gives the desired estimate (3.3). Since trivially 
|Au|k−2,α−1 ≲k,α |u|k+2,α, by density of C∞

c ((0,∞);K) in HK
k−2,α−1 ∩HK

k+2,α we obtain 
(3.3) also for u ∈ HK

k−2,α−1 ∩HK
k+2,α. �

The Cauchy problem (3.1) has the formal mild solution

u(t) = etAu(0) +
t ∫

0 

e(t−s)Af(s)ds,

which suggests to split (3.1) into

∂tu
(1) −Au(1) = 0, (3.4a)

u(1)(0) = u(0), (3.4b)

with formal solution u(1)(t) = etAu(0), and

∂tu
(2) −Au(2) = f, (3.5a)

u(2)(0) = 0, (3.5b)

with formal mild solution u(2)(t) =
∫ t

0 e(t−s)Af(s)ds.

The goal is to prove a maximal-regularity estimate for the linear problem (3.1). To 
achieve this, the two problems (3.4) and (3.5) will be dealt with separately. The corre-
sponding resolvent problem of (3.5) will be treated in §3.1 and problem (3.4) is treated 
in §3.2 with standard semi-group and interpolation theory. In §3.3 the results will be 
combined to obtain a maximal Lp-regularity estimate. The section is concluded in §3.4, 
in which elliptic regularity estimates yield control on the singular expansion of u.
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3.1. Inhomogeneous equation

Applying the Laplace transform in time to (3.1) and absorbing the initial data u(0)

into f , we obtain the resolvent equation

λu−Au = f, (3.6)

with λ ∈ {z ∈ C | �z ≥ 0} and A
(3.2a)= −x−1p(D), with the fourth-order polynomial p. 

We test (3.6) in (·, ·)α with

φ :=
k∑

j=0 
cj(−D + 2α− 1)jDjv, cj > 0, (3.7)

where v ∈ C∞
c ((0,∞);C). For w ∈ C∞

c ((0,∞);C) we define the bilinear form

Bλ,k,α(v, w) := (φ, λw −Aw)α− 1
2

=
k∑

j=0 
cj
(
(−D + 2α− 1)jDjv, λw −Aw

)
α− 1

2
, (3.8)

where Bλ,k,α : Hk,α ×Hk,α → C. The choice of the test function φ in (3.7) is motivated 
by looking for solutions with control on k+2 D-derivatives and the shift by 1−2α ensures 
symmetry of the term proportional to λ in Bλ,k,α(v, w) when integrating by parts. The 
constants cj are suitably chosen below to obtain coercivity. Our goal is to show that 
the resolvent equation has a unique classical solution and that A (3.2a)= −x−1p(D) with 

D(A) (3.2b)= HK
k−2,α−1∩HK

k+2,α generates an analytic semigroup. We start by showing that 
the resolvent equation (3.6) has a unique variational solution by using the Lax-Milgram 
theorem (see e.g. [1, Thm. 6.2]).

Lemma 3.2 (cf.   [36]). The bilinear form

C∞
c ((0,∞);C) × C∞

c ((0,∞);C) � (v, w) �→ (v, p(D)w)α

is coercive with respect to |·|α, i.e., �(w, p(D)w)α ≳α |w|22,α for w ∈ C∞
c ((0,∞)), if the 

following conditions hold:

α ∈ (−∞, γ1) ∪ (γ2, γ3) ∪ (γ4,∞), (3.9a)

|α−m(γ)| ≤ 1 √
3σ(γ). (3.9b)

Here, m(γ) denotes the algebraic mean of the zeros γl of p(D), i.e.,
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m(γ) := 1
4

4 ∑
l=1 

γl,

and σ(γ) the nonnegative root of the variance

σ2(γ) = 1
4

4 ∑
l=1 

γ2
l −m2(γ) = 1

4

4 ∑
l=1 

(γl −m(γ))2.

Proof. This is a straight-forward computation, see [36, Prop. 5.3]. �
Note that (as one can see from the proof in [36, Prop. 5.3]), the criterion (3.9) is 

sufficient but in general not necessary to prove coercivity, see the discussion in §5.

The above lemma amounts in our case to:

Proof of Lemma 2.2. First consider n ∈ (1, 3
2 ). By (2.24a) the zeros of p(D) are in as-

cending order given by

γ1 = − 1 
2−n , γ2 = 1−2n 

2(2−n) , γ3 = 0, γ4 = 3−2n 
2(2−n) .

Hence, condition (3.9a) gives

α ∈
(
−∞,− 1 

2−n

)
∪
( 1−2n 

2(2−n) , 0
)
∪
( 3−2n 

2(2−n) ,∞
)
.

Furthermore, an elementary calculation shows

m(γ) = 1−2n 
4(2−n) and σ2(γ) = 13−12n+4n2

16(2−n)2 .

Thus (3.9b) reads in the case at hand

∣∣α− 1−2n 
4(2−n)

∣∣ ≤ 1 √
3

√
13−12n+4n2

4(2−n) . (3.10)

By combining the above criteria, we obtain that the coercivity range contains (2.37a), 
see Fig. 3a.

For the case n ∈ (3
2 , 3) we have the zeros (2.24b)

γ1 = − 3 
n , γ2 = 4n−9−

√
−27+36n−8n2

2n , γ3 = 0, γ4 = 4n−9+
√
−27+36n−8n2

2n ,

ordered from smallest to largest. Hence, to satisfy (3.9a) we get the condition

α ∈
(
−∞,− 3 

n

)
∪ (γ2, 0) ∪ (γ4,∞),

and
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m(γ) = n−3
n and σ2(γ) = 3 

2n ,

which gives the second constraint (3.9b), that is,

∣∣α− n−3
n 

∣∣ ≤ 1 √
2n . (3.11)

We thus need to satisfy (2.37b) to fulfill both conditions, see Fig. 3b. �
Lemma 3.3. For α in the coercivity range of p(D) (cf. (2.37) of Lemma 2.2 for a sufficient 
criterion), k ≥ 2, and Kα as in (2.36), there exist dj,α ∈ (0,∞), j = 0, . . . , k, independent 
of c := (cj)kj=1, such that if

cj ≥ 2 
Kα

(
1 +

k∑
�=j+1

c�d�,α

)
for j = 0, . . . , k, (3.12)

and if λ ∈ C with �λ ≥ 0, the problem

Bλ,k,α(v, u) = 〈φ, f〉HC
−k+2,α×HC

k−2,α−1
for all v ∈ Hk,α, (3.13)

where φ is given by (3.7), has for all f ∈ HC
k−2,α−1 a unique solution u ∈ Hk,α if λ �= 0

and u ∈ HC
k+2,α if λ = 0. This solution satisfies the estimate

|λ||u|2k,α− 1
2

+ |u|2k+2,α ≲c,k,α |f |2k−2,α−1. (3.14)

Proof. We assume that v, w ∈ C∞
c ((0,∞);C) and prove boundedness and coercivity, 

enabling us to apply the Lax-Milgram theorem. We first note that through integration 
by parts it follows

Bλ,k,α(v, w) (3.2a),(3.8)=
k∑

j=0 
cjλ((−D + 2α− 1)jDjv, w)α− 1

2

+ 
k∑

j=0 
cj((−D + 2α− 1)jDjv, p(D)w)α

(2.23)=
k∑

j=0 
cjλ(Djv,Djw)α− 1

2

+ 
k∑

j=0 
cj(Dj(D − 2α + γ1)(D − 2α + γ2)v, (D − 1)j(D − γ3)(D − γ4)w)α.

(3.15)
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Boundedness. Using the Cauchy-Schwarz inequality it follows from (3.15) that

|Bλ,k,α(v, w)| ≲c,γ |λ||v|
k,α− 1

2
|w|

k,α− 1
2

+ |v|k+2,α|w|k+2,α
(2.28)
≲ |v|Hk,α

|w|Hk,α
, 

(3.16)

where γ := (γj)4j=1.

Coercivity. For v = w we obtain from (3.15) that

�(Bλ,k,α(v, v)) =
k∑

j=0 
cj�λ|Djv|2α− 1

2
+

k∑
j=0 

cj�
(
(Djv, p(D)(D − 1)jv)α

)
. (3.17)

We notice that because of cj > 0 for all j = 0, . . . , k we have

k∑
j=0 

cj�λ|Djv|2α− 1
2
≳c,k �λ|v|2k,α− 1

2
. (3.18)

For the last term in (3.17) integration by parts and coercivity (see Lemma 2.2) entail

k∑
j=0 

cj
(
Djv, p(D)(D − 1)jv

)
α

= 
k∑

j=0 
cj(Djv, p(D)Djv)α +

k∑
j=0 

j−1 ∑
�=0 

cj(−1)j−�

(
j

� 

)
(Djv, p(D)D�v)α

(2.36)
≥

k∑
j=0 

cjKα|Djv|22,α

−
k∑

j=0 

j−1 ∑
�=0 

cj

(
j

� 

)
|(Dj(D − 2α + γ1)(D − 2α + γ2)v,D�(D − γ3)(D − γ4)v)α|,

where Kα is the coercivity constant in (2.36). By Young’s inequality we infer that there 
exist dj,α < ∞ for j = 1, . . . , k − 1 such that

j−1 ∑
�=0 

(
j

� 

)
|(Dj(D − 2α + γ1)(D − 2α + γ2)v,D�(D − γ3)(D − γ4)v)α|

≤ cjKα

2 |Djv|22,α + cjdj,α|v|2j+1,α,

where dj,α is independent of cj . This entails

k∑
j=0 

cj
(
Djv, p(D)(D − 1)jv

)
α
≥

k∑
j=0 

cjKα

2 |Djv|22,α −
k∑

j=1 
cjdj,α|v|2j+1,α.
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We define inductively in descending order in j ∈ {0, . . . , k} the coefficients cj meeting 
(3.12), so that

k∑
j=0 

cj
(
Djv, p(D)(D − 1)jv

)
α
≥ |v|2k+2,α. (3.19)

Estimates (3.18) and (3.19) in (3.17) entail

�(Bλ,k,α(v, v)) ≳c,k �λ|v|2k,α− 1
2

+ |v|2k+2,α, (3.20)

where c depends on α. Furthermore,

|�λ||v|2k,α− 1
2
≲c

k∑
j=0 

cj |�λ||Djv|2α− 1
2

(3.2a),(3.16)
≤ |�(Bλ,k,α(v, v))| +

k∑
j=0 

cj |�
(
(Djv, p(D)(D − 1)jv)α

)
|

(3.20)
≲c,k |Bλ,k,α(v, v)| (3.21)

Estimates (3.20) and (3.21) entail

|Bλ,k,α(v, v)| ≳c,k |λ||v|2k,α− 1
2

+ |v|2k+2,α. (3.22)

Lax-Milgram Solution. From (3.16) and (3.22) we obtain a unique solution u ∈ Hk,α

if λ �= 0 and u ∈ HC
k+2,α if λ = 0 of (3.13). Setting u = v in (3.13) and using (3.22) yields 

(3.14). �
Lemma 3.4. The set

{ k∑
j=0 

cj(−D + 2α− 1)jDjv| v ∈ C∞
c ((0,∞);C)

}

is dense in HC
α− 1

2
if

cj > −
∑

j<m≤k

cm

(
m 

2(m− j)

)
(−1)m−j(2α− 1)2(m−j) for all j = 0, . . . , k. (3.23)

Proof. Note that by commuting with x−2α+1, the assertion of the lemma is equivalent 
to

{ k∑
j=0 

cj(−D)j(D + 2α− 1)jx−2α+1v| v ∈ C∞
c ((0,∞);C)

}
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being dense in L2(R;C). After passing to x−2α+1v(x) = ψ(es) with s = log x, this is 
equivalent to

{ k∑
j=0 

cj(−∂s)j(∂s + 2α− 1)jψ| ψ ∈ S(R)
}

being dense in L2(R;C). Plancherel’s theorem entails that it is sufficient to show that

{ k∑
j=0 

cj(−iξ)j(iξ + 2α− 1)jψ| ψ ∈ S(R)
}

is dense in L2(R;C). Therefore, we show that the mapping

T : S(R) → S(R), ψ �→
k∑

j=0 
cj(−iξ)j(iξ + 2α− 1)jψ (3.24)

is surjective. For this, take ψ̃ ∈ S(R). Then it suffices to show that the polynomial

q(ξ) :=
k∑

j=0 
cj(−iξ)j(iξ + 2α− 1)j

has no real zeros in ξ since ψ(ξ) = ψ̃(ξ)/q(ξ) satisfies Tψ = ψ̃ and ψ ∈ S(R). Indeed, we 
have

�
k∑

j=0 
cj(−iξ)j(iξ + 2α− 1)j =

k∑
j=0 

cj�(ξ2 − iξ(2α− 1))j

=
k∑

j=0 
cj

� j2 � ∑
�=0 

(
j

2�

)
ξ2(j−�)(−1)�(2α− 1)2�

=: d0 + d1ξ
2 + d2ξ

4 + · · · + dkξ
2k.

