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Bathymetry Mapping using Drone Imagery
J.L. Aarnink

Delft University of Technology

Abstract

As extensive efforts from consumer drone manufacturers resulted in inexpensive aircrafts that can
capture high quality video imagery, drones are increasingly considered to be beneficial for scientific pur-
poses. In the recent past, video imagery has been used to analyze waves in terms of several hydrodynamic
parameters and to indicate matching coastal features. Whereas these measurements have been acquired
using static cameras mounted on large poles situated at beaches, this report exploits a recently devel-
oped method using Unmanned Aerial Vehicles (UAVs) as a means to map coastal morphology. After
recording aerial imagery in combination with several Ground Control Points (GCPs), several time series
of georectified coastal images are compiled. Subsequently, for all of the points in a predefined grid, pixel
intensities are stored throughout the time of the recording. Consequently, hydrodynamic data like wave
celerity and phase are estimated, which in turn are used to invert water depths for every location in a
predetermined area of interest using an algorithm called cBathy. Using reference measurements with an
accuracy in the order of five centimeters, this report benchmarks the bathymetry as computed using the
drone imagery by calculating the root mean squared error, the root mean squared error divided by the
water depth and the mean error of three different sub areas within the area of interest. After calibrating
parameters as used by the cBathy algorithm, it is shown that the best computation yielded a bathymetry
with a root mean squared error of 0.37 meters for a total area of approximately 2500 square meters. It
is also shown that the other datasets yield errors of approximately twice the error of the best dataset.
It is shown that the total error can to a large extent be attributed to errors in the rectification part
of the algorithm. The large errors and the large discrepancy between the errors make the method cur-
rently unsuitable for coastal monitoring purposes. Hence, before the UAV bathymetry mapping method
is to replace traditional methods, more research should focus on standardizing the process and thereby
decrease the variance between the errors of different datasets.

1 Introduction

Until recently, the most commonly used way of
measuring beach profiles (see figure 1) was driving
into the sea with a tall vehicle and reading its giant
ruler. This so-called Coastal Research Amphibious
Buggy (CRAB) is used to monitor the evolution of
our coast. In the past decades, a growing interest
in coastal data has subsequently increased the drive
to acquire data more efficiently.

NAP

Figure 1: Beach Profile with Respect to Reference
Level

The increasing amount of bathymetric data have
increased our knowledge of the coastal system and
its processes. This knowledge in turn can help ac-
quire data more efficiently. In this study, a newly
adopted bathymetry mapping method is exploited.

The method uses video imagery acquired by an Un-
manned Aerial Vehicle (UAV) to track the celerity
of different wave frequencies in a pre-determined
offshore area stretching from the waterline to ap-
proximately 500 meter in cross shore direction. By
comparing observed wave frequencies and their celer-
ity, water depth can be inverted. This report en-
deavors to contribute to a more efficient way of
gathering beach transacts with the use of UAVs.

Background Beach profiles include bottom lo-
cation measurements as compared to a certain ref-
erence level. These transacts are acquired in a
straight line perpendicular to the coast. In the
Netherlands the reference level commonly used is
the ”Normaal Amsterdams Peil” (NAP). Depths
are acquired up to a certain predetermined depth or
offshore distance, depending on the coastal features
in which the users are interested. When collect-
ing multiple beach profiles that are located next to
each other, a three-dimensional under water geog-
raphy can be mapped, which is called a bathymetry.
When analyzing the bathymetry of a certain beach
over a certain period of time, changes in sediment
budgets of the coastal system can be determined.
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The changing bathymetry alters the movement of
bodies of water over the beach floor. The changing
water movement in its turn causes erosion and/or
sedimentation leading to a different bathymetry.
This interaction is captured in a dynamic process
called morphodynamics. In summary, bathymetric
data help scientists understand coastal dynamics
by monitoring sediment budgets.

The study of morphodynamics is gaining in-
creasing interest in the scientific community for a
number of reasons. Apart from for instance pre-
dicting siltation of nearshore shipping lanes, keep-
ing track of erosion and/or accretion of sediment
can help governments to make decisions regarding
safety against flooding. The continuous measur-
ing of the amount of sand in the coastal system
is called coastal monitoring. In Europe, Australia
and the United States it has been practiced for
over a century. These developed countries are rel-
atively well prepared against the effects of climate
change. On the other hand, there are many less
developed countries with large populations in lower
lying deltaic areas. These coastal regions are facing
increasing humanitarian and financial risks induced
by the rising sea level.

The dunes are part of the dynamic coastal sys-
tem as described above. During storm events, dune
sand is replaced in offshore direction. Subsequently,
during calm weather conditions, the dunes are nat-
urally rebuild. Therefore, structural erosion can
result in land loss and even dune breaches during
storm events once the dunes do not have enough
sand to be transported offshore. Hence, for the gov-
ernments of developing countries, acquiring bathy-
metric data can assist in identifying coastal areas
that are prone to above mentioned risks.

An increase in efficiency when gathering bathy-
metric data can provide the scientific community
with faster assessments and subsequently a better
understanding of coastal processes. Furthermore,
it can be a useful tool for less developed countries
to monitor their coasts and make decisions to in-
crease the safety of their population.

Previous Research Whereas up until the 1990s,
bathymetry surveys were generally conducted using
the before mentioned CRAB, scientists have since
been exploring new methods. Echo sounders have
been mounted at ships and smaller water-based ve-
hicles to collect water depths at specific locations.
Also, satellite data and radars were proposed as a
more efficient solutions for acquiring bathymetric
data. The data acquisition is a trade-off between

accuracy and spatial coverage1. Echo sounders for
instance have an accuracy of a couple of centime-
ters. However, the process is location bound and
therefore expensive when surveying a larger area.
On the other end of the spectrum, satellites in-
crease the spatial scale significantly. However, the
accuracy lower and not usable for sediment budget
calculations.

A more recent technology that monitors a stretch
of coast of approximately one kilometer exploits
the quality increase of video footage. Tall poles
equipped with video cameras for multi-directional
coastal surveying, called Argus stations, take im-
ages with a certain predetermined interval. From
these images, wave peaks can be obtained and sub-
sequently wave celerity and phase data is gathered.
As parts of the hydrodynamic behavior of incoming
waves are known, scientists from the Oregon State
University have been able to write an algorithm
that uses this data to calculate water depth and
therefore compute a bathymetry. This method re-
portedly yielded a root mean squared error of 0.44
meters for an area of approximately 500 meters in
cross shore direction by 1000 meters in long shore
direction2.

Currently, consumer UAVs are capable of cap-
turing video from a high and relatively stable view-
point. Therefore, when using the above described
video-based bathymetry mapping method, Argus
stations and UAVs are seemingly interchangeable.
Drone surveys can potentially benefit from a larger
flexibility and a higher altitude at which footage
can be recorded. Efforts are made to use the same
wave tracking methodology for UAV imagery in-
stead of Argus footage. Rob Holman, of the Oregon
State University, indicated in a personal communi-
cation that first results are promising. The method
of inverting water depth from UAV video imagery
basically entails three steps. The first step regards
the field survey. Subsequently during step 2, the
captured images are rectified after which in step 3
the water depths are computed. All of these steps
entail errors which add up to the total error of the
method.

Regarding the data collection, UAVs are widely
operational and have advantages over fixed Argus
stations. Drone manufacturers are investing signif-
icant efforts to improve their products up to the
point where flying a drone becomes effortless. Fur-
thermore, research is still improving the perfor-
mance of drone cameras which has resulted in the
capability of capturing 4K videos. The most signif-

1(van Son et al., 2009; Li et al., 2016)
2(Holman et al., 2013)
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icant advantage of UAVs over Argus Stations how-
ever, is their flexibility. Drones can fly anywhere
whereas Argus Stations have a fixed location. Po-
tentially, when bathymetric data of a certain loca-
tion is required, a simple drone flight could suffice.
Also, using a drone enables carrying out multiple
scenarios with different angles at which the area of
interest can be captured.

The second step regards the image rectification
process which links the observed waves in the video
to a specific location in a user defined three dimen-
sional grid system. Undistorting and rectifying im-
ages is a process widely researched in the study of
geodesy. An essential part of this process entails
the calibration of the drone camera. Whereas the
angles of incidence of all 4096 x 2160 pixels are cap-
tured by 9 parameters, there will always be room
for incremental improvements. The rectification
determines the three dimensional coordinates for
every pixel in each individual video snapshot. The
two dimensional 4096 x 2160 photo pixel matrix is
converted into a user specified three dimensional
coordinate system. In this research four ground
control points (GCPs) are used to calculate a co-
ordinate for every pixel. In this step, inaccuracies
of the automatic detection of GCPs together with
the rectification algorithm add to the error budget
of the determined bathymetry.

Finally, an algorithm called cBathy is used to
convert the rectified images into water depths. In
coastal regions where the water is shallower than
1/20 the size of the wave length, the speed at which
a wave travels is related to the water depth. This
relation is used to estimate the bathymetry of the
area of which the drone imagery is taken. When
waves are behaving linearly, the relation between
their celerity and the water depth is indicated by
a linear dispersion relation. However, when higher
waves introduce turbulence which can be observed
by white foam caps, the dispersion relation is less
prevalent. Therefore, this part of the process is also
expected to add to the overall error of the eventual
computed bathymetry.

Purpose This report discusses the advantages and
disadvantages of different bathymetry mapping tech-
nologies and elaborates the UAV video method. It
will indicate the role of the newly acquired method
within the realm of existing bathymetry mapping
methods. As all different technologies have advan-
tages and disadvantages, the potential future use
and limitations of UAV imagery as indicated by
this research can help in the comparison with other
methods and give it a role in future coastal engi-

neering practices. Furthermore, as there are vir-
tually endless possibilities for the setup of such an
UAV survey, the choices made in this report are ex-
tensively elaborated and could therefore serve as a
guideline to enable swift bathymetry mapping for
inexperienced users. Also, an indication is given
on what magnitude of water depth error is to be
expected for the current state of the technology.

The report subsequently analyses each of the
steps in the proposed method in terms of their
contributions to the total error of the bathymet-
ric measurements. Lastly, suggestions are made on
how to increase consistency and eventually decrease
the error magnitude.

Hypothesis Because the use of UAVs requires
little labor at low cost, it is expected that mapping
bathymetry using drone imagery can be a substi-
tute for traditional methods in the future of coastal
monitoring. It is hypothesized that the method
yields results sufficiently accurate for coastal mon-
itoring purposes.

Research Questions

• Main Question: Is it valuable to intensify
researching efforts regarding UAV Bathymetry
Mapping for future use in Coastal Monitor-
ing?

• Sub Question: What is the depth inversion
accuracy in the current state of the technol-
ogy for coastal conditions in the Netherlands?

• Sub Question: Does the depth inversion
process yield consistent results within 0.2 me-
ters root mean squared error?

• Sub Question: Which step in the UAV depth
inversion process is the largest contributor to
the water depth error budget?

• Sub Question: On which aspect of the UAV
bathymetry mapping method should future
research be focused to increase its accuracy?

Method To compare the UAV bathymetry map-
ping method with conventional bathymetry map-
ping technologies, a comprehensive survey of a small
part of the Dutch coast at Scheveningen is con-
ducted. An accurate water depth is measured us-
ing a jetski with an echo sounder. As the jetski ac-
quires data with an accuracy of a couple of centime-
ters (van Son et al., 2009), this data can be used
as reference data. Subsequently, several videos of

3



the same area are taken with a drone. The drone
footage is used to compute water depths. The re-
port elaborates on the different steps of the UAV
depth inversion process and show the intermediate
data, ranging from GPS loggers to automatically
detected GCPs. The error budget of each step is
described and compared between four different field
measurements conducted with a consumer UAV.

Several surveying scenarios have been compiled
that differ with respect to drone position or us-
ing different Ground Control Points. As wave and
light conditions change, other variables that can
vary throughout the scenarios are for example the
date or time of day at which the survey takes place.
As the total accuracy of the method is the results
of the accuracy of the different steps of the method,
this report aims at indicating the error in each part
and finally showing its sensitive areas. Different
measurement and computation scenarios are used
to find the largest error contributors. Whereas
Rob Holman of the Oregon State University al-
ready elaborated on the use of differing amounts
of GCPs and thereby potentially making the data
gathering process easier, this report verifies the com-
puted bathymetry with ground truth. Hence, a
valuable analysis on the accuracy of the depth in-
version can be done giving the root mean squared
error. When comparing the final bathymetry error
budget with the errors which are observed for the
individual steps in the process, an indication of the
potential future error of the method can be given.

Content The following chapter discusses litera-
ture regarding societal aspects and the history of
coastal monitoring. Also, the advantages and dis-
advantages of different coastal surveying methods
are elaborated in a graphical comparison. Subse-
quently, developments in the use of video imagery
for coastal research are elaborated as well as the
depth inversion algorithm cBathy. In the final part
of the literature review, the hypotheses are intro-
duced. Chapter 3 entails the methodology of the
research. One by one the different steps in the
UAV bathymetry mapping process are elaborated.
For each step in the UAV bathymetry mapping
method the data is shown that is transferred to the
next step. Furthermore, a small test regarding the
rectification accuracy of subsequent images is con-
ducted. Thereby support is created for decisions
regarding the setup of the final survey for this re-
search. Subsequently, section 4 shows the results of
the bathymetry mapping process. A base scenario
is established that specifies the settings for the dif-
ferent steps in the process. The results chapter

also indicates the observed error of the bathymetry
after it has been computed according to the set-
tings in the base scenario. Subsequently, chap-
ter 5 elaborates on the conclusions that can be
drawn from the results as indicated by the base
scenario. The largest error contributing steps in
the process are identified based on the composition
of the data as indicated in chapter 4. Thereafter,
they are investigated to be able to increase the total
bathymetry accuracy. Lastly, in chapter 6, conclu-
sions are drawn.

4



2 Literature Review

After reviewing the history of coastal monitoring,
this section of the report shows different methods
for coastal monitoring. It gives an indication of the
usefulness of the different methods based on several
parameters. It subsequently briefly shows societal
impacts after which a conceptual model for UAV
depth inversion is shown.

2.1 History of Coastal Monitoring

Whereas societies around the world have always
been dealing with protecting their land against the
sea, coastal morphodynamics has not been under-
stood very well throughout time. Is has only been
since the beginning of the 20th century with both
the understanding of physics and the increase in
computing power to the disposal of researchers that
knowledge of our coastal system has evolved signif-
icantly. Several researchers have contributed to in-
creasing monitoring techniques and predicting skills.
Initially, this section will give a brief overview re-
garding the research that has already been done
with respect to coastal monitoring. Subsequently,
it lists both direct and indirect bathymetry mea-
suring technologies.

One of the first researches which specifically fo-
cused on coastal morphology was induced by the
second world war. To make a landing on enemy
beaches, bathymetric knowledge was regarded to be
valuable information. Therefore, Williams (1947)
researched the mapping of beaches from aerial im-
ages. He took wave propagation and phase speed
into account. This research was based on an early
stage remote sensing technology using time lapse
images of the water surface. Subsequently during
the seventies, large scale research was conducted to
gather data regarding hydrodynamics, beach pro-
files and sediment transport for several beach seg-
ments across coasts of Florida and California in the
United States (Gorsline, 1966; Ingle, 1966; Komar
and Inman, 1970). Large quantities of data helped
coastal engineers gather knowledge about coastal
situations in both high and low energy coasts. Later,
coastal engineers started focusing on creating equip-
ment that made it easier and cheaper to gather
beach profiles (e.g. the Coastal Research Amphibi-
ous Buggy (Birkemeier et al., 1984)).

After the development of these new technolo-
gies together with an accumulation of interest in
the coastal engineering field of study, researchers
started focusing on the (repetitive) migration of
sand bars, nearshore wave statistics and suspended

matter in coastal areas (Lippmann and Holman,
1989, 1991; Holland, 1992; Lippmann et al., 1993;
Leu et al., 1998; Kutser et al., 1998). As the mon-
itoring had been going on for several decades, dif-
ferent studies found controlling variables for coastal
behaviour and started researching inter annual vari-
ability with a data set of over 14.000 nearshore pro-
files (Wijnberg and Terwindt, 1995; Lippmann and
Holman, 1990). It was discovered that the most
frequently observed bar is the longshore periodic
bar. These bars are highly unstable as their aver-
age residence time was about two days. Therefore,
unlike regular geology, the coastal system is highly
dynamic and requires intense monitoring.

According to Plant et al. (2002), due to the nar-
row band of spatial and temporal scales, morpho-
logical studies are generally prone to sampling er-
rors. Therefore, a spectral analysis can be used to
decrease these errors by configuring an appropri-
ate scale-controlled interpolation method. Concur-
rently, increasing availability in computing power
initiated the rise of computer models for the pre-
diction of morphological development. With these
tools, researchers could start implementing their
accumulated knowledge into predictive algorithms.
Meanwhile, different measuring techniques started
being used for the purpose of coastal monitoring
(e.g. radar installation (Young et al., 1985; Teague,
1986) and Argus Coastal Monitoring Systems (Hol-
man and Stanley, 2007)). All of these technologies
serves a similar purpose but yet the majority seems
to survive and coexist. This is due to the different
nature of the specific measuring technologies. Some
are efficient in capturing a bathymetry with an ac-
curacy of five centimeters or higher. These mea-
surements are generally used for sediment budget
calculations for a specific stretch of coast on a spe-
cific moment in time. Other technologies have a
lower accuracy but a higher spatial scale and could
therefore still be used to monitor coastal features
over a longer period of time.

Bathymetry mapping is used for several pur-
poses. The International Hydrographic Organiza-
tion (IHO) established general accuracy standards
for water depths (Mills, 1998). The standard for
shallow water was set at 25 cm. This accuracy is
sufficient for long term monitoring of coastal fea-
tures like for instance sand bars. However, calcula-
tions of sediment budgets as done by Shore Moni-
toring are generally done with data accurate within
five centimeters. With these numbers taken into
account, for a new technology to (partly) take over
from existing methods, an error of approximately
25 cm is required.
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2.2 Direct Bathymetry Mapping

The following coastal monitoring technologies are
capable of mapping a bathymetry. They instanta-
neously collect location and water depth, and af-
ter a simple compilation of the data, a nearshore
morphology can be mapped. These technologies
do however require researchers to physically be at
the location of interest. Therefore, during extreme
conditions like for instance a storm, it is usually im-
possible to do research. The following analysis will
elaborate on different coastal monitoring methods
and assign a score to six different measures:

• Flexibility: Whether the technology can eas-
ily be used on several different stretches of
coast within a short period of time.

• Low Cost: The amount of financial resources
it requires.

• Accuracy: The indicated error of the mapped
bathymetry as compared to the real world sit-
uation.

• Spatial Range: How large a stretch of coast
the technology can measure at once.

• Temporal Range: The ease of doing near-
constant measurements over long periods of
time.

• Low Effort: The labor intensity of the tech-
nology.

CRAB During the twentieth century, researchers
usually used a sea sledge in combination with a
fathometer to compile a comprehensive bathymetry.
As this traditional way of mapping was time con-
suming, scientists focused on increasing the effi-
ciency of these measurements. Birkemeier et al.
(1984) created a device to survey nearshore data
more efficiently. The device was called the Coastal
Research Amphibious Buggy (CRAB, see figure 2
& 3) and was basically a motorized tripod which
could measure water depths up to 9 meters by driv-
ing over the sea floor. At the time, this was a revo-
lutionary design which also sparked the invention of
similar devices. This new way of gathering coastal
data was primarily more cost effective than con-
ventional ways of measurement. Birkemeier et al.
(1984) state that the CRAB reduced the surveying
cost by about 18 times. The reduced costs were
primarily a result of the decrease in the required
personnel and time.

Figure 2: Coastal Research Amphibious Buggy

Figure 3: Method CRAB

Even though at the time this measuring tech-
nology was innovative and more efficient than con-
ventional measurements, the CRAB is not consid-
ered to perform well based on the six predetermined
measures (see figure 4) by current standards:

• Flexibility: The machine is large and hard
to transport. Therefore, it cannot be deployed
swiftly.

• Low Cost: The utilization of the device is
specific to bathymetry mapping. As there
were not a lot of manufacturers, the product
was expensive.

• Accuracy: The CRAB has a high accuracy.
Because it rides on the actual sea bottom,
the measurements are not influenced by sus-
pended sediment properties like for instance
light rats traveling through the water.
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Figure 4: Rating CRAB

• Spatial Range: As the machine is slow, the
stretch of coast it can measure per day is lim-
ited. To be able to do extensive surveys, sev-
eral CRABs are needed.

• Temporal Range: For the same reason as
mentioned above, to be able to measure the
development of a morphology, the low amount
of data the CRAB can gather really limits
temporal measurements.

• Low Effort: As the machine is specific to
bathymetry mapping, extensive training is nec-
essary to operate the CRAB. Also, it required
several people to operate. Therefore, it takes
a significant amount of effort.

Jetski with Echo Sounder Later, an accurate
way of measuring coastal bathymetry was devel-
oped using an echo sounder mounted behind a jet-
ski (see figure 5 & 6). Due to the use of a centimeter-
accurate Real Time Kinematic Global Positioning
System (RTK GPS) sensor, this mapping technique
produces maps with depths within a couple of cen-
timeters accuracy (van Son et al., 2009).

Nowadays, if a research project requires an ac-
curate map of the coastal situation, the jetski echo
sounder is usually the equipment that is used. The
technology has pushed the CRAB out of existence
because it scores similarly or better on every point
(see figure 7):

• Flexibility: Although it is much easier to
move a jetski than a CRAB, it is still hard
to transfer it across the planet. Therefore, it
has an average score in flexibility.

Figure 5: Jetski With Echo Sounder

Figure 6: Method Jetski

• Low Cost: As the data gathering is faster
than the CRAB, the manpower and therefore
the cost is lower. However, it still requires
rather specialized equipment.

• Accuracy: Through the use of an RTK GPS
and an echo sounder, the error of measure-
ments is approximately only a couple of cen-
timeters. This is extremely accurate for coastal
monitoring purposes.

• Spatial Range: On the other hand, due
to the high amount of effort and specialized
equipment necessary, measuring a more ex-
tensive stretch of coast becomes far more time
consuming compared to other measuring tech-
niques.

• Temporal Range: Like mentioned above
and like the CRAB, the amount of effort go-
ing into data gathering makes it unattractive
for long term measurements. Especially if
daily data is required.

• Low Effort: Due to the need for an oper-
ator on every jetski and people needed for
support activities, the amount of effort that
is required for measuring with jetski’s is sig-
nificant.
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Figure 7: Rating Jetski

2.2.1 Long Term Projects

Similar to the sand engine at the Monster coast
in the Netherlands, there are multiple test sites
at which extensive sets of coastal data are avail-
able. At Duck, in North Carolina, there have been
multiple studies. Furthermore, there has been a
beach morphology monitoring program along the
Columbia River littoral cell. These locations are
located at the coasts of Oregon and Washington,
USA. At the latter location, Ruggiero et al. (2005)
researched the seasonal and interannual morpho-
logical variability of a highly dissipative beach. The
research used real-time kinematic differential global
positioning system survey methods, which included
the use of GPS receivers in terms of a hand-held
data logger, a jetski mounted GPS logger and a
vehicle mounted GPS logger. Whereas seasonal
variability was discovered and described, the report
states that distinct differences in large-scale coastal
behavior is still not understood.

Furthermore, Lippmann et al. (1993) researched
the sand bar system at the above mentioned United
States Army Corps of Engineers Field Research Fa-
cility at Duck, North Carolina. The bars were mea-
sured daily for a five year period. For the inner bar,
conventional methods were used. However, for the
outer bar, video methods were used where wave
breaking indicated the position of the bars qual-
itatively. Also, research into long term sand bar
behavior which gathered data from the Dutch, US
and Japanese coast described the proportionality
of depth variations in the coastal region (Ruessink
et al., 2003b). Once again, this report states that
linear regression analysis between bar parameters
and hydrodynamic parameters are inconclusive.

As coastal behavior is still not understood ex-
tensively, in combination with future societal coastal
challenges, the need for research is still growing.
Subsequently, the need for data is also growing.
Therefore, is it still beneficial to put effort in re-
searching new data collection methods.

2.3 Video Monitoring

Throughout the twentieth century, different scien-
tists have started using new technologies to gather
coastal data. As early a in 1989, Lippmann and
Holman wrote about using video imagery for coastal
surveying. They used the imagery for quantifying
sand bar morphology. By indicating dissipation of
wind waves and swell over the crest of a breaker
bar, their location could be indicated with errors of
less then 35 %. Later, these researchers from Ore-
gon State University pioneered the Argus camera
framework to standardize coastal video monitoring.

Argus Camera System Coastal video systems
were developed with the primary aim of improving
our scientific understanding of diverse nearshore
systems and how they respond to forcing by waves
and tides. This was the primary motivation for the
initiation of the Argus Programme (Holman and
Sallenger, 1986; Holman et al., 1993a,b; Aarninkhof
and Holman, 1999; Holman et al., 2003). The sys-
tem is basically a multitude of cameras mounted on
a tower that monitors a stretch of coast (see figure
8). It was by using this technology that it became
possible to constantly monitor a coastal stretch of
about 5 km. In the early stages of Argus, among
other purposes it was used for detecting coastlines
(Plant and Holman, 1997).

Figure 8: Method Argus System

Apart from gathering data on itself, video im-
agery can also be used to improve other coastal
monitoring programs. Smit et al. (2007) explored
video-imagery for the purpose of coastal evolution.
They found that the inclusion of monthly video-
derived data was found to improve confidence inter-
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vals for predicted shoreline evolution, and also facil-
itate more sophisticated data exploration. The re-
search focused on indicating intertidal coastline lo-
cation (TICL) and the intertidal momentary coast-
line (MICL). The Argus imagery was found to sig-
nificantly decrease the width of the confidence in-
terval. Lastly, they found that intertidal bathymet-
rical data could be beneficial to nearshore flow and
sediment transport forecasts. Also using Argus,
Aarninkhof et al. (2003) researched video imagery
to map intertidal beach bathymetry. Automated
pixel clustering was used to identify a boundary.
Thereafter, concurrent tide and wave data was used
to calculate the elevation of the intertidal shoreline.
According to this research, the method is accurate
up to 15 cm. Currently, data from Argus stations
is used in combinations with a water depth inver-
sion algorithm called cBathy. In this was, an Argus
station acquired data from which a bathymetry is
calculated a couple of times per day.

When comparing the Argus system with other
mapping techniques, there are clear distinctions be-
tween their scores (see figure 9):

• Flexibility: As the Argus system has to be
constructed and is fixed at a certain location,
its flexibility is limited.

• Low Cost: Also, due to the use of special-
ized equipment the construction cost espe-
cially makes it financially intensive.

• Accuracy: Whereas there is still an inver-
sion error because the water depth is not di-
rectly measured, due to the high temporal
range, the water depths can be estimated rel-
atively well.

• Spatial Range: The system cannot easily
be moved. However, it can monitor a stretch
of coast of a couple of kilometers. Therefore,
the methods score in terms of spatial range is
average.

• Temporal Range: When looking at the tem-
poral range, the Argus system scores well.
This is because the monitoring is constant for
years on end.