We find

dj = cj +
∑

j<m≤k

cm

(
m 

2(m− j)

)
(−1)m−j(2α− 1)2(m−j),

which is positive if (3.23) holds true. It then follows that

d0 + d1ξ
2 + d2ξ

4 + · · · + dkξ
2k > 0 for all ξ ∈ R,

so that q(ξ) has no real zeros. �
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Lemma 3.5. For α in the coercivity range of p(D) (cf. (2.37) of Lemma 2.2 for a sufficient 
criterion), k ≥ 2, Kα as in (2.36), and λ ∈ C with �λ ≥ 0, the problem

λu−Au = f (3.25)

has for all f ∈ HC
k−2,α−1 a unique strong solution u ∈ HC

k−2,α−1 ∩ Hk,α if λ �= 0 and 
u ∈ HC

k+2,α if λ = 0. This solution satisfies the estimate

|λ||u|k−2,α−1 + |λ| 12 |u|k,α− 1
2

+ |u|k+2,α ≲k,α |f |k−2,α−1. (3.26)

Proof. We choose c = (cj)kj=0 iteratively in descending order in j such that (3.12) and 
(3.23) are satisfied. By Lemma 3.3 it follows that there exists a unique variational solution 
u ∈ Hk,α if λ �= 0 and u ∈ Hk+2,α if λ = 0 to (3.13). In view of (3.8), the density result, 
Lemma 3.4, together with (λu − Au − f)1K ∈ HC

α− 1
2

for any K ⋐ (0,∞), entails that 
(3.25) must be satisfied in the strong sense. Furthermore,

|λ||u|k−2,α−1
(3.25)
≤ |f |k−2,α−1 + |Au|k−2,α−1

(3.2a)
≲ |f |k−2,α−1 + |u|k+2,α

(3.14)
≲k,α |f |k−2,α−1,

that is, the resolvent estimate holds for all λ ∈ C such that �λ ≥ 0. This inequality in 
combination with (3.14) entails (3.26). �
Proposition 3.6 (Maximal regularity, homogeneous initial data). Suppose that α is in 
the coercivity range of p(D) (cf. (2.37) of Lemma 2.2 for a sufficient criterion) and 
k ≥ 2. Then the operator A := −x−1p(D) : Hk−2,α−1 ⊃ D(A) → Hk−2,α−1 with 

D(A) (3.2b)= Hk−2,α−1 ∩ Hk+2,α is the generator of a bounded analytic semigroup. In 
particular, A has maximal Lp-regularity, where 1 < p < ∞. This entails that for 
every f ∈ Lp(0,∞;Hk−2,α−1) there exists a unique solution u(2) to (3.5) such that 
∂tu

(2) ∈ Lp(0,∞;Hk−2,α−1) and Au(2) ∈ Lp(0,∞;Hk−2,α−1). This solution satisfies 
the maximal-regularity estimate

‖∂tu(2)‖Lp(0,∞;Hk−2,α−1) + ‖Au(2)‖Lp(0,∞;Hk−2,α−1) ≲k,α,p ‖f‖Lp(0,∞;Hk−2,α−1). (3.27)

Proof. For λ ∈ C with �λ ≥ 0, Lemma 3.5 yields for every f ∈ HC
k−2,α−1 a unique 

solution u ∈ H C
k,α for λ �= 0 and u ∈ HC

k+2,α if λ = 0 to (3.25) satisfying (3.26). From 
(3.26) it follows that the resolvent estimate holds in the half plane {λ ∈ C : �λ ≥ 0}. By 
[58, Prop. 2.1.11], we know that this must also hold in a sector with spectral angle larger 
than π2 . Thus A generates a bounded analytic semigroup ([58, Def. 2.0.2]). From [24] it 
then follows that A has maximal Lp-regularity, thus in particular satisfying (3.27). �
3.2. Homogeneous equation

In this subsection we will show estimates for (3.4). For this we will often use the fact 
that A := −x−1p(D) : Hk−2,α−1 ⊃ D(A) → Hk−2,α−1, with D(A) (3.2b)= Hk−2,α−1 ∩
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Hk+2,α, generates an analytic semigroup (cf. Proposition 3.6). In what follows, we let 
0 < � < 1, 1 < p < ∞, and use the space (cf. [58, (2.2.3)])

DA(�, p) :=
{
v ∈ Hk−2,α−1 : τ �→ w(τ) := |τ1−− 1 

pAeτAv|k−2,α−1 ∈ Lp(0, 1)
}
, (3.28a)

with norm

‖v‖DA(,p) = |v|k−2,α−1 + [v]DA(,p) := |v|k−2,α−1 + ‖w‖Lp(0,1). (3.28b)

Proposition 3.7 (A-priori estimates, homogeneous right-hand side). For 1 < p < ∞, k ∈
N and k ≥ 2, α in the coercivity range of p(D) (cf. (2.37) of Lemma 2.2 for a sufficient 
criterion), and u(0) ∈ DA(1− 1 

p , p), problem (3.4) has a solution u(1) : (0,∞)2 → R such 

that ∂tu(1), Au(1) ∈ Lp(0,∞;Hk−2,α−1), and the a-priori estimate

‖∂tu(1)‖Lp(0,∞;Hk−2,α−1) + ‖Au(1)‖Lp(0,∞;Hk−2,α−1) ≲k,α,p ‖u(0)‖DA(1− 1 
p ,p) (3.29)

holds true.

Proof. Since by Proposition 3.6 the operator A generates an analytic semigroup, esti-
mate (3.29) follows from standard semigroup theory. We have by [58, Prop. 2.1.1 (iv)] 
that

‖∂tu(1)‖Lp(0,∞;Hk−2,α−1) = ‖Au(1)‖Lp(0,∞;Hk−2,α−1)

= ‖Au(1)‖Lp(0,1;Hk−2,α−1) + ‖Au(1)‖Lp(1,∞;Hk−2,α−1).

By definition, ‖Au(1)‖Lp(0,1;Hk−2,α−1) = [u(0)]DA(1− 1 
p ,p). Furthermore,

‖Au(1)‖pLp(1,∞;Hk−2,α−1) =
∞ ∫
1 

|AetAu(0)|pk−2,α−1dt ≲k,α

∞ ∫
1 

t−p|u(0)|pk−2,α−1dt

≲p |u(0)|pk−2,α−1,

where we have used [58, Prop. 2.1.1 (iii)] in the last step and that the growth bound ω
therein is zero because of (3.26). Estimate (3.29) follows from (3.28b). �

In the next lemma, we find a characterization for the DA(1 − 1 
p , p) space.

Lemma 3.8. For k ∈ N with k ≥ 2, α ∈ R, and 1 < p < ∞ it holds

DA(1 − 1 
p , p) = (Hk−2,α−1, D(A))1− 1 

p ,p
= Hk+2− 4 

p ,α− 1 
p ,p

∩Hk−2,α−1 (3.30)

with equivalent norms, where the respective constants of embeddings only depend on p.
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Proof. The first equality in (3.30) with equivalent norms follows from the trace method 
(cf. [58, Prop. 2.2.2]). By [47, Thm. 1.1] for any pair of Banach spaces Y1, Y2 it holds

(Y1, Y2 ∩ Y1)1− 1 
p ,p

= (Y1, Y2)1− 1 
p ,p

∩ Y1, (3.31)

which because of (2.29) entails the second equality in (3.30) with equivalent norms. �
We now give the proof of Lemma 2.1, which in view of Lemma 3.8 leads to a charac-

terization of the DA(1 − 1 
p , p) space for the initial data.

Proof of Lemma 2.1. For u ∈ (Hk−2,α−1, Hk+2,α)1−ϑ,p we have for p ≤ 2 by [5, 
Thm. 3.4.1 (b)] and with help of the K-method

|u|2k+2−4ϑ,α−ϑ,p

≳p ‖u‖2
(Hk−2,α−1,Hk+2,α)1−ϑ,2

=
∞ ∫
0 

τ−2(1−ϑ) inf 
u=u(1)+u(2)

(
|u(1)|k−2,α−1 + τ |u(2)|k+2,α

)2 dτ
τ

∼
∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−2(1−ϑ)|u(1)|2k−2,α−1 + τ2ϑ|u(2)|2k+2,α

)dτ
τ

=
∞ ∫
0 

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−2(1−ϑ)x−2(α−1)

k−2∑
j=0 

(Dju(1))2 + τ2ϑx−2α
k+2∑
j=0 

(Dju(2))2
)

dτ
τ

dx
x ,

where Fubini’s theorem was used in the last step and equivalence holds in the first step 
and hereafter if p = 2. With help of the substitution τ �→ xτ and again applying Fubini’s 
theorem, we obtain

|u|2k+2−4ϑ,α−ϑ,p

≳p

∞ ∫
0 

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−2(1−ϑ)x−2(α−ϑ)

k−2∑
j=0 

(Dju(1))2 + τ2ϑx−2(α−ϑ)
k+2∑
j=0 

(Dju(2))2
)

dτ
τ

dx
x 

∼k,α,ϑ

∞ ∫
0 

inf 
(s 
→e−(α−ϑ)su(es))=v(1)+v(2)

∫
R 

(
τ−2(1−ϑ)

k−2∑
j=0 

(∂j
sv

(1))2 + τ2ϑ
k+2∑
j=0 

(∂j
sv

(2))2
)
ds dττ

∼
∞ ∫
0 

τ−2(1−ϑ) inf 
(s 
→e−(α−ϑ)su(es))=v(1)+v(2)

(
‖v(1)‖Wk−2,2(R) + τ‖v(2)‖Wk+2,2(R)

)2 dτ
τ

= ‖s �→ e−(α−ϑ)su(es)‖2
(Wk−2,2(R),Wk+2,2(R))1−ϑ,2

∼ ‖s �→ e−(α−ϑ)su(es)‖2
Wk+2−4ϑ,2(R).

For p > 2 we use the Sobolev embedding and obtain
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|u|pk+2−4ϑ,α−ϑ,p

∼p

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−p(1−ϑ)|u(1)|pk−2,α−1 + τpϑ|u(2)|pk+2,α

)dτ
τ

∼k,α,ϑ,p

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−p(1−ϑ)‖s �→ e−(α−1)su(1)(es)‖p

Wk−2,2(R)

+ τpϑ‖s �→ e−αsu(2)(es)‖p
Wk+2,2(R)

)dτ
τ

≳k,p

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−p(1−ϑ)‖s �→ e−(α−1)su(1)(es)‖pWm1,p(R)

+ τpϑ‖s �→ e−αsu(2)(es)‖pWm2,p(R)
)dτ

τ ,

where m1 = k− 5
2+ 1 

p and m2 = k+ 3
2+ 1 

p . Using real interpolation for Sobolev-Slobodeckij 
spaces and applying Fubini’s theorem yields with the scaling τ �→ xτ

|u|pk+2−4ϑ,α−ϑ,p

≳k,α,ϑ,p

∞ ∫
0 

∞ ∫
0 

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−p(1−ϑ)x−p(α−1)

× inf 
u(1)=v(1)+v(2)

(
σ− p

2 −1
k−3∑
j=0 

|Djv(1)|p + σ
p
2 −1

k−2∑
j=0 

|Djv(2)|p
)

+ τpϑx−pα inf 
u(2)=w(1)+w(2)

(
σ− p

2 −1
k+1∑
j=0 

|Djw(1)|p + σ
p
2 −1

k+2∑
j=0 

|Djw(2)|p
))dσ

σ
dτ
τ

dx
x 

=
∞ ∫
0 

∞ ∫
0 

∞ ∫
0 

x−p(α−ϑ) inf 
u=u(1)+u(2)

(
τ−p(1−ϑ)

× inf 
u(1)=v(1)+v(2)

(
σ− p

2 −1
k−3∑
j=0 

|Djv(1)|p + σ
p
2 −1

k−2∑
j=0 

|Djv(2)|p
)

+ τpϑ inf 
u(2)=w(1)+w(2)

(
σ− p

2 −1
k+1∑
j=0 

|Djw(1)|p + σ
p
2 −1

k+2∑
j=0 

|Djw(2)|p
))dσ

σ
dτ
τ

dx
x 

∼k,α,ϑ,p

∞ ∫
0 

inf 
u=u(1)+u(2)

(
τ−p(1−ϑ)‖s �→ e−(α−ϑ)su(1)(es)‖pWm1,p(R)

+ τpϑ‖s �→ e−(α−ϑ)su(2)(es)‖pWm2,p(R)

)
dτ
τ
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∼p ‖s �→ e−(α−ϑ)su(es)‖p
W

k+ 3
2 + 1 

p
−4ϑ,p(R)

.

Thus we have proved (2.32). Estimate (2.33) follows by Sobolev embedding.

In order to prove (2.34) for p > 2, we notice that

m ∑
j=0 

∞ ∫
0 

η2x−2(α−ϑ)(Dju)2 dx
x ≤

m ∑
j=0 

( ∞ ∫
0 

η
2p 

p−2 dx
x 

) p−2
p ( ∞ ∫

0 

x−p(α−ϑ)|Dju|p dx
x 

) 2 
p

≲k,κ,α,ϑ,p ‖s �→ e−(α−ϑ)su(es)‖Wm,p(R)

(2.32)
≲k,α,ϑ,p |u|k+2−4ϑ,α−ϑ,p,

where Hölder’s inequality was used. �
3.3. Parabolic maximal Lp-regularity

In what follows we show maximal-regularity estimates for (3.1). For this, we use the 
estimates derived in §3.1 and §3.2.

Proposition 3.9. Let I := [0, T ] where T ∈ (0,∞) or I := [0,∞), suppose that M ∈ N, 
and assume that for m ∈ {1, . . . ,M} we have km ∈ N with km ≥ 2, αm lies in the 
coercivity range of p(D) (cf. (2.37) of Lemma 2.2 for a sufficient criterion), and p− 1 >

μm ≥ 0. Furthermore, suppose that μm = 0 for at least one m ∈ {1, . . . ,M},

u(0) ∈
⋂

m∈{1,...,M}
μm=0

Hkm+2− 4 
p ,αm− 1 

p ,p
,

and f : (0,∞)2 → R satisfies (t �→ t
μm
p f) ∈ Lp(0,∞;Hkm−2,αm−1) for all m ∈

{1, . . . ,m}. Then there exist unique locally integrable solutions u = u(1)+u(2) : (0,∞)2 →
R to (3.1) (where u(1) solves (3.4) and u(2) solves (3.5)) such that (t �→ t

μm
p ∂tu(�)) ∈

Lp(0,∞;Hkm−2,αm−1) and (t �→ t
μm
p u(�)) ∈ Lp(0,∞;Hkm+2,αm

) for all m ∈ {1, . . . ,m}
and � ∈ {1, 2}. These solutions satisfy the estimates

2 ∑
�=1 

(
δμm,0 sup

t∈I 
|u(�)|p

km+2− 4 
p ,αm− 1 

p ,p
+

∫
I

tμm
(
|∂tu(�)|pkm−2,αm−1 + |u(�)|pkm+2,αm

)
dt
)

≲(km,αm)Mm=1,(μm)Mm=1,p
δμm,0|u(0)|p

km+2− 4 
p ,αm− 1 

p ,p
+

∫
I

tμm |f |pkm−2,αm−1 dt

+ μm

∫
I

tμm−1|u(1)|p
km+2− 4 

p ,αm− 1 
p ,p

dt (3.32)

for all m ∈ {1, . . . ,m}, where δμm,0 = 1 if μm = 0 and δμm,0 = 0 if μm > 0.
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Proof. By approximation we may assume u(0) ∈ C∞
c ((0,∞)) and f ∈ C∞

c ((0,∞)2). As a 
first step, we fix m ∈ {1, . . . ,M}. From Proposition 3.6 we get a unique locally integrable 
solution u(2) : (0,∞)2 → R to (3.5) satisfying the following maximal-regularity estimate:

‖∂tu(2)‖Lp(0,∞;Hkm−2,αm−1)+‖Au(2)‖Lp(0,∞;Hkm−2,αm−1) ≲km,αm,p ‖f‖Lp(0,∞;Hkm−2,αm−1).

Furthermore, (3.30) of Lemma 3.8, the trace method [58, Prop. 1.2.10], and Lemma 3.1
entail

sup
t≥0 

‖u(2)‖DAm (1− 1 
p ,p)

≲p sup
t≥0 

‖u(2)‖(Hkm−2,αm−1,D(Am))1− 1 
p
,p

≲p ‖∂tu(2)‖Lp(0,∞;Hkm−2,αm−1) + ‖u(2)‖Lp(0,∞;D(Am))

≲km,αm,p ‖∂tu(2)‖Lp(0,∞;Hkm−2,αm−1) + ‖u(2)‖Lp(0,∞;Hkm−2,αm−1)

+ ‖Au(2)‖Lp(0,∞;Hkm−2,αm−1),

where

A = Am : Hkm−2,αm−1 ⊃ D(Am) (3.2b)= Hkm+2,αm
∩Hkm−2,αm−1 → Hkm−2,αm−1,

and where DAm
(1 − 1 

p , p) is given by (3.28) with k = km and α = αm. Hence, we have

sup
t≥0 

‖u(2)‖DAm (1− 1 
p ,p) + ‖∂tu(2)‖Lp(0,∞;Hkm−2,αm−1) + ‖Au(2)‖Lp(0,∞;Hkm−2,αm−1)

≲km,αm,p ‖f‖Lp(0,∞;Hkm−2,αm−1) + ‖u(2)‖Lp(0,∞;Hkm−2,αm−1). (3.33a)

The combination with (3.29) of Proposition 3.7, and (3.3) of Lemma 3.1 entails that 
unique locally integrable solutions u(1), u(2) : (0,∞)2 → R to (3.4) and (3.5), respectively, 
exist such that ∂tu(�) ∈ Lp(0,∞;Hkm−2,αm−1) and u(�) ∈ Lp(0,∞;Hkm+2,αm

), � ∈
{1, 2}. This solution satisfies (3.33a) and

‖∂tu(1)‖Lp(0,∞;Hkm−2,αm−1) + ‖u(1)‖Lp(0,∞;Hkm+2,αm ) ≲km,αm,p ‖u(0)‖DAm (1− 1 
p ,p).

(3.33b)

On the other hand, the same arguments also lead to unique locally integrable solutions 
u(�) : (0,∞)2 → R to (3.4) and (3.5), respectively, such that

∂tu
(�) ∈

M⋂
m=1

Lp(0,∞;Hkm−2,αm−1) and

u(�) ∈
M⋂

m=1
Lp(0,∞;Hk+2,αm

), for � ∈ {1, 2},
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so that by uniqueness for every m ∈ {1, . . . ,M} this solution is the same as the one for 
fixed m ∈ {1, . . . ,M} and hence (3.33) is satisfied for every m ∈ {1, . . . ,M}.

To lighten notation, we fix m ∈ {1, . . . ,M} and write A = Am, k = km, α = αm, 
μ = μm, and C = Cm from now on. Note that for any λ > 0 from (3.4) and (3.5), 
respectively, we obtain the scaled problems

∂t(u(1)(λt, λx)) −A(u(1)(λt, λx)) = 0 for t, x > 0,

u(1)(0, λx) = u(0)(λx) for x > 0,

and

∂t(u(2)(λt, λx)) −A(u(2)(λt, λx)) = λf(λt, λx) for t, x > 0,

u(2)(0, λx) = 0 for x > 0.

Hence, (3.33a) entails after scaling

sup
t≥0 

λ1−pα‖u(2)(t, λ·)‖p
DA(1− 1 

p ,p)
+ ‖∂tu(2)‖pLp(0,∞;Hk−2,α−1) + ‖Au(2)‖pLp(0,∞;Hk−2,α−1)

≲k,α,p ‖f‖pLp(0,∞;Hk−2,α−1) + λ−p‖u(2)‖pLp(0,∞;Hk−2,α−1)

for any λ > 0. By (3.30) of Lemma 3.8 it holds

λ1−pα‖u(0)(λ·)‖p
DA(1− 1 

p ,p)

∼k,α,p |u(0)|p
k+2− 4 

p ,α− 1 
p ,p

+ λ1−p|u(0)|pk−2,α−1 → |u(0)|p
k+2− 4 

p ,α− 1 
p ,p

as λ → ∞. On the other hand, we obtain

λ1−pα‖u(0)(λ·)‖p
DA(1− 1 

p ,p)

(3.28)= λ1−pα|u(0)(λ·)|pk−2,α−1 + λ1−pα

1 ∫
0 

|AeτA(u(0)(λ·))|pk−2,α−1 dτ

(3.2a)= λ1−p|u(0)|pk−2,α−1 + λ1−pα

1 ∫
0 

λp(α−1)|λAeλτAu(0)|pk−2,α−1 dτ

= λ1−p|u(0)|pk−2,α−1 +
λ ∫

0 

|AeτAu(0)|pk−2,α−1 dτ

→ 

∞ ∫
0 

|AeτAu(0)|pk−2,α−1 dτ =: |u(0)|p∗
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∼ |u(0)|p
k+2− 4 

p ,α− 1 
p ,p

< ∞ (3.34)

as λ → ∞ by bounded monotone convergence. This proves (3.32) for μm = 0. For μm > 0, 
using the weighted maximal-regularity result [67, Thm. 2.4] in combination with (3.3)
of Lemma 3.1, we arrive at

∞ ∫
0 

tμ
(
|∂tu(2)|pk−2,α−1 + |u(2)|pk+2,α

)
dt ≲k,α,μ,p

∞ ∫
0 

tμ|f |pk−2,α−1 dt. (3.35)

Furthermore,

∞ ∫
0 

tμ
(
|∂tu(1)|pk−2,α−1 + |u(1)|pk+2,α

)
dt

(3.3),(3.4a)
≲k,α

∞ ∫
0 

tμ|AetAu(0)|pk−2,α−1 dt,

where Lemma 3.1 was used. We obtain through integration by parts for T ∈ (0,∞),

T∫
0 

tμ|AetAu(0)|pk−2,α−1 dt = − tμ
T∫
t 

|AeτAu(0)|pk−2,α−1dτ
∣∣∣T
t=0

+ μ

T∫
0 

tμ−1
T∫
t 

|AeτAu(0)|pk−2,α−1dτ dt

=μ

T∫
0 

tμ−1
T−t∫
0 

|AeτAu(1)|pk−2,α−1dτ dt,

so that in the limit T → ∞ we get

∞ ∫
0 

tμ|AetAu(0)|pk−2,α−1 dt = μ

∞ ∫
0 

tμ−1
∞ ∫
0 

|AeτAu(1)|pk−2,α−1dτ dt = μ

∞ ∫
0 

tμ−1|u(1)|p∗ dt.

Hence, estimate (3.35) upgrades to

2 ∑
�=1 

∞ ∫
0 

tμ
(
|∂tu(�)|pk−2,α−1 + |u(�)|pk+2,α

)
dt ≲k,α,p μ

∞ ∫
0 

tμ−1|u(1)|p∗ dt +
∞ ∫
0 

tμ|f |pk−2,α−1 dt.

With help of (3.34), we end up with (3.32).

The uniqueness statement of the proposition follows from uniqueness under the con-
dition that ∂tu(�) ∈ Lp(0,∞;Hkm−2,αm−1) and u(�) ∈ Lp(0,∞;Hkm+2,αm

), � ∈ {1, 2}, 
for an m ∈ {1, . . . ,M} such that μm = 0. �
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3.4. Higher regularity

Here, we derive estimates that are suitable for treating the nonlinear equation in §4. 
The key ingredient is the elliptic regularity of the operator A. Before we start with the 
rigorous setting, let us first give some heuristic ideas. Suppose that we have a sufficiently 
regular solution u of (3.1). Formally applying the operator A to the Cauchy problem 
(3.1) gives

∂t(Au) −A(Au) = Af for t, x > 0, (3.36a)

(Au)|t=0 = Au(0) for x > 0. (3.36b)

Then Au solves (3.36) and we can find u from this solution by inverting A. In the proof 
we will argue in the opposite direction by finding a solution to

∂tv −Av = g (3.37a)

v|t=0 = v(0), (3.37b)

where v(0) := Au(0) and g := Af are given, and A will be inverted to find u satisfying 
Au = v. The following inversion lemma is essential (which is analogous to [36, Lem. 7.2 
and 7.4] or [40, Prop. 3.1] with a simplified proof):

Lemma 3.10 (Elliptic regularity). Suppose that �1, �2, �3 ≥ 0, let γ1 < γ2 < 0 be the two 
negative roots of p(ζ) given by (2.24), and assume that γ2 < α1 < 0 < α2 < β < α3.

a. Suppose that v ∈ H�1,α1−1 ∩H�2,α2−1. Then

u(x) := (Bv)(x) := −xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

∞ ∫
x2

xβ
3

∞ ∫
x3

x1−β
4 v(x4) dx4

x4
dx3
x3

dx2
x2

dx1
x1

,

(3.38a)

u0 := − 1 
γ1γ2

∞ ∫
0 

xβ
1

∞ ∫
x1

x1−β
2 v(x2) dx2

x2
dx1
x1

, (3.38b)

are well-defined with

u(x) → u0 as x ↘ 0, (3.39)

and it holds

ABv = Au = A(u− u0) = v, (3.40)

and
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|u|�1+4,α1 ∼�1,α1 |v|�1,α1−1, (3.41a)

|u− u0|�2+4,α2 ∼�2,α2 |v|�2,α2−1. (3.41b)

b. In the situation of a additionally suppose that v ∈ H�3,α3−1. Then

uβ := 1 
β(β−γ1)(β−γ2)

∞ ∫
0 

x1−β
1 v(x1) dx1

x1
(3.42)

is well-defined,

x−β(u(x) − u0) → uβ as x ↘ 0, (3.43)

and it holds

A(u− u0 − uβx
β) = v (3.44)

and

|u− u0 − uβx
β |�3+4,α3 ∼�3,α3 |v|�3,α3−1. (3.45)

c. If u : (0,∞) → R is locally integrable and u0 ∈ R is a real number such that |u|�1+4,α1

and |u− u0|�2+4,α2 are finite, then

BAu = BA(u− u0) = BA(u− u0 − cxβ) = u, (3.46)

where c ∈ R is any real number.