• Low Effort: Whereas there is theoretically
not a lot of effort going into gathering images
once the system is operational, getting the
system operational and creating useful data
from these images still takes effort.

low cost
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flexibility

low
effort
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range
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Figure 9: Rating Argus System

Other Video Monitoring Efforts About 20
years after the innovation of Argus stations, a sim-
ilar camera setup was developed by Taborda and
Silva (2012) which they called COSMOS. This tech-
nology comprehends a lightweight video monitoring
system. It is portable, low-cost, robust and easy to
install and can be used to monitors several coastal
features. A further goal for the surveillance system
is to expand its features and create a coastal hazard
warning system.

Also attached to the Oregon State University,
Holland (1992) used video monitoring to quantify
the celerity of overwash waves. The images in-
dicated that the maximum overwash celerity ex-
ceeded 2 m/s. Also, the wave direction was eas-
ily accessible through the video imagery. Another
Argus video method to estimate intertidal coastal
properties uses a CMYK color model (Sobral et al.,
2013). With this technique, the intensity of the
different color bandwidths Cyan, Magenta, Yellow
and Key are compared. This method was found to
be highly usable to distinguish water surface from
beach surface, and thereby indicate the waterline.

A different use of optical monitoring is the op-
tical current meter. According to Chickadel et al.
(2003) an optical current meter can measure the
longshore component in nearshore currents. This
method uses short videos. A model of the veloc-
ity spectrum is used to calibrate the observed data
with the longshore velocity.

Generally, a lot of research is done regarding the
exact coastline position. Kroon et al. (2007) have
researched the general application of video systems
for coastline management. They developed video-
derived parameters to monitor the evolution of the
coastline. These parameters were called Coastal
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State Indicators (CSIs). Primarily the shoreline po-
sition is discussed as indicator. According to this
research, the waterline positions can be used to de-
termine shoreline contours and beach volumes. It
was shown that the Coastal State Indicators facil-
itate the measurement of coastline evolution. It
is stressed that especially the ability to measure
closely before and after an extreme event makes
videos valuable to coastal zone management.

It has been established that coastal morpholo-
gies are highly dynamic and therefore variate in
both the temporal as the spatial scale. By using re-
mote sensing imagery, Ruessink et al. (2013) mon-
itored the longshore variability of sandbars. They
used numerical modelling and data-model integra-
tion to further research the finite-amplitude behav-
ior of sandbars and found that the straightening
(morphological reset) of alongshore variable sand-
bars not only happens when waves are erosive and
highly energetic, but also in low-energy situations.

Unmanned Aerial Vehicles Also developed for
military purposes are Unmanned Aerial Vehicles
(UAVs). There are several types of UAVs. The
first ones were air balloons and were used as early
as 1849. Other types are stationary winged and ro-
tary winged UAVs. Whereas the stationary winged
UAVs are more energy efficient and used often by
the army, rotary winged UAVs have the advantage
that they are able to hover at a specific location.
Therefore, in coastal monitoring it is usually the
latter type that is used.

Due to the dynamic nature of coastal areas, re-
searching it requires the ability to do quick mea-
surements (Holland et al., 2010; Brouwer et al.,
2015; Turner et al., 2016). Unmanned Aircraft Sys-
tems are shown to be a reliable and adaptive way of
measuring. These researchers show that by using
an optical sensor, several coastal parameters can be
measured, including wave period, wave direction,
nearshore currents and bathymetry.

Satellite In coastal monitoring there are several
ways of using satellite data. A regular (passive) op-
tical sensor that captures a single photo can indi-
cate wave direction and length but also pollutants,
algae (Stumpf et al., 2003) and bathymetry (Li
et al., 2016). To be able to track pollutants, Kutser
et al. (1998) used passive optical sensors that can be
gathered from satellites to monitor coastal waters.
They found that a spectrometer could distinguish
several types of suspended matter in the water.

Radar / Lidar Whereas passive optical sensors
only record the radiation waves that are reflected
by the earth’s surface, active sensors like radar first
emit a signal and capture what is left of it after it
has reflected off the earth. Lidar uses the same
technology as radar, however, it uses light waves
instead of radio waves (Guenther et al., 2000).

Radar images have been used to determine ocean
wave direction and surface currents (Young et al.,
1985; Teague, 1986; Son et al., 2007), but also oil
spills and shallow bathymetric data (Johannessen,
2000). Furthermore, Trebossen et al. (2005) looked
at sedimentation and erosion processes and found
that with the use of radar, coastal monitoring could
also be done during cloudy circumstances.

Young et al. (1985) used a marine radar to record
spatial images. Using these images, a three dimen-
sional wave spectrum was compiled. After indi-
cating the discrepancy between the spectral energy
and the dispersion relation, they found the sur-
face current induced by the Doppler shift of the
wave frequency. Whereas this research was done
using micro wave radar images, Barrick (1980) and
Teague (1986) used high frequency radars to re-
search the Doppler shift and estimate wave height.

Lidar has also been used to quantify beach to-
pography Sallenger et al. (2003). The researchers
used data from NASA’s Airborne Topographic Map-
per (ATM) which was compared to measurement
acquired by more conventional methods. As the
total error they found in their research was ap-
proximately 15 cm, one could argue that also wave
height could be estimated by this type of measur-
ing.

2.4 Indirect Bathymetry Mapping

Instead of analyzing coastal systems directly, the
video based depth inversion technology uses indi-
rect observations to estimate coastal features. In
this report, especially the water depth in a coastal
system is elaborated. There are two main tech-
niques to compile a bathymetry through remotely
sensed data. The first one uses the different spec-
tral bands to estimate water depth and compile a
bathymetry. It uses the difference in water pen-
etrating performance of the spectral bands from
which (after calibration) water depth can be in-
verted. The other method analyzes hydrodynamic
observations after which it estimates water depth
based on known physical processes in the nearshore.

Multispectral Imaging The first method for es-
timating water depth just uses the different col-
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lected spectra of photographs. This method is called
multispectral bathymetry mapping and uses the
different color bands of a camera’s spectrum. As
different colors penetrate through water with a dif-
ferent depth, the difference can give an indication
regarding the water depth. A simple method for
estimating water depth with multispectral imagery
is proposed by Lyzenga et al. (2006). Whereas wa-
ter pollution and density variations could be in-
fluencing measurements, the report states that the
results are accurate with an aggregate root mean
square error (rmse) of 2.3 m over all datasets. Also,
Pacheco et al. (2015) uses a similar technology to
map a relatively complex coastal situation with a
barrier island. The rmse was found to be 0.89 m in
waters up to 12 meters of depth.

A similar technology is spectral matching (Mob-
ley et al., 2005). This method acquires an electro-
magnetic spectrum and compares its intensity with
a look-up-table. The authors created a database
which matches water depths with remote-sensing
reflectance (Rrs). Thereafter, these Inherent Opti-
cal Properties are used to invert water depth from
the measured spectrum. When compared to echo
sounder data, this report shows that the proposed
technology is accurate up to 5%. The difference
between an approach like this and remote sens-
ing with UAVs is the need for specialty equipment.
Even though the Ocean Portable Hyperspectral Im-
ager for Low-Light Spectroscopy (Ocean PHILLS)
which was used in the research existed entirely of
commercially available products (Davis et al., 2002),
it is still an intensive effort to build one.

Furthermore, a different research covered wave
breaking patterns through remote sensing. This
study was done by Van Enckevort and Ruessink
(2001) who used time exposure video images to
derive the high-intensity color bands, which they
found to be suitable to monitor large scale and
long term sand bar movement. Even though this
seemed to work well, they also note that there is a
discrepancy between the high-intensity bands and
the actual sand bar position of about O(10m).

2.4.1 Wave Parameters

Hydrodynamic factors in coastal imagery can also
be used to analyze sub-surface processes. For in-
stance, the way waves move through coastal waters
could indicate certain features of the particular sys-
tem. This is less of an observing and more of a
calculating strategy as it always requires a certain
algorithm to compile depth data from the images
which are actually recorded.

When trying to induce water depth from re-
motely sensed imagery, some conversions need to
be determined. An obvious step that links physi-
cally observable phenomenons with depth are wave
parameters. As the nearshore consists of interme-
diate (wave length / water depth > 2) to shallow
(wave length / water depth > 20) water, the celer-
ity at which the waves propagate is related to the
water depth. For shallow water conditions and as-
suming a constant water depth, waves would prop-
agate according to the following relation (Holthui-
jsen, 2014):

c =
√
gh (1)

Where c is the wave celerity, g is the gravita-
tional acceleration and h is the water depth. How-
ever, due to hydrodynamic effect in the surf zone
like dissipation and shoaling, this theory does not
hold. When regarding wave height in relation to
the water depth, Ruessink et al. (2003a) empirically
derived a new functional form for the wave height-
to-depth ratio (γ). The research states that γ is not
constant cross shore, but depends on the product
of the local wave number k and water depth h.

Holthuijsen (2014) shows the following relation
between wave number, frequency and water depth.

c = L/T = σ/k (2)

σ = 2π/T (3)

k = 2π/L (4)

σ2 = g · k · tanh(k · h) (5)

h =
1

k
· tankh(

σ2

g · k
) (6)

Therefore, the wave frequency (sigma) and the
wave number (k) are required for water depth cal-
culations.

Also, Holman (1981) investigated onshore and
longshore velocities with onshore instruments. The
research focused on the infra gravity energy of waves
in the surf zone. The research showed that the in-
fra gravity amplitude approximately linearly varied
with the incident wave amplitude.

Wave Shoaling When wave groups enter shal-
low water, the group velocity decreases. This is
because wave celerity is related to water depth. As
the energy travels with the group velocity which is
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Figure 10: Coastal Hydrodynamic Processes

decreasing, conservation of energy results in an in-
crease in wave height. As a result, also the wave
length decreases. This phenomenon is called shoal-
ing (see figure 10). Lippmann and Holman (1991)
used time series of image intensities at known lo-
cations, which they compared to in situ pressure
gages. They found that their measurements of phase
speed and wave angles were consistent with the first
order shoaling theory.

Wave Number Another hydrodynamic factor is
the wave number. This measure is indicated as the
spatial frequency. It counts how many waves there
are in a particular distance. Plant et al. (2008) have
reviewed approaches to estimate ocean wavenum-
bers from time series imagery. They elaborate on
two fundamentally different approaches to estimate
the wavenumbers. The first one they mention is a
so-called power spectral density approach, which
identifies wavenumbers where image intensity vari-
ance in maximized. The second approach identi-
fies wavenumbers where intensity coherence is max-
imized. This approach uses cross-spectral correla-
tion. The research found that the latter approach
generates a resolution which is a factor ten times
better than the first approach. Furthermore, a rule
of thumb is provided which states that the short-
scale cross-shore patterns may be resolved if they
are about ten times longer than the average water
depth over the pattern. This means that in a wa-
ter depth of about 0.5 m, spatial patterns with a
length of 5 meters could be indicated.

2.4.2 Depth Inversion using Wave Celerity

Inversion of depth through (aerial) imagery has been
attempted for a long time. According to Williams
(1947), if the frequency of dominant narrow-banded
swell is known, a single photograph could be enough
to estimate water depth.

Also, Dugan et al. (2001) state that without
knowledge of the dominant frequency, a mere two

photographs is enough to deduce the water depth.
This can be done by calculating the wave celerity.
The depth is obtained by the surface gravity wave
dispersion relation:

ω = (g · κ · tanh[κh])1/2 + U · κ (7)

Where ω is the frequency (2π/T ), κ is the scalar
wave number magnitude (2π/λ), κ is the wave num-
ber vector, g is the acceleration due to gravity, U
is the water velocity vector (assumed constant), h
is the local water depth and the celerity c is ω/κ.

On similar notes, as wave length and period
have been used to induce water depth on multi-
ple occasions(Piotrowski and Dugan, 2002; Stock-
don and Holman, 2000), most of the focus has re-
mained on celerity. Especially phase speed of shoal-
ing waves has been used to deduce water depth
using the dispersion relation. Mulitple researchers
have adopted the use of a variety of video imagery
for this purpose. Stockdon and Holman (2000) used
remotely operated video cameras to estimate the
shoreward propagation speed of waves. They used
linear wave theory’s dispersion relation to infer wa-
ter depth. An error was found of approximately
13% of the water depth. However, it was estab-
lished that nonlinearities in waves accounted for a
significant part of the error. They also found that
the performance of the model increased during low
amplitude swell.

Also Holland (2001) researched depth inversion.
He also used the linear dispersion relation to calcu-
late water depth and found an accuracy of 3 to 9
% of the observed water depth. This was done by
measuring phase speed of shoaling waves with pres-
sure gauges. According to the author, gauge data
can be used similarly to remotely sensed imagery.

Other research primarily focusing on the inter-
tidel beach profile was done by Aarninkhof (2003).
He focused on the visible signature of nearshore
processes, which can be monitored remotely. Ac-
cording to his research, it could be worthwhile trad-
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ing some accuracy for the cost-efficiency of remote
sensing technologies. A Intertidal Beach Mapper
was created to make a three-dimensional beach im-
age between low and high tide. This method was
shown to be up to 15 cm accurate along a coastal
stretch of two kilometers. Furthermore, a Subtidal
Beach Mapper was created to quantify surf zone
bathymetry from video intensities cross shore. The
bathymetry was updated/calibrated by comparing
the Mapper’s wave dissipation measurements with
with common wave dissipation models and adjust-
ing the bottom profile as such. The bathymetry
errors where found to be between 20 and 80 cm
throughout the nearshore.

Also using wave dissipation, Van Dongeren et al.
(2008) created a data-model assimilation method
called Beach Wizard. The model uses estimations
of wave dissipation and wave celerity to calculate
subtidal bathymetry. They state that the advan-
tages of their technique is that it is based on multi-
ple sources of data and depends on few parameters.

cBathy To be able to map nearshore bathymetry,
Holman et al. (2013) developed an algorithm that
converts wave surface motions into water depths
which they called cBathy. Dominant wave frequen-
cies are estimated by Fourier transformations and
also wave numbers are derived. The frequencies
and wave numbers are paired and coupled to wa-
ter depth. The bias of their depth estimates was
0.19 and the root-mean-square error 0.51 m. It was
shown that the algorithm works better for smaller
waves. It is based on long time series observations
of surface wave motions and is constructed in three
parts:

1. Frequency-dependent analyses of several wave
parameters.

2. Frequency-independent estimation of the best
single depth.

3. Estimation of running-averaged depths.

In the first phase, dominant frequencies are es-
timated by Fourier transformations for the coor-
dinates of a certain area of interest. Also, wave
numbers are derived. The spatial resolution is kept
high and coherent spatial structures at each fre-
quency are extracted. The second phase depths
are estimated to fir the pairs of frequencies and
wave numbers in accordance with the linear disper-
sion relation. Lastly, phase three uses a so called
Kalman filter to smooth out the depths found in
phase two.

Indirect Bathymetry Mapping with Radar /
Lidar Instead of satellite and aircraft data, also
radar and lidar data has been used to induced wa-
ter depth. An application of marine radar imagery
to indicate wave dispersion was done by Trizna
(2001). Like in similar reports, in relatively deep
water (deeper than 5 m) and with low to moderate
wave heights, this technique managed to retrieve
the correct depth.

Istead of using the commonly known relation
between linear wave dispersion and water depth,
Senet et al. (2008) suggested a new approach which
they call the Dispersive Surface Classificator (DiSC).
The method uses the nautical X-band radar image
sequences of sea surface waves to estimate the water
depth. They used a ground-based radar to acquire
the data which were verified by echo sounder mea-
surements. Whereas this technology seems promis-
ing, it still requires significant financial resources
when compared to UAV measurements.

As light waves have different properties then ra-
dio waves, lidar technology is generally used for in-
dicating altitude properties. The US Army Corps
of Engineers created the SHOALS system, which
includes the use of lidar for coastal monitoring pur-
poses. Because the lidar is mounted to an air-
plane, this technology increases the survey speed
and scope (Irish and Lillycrop, 1999). The tech-
nology has a stated vertical accuracy of 15 cm and
can map bathymetry through depths of up to 40 m
(Irish et al., 2000).

Indirect Bathymetry Mapping with Satel-
lites Satellites are generally used in combination
with radar or lidar equipment. Several scientists
have used satellite data to indicate water depth
(see figure 11). For instance, the SPOT (Satellite
Pour l’Observation de la Terre) is a french initiative
to support scientists. It entails multiple satellites
launched between 1986 and 2014 to monitor the
earth’s surface. Essentially using the same tech-
nique as Williams back in 1947, Leu et al. (1998)
and Wu and Juang (1996) did similar research us-
ing data from SPOT satellites instead of aircraft
imagery. Wave spectra were analyzed from the high
resolution images obtained by the satellite and used
to infer water depth. Errors in estimating water
depth of about 10% were found.

When comparing satellite bathymetry mapping
with other methods, the most striking features is
a more extensive temporal and spatial range (see
figure 12). On the other hand, the accuracy is re-
garded to be low:
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Figure 11: Method Satellite

• Flexibility: As satellite images are exten-
sively available, there are a lot of coastal ar-
eas of which data can be found. However,
this data is mostly limited to one photograph.
Therefore, the data is not always usable and
the flexibility is relatively low.

• Low Cost: Launching a satellite for the sole
purpose of coastal monitoring is extremely
expensive. However, because images taken
from satellites can be shared between differ-
ent fields of study, the cost drops significantly.

• Accuracy: Because the satellite is not in-
volved in direct measurement of water depth
but only records signals reflected by the earth,
it is difficult to estimate bathymetry.

• Spatial Range: Due to the availability of
an extensive data set, images from across the
planet can be collected.

• Temporal Range: Because satellites keep
on orbiting, they can be used to collect data
of a certain location regularly. Therefore,
similar images can be found of the same area
over time.

• Low Effort: Collecting the data is relatively
straightforward. However, there need to be
parties that have data available of the spe-
cific location. Also, as the data is acquired
differently between satellites, using these im-
ages to compile a bathymetry takes effort.

Apart from mapping water depths by using wave
celerity, satellite images can also be used for multi-
spectral imaging (see section 2.4). This technology
is more direct, but requires calibration due to sus-
pended sediments.
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Figure 12: Rating Satellite

Indirect Bathymetry Mapping with Aerial
Vehicles Where dry parts of the earths surface
get eroded by rain and wind, the coastal area is in-
fluenced by the water movements induced by waves
and tides. As the latter mechanism is far more en-
ergetic, the coastal system is much more dynamic
and can change from day to day. Therefore, the
coastal area requires more and quicker monitoring
techniques. Throughout time, aviation has been
considered a resourceful area of monitoring (see fig-
ure 13). Due to its relatively dynamic employabil-
ity it can capture data rapidly. For coastal moni-
toring different kinds of aerial vehicles can be used.

Dugan et al. (2001) used optical measurements
captured from an aircraft to research water depth
and surface currents. They used images of nearshore
shoaling waves. Location data from a GPS/INS
(Internal Navigation System) is used to adjust the
image to a rectilinear grid, after which waves can
be identified. After a Fourier transform, they ob-
tained frequency-wave number spectra. From these
spectra, the wave length, frequencies and propaga-
tion speed could be estimated. After this, the re-
searchers estimated the water depth, using a best
fit approach between the theoretical dispersion re-
lation. Also, airborne vehicles have been used in
combination with lidar (Guenther et al., 2000).

When compiling a rating for the use of tradi-
tional aerial vehicles for coastal monitoring, espe-
cially the extend of the spatial range is notable (see
figure 14):

• Flexibility: Gathering data by traditional
aerial vehicles is by no means flexible. It takes
a severity of permits and organization to get
a plane airborne.
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Figure 13: Method Aerial Vehicle

• Low Cost: Also, airplanes required a signif-
icant amount of financial resources.

• Accuracy: Furthermore, as also airplanes do
not measure water depths directly, they need
to be calculated. This goes hand in hand with
significant errors.

• Spatial Range: Once an airplane is air-
borne, the recorded data can span an extremely
large area.

• Temporal Range: Like with Jetksi e.g., as
the pictures taken by plane are a single effort,
temporal monitoring will involve chartering a
plane on a month to month (or year to year)
basis. It is not a constant monitoring system.

• Low Effort: Lastly, getting an airplane with
monitoring equipment operational, is an ac-
tivity which involves a significant amount of
effort.
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Figure 14: Rating Traditional Aerial Vehicle

UAV Bathymetry Mapping With the rise of
rotory Unmanned Aerial Vehicles, new data col-
lection methods were introduced (see figure 15).
When compared to fixed wing aerial vehicles, in-
stead of having a constant speed, UAVs can hover
and record steady imagery. The data captured by
a UAV was comparable to the data acquired by
Argus stations. Holland et al. (2010) first recti-
fies the images, after which pixel intensity is used
to determine spatial relationships. Subsequently,
linear wave dispersion was applied to calculate wa-
ter depth. Also Vousdoukas et al. (2011) created a
(semi automatic) technique for environmental as-
sessment using a UAV. They focused on mapping
sand bars, rip channels and dimensions of the surf
zone.

Holman et al. (2011) more specifically looked
into bathymetries. They also researched the use
of wave celerity to estimate nearshore bathymetry.
Compared to fixed onshore cameras, UAV videos
are less steady and the data is generally shorter due
to limitations in the UAV battery life. These dis-
advantages were researched and it was found that
video images captured for a short of 50 seconds
could already have sufficient data for bathymetry
analysis. Even if only 50% of the record would stay
intact (due to unsteady recordings), a full Fourier
transform could be implemented, leading to the
desired bathymetry. Also, navigational errors can
be stabilized by using reference points. Test runs
yielded results which had errors of 0.51 m (stan-
dard deviation) in shallow water (0-4 m), and 1.19
m in deeper water (6 m). 73% of estimates in the
nearshore were within 1 m of actual depths.

Advantages of the UAV method over fixed Ar-
gus stations are especially its flexibility. Whereas
it taken extensive effort to set up an Argus sta-
tion, a drone flight can be done within a couple of
hours. Furthermore, as in the Netherlands drones
can legally reach altitudes of 120 meters, their view-
point is higher than Argus towers. This could indi-
cate that in the acquired drone data, waves could
potentially be analyzed in a more accurate manner.
Also, due to the altitude, offshore locations would
have a different spatial resolution.

When looking as UAVs as a way of gathering
scientific data, there are a number of ratings in
which it stands out (see figure 16):

• Flexibility: As a drone fits in a suitcase, it
can travel anywhere a human can. Therefore,
it is highly flexible. Another part of the flex-
ibility is that it is a consumer vehicle. As
drones are widely available, one could also
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Figure 15: Method Consumer UAV

instruct someone to acquire drone footage re-
motely on another part of the world without
a lot of effort.

• Low Cost: The consumer drone market is
growing rapidly. Due to the rise in demand,
the industry is getting increasingly efficient
and prices of relatively well engineered po-
tential measuring equipment drop. As an af-
fordable consumer drone comes with a lot of
internal sensors which have a lot of poten-
tial for scientific research, this method is rel-
atively inexpensive.

• Accuracy: Similar to aerial and satellite ob-
servations, the drone images do not measure
water depth directly. The inversion algorithm
is estimated to give a relatively large error.

• Spatial Range: The space that is measured
is limited to what is captured by the drone.
And due to the limited range of the battery
it is hard to cover a whole stretch of coast
quickly. However, as the altitude of the drone
is much higher that that of an Argus station,
larger areas can be monitored by one camera.

• Temporal Range: Like jetksi echo sounders,
the bathymetry collected by the UAV is a
snapshot of the coastal situation. Therefore,
to measure a stretch of coast on a longer term,
more individual measurements have to be done.

• Low Effort: As measuring potentially just
involves going to the beach and flying the
drone, the amount of effort it takes is rela-
tively low.

In a more recent study, Brouwer et al. (2015) in-
dicated that UAVs are extensively suitable for mon-
itoring the surfzone. They stress that especially the
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Figure 16: Rating Consumer UAV

flexibility is an advantage of UAVs over more con-
ventional surveying methods. The pixel resolution
can be georectified to between 0.01 and 1 m and the
technology has a reprojection error of O(1m). Even
though their spatial resolution is moderate, due to
the high temporal resolution it is stated that the
method is especially suitable for researching surf-
zone kinematics, and dispersion/advection of pol-
lutants.

Also Turner et al. (2016) focused on coastal
monitoring using UAVs. They focus on on off-the-
shelf drones, and state that UAVs with RTK-GPS
systems have sufficient accuracy to eliminate the
need for on-ground control points. Furthermore,
it is stated that UAVs are rapidly usable for post-
storm measurements.

Consumer UAV vs Conventional Bathymetry
Mapping Methods When comparing the UAV
technology to its substitutes technologies (e.g. jet-
skis with echo sounders & Argus systems), it is
shown that especially the amount of flexibility and
the low amount of effort and cost stand out (see fig-
ure 17). Its ratings are lower in terms of accuracy,
and temporal and spatial range. However, in a sig-
nificant amount of coastal monitoring issues, these
factors are not crucial. UAV bathymetry mapping
could be used in a number of occasions. One could
hypothetically ask someone in a random country
without any available data to take a video of a spe-
cific coastal region and distract a full bathymetry
from these images. This would make coastal mon-
itoring far more flexible and increase to possibility
to gather a significant amount of data without a lot
of effort.
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Figure 17: Rating Comparison

The UAV technology can be beneficial for cer-
tain future coastal monitoring purposes. It exploits
a product which is ever increasing in efficiency due
to its growth in the consumer market. In the follow-
ing, some specific features of the UAV bathymetry
mapping method are elaborated.

Grid Resolution The resolution of the grid that
is used for coastal research directly influences the
usability of the results. Plant et al. (2009) re-
searched bathymetric filtering on nearshore process
model results. They found that the sensitivity of
wave height and flow to different bathymetric res-
olutions varies. Especially the cross shore variabil-
ity seemed to be influencing wave height predic-
tions, whereas the longshore variability influenced
the flow predictions.

Camera Properties Each camera has different
properties in terms of e.g. pixel resolution and
capture angle. Holland et al. (1997) developed an
approach to quantify nearshore physical processes.
They describe a way to convert image coordinates
into ground coordinates. In the article, calibration
of the camera model, which can be used for sev-
eral fields of study, is discussed. Topics that can be
researched according to them:

• nearshore fluid processes

• sand bar length scales

• foreshore topography

• drifter motions

On the same topic, Holman et al. (1993) elabo-
rated on the use of rectified time-exposure images.
At that time, researchers were solving the problem
of rectifying images taken by Argus camera’s. Ac-
cording to their research, there images are a great
help to long term studies regarding morphological
variability. However, the use of video imagery be-
gins with the physical understanding of a camera
(Holman and Stanley, 2007). Also, it is important
to understand the relation between the optical sig-
nals and the geophysical signals they represent.

When regarding the frequency and pixel size,
Piotrowski and Dugan (2002) did extensive research.
According to them, when estimating bathymetry,
pixel sizes of 3 to 4 m and framing rates of approx-
imately 0.5 Hz (one picture every two seconds) are
sufficient for providing adequate results.

Backend Improvement It might also be possi-
ble to increase efficiency of the results afterwards
by combining data from different sources. Moulton
et al. (2014) developed a method to increase spatial
density and map the evolution of the bathymetry
throughout time. The method updates watercraft
echo sounder data which is infrequent with the use
of nearly continuous sampling altimeters. Accord-
ing to the research, the updated maps are more
accurate than maps obtained by using either con-
ventional water crafts or maps created by using al-
timeters alone. However, questions could be raised
whether it is worth it going through the efforts of
setting up the altimeters, when a quick and rough
estimate would suffice.