Proof. Proof of a. We detail why u and u0, defined by (3.38), are well-defined. Indeed, it 
holds x1−β

4 |v(x4)| = o(xα1−β
4 ) almost everywhere as x4 → ∞, so that because of α1 < β

the first integral 
∫∞
x3

x1−β
4 |v(x4)| dx4

x4
is well-defined and 

∫∞
x3

x1−β
4 |v(x4)| dx4

x4
= o(xα1−β

3 )
as x3 → ∞. Furthermore, x1−β

4 |v(x4)| = o(xα2−β
4 ) almost everywhere as x4 ↘ 0 and 

thus 
∫∞
x3

x1−β
4 |v(x4)| dx4

x4
= o(xα2−β

3 ) as x3 ↘ 0. Hence, we have

∞ ∫
x2

xβ
3

∞ ∫
x3

x1−β
4 |v(x4)| dx4

x4
dx3
x3

= o(xα1
2 ) as x2 → ∞

and

∞ ∫
0 

xβ
3

∞ ∫
x3

x1−β
4 |v(x4)| dx4

x4
dx3
x3

≤
∞ ∫
1 

o(xα1
3 ) dx3

x3
+

1 ∫
0 

o(xα2
3 ) dx3

x3
< ∞,
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so that u0 given by (3.38b) is well-defined. Next, observe that

x1∫
0 

x−γ2
2

∞ ∫
x2

xβ
3

∞ ∫
x3

x1−β
4 |v(x4)| dx4

x4
dx3
x3

dx2
x2

≤
x1∫
0 

x−γ2
2

∞ ∫
0 

xβ
3

∞ ∫
x3

x1−β
4 |v(x4)| dx4

x4
dx3
x3

dx2
x2

{
= O(x−γ2

1 ) as x1 ↘ 0,
< ∞ for all x1 > 0.

Thus,

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

∞ ∫
x2

xβ
3

∞ ∫
x3

x1−β
4 |v(x4)| dx4

x4
dx3
x3

dx2
x2

dx1
x1

{
= O(x−γ1) as x ↘ 0,
< ∞ for all x > 0.

Hence, u given by (3.38a) is well-defined and finite. Applying the operator A to u and 
using (2.23), (2.24), and (3.2a), we infer that Ax0 = 0 and that indeed (3.40) is satisfied.

For investigating the limiting behavior, observe that

u(x) (3.38a)= −
1 ∫

0 

rγ2−γ1
1

r1∫
0 

r−γ2
2

∞ ∫
xr2

xβ
3

∞ ∫
x3

x1−β
4 v(x4) dx4

x4
dx3
x3

dr2
r2

dr1
r1

→ −
( 1 ∫

0 

rγ2−γ1
1

r1∫
0 

r−γ2
2

dr2
r2

dr1
r1

)( ∞ ∫
0 

xβ
3

∞ ∫
x3

x1−β
4 v(x4) dx4

x4
dx3
x3

)

(3.38b)= u0 as x ↘ 0,

which shows (3.39).

In order to prove (3.41) by interpolation (cf. (2.31)), we can restrict ourselves to 
�j ∈ N0. Further note that estimating v against u or u − u0, respectively, is immediate 
by (3.40). By a standard interpolation argument it follows that

|D�1+4u|α1 − C1|u|α1 ≤ 2|v|�1,α1−1,

|D�2+4(u− u0)|α2 − C2|u− u0|α2 ≤ 2|v|�2,α2−1,

where Cj only depends on �j and αj . Hence, it suffices to prove

|u|α1 ≲�1,α1 |v|α1−1, (3.47a)

|u− u0|α2 ≲�2,α2 |v|α2−1. (3.47b)

Therefore, observe because of |v|α1−1 < ∞,
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u 
(3.39)→ u0 as x ↘ 0,

(D − γ1)u 
(3.38a)= −

1 ∫
0 

r−γ2
1

∞ ∫
xr1

xβ
2

∞ ∫
x2

x1−β
2 v(x3) dx3

x3
dx2
x2

dr1
r1

→ 1 
γ2

∞ ∫
0 

xβ
1

∞ ∫
x1

x1−β
2 v(x2) dx2

x2
dx1
x1

(3.38b)= −γ1u0 as x ↘ 0,

(D − γ2)(D − γ1)u 
(3.38a)= −

∞ ∫
x 

xβ
1

∞ ∫
x1

x1−β
2 v(x2) dx2

x2
dx1
x1

→ 0 as x → ∞,

D(D − γ2)(D − γ1)u 
(3.38a)= xβ

∞ ∫
x 

x1−β
1 v(x1) dx1

x1
= o(xα1) as x → ∞,

where we have used that u0 given by (3.38b) is well-defined in the second-but-last limit. 
By using Hardy’s inequality (see for instance [35, Lem. A.1]), we thus obtain

|u|α1 = |xγ1−α1(x−γ1u)|0 ≲α1 |xγ1−α1D(x−γ1u)|0 = |(D − γ1)u|α1 ,

where we have used that γ1 < α1 < 0 and x−γ1u → 0 as x ↘ 0. Proceeding analogously, 
we infer

|(D − γ1)u|α1 = |xγ2−α1(x−γ2(D − γ1)u)|0 ≲α1 |xγ2−α1D(x−γ2(D − γ1)u)|0
= |(D − γ2)(D − γ1)u|α1 ,

where we have used γ2 < α1 < 0 and x−γ2(D − γ1)u → 0 as x ↘ 0. Furthermore,

|(D − γ2)(D − γ1)u|α1 = |x−α1(D − γ2)(D − γ1)u|0
≲α1 |x−α1D(D − γ2)(D − γ1)u|0 = |D(D − γ2)(D − γ1)u|α1

where we have used α1 < 0 and (D − γ2)(D − γ1)u → 0 as x → ∞. Additionally,

|D(D − γ2)(D − γ1)u|α1 = |xβ−α1(x−βD(D − γ2)(D − γ1)u)|0
≲α1 |xβ−α1D(x−βD(D − γ2)(D − γ1)u)|0
= |(D − β)D(D − γ2)(D − γ1)u|α1

where we have used α1 < 0 and x−βD(D − γ2)(D − γ1)u → 0 as x → ∞. Thus,

|u|α1 ≲α1 |(D − β)D(D − γ2)(D − γ1)u|α1

(2.23),(2.24)= |p(D)u|α1

(3.2a)= |Au|α1−1

(3.40)= |v|α1−1,
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which proves (3.47a).

From (3.38) we infer because of |v|α1−1 < ∞ and |v|α2−1 < ∞,

u− u0 = xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

x2∫
0 

xβ
3

∞ ∫
x3

x1−β
4 v(x4) dx4

x4
dx3
x3

dx2
x2

dx1
x1

, (3.48)

so that

|u− u0| ≤
1 ∫

0 

rγ2−γ1
1

r1∫
0 

r−γ2
2

xr2∫
0 

xβ
3

∞ ∫
x3

x1−β
4 |v(x4)| dx4

x4
dx3
x3

dr2
r2

dr1
r1

= 1 
γ1γ2

x ∫
0 

∞ ∫
x1

x1−β
2 |v(x2)| dx2

x2
dx1
x1

= o(xα2) as x ↘ 0,

|(D − γ1)(u− u0)| ≤
1 ∫

0 

r−γ2
1

xr1∫
0 

xβ
2

∞ ∫
x2

x1−β
3 |v(x3)| dx3

x3
dx2
x2

dr1
r1

= − 1 
γ2

x ∫
0 

∞ ∫
x1

x1−β
2 |v(x2)| dx2

x2
dx1
x1

= o(xα2) as x ↘ 0,

|(D − γ2)(D − γ1)(u− u0)| ≤
x ∫

0 

xβ
1

∞ ∫
x1

x1−β
2 |v(x2)| dx2

x2
dx1
x1

= o(xα2) as x ↘ 0,

|D(D − γ2)(D − γ1)(u− u0)| ≤ xβ

∞ ∫
x 

x1−β
1 |v(x1)| dx1

x1
= o(xα1) as x → ∞.

By iteratively applying Hardy’s inequality as before, taking the limiting behavior as 
x ↘ 0 or x → ∞, respectively, into account, we thus obtain

|u− u0|α2 ≲α2 |(D − γ1)(u− u0)|α2 ≲α2 |(D − γ2)(D − γ1)(u− u0)|α2

≲α2 |D(D − γ2)(D − γ1)(u− u0)|α2

≲α2 |(D − β)D(D − γ2)(D − γ1)(u− u0)|α2

(2.23),(2.24)= |p(D)u|α2

(3.2a)= |Au|α2−1
(3.40)= |v|α2−1,

which proves (3.47b).

Proof of b. We have x1−β
1 |v(x1)| = o(xα1−β

1 ) almost everywhere as x1 → ∞ and 
x1−β

1 |v(x1)| = o(xα3−β
1 ) almost everywhere as x1 ↘ 0, so that
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∞ ∫
0 

x1−β
1 |v(x1)| dx1

x1
≤

1 ∫
0 

o(xα3−β
1 ) dx1

x1
+

∞ ∫
1 

o(xα1−β
1 ) dx1

x1
< ∞,

and thus uβ given by (3.42) is well-defined. The limit (3.43) follows from

x−β(u(x) − u0) 
(3.48)=

1 ∫
0 

rγ2−γ1
1

r1∫
0 

r−γ2
2

r2∫
0 

rβ3

∞ ∫
xr3

x1−β
4 v(x4) dx4

x4
dr3
r3

dr2
r2

dr1
r1

→
( 1 ∫

0 

rγ2−γ1
1

r1∫
0 

r−γ2
2

r2∫
0 

rβ3
dr3
r3

dr2
r2

dr1
r1

)( ∞ ∫
0 

x1−β
4 v(x4) dx4

x4

) (3.42)= uβ

as x ↘ 0. Because of (3.40) and Axβ = 0 by (2.23), (2.24) and (3.2), (3.44) follows.

In order to prove the non-trivial estimate in (3.45), again by interpolation (cf. (2.31)) 
we assume without loss of generality �3 ∈ N0. In view of the interpolation inequality

|D�3+4(u− u0 − uβx
β)|α3 − C3|u− u0 − uβx

β |α3 ≤ 2|v|�3,α3−1

where C3 < ∞ only depends on �3 and α3, we only need to prove

|u− u0 − uβx
β |α3 ≲�3,α3 |v|α3−1. (3.49)

From (3.42) and (3.48) we obtain

u− u0 − uβx
β = −xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

x2∫
0 

xβ
3

x3∫
0 

x1−β
4 v(x4) dx4

x4
dx3
x3

dx2
x2

dx1
x1

,

so that because of |v|α3−1 < ∞ we have

u− u0 − uβx
β = o(xα3) as x ↘ 0,

(D − γ1)(u− u0 − uβx
β) = −xγ2

x ∫
0 

x−γ2
1

x1∫
0 

xβ
2

x2∫
0 

x1−β
3 v(x3) dx3

x3
dx2
x2

dx1
x1

= o(xα3) as x ↘ 0,

(D − γ2)(D − γ1)(u− u0 − uβx
β) = −

x ∫
0 

xβ
1

x1∫
0 

x1−β
2 v(x2) dx2

x2
dx1
x1

= o(xα3) as x ↘ 0,

D(D − γ2)(D − γ1)(u− u0 − uβx
β) = −xβ

x ∫
0 

x1−β
1 v(x1) dx1

x1
= o(xα3) as x ↘ 0.
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An iterative application of Hardy’s inequality as in the proof of part (a), employing the 
limiting behavior as x ↘ 0, yields

|u− u0 − uβx
β |α3 ≲α3 |(D − γ1)(u− u0 − uβx

β)|α3

≲α3 |(D − γ2)(D − γ1)(u− u0 − uβx
β)|α3

≲α3 |D(D − γ2)(D − γ1)(u− u0 − uβx
β)|α3

≲α3 |(D − β)D(D − γ2)(D − γ1)(u− u0 − uβx
β)|α3

(2.23),(2.24)= |p(D)u|α3

(3.2a)= |Au|α3−1
(3.40)= |v|α3−1,

which proves (3.49).