2.5 Image Stabilization

In both the scientific community as the entertain-
ment industry, a disturbed (shaky) image is consid-
ered to be undesirable. Unstable imagery is char-
acterized by changes in camera orientation in an
unorderly fashion up until the point that limited
to no data can be distracted from the images. To
be able to eliminate these disturbances, the main
method of stabilization is mitigating sudden move-
ments of the recording device.

There are two basic ways of keeping video’s
from being unstable. Firstly, there is a hardware-
based stabilization comprising of a camera sensor
that is detached from the base of the camera, which
is assumed to be the cause of the instabilities. This
method is applied during the recording sessions.
In addition, post-recording stabilization comprises
software-based methodology.
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2.5.1 Optical Image Stabilization (OIS)

One of the most basic ways of increasing stabiliza-
tion of video footage entails the decrease in move-
ment of the camera aim. This can be achieved by
simply putting the camera on a tripod or laying
it down on solid ground. In some practices (e.g.
handheld devices or drones), above mentions meth-
ods are inconvenient as the device that the camera
is attached to is generally in motion. Therefore,
in the past decades, researchers have been focus-
ing on OIS. In contrast to digital stabilization, OIS
is a hardware-based solution that reacts to move-
ments in real time. The method ensures that the
camera lens and the camera sensor are aligned, and
is based upon movements of the device registered
by internal gyroscopes or linear accelerometers (Al-
grain and Quinn, 1993). These sensors are called
Internal Measuring Units (IMUs). The registered
movements are compensated by adjusting the angle
of either the lens or the image sensor.

The first type of OIS is a lens-based applica-
tion. This method adjusts the axis of the lens to
keep the image tracked on the sensor. As the po-
tential movement of the lens is limited, the effec-
tiveness of this method is also limited to correct-
ing small movements. The second type is a sensor-
based application, which changes the angle of the
sensor based upon the gyroscopic readouts. Fur-
thermore, the whole camera (lens and sensor) can
be detached from the body of the device and sta-
bilized externally. This type of stabilization device
is called a gimbal (Windau and Itti, 2011).

2.5.2 Digital Image Stabilization (DIS)

Contrary to OIS, DIS is a software-based image sta-
bilization. This can be done either with or with-
out the readouts of the IMU’s. When the readouts
are used real time, the technology is called Electric
Image Stabilization (EIS). Subsequent images are
shifted from frame to frame to counteract sudden
motions (Chereau and Breckon, 2013). To be able
to shift the images, a buffer zone on the edge of the
image is used and cropped where necessary. This
leads to a decrease of information.

Lin and Fuh (2006) described several different
types of DIS. The first one is similar to the tech-
nique described above which they called DIS by
Moving Window. Subsequently, they described a
method that stabilizes imagery by using higher ISO
speed. By raising the ISO speed up to 620, 800 or
higher, the faster shutter speed can provide more
stable imagery. They do note whether with this
method the image quality decreases.

Another method of DIS is described by Chen
and Fuh (2005). The authors elaborate on a su-
per resolution concept to reconstruct blurred im-
ages. Two input images are used in combination to
create a sharp image. The method works well for
images that are only partially blurred. However,
when both are blurry throughout the image, the
sharpness will not increase.

Furthermore, Litvin et al. (2003) created a prob-
abilistic image stabilization method. They used
a probabilistic estimation framework to separate
unwanted vibrations from intentional camera mo-
tion. Their method analyses changes in subsequent
frames and through estimated parameters makes a
distinction between accidental and incidental mo-
tions.

According to Matsushita et al. (2006), most DIS
methods, although being effective, decrease the size
of the stabilized video. Therefore, they propose a
method that does not alter the video resolution or
size, whilst still stabilizing the image. The tech-
nique naturally fills up the missing image parts
when comparing the blurry frame to the neighbor-
ing frames.

Pixel References In coastal engineering, there
has been an extensive desire to measure particle
flow speed. This data is used to estimate dynamic
hydraulic models or river flow rates with subse-
quently its sediment transport. On the topic of
particle image velocimetry, the use of an optically
transparent test section with an illuminating light
source, a recording device and a computer for post-
processing was proposed. In this way, in a very
controlled environment, flow rates were automati-
cally detected (Dill et al., 1995). Based on a similar
technique, Fujita et al. (2007) developed a method
aiming to identify velocity fields in laboratory, but
also in field conditions. They called the method
Large-Scale Particle Image Velocimetry (LSPIV)
and used it to measure floodplain flow in a full-scale
river. For the real world testing, a transformation
needed to be done between the captured coordi-
nates and the physical coordinates. Following these
efforts, Fujita et al. (2017) developed image stabi-
lization for the application of river flow measure-
ments. This technique creates masks of individ-
ual snapshots and compares it to a reference image
mask, after which it can be lined out and adjusted.
This method is shown to also work when the UAV
is moving, provided that the image is taken almost
normal to the water surface.
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2.5.3 Rectified Video Stability

Where image stabilization has been severely im-
proved over the last couple of years, the video taken
by a DJI Phantom 4 consumer UAV can be consid-
ered to be sufficiently stable for coastal monitor-
ing purposes. Therefore, the transformation from
pixel coordinates to three dimensional coordinates
between subsequent images should ideally also be
sufficiently stable. However, as in current use, the
images are rectified individually, any error in rec-
tification accuracy, which is generally the case for
situations with limited Ground Control Points, will
results in instabilities in the rectified video. Small
changes in the calculation of the geometry can in-
troduce an instability with the same frequency as
the sampling frequency.

Efforts can be made to utilize neighboring im-
ages when rectifying videos. Image stabilization
methods can be explored which are similar to above
mentions techniques. However, instead of analyz-
ing pixels in subsequent images like Matsushita et al.
(2006) proposed, the research will focus on analyz-
ing pixel coordinates in subsequent images.

2.6 Societal Impact

Coastal monitoring influences a severity of people
in the coastal zone sometimes without them even
knowing it. It is for the benefit of the coastal soci-
ety as a whole that the monitoring process contin-
ues in an efficient manner. Researching effort can
provide useful tools to keep the population in these
specific areas safe.

When looking at societal impacts and the re-
lation between scientists and end user, Van Kon-
ingsveld et al. (2003) state that coastal research
programs are often too short due to divergence in
perceptions between the users of the knowledge and
the developers of the knowledge gathering tech-
niques. Between the on the one end purely sci-
entific approach and the on the other end purely
customer/user approach, a hybrid form is stated to
be a so-called ’driven’ approach. The driven part
of UAV monitoring is the extensive need for coastal
projects to determine water depths. Both in case
where a structure is proposed in the nearshore (e.g.
port, closure dam) and in assessing the risk of flood-
ing for the hinterland, several parties are focusing
on water depth mapping.

Furthermore, coastal monitoring can help in de-
cision making. Turner and Anderson (2007) focus
on the interaction between constant coastal obser-
vation systems and political decision makers. A
web-based beach management system is therefore

elaborated. A helpful tool is the CoastView project.
It uses video images to derive Coastal State Indi-
cators (CSIs) (Davidson et al., 2007). According
to this research, it is important for engineers and
coastal decision makers to collaborate in establish-
ing the CSIs as they directly initiate managerial
decisions.

Another use for video images which can help
improve CSIs is to manage dynamic navigational
channels (Medina et al., 2007). In navigation, the
consequences of a collision are significant. There-
fore, the channels need comprehensive monitoring.
This report quantifies Coastal State Indicators which
can be used to monitor the channels. In the cases
which are reported on, video systems are shown to
evaluate CSIs in a broad range of time scales.

Coastal monitoring can also be used to monitor
leisure activities. In their research, Jiminez et al.
(2007) define CSIs for beach recreation planning us-
ing video imagery. The two variables specified are
the level of beach use and the safety. Managerial
frameworks are presented for both variables, which
use the capabilities of Argus cameras.

Like described above, imagery of the coastal
zone can be used for more then just bathymetry
mapping. All different uses of these images can help
create a more comprehensive set of CSIs and there-
fore support decision makers in a more effective
way. However, it is not guaranteed that these tools
are effective. According to Van Koningsveld et al.
(2007), even though Coastal State Indicators are
effective support tools for coastal decision making,
the transfer of useful methodologies is not guaran-
teed. The research shows that especially simplicity
and robustness of CSIs is important.

2.7 Summary

This section of the report briefly elaborated on the
history of coastal monitoring as well as the pur-
pose of coastal monitoring. Also, the difference
was shown between direct and indirect bathymetry
mapping after which bathymetry accuracy and spa-
tial scales were attributed to the different meth-
ods. Furthermore, a distinction was made between
coastal monitoring with passive camera sensors and
a coastal monitoring with active radar or lidar.
Subsequently, coastal hydrodynamic processes were
briefly explained after which it was shown that it is
possible to calculate water depths from video im-
agery.
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3 Methodology

In the previous section, it has been established that
bathymetric data is useful for several purposes in
coastal monitoring. Therefore, to explore the pro-
cess and indicate potential improvements, this sec-
tion will elaborate on the different steps of the UAV
bathymetry mapping method.

3.1 Conceptual Model

The conceptual model as shown in figure 18 de-
scribes the way a bathymetry gets estimated us-
ing video footage recorded by an Unmanned Aerial
Vehicle (UAV). At first, a stationary flying drone
collects a video of a specified nearshore coastal re-
gion for approximately 15 minutes. Ground con-
trol points with high visibility will be located in
the area which are used for the image rectification
in the second phase. The rectification step links
the two dimensional UV coordinates of the pixels
in the recorded footage to their particular three di-
mensional coordinates in a user specified grid sys-
tem. The rectification will be done for every one
of the approximately 2000 recorded images. From
the geo rectified video, wave characteristics like fre-
quency, wave number and angle of incidence can be
used to match water depths and wave celerity based

upon the dispersion relation. Lastly, a bathymetry
is mapped by combining the water depths of every
single coordinate in a spatial structure.

The conceptual model shows several variables to
which in this section the characteristics are elabo-
rated. In each of the steps of the proposed method,
there are potential factors which could influence
the accuracy of the eventual bathymetry that is
mapped. This research proposes to give a prelim-
inary analysis to indicate which of these factors
could be the largest contributor to the mapping
error.

Population & Sample As mentioned before, com-
piling data in nearshore shallow water is an ex-
tremely resourceful activity. The literature review
states different techniques to gather this informa-
tion essential for coastal monitoring purposes. How-
ever, not every technology can be commenly used
in any coastal situation. The proposed method of
UAV bathymetry mapping regards hydrodynamic
physical processes in a nearshore environment. These
processes are considered to be valid throughout the
world and could in theory be applied anywhere.
For this research however, the stretch of beach in
Scheveningen, the Netherlands will be used.

step 1:
imaging

step 2:
rectification
stabilisaton

step 3:
depth

computation

water
depth

XYZ
coordinates

UV
coordinates

Figure 18: Conceptual Model

21



3.2 Data Acquisition

The proposed method uses an Unmanned Aerial
Vehicle to capture video imagery of a specific coastal
region. The acquired data regards a passive video,
captured with the camera that comes standard with
the UAV. This setup is primarily chosen to make
the surveying technique as generic as possible and
applicable by anyone owning a consumer UAV.

DJI Phantom 4 The UAV that was chosen for
this research is the DJI Phantom 4. DJI is widely
known as the most popular consumer drone man-
ufacturer at the moment of writing. Its Phantom
4 is situated in the higher end of their consumer
product segment and retails around 1500 euros.

Surveying Date To be able to validate the map-
ping method in the most efficient way, the imagery
was collected on and around the date when also de-
tailed jetski surveying was done. On Thursday the
9th and Friday the 10th of February 2017 the data
was collected.

Benchmark There are services which offer global
bathymetry maps through satellite data. However,
within meters, the error of this technology is rela-
tively high. Therefore, the computed bathymetry
data will be compared to an echo sounder survey
which will be conducted on the same day or in the
same week.

Analyzing Wave Data After for every image
taken by the UAV a projection was calculated, the
projections were displayed subsequently creating a
video of the wave conditions. Thereafter, for ev-
ery point in the area of interest, the pixel intensity
was analyzed. Subsequently, wave data like celer-
ity, phase, period and length was compiled.

3.2.1 Bathymetry Calculation

Throughout the last couple of decades, scientists
have put effort in creating several different methods
for using hydrodynamic processes in the nearshore
to estimate water depth.

Comparison As the bathymetry influences the
motion of water flowing through it, there are dif-
ferent techniques which distract water depth from
wave characteristics. The first stages of such tech-
nologies mapped the intertidal area of the beaches
(Aarninkhof et al., 2003). Subsequently in 2008,
Van Dongeren et al. created a Beach Wizard that

uses the estimation of wave dissipation and com-
pares it to numeral test bathymetries. They state
that the advantages of their technology is that it de-
pends on only a few parameters. Furthermore, sev-
eral scientists used a method based on the depth re-
lationship with wave celerity (see equation 7) (Hol-
land, 2001). Similarly utilizing the relation be-
tween wave celerity and water depth is the cBathy
algorithm which is describes in the literature review
(Holman et al., 2013).

The latter algorithm is considered the most ad-
vanced and accurate depth induction method. As
the technology is considered to be most promising,
this report focuses on the use of the cBathy method
for bathymetry estimation.

3.2.2 Variables

When considering data acquisition, in every step of
the process there are factors which could negatively
influence the results. In the following section, a
comprehensive set of variables are elaborated.

GPS Accuracy UAVs provide a moderate spa-
tial resolution (Brouwer et al., 2015). It is essential
to assign a correct coordinate to each individual
pixel in the image. Depending on the method,
when rectifying an image, especially the coordi-
nates of particular Ground Control Points provide
detrimental information. If these coordinates do
not represent their actual location well, every pixel
in the entire image would decrease in positional ac-
curacy.

Whereas in theory the exact location of the
drone itself does not even need to be known, Turner
et al. (2016) elaborate on the decrease of GCPs
by equipping the UAV with a RTK-GPS. Whereas
their study seemed promising, the intensified finan-
cial resources needed for such an upgrade are not
aligned with the purpose of this study.

UAV Errors For the drone to be able to com-
pensate for movements and indicate its takeoff lo-
cation, it is equipped with several sensors. The
sensors record the drone’s position in X, Y and Z
direction (see the errors in figure 19). Depending
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on the method, this data can be used to solve un-
knowns in the calculation of the coordinate conver-
sion matrix.

X error ≈
0.20 - 0.53 m

Z error ≈
0.20 - 0.53 m

Y error ≈
0.20 - 0.53 m

Figure 19: Drone Position Errors

Furthermore, the pitch, roll and heave are recorded
for flying stability. The errors are shown in figure
20 Also this data can be used to even further de-
crease to amount of ground control points neces-
sary.

Pitch error ≈ 0.25°

Yaw error ≈ 0.38°
Roll error ≈ 0.25°

Figure 20: Drone Angle Errors

Video Time & Frequency Coastal processes
usually have a time frame in the order of seconds
to minutes (Brouwer et al., 2015). Therefore, ap-
proximately 10 minutes of imagery is estimated to
be sufficient to indicate hydrodynamic factors af-
ter which depth can be inverted. However, longer
recordings give the depth inversion algorithm more
data and ideally makes the inversion more accu-
rate. According to wave climate theory, for the an-

alyzed frequencies in the spectrum to converge to a
statistically stationary situation, a measurement of
around 15 minutes is needed. As the DJI Phantom
4 has a flight time of approximately 24 minutes per
charge, the duration of the video footage is not con-
sidered to have negative influence on the eventual
depth estimation.

Also the sampling frequency has to be taken
into account. A study from Piotrowski and Dugan
in 2002 indicates that a frame rate of approximately
0.5 Hz is sufficient. Whereas decreasing the fre-
quency might result in a decreased accuracy as not
all of the frequencies in the wave spectrum could be
able to be detected, increasing the sampling rate is
not considered to have negative consequences. The
only down side is that it does increase the amount
of data that needs to be processed. In a later
stage of the report, an analysis is done whether
differences in sampling rate influence the eventual
bathymetry accuracy.

Number of GCP’s As stated in section 3.2.2,
GCP’s are used for the rectification of the images
recorded by the UAV. Arguably as the calculation
of the coordinate conversion matrix would have more
information to solve the unkowns, more GCPs can
make the measurement more accurate. On the other
hand, when using to many GCPs, this method would
become too labor intensive. According to Aarninkhof
(2003), to be able to rectify images from an Argus
camera, only two GCPs are needed. However, the
exact location of Argus cameras is known whereas
the drone constantly moves.

Furthermore, according to Turner et al. (2016),
the need for extensive GCPs could be reaching its
end, as Real Time Kinematic GPS equipped drones
are accurate enough for the purpose of coastal mon-
itoring. This would on the other hand not be the
case for consumer drones. Due to the lack of con-
sensus in the literature regarding the amount of
GCPs to use, for security reasons this research uses
a fairly extensive amount. This is because it is
always possible to decrease the number of GCPs
used. Furthermore, the GCPs should be spread
out as much as possible, which is difficult if only
non-floating GCPs are used.
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Drone Altitude The altitude of the UAV is di-
rectly related to the surface area it can capture.
However when capturing a larger area, the pixel
density decreases. Furthermore, different altitudes
yield different angles from which the wave front is
captured. It is not known whether these changes
have a beneficial or negative impact on the accu-
racy of the UAV bathymetry mapping method.

Video Angle The angle at which the image is
captured indicates whether or not the horizon of
water body will be captured. Capturing the hori-
zon could result in the need for less GCPs, and
could therefore be desired. Furthermore, if the
horizon is captured that means that the location of
the drone is farther inland resulting in the area of
interest being captured by fewer pixels. Also, with
a position farther inland the wave front is captured
with a sharper angle in a way that is similar to the
(generally lower) Argus stations. As the cBathy
algorithm is written for Argus data, this could po-
tentially yield better results. The altitude and lo-
cation have different effects on the data. It is not
clear whether the more Argus-like camera angle or
the increased amount of pixels is more important
for accurate depth inversion.

Wave Height & Water Depth The accuracy
of tracking waves is influenced by the wave height
and water depth. Higher waves or shallower wa-
ter cause more non-linear wave energy dissipation
and therefore the inverting algorithm is less accu-
rate. According to Trizna (2001), who used radar

imagery to analyse waves, in relatively deep wa-
ter (deeper than 5 meter) and with low to moder-
ate wave heights, their wave dissipation invertion
technique managed to retrieve the correct depth.
He found that a root mean square wave height in-
crease from 1 to 3.5 meter made the depth estima-
tion significantly poorer. Also, Stockdon and Hol-
man (2000) found that lower waves yielded better
results and Holland (2001) indicated that in the
shallower regions, errors of over 50% were found.
On the other hand, only in shallow water is the
depth related to the wave celerity. Waves that are
too small are not influenced by the sea bottom.
Therefore, small waves are also assumed to yield
bad results.

Camera/ Grid Resolution .

Similar to the above mentioned drone altitude,
the camera resolution influences the quality of cap-
tures imagery. It could be beneficial to upgrade the
camera that is attached to the drone if the desired
pixel resolution is not reached for usually the coor-
dinates far away from the drone camera. For the
purpose of this research the method is attempted
to be kept as generic as possible. Therefore, this
research uses the camera that comes standard with
the UAV. Subsequently, the specified spatial reso-
lution of the grid that is used for bathymetry map-
ping is also assumed to influence the final result.
For instance if only few grid point are chosen, does
probably not give a high enough spatial resolution
to plot a map of the bathymetry with the desired
level of detail. Also, when the grid points are cho-
sen with an extremely high spatial resolution, the
model could require too much resources.

Although they did not invert water depth, ac-
cording to Plant et al. (2009), especially the cross
shore variability in resolution seems to be influenc-
ing wave height predictions, whereas the longshore
variability mainly influences flow predictions. As
especially wave conditions are used for the depth
inversion, the cross shore component seems to be
most important.

In a later part of this research, different grid
resolutions are compared in terms of the accuracy
they yield.
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Inversion Accuracy The final step in the pro-
posed process involves using the wave frequencies
and their corresponding wave numbers for com-
puter water depth according to the dispersion re-
lation. As there are many dynamic mechanisms
in the nearshore coastal area, it is challenging to
model them accurately.

3.2.3 Process

To do meaningful measurements with the use of
video imagery, a couple of steps need to be taken.

Camera Calibration Together with GPS and
water level measurements, drone imagery is the
only data that is gathered for this method. There-
fore, it is necessary to specifically know different
parameters that distort the images which are taken
and thereby calibrate the drone camera. These pa-
rameters are called intrinsic camera parameters and
can be calculated using software specifically writ-
ten for this purpose. Section 3.3 will go into the
specifics of this process.

Image Rectification The images are stored in a
two dimensional UV matrix, and every pixel in the
image has a different distance to the next pixel in
the the three dimensional space (center to center,
see image 21). As the algorithm that is used re-
quires estimates of wave conditions like frequency
and wave number, of every single pixel in every sin-
gle image the three dimensional coordinates need to
be determined. This process is called image recti-
fication and will be elaborated in section 3.4.

Depth Inversion The last step of the process
involves tracking of the observed waves and calcu-
lating the water depth in the spatial range of the
imagery. The specific algorithm used for this pro-
cess will be elaborated in section 3.5.

3.3 Image Undistortion (Instrinsic)

Light rays pass through the camera’s lens after
which they are registered by a sensor. The passing
through the lens will almost always cause some kind
of distortion in the captured image. Sometimes, as

>x y

pixel 3pixel 2pixel 1

Figure 21: Pixel Distance

is the case with so-called fish-eye cameras, it is a re-
ally significant effect and can therefore be observed
by the naked eye. For example, lines that are in the
real world straight will be captured as a line with a
curvature. For the recording to be able to portray
the waves as accurate as possible, these distortion
effects need to be compensated. This can be done
when several parameters of a lens are known. These
parameters can be found with a camera calibration.

Coordinate Systems Whereas the real world
is experienced in three spatial dimensions (X, Y
and Z), images are captured on a two dimensional
plane. During this conversion, information is lost
because of the decrease in dimensions. A method
to reproject a two dimensional image in a three di-
mensional grid is called image rectification and will
be further elaborated in this chapter.

Intrinsic Camera Parameters The extend to
which images are distorted by the lens are quan-
tified by the intrinsic camera parameters and the
distortion coefficients. These intrinsic camera pa-
rameters are stored in a 3 by 3 camera matrix and
entail the following:

• Focal length (fu) in U direction

• Focal length (fv) in V direction

• U coordinate of the principal point (U0):
the location of the light ray that reaches the
film perpendicularly in U direction (from the
origin of the photo)

• V coordinate of the principal point (V0):
the location of the light ray that reaches the
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film perpendicularly in V direction (from the
origin of the photo)

• Image skewness (s): the discrepancy be-
tween angles as observed in the real world
and on the image (see image 22)

Figure 22: Skewness

3.3.1 Theory

Depending on the tolerances of the manufacturing
equipment, each camera lens has its own distor-
tions. Even lenses from the same batch are usually
different. Because the error is in the equipment,
there is no way of knowing the camera parameters
beforehand. Therefore, it is necessary to calibrate
the camera manually.

The above mentioned Intrinsic Camera Param-
eters are stored in a matrix (K ):

K =

fu s U0

0 fv V0
0 0 1

 (8)

The camera parameter matrix is structured in
such a way that, in combination with the distortion
parameters, of all the pixels the angles of incidence
are known (see figure 23). The calibration process
therefore incorporates finding the relation between
pixels and their specific angle of incidence. This
can be done using a checkerboard of which the di-
mensions are known by the algorithm. As the soft-
ware can identify the corners of every square on
the checkerboard and compare the location with
the supposed three dimensional locations, it can
calculate distortions in the lens. Around 20 images
of a particular checkerboard from different angles
are generally used per calibration. During the cal-
ibration, the 5 unknowns in the camera parameter
matrix are calculated and stored.

U

V

V

incidence angle
in V direction

incidence angle

in U direction

U

center

pixel
of interest

top view

side view

Figure 23: Angle of Incidence

Radial Lens Distortion Apart from the cam-
era parameter matrix, also distortion coefficients
are calculated by comparing the checkerboard im-
age to the pixels locations (Zhang, 2002). Camera
manufacturers usually distort the camera image by
intension for the user to be able to have a wider
field of view. These distortion coefficients compre-
hend the intentional distortion.

For regular lenses, 5 distortion coefficients are
sufficient to calculate the angle of incidence for ev-
ery pixel. However, for fish eye lenses generally 8
distortion coefficients are needed.

26



3.3.2 DJI Camera Matrix Calibration

In the beginning of this research, the camera pa-
rameters were calculated for the camera of the DJI
Phantom 4 (P4). After a couple of month how-
ever, the drone was crashed and a new one was
purchased. As an experiment, the internal camera
parameter matrix of the crashed P4 was used to
try and undistort the images, but the results were
extremely poor. Therefore it was assumed that in-
deed every camera produced by the same company
(or even maybe in the same batch) differs and needs
to be calibrated individually.

Several different approaches were used for cal-
ibrating the camera. Firstly, a checkerboard was
displayed on a computer screen and 20 images were
sampled. However, the software used for the cal-
ibration had difficulties detecting the edges on a
computer screen, after which a printed checker-
board was used. The first calibration based on an
A3 paper with 11 by 5 squares (see image 24) gener-
ated a reasonable results based on naked eye qual-
ifications. The computer algorithm automatically
recognizes (see the red circles in the image) every
point that lies in between 4 squares and therefore
this is really a 10 by 4 checkerboard. (Herrera et al.,
2012; Zhang and Pless, 2004)

Figure 24: Checkerboard 11 by 5

However, as it was assumed that the factor which
could potentially render the largest improvement
was not the algorithm, more checkerboard calibra-
tion images and settings were used to improve the
final internal camera parameter matrix. In the cal-
ibration process, there are an extensive amount of
parameters that can be altered and therefore there
will always be a matrix that better represents the
parameters of the lens. The final setup used in this
research was a 26 by 18 checkerboard printed on a
A0 piece of paper. The internal camera parameters
found are shown in the following matrix.

K =

2.33e+ 03 0 1.97e+ 03
0 2.34e+ 03 1.45e+ 03
0 0 1

 (9)

And the 5 distortion coefficients found are:

distortion =


3.30e− 03
−1.81e− 02
−1.25e− 03
1.11e− 04
1.10e− 02

 (10)

Whereas the undistorted images already looked
more representable than the images found using
the 11 by 5 A3 checkerboard, the settings were not
ideal. As the A0 paper is large, it was stuck against
a wall outside. However, due to the windy con-
ditions of that day, the middle part of the paper
sometimes moved, although not very extensively,
in the Z-direction. Hence, it can be argued that
even after this calibration, an efficiency gain can
be made in this part of the process.

3.4 Image Rectification (Extrinsic)

Now the camera parameters are known, the exter-
nal unknowns can be solved. Image rectification
basically entails converting a two dimensional pixel
image to a map with each pixel of the photo por-
traying its location in a user specified three dimen-
sional grid system. This is done by using the in-
trinsic camera parameters which are summarized in
the K-matrix. Furthermore, the camera direction,
stated in a direction matrix, needs to be known/solved
(Monasse et al., 2010; de Vries et al., 2011). Ground
control points indicated in the image are used as a
reference for the determination of the coordinates.
Subsequently, every pixel in the image can be allo-
cated a coordinate and a projection can be made.

Whereas it is most accurate to spread the GCPs
evenly across the area of interest, in moving water
this proposed a challenge. Even so, in their re-
search, Brouwer et al. (2015) found that the repro-
jection error of approximately one meter.

Extrinsic Camera Parameters As the internal
camera parameter matrix incorporated the angles
of incidence of every single pixel in the image, also
the extrinsic parameters need to be solved. The
camera direction needs to be calculated by the use
of ground control points of which the pixel location
and the three dimensional location is known. This
calculation solves the pitch, roll and heave of the
camera.
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3.4.1 Theory

Transforming pixel coordinates to three dimensional
coordinates involves calculating a camera projec-
tion matrix P. Equation 11 shows the camera model.

UV
1

 = P


x
y
z
1

 (11)

If the camera projection model is known, for al
the 2d coordinates, 3d coordinates can be calcu-
lated and vice versa. The above mentioned pro-
jection matrix has several components which are
shown in equation 12 (de Vries et al., 2011).

P = KR
[
I −C

]
(12)

Where I is a 3 by 3 identity matrix, K are the
internal camera parameters as described in equa-
tion 8. The other parameter represent the extrinsic
camera parameters. C is the (X, Y, Z) camera lo-
cation within the user specified three dimensional
grid system. Finally, R represents the 3 by 3 rota-
tion matrix including the pitch, roll and heave.

o k c s s
extrinsic intinsic

central
projection

rigid
body

affine
trans.

non-linear
trans.

Figure 25: Extrinsic and Intrinsic

Furthermore, the previously mentioned distor-
tion parameters are accounted for resulting in a
projection of the pixel coordinates on a plane in a
three dimensional grid system.

3.4.2 Rectification Test

To analyze the rectification, a test was performed.
The rectification test was set up to discover the ac-
curacy of rectifying images with the algorithm used
in this research. The plan consisted of simulating
an area of interest with a flat surface area and rec-
tifying this area with the algorithm. In the area,
several Ground Control Points (GCPs) would be
located of which the location is known (see figure
26). Subsequently, the location of the automati-
cally identified GCPs is calculated through rectifi-
cation. For every GCPs, the location found through
rectification is compared to the measured locations
(by RTK GPS) and the data is analyzed.

GCP 2

GCP 9

GCP 1GCP 3GCP 4GCP 5

GCP 10GCP 8GCP 7GCP 6

GCP 11GCP 12GCP 13GCP 14GCP 15

GCP 20GCP 19GCP 18GCP 17GCP 16

GCP 21GCP 22GCP 23GCP 24GCP 25

GCP 30GCP 29GCP 28GCP 27GCP 26

GCP 31GCP 32GCP 33GCP 34GCP 35 Y

X

Figure 26: Setup 1

Test Location As Delft lays within the Rotterdam-
the Hague Airport no-fly zone, the location of Naald-
wijk was chosen. As a football field is relatively flat,
the test was conducted at the artificial grass field
of V.V. Naaldwijk (Footbal Club Naaldwijk).

Ground Control Points At the football field, a
grid of 35 GCPs were laid out on the field. With
a Real Time Kinematic GPS receiver, the exact
locations of the GCPs were determined.

Error Scaling Because the rectification software
uses the angles of incidence of the pixels that rep-
resent the ground control points, this process is
mainly focused on solving a set of triangles to de-
termine the drone location. As the proportions of
the triangles stay the same throughout the lifespan
of the drone camera, it is assumed that the errors
found in this preliminary rectification research can
be scaled proportionally to final observations that
will be made in the coastal area.
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Figure 27: Error for Scenario 1, Top Right Corner: Y errors, Bottom Right Corner: X-errors

Scenarios For every different scenario, four dif-
ferent GCPs are used as control points for the rec-
tification of all of the images taken. This is done
to analyze which setup should be used in the final
field research.

Data During rectification, all of the positions of
the GCPs are estimated by the computer vision
software. These locations can be compared to the
RTK GPS locations of the GCPS after which the
rectification error is analysed. Therefore, for ev-
ery GCP, an average rectification error and its 95%
confidence interval can be calculated and plotted.
This is done for the Y-direction (parallel to the side
lines of the football field) and for the X-direction
(parallel to the goal line of the football field).

Dataset 1 For the first test, the drone was hov-
ering over the football field at the location of the
goal. A total of 644 images were used. Therefore,
a total of 644 * 35 = 22.540 errors were calculated.

GCP 19 Some of the scenarios show a large stan-
dard deviation for GCP 19 (see figure 27). It is un-
known where exactly this discrepancy in the data
can be attributed to. It could be that, although it
was briefly manually checked, the automatic GCP
detection did not find the correct location in some
of the 644 images for this particular GCP.

3.4.3 Scenario’s

To make a first estimation on the efficiency in the
data recording process, several scenarios of GCP
configuration are analyzed in the following section.
Whereas 23 scenarios were researched, only the most
important ones are elaborated.

Scenario 1 (figure 28) In the first scenario, the
four outer-most corner GCPs were used for to be
the reference control points for the rectification (see
figure 28). These four GCPs are assumed to be
the most effective combination of control points as
they span the largest area of the field. It can be ob-
served that especially the X-direction is accurate.
The average error in the X-direction is 0.15 max
and the standard deviation generally stays within
0.3 meters. On the other hand, the computer vision
software is less accurate when it comes to the Y-
direction. The errors in this direction have a fairly
systematic rhythm and the rectification is fairly ac-
curate at the far end close to the side lines of the
football field (GCPs 1, 5, 6 and 10). In the center
of the field on the far end (GCPs 3, 8 and 13) are
less well projected with an average error up to 0.35
meters. Arguably, this is due to inefficiencies with
respect to the Internal Camera Parameters used.
Probably, the distortion in the width of the camera
is not corrected as accurately as possible leading to
a rhythm in the average errors. This can be ar-
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gued because the standard deviation is small (up
to 0.3 meters at the far end). The small variance
also means that whereas the pixel is projected with
a small error, the error will stay the same through-
out the dataset and therefore it can be argued that
the images will still be usable for depth inversion
in a later stage.

GCP 1GCP 5

GCP 31GCP 35

Figure 28: Scenario 1

Scenario 5 (figure 29) Scenario 5 still shows
the strange variance phenomenon regarding GCP
19. Furthermore, generally the same rhythm as
in scenario 1 is observed. It can be assumed that
this setup would yield no problems when inverting
water depth. This is mainly due to the small stan-
dard deviation, which shows that the pixels plot-
ted in certain locations will probably be rectified in
a close proximity of that location throughout the
dataset.

Scenario 6 (figure 30) In terms of lowering la-
bor intensity, it is easier to use 4 control points
located on the beach then having to use floating
GCPs. This scenario mimics 4 GCPs on the beach
with the drone flying over land. Whereas the er-
rors in the Y-direction on the far end of the field
are large, the confidence interval does not exceed 1
meter.

The errors are shown in figure 35. In the X-
direction the confidence interval around GCP 4 seems
to increase. This could either be the result of wrong
camera parameters or a systematic error in pin-
pointing the right location of GCP 26 and/or 35.
The GCPs on the close end of the field cover a sig-
nificant amount of pixel, and it could be that the
computer vision software selected a pixel a bit off
of the center of the GCP.

GCP 11GCP 15

GCP 31GCP 35

Figure 29: Scenario 5

GCP 30GCP 26

GCP 31GCP 35

Figure 30: Scenario 6

GCP 21GCP 25

GCP 31GCP 35

Figure 31: Scenario 7
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GCP 10GCP 8

GCP 30GCP 28

Figure 32: Scenario 14

GCP 9 GCP 10

GCP 30GCP 29

Figure 33: Scenario 15

GCP 1GCP 5

GCP 10GCP 6

Figure 34: Scenario 21

Scenario 7 (figure 31) Scenario 7 represents
the same setup as scenario 6. However, the fic-
tional beach is now captured by a larger part of
the video. This results in a smaller average error,
but does only seem to decrease the standard devi-
ation in the X-direction. This is a strange result as
the area is only extended in the Y-direction.

Scenario 14 (figure 32) The alongshore dis-
tance that the rectification covers has been decreased
in this scenario. Where the average errors seem
different than the previous scenario, they are not
necessarily worse. The standard deviation does
seem to increase a bit in both directions (especially
around the GCPs furthest from the drone camera),
albeit not significantly.

Scenario 15 (figure 33) In this scenario GCPs
9, 10, 29 and 30 are used for rectification. This
reduction in rectification area does render worse
results than the previous scenario. However, the
average error and the standard deviation do not
seem bad in terms of usability. This scenario again
shows that only having GCPs on the beach and tak-
ing imagery from the side might potentially yield
good bathymetric accuracy.

Scenario 21 (figure 34) When flying the drone
over water and using GCPs on the beach, scenario
21 represents a rectification area far away from the
beach. The Y-direction rectification seems to be
fine with the 95% confidence interval staying within
meter. However, in the X-direction the standard
deviation seems to get worse the closer it gets to
the drone camera.

Conclusions It can be argued that the shape of
the area used for rectification should be close to a
square. The above results show that in this case
the rectification stays as predictable as possible.
Whereas the average error is not always smallest
when using a square, the standard deviation seems
better then for other shapes. Not using a rectangle
or a square as the rectification area could result in
random unpredictable distortions that might de-
crease the depth inversion accuracy as the wave
celerity might not be estimated in a correct way.
In the case that due to labor intensity reasons it is
preferred to only use GCPs on the beach, there will
always be an increasing error the further seawards
the rectification stretches.

It was also shown that the error in the Y-direction
is in some cases positive (reprojected too far away
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Figure 35: Error for Scenario 6, Top Right Corner: Y errors, Top Left Corner: X-errors

from the camera position) and in some cases nega-
tive (reprojected too close to the camera position).
This effect seems to be arbitrary and therefore can-
not be accounted for in the planning of the final
coastal surveillance.

Furthermore as expected is the surface area cor-
related with the accuracy of the rectification. How-
ever, whilst it seems to be correlated to the average
error, it is not necessarily the case for the standard
deviation. Also, the distance of the rectified area
to the GCPs seems to be correlated with the accu-
racy of the rectification. Subsequently, the amount
of distance the rectification area covers in a certain
direction (for instance X) is directly related to the
accuracy of the rectification in that particular di-
rection. This is the case even when the analyzed
coordinates are located far from the area in the
other direction (for instance Y).

Whereas above mentioned correlations gener-
ally seem to hold, there are several exceptions found
in the 23 scenarios. This means that there is al-
ways an uncertainty in the accuracy when keep-
ing the boundary conditions the same as the above
described testing setup. It will probably be the
case that in the future, especially with even fur-
ther improved cameras and resolutions, the rectifi-
cation would get more accurate. However, for this
research, this uncertainty should be taken into ac-
count.

When the drone is faces shoreward, only using
GCPs on the beach does seem to render good re-
sults. However, the results get worse when the dis-
tance of the total rectified area exceeds three times
the beach width. In practice, this technogoly is cre-
ated to map bathymetry well beyond the breaker
line and therefore in is uncertain whether this sce-
nario will fulfill the needs of the depth inversion
software in practice. A further practical complica-
tion for this method is the battery life of the UAV
and the margin of safety to use when flying it back
to the beach after a recording.

3.5 Depth Inversion Algorithm

The cBathy algorithm that is used in this research
for water depth inversion uses physical knowledge
of the interactions between bathymetry and move-
ments of water bodies. More specifically, water
depth has a restriction on the wave celerity in the
water op top of it.

3.5.1 Wave Celerity and Water Depth

There is a difference in hydraulic behavior in oceanic
(deep) waters when compared to coastal (interme-
diate to shallow) waters. Whereas the water depth
in oceans is too large to have any impact on the be-
havior of waves, in coastal waters the movements
of waves are limited by the bottom.
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Wave Celerity The speed at which a wave prop-
agates through a water body can be determined by
its length divided by the time it takes (the wave
period). This can also be captured by dividing the
radial frequency (ω) by the wave number (k).

c =
L

T
=
ω

k
= Lf (13)

As:

ω =
2π

T
(14)

k =
2π

L
(15)

f =
1

T
(16)

Where L is the wave length, T the wave period
and f is the frequency. To be able to calculate wa-
ter depth from wave celerity, the following known
depth-celerity relations can be used.

Deep Water In deep water, the wave motions do
not get influence by the bottom. Generally, water is
considered to be deep when it fulfills the following
requirements.

1

2
<
h

L
(17)

Because the waves do not ’feel’ the bottom,
the wave celerity is not influenced by water depth.
Rather, it is limited to its frequency.

c =
L

T
=
gT

2π
=
g

ω
(≈ 1.56T ) (18)

Where g is the gravitational constant.

Shallow Water On the other hand, waves in
shallow water behave differently. Water is consid-
ered to be shallow if:

h

L
<

1

20
(19)

This indicates that water this is considered shal-
low for some waves, might not be considered shal-
low for other waves. Subsequently, in shallow water
the wave celerity is only dependent on the water
depth.

c =
L

T
=
ω

k
=
√
gh (20)

Intermediate Water When waves penetrate into
coastal waters, before the water is shallow enough
to be considered shallow water, there is an inter-
mediate part. Intermediate water has the following
characteristics:

1

20
<
h

L
<

1

2
(21)

Furthermore according to Holthuijsen (2014),
the relation between wave celerity and water depth
in intermediate water is:

c =
L

T
=
ω

k
=

√
g

k
tanh(kh) =

gT

2π
tanh(kh) (22)

With this dispersion relation, the following al-
gorithm can iteratively determine water depths in
the nearshore by tracking incoming waves as de-
scribed in the subsequent section.

3.5.2 cBathy

As described in the literature review, the cBahty al-
gorithm consists of three phases. The first phase in-
volves a frequency-dependent analyses of wave fre-
quencies (fb), wave numbers (k), wave directions

(α) and corresponding water depths (h̃). The sec-
ond phase uses the analyzed wave numbers for sev-
eral frequencies to make a frequency-independent
estimation of the best single depth (ĥ). Lastly,
the third phase estimates a running-averaged depth
(h̄). The last phase however, is only possible when
multiple measurements of one particular location
are taken, and is therefore commonly used for Ar-
gus stations that do measurements a couple of times
each day.

Phase 1 From equation 22, it can be distracted
that a depth can be calculated when the angular
frequency (ω) and the corresponding wave number
(k) are known. This relation is shown in the fol-
lowing equation.

h =
1

k
arctanh(

ω2

gk
) (23)

Therefore, the first phase of the cBathy algo-
rithm analyses waves and tries to find a wave num-
ber for every single wave frequency. The frequen-
cies are user-specified and ideally involve all of the
present bandwidths of the wave spectrum in that
particular location. Where in the North Sea the
wave spectrum generally includes 3 to 12 second
waves, at the East Coast of the US 3 to 18 second
waves are observed.
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It is assumed that the optical pixel intensity
portrays the physical waves and therefore a Fourier
analysis on a specific coordinate for the full time
series can distinguish the presence of certain wave
frequencies in the wave domain. Per frequency, the
wave phase is compared to the phases at the co-
ordinates in the proximity of the coordinate of in-
terest for a predefined area (tile) [xm ± Lx, ym ±
Ly]. When these frequencies are combined for the
area, a so-called cross-spectral matrix can be com-
puted. This matrix is instrumental to finding dif-
ferent wave patterns with different frequencies. From
this matrix, eigenvectors and values can be extracted
that indicate the coherence of a particular frequency.
The higher the magnitude of the absolute value of
the real part of the eigenvalue, the more coherent
(dominant) the signal.

From these wave patterns, the angle of inci-
dence and the wave number can be found. There-
after, per frequency the found angle of incidence
and wave number can be used to model a wave
field which is compared to the observed wave field.
If the modeled wave field closely resembles the ob-
served wave field, the component is assumed to be
present and therefore to yield good depth inversion
results. To analyze whether the modeled signal re-
sembles the observed signal, a skill value is used
that represents the percentage of variance in the
wave signal that can be explained by fitting the lo-
cal phase data to a planar surface. This value is
used as a threshold value (skill values under 0.5 get
rejected) for further computations.

From the found frequencies and their correspond-
ing wave number, water depths can be calculated.
Eventually, the algorithm computes depths of the
4 wave frequencies with the highest total coherence
(highest normalized eigenvalue) over the tile. These
depths are only temporary values that can be used
to identify whether correct signals are picked up by
the algorithm. In this so-called debugging mode,
observed and modeled phase maps are shown for
the 4 most dominant frequencies in a particular lo-
cation. Also, among others, the estimated wave
number, angle of incidence, skill value and error in
the preliminary water depth of the 4 frequencies
are shown. These values can be used to verify the
wave climate as estimated by the algorithm.

Phase 2 The second phase of the depth inver-
sion algorithm entails using the 4 estimated domi-
nant frequencies found in phase 1 to estimate water
depth. For these 4 frequencies, the wave numbers
are used to search for a single water depth that
provides the best weighted fit for the dispersion re-

lation (equation 23). The weight of the frequencies
are determined by using a Hann filter that includes
coordinates in proximity of the coordinate of inter-
est in combination with the in phase 1 found magni-
tude of the eigenvalue and skill parameter (in that
order). In this way, the most coherent frequency
signal contributes to a larger part of the depth es-
timation. The found single depths are then stored
in a matrix which compiles to a bathymetry.

Phase 3 Finally, the third phase uses a so-called
Kalman filter to increase accuracy in the plotted
bathymetry by comparing measurements of the same
area to each other. This is commonly used for Ar-
gus stations as these stations are capable of taken
15-minute recordings multiple time each day. It
identifies the well performing areas of each record-
ing (if there even are any) by analyzing the phase
1 quality indicators and only uses the good data
to update the bathymetry. In this way, rare dis-
turbances such as storms, clouds or rain drops on
the camera lens will get filtered out. Phase three
is only usable when near-continuous measurements
are taken. Although it could also be beneficial to
drone bathymetry inversion as taking two or three
recordings of a specific area is achievable on a sin-
gle day, this research focuses on the accuracy of the
phase two depths.

Wave Climate Analysis According to Holthui-
jsen (2014), as wave climates constantly change,
measurements of wave frequency domains should
not be too long as the climate might have changed
throughout the measurement. On the other hand,
to be able to accurately analyze every different wave
component, averaging over a longer period yields
better results as it converges to the required sta-
tistical stationary state. Therefore, the optimum is
described as measurements between 15 and 30 min-
utes. As according to the cBathy developers, much
shorter recordings can also yield accurate bathyme-
tries, it could be argued that cutting up a 15 minute
recording in a couple of sections and using a Kalman
filter might be beneficial for the accuracy of the
eventual bathymetry.

Potential Limitations In the UAV bathymetry
mapping method, optical signals are observed in-
stead of physical signals. So even with a good skill
value, it means that it can accurately recreate the
optical signal. This does not necessarily mean that
the underlying physical signal is detected.
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3.6 Field Survey Plan

To gather data for the final part of this research, in
February 2017, a field review was conducted. Sev-
eral measurements acquired footage of the surfzone
with visible Ground Control Points. From these
videos frames were cut with a two hertz frequency
and rectified. In this way, waves were tracked in a
predetermined coordinate system.

The goal was to test different settings for the
usage of drone imagery in combination with the
cBathy algorithm to determine water depths in the
nearshore area. Therefore, the proposed measure-
ments were done as elaborate as possible. With an
extensive amount of Ground Control Points and
different camera angles, different scenarios can be
elaborated and compared in terms of accuracy of
bottom depth estimation.

Location As it is in close proximity of the testing
equipment, for this project the beach of Schevenin-
gen is chosen as a location. The Noorderstrand
(Northern Beach) was chosen as due to bad weather
it would not be too busy, and it lies within close
proximity of Shore Monitoring’s office.

Wave Conditions According to the literature
review, for the cBathy algorithm, small waves yield
the best result. However, the wave climate taken
into account by that specific research is significantly
different form the Dutch wave climate. Although
during small wave conditions, there are far less non-
linearities that interfere with the movement of the
waves, on the other end of the spectrum the drone
camera still has to be able to make a distinction be-
tween the wave peaks and the wave troughs. Cur-
rent Argus systems have a hard time implement-
ing the cBathy algorithm when the waves are high.
This is partly because of the non-linearities and
partly because of the limited visibility behind the
high waves. This is because Argus stations usually
have a limited height. Because of the higher alti-
tude, the limited recording height is considered to
be less of a problem when using drones.

Furthermore, the main limitation on wave length
is the pixel resolution of the drone camera. The
camera has to be able to record the length of the
wave. As wave lengths are usually tens of me-
ters, the resolution of the rectified images will most
probably be sufficient for most wave lengths.

Ground Control Points To enable the above
mentioned comprehensive amount of scenarios, a

so-called ‘overkill’ of GCPs will be used. As offi-
cially only 4 are needed to be able to rectify each
image, several more will be used. This is also be-
cause there might be a malfunction. The GCPs
will be spatially divided in a grid system and the
following amount of points.

• 4 water GCPs

• 8 beach GCPs

However due to a lack of time and supplies, on
the first day of measuring only 4 beach GCPs were
used.

Flight Specifications The cBathy algorithm gen-
erally uses 17 minutes of images. Probably it will
also work for time periods as short as five to ten
minutes. However to be comprehensive, this test
will conduct static videos as long as possible.

Furthermore, two drone batteries and two mi-
croSD cards were used throughout the day. While
the drone is measuring using one of the two avail-
able batteries and microSD cards, the other will be
charges and downloaded respectively. In this way,
the four below mentioned drone positions can be
used in that order.

• Position:

– In cross shore direction towards the sea
(hovering over land)

– In cross shore direction towards the sea,
further inland (hovering over land)

– In long shore direction (hovering over
water)

• Height: 120 meters

• Duration: 10-20 minutes per position

• Drone: DJI Phantom 4 (4K filming)

– 2 16GB microSd cards

– Charger

– Extra battery

Also, the saturation of the video that is taken
should be taken into account. Pixel intensity is
measures a couple of times per second (original Ar-
gus cBathy algorithms use a frequency of 2 Hz).
An automatic ISO can correct for scenarios when
lighting by the sun changes significantly through-
out the 20-minute measuring interval (for instance
on a cloudy day). Subsequently, the flight logs with
GPS location and GPS time were captured in an
SRT file by the drone.
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Camera Ideally, individual pictures are taken a
couple of times per second with a resolution of
4000 by 3000. However, due to limitations in the
firmware, there is no function to automatically shoot
pictures with a fixed interval. Therefore a video
was taken, out of which different snapshots were
subtracted.

Lastly, the highest video resolutions available
on the DJI Phantom 4 are either 4096 by 2160 or
3840 by 2160. The advantage of the slightly lower
resolution is the higher frequency of 30 Hz (instead
of 24 Hz). However, cBathy frequencies are signif-
icantly lower and therefore the higher pixel count
is preferred.

• ISO: auto (check with white balance indica-
tor)

• Resolution: 4096 x 2160 pixels

3.7 Summary

This section elaborated on the different steps in
the UAV bathymetry mapping method as described
by the conceptual model. The data acquisition
was reviewed and the potential influence of a large
amount of parameters on the eventual bathymetry
accuracy was indicated. Subsequently, the inter-
nal and external camera parameters were described
after which a rectification process was proposed.
Different rectification strategies were reviewed af-
ter which the depth inversion algorithm was elabo-
rated. The above mentioned survey plan was based
on literature and preliminary tests regarding drone
flights and experience. Once the data was gath-
ered on the 9th and 10th of February 2017, it was
analyzed. The following section of the report elabo-
rates on the preparation of the data and eventually
the depth inversion.
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4 Results

Whereas the previous section elaborated on the
process of depth inversion using drone imagery, this
section shows the data that has been observed in
the field survey. It also shows the computed bathyme-
tries based on base scenario settings. Thereafter,
different parameters in the cBathy algorithm are
tweaked in a sensitivity analysis to optimize the
results. The section consists of three main parts.
Initially in section 4.1, the data gathering process
describes the layout of the measurement location on
both the survey dates. All general information re-
garding the hydraulic and UAV conditions are elab-
orated. Thereafter, section 4.2 portrays the process
which was followed during the first part of the data
analysis. This section includes preparing the data
using a computer vision plugin for python by au-
tomatically detecting the Ground Control Points
and calculating a projection for every single image
taken during the data gathering process. Lastly,
section 4.3 shows the settings that were used for
inverting water depth by means of the cBathy al-
gorithm.

4.1 Data Gathered

The data for this research was gathered on Thurs-
day the 9th and Friday the 10th of February, 2017.
Where on the first day, due to time limitations two
drone flight were conducted, the second day con-
sisted of five collections. However, noise in the
wave field due to the reference bathymetry survey
with a Jetski rendered the last two flight useless
for inverting water depth. Therefore, the two us-
able measurements on day one and three on day
two are referred to as datasets 1.1, 1.2, 2.1, 2.2 and
2.3.

Figure 36: A Frame of Dataset 1.1

Figure 37: A Frame of Dataset 1.2

Figure 38: Ground Control Points Day 1

4.1.1 Day 1

On the first day a clean swell generated in Nor-
way and Denmark reached the beach of Schevenin-
gen from the North (see figure 36 & 37). In the
south of the Netherlands, waves were reported to
break, whilst in Scheveningen limited to no break-
ing on the bars was observed. Table 1 shows the
conditions in which the data was gathered. The
offshore water level was collected from the water
information website of Rijkswaterstaat (Rijkswa-
terstaat, 2017a) for the location of Scheveningen.
Also, figure 39 shows the specific phase in the tidal
movement at which the recordings were acquired.
For the recordings on day one, there was a strong
tidal flow directed to the North. Also, as there was
no data available for the location of Scheveningen,
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Table 1: General Survey Information

Data Date Start End Water Wave Wave Wave Tidal
set Time Time Level Height Length Number Current

(GMT) (GMT) (m) (m ) (m) (m-1) (m/s)

1.1 09-02-2017 14:28:56 14:44:57 .48 .97 50 .13 -.6
1.2 09-02-2017 14:58:30 15:17:11 .30 .92 50 .13 -.8
2.1 10-02-2017 11:57:28 12:12:55 -.13 .85 40 .16 .7
2.2 10-02-2017 12:38:29 12:53:30 .55 .80 40 .16 .6
2.3 10-02-2017 13:23:06 13:40:17 1.03 .79 35 .18 0

Table 2: Drone Information

Data Drone Position Video Height by ISO Shutter
set in RD (X,Y) Duration Barometer Speed

(m) (s) (m) (s-1)

1.1 (78331, 458010) 963 120 100 1/160 - 1/100
1.2 (78270, 458045) 1122 120 100 1/120 - 1/100
2.1 (78310, 457999) 890 118 100 1/320
2.2 (78263, 458045) 902 120 100 1/240 - 1/200
2.3 (77995, 457971) 1032 120 100 1/200 - 1/160

the Wave height was averaged by combining three
offshore measuring stations (Lichteiland Goeree, Ij-
muiden Munitiestortplaats & Ijmuiden Stroommeet-
paal, (Rijkswaterstaat, 2017b)). Hence, wave heights
are indicated far offshore and at remote locations
and therefore might not be accurate for the ex-
act Scheveningen beach location. Where in video
1.1 no breaking waves were observed apart from
the first 50 meters offshore, the second video (1.2)
shows some foam in the area of interest. Further-
more, based the rectified images, the wave length
on the first day was visually estimated at 50 me-
ters, leading to an estimated angular wave number
in the order of .13 for both datasets 1.1 and 1.2.