Proof of c. In order to show (3.46), observe that

(BAu)(x) = xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

∞ ∫
x2

xβ
3

∞ ∫
x3

∂x4w(x4) dx4
dx3
x3

dx2
x2

dx1
x1

,

where w(x4) := x1−β
4 ∂x4(x4∂x4 − γ2)(x4∂x4 − γ1)u(x4). From |u|�1+4,α1 < ∞ we infer 

w(x4) = o(xα1−β
4 ) as x4 → ∞ almost everywhere, so that

(BAu)(x) = −xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

∞ ∫
x2

∂x3

(
(x3∂x3 − γ2)(x3∂x3 − γ1)u(x3)

)
dx3

dx2
x2

dx1
x1

.

Again, from |u|�1+4,α1 < ∞ we infer (x3∂x3 −γ2)(x3∂x3 −γ1)u(x3) = o(xα1
3 ) as x3 → ∞, 

and thus

(BAu)(x) = xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

∂x2

(
x−γ2

2 (x2∂x2 − γ1)u(x2)
) dx2

x2
dx1
x1

.

Because of |u− u0|�2+4,α2 < ∞ we have x−γ2
2 (x2∂x2 − γ1)u(x2) = −γ1x

−γ2
2 u0(1 + o(1))

as x2 ↘ 0, that is, we have

(BAu)(x) = xγ1

x ∫
0 

∂x1

(
x−γ1

1 u(x1)
)
dx1.

Again, due to |u − u0|�2+4,α2 < ∞ we have x−γ1
1 u(x1) = x−γ1

1 u0(1 + o(1)) as x1 ↘ 0, 
which entails (BAu)(x) = u(x). Hence, using that 1 and xβ are in the kernel of A
(cf. (2.23), (2.24), and (3.2a)), we infer that (3.46) holds true. �
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Lemma 3.11 (Elliptic regularity, interpolation norm). Suppose that 1 < p < ∞, k̃ ∈ N0, 
δ̃ > 0, and let γ1 < γ2 < 0 be the two negative roots of p(ζ) given by (2.24). Further 
assume δ̃ < min{−γ2, β}. Suppose that v ∈ Hk̃+4− 4 

p ,−1−δ̃,p ∩Hk̃+4− 4 
p ,−1+δ̃,p. Then

u(x) := (Bv)(x) := −xγ1

x ∫
0 

xγ2−γ1
1

x1∫
0 

x−γ2
2

∞ ∫
x2

xβ
3

∞ ∫
x3

x1−β
4 v(x4) dx4

x4
dx3
x3

dx2
x2

dx1
x1

, 

(3.50a)

u0 := − 1 
γ1γ2

∞ ∫
0 

xβ
1

∞ ∫
x1

x1−β
2 v(x2) dx2

x2
dx1
x1

, (3.50b)

are well-defined with

u(x) → u0 as x ↘ 0, (3.51)

and it holds

ABv = Au = A(u− u0) = v, (3.52)

and

|u|k̃+8− 4 
p ,−δ̃,p ∼k̃,δ̃,p |v|k̃+4− 4 

p ,−1−δ̃,p, (3.53a)

|u− u0|k̃+8− 4 
p ,δ̃,p

∼k̃,δ̃,p |v|k̃+4− 4 
p ,−1+δ̃,p. (3.53b)

Proof. By estimate (2.34) of Lemma 2.1 it follows that v ∈ Hk̃,−1−δ ∩ Hk̃,−1+δ if 0 <

δ < δ̃. Then by (3.38)–(3.40) of Lemma 3.10 a it follows that (3.50)–(3.52) hold true. It 
remains to prove (3.53).

In view of (2.30) and (3.52), estimating v against u and u−u0, respectively, is trivial. 
In view of the reiteration theorem [5, Thm. 3.5.3] and Lemma 2.1 it holds for 1 > ε > 0
(equivalence of norms)

Hk̃+4− 4 
p ,−1±δ̃,p

(2.29)=
((
Hk̃,−2+ 1 

p±δ̃, Hk̃+4,−1+ 1 
p±δ̃

)
1− 1 

p∓εδ̃,2,
(
Hk̃,−2+ 1 

p±δ̃, Hk̃+4,−1+ 1 
p±δ̃

)
1− 1 

p±εδ̃,2

)
1
2 ,p

(2.31),(2.32)=
(
Hk̃+4− 4 

p∓4εδ̃,−1±(1−ε)δ̃, Hk̃+4− 4 
p±4εδ̃,−1±(1+ε)δ̃

)
1
2 ,p

. (3.54)

It then follows with help of the K-method
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|v|p
k̃+4− 4 

p ,−1±δ̃,p
=

∞ ∫
0 

τ−p+1
(

inf 
v=v(1)+v(2)

(
|v(1)|k̃+4− 4 

p∓4εδ̃,−1±(1−ε)δ̃

+ τ |v(2)|k̃+4− 4 
p±4εδ̃,−1±(1+ε)δ̃

))p
dτ
τ .

Now using (3.41) of Lemma 3.10 a and defining u(j) and u(j)
0 through (3.50) with v

replaced by v(j), we infer

|v|p
k̃+4− 4 

p ,−1+δ̃,p
≳k̃,δ̃,p

∞ ∫
0 

τ−p+1
(

inf 
u=u(1)+u(2)

(
|u(1) − u

(1)
0 |k̃+8− 4 

p−4εδ̃,(1−ε)δ̃

+ τ |u(2) − u
(2)
0 |k̃+8− 4 

p+4εδ̃,(1+ε)δ̃
))p

dτ
τ

=
∞ ∫
0 

τ−p+1
(

inf 
u−u0=w(1)+w(2)

(
|w(1)|k̃+8− 4 

p−4εδ̃,(1−ε)δ̃

+ τ |w(2)|k̃+8− 4 
p+4εδ̃,(1+ε)δ̃

))p
dτ
τ

and

|v|p
k̃+4− 4 

p ,−1−δ̃,p
≳k̃,δ̃,p

∞ ∫
0 

τ−p+1
(

inf 
u=u(1)+u(2)

(
|u(1)|k̃+8− 4 

p+4εδ̃,−(1−ε)δ̃

+ τ |u(2)|k̃+8− 4 
p−4εδ̃,−(1+ε)δ̃

))p
dτ
τ .

Hence, (3.53) follows by replacing k̃ by k̃ + 4 and shifting the second index in the norm 
by 1 in (3.54). �
Proposition 3.12. Let I = [0, T ] with T ∈ (0,∞) or I = [0,∞). Assume that 1 < p < ∞, 
k, k̃ ∈ N0 with k̃ ≥ k − 4β + 4 

p , and δ, δ̃ > 0 such that 1 
p < β and δ < δ̃ < min{−γ2, β −

1 
p ,

1 
p , 1 − 1 

p}. Further suppose that 1 
p − 1 ± δ̃ and β − 1 ± δ are in the coercivity range of 

p(D) (cf. (2.37) of Lemma 2.2 for a sufficient criterion and the visualization in Fig. 4). 
Lastly suppose that u(0) : (0,∞) → R, u(0)

0 ∈ R, and f : (0,∞)2 → R are such that

u(0) ∈ Hk̃+8− 4 
p ,−δ̃,p, u(0) − u

(0)
0 ∈ Hk̃+8− 4 

p ,δ̃,p
,

and
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f ∈ Lp
(
I;Hk̃+4,−1+ 1 

p−δ̃ ∩Hk̃+4,−1+ 1 
p+δ̃

)
,

(
t �→ tβ−

1 
p f(t)

)
∈ Lp

(
I;Hk+4,−1+β−δ ∩Hk+4,−1+β+δ

)
,

that is, u(0) ∈ U (0)(k̃, δ̃, p) and f ∈ F (k, k̃, δ, p, I). Then there exist u : (0,∞)2 → R and 
u0, uβ : (0,∞) → R locally integrable such that

u ∈ BC0(I;Hk̃+8− 4 
p ,−δ̃,p

)
,

u− u0 ∈ BC0(I;Hk̃+8− 4 
p ,δ̃,p

)
∩ Lp

(
I;Hk̃+8, 1 p−δ̃∩ Hk̃+8, 1 p+δ̃

)
,

∂tu ∈ Lp
(
I;Hk̃+4,−1+ 1 

p−δ̃ ∩Hk̃+4,−1+ 1 
p+δ̃

)
,

(
t �→ tβ−

1 
p ∂tu(t)

)
∈ Lp

(
I;Hk+4,−1+β−δ ∩Hk+4,−1+β+δ

)
,(

t �→ tβ−
1 
p (u(t) − u0(t))

)
∈ Lp(I;Hk+8,β−δ),(

t �→ tβ−
1 
p (u(t) − u0(t) − uβ(t)xβ)

)
∈ Lp(I;Hk+8,β+δ),

that is, u ∈ U(k, k̃, δ, p, I) and

| | |u| | |pI := sup
t∈I 

[
|u|p

k̃+8− 4 
p ,−δ̃,p

+ |u− u0|pk̃+8− 4 
p ,δ̃,p

]

+
∫
I

[
|∂tu|pk̃+4,−1+ 1 

p−δ̃
+ |∂tu|pk̃+4,−1+ 1 

p+δ̃
+ tpβ−1|∂tu|pk+4,−1+β−δ

+ tpβ−1|∂tu|pk+4,−1+β+δ + |u− u0|pk̃+8, 1 p−δ̃
+ |u− u0|pk̃+8, 1 p+δ̃

+ tpβ−1|u− u0|pk+8,β−δ + tpβ−1|u− u0 − uβx
β |pk+8,β+δ

]
dt < ∞, (3.55)

and such that (3.1) is classically satisfied. Furthermore, we have the a-priori estimate

| | |u| | |I ≲k,k̃,δ,δ̃,p | | |u(0)| | |0 + | | |f | | |1,I , (3.56)

where

| | |u(0)| | |p0
(2.35b)= |u(0)|p

k̃+8− 4 
p ,−δ̃,p

+ |u(0) − u
(0)
0 |p

k̃+8− 4 
p ,δ̃,p

,

| | |f | | |p1,I :=
∫
I

[
|f |p

k̃+4,−1+ 1 
p−δ̃

+ |f |p
k̃+4,−1+ 1 

p+δ̃
+ tpβ−1|f |pk+4,−1+β−δ

+ tpβ−1|f |pk+4,−1+β+δ

]
dt, (3.57)

and C < ∞ only depends on k, k̃, δ, δ̃, and p. 
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Fig. 4. For the two different cases of n the zeros γ1, . . . , γ4 of p(D) (solid line) and the upper and lower 
bound in (3.10) and (3.11) (dashed line) are shown. The coercivity range for α contains the shaded area 
according to (2.37) of Lemma 2.2. This area shifted up by 1 is shown in green (shaded darker, green color 
online).

Proof. Define v(0) := Au(0) = A(u(0) − u
(0)
0 ) (cf. (2.23), (2.24), (3.2a)), then we have 

v(0) ∈ Hk̃+4− 4 
p ,−1−δ̃,p ∩Hk̃+4− 4 

p ,−1+δ̃,p. By approximation, we may assume that v(0) ∈
C∞

c ((0,∞)). Furthermore, define g := Af so that

g ∈ Lp
(
0,∞;Hk̃,−2+ 1 

p−δ̃ ∩Hk̃,−2+ 1 
p+δ̃

)
,

(
t �→ tβ−

1 
p g(t)

)
∈ Lp

(
0,∞;Hk,−2+β−δ ∩Hk,−2+β+δ

)
.