On the beach, located approximately 50 meters
from the waterline, 4 blue tarps were functioning
as static ground control points (GCPS) and 4 SUP
boards were equipped with two GPS loggers each
as floating GCPS. The boards were equipped with
two GPS logging to be able to afterwards analyze
discrepancies in the data. As all of the devices had
been functioning throughout all of the datasets and
no discrepancies were found, the positions of each
board could be determined by averaging the loca-
tions. Figure 38 shows the GCP locations projected
on the dutch Rijks Driehoek (RD) reference system.
Although the SUPS moved a couple of meters dur-
ing the recordings on day one, contrary to the sur-
veys on day two, all of the floating GCPS seemed

to have a relatively stable location.
Despite the fact that a medium to heavy fog

made an absolute recognition impossible, both dataset
1.1 and 1.2 captured the horizon (see figures 36 &
37). The difference between the two however was
the drone position and camera orientation. During
the first measurement (1.1), the drone was located
in such a position that all 4 beach GCPS were visi-
ble throughout the video. The second measurement
(1.2) included a drone position closer to the water-
line. Therefore, is it only registered two of the four
beach GCPS. Also, during the first measurement,
the camera was tilted further upwards than during
the second measurement, capturing more sky.

When looking at the drone settings during the
recordings of the video (see Table 2), it can be
shown that most variables were kept constant. As
UAV position and height varied throughout the
observations, this table gives an indication of the
average numbers. The only variable that differed
significantly when comparing the datasets was the
shutter speed. During the first measurement, ap-
proximately the first 25 percent of the footage was
taken with a shutter speed of 1/120 whilst the last
75 percent was taken with a shutter speed of 1/100.
The second recording had a shutter speed of 1/100
for the first 95 percent and 1/160 for the last 5
percent. Throughout all recordings, the exposure
value was +1/3 and the F number was 2.8.
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Figure 39: Tidal Phases During Data Acquisition

Figure 40: Water Level and Tidal Flow off the
Coast of Rotterdam

Figure 41: A Frame of Dataset 2.1

Figure 42: A Frame of Dataset 2.2

4.1.2 Day 2

The second day consisted of a slightly decreased
wave height due to a reduction of swell from the
north. When looking at the conditions at which
the three datasets were gathered, the range in wa-
ter level was larger then the day before. These
datasets were recorded a little before tidal flow re-
versal. During the first dataset (2.1), the low wa-
ter level resulted in some significant wave breaking
close to the water line (no farther than 150 meters
offshore). In datasets 2.2 and 2.3, no significant
wave breaking farther then 50 meters offshore was
observed. The length of the waves on day two was
estimated at around 40 meters. Hence, the angu-
lar wave numbers were estimated at .16 and .18
respectively.

Furthermore, a medium to heavy fog was ob-
served. Similar to the surveys on day one, the first
dataset (2.1) captured the horizon as well as two
rows of beach GCPS (see figure 41). During the
second dataset (2.2), shown in figure 42, the cam-
era was tilted further downward with as result the
lack of a captured horizon. Also, it captured only 1
row of beach GCPs. Remarkably, the video taken
in the dataset seems to have a bluish tint whereas
the other videos seem more yellow.
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Figure 43: A Frame of Dataset 2.3

For dataset 2.3 (figure 43), a new observation
strategy was executed. Instead of positioning the
UAV above the beach and recording a video per-
pendicular to the water line, the camera was posi-
tioned alongshore and captured three floating GCPs,
the first and a part of the second row of beach
GCPs. Similar to the first day, regarding the drone
settings, especially the shutter speed varies when
comparing the datasets. The data of the first sur-
vey contained a significant decrease in video bright-
ness in the first couple of seconds caused by a de-
crease in shutter speed. The decrease in brightness
lasted for around 13 frames which indicates a pe-
riod of 6.5 seconds (a frequency of 0.15 Hz). As
the cBathy algorithm was set to analyzing wave
lengths between 3 and 12 seconds, this interfered
with the spectral analysis. As this prevented the
cBathy algorithm from rendering good results, the
first 8 seconds of this recording were not included
in the analyses. In dataset 2.2, the first 5 percent
of the captured video had a shutter speed of 1/200
whilst the rest has a shutter speed of 1/240. The
final dataset was recorded with a shutter speed of
1/200 during the first 75 percent of the recording
and 1/160 during the last 25 percent.

The difference in setup between the first and
the second day was an increase in the amount of
GCPS located on the beach. Instead of 4, 12 were
configured (see figure 44). Subsequently, the same
floating GCPs were used as the day before. How-
ever, as during the second day the floating GCPS
were positioned by a Jetski, their eventual location
had a closer resemblance to the grid as planned.
Due to the low water level during the first mea-
surement (2.1), the third floating GCP migrated
approximately 40 meters throughout the particu-
lar survey (see figure 45). A similar floating GCP
migration was observed for GCP 1 and 4 of dataset
2.3. For the rest of the datasets, the SUPS seemed
to stay in position more steadily.

Figure 44: Ground Control Points Day 2

Finally, the tidal current was estimated. This
was done by determining the specific phase of the
tidal cycle during every recording using figure 40.
Thereafter, based on measurements off of the coast
of Rotterdam (figure 40) an indication of the ve-
locity was made. Whereas the exact currents could
differ, these estimations could still be used to ana-
lyze relative changes in wave characteristics.

4.1.3 Reference Jetski Measurements

To do an accuracy analysis comparing the UAV
bathymetry mapping method with reference data,
on the second day the water depth of the area of
interest was measured by means of a jetski echo
sounder as described in the literature review. As
these measurements are up to a couple of centime-
ters accurate, for bench marking the method pro-
posed in this report, they will be sufficient.

4.2 Rectification Process

The following section will elaborate on the prepara-
tion of the gathered data to be able the afterwards
determine the water depth. After analyzing their
coordinates, the GCPs are automatically detected
and used to calculate a projection. This projec-
tion is made for every single image in the specific
dataset after which a video is created for a quanti-
tative analysis. After the projections are put in a
specific coordinate system a time series of a specific
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Figure 45: (Extreme) Position Change SUP 3
During Dataset 2.1

grid is made specifically to be used by the cBathy
algorithm.

4.2.1 Coordinate Analysis

After acquiring the data in the field and the 4K
videos were cut into frames with a two hertz fre-
quency, the first step to be able to rectify the im-
ages was processing the coordinates of the beach
and floating GCPs. Every floating GCP had two
GPS loggers recording data. Commonly used by
windsurfers, the GT-31 of brand Locosys seemed
to be a good fit to the setup. As these loggers are
financially on the low end of the spectrum, not a
lot of risk was involved. However, where the log-
gers were located right next to each other on the
boards, some of the recordings differed up to a cou-
ple of meters. Also the noise ratio differed between
the devices. Figure 46 shows the X location of a
specific floating GCP as recorded by its two GPS
loggers. The image shows a discrepancy of up to
three meters. As no reference data was gathered,
and therefore no estimations could be made for ev-
ery individual logger, the mean of the devices was
used as the location for the floating control points.
Lastly, the GPS data was converted to the Dutch
Amersfoort Reference Grid, also known as the Ri-
jks Driehoek (RD) system. The RD system is the
most commonly used system in the Netherlands.
Furthermore, the water levels are displayed based
on the Normaal Amsterdams Peil (NAP).

4.2.2 Automatic Ground Control Point De-
tection

The next step is to identify the Ground Control
Points in every frame. Due to limitations in the

Figure 46: GPS Logger Data SUP 3 During
Dataset 1.1

firmware of the DJI Phantom 4, after about 9 min-
utes the drone stopped recording the video and
started recording a second one. Therefore, two
videos were analyzed per dataset in terms of GCP
recognition. Table 3 shows the results of the auto-
matic GCP detection. It shows how many of the
GCPS were left undetected. As differences in drone
position throughout the datasets resulted in a dif-
fering amount of GCPs in view, the total number
of points to be detected also varied.

In the first image loaded by the GCP detection
algorithm, the user needs to identify the location of
the control points manually. Thereafter, for each
point for each subsequent image, the search area
gets cropped around the GCP location of the pre-
vious frame. The GCP detection uses grayscale
and HSV masks for floating and beach GCPs re-
spectively. As the boards at sea were generally
either lighter of darder than the sea surface, the
grayscale mask generally showed a large blob. In
some masked search areas, some parts of the water
surface were either too light or too dark and there-
fore were not filtered by the mask. After filtering
this noise by means of the computer visions erode
function, in most cases the script was able to detect
the GCP. As the tarps located on the beach all had
a blue color, a Hue Saturation Value (HSV) color
mask was used in a similar way.

The highest percentage of undetected GCPs for
all of the videos is 3.2 percent. Therefore, a simple
interpolation could fill up the data. On a couple of
occasions the algorithm could not detect a GCP for
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a maximum of 6 frames in a row, but after check-
ing these occurrences manually, due to the steady
drone footage, the interpolation seemed to still be
identifying the correct pixel. The end of this step
yields a matrix that includes the pixel location of
all of the detectable control points in every single
frame.

Table 3: Number of GCPS Not Detected

Data Video 1 / Video 2 / Average
set (out of) (out of) %

1.1 258 (8968) 224 (6296) 3.2
1.2 30 (6720) 79 (6732) 0.8
2.1 121 (5525) 126 (3370) 2.8
2.2 200 (8952) 35 (5464) 1.6
2.3 271 (10098) 264 (8478) 2.9

4.2.3 Rectification

The rectification process associates the geographi-
cal location of 4 (or more) specific detected Ground
Control Points to their respective pixel location.
For the floating GCPs, the specific time (GMT) at
which the frame was taken is compared to the time
as indicated by the GPS loggers and thereby the
locations are linked. As the beach based GCPS
had a fixed location, the time was not taken into
account.

Through the internal camera parameter matrix
described in section 3.4, of every individual pixel
that is captured in a single frame the angle of in-
cidence in known. After linking the four locations
of the Ground Control Points in the user specified
three dimensional grid to their pixel locations in
the image, these camera parameters are used to cal-
culate the three dimensional location of all of the
other pixels in the image. When these locations
are known, they can be appointed the pixel inten-
sity captured in the image after which a projection
of the frame is mapped (see figure 47).

The base rectification scenario used 4 GCPs of
which two were located offshore and two on the
beach. As on the first day, GCP 2 and 3 had a
relatively large spread in the Y-direction (see figure
38), these were used and combined with two beach
based control points. For dataset 1.1 GCPs 7 and 8
were used and as the second measurement did not
include those, in this occasion GCPs 5 and 6 were
used (see table 4).

On the second day, as the floating GCPs better
represented pre-determined grid, the base scenario
included floating GCPs 1 and 2. During the first

Figure 47: Projection of Figure 36 on RD Grid
System

Table 4: GCPS Used for Rectification (see figure
38 & 44)

Data Floating Beach
set GCPS Used GCPS Used

1.1 2,3 7,8
1.2 2,3 5,6
2.1 1,2 9,12
2.2 1,2 5,8
2.3 2,3 5,12

dataset, to keep the area between the 4 points used
for rectification as large as possible, GCPs 9 and
12 were used as beach control points. For dataset
2.1, 5 and 8 were used. The difference in position
of the third recording resulted in GCP 1 and 16 not
being visible in the frames. Therefore, points 2, 3,
5 and 12 were used.

4.2.4 Grid Rotation

To be able the calculate water depth, the cBathy al-
gorithm needs a specific grid layout with the beach
line parallel to the y-axis. Therefore, before the im-
ages get rectified, the base of the measuring area on
the beach gets arbitrarily chosen as (78200, 458130)
in RD coordinates. Subsequently, the coordinates
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Table 5: Absolute Errors and Errors in X and Y Direction (Real Location - Estimated Location, m) of
GCPS

Data GCP 1 GCP 2 GCP 3 GCP 4
set abs (x, y) abs (x, y) abs (x, y) abs (x, y)

1.1 19.5 (-19.5, 0.7) 18.6 (-18.6, 0.0) 15.8 (-15.7, 0.6) 15.5 (-15.4, -1.2)
1.2 27.4 (-27.1, 3.8) 26.1 (-25.8, 3.7) 18.9 (-18.5, 3.6) 19.8 (-19.6, 2.9)
2.1 28.7 (-19.8, 20.6) 37.7 (-30.5, 22.0) n.a.* n.a.* n.a.* n.a.*
2.2 35.4 (-15.1, 4.9) 34.7 (-24.5, 3.7) 23.3 (-23.0, 3.9) 29.1 (-26.4, 6.0)
2.3 n.a.** n.a.** 44.9 (-4.0, 44.6) 3.3 (0.9, -3.2) 36.3 (6.5, 35.7)

*The script was not able to automatically detect GCP 3 and 4 in dataset 2.1. **GCP 1 was not in field of view
during dataset 2.3.

are rotated with an angle of 221 degree with respect
to this position which results in the required grid
layout for the algorithm with the beach situated on
the left side of the grid.

4.2.5 Rectification Accuracy

To be able to analyze wave celerity based on the
projections of the video frames, the definition of
speed being meters per second insinuates that two
variables are important. Firstly, the time which is
recorded by GPS loggers on both the drone as the
SUPS. Therefore, as all GPS loggers use the same
satellites as a time reference, it is assumed that
there is no error between them. On the other hand,
location is important, as a difference in location
divided by the time results in celerity. Therefore,
it is valuable to take the rectification accuracy into
account both in terms of the absolute error of the
pixels projected on the pre-determined coordinate
system as the stability of the coordinates.

Grid The depth inversion algorithm requires the
data to be stored in time stacks which are indicated
by specific coordinates chosen by the user. As Ar-
gus stations are reportedly using around three me-
ters of grid interval in the X direction (cross shore)
and 10 meters in the Y direction (along shore), for
the base scenario of this research, a grid size of 3
by 3 meters is chosen. In a later stage of the re-
search, this grid is altered to be able to identify the
bathymetry accuracy in/decrease accordingly.

Absolute Rectification Error In section 3.4,
some preliminary tests elaborated on the error in
the rectification process based upon measurement
of a measured grid of GCPs spread out on a foot-
ball field. These measurements gave an indication
of the accuracy of rectification using several mea-

Figure 48: Error in X Direction of floating GCPS
during Dataset 1.2

suring setups. As the survey of 9 and 10 Febru-
ary did not include a comprehensive grid of ground
control points, only the 4 point located offshore are
used as a reference for the absolute error. Table 5
shows the eventual absolute rectification error of
the floating control point as well as the error in X
and Y direction. This error is calculated by com-
paring the position of the floating GCPS to their
position in the projection that is calculated by the
rectification script. The table shows a consequent
underestimation of the locations in the X direction
and a significantly increasing error in the direction
of the pointed camera when the distance between
the measured point and camera gets expanded. It
should be noted that the floating GCPs had a dif-
ferent location (further offshore) on the second day
than on the first day. Generally, locations farther
offshore have a larger rectification error. On the
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other hand, as also the homography is determined
with means of those same control points the recti-
fication should generally be better.

When looking at the error in X direction more
specifically, figure 48 shows the error for dataset
1.2. It can be argued that although the error is
quite significant, it is relatively stable and gener-
ally stays the same throughout the dataset. This
seems to be the case for all the dataset. The max-
imum difference in X error for 1 GCP throughout
the dataset is around 10 meters.

Figure 49: Error in X Direction of floating GCPS
during Dataset 1.2 Using Different Internal

Camera Parameters

These errors are a combination of discrepancies
in the internal camera parameter matrix and the
rectification script and could therefore potentially
be decreased by intensifying the effort of calibrat-
ing the camera. For instance, when using a differ-
ent internal camera parameter matrix which was
collected in a different (less comprehensive) calibra-
tion, the errors increase and change sign (see figure
49). This matrix yields significantly different rec-
tification results. It could be argued that purely
from a rectification point of view, the results could
still be drastically improved.

Rectification Stability The absolute error alone
might not be sufficient in determining the quality
of the rectification process. For instance, if the er-
ror fluctuates around zero with a great variability,
the value might still be low or even close to zero,
while the only thing that is captured in the final
data is the noise in rectification accuracy. There-

fore, apart from the absolute rectification error also
the rectification stability is analyzed. However, as
the exact location of the individual pixels is not
known it is not merely a question of comparing ex-
act location with the calculated projection location
and analyzing the standard deviation. Therefore, a
new measure for stability is created and described
in this section.

Qualitatively analyzed, the drone footage is rel-
atively stable. Therefore, it is assumed that the
location of a specific pixel in a subsequent frame
can not differ too strongly. However, in contrast to
Argus cameras which are fixed to a sturdy struc-
ture, it is acknowledged that the drone angle does
move throughout the recording as a result persis-
tent winds and the drone not being able to keep
the camera pointed at one specific location. These
movements have a relatively long time span and
should therefore only be visible when analyzing a
longer time period. These longer term movements
can be captured in a certain trend line. Subse-
quently when taking a closer look around this trend
line, smaller scale signal deviations are observed.
As these deviations suggest that a specific pixel has
moved several tens of meters within half a second
after which it has moved back in the subsequent
half a second, they can arguably be discarded and
indicated as noise invoked by the rectification pro-
cess.

To capture the above mentioned noise in the
signal, a custom stability analysis method has been
implemented. At first, a grid is specified at which
points the stability will be analyzed. As these points
lay within the area which is eventually used as in-
put for the cBathy algorithm, 9 points with X co-
ordinates (500, 750 and 1000) and Y coordinates (-
250, 0 and 250) are specified to be analyzed. How-
ever, as these coordinates do not have a specific
pixel which is assigned to them throughout the
dataset, a representative pixel is chosen by calcu-
lating the average pixel that portrays the coordi-
nate for the fist 9 minutes of the recording. Once
this pixel is found, its coordinate throughout time
as calculated by the rectification algorithm is plot-
ted. The location is calculated by adding both the
X and Y coordinate squared after which the square
root is taken. It therefore represents the distance of
the specific location from the specific point (0,0).
A part of the location data of pixel (2545, 117),
representing coordinate (1000, -250) in dataset 2.2
is plotted in figure 50. An arbitrary time series
of 250 of the 1808 frames is plotted to give visual
support for the described stability analysis method.
The blue line represents the location of the specific
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Table 6: Arbitrary Rectification Stability Numbers (lower is better)

Data All Coordinate Coordinate Coordinate Coordinate Coordinate
set Coordinates (500, -250) (1000, -250) (750, 0) (500, 250) (1000, 250)

1.1 9.89 6.14 17.99 8.11 4.85 14.24
1.2 7.99 4.90 13.89 6.57 4.22 11.84
2.1 8.86 5.07 10.03 7.57 5.51 14.39
2.2 7.80 4.33 11.90 6.57 4.54 12.82

pixel as calculated by the rectification algorithm
throughout time for each subsequent frame. The
red line indicates the above described trend line af-
ter signal smoothing with a Savitzky Golay filter.
The signal noise variable is indicated by subtract-
ing these signals from each other. As More extreme
deviations are arguably a larger contributor to the
signal instability, the root mean squared error is
calculated as a quantification. However, as the set-
tings of the signal filtering that is chosen are arbi-
trary, three different filters are used and the above
mentioned rmse is averaged. The average rmse is
calculated for the 9 predetermined coordinates for
every dataset. Subsequently, the 9 rmses are av-
eraged to give a single stability indicator for every
dataset. Five of the nine values are portrayed by
table 6. The table shows that according to the
predetermined indicator, dataset 2.2 has the most
stable images while dataset 1.1 is the noisiest. It
is also shown that after rectification, the datasets
during the first day of measuring have a relatively
more stable signal for positive Y coordinate values
(points on the left side of video) whilst for the sec-
ond day it is the other way around. This seems to

be the case for both locations closer to shore and
location farther offshore.

4.2.6 Optical Signal

After the frames have been rectified and compiled
into a specific grid, the pixel intensity signal of spe-
cific areas and coordinates can be analyzed. As
the pixels are supposed to portray the actual wave
field, their intensities and standard deviations give
an indication of the signal strength.

Figure 51 shows the mean values of the pixel
intensity of a specific cross section (Y = -1 m) for
datasets 1.1 trough to 2.2. Furthermore, figure 52
gives an overview of the mean values for the entire
grid in dataset 1.1.

It is shown that datasets 1.1 and 2.1, which
were surveyed with a similar layout (see section
4.1), have the lowest values especially when ana-
lyzing areas farther offshore. However, when taken
into account that the survey on day two has rela-
tively lighter pixels closer to shore, its pixel inten-
sity interval over the X-axis is narrower. Datasets
1.2 and 2.2 seem to have a similar signal intensity,

Figure 50: Rectified Signal Filtering
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Figure 51: Average Pixel Intensity of Datasets in
Section Y = -1

Figure 52: Average Pixel Intensity Throughout
Dataset 1.1

Figure 53: Standard Deviation of Pixel Intensities
for Datasets in Section Y = -1

Figure 54: Standard Deviation Pixel Intensity
Throughout Dataset 1.1
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while being shifted by about a value of 5 through-
out the section. Regarding figure 51, the relatively
high values in the bank area around X coordinate
150 for dataset 2.1 clearly indicate waves break-
ing as is also shown in figure 41. As breaking cre-
ates white foam for a couple of second at a time,
the average gray scale pixel intensity of the loca-
tion significantly increases. When looking at figure
52, the only deviations in terms of variance can be
found in the upper right corner of the projection.
Because it is darker then the sea surface, the blue
spot indicates the position of the buoy close to the
Scheveningen breakwater. On the other hand, as
a foam trail of a sailing ship midway through the
measurement has lighter pixels then the sea sur-
face, a straight darker orange line can be detected
around coordinate (900, 400).

In a similar way, figure 53 shows the standard
deviation of pixel intensities for all the datasets at
cross section Y = -1. Subsequently, figure 54 dis-
plays the standard deviation throughout the record-
ing time for every coordinate in dataset 1.1. The
general trends is a decrease in standard deviation
when analyzing coordinates increasingly farther off-
shore. This decrease in variance might make wave
motions undetectable by the cBathy algorithm. In
figure 54, is it shown that although standard devia-
tions seem higher closer to shore than offshore, just
as was displayed by figure 53, the differences are not
as uniformly distributed as the average pixel inten-
sity. Furthermore, relatively close to the beach, the
4 floating ground control points are shown by dark
red dots. Farther offshore in the top right corner of
the image, the same buoy and ship trail as in the
average pixel intensity plot are indicated by a dark
red color. Also, the bend line indicated by a dark
red color around coordinate (900, 600) is created
by a ship that started moving during the recording
of the video.

4.3 Depth Inversion through cBathy
Algorithm

Once the data is prepared and saved in a specific
way, the cBathy algorithm will analyze the waves
which are in field of view and subsequently calcu-
late water depths at the specified coordinates.

Debugging In resemblance to the analyses as per-
formed in part 4.2.6, before computing a bathymetry,
the cBathy algorithm can be used in debugging
mode to analyze in input data. To determine whether
the cBathy algorithm actually recognizes the dif-
ferent waves in the datasetst, a spectral analysis is

performed. A wave field consists of several differ-
ent wave frequencies of which the signals are as-
similated into 1 signal representing the water level
signal. In debugging mode, the cBathy algorithm
analyses the full length of the dataset and tries to
identify the different wave frequencies through a
Fourier transform. Images are shown that indicate
the phase map of a specific frequency over the en-
tire domain. The wave peaks are indicated by a
yellow color and the wave trough by a blue color.
If the user can observe a wave field for a specific
frequency, it means that the input data actually
consists of a wave component in the specific fre-
quency. When comparing the different datasets, it
was found that, as common to the dutch wave cli-
mate, wave lengths ranged between 3 and 12 sec-
onds. For the analysis of waves in between 1/12
and 1/3 hertz, wave fronts were visually detected.
However, it should be noted that not all datasets
consisted of equally prevalent and obvious patterns.
Figure 55 shows the identified waves phases in dataset
1.1 based on a frequency of 0.167 hertz. Subse-
quently in figure 56, for the same dataset the 0.0833
hertz frequency is shown. The figure shows a less
pronounced pattern. Again, in the top right cor-
ner, signal interference is observed caused by a ship
calling the Scheveningen harbor. The ship clearly
causes distortions which make the frequency un-
detectable by the Fourier transform. For all of the
datasets, the 0.167 Hz wave frequency showed clear
phase maps which means that 6 second waves were
consistently present in the acquired data.

4.3.1 Base Scenario

As the signal analysis shows that there should be
a signal for the cBathy algorithm to analyze, the
cBathy settings toolbox is elaborated. The toolbox
enables the user to tweak some of its waves field
analysis parameters. Therefore, together with the
previously mentioned 3 by 3 meters rectified grid
and 2 Hz image frequency, also for the last step,
some standard parameters were used to benchmark
preliminary results.

Firstly, the domain spacing for analysis was 10
meters in the X (cross shore) direction and 20 me-
ters in the Y (long shore) direction. These param-
eters indicate that for the analysis of one specific
coordinate, the data within a tile of 10 by 20 me-
ters is used. The area to be analyzed was arbitrar-
ily chosen to be 900 meters in cross shore direction
and 1400 meters in long shore direction, so that it
would significantly overlap the reference measure-
ment. Furthermorel, the minimum number of f-k
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Figure 55: Wave Phase Analysis at 0.167 Hz for
Dataset 1.1

Figure 56: Wave Phase Analysis at 0.0833 Hz for
Dataset 1.1

pairs for bathymetry estimation was set at 4. Fur-
thermore, the smoothing length scales were chosen
to be three meters (1 time the spatial scale of the
input data) in the x direction and three meters in
the y direction. Subsequently, the increase in tomo-
graphic smoothing parameter mean that the area
of the tile from which a specific depth is analyzed
increases when taking coordinates farther offshore.
This is indicated by the Kappa parameter and is
kept as small as possible (1.01) for the base set-
tings. The algorithm was set to allow brute force
decimation to be able to speed up the analyzing
process and the maximum number of pixels per tile
that was used was 80. The frequencies to be an-
alyzed that were used represented the frequencies
common to the relatively sheltered North Sea in
front of the coast of the Netherlands from 3 second
waves to 12 second waves. The number of frequen-
cies to research was kept at 4, as increasing this
number generally does not decreases the error and
increases the computation time.

4.3.2 First Results

After the entire above mentioned process was com-
pleted, first results were found (see figure 57). The
first subplot shows the water depths as calculated
by the drone imagery. The second part indicates
the water depths as measured by jetksi echo sounder.
To give visual support, the perimeter of the refer-
ence measurements are indicated by a white line in
the first subplot. Qualitatively, the measurements
show similar results. Subsequently, the third sub-
plot shows the quantitative difference between the
first two subplots (drone measurements - reference
measurements). It indicates a white color for areas
where the difference between the two measurements
ranges between -0.30 m and 0.30 m. From this im-
age it can be distracted that for a large part of
the analyzed area the drone images compute water
depths which are larger then the reference measure-
ment and therefore overestimates the water depth.
Furthermore, in the bottom corner of the image a
red colored area seems persistent. This indicates
that there seems to be a skewness in the error sig-
nal at coordinate X = 600 ranging from an over-
estimation where Y is approximately -200 to an
underestimation where Y is approximately 200.

The algorithm calculated a water depth for a
large part of the grid that was used as input. How-
ever, especially in the two sharp corners of the
trapezoidal projection, cBathy’s internal quality pa-
rameters were not sufficient and therefore no data
was plotted.
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To quantify these findings, a verifying area was
determined over which 4 different quality indica-
tors were calculated. Firstly the root mean squared
error (rmse) computes the difference between the
bathymetry as calculated by the drone imagery and
the reference bathymetry after which the average is
taken. For rmse computations, coordinates with a
higher deviation from the reference measurement
are given a higher weight than coordinates that
more accurately represent the real water depth. In
this way, differences in bathymetry accuracy are
quantified in a more extreme manner. Further-
more, to be able to correct for water depth, the
relative root mean squared error (rrmse) divides
the root mean squared error by the average water
depth over the specific area, as accuracies in shal-
lower water might at first sight seem better than
offshore. Also, as an indicator whether the water
depth is over or underestimated in a certain area,
the mean error is given. Thereafter, a standard
deviation is calculated which generally shows the
noise in the error from point to point. Whereas the
standard deviation is reviewed, it is not shown in
the figures.

As reference measurements stopped around 600
meters offshore, the Y limit of the total verify-

ing area was automatically accounted for. The
X limits of the verifying area were distinguished
as the width of the base of the projected trape-
zoid (ranging from approximately Y = -200 until
Y = 200), which changes a little for the different
datasets. This was chosen because when mapping
the bathymetry of an area that covers a long stretch
of coast, datasets would be taken subsequently and
with the base side by side to be able to have a
comprehensive map without gaps between the dif-
ferent recording. Therefore, the base of the trape-
zoid would be the bottleneck. In this scenario, the
oblique part of the projection will always have an
overlap with the next measurement. After the error
of the total area was quantified, three more spe-
cific sub-areas were indicated (see figure 57, sub-
plot 3) to give a better overview in which regions
of the induced bathymetry errors will in/decrease
and in what way. The first area was specified as the
first 200 meters offshore in the Y direction with the
width of the base of the projection in the X direc-
tion. This area is supposed to identify the general
bank-area.

First results show that there is a discrepancy
in the computed water depths farther offshore be-
tween coordinates that were captured by the left

Figure 57: Result of Base Scenario for Dataset 1.1
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Figure 58: Cross Sections of Results with Base
Settings for Dataset 1.1

side of the video and coordinated captured by the
right side of the video. Therefore, the area farther
offshore from the previously indicated bank area
was split by the Y = 0 coordinate line. The other
Y limit of these areas was once again indicated by
the width of the trapezoids base. The areas are
located in the far left and far right of the camera
image respectively. In this way, inconsistencies be-
tween the quantified quality parameters in the Y
direction of the data can be analyzed.

Figure 58 shows 5 cross shore transacts which
are spaced every 100 meter between -200 and 200
in the alongshore. It shows that although the mor-
phological elements of the coastal systems are com-
puted relatively accurately, there is still a large
amount of noise in the computed signal. This can
probably be attributed to the use of low tomo-
graphic smoothing parameters in this base scenario.
Furthermore, similar to observations regarding fig-
ure 57, relative to the reference transacts, the water
depth in the sections seems to increase from the left
to the right part of the captured image. Especially
in areas farther offshore more variance in the wa-
ter depths as computed by cBathy is found. Also
the transacts show that contrary to the findings of
Wengrove et al. (2013), the cBathy calculations are
generally deeper than the reference measurements.
Where in the third subplot, figure 57 indicates a 60
cm error window in white, it can be noticed that
while large parts of the bathymetry seem to be in
the 60 cm range, there are no large continuous areas
with this low margin of error. This is also shown in
the sections plotted in figure 58, where the drone
measurements show a noisy signal. It is estimated
that an increase in the tomographic smoothing will
at least partly reduce the noise in the signal.

Table 7: Accuracy of Total Area using Base Sce-
nario

Data rmse rrmse me Std
set (m) (m/m) (m) Dv

1.1 0.86 0.20 -0.41 0.76
1.2 0.96 0.22 0.08 0.96
2.1 1.30 0.30 0.64 1.1
2.2 1.00 0.24 -0.07 1.0

In the top right part of subplot three in figure
57, a quantification of the water depth accuracy is
found. As shown in figure, the root mean squared
error of the first dataset with above mentioned base
settings was found to be 0.86 meter. For the other
three comparable datasets, the errors of the total
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Table 8: Accuracy of Area 1, 2 and 3 using Base Scenario

Area 1 Area 2 Area 3
Data rmse rrmse me Std rmse rrmse ME Std rmse rrmse me Std
set (m) (m/m) (m) Dv (m) (m/m) (m) Dv (m) (m/m) (m) Dv

1.1 0.59 0.20 -0.40 0.42 1.00 0.21 -0.55 0.85 0.96 0.18 -0.23 0.93
1.2 0.71 0.22 -0.26 0.66 0.95 0.20 -0.35 0.88 1.20 0.22 0.85 0.85
2.1 0.74 0.25 0.05 0.74 0.70 0.15 0.00 0.74 1.90 0.34 1.60 1.10
2.2 0.76 0.26 -0.37 0.67 1.10 0.23 -0.48 1.0 1.20 0.23 0.65 1.10

area are shown in table 7 and the errors of the sub-
areas are shown in table 8. The table shows that
dataset 1.1 generates the best results. Followed by
datasets 1.2 and 2.2 which share similar results.
The highest errors can be found for bathymetries
which is inverted using dataset 2.1.

4.4 Fine Tuning cBathy Settings

As efforts have yet to be made with respect to
optimization of the settings of the cBathy algo-
rithm, it is assumed that this is the most obvious
potential accuracy booster at this stage. There-
fore, the following part of the report elaborates on
the endeavor to increase the accuracy of the com-
puted bathymetry when altering the settings. In se-
quence, settings are adjusted and compared to the
base results. This analysis is done to find the op-
timal cBathy settings for future UAV bathymetry
mapping.

Spacing for Analysis Points In the base sce-
nario, the cross and alongshore spacing of the anal-
ysis points were respectively 10 and 20 meters. To
analyze the influence of this parameter on the even-
tual water depth accuracy, changing the spacing
from (10, 20) to (10, 10) yielded significantly dif-
ferent results. For dataset 1.1, on the total area,
the root mean squared error increased by almost
40 centimeters which was especially attributed to
the increase in error for area 3. As different areas
yielded different changes in RMSE, the results did
not have a clear difference in accuracy over the to-
tal area. As these particular settings are not exten-
sively researched, further investigations are needed.

Analyzed Wave Frequencies Although the de-
bugging mode showed that the frequencies between
wave periods of 3 and 12 seconds seemed to accu-
rately portray the North Sea’s wave climate, to be
comprehensive a larger wave spectrum is analyzed
in one of the fine tuning tests. After analyzing the

same input data on wave periods between 2 and
18 seconds, results show that whilst the mean er-
ror seems to decrease with 8 mm, the root mean
squared error increases by 1 mm for dataset 1.1.
On the other hand, for datasets 1.2 the opposite
seems the case. Where the mean error is larger for
the broader spectrum, the rmse decreases from .96
to .88 m.

For dataset 2.1, every area performed marginally
worse. Furthermore, when taken the total area into
account, dataset 2.2 reacts the same to the changed
frequencies as dataset 1.1. However, when taken
the smaller areas into account, analyzing a broader
wave climate seems to yield better results for area
3 whereas the results are worse for area 2.

It should be noted that the different specified
areas react differently to the changes in analyzed
wave frequencies. Also, differences have been es-
tablished between datasets that were recorded less
than half an hour after each other and therefore a
significant change in wave climate is not assumed.
Hence, it can be concluded that increasing the wave
frequencies to a broader domain does influence the
results quite significantly. However, the results seem
ambiguous as they differ from area to area.

Tomographic Domain Smoothing A param-
eter that can decrease the error in the computed
bahtymetry for some datasets is the tomographic
domain smoothing. Essentially determined as the
desired spatial resolution of the bathymetry, the Lx
and Ly parameters in the base scenario are specified
as 1 time the spacing for analysis points (dxm &
dym). As the grid of the analysis points has length
scales of 10 by 20 meters in the cross and longshore,
this means that the smoothing length for selecting
the subset of pixels to influence the analysis for a
specific point is 10 by 20 meters. One could imag-
ine that this is rather small as wave lengths are in
the order of magnitude of approximately 30 to 100
meters at a water depth of 8 meters.

Therefore, the cBathy algorithm was ran again
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Figure 59: Total Area RMSE for Different
Tomographic Domain Smoothing Parameters

with increased spatial smoothing scales. Values be-
tween 1 and 4 times the analysis grid size (10 to 40
meters in cross shore direction and 20 to 80 me-
ters in long shore direction) were used. Figure 59
shows the total de/increase in root mean squared
error for the total areas of the different datasets
when altering the tomographic domain smoothing
variable. The rmse for dataset 1.1 decreases the
most to 0.37 for a smoothing factor of 2.0 times
length scales of the analysis points. It should be
noted that for dataset 2.1 when using the smooth-
ing parameter value of 4 and 4.5, the internal qual-
ity control values of the algorithm were not met
for large part of the mapped bathymetry. There-
fore, no data was plotted. The figure shows that
apart from deviations for a smoothing variable of
three times the grid size (30m in X direction and
60m in Y direction), datasets 1.1 and 2.2 increase
in water depth accuracy with an optimum for val-
ues around 2 and 2.5 times the grid size. On the
other hand, datasets 1.2 and 2.1 do not seem to
differ as promisingly. Therefore, it can be con-
cluded that for some reason, these datasets are less
tuneable. Also when increasing the smoothing pa-
rameter, visually the morphology seemed less rip-
pled than when using the values of the base re-
sult. This can be attributed to a more similar wa-
ter depth when including neighboring coordinates
as the overlap in analyzed wave fields is larger.

Figure 61 shows the bathymetry as calculated
by the cBathy algorithm when using a smoothing
value of 4.5 times the grids size (so 40 meters in
the cross shore for this scenario). It clearly shows
that there are some unrealistically shallow areas
farther offshore. Also the bathymetry in the fore-

Figure 60: RMSE per Area for Different
Smoothing Parameters for all Datasets
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Figure 61: Bathymetry Dataset 1.1 (Smoothing =
4.5)

shore seems less pronounces. This can also be ob-
served from the error in area 1 in in subplot 1 of fig-
ure 60. When using an area of analysis which is too
large, wave celerities close to the shore and wave
celerities far offshore are combined into a water
depth yielding very similar (blurry) water depths
throughout the area of interest. Also the edges of
the input data seem to include some sort of compu-
tational error yielding unrealistically shallow areas
far offshore.

To analyze the influence of the domain smooth-
ing parameters on the different sub areas, figure 60
shows the rmse for the individual areas for each
dataset. From this figure it can be taken that
smoothing parameters of three and higher generally
yield more ambiguous and therefore unpredictable
results. Also, as can be distracted from the steep
red line in dataset 1.1 and 2.2, for a smoothing
variable increasing from 1 to 2.5, especially area 2
gets increasingly accurate. When regarding area 2
and 3, the increasing accuracy can be attributed
to a decrease in the observed ripples that are more
evident farther offshore. The increasing smooth-

ing parameters filters the ripples ending up with a
more accurate water depth for these locations.

Kappa Variable Similar to the tomographic do-
main smoothing variable, the kappa variable in-
creases smoothing. However, the difference is that
the kappa variable increases the smoothing when
taking analysis points increasingly farther offshore.

Figure 62: Total Area RMSE for Different Kappa
Parameters

Like the previous section, the cBathy algorithm
was ran with the exact settings as used in the base
scenario but with a differing kappa parameter. Fig-
ure 62 shows the results of changing the kappa pa-
rameter for the 4 different datasets. Again, for
dataset 2.1, not every kappa variable yielded re-
sults due to not passing the internal quality con-
trol of cBathy. In general increasing kappa shows
similar results as changing the smoothing variable.
Dataset 1.1 increases in accuracy for a kappa value
increasing until around 3. Although less signifi-
cant, also dataset 2.2 shows a slight improved per-
formance in the same region. Furthermore like the
section above, the other two datasets show no in-
crease in performance and for kappa values higher
than three the results seem less predictable. It
should be noted that altering the kappa values yield
less of an improvement in accuracy when compared
to changing the smoothing variable for the total are
of interest.

Subsequently, figure 63 shows the depth error
in the different areas for the datasets when chang-
ing the kappa parameter. From this figure it can
be concluded that of the above mentioned tuneable
datasets (1.1 and 2.2), especially area 2 seems to in-
crease in accuracy. As farther offshore the smooth-
ing increases, for area 2 (and 3) it is really similar to
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Figure 63: RMSE per Area for Different Kappa
Parameters for all Datasets

the scenarios with an overall increased smoothing
variable as shown in figure 60 which also showed
an increase in performance. Furthermore, the rela-
tively straight green lines for area 1 are probably a
result of the smoothing not increasing enough that
close to the shore to be able to increase accuracy.
Also remarkable are the straight lines for every area
in dataset 2.1. It does not seem to matter which
value for kappa to use for the accuracy of any area
in datasets 2.1 and 1.2.

Visually, from figure 64 it can be noted that,
just like in figure 61, increasing the kappa value
too much yields strange results farther offshore. It
indicates unrealistically shallow areas around X =
800. It seems that, just like what was shown in fig-
ure 62, increasing the kappa value too much makes
the calculations prone to error and even unstable.

When comparing the results from the smooth-
ing analysis with the results from the kappa value
analysis, it seems that for well performing datasets,
all sub areas are benefited by increasing smooth-
ing. Subsequently, it is shown that for these drone
datasets a low or high smoothing value yields worse
results than an intermediate one (an analysis area
of around 20 to 25 meters in cross shore direc-
tion). Therefore, using a large Kappa value does
not yield good results. Because, on the one end
of the bathymetry (close to shore) it is using a
smoothing value that is too low, whilst on the other
end (farther offshore) it is using a smoothing value
that is too large. Therefore, generally results are
worse than using a standard (optimized) smoothing
value for the complete dataset.

Optimizing the Smoothing Parameter in Com-
bination with the Kappa Value The previous
paragraphs elaborated on the optimum values for
the smoothing parameter and the kappa parame-
ter. From the plotted transacts in the results sec-
tion it can be argued that the coordinates farther
offshore are more prone to ripples. As above it is
described that too much smoothing results in un-
stable bathymetries, the smoothing variable used
to analyze the kappa value is a little bit on the low
end of the optimum as described above. There-
fore, for a smoothing variable of 1.75 by 1.75 and
2.00 by 2.00 (so 17.5 m by 35 m and 20 m by 40
m) the Kappa parameter is increased and the root
mean squared error is shown in figure 65. The fig-
ure shows that increasing the Kappa value does not
seem to yield smaller errors. Therefore, from the
datasets of this research is can be argued that the
recommended value for drone footage is a smooth-
ing value of 2.00 times the spacing for the analysis
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Figure 64: Bathymetry Dataset 1.1 (Kappa = 4.5)

Figure 65: RMSE Total Area for Different Kappa
Parameters for all Datasets

points. In this case, the smoothing length scales
are 20 meters in the cross shore direction and 40
meters in the alongshore direction. Furthermore it
is recommended to keep the Kappa value low (in
this case 1.01).

Decimation To compute a large quantity of anal-
yses, in the base scenario brute force decimation
was used to speed up to process. During fine tun-
ing, after disabling decimation some of the errors
were observed to decrease by tenths of millimeters.
As at this point the errors were still in the region
of half a meter or even 1.5 meters, the alteration of
the decimation parameter is not considered to have
a significant influence on the final results for these
particular datasets.

95% Confidence Interval After the computa-
tion of a water depth on a specific point, the cBathy
algorithm also indicates its own quality parameter.
Based on the analysis of the input data a 95% confi-
dence interval is calculated. Figure 66 and 67 indi-
cate a large confidence interval of more than 1 me-
ter for basically the whole area in datasets 1.1 and
2.1. Subsequently, when increasing the smoothing
parameter, the cBathy algorithm has indicated a
higher quality parameters throughout the datasets.
Figure 68 and 69 only show a high value for the
95% confidence interval for areas offshore. In pre-
vious sections it is shown that the bathymetry er-
ror is signficantly lower for dataset 1.1 when us-
ing smoothing parameters of 2.50. However, it also
shows in increase in error for dataset 2.1. It would
be assumed that as the error especially increases
in the areas with Y values lower than 0, also the
confidence interval would increase.

The same discrepancy between water depth er-
ror and confidence interval is seen for dataset 1.2
and although less significant in dataset 2.2. The
algorithm indicates that sufficient hydrodynamics
movements have been captured by the dataset and
therefore it is able to compute a bathymetry. How-
ever, it either has not enough information, of is
unable to identify the most important wave fre-
quencies.

Another striking feature is that the algorithm
has more confidence in the offshore regions where
it is performing worse (with negative Y values) than
in the regions with positive Y values. When tak-
ing a look at the dataset qualitatively, accordingly
more waves can be detected in the region of area 3
than for the region of area 2. Although they are not
displayed in this section, similar results are found
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Figure 66: Bathymetry and Quality Parameters Dataset 1.1 (Smoothing Parameter: 1.00 by 1.00)

Figure 67: Bathymetry and Quality Parameters Dataset 2.1 (Smoothing Parameter: 1.00 by 1.00)
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Figure 68: Bathymetry and Quality Parameters Dataset 1.1 (Smoothing Parameter: 2.50 by 2.50)

Figure 69: Bathymetry and Quality Parameters Dataset 2.1 (Smoothing Parameter: 2.50 by 2.50)
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for dataset 1.2 and 2.2. Even though this seems to
be the case, the areas are performing worse.

Conclusions cBathy Parameters Optimiza-
tion The tests regarding the different settings for
the cBathy algorithm show that for drone videos,
the setup of the smoothing variable seems to be the
most important. For these tests, smoothing vari-
ables of 2 to 2.5 yielded best results. Furthermore,
from these tests it could be argued that the use of
the kappa variable for increased smoothing increas-
ingly offshore results in to little smoothing close to
shore and too much smoothing far offshore (around
600 m or further). It can also be concluded that
for some reason in areas on the right side of the
recorded video, the significant underestimation in
water depth of the cBathy algorithm is not shown
in its 95% confidence interval.

4.5 Summary

The results of this report show that on one occa-
sion, the accuracy of the inverted bathymetry is
fairly accurate. With a root mean squared error of
0.37 meters, the best dataset accurately described
the bottom as it is in the real world. Visually, the
nearshore pattern shows similar features between
the drone bathymerty and the jetski bathymetry.

However, for mapped water depths to be valu-
able for coastal monitoring purposes, it should be
guaranteed that a certain accuracy is reached for
every recording that is taken. These results show
a large discrepancy between the accuracies of the
different recordings and therefore cannot be used
without a reference bathymetry. If the margin of
error could be brought down to 0.20 meters, it
could serve some coastal monitoring purposes. The
following section of the report will more specifically
go into the data that is used and tries to find expla-
nations for the discrepancy between the accuracies.
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5 Discussion

As the previous section showed a large discrepancy
throughout the depth inversion accuracies between
different datasets, this section searches for an ex-
planation. At first, different parameters in the data
preparation process are analyzed in terms of their
impact on the eventual accuracy. Subsequently,
further analyses are done regarding the wave sig-
nals that the cBathy algorithm is observing.

As shown in section 4, first results yield bathyme-
tries for the four datasets. For these measurements,
the layout was fairly similar. However, there are
significant differences between the accuracy. As
dataset 2.3 had a much different setup, also the dis-
cussion part of this report will focus on dataset 1.1,
1.2, 2.1 and 2.2. From these measurements, dataset
1.1 and 2.1 had a similar layout with two rows of
ground control points (GCPs) located on the beach
and a relatively larger portion of beach observable
in the footage. However, as section 4 of this report
indicates, dataset 1.1 is performing the best out of
all 4 whilst dataset 2.1 is performing worst. Fur-
thermore, similar to results as found by Wengrove
et al. (2013), the cBathy algorithm seems to per-
form worse in deeper water than in the bank area.
However, when looking at the root mean squared
error divided by the water depth (rrmse), table 8
shows that especially in area 2 the computed bot-
tom for some datasets is more accurate than in area
1 (the shallow bank area). Subsequently, compar-
isons between mean error (me) in area 2 and 3 show
a skewness in the bathymetry error. The datasets
as observed in this research seem to underestimate
water depth in area 2, whereas they overestimates
the depth in area 3. The difference between the two
areas is that the water in area 2 is generally shal-
lower than in area 3, which is exaggerated by the
cBathy algorithm. Also, the absolute rectification
errors were found to be lower for the best perform-
ing dataset 1.1. The last possible accuracy explana-
tion could be given by the longshore tidal current
which was present during some of the recordings
whilst being negligible during others.

As the accuracy of the bathymetry is important
for research institutes as well as for governmental
bodies, an indication will be given what part of the
error can be contributed to which part of the depth
inversion process. This section will discuss which
parts of the inversion process as described in the
methodology and results section can be tuned to
yield better results. Afterwards, quantitative pa-
rameters regarding the intermediate steps are dis-
cussed on their potential impact on the end result.

First the rectification process is taken into account
after which measurement setup is elaborated. Sub-
sequently, the report focuses on analyzing the wave
signal. Thereafter, the errors contributors will help
give an indication on interesting topics to investi-
gate in future research. Lastly, potential helpful
drone depth inversion practices are elaborated.

5.1 Rectification Process Parameters

Apart from the settings in the cBathy algorithm
as shown in the previous section of the report, also
the implementation of the rectification process has
a wide variety of different options. This section of
the report elaborates the effect the rectification pa-
rameters have on the depth inversion effectiveness
and tries to find an explanation for the differing
inversion accuracies. It regards changing the grid
size and frequency among other changing variables.
As the changes of these variables are more time
consuming than changing the cBathy settings, for
most of the sampling alterations only dataset 1.1
is used with cBathy settings according to the base
scenario.

Spatial Sampling A potential influential factor
for the overall accuracy is the grid size used for in-
put data. The base scenario used a grid of 3 meters
by 3 meters in the cross and alongshore direction.
Whereas decreasing the grid size, more informa-
tion is available for analysis, the computation time
gets exponentially longer. On the other hand, as
the wave lengths are far longer than three meters,
not a giant difference in accuracy is expected. The
amount of points that need to be rectified and also
analyzed by the algorithm increases by a factor 4
when decreasing the grid size by a factor 2. For
this analyses grid with a spatial length of 6, 5, 4,
3 and 2 in both the cross as in the alongshore are
used. Attempts to use a 1 by 1 meter grid failed
due to a limitation in computing power.

Table 9 shows the results of the spatial reso-
lution analysis for dataset 1.1. It shows that the
difference between a grid size of 2, 3 or 4 meters
does not change the outcome of the bathymetry in
a clearly better way for either one. It does show
that a 5 by 5 grid yields worse results whereas a
6 by 6 grid does not show any results whatsoever.
From these results it can therefore be recommended
to use a grid size of 4 by 4 or smaller, depending
on available computing power and time.

Subsequently, the difference between grid sizes
of 2 and 3 meters seems to yield different results
for the offshore areas. A 2 by 2 grid in this dataset
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Table 9: Depth Inversion Accuracy
(RMSE) for Different Rectification Grid
Sizes for Dataset 1.1

Grid Total Area Area Area
Size Area 1 2 3

rmse rmse rmse rmse
(m) (m) (m) (m)

2 by 2 0.88 0.59 0.94 1.10
3 by 3 0.86 0.59 1.00 0.96
4 by 4 0.90 0.61 0.98 1.10
5 by 5 1.00 0.65 1.00 1.4
6 by 6 -* -* -* -*

*The cBathy algorithm was not able to
map a complete bathymetry.

performs better in the area with positive Y values.
On the other hand, the 3 by 3 grid performs bet-
ter in the area with negative Y values. These dis-
crepancies could probably be attributed to a better
transfer of the wave signal from the recordings to
the rectified grid data. However, the specifics are
not yet understood.

Image Frequency As Argus station use a sam-
pling frequency of 2 Hz, for the base scenario of
this research the same rate was used. As the short-
est wave analyzed in this research is 0.333 Hz, the
refreshment rate is plenty to capture the full spec-
trum of the waves generates offshore. However, as
the camera in Argus towers have a fixed direction
and in the homography only has to adjust for the
tide, the sampling is considered to be much steadier
than the drone images. Therefore, one could argue
that when using more images per second, there is
more data to average and filter out the rectifica-
tion instabilities and analyze hydrodynamic move-
ments. Therefore, the same settings as for the base
scenario have been used to compute a bathymetry
with the only exception of using a sampling rate of
6 Hz instead of 2 Hz.

Table 10: Depth Inversion Accuracy (RMSE) for
Different Image Frequencies for Dataset 1.1

Image Total Area Area Area
Freq. Area 1 2 3

rmse rmse rmse rmse
(m) (m) (m) (m)

2 Hz 0.86 0.59 1.00 0.96
6 Hz 0.81 0.60 0.92 0.91

The results are displayed in table 10. It shows
that for the offshore areas, the root mean squared
error decreases. This could be an indication that
the cBathy algorithm is indeed able to the extra
data to better estimate wave movements. The in-
fluence of the sampling rate is only researched quan-
titatively for 1 dataset. Therefore, the findings
should be taken as an indication and further re-
search is required.

Amount of GCPS Used As for practical pur-
poses the use of less ground control points would
be desirable, the minimum amount of 4 GCPS were
used for the base scenario. However in dataset 1.1,
8 ground control points per image were automat-
ically detected. Therefore, one could argue that
using all of the points would yields a better and
more stable rectification as the algorithm has more
information to solve the homography.

Table 11: Depth Inversion Accuracy (RMSE) for
Different Image Frequencies for Dataset 1.1

No of Total Area Area Area
GCPS Area 1 2 3

rmse rmse rmse rmse
(m) (m) (m) (m)

4 0.86 0.59 1.00 0.96
8 0.81 0.59 0.85 0.99

Table 11 shows the difference in rmse for the
two situations. It shows that, similar to increas-
ing the sampling frequency, the use of more ground
control points overall yields better results. How-
ever, it should be noted that only in area 2 the
error actually decreased.

Conclusions Whilst yielding similar gains, un-
like the sampling rate, increasing the amount of
ground control points does not significantly increase
the computer processing time. However, it does
make the efforts in the field more intensive. From
experience, it could be argued that increasing the
sampling rate would be the preferred when choos-
ing between the two. This is because the reduction
in computer processing time does not weight up to
the reduction in measurement effort. However, it
should be noted that for a large area increasing the
image frequency might result in datasets that are
too large for regular computers. In such a case, the
computers random-access memory (RAM) seems to
be the bottleneck.
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Furthermore, whereas some of the rectification
process parameters seem to yield better results, it
should be noted that a specific explanation remains
unknown. When altering one of the parameters in
the early stages of the data preparation process, the
errors (or decrease in errors) cascade down to the
eventual depth inversion accuracy. Therefore, it is
assumed that the data transfer is more effective for
some of the above mentioned parameters. These
findings give an indication on which parameters to
review when trying to increase depth inversion ac-
curacy.