By Proposition 3.9 we have a unique classical solution v = v(1) + v(2) : (0,∞)2 → R

of the initial-value problem (3.37) (where v(1) solves (3.37) with g = 0 and v(2) solves 
(3.37) with v(0) = 0) with regularity

v(�) ∈ BC0([0,∞);Hk̃+4− 4 
p ,−1−δ̃,p ∩Hk̃+4− 4 

p ,−1+δ̃,p

)
,

∂tv
(�) ∈ Lp

(
0,∞;Hk̃,−2+ 1 

p−δ̃ ∩Hk̃,−2+ 1 
p+δ̃

)
,

v(�) ∈ Lp
(
0,∞;Hk̃+4,−1+ 1 

p−δ̃ ∩Hk̃+4,−1+ 1 
p+δ̃

)
,

and

(
t �→ tβ−

1 
p ∂tv

(�)(t)
)
∈ Lp

(
I;Hk,−2+β−δ ∩Hk,−2+β+δ

)
,(

t �→ tβ−
1 
p v(�)(t)

)
∈ Lp(I;Hk+4,−1+β−δ ∩Hk+4,−1+β+δ)

if |I| < ∞, which by (3.32) satisfies the maximal-regularity estimates

sup
t∈I 

2 ∑
�=1 

[
|v(�)|p

k̃+4− 4 
p ,−1−δ̃,p

+ |v(�)|p
k̃+4− 4 

p ,−1+δ̃,p

]
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+
∫
I

2 ∑
�=1 

[
|∂tv(�)|p

k̃,−2+ 1 
p−δ̃

+ |∂tv(�)|p
k̃,−2+ 1 

p+δ̃
+ |v(�)|p

k̃+4,−1+ 1 
p−δ̃

+ |v(�)|p
k̃+4,−1+ 1 

p+δ̃

]
dt

≲k̃,δ̃,p |v(0)|p
k̃+4− 4 

p ,−1−δ̃,p
+ |v(0)|p

k̃+4− 4 
p ,−1+δ̃,p

+
∫
I

[
|g|p

k̃,−2+ 1 
p−δ̃

+ |g|p
k̃,−2+ 1 

p+δ̃

]
dt,

(3.58a)

and

∫
I

tpβ−1
2 ∑

�=1 

[
|∂tv(�)|pk,−2+β−δ + |∂tv(�)|pk,−2+β+δ + |v(�)|pk+4,−1+β−δ

+ |v(�)|pk+4,−1+β+δ

]
dt

≲k,δ,p

∫
I

tpβ−1[|g|pk,−2+β−δ + |g|pk,−2+β+δ

]
dt

+ (pβ − 1)
∫
I

tpβ−2
[
|v(1)|p

k+4− 4 
p ,−1+β− 1 

p−δ,p
+ |v(1)|p

k+4− 4 
p ,−1+β− 1 

p+δ,p

]
dt

(3.58b)

for |I| < ∞. By (2.30), (2.31), (2.32) of Lemma 2.1, and the reiteration theorem [5, 
Thm. 3.5.3] we have (with equivalence of norms)

Hk+4− 4 
p ,−1+β− 1 

p±δ,p =
((

Hk,−2+β±δ, Hk+4,−1+β±δ

)
1− pβ−1

p ,2, Hk+4,−1+β±δ

)
pβ−2
pβ−1 ,p

=
(
Hk+4−4β+ 4 

p ,−1+ 1 
p±δ, Hk+4,−1+β±δ

)
pβ−2
pβ−1 ,p

.

This entails by interpolation (cf. [5, Thm. 3.1.2]) and using k̃ ≥ k − 4β + 4 
p and δ̃ > δ,

∫
I

tpβ−2
[
|v(1)|p

k+4− 4 
p ,−1+β− 1 

p−δ,p
+ |v(1)|p

k+4− 4 
p ,−1+β− 1 

p+δ,p

]
dt

≲β,p

∫
I

[
|v(1)|p

k̃+4,−1+ 1 
p−δ̃

+ |v(1)|p
k̃+4,−1+ 1 

p+δ̃

] 1 
pβ−1

×
[
tpβ−1|v(1)|pk+4,−1+β−δ + tpβ−1|v(1)|pk+4,−1+β+δ

] pβ−2
pβ−1 dt

≤
(∫

I

[
|v(1)|p

k̃+4,−1+ 1 
p−δ̃

+ |v(1)|p
k̃+4,−1+ 1 

p+δ̃

]
dt
) 1 

pβ−1

×
(∫

I

[
tpβ−1|v(1)|pk+4,−1+β−δ + tpβ−1|v(1)|pk+4,−1+β+δ

]
dt
) pβ−2

pβ−1
,
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where Hölder’s inequality was used in the second step. Hence, after applying Young’s 
inequality, estimates (3.58) can be combined to

sup
t∈I 

[
|v|p

k̃+4− 4 
p ,−1−δ̃,p

+ |v|p
k̃+4− 4 

p ,−1+δ̃,p

]

+
∫
I

[
|∂tv|pk̃,−2+ 1 

p−δ̃
+ |∂tv|pk̃,−2+ 1 

p+δ̃
+ tpβ−1|∂tv|pk,−2+β−δ + tpβ−1|∂tv|pk,−2+β+δ

]
dt

+
∫
I

[
|v|p

k̃+4,−1+ 1 
p−δ̃

+ |v|p
k̃+4,−1+ 1 

p+δ̃
+ tpβ−1|v|pk+4,−1+β−δ + tpβ−1|v|pk+4,−1+β+δ

]
dt

≲k,k̃,δ,δ̃,p |v(0)|p
k̃+4− 4 

p ,−1−δ̃,p
+ |v(0)|p

k̃+4− 4 
p ,−1+δ̃,p

+
∫
I

[
|g|p

k̃,−2+ 1 
p−δ̃

+ |g|p
k̃,−2+ 1 

p+δ̃
+ tpβ−1|g|pk,−2+β−δ + tpβ−1|g|pk,−2+β+δ

]
dt.

(3.59)

Trivially, the right-hand side of (3.59) is bounded (up to a multiplicative constant) by 
the right-hand side of (3.56). Define u and u0 through (3.38), and uβ through (3.42) of 
Lemma 3.10. Then by the elliptic regularity estimates (3.41) and (3.45) of Lemma 3.10, 
and estimates (3.53) of Lemma 3.11, we infer from (3.58b) that indeed (3.56) is satisfied 
for any |I| < ∞, so that also I = [0,∞) is applicable. Using (3.40) and (3.46) in (3.37), 
we infer that (3.1) is classically satisfied. �
4. The nonlinear problem

In this section, the nonlinear problem (2.22) will be treated. Subsequently, the main 
result of §2.3 will be proven in §4.2. Before this can be done, we need to show a few 
preliminary estimates.

4.1. Nonlinear estimates

Lemma 4.1. In the situation of Proposition 3.12, the coefficients u0 and uβ, and the 
solution u satisfy

u0 ∈ BC0(I), 
(
t �→ tβ−

1 
puβ(t)

)
∈ Lp(I),

u ∈ BC0(I;U (0)(k̃, δ̃, p)), u ∈ BCm(I × [0,∞)),

where m ∈ N0 with m < k̃ + 15
2 −

4 
p . In particular, we have u0(t) → u

(0)
0 as t ↘ 0. 

Furthermore, it holds u0(t) → 0, | | |u(t)| | |0 → 0, and maxj=0,...,m supx>0|Dju(t, x)| → 0
as t → ∞ if I = [0,∞). Additionally, the following inequality holds true

sup
t∈I 

|u0|p +
∫
I

tpβ−1|uβ |p dt + ‖u‖m,I ≲k̃,δ,p | | |u| | |pI , (4.1)
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where

‖u‖m,I := max 
j=0,...,m

sup 
(t,x)∈I×(0,∞)

|Dju(t, x)| and ‖·‖m := ‖·‖m,[0,∞).

Proof. Define η(x) := x21[0,1](x) + x−2(1 − 1[0,1](x)). Then it holds

|u0(t)|p =
2 ∫

1 

|u0(t)|pdx ≲δ,p

2 ∫
1 

η2x−2δ|u(t, x) − u0(t)|p dx
x +

2 ∫
1 

η2x2δ|u(t, x)|p dx
x 

≲k̃,δ,p |u(t) − u0(t)|pk̃+8− 4 
p ,−δ̃,p

+ |u(t)|p
k̃+8− 4 

p ,δ̃,p

by (2.34) of Lemma 2.1. Taking the supremum gives in combination with estimate (2.33)
of Lemma 2.1

sup
t∈I 

|u0(t)|p+ ‖u‖pm,I ≲k̃,δ,p sup
t∈I 

| | |u(t)| | |p0 = sup
t∈I 

(
|u(t) − u0(t)|pk̃+8− 4 

p ,−δ̃,p
+ |u(t)|p

k̃+8− 4 
p ,δ̃,p

)
(4.2)

(3.55)
≤ | | |u| | |pI

(3.56)
≲k,k̃,δ,δ̃,p | | |u(0)| | |p0 + | | |f | | |p1,I < ∞.

Using (3.53) of Lemma 3.11 and Au =: v, we have

sup
t∈I 

| | |u(t)| | |p0 ≲k̃,δ,p sup
t∈I 

(
|v(t)|p

k̃+4− 4 
p ,−1−δ̃,p

+ |v(t)|p
k̃+4− 4 

p ,−1+δ̃,p

)
.

By extending f by 0, we can without loss of generality assume I = [0,∞). Using the 
trace method for real interpolation (see e.g. [58, Def. 1.2.8]) then gives

sup
t≥0 

| | |u(t)| | |p0

≲k̃,δ,p

∞ ∫
0 

(
|∂tv(t)|pk̃,−2−δ̃+ 1 

p

+ |∂tv(t)|pk̃,−2+δ̃+ 1 
p

+ |v(t)|p
k̃+4,−1−δ̃+ 1 

p

+ |v(t)|p
k̃+4,−1+δ̃+ 1 

p

)
dt.

Applying an even reflection in time (with reflected quantities ur(t), ur
0, and vr) yields

sup
t≥0 

| | |ur(t)| | |p0

≲k̃,δ,p

∫
R 

(
|∂tvr(t)|p

k̃,−2−δ̃+ 1 
p

+ |∂tvr(t)|p
k̃,−2+δ̃+ 1 

p

+ |vr(t)|p
k̃+4,−1−δ̃+ 1 

p

+ |vr(t)|p
k̃+4,−1+δ̃+ 1 

p

)
dt.

Take test function φ, χ ∈ C∞
c (R) with 

∫
R φ dx = 1, χ|[−1,1] = 1, and cut off with 

χε, where χε(t) := χ(εt), and mollify with φε(t) := 1
ε φ( t 

ε ) the left- and right-hand 
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side. We can then approximate the right-hand side with smooth and compactly sup-
ported functions in time. Hence, this also holds for the left-hand side, implying that 
u ∈ BC0(I;U (0)(k̃, δ̃, p)) and | | |u(t)| | |0 → 0 as t → ∞ if I = [0,∞). Combining this with 
(4.2), we also get u0 ∈ BC0(I), u ∈ BCm(I × [0,∞)), as well as u0(t) → 0 as t → ∞
and maxj=0,...,m supx>0|Dju(t, x)| → 0 as t → ∞ if I = [0,∞).

For uβ we have

|uβ(t)|2 ≲
2 ∫

1 

|uβ(t)xβ |2dx ≲p

2 ∫
1 

|u(t) − u0(t)|2dx +
2 ∫

1 

|u(t) − u0(t) − uβ(t)xβ |2dx

≲δ

∞ ∫
0 

x−2(β−δ)|u(t) − u0(t)|2 dx
x +

∞ ∫
0 

x−2(β+δ)|u(t) − u0(t) − uβ(t)xβ |2 dx
x 

≤ |u− u0|2k̃+8,β−δ
+ |u− u0 − uβx

β |2
k̃+8,β+δ

. (4.3)

Raising with the power p2 , multiplying both sides with tpβ−1, and integrating over t ∈ I

gives, in view of (3.55) and (3.56), (t �→ tβ−
1 
puβ(t)) ∈ Lp(I), and finalizes the proof of 

estimate (4.1). �
We need the following nonlinear estimates, forming the Lp

t -generalization of [36, 
Lem. 8.1] with a subtle difference when treating the xβ-contribution supercritical terms 
in the norm | | |N (u)| | |1,I (see (4.19) below).

Lemma 4.2. Let 1 < p < ∞ with 1 
p < β, 0 < δ < δ̃ < min{β − 1 

p ,
1 
p}, and k, k̃ ∈ N0 with

k̃ > k + 1
2 + 3 

p . (4.4)

For u, u(1), u(2) ∈ U(k, k̃, δ, p, I) the following estimates hold for the nonlinearity 
(cf. (2.25))

| | |N (u)| | |1,I ≲k,k̃,δ,δ̃,p max 
j=2,5

| | |u| | |jI , (4.5a)

| | |N (u(1)) − N (u(2))| | |1,I ≲k,k̃,δ,δ̃,p max 
j=1,4

(| | |u(1)| | |I + | | |u(2)| | |I)j | | |u(1) − u(2)| | |I . (4.5b)

Proof. Proof of estimate (4.5a). We start with deriving (4.5a). For both regimes 1 <

n < 3
2 and 3

2 < n < 3, N (u) has the form

N (u) (2.25)= −x−1M (u + 1, . . . , u + 1) + x−1p(D)u, (4.6)

where p(D) and M are defined as in (2.23) and (2.26), respectively. Hence, N (u) consists 
of the super-linear terms of x−1M (u+1, . . . , u+1). Denote by Msym the symmetrization 
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of M . Note that Msym is multi-linear in all of its arguments. Because of this, N (u) can 
be written as a linear combination with constant coefficients of terms of the form

x−1Msym(u, u, w(3), w(4), w(5)), with w(3), w(4), w(5) ∈ {u, 1}. (4.7)

Using the multi-linearity of Msym and noting that evaluating Msym for constants in all 
arguments yields zero because of (4.6) and

Msym(1, 1, 1, 1, 1) (2.10),(2.20)= 1
5p(D)1 = 0, (4.8)

we see that only terms that consist of at least one in x non-constant argument of Msym
remain and therefore, N (u) can be written as a linear combination with constant coeffi-
cients of

x−1Msym(u− u0, w
(2), w(3), w(4), w(5)), w(2) ∈ {u− u0, u0},

w(3), w(4), w(5) ∈ {u− u0, u0, 1}. (4.9)

We consider | | |N (u)| | |1,I (cf. (3.57)) consisting of norms of N (u) with weights −1 + 1 
p ±

δ,−1 + β ± δ and k̃ + 4, respectively k + 4 derivatives. First consider the case which is 
subcritical with respect to the term x−1+β, which consists of the parts of the norm with 
weights −1+ 1 

p±δ and −1+β−δ. We explain of which terms D�(x−1N (u)), with � ≤ k+4
or � ≤ k̃ + 4, consists. Note that Msym distributes four derivatives onto its arguments. 
Hence, D�(x−1N (u)) can be written as a product of terms x−1v(1)×v(2)×v(3)×v(4)×v(5), 
where

v(1) = D�1(u− u0), �1 ≤ � + 4 (4.10a)

v(2) ∈ {D�2(u− u0), u0}, �2 ≤ �+4
2 , (4.10b)

v(3), v(4), v(5) ∈ {D�3(u− u0), u0, 1}, �3 ≤ �+4
2 . (4.10c)

From (4.1) of Lemma 4.1, we note that the supremum over (t, x) ∈ I × (0,∞) of v(2), 
v(3), v(4), and v(5) can be bounded by | | |u| | | provided max{k,k̃}+8

2 < k̃ + 15
2 −

4 
p , that is,

k̃ > k
2 −

7
2 + 4 

p and k̃ > 8 
p − 7,

which is implied by (4.4). Hence, for the part of | | |N (u)| | |1,I consisting of the norms with 
weights −1 + 1 

p ± δ and −1 + β − δ the following estimate holds

∫
I

(
|N (u)|p

k̃+4,−1+ 1 
p−δ̃

+ |N (u)|p
k̃+4,−1+ 1 

p+δ̃
+ tpβ−1|N (u)|pk+4,−1+β−δ

)
dt

≲k,k̃,δ,δ̃,p

∫
I

(
|u− u0|p

k̃+8, 1 p−δ̃
+ |u− u0|p

k̃+8, 1 p+δ̃
+ tpβ−1|u− u0|pk+8,β−δ

)
dt
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×
(
sup
t≥0 

(
‖u− u0‖p�2,I + |u0|p

))
×
(
1 +

(
sup
t≥0 

(‖u− u0‖p�2,I + |u0|p)
)3)

(3.55),(4.1)
≲k̃,δ,p | | |u| | |2pI (1 + | | |u| | |3pI ). (4.11)

Now, consider the supercritical case, consisting of the part 
∫
I
tpβ−1|N (u)|pk+4,−1+β+δ dt

of the norm | | |N (u)| | |1,I with weight β+δ. In this case, (4.9) turns into one of the following

x−1Msym(u− u0 − uβx
β , w(2), w(3), w(4), w(5)), w(2) ∈ {u− u0, u0},

w(3), w(4), w(5) ∈ {u− u0, u0, 1},
(4.12)

x−1Msym(uβx
β , w(2), w(3), w(4), w(5)), w(2) ∈ {u− u0, u0},

w(3), w(4), w(5) ∈ {u− u0, u0, 1}.
(4.13)

Noting that

Msym(xβ , 1, 1, 1, 1) = 1
5p(D)xβ = 0, (4.14)

since β is a root of p(D), (4.13) can be simplified to

x−1Msym(uβx
β , u− u0, w

(3), w(4), w(5)), w(3), w(4), w(5) ∈ {u− u0, u0, 1}. (4.15)

We will argue similarly to before for the term 
∫
I
tpβ−1|N (u)|pk+4,−1+β+δ dt. In both cases 

we use that again Msym distributes four derivatives onto its arguments. First, considering 
the form as given in (4.12). These terms in D�(x−1N (u)), where � ≤ k + 4, are a linear 
combination with constant coefficients of terms of the form x−1v(1) × · · · × v(5) given by

v(1) = D�1(u− u0 − uβx
β), �1 ≤ � + 4 ≤ k + 8, (4.16a)

v(2) ∈ {D�2(u− u0), u0}, �2 ≤ � + 4 ≤ k + 8, (4.16b)

v(3), v(4), v(5) ∈ {D�3(u− u0), u0, 1}, �3 ≤ �+4
2 ≤ k + 8. (4.16c)

This gives

|x−1v(1) × · · · × v(5)|p−1+β+δ ≲|u− u0 − uβx
β |pk+8,β+δ

(
‖u− u0‖pk+8,I + |u0|p

)
×
(
1 + (‖u− u0‖pk+8,I + |u0|p)3

)
. (4.17)

Secondly, considering (4.15) we see that terms in D�(x−1N (u)), where � ≤ k + 4, are 
a linear combination with constant coefficients of terms of the form x−1v(1) × · · · × v(5)

given by
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v(1) = uβ ,

v(2) = xβD�1(u− u0), �1 ≤ � + 4 ≤ k + 8,

v(3), v(4), v(5) ∈ {D�2(u− u0), u0, 1}, �2 ≤ �+4
2 ≤ k + 8.

This gives, using that |xβ ·|β+δ = |·|δ,

|x−1v(1) × · · · × v(5)|pβ+δ ≲ |uβ |p|u− u0|pk+8,δ
(
1 +

(
‖u‖pk+8,I + |u0|p

)3)
. (4.18)

Here is where we deviate significantly from [36, Lem. 8.1] and the choice δ̃ > δ becomes 
crucial at least for p > 2. We notice that

|u− u0|2k+8,δ =
k+8∑
j=0 

1 ∫
0 

x−2δ(Dj(u− u0))2 dx
x +

k+8∑
j=0 

∞ ∫
1 

x−2δ(Dj(u− u0))2 dx
x .

Choosing κ := δ̃ − δ in (2.34) of Lemma 2.1, we get

k+8∑
j=0 

1 ∫
0 

x−2δ(Dj(u− u0))2 dx
x ≲k,k̃,δ,δ̃,p |u− u0|2k̃+8− 4 

p ,δ̃,p

provided k̃ ≥ k + 1
2 + 3 

p , which is implied by (4.4). Secondly, we get under the same 
constraint,

k+8∑
j=0 

∞ ∫
1 

x−2δ(Dj(u− u0))2 dx
x ≲δ |u0|2 +

k+8∑
j=0 

∞ ∫
1 

x−2δ(Dju)2 dx
x 

≲k,k̃,δ,δ̃,p |u0|2 + |u|2
k̃+8− 4 

p ,−δ̃,p
,

where κ := −δ − δ̃ was chosen in (2.34) of Lemma 2.1. Hence,

|u− u0|k+8,δ ≲k,k̃,δ,δ̃,p |u0| + |u|k̃+8− 4 
p ,−δ̃,p + |u− u0|k̃+8− 4 

p ,δ̃,p
. (4.19)

Combining (4.17) and (4.18) gives, using Lp bounds in time for the first term and supre-
mum bounds in time for the rest of the terms,

∫
I

tpβ−1|N (u)|pk+4,−1+β+δ dt

(4.19)
≲k,k̃,δ,δ̃,p

∫
I

tpβ−1(|u− u0 − uβx
β |pk+8,β+δ + |uβ |p

)
dt

×
[
‖u− u0‖pk+8,I + sup

t∈I 

(
|u0|p + |u|p

k̃+8− 4 
p ,−δ̃,p

+ |u− u0|pk̃+8− 4 
p ,δ̃,p

)]
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×
[
1 +

(
‖u− u0‖pk+8,I + sup

t∈I 
|u0|p

)3]
(4.1)

≲k,k̃,δ,δ̃,p | | |u| | |2pI (1 + | | |u| | |3pI ), (4.20)

where Lemma 4.1 and the constraint (4.4) were used.

Equation (4.5a) now follows by adding (4.11) and (4.20) and taking the pth root.

Proof of estimate (4.5b). We only sketch the differences compared to the proof of 
estimate (4.5a). Because Msym is multi-linear, it holds that N (u(1))−N (u(2)) is a linear 
combination with constant coefficients of terms of the form

x−1Msym(u(1) − u(2), w(2), w(3), w(4), w(5)), w(2) ∈ {u(1), u(2)},

w(3), w(4), w(5) ∈ {u(1), u(2), 1}.

For the subcritical part of the norm | | |N (u(1)) − N (u(2))| | |1, which consists of norms with 
weight 1 

p ± δ and β − δ, the terms from above are rewritten as

x−1Msym(w(1), w(2), w(3), w(4), w(5)),

w(1) ∈ {u(1) − u
(1)
0 − (u(2) − u

(2)
0 ), u(1)

0 − u
(2)
0 },

w(2) ∈ {u(1) − u
(1)
0 , u(2) − u

(2)
0 , u

(1)
0 , u

(2)
0 },

w(3), w(4), w(5) ∈ {u(1) − u
(1)
0 , u(2) − u

(2)
0 , u

(1)
0 , u

(2)
0 , 1}.

Note that before we could argue that the w(1) had to be non-constant in x, but this 
reasoning does not hold here. Hence, we have to work with both the non-constant and 
constant choices for w(1). First, consider the case that w(1) = u(1)−u

(1)
0 −(u(2)−u

(2)
0 ). In 

this case, D�(x−1N (u(1))−x−1N (u(2))) is, for � ≤ k̃+4 or � ≤ k+4, a linear combination 
of terms of the form x−1v(1) × · · · × v(5) with

v(1) = D�1
(
u(1) − u

(1)
0 − (u(2) − u

(2)
0 )

)
, �1 ≤ � + 4,

v(2) ∈
{
D�2(u(1) − u

(1)
0 ), D�2(u(2) − u

(2)
0 ), u(1)

0 , u
(2)
0

}
, �2 ≤ � + 4,

v(3), v(4), v(5) ∈
{
D�3(u(1) − u

(1)
0 ), D�3(u(2) − u

(2)
0 ), u(1)

0 , u
(2)
0 , 1

}
, �3 ≤ �+4

2 .

Note that we can in fact assume either �1 ≤ �+4
2 or �2 ≤ �+4

2 . Hence, up to relabeling 
v(1) and v(2), the situation is analogous to (4.10).

In the case that w(1) = u
(1)
0 −u

(2)
0 , Dl(x−1N (u(1))−x−1N (u(2))) is for � ≤ k+4 or � ≤

k̃+4 a linear combination with constant coefficients of terms of the form x−1v(1)×· · ·×v5

with
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v(1) = u
(1)
0 − u

(2)
0 ,

v(2) ∈
{
D�2(u(1) − u

(1)
0 ), D�2(u(2) − u

(2)
0 )

}
, �2 ≤ � + 4,

v(3), v(4), v(5) ∈
{
D�3(u(1) − u

(1)
0 ), D�3(u(2) − u

(2)
0 ), u(1)

0 , u
(2)
0 , 1

}
, �3 ≤ �+4

2 .