5.2 Measurement Setup

Because there was a time constraint with respect to
the amount of datasets that could be acquired on
one day, limited tests were done in terms of drone
location with respect to the area of interest. The
methodology section of this report elaborates on
advantages of different measuring setups in term of
the viewing angle and drone position. In terms of
rectification accuracy there seemed to be an indi-
cation that using an alongshore viewpoint (dataset
2.3) could potentially yield good results. However,
as cBathy computations showed unusual results,
this research focuses on finding the cause of the dif-
ference between the first 4 datasets. Furthermore,
the other 4 measurements were taken in a similar
fashion. The first datasets of each day had a loca-
tion farther inland from the second dataset. These
four dataset are not enough to make any significant
conclusions in terms of the influence of the mea-
surement setup on the bathymetry error. However,
the fact that two similar scenarios yield such dif-
ferent results (dataset 1.1 and 2.1) indicate that it
might not be the measuring setup that contributes
to the largest part of the error.

5.3 Wave Signal

To give an indication of which parts of the UAV
bathymetry mapping method can be contributed
to which part of the error in the computed water
depths, the above described analyses can be com-
bined with an analysis of the detected wave signal.
The following section elaborates on the detected
wave frequencies and indicates whether the algo-
rithm is able to use them in the water depth calcu-
lations. The signal is specifically analyzed on three
individual locations, after which the entire area is
taken into account. Furthermore, different cBathy
internal quality parameters are investigated.

5.3.1 Signal Analysis for Specific Locations

In the first part of the signal analysis, the base
dataset is elaborated. The analysis reviews wave
signals as observed and modeled by the cBathy al-
gorithm for some specific locations within the area
of interest. Firstly, a section with coordinates in
the center of the dataset is analyzed. An area of
25 by 25 meters around coordinate (0, 400) is indi-
cated after which the cBathy algorithm will show
the most dominant wave frequencies. As described
in section 3.5.2, for these wave frequencies an ob-
served wave field is shown for which the angle of
incidence and the magnitude is analyzed. With
these found values a wave field is modeled which
should represent the observed wave field. If these
images converge, it can be argued that the specific
frequency is accurately detected. Furthermore, the
skill value represents the amount of variance in the
observed wave field that can be described by the
modeled wave field. Therefore, it gives a good in-
dication of the effectiveness of the analysis.
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Figure 70: Three Areas at which Signal Analysis
is Performed

Also areas around the (500, 400) coordinate and
the, generally worse performing, (500, -400) coor-
dinate the analysis is done. Figure 70 indicates the
locations of the specific areas. At these locations,
the algorithm indicates four different sub areas. As
for all of these sub areas the 4 most dominant wave
frequencies are denoted, a total of 16 overlapping
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frequencies are analyzed. Four of these 16 frequen-
cies (fB) for dataset 1.1 around coordinate (400,
0) are shown in table 12. The table also indi-
cates analyzed parameters like the wave number
(k), angle of incidence (a), skill value, temporary
depth (hTemp) and the error in computed tempo-
rary depth (hTempErr). The skill parameter in-
dicates how accurate the different wave frequencies
describe the surface motions. As there seems to be
a clear difference in performance when comparing
area 2 with area 3, especially these two locations
are compared in the following analysis.

It should be noted that throughout the datasets
the wave front has a sharp angle with the coast.
As the cBathy algorithm generally assumes waves
to penetrate the coastal regions relatively perpen-
dicular, the signal analysis should be able to indi-
cate whether the correct wave estimations are made
given the angle in these datasets.

Dataset 1.1 The coordinate in the center of the
area of interest (area 2) gets elaborated first. Ta-
ble 12 shows the dominant frequencies for 1 of the
4 sub areas in area 2. For 3 of the 4 sub areas, the
algorithm indicates the 0.1233 Hz as the most im-
portant frequency. Thereafter the 0.2033, 0.1633
and 0.1833 Hz frequencies seem to be important.
Figure 71 shows an example of a predicted wave
phase corresponding to observed wave phase with
a skill value of 0.92 (see table 12). Therefore, the
wave is accurately analyzed. In area 2, the identi-
fied important frequencies seem appropriately con-
sistent throughout all of the 4 sub areas. Namely,
for all of the sub areas, the two most important fre-
quencies were estimated to be either 0.1233, 0.2033
or in one case 0.1633.

When looking at area 3 (see 4 of the 16 frequen-
cies in table 13), the amount of different frequen-
cies identified as either the most or the second most
important was larger (4). This could indicate that
to the algorithm it is less clear which of the part
of the wave spectrum is most important for depth
inversion.

Furthermore, when regarding the area around
coordinate (400, 0), the skill quality parameter in-
dicates a value of 0.9 or above for most of the 16
wave frequencies, indicating that a large percent-
age of the variance can be explained by fitting the
local phase data. On the other hand when looking
at the skill value for coordinate (500, -400), for a
part of the values it decreases to 0.8 or 0.7 even
reaching 0.3 in 1 of the 16 occasions. Values un-
der 0.5 are automatically dismissed and every value
above 0.5 is considered to be good enough to use
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Figure 71: Phase Analysis 0.2033 Hz Dataset 1.1
Coordinate (400, 0) (see Freq 3 of table 12)
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Figure 72: Phase Analysis 0.2633 Hz Dataset 1.1
Coordinate (500, -400) (see Freq 4 of table 13)
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for depth estimation. Finally for the 0.2633 Hz
wave frequency the algorithm is unable to accu-
rately predict the phase. Figure 72 shows an image
of the detected and the predicted wave front. When
it tries to make a prediction, there seems to be a
70-90 degree angle between the actual wave front
compared to the predicted wave front. In this case
the skill value decreased to approximately -0.6 and
is therefore dismissed.

Table 12: Debugging Values Dataset 1.1, coordi-
nate (400, 0)

Freq Freq Freq Freq
1 2 3 4

fB (1/s) .1633 .1233 .2033 .1833
k (1/m) .1594 .1176 .1934 .1692
a (rad) -.50 -.56 -.86 -.54
skill (−) .9346 .9232 .9223 .9103

hTemp (m) 5.118 4.902 6.688 6.476
hTempErr (m) 9.04 10.69 12.35 11.51

Table 13: Debugging Values Dataset 1.1, coordi-
nate (500, -400)

Freq Freq Freq Freq
1 2 3 4

fB (1/s) .1833 .2233 .1633 .2633
k (1/m) .1638 .2323 .1525 .4215
a (rad) -.80 -.91 -.81 .39
skill (−) .9160 .9405 .8487 -.6394

hTemp (m) 7.152 5.628 8.898 1.440
hTempErr (m) 13.24 6.50 8.90 1.44

On the other hand, for area 2, the algorithm
was unable to resolve a satisfactory solution more
often than for area 3. When this occurs, the algo-
rithm returns NaNs for the specific frequency. The
amount of unresolved wave solutions plotted for the
central area was 3 out of 16 whereas the other area
yielded only 1 out of 16 unresolved frequencies. In
theory, when there are enough other modeled wave
frequencies with high skill values, an accurate wa-
ter depth can still be computed.

Subsequently, when looking at the preliminary
depth the cBathy algorithm estimates at area 1, it
seems that the variance in the depth estimations as
indicated by the algorithm per frequency is lower
than for area 3. It ranges between 4 and 8 meters
for all of the 12 frequency values, whereas in the
latter location it ranges from 2 to 12 meters. This
indicates that the algorithm is more confident in

the analyzed wave field for area 3 than from area
1. As the final depth calculation in phase 2 of the
cBathy algorithm does not use these preliminary
depths, this does not have to be a problem. How-
ever, it does give an indication for the confidence in
the eventual computed depth. Also, similar to the
lower skill value, the estimated error in the prelim-
inary water depth seems to be larger for the poorly
performing area. This is again merely an indication
for depth inversion accuracy.

From this analysis it is shown that the worse
performing area 3 seems to consist of wave data
that is slighty harder to detect for the cBathy algo-
rithm. However in theory, enough high skill values
are found to compute an accurate water depth.

Dataset 1.1 vs Dataset 2.1 The first datasets
on the two days were filmed in a fairly similar set-
ting which included the recording of two rows of
ground control points on the beach. However, there
was around 22 hours in between the measurements.
Therefore, conditions like the tide, the wave cli-
mate had changed. When comparing the worse
performing dataset 2.1 with dataset 1.1 the focus
lies on area 3. This is because especially in this
area, dataset 1.1 performs significantly better than
dataset 2.1. This part of the report tries to find an
explanation for the discrepancy in bathymetrical
accuracy.

When looking at the area 2, the wave frequency
that is most important according to the cBathy al-
gorithm is 0.1233 Hz for the first day and 0.1633
Hz for the second day. The second most important
frequency on the second day is 0.2233 Hz where on
the first day it was 0.2033. Further dominant wave
frequencies also indicate that the wave field on the
second day consisted of slightly shorter waves than
on the first day. This is in accordance with the vi-
sually estimated wave lengths in the results section
and is later also shown in figure 75. In the image
it is shown that the most dominant wave frequency
was generally larger for the first day when com-
pared to the second day. Furthermore, the domi-
nant wave frequencies in area 3 became less obvi-
ous for both datasets 1.1 and 2.1. Instead of hav-
ing 3 different frequencies indicated as being either
the most or the second most important frequencies
for the 4 different sub areas in the worse perform-
ing area 0.1233, 0.1433, 0.1633, 0.1833, 0.2033 and
0.2233 Hz are all indicated as being either the most
or second most important. This increase from 3 to
6 different frequencies indicates that the algorithm
is not as effective in the analysis for this part of the
dataset.
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Table 14: Debugging Values Dataset 2.1, coordi-
nate (400, 0)

Freq Freq Freq Freq
1 2 3 4

fB (1/s) .1633 .2233 .1833 .1433
k (1/m) .1948 .2386 .2057 .1586
a (rad) -.79 -.84 -.81 -.62
skill (−) .9445 .8610 .9289 .9184

hTemp (m) 3.178 5.129 3.826 4.221
hTempErr (m) 3.89 7.14 4.23 7.12

Table 15: Debugging Values Dataset 2.1, coordi-
nate (500, -400)

Freq Freq Freq Freq
1 2 3 4

fB (1/s) .1833 .1633 .2433 .2033
k (1/m) .2435 .1862 .6747 .3049
a (rad) -1.02 -.97 .16 -1.10
skill (−) .8716 .7985 -.7853 .8682

hTemp (m) 2.568 3.527 0.547 2.006
hTempErr (m) 2.00 3.95 0.22 1.16

When looking at the skill level between area 2
and 3 areas, the data in the center area seems to
yield better values. Like dataset 1.1, this area in
dataset 2.1 indicates values consistently around 0.9.
Subsequently, like for dataset 1.1, the data from
day two also has significantly lower skill levels for
area 3. The values range from 0.4 to 0.8, with pre-
dominantly values of 0.7. It should be noted that
within the 4 sub areas there are also three negative
skill values which indicate a completely erroneous
wave phase prediction by the algorithm. An ex-
ample of the erroneous phase prediction is shown
in figure 73. All three of these negative skill val-
ues are attributed to the 0.2433 Hz wave frequency,
resulting in the conclusion that especially the algo-
rithm has difficulties with analyzing sharp angled
short waves.

Furthermore when regarding dataset 2.1, area 1
yields three unresolved wave frequencies, whereas
area 2 and 3 only yield 1 and 2 respectively. As
this analysis focuses on three really specific loca-
tions, this does not mean that there is a general
trend of unresolved wave frequencies. Area 1 still
yields good results probably because there are suffi-
cient other wave frequencies that accurately model
the water surface elevation. Also, the preliminary
depths that are estimated by the signal analysis
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Figure 73: Phase Analysis 0.2433 Hz Dataset 2.1
Coordinate (500, -400) (see Freq 3 of table 15)

show that for both area 2 and 3, dataset 1.1 yields
higher values than dataset 2.1. Whereas dataset
1.1 indicated between 4 & 8 meters of depth for
area 2, dataset 2.1 yields between 3 & 5 meters.
For area 3 it shown respectively between 0.2 & 12
meters and 0.5 & 4. As these specific areas are
only a small subset of the total area, this could be
a coincidentally.

When looking at the magnitude of the wave
number as detected by the algorithm, it seems that
generally for different sub sections similar results
are found when comparing the specific frequencies.
However, for the 0.2433 Hz frequency that was falsely
predicted, the wave number changes up to a factor
2 for the different sub areas. This can probably be
attributed to the fact that the phase prediction has
a significant error as shown in figure 73.

From these results it can be distracted that the
wave detection has difficulties with the relatively
short waves (approximately 4 seconds) with a sharp
angle of incidence. This error in the algorithm is
known, and therefore the current state is not par-
ticularly specified on short wave coasts. On the
other hand, the fact that even the poorly perform-
ing areas shown high skill values means that the
algorithm is accurately observing a signal.

Area 1 As the previous parts of the signal anal-
ysis have mainly considered area 2 and 3, the area
around coordinate (500, 400) is briefly elaborated
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in this section. This area scores intermediate to
high in terms of the skill values when compared
to the other 2 areas. Furthermore, the indicated
wave frequencies that are considered to be most
important are fairly consistent throughout the 4
sub areas area (500, 400). In dataset 1.1 the fre-
quencies 0.1233, 0.1433 and 0.1633 are consistently
indicated as most important. The dominant wave
frequency was even more consistent for dataset 2.1.
For all of the 4 sub areas the 0.1433 Hz frequency
was indicated as most important and the 0.1833 Hz
frequency as second most important. For these rea-
sons it is assumed that the signal in the left hand
side of the image is of almost the same quality as
the signal in the center of the image. Also when
according to the quantitative analysis in the re-
sults section, this area seemed to perform relatively
good.

Locational Signal Analysis Conclusions The
previous section showed that across the analyzed
datasets, the signal that was observed by the cBathy
algorithm seemed better in the center area than in
the area around coordinate (500, -400). The area
around coordinate (500, 400) was intermediate in
terms of quality of wave frequency analysis. As
area 2 falls directly in the center of the envelope of
the 4 used ground control points, it is assumed that
the rectification quality was better both in terms of
absolute error and stability. Therefore, the optical
signal probably had the least distortions in terms
of rectification errors. This gives an indication to
research the influence of rectification errors.

Even though the wave analysis seemed to per-
form worse for are 3 when compared to area 2,
the algorithm still theoretically found sufficient fre-
quencies for an accurate depth estimation. There-
fore, it seems that the observed optical signal did
capture sufficient wave parameters for the algorithm
to compute an accurate bathymetry.

5.3.2 Spatial Parameters of Signal Analysis

To be able to visualize the above mentioned anal-
ysis and consider larger spatial scales, figure 74
shows the most important wave frequency as in-
dicated by the cBathy algorithm for datasets 1.1,
1.2, 2.1 and 2.2 for every coordinate in the rectified
area. Furthermore, figure 75 illustrates the skill
values of these wave frequencies. Subsequently, fig-
ure 76 indicated the second most important wave
frequency for all the datasets and figure figure 77
again shows its skill value.

The first figure shows that for a large amount of

contiguous coordinates of dataset 2.1 and 2.2, the
wave frequency that is estimated to be most impor-
tant is the same. It seems that on the second day,
especially the 0.1433 Hz frequency is indicated as
a dominant signal. On the other hand, the dom-
inant wave frequency as indicated by the phase 1
analysis seems to differ more severely throughout
the datasets on the first day. Whether a severely
differing dominant frequency throughout a dataset
is advantageous is unknown. One could argue that
multiple frequencies can yield more data through-
out the frequencies and that thereby more wave
data can be used to calculate bathymetry. On the
other hand, as the wave climate is not estimated to
differ severely throughout a section of 2500 squared
meters, a more evenly indicated dominant wave
frequency shows that the algorithm is better able
to analyze the right frequencies. The quantitative
analysis from the results section invigorates the for-
mer. Furthermore, the fact that the datasets taken
on the same day show similarities could indicate
that the wave climate on day one was in fact less
monotone than on day two.

The second most important wave frequency is
shown to differ more severely throughout the co-
ordinates for all of the datasets. Another striking
feature of figure 74 and 76 is that the areas of con-
tiguously similar wave frequencies all border in a
North-South direction. It could be that the wave
direction is to be attributed as in a dataset of 15
minutes some wave groups could be more prevalent
than others. Another explanation could be the di-
rection of the sun rays, which came from the South.
However, with the current data no specific conclu-
sions can be drawn.

Subsequently, figure 75 shows the quality (skill)
value that the cBathy algorithm indicates for the
different coordinates. The skill value is directly re-
lated to the wave frequency as indicated for that
specific coordinate. According to the algorithm,
a value converging to 1 indicates an increasingly
accurate water depth estimation. Also, skill values
below 0.5 are indicated as insufficient and therefore
are rejected. The figures show that the skill value
below area 3 of the poorly performing dataset 2.1
have low values. This should mean that the iden-
tified wave frequency should not be taken into ac-
count during the phase 2 single depth estimation.
It should be noted that the low skill values are gen-
erally located outside the extend of the reference
bathymetry (white lines). As within the reference
bathymetry the skill values are predominantly high,
the algorithm should be able to compute accurate
water depths. The fact that this is not the case
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Figure 74: Most Important Frequencies (Smoothing Parameter: 2.00 by 2.00)

Figure 75: Skill Values of First Frequencies (Smoothing Parameter: 2.00 by 2.00)
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Figure 76: Second Most Important Frequencies (Smoothing Parameter: 2.00 by 2.00)

Figure 77: Skill Values of Second Frequencies (Smoothing Parameter: 2.00 by 2.00)
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could again be an indication that whilst the opti-
cal signal is accurately analyzed, the signal does
not correctly portray the physical signal.

Figure 76 indicates that the second most dom-
inant wave frequency is less coherent throughout
the coordinates. However, similar to the first wave
frequencies in figure 74, waves on the second day
seem to be less noisy than on the first day. Also
like according to the first frequencies, the colors in-
dicate that in some areas shorter waves are more
predominant than in other areas.

When comparing the spatially indicated skill
values to the error plots in the results section (third
suplot in figure 68 & 69), it is concluded that in
the area with a reference bathymetry present both
the skill values and the estimated errors indicate
an accurate wave field mapping and therefore also
a good bathymetry inversion. The figures do show
that the lower skill values in the areas with negative
Y coordinates outside of the reference bathymetry
also add up to a higher estimated depth error for
some parts. On the other hand, also for dataset 1.1
the estimated error seems noisier in area 3. These
findings indicate that the datasets score similarly
in terms of analyzing the optical signal. Hence,
they confirm the observation in the results section
which found the datasets to be qualitatively similar
in terms of visually observable wave fields. Subse-
quently, provided that the optical signal represents
the physical signal the datasets should also perform
similar with respect to depth inversion.

5.3.3 Conclusions Signal Analysis

The data elaborated in this section indicates that
within the datasets that are used for this research
the wave fields in the optical signal are generally
analyzed in an accurate manner. However, at the
worst performing sub area in the worst performing
dataset, skill values as indicated by the cBathy al-
gorithm are for some coordinates lower than for dif-
ferent areas. Even though this is the case, accord-
ing to the internal quality parameters, the cBathy
algorithm yield good phase 2 single depth estimates.

Furthermore, relatively short waves with a steep
angle of incidence are more often analyzed in an er-
roneous way then waves with an angle more oblique
to the shore.

Even though the quality was a little worse for
areas below the (500, -400) coordinate, figures 68 &
69 in the previous chapter and figures 75 & 77 al-
ready showed a low error estimate for both the well
and the badly performing areas. Because the skill
values are generally high throughout the datasets

it can be concluded that the cBathy algorithm is
accurately observing a signal. Also the low depth
error as shown in the results section contributes to
this observation. However, when compared to the
reference bathymetry, the eventual water depths in-
dicate a large error for areas that seem to be per-
forming well in terms of skill values. Therefore, the
question rises whether the observed optical signal
is portraying the physical signal of wave motions.
When looking at the input data in retrospect, there
seem to be two possible explanations for the dis-
crepancy between the optical and the physical sig-
nal. Either the tidal current influences the wave
length, or the large rectification errors attribute the
wrong location to an accurate optical signal.

5.4 Influence of Longshore Current

The current induced by the tide was shown in sec-
tion 4.1. It showed that the tidal current during
dataset 1.1 differed severely from the current dur-
ing dataset 2.1. As the algorithm is written for pri-
marily obliquely incoming waves, the influence of
longshore currents is not assumed to interfere with
the cBathy algorithm significantly. Therefore, the
longshore current is not corrected for. As the waves
during this research were coming steeply from the
north and were opposing by the tidal current, the
longshore current might have influenced the calcu-
lations. Therefore, a brief analysis of the poten-
tial influence is done. Lee and Mizutani (2007) re-
searched the influence of current on waves. They
showed that a current that travels in opposite direc-
tion of waves reduces their observed wave number.

Table 16: Wave Length Reduction due to Opposing
Current as found by Lee and Mizutani (2007)

Wave Current Wave Wave Reduc-
Period Velocity Height Length tion

(s) (m/s) (cm) (m) (%)

1.8 0 5.0 2.895 0
1.8 -.4 5.0 2.790 3.6
1.8 -.6 5.0 2.650 8.5

1.4 0 5.0 2.154 0
1.4 -.4 5.0 2.060 4.4
1.4 -.6 5.0 1.931 10.4

1.0 0 5.0 1.373 0
1.0 -.4 5.0 1.279 6.8
1.0 -.6 5.0 1.134 17.4
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In table 16, it is shown the wave length of waves
with a period of 1, 1.4 and 1.8 seconds decreases
by 17.4, 10.4 and 8.5 percent respectively in terms
of wave length when changing the flow from 0 to
-.6 m/s. As the wave periods that were prevalent
during the field survey of this report were generally
larger, the reduction in wave length is assumed to
be lower than 8.5 percent. However, to calculate an
extreme value a reduction of 8.5 percent is chosen
for this analysis.

The current during dataset 2.1 was estimated
to be around 0.7 m/s opposing the wave that were
incoming form the North. The wave number is re-
lated to the wave length in the following way.

k =
2π

L
(24)

This means that if the wave length would de-
crease by 8.5 %, according to above mentioned re-
search, the estimated wave number would increase
by the same percentage. Subsequently according
to the dispersion relation (equation 23) the esti-
mated water depth would have decreased by ap-
proximately 15 %. This gives an indication that
the opposing tidal current did influence the cal-
culations. However, as 15 % is assumed to be
an extreme number, the actual influence would be
smaller. As the error for the poorly performing are
in dataset 2.1 is over 1 meter for areas that actu-
ally have 5 meters of depth, the error is over 20
%. Therefore, the opposing tidal current cannot be
accounted for the large error in dataset 2.1.

When looking at the distribution of the tidal
flow across the upper shoreface, figures 78 & 79
show the tidal current during datasets 1.1 and 2.1
respectively. As the algorithm does not take cur-
rents into account and dataset 1.1 was recorded
around flow reversal, this should not influence the
results. On the other hand, figure 79 shows that
due to the breakwater of the Scheveningen harbor,
for strong tidal flow, the tidal currents throughout
the area of interest differ severely. The currents
that oppose the incoming waves are much larger for
the right hand side of the recorded imagery than for
the left hand side (see figure 79). This would mean
that in area 3, the estimated depth would be rela-
tively lower than in area 1. This is also observed in
the quantitative analysis. Hence, this might par-
tially explain the skewness in the depth signal for
dataset 2.1.

However, this would mean that due to the strong
tidal current farther offshore, also in that location
the estimated water depths would be smaller than
the real depths. As there is no reference data for

Figure 78: Tidal Currents Scheveningen During
Dataset 1.1 (and 1.2) with Drone View and

Reference Bathymetry Location

Figure 79: Tidal Currents Scheveningen During
Dataset 2.1 (and 2.2) with Drone View and

Reference Bathymetry Location
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this part of the bathymetry, the relative depth error
can not be quantified.

On the other hand, the opposing current can
not explain the small depths around area 3 which
similarly also observed for dataset 1.2. Dataset
1.2 was recorded approximately 30 minutes after
dataset 1.1 and therefore the tidal currents were
not significantly different.

Conclusion Current Interference The analy-
sis of the tidal currents shows that when only com-
paring datasets 1.1 and 2.1, the currents could be
identified as a contributor to the bathymetrical er-
ror. However, around area 3 also dataset 1.2 shows
errors that are in the order of magnitude of the
computed depth. As during this recording no sig-
nificant tidal currents were present, other causes
for the optical signal not representing the physical
signal should be researched.

5.5 Absolute Rectification Error

As discussed in this chapter, the algorithm accu-
rately models the severity of different observed wave
frequencies. Apart from the opposing tidal current
interference with the wave signal which was dis-
missed, no other physical aspects were found that
could potentially negatively influence the physical
signal (the actual wave motions). Therefore, it is
assumed that the optical signal does not represent
the physical signal in an accurate manner. When
regarding the results chapter, one of the errors that
had the largest discrepancy between the datasets
was the absolute rectification accuracy (see section
4.2.5). It was shown that the average error for
the floating ground control points during the best
dataset ranged between 15.5 and 19.5 meters. On

the contrary, the absolute errors for the worse per-
forming dataset 2.1 were 28.7 and 37.7 for GCPS 1
and 2 (GCPS 3 and 4 were not identifiable). Apart
from the total error being larger, a large error in
the Y direction was observed which was virtually
undetectable for dataset 1.1. Therefore, the rec-
tification process for dataset 2.1 is considered to
have added a distortion in the optical signal which
might have resulted in the low accuracy of the even-
tually inverted bathymetry. Another observation
that seems to reinforce this hypothesis is the fact
that especially outside the envelope of the GCPs
used for rectification the errors seemed to increase.
This could be attributed to the rectification error
increasing exponentially when considering coordi-
nates increasingly farther away for the envelope.

5.5.1 GCP Usage

To detect whether the errors in the geometry are a
significant contributor to the bathymetry accuracy,
the rectification algorithm needs to be changed in
a way that could potentially decrease distortions
in the projection. In an effort to accomplish this,
for dataset 1.2 the amount of GCPs used was in-
creased from 2 water GCPs and 2 beach GCPs to
4 water GCPs and 2 beach GCPs. Subsequently,
for dataset 2.2, both the water and beach GCPs
were increased to 4. After the amount of GCPs
that were used for these datasets was increased,
the error counter-intuitively also increased to 1.2
and 1.0 meters RMSE respectively. The large in-
crease indicated that changing GCPs configuration
significantly influences the accuracy of the method.
The unexpected increase in error motivated a more
elaborate investigation. In this section, several dif-
ferent GCP configurations will be used for an ex-
tensive analysis.