Note that in x constant terms can be excluded because of (4.6) and (4.8). Up to relabeling 
(interchanging v(1) and v(2)), this term can be treated as those appearing in the context 
of (4.10). In summary, the same reasoning as in (4.11) applies and yields

∫
I

(
|N (u(1)) − N (u(2))|p

k̃+4,−1+ 1 
p−δ̃

+ |N (u(1)) − N (u(2))|p
k̃+4,−1+ 1 

p+δ̃

)
dt

+
∫
I

tpβ−1|N (u(1)) − N (u(2))|pk+4,−1+β−δdt

≲k,k̃,δ,δ̃,p | | |u(1) − u(2)| | |p
(
| | |u(1)| | |pI + | | |u(2)| | |pI

)(
1 + | | |u(1)| | |3pI + | | |u(2)| | |3pI

)
. (4.21)

For the super-critical part of the norm, the part with weight β + δ, we decompose

x−1Msym(u(1)
0 − u

(2)
0 , w(2), w(3), w(4), w(5)),

w(2) ∈
{
u(1) − u

(1)
0 , u(2) − u

(2)
0

}
,

w(3), w(4), w(5) ∈
{
u(1) − u

(1)
0 , u(2) − u

(2)
0 , u

(1)
0 , u

(2)
0 , 1

}
as

x−1Msym(u(1)
0 − u

(2)
0 , w(2), w(3), w(4), w(5)),

w(2) ∈
{
u(1) − u

(1)
0 − u

(1)
β xβ , u(2) − u

(2)
0 − u

(2)
β xβ

}
,

w(3), w(4), w(5) ∈
{
u(1) − u

(1)
0 , u(2) − u

(2)
0 , u

(1)
0 , u

(2)
0 , 1

}
,

(4.22)

and

x−1Msym(u(1)
0 − u

(2)
0 , w(2), w(3), w(4), w(5)),

w(2) ∈
{
u

(1)
β xβ , u

(2)
β xβ

}
,

w(3) ∈
{
u(1) − u

(1)
0 , u(2) − u

(2)
0

}
,

w(4), w(5) ∈
{
u(1) − u

(1)
0 , u(2) − u

(2)
0 , u

(1)
0 , u

(2)
0 , 1

}
,

(4.23)

where in the last case w(3) is non-constant in x because of (4.14). For D�(x−1N (u(1))−
x−1N (u(2))), � ≤ k+4, the terms from (4.22) lead to a linear combination with constant 
coefficients of terms of the form x−1v(1) × · · · × v(5) with
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v(1) = u
(1)
0 − u

(2)
0 ,

v(2) ∈
{
D�1(u(1) − u

(1)
0 − u

(1)
β xβ), D�1(u(2) − u

(2)
0 − u

(1)
β xβ)

}
, �1 ≤ � + 4,

v(3), v(4), v(5) ∈
{
D�2(u(1) − u

(1)
0 ), D�2(u(2) − u

(2)
0 ), u(1)

0 , u
(2)
0 , 1

}
, �2 ≤ � + 4.

This is analogous to the decomposition in (4.16) on interchanging v(1) and v(2).

For D�(x−1N (u(1)) − x−1N (u(2))), � ≤ k + 4, the terms from (4.23) lead to a linear 
combination with constant coefficients of terms of the form x−1v(1) × · · · × v(5) with

v(1) = u
(1)
0 − u

(2)
0 ,

v(2) ∈
{
u

(1)
β , u

(2)
β

}
,

v(3) ∈
{
xβD�1(u(1) − u

(1)
0 ), xβD�1(u(2) − u

(2)
0 )

}
, �1 ≤ � + 4 ≤ k + 8,

v(4), v(5) ∈
{
D�2(u(1) − u

(1)
0 ), D�2(u(2) − u

(2)
0 ), u(1)

0 , u
(2)
0 , 1

}
, �2 ≤ �+4

2 ≤ k + 8.

In this case, we can bound

|x−1v(1) × · · · × v(5)|pβ+δ

≲ |u(1)
0 − u

(2)
0 |p

(
|u(1)

β |p + |u(2)
β |p

)(
|u(1) − u

(1)
0 |pk+8,δ + |u(2) − u

(2)
0 |pk+8,δ

)
×

(
1 +

(
‖u(1)‖pk+8,I + |u(1)

0 |p + ‖u(2)‖pk+8,I + |u(2)
0 |p

)3)
. (4.24)

Using (4.19), we then obtain
∫
I

tpβ−1|N (u(1)) − N (u(2))|pk+4,−1+β+δ dt ≲k,k̃,δ,δ̃,p| | |u(1) − u(2)| | |pI
(
| | |u(1)| | |pI + | | |u(2)| | |pI

)

×
(
1 + | | |u(1)| | |3pI + | | |u(2)| | |3pI

)
,

which in conjunction with (4.21) finishes the proof of (4.5b). �
4.2. Proof of the main result

Here, we will prove Theorem 2.3, where we will make use of the results from Propo-
sition 3.12 and Lemma 4.2. Note that the proof is entirely standard but for the sake of 
completeness, we nonetheless give all details.

Proof of Theorem 2.3. In the proof, all estimates depend on k, k̃, δ, δ̃, and p.

Existence. For ε > 0 to be determined below let u(0) ∈ U (0)(k̃, δ̃, p) with | | |u(0)| | |0 < ε

and define

S :=
{
u ∈ U(k, k̃, δ, δ̃, p) : | | |u| | | ≤ η, u|t=0 = u(0)}
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for η > 0 to be determined in what follows. Let S be the solution operator constructed 
in Proposition 3.12. Then (2.22) can be recast in the fixed-point problem

u = T (u) := SN (u). (4.25)

Our aim is to apply Banach’s contraction-mapping principle to (4.25). Therefore, for 
u ∈ S by the maximal-regularity estimate (3.56) and the nonlinear estimate (4.5a) it 
follows that

| | |T (u)| | | = | | |SN (u)| | |
(3.56)
≲ | | |u(0)| | |0 + | | |N (u)| | |1

(4.5a)
≲ | | |u(0)| | |0 + max 

j=2,5
| | |u| | |j ,

so that | | |T (u)| | | = | | |SN (u)| | | ≤ C(ε + η2) for η ≤ 1 and C < ∞ only depending on k, 
k̃, δ, δ̃, and p. On taking ε := η2 and η ≤ 1 

2C , we infer that T maps S into itself. For 
showing the contraction property, suppose that u(1), u(2) ∈ S. By (3.56) and (4.5b) it 
follows that

| | |T (u(1)|I) − T (u(2)|I)| | |I = | | |S(N (u(1)|I) − N (u(2)|I))| | |I
(3.56)
≲ | | |N (u(1)|I) − N (u(2)|I)| | |1,I ,

for I = [0, T ] with T ∈ (0,∞) or I = [0,∞), so that by (4.5b),

| | |T (u(1)|I) − T (u(2)|I)| | |I ≤ C̃ max 
j=1,4

(| | |u(1)|I | | |I + | | |u(2)|I | | |I)j | | |u(1) − u(2)| | |I (4.26)

for C̃ < ∞ only depending on k, k̃, δ, δ̃, and p. Hence, T : S → S is a contraction for 
η < min{1

2 ,
1 

2C̃ }. Now applying the contraction-mapping principle gives existence and 
uniqueness of a solution u to (4.25) and thus to (2.22).

Uniqueness. Let w ∈ U(k, k̃, δ, δ̃, p) be another solution to (2.22). Let t∗ ∈ (0,∞) be 
the maximal time such that w|[0,t∗) = u|[0,t∗). By continuity in time in U (0)(k̃, δ̃, p) we 
must have w(t∗) = u(t∗). By a time shift we may assume without loss of generality t∗ = 0. 
By dominated convergence and in view of the definitions (2.35b) and (3.55) of | | |·| | |0 and 
| | |·| | |I , respectively, we have | | |u|I | | |I → | | |u(0)| | |0 ≤ η2 and | | |w|I | | |I → | | |u(0)| | |0 ≤ η2 as 
|I| ↘ 0. Since η < min{1

2 ,
1 

2C̃ } and because w = T (w) as well as u = T (u), (4.26) entails 
u|[0,T ] = w|[0,T ] for T > 0 sufficiently small, so that t∗ was not maximal.

Continuity and convergence. The fact that [0,∞) � t �→ | | |u(t)| | |0 is continuous and 
| | |u(t)| | |0 → 0 as t → ∞ follows from Lemma 4.1. �
5. Concluding remarks

We end with some concluding remarks on coercivity. In [36, Lem. 5.2 (b)] it was found 
that a fourth-order polynomial operator p(D) =

∏4
j=1(D − γj) is coercive in the sense 
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of (2.36) if and only if there exists a constant Lα > 0 such that �p(iξ + α) ≥ Lα for 
all ξ ∈ R. This follows on commuting x−α with D, passing to s := ln x, and using the 
Fourier transform and Plancherel’s identity. As in the proof of [36, Prop. 5.3] we find

�p(iξ + α) = κ2 − 2aκ + b = (κ− a)2 + b− a2, where κ := ξ2 ≥ 0,

a := 1
2

∑
1≤j<�≤4

(γj − α)(γ� − α), b :=
4 ∏

j=1
(γj − α).

Because of κ ≥ 0 we infer that indeed �p(iξ + α) ≥ Lα for all ξ ∈ R and an Lα > 0 if 
and only if one of the following two conditions holds true:

(I) a ≤ 0 and b > 0,
(II) b > a2.

The condition b > 0 in (I) can be reformulated to (3.9a), while the condition a ≤ 0 in (I)
is equivalent to (3.9b). For solving b > a2 in (II), we need to find the roots of the fourth-
order polynomial b − a2 in α. Though explicit characterizations in terms of radicals of 
γj can be found, these turn out to be quite involved. For the range 0 < n < 3/2 (§2.1.1
also applies in this range) with the polynomial p(D) given by (2.24a), we find with the 
software Mathematica the algebraic expressions

α = 4n− 2 + σ1
√

4n2 − 12n + 13 + σ2
√

16n4 − 96n3 + 120n2 + 72n− 119
8n− 16 

, (5.1)

where σ1, σ2 ∈ {−1,+1}. The expressions for 3/2 < n < 3 (cf. §2.1.2 and (2.24b) for 
the choice of γj) are much more involved, so that we omit them here. We find the 
factorization

16n4 − 96n3 + 120n2 + 72n− 119

= 16
(
n− (1

2 −
√

2)
)(
n− (5

2 −
√

2)
)(
n− (1

2 +
√

2)
)(
n− (5

2 +
√

2)
)
.

We have

1
2 −

√
2 < 0 < 1 < 5

2 −
√

2 < 3
2 < 1

2 +
√

2 < 5
2 +

√
2.

This entails that α given by (5.1) is not real for n < 5
2 −

√
2 > 1 for any choice of 

σ1, σ2 ∈ {−1,+1} since then 16n4 − 96n3 + 120n2 + 72n− 119 < 0.

The entire coercivity range is displayed in Fig. 5. We used the software Matlab to 
generate the plot and evaluated the conditions (I) and (II). We have used the exact 
algebraic expressions (2.37) and (5.1) to plot the contours and for 3

2 < n < 3 we have 
solved for the roots α of b = a2 numerically, cf. (II). This verifies the enlarged coercivity 
range at least for n < 3

2 . We can deduce the following:
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Fig. 5. Full coercivity range (color online). The areas and boundaries in the n-α plane are shown for which 
(I) or (II) are valid and thus p(D) = pn(D) (given by (2.23) and (2.24)) is coercive.

a. Since the criterion (II) cannot be satisfied for n < 5
2 −

√
2 > 1, this criterion does 

not lead to an improved range of validity of Theorem 2.3 to a larger interval for n
since the condition β − 1 being in the coercivity range of p(D) requires n > 1 by 
(2.24a) and (2.37a). However, again by (2.37a) we anticipate that we can prove well-
posedness of (2.22) for 1

2 < n ≤ 1 by omitting all terms with time weights in (2.35), 
i.e., well-posedness without a regularization proof at the free boundary.

b. In Fig. 5, we recognize that we have coercivity for α in an interval containing (−1, 0)
(the exact interval is [−1, 0) for n = 2, see (2.37b)) also for a range of values n ∈
[2, 2 + ν) with ν > 0. Indeed, for n = 2 and α = −1 we have a = 0 while b = 1

8 > 0, 
so that indeed (II) is valid in a neighborhood around (n, α) = (2,−1). By (2.37b) and 
(II) we further infer that the upper boundary for coercivity is α = 0 for n ∈ [2, 3). 
This indicates that the regularity result of [40] presumably extends to n ∈ [2, 2 + ν).

We also remark that conditions analogous to those provided in (I) and (II) may be de-
duced at least for sixth- and eighth-order equations. However, explicit characterizations 
in terms of radicals such as in Lemma 3.2 will for higher-order equations be more com-
plicated and might in general not be feasible as the Galois groups of the corresponding 
polynomial equations might not be solvable for m > 4.
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