Table 17: Absolute Rectification Error (Real Location - Estimated Location) Reduction with Resulting
Bathymetry Accuracy for Dataset 2.1 (for GCP layout see figure 44)

Version Number GCP 1 GCP 2 RMSE
GCPs Total Area Area Area
Used abs (x, y) abs (x, y) Area 1 2 3

(water, beach) (m) (m) (m) (m) (m) (m) (m) (m)

V1: (2, 2) 28.7 (-19.8, 20.6) 37.7 (-30.5, 22.0) 1.3 0.62 0.64 2.0
V2: (2, 8) 18.4 (-15.9, 9.1) 7.0 (6.1, -3.4) 1.0 0.44 0.67 1.5
V3: (0, 8) 29.3 (15.3, 24.9) 18.9 (18.5, 3.7) 1.2 0.37 1.0 1.6
V4: (1, 8) 12.1 (-7.8, 9.2) 17.5 (15.8, -7.6) 1.3 0.49 0.91 1.9
(*gcp 1)

V5: (1, 8) 19.0 (-8.9, 16.7) 5.6 (4.3, 3.5) 0.87 0.38 0.62 1.3
(*gcp 2)
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Whereas for datasets 1.1, 1.2 and 2.2 four ground
floating ground control points were automatically
detected, dataset 2.1 had only 2 water GCPs that
were available together with 8 beach GCPs. Af-
ter adding every beach GCP available to the ge-
ometry calculation, in contrast to the observations
for the previous datasets, the error significantly de-
creased from 1.3 to 1.0 meters RMSE. This gave
an indication that the floating GCPs might nega-
tively influence the geometry calculation which in
turn yields worse depth estimates. It could be that
the GPS loggers located on the floating GCPs were
not accurate enough to be used for depth inver-
sion practices. However, as the location registered
by these loggers stayed within a couple of meters
between dataset 1.1 and 1.2, the discrepancy in ac-
curacy cannot be explained solely by a large GPS
error. To be more thorough, more tests were done
regarding the used GCPs for dataset 2.1. Table
17 shows the reduction in absolute rectification er-
rors3 for dataset 2.1 when altering the amount of
floating and beach GCPs used. It also shows the
changes in bathymetry error. As the rmse error dif-
fers with almost half a meter for the total area, the
results in the table reinforces the above mentioned
indication that the computation of the homogra-
phy during the rectification stage of the method
does have a large influence on the eventual results.

Especially the skewness (an overestimation on
the left hand side of the video and an underesti-
mation of the right hand side of the video) in the
bathymetry that was observed in the base results
seems to be influenced by the calculation of the
geometry. Figures 80, 81, 82, 83 and 84 show the
resulting bathymetries as computed when using the
different GCP versions in accordance with table 17.
Qualitatively, it shows that the bathymetry skew-
ness decreases when increasing the amount of beach
control points used. This can be argued because
the water around coordinate (500, -400) is not com-
puted to be as shallow as in figure 80 and the wa-
ter around coordinate (500, 400) is not as deep.
Furthermore, an attempt to compute a bathymetry
when only using the 8 control points situated on the
beach (figure 82) resulted in an even greater reduc-
tion in bathymetry skewness which is indicated by
the smaller difference in water depth errors when
comparing area 2 and 3 in table 17. Whereas this
indicates that the projection might not be as dis-

3Whereas this section will indicate that the two floating
GCPs might not contribute to better geometry calculations
and therefore might not have an accurately estimated posi-
tion, they are merely used as a reference point when com-
paring the projections of different versions.

Figure 80: Bathymetry According to Dataset 2.1
when using Version 1 (GCPS 1, 2, 9 & 12)

Figure 81: Bathymetry According to Dataset 2.1
when using Version 2 (GCPS 1, 2, 5, 6, 7, 8, 9, 10,

11 & 12)
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Figure 82: Bathymetry According to Dataset 2.1
when using Version 3 (GCPS 5, 6, 7, 8, 9, 10, 11

& 12)

Figure 83: Bathymetry According to Dataset 2.1
when using Version 4 (GCPS 1, 5, 6, 7, 8, 9, 10,

11 & 12)

Figure 84: Bathymetry According to Dataset 2.1
when using Version 5 (GCPS 2, 5, 6, 7, 8, 9, 10,

11 & 12)

torted as for the previous versions, the lack of dis-
tance between the GCPs in the cross shore direc-
tion might have led to an underestimation of the
wave length throughout the entire area and there-
fore computing relatively small water depths for
the whole area of interest. This underestimation
of the wave lengths can be argued because the rec-
tification error in the x direction as shown in ta-
ble 17 significantly increased for this version. An-
other indication to attribute a significant part of
the bathymetry error to the projection distortion is
given when regarding versions 4 and 5. These ver-
sions were compiled as version 3 yielded a smaller
skewness but a larger standard underestimation of
spatial scales in the cross shore direction. This is
why is was argued that using only 1 floating GCP
might solve the cross shore spatial scale error whilst
not distorting the projection as much as when us-
ing both floating GCPs. Therefore, in versions 4
and 5 all 8 beach GCPs were used in combination
with only 1 floating GCP. As the rectification error
in longshore direction only based on the accurately
measured beach GCPs (version 3) yielded larger
error for GCP 1 than for GCP 2 (see table 17),
it was predicted that version 5 would yield better
water depth estimates and lower bathymetry skew-
ness than version 4. This hypothesis was reinforced
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when table 17 showed that the estimated location
error for floating GCPs 1 and 2 differed significantly
for version 4. Whereas GCP 1 was overestimated
in cross shore direction by around 8 meters, GCP
2 was underestimated in the same direction with
almost 16 meters. This distorted projection is ar-
guably the cause of the lower bathymetry accuracy
of version 4 when compared to version 5.

Figure 85: Different Projections of the Same
Frame for Different GCP Versions (see table 17)

of Dataset 2.1

To quantify and visualize the above findings, for
an arbitrary frame in the video captured for dataset
2.1 the different projections are calculated per GCP
version and displayed in figure 85. The figure illus-
trates the geographical location of a subset of pix-
els (the projection) taken from the image (in this
case image 150) in accordance to the homography
as calculated using the five different GCP versions.
It is clearly shown that the same pixel of the same
image of the same dataset is displayed on a com-
pletely different location when using different GCP
versions. It shows a projection for version 1 which
is completely different from the projection of ver-
sion 3. This erroneous projection of a certain pixel
can influence the water depth in two ways.

1. The water depth is calculated in an erroneous
way due to an over or underestimation of the
wave length

2. The calculated depth is plotted on a wrong
location

The following part will elaborate and compare
these two errors.

5.5.2 Wrongful Wave Length Estimation

As the same pixel of a certain frame is calculated
to have a significantly different location when using
different GCP configurations, the size of that par-
ticular pixel will also be different (see figure 21 in
the methodology section). Table 18 shows the pixel
dimensions for pixel (836, 575) and the pixel (2760,
550). These pixels were chosen as they represent
the projected pixels around coordinates (600, 300)
and (600, -300).

Table 18: Pixel Dimensions in Cross Shore Direc-
tion for the Different Versions van GCP Setup in
Dataset 2.1

Version Pixel A Pixel B
Number (836, 575) (2760, 550)

Size (m) Size (m)

1 2.61 2.08
2 2.13 2.29
3 1.79 2.19
4 2.07 2.17
5 2.04 2.35

The table shows that the pixel portraying the
(600, 300) coordinate is significantly larger for ver-
sion 1 when compared to the other versions. This
means that of the same waves that are observed
around this particular pixel, the wave length ac-
cording to version 1 is observed to be larger. The
larger wave length yields a higher wave celerity.
The higher wave celerity subsequently results in a
larger computed water depth according to the fol-
lowing dispersion relation.

h =
1

k
arctanh(

ω2

gk
) (25)

The equation shows that the water depth is
related to the inverse hyperbolic tangent of the
frequency squared divided by the wave number.
As the erroneous projection only changes the wave
length whilst keeping the frequency the same, an in-
crease in wave length (a decrease in wave number)
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causes the water depth to increase as the arctanh
increases according to figure 86.

y = arctanh(x)

x

y

Figure 86: Inverse Hyperbolic Tangent

For instance for a wave with a length of 50 me-

ters and a period of 9 seconds (ω2

gk = 0.40), the
inverse hyperbolic tangent relation is semi-linear.
This means that an increase in observed wave length
linearly increases the inverse hyperbolic tangent.
As the hyperbolic tangent is multiplied by 1/k,
which represents 2 pi divided by the wave length
(equation 15), the relation becomes quadratic. Hence,
an error in the projection represents a quadratic er-
ror in the water depth estimation.

5.5.3 Plotting the Depth at the Wrong Lo-
cation

A second error that is introduced by a distortion
in the projection regards plotting the calculated
depth as computed for a specific coordinate at the
wrong location. As the error is captured in the
coordinates, the wrongly calculated water depth as
described above is also attributed to its wrong loca-
tion. This for instance results in water depths being
plotted farther away from the shore (see figure 87)
for the area around coordinate (800, 400) for GCP
version 1. As apart from features like breaker bars
the water generally gets deeper when taking coor-
dinates farther offshore, this error will lead to an
underestimation of the water depth for parts that
are stretched out by the wrongful projection.

The two above mentioned error inducing factors
as a results of projection distortion have an op-
posing influence on the depth of the eventual com-
puted bathymetry. To get an indication whether
the water depths are going to be under or over-
estimated, the dispersion relation (equation 25) is
compared to the slope of the transact. As elab-
orated above, an increasing wave length exponen-

water depth plotted
in wrong location

cross shore distance

Figure 87: Water Depth Plotted in wrong
Location

tially increases the computed water depth. On the
other hand, the water depth of a profile generally
gets less steep when taking locations increasingly
offshore. Therefore, the reduction in water depth
due to the overestimated pixel location is argued
be less significant when taking locations farther off-
shore. Hence, the under or overestimation in wave
length is argued to be a more predominant factor
than the attribution of a water depth to the wrong
location. Subsequently, a location where the pixel
coordinates are overestimated is argued to overes-
timate water depth and a location where the pixel
coordinates are underestimated is argued to under-
estimate water depth. This is also clearly visible in
figure 80, where the area around coordinate (800,
400) is stretched out and deep and the area around
coordinate (800, -400) is more squeezed together
and shallow.

Water Level A hypothesis which could poten-
tially explain the algorithm being unable to cal-
culate an accurate geometry is a discrepancy be-
tween the measured water level and the actual wa-
ter level. Therefore, as a test, the water level as
observed by the Rijkswaterstaat measuring device
in the Scheveningen harbor was altered by adding
and subtracting 20, 40 and 60 centimeters. These
test were done by using 8 GCPs on the beach and
2 in the water because in this way it could verify
whether the geometry error between the water and
beach GCPs was caused by the water level. As an
artificial change of observed water levels cannot be
done when computing bathymetries without refer-
ence data, only the influence of the water level on
the skewness in the bathymetry is regarded. Af-
ter running the UAV bathymetry mapping method
with the altered water levels, the skewness in the
bathymetry signal was prevalent. This indicates
that the water level was not the cause of the geom-
etry problem.
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Optimizing GCP Configuration for Datasets
1.2 and 2.2 The previous section has shown that
the use of both beach and water GCPs for dataset
2.1 is likely to cause an error when computing the
projection of the captured video on a three dimen-
sional map. The results chapter showed that al-
though not as strongly prevalent as in dataset 2.1,
also dataset 1.2 and 2.2 suffered from a skewness
in the bathymetry. Hence, it was assumed that
this was caused by the same geometry error as for
dataset 2.1. Therefore, it is argued that also for
datasets 1.2 and 2.2 a potential accuracy increase
can be accomplished by changing the GCP usage.
Either only beach or only water gcps could be used
to indicate whether this is the case. As for these
datasets only one row of beach GCPs was visible in
the video imagery, the cross shore component of the
rectification could not be determined in an effective
manner when using only beach GCPs. Therefore,
of both datasets the bathymetry was computed us-
ing only the four water based control points. Re-
inforcing the above geometry indication, the root
mean squared error decreased to 0.58 and 0.68 me-
ters respectively. However, as the water based con-
trol points were situated farther away from the
camera, the accuracy of the nearshore area (area
1) did decrease to root mean squared errors of 0.60
and 0.79 meters respectively. It was also found,
that the skewness in the bathymetry as found in
the results section disappeared. This reinforces the
indication that using a combination of water and
beach GCPs results in a distorted projection.

5.5.4 Summary Geometry Error

After the suspicion was raised that the projection
did not represent the three dimensional coordinates
in an orderly manner, an investigation was done
into the use of different ground control point con-
figurations. It was found that the error contribu-
tion induced by the erroneous projection was sig-
nificantly larger than the error which were con-
tributed by other parts of the UAV bathymetry
mapping process. Using different control points
yielded different projections for the exact same ar-
bitrary frame. A subsequent qualitative analysis
showed that the observed skewness in the error of
the bathymetry could indeed be explained by the
distortions in the projection which were present in
the base scenario analyzed in the results section.
Because the input data did not represent the wave
climate in a correct way, the cBathy algorithm itself
could not be tested to its limits.

5.6 UAV Bathymetry Mapping Per-
formance

In this research, the cBathy algorithm seemed to
perform well. For a large extend of the area of
interest, the waves that were analyzed seemed to
represent the optical signal correctly. Also, one of
the datasets yielded relatively accurate results with
an overal rmse of 0.37 meters. As the method used
in this research was built from scratch, there are
still several optimizations that can be investigated.
This indicates that the UAV bathymetry mapping
method can potentially be a valuable tool for water
depth calculations.

During the bathymetry calculations using the
base scenario of standard settings, the error of the
method was still rather large. Some optimizations
in especially the cBathy settings increased the over-
all accuracy. It was shown that the rectification
calculations still included a large error. Eventually,
also the geometry calculation was significantly im-
proved by only using the four floating control points
for datasets 1.2 and 2.2. As for dataset 2.1 two
of the four floating GCPs could not be detected,
the same mitigation was not possible. Therefore,
the use of 8 beach GCPs and 1 floating GCP de-
creased the geometry error in the best way. The
final bathymetry accuracies are displayed in table
19.

Table 19: Bathymetry Accuracy for all Datasets
after the Geometry Error is Mitigated

Data Total Area Area 1 Area 2 Area 3
set rmse rmse rmse rmse

(m) (m) (m) (m)

1.1 0.37 0.25 0.31 0.55
1.2 0.58 0.60 0.62 0.52
2.1 0.87 0.38 0.62 1.3
2.2 0.68 0.79 0.69 0.52

For the scenarios in which floating and beach
control points are combined, the table still indi-
cates a larger error for area 3 when compared to
the other areas. This indicates that a discrepancy
between the three dimensional location of the pix-
els and the projection is still present, resulting in
a similar bathymetry tilt as was observed for the
base scenarios in the results section.

As the final control point configurations could
not be known beforehand, these root mean squared
errors do not represent the accuracy of the bathymetry
as would be expected when measuring without ref-
erence data. However, they do give an indication
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of the potential error once the UAV bethymetry
mapping method is developed more extensively. As
for a usable bathymetric indication an error in the
order of magnitude of 20 centimeters is required,
these figures indicate that the UAV bathymetry
method is still unsuitable for coastal monitoring.

5.7 cBathy Adjustments

As the cBathy algorithm has been written to ac-
curately map water depth for the east coast of the
United States, it works well when analyzing swell
waves. However, as the wave climate at the North
Sea is less steady and consists to a larger extend of
short wind induced wave frequencies, the algorithm
is argued to be less accurate for the Dutch coast.

When cBathy was ran at Argus systems, so
called short wave anomalies have been observed.
The reduction of pixels (the decimation parameter)
to increase computation speed in some cases causes
the algorithm to be unable to identify short waves.
This is because the spatial scales between the pixels
became larger than the (short) waves. Anomalies
in computations with data from the Duck Argus
station showed unrealistically shallow areas as a
result of this. Another cBathy problem regarded
wave angle analysis. As was observed in this re-
search, the analysis of the angle of incidence of the
waves was in some incidences unstable for waves
with a steep angle of incidence resulting in a mod-
eled wave phase with a large error in the angle of
incidence.

A new version of the cBathy algorithm takes
care of these issues as the area used for the analysis
of one particular coordinate is not prefixed like in
the version of the algorithm that is used for this
research. In the new version, the area used for
wave analysis is extended when analyzing coordi-
nates increasingly offshore. Because the amount of
data taken into account is generally lower due to
the smaller analysis area, for computational per-
formance, there is no need for the decimation of
pixel anymore. Furthermore, the robustness of the
angle of incidence analysis is increased in the new
version.

Where in the data for this research, some steep
wave angles were analyzed in an incorrect way, these
updates to the cBathy algorithm are estimated to
increase accuracy for dataset 1.1. However, as the
geometry error is strongly present for the other
datasets, the updated algorithm would arguably
yield a minor reduction in rmse. Hence, the cBathy
improvements should be tested once the geometry
errors are solved. The erroneous analysis of short

waves with a sharp angle if incidence as shown in
section 5.3 also indicates that the second cBathy
adjustments can potentially have a significant im-
pact on the total accuracy of the method.

On the other hand, using a larger area for depth
inversion when analyzing coordinates increasingly
farther offshore (represented by the Kappa value)
did not seem increase the performance of the method
in this particular research. Therefore, it should be
investigated whether the new version of the algo-
rithm increases depth accuracy for UAV bathymetry
mapping as conducted in this research.

5.8 Future Research

For this research the whole drone depth inversion
process was extensively researched. The next part
will elaborate on recommended future research to
increase the effectiveness of the method as used in
this research.

5.8.1 Testing cBathy

At the start of the research it was estimated that
the depth inversion algorithm cBathy would be the
largest contributor to the bathymetry error. How-
ever, as an incorrect geometry is found to be the
largest error contributor to the method as described
in this report, the algorithm was not tested to its
limits. When using the same method, it is advised
to put effort into solving the geometry in a more ac-
curate manner. Once the pre-processing of the data
is done in a more effective manner, the cBathy al-
gorithm can be tested to its full extend. As drone
footage renders different datasets due to the dif-
ference in stability and higher altitude, it would
be interesting to compare its bathymetry accuracy
with Argus stations. This can be investigated by
flying a drone directly over an Argus station and
record a dataset at the same time. Subsequently,
of these datasets a bathymetry can be calculated
by the cBathy algorithm which can be compared
to ground truth. A video from the Argus station
could also be analyzed exactly in the same way
as the drone footage, including for instance cal-
culating the geometry for every individual frame.
This process could yield valuable information about
the specific difference in accuracy between the two
methods.

5.8.2 Variance Decrease

For coastal monitoring purposes, a large variance
between the accuracies of the UAV bathymetry map-
ping is detrimental. When acquiring data for spe-
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cific purposes, a specific accuracy has to be guar-
anteed for the data to be usable. Therefore, the
variance between accuracies yielded by the differ-
ent datasets should be decreased. As a large part
of the variance was attributed to the error in the
rectification, simply creating a better algorithm for
the data preparation part of the process is esti-
mated to yield better results in terms of variance.
This is reinforced by the final two bathymetry er-
rors of datasets 1.2 and 2.2. The error between
the beach and water based GCPs was eliminated
by only using the water GCPs. This yielded root
mean squared errors with a discrepancy of 10 cen-
timeters. As this research was unable to use data
from both floating and beach GCPs, not the full
potential of the method could be used. A more
standardized geometry calculation is estimated to
yield better results. Therefore it is recommended
to investigate a more effective way to calculate the
projection of the images.

On the other hand, this research is limited as
all of the data was acquired on two subsequent
days with similar conditions. Therefore, whereas
the variance between the accuracies could be re-
duced by increasing the effectiveness of the rec-
tification part of the UAV bathymetry mapping
process, it does not guarantee the same variance
between datasets which were acquired during days
with different weather conditions.

5.8.3 Accuracy Increase

Once the variance between different measurements
is decreased, the data can potentially become us-
able for coastal monitoring purposes. For which
purposes it can potentially be used will be deter-
mined by the eventual accuracy. When the gen-
eral accuracy standard of the International Hydro-
graphic Organization (IHO) of 25 centimeters is
reached, the data becomes usable for long term
monitoring of coastal features or for giving an gen-
eral indication of a bathymetry at the start of a
comprehensive survey. If the accuracy could ever
reach a root mean squared error below five cen-
timeters, it could even be used for sediment budget
calculations. In the next part of the report, some
ways of increasing accuracy are described.

Eliminating the Rectification Error In this
report the rectification error was only mitigated
and not eliminated entirely. As it showed that the
accuracy of the computed bathymetries increased
significantly when using only control points on the
beach, it could be argued that there are still large

gains that can be made once the rectification pro-
cess works in a more effective manner. Whereas
the best dataset in this research yields a fairly ac-
curate bathymetry, there is still some skewness ob-
served when comparing it to ground truth. Also,
although smaller than for the other datasets, the
absolute rectification error in the results section
still showed a large value. This arguably indicates
that the bathymetry error could be smaller than
the 0.37 meters found, once the geometry error is
decreased.

Kalman Filter Another way of increasing the
total accuracy of the UAV bathymetry mapping
method includes using a Kalman filter in combi-
nation with multiple measurements of the same
area. This is a practice that has been used for
a while in combination with data acquired by the
Argus stations. The filter uses the quality parame-
ters which are indicated for every depth calculation.
In this way, locations where the cBathy algorithm
effectively found wave patterns to base the calcu-
lations on are separated from the locations where
the waves are less evident. When using multiple
datasets taken on the same location, these quality
parameters are used to increase accuracy across the
domain.

This process does increase the labor intensity
of the method. Therefore, it is recommended to
research whether a Kalman filter increases the per-
formance of the method and if this is the case an
optimal number of surveys of the same area can be
indicated.

Improved cBathy Another promising develop-
ment is the creation of the new version of cBathy as
described is part 5.7. In a personal communication
with the creator of the algorithm Rob Holman it
was indicated that for Argus data the new version
of the algorithm significantly increased the total ac-
curacy. It is recommended to research whether this
is also the case for drone measurements.

5.9 Practices

There are virtually endless possibilities to use the
UAV bathymetry mapping method. An investi-
gation regarding several cBathy settings and data
sampling parameters has shown their effects on the
accuracy of the bathymetry that was computed.
Based on these findings, the following section shows
practices that can potentially increase the accuracy
of the method.
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5.9.1 Drone Stability

Because Argus cameras are fixed, their projection
only has to be calculated once. The fixed posi-
tion yields stable projected video footage because
there is no discrepancy between the location of a
specific pixel in subsequent frames. For the UAV
bathymetry method as used in this report, for ev-
ery single frame the homography is computed. As
images are distracted from the captured video by
two frames per second, rectifying every individual
frame adds a stability error with a two hertz fre-
quency. Because cBathy analyses wave frequencies
between 1/3 and 1/12 hertz, this reduced stabil-
ity should not decrease the accuracy of the depth
inversion algorithm.

On the other hand, the stability of drone footage
is ever increasing. An increased stability means
that changes in the coordinate that can be linked to
a specific pixel in the recorded footage is very small.
This means that instead of calculation the coor-
dinate of every single pixel for every single frame,
the same homography could be used for subsequent
frames. This means that especially the computa-
tion time of the rectification algorithm can be de-
creased significantly. It should however be taken
into account that the frequency of the homography
calculation should not interfere with the frequen-
cies that are analyzed by the cBathy algorithm.
For instance on the Dutch coast, where the ana-
lyzed wave lengths are in between 3 and 12 seconds,
the calculation of the homography can for instance
be done every 15 seconds.

Virtual Image Stabilization A way of stabiliz-
ing the video footage is virtual image stabilization.
This can potentially be used when recording im-
agery during more extreme weather conditions or
when using a drone less capable in terms of image
stabilization.

Through analyzing rectification stability, a cou-
ple of findings were done in terms of potential sta-
bilization practices for the drone depth inversion
process. The stability analysis in the results sec-
tion indicated that throughout the measurements
a significant amount of noise could be detected in
the geographical location when taken a random
pixel from the UV domain and analyzing its lo-
cation. As the rectification consists of assigning
a geographical coordinate to a pixel (UV) coordi-
nate, it does not necessarily have to be a physical
ground control point. The below proposed image
stabilization method works similar to stabilization
methods being used to filter shaky images recorded

by hand held (and therefore moving) consumer de-
vices. However, instead of matching pixel color,
pixel coordinates are used.

After calculating the homography of a specific
frame based on 4 points in that image of which the
location is known, the geographical location of ev-
ery single pixel in the image is estimated. When
taking a random image, their location throughout
the time series can be indicated at which point just
like in the stability analysis of the results section
noise is detected. The noise is indicated by filter-
ing out sudden, unrealistic location changes of a
specific pixel using a Savitsky Golay (Savgol) fil-
ter. The filter signal does include the longer term
movements of the pixel location, which is necessary
because unlike Argus cameras, the drone camera
does not have a fixed aim. On the other hand, the
1 hertz noise caused by the rectification is filtered
out. In this way, in theory every single pixel in the
video domain (4096 * 2160 pixels) can be smoothed
after which a more stable rectified video is com-
puted. However, computing about 9 million Savgol
filters is a time consuming job. Therefore, instead
of calculating the filter every single pixel, only 4
have to be stabilized after which with the use of
the internal camera parameters a new homography
can be calculated for every frame. The 4 stabilized
pixels can be indicated as virtual ground control
points. The proposed stabilizer basically computes
the homography of frame n with the use of all of the
computed homographies for the frames surround-
ing it (a couple of seconds earlier (n − 1, 2, 3) and
a couple of seconds later (n + 1, 2, 3)). It should
be noted that the proposed stabilization method
does not decrease the absolute error of the rectifi-
cation. However, it does make it more stable from
one frame to the other. Therefore, one of the po-
tential implementations could be to have 4 fixed
GCPS on land which are easy to setup and use
these points to rectify a video. This video will be
unstable as the area between the 4 points is rel-
atively small. However, using virtual GCPS, the
instability can be adjusted for. This practice has
been done in this research en qualitatively (visu-
ally) it seems to yield a stable rectified video. On
the other hand, in this practice cross shore spatial
scales are difficult to verify.

The same process could potentially also be im-
plemented in terms of drone position of viewing
angle. As the rectification process used in this re-
search calculates the position of the drone for every
individual frame, strong differences in drone posi-
tion of viewing angle from one frame to the next can
be assumed to be untrue and adjusted for. Fur-
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thermore, also the homography of frame n could
be used as a basis to calculate the homography of
frame n+1 and thereby the footage might increase
in stability.

The Use of Ships as Ground Control Points
Another method to decrease the need for floating
ground control points is to use ships as ground con-
trol points. According to maritime law, ships over
a certain length a required to broadcast their lo-
cation every second while moving. If the drone
camera is aimed in such a way that the ships are
visible, they can be automatically detected and the
broadcasted location can be used for rectifying the
video. Generally, when analyzing a location that is
increasingly far offshore, the rectification instabil-
ity increases significantly. This can be contributed
to the small errors in the solution for the homogra-
phy are multiplied by the distance because of the
geometrical conditions. As the ships are located far
offshore, it can be argued that this method would
yield stable results especially for the location of the
area of interest.

5.9.2 Limitations

Because the UAV bathymetry mapping method in
total consists of a large amount of steps, it is diffi-
cult to isolate different influencial parameters. Due
to changing weather conditions, measuring setups
and rectification accuracies, the input data is differ-
ent for all of the datasets. Therefore, even though
this research attempted to keep the steps consis-
tent throughout the datasets, differing final results
indicate that there are still significant differences
in the data. The sheer volume of potentially minor
changes throughout the process resulted the dif-
ferences in the data to add up and yield variable
results. Therefore, these field experiments can only
give an indication of which steps in the process are
important as suggested by these specific measure-
ments. The variable input parameters could not be
isolated in an evident way and therefore results are
not as specific as was aimed when starting the re-
search. Only after a significant amount of research
gets put into this specific subject a comprehensive
database can establish more specific error contrib-
utors and guidelines for future use.

Conditions During Measurements The con-
ditions during the measurements that were ana-
lyzed in this report were largely kept as constant
as possible. The amount of fog during the two
testing days was visually comparable and the wave

height was also similar. Due to differences in tidal
phase, water level did change throughout the mea-
surements. These specific conditions should be at-
tributed to the results in this report and therefore
statements made in this research could be different
for similar measurements done with altering con-
ditions. Again, more data needs to be gathered
and compared before more generic conclusions and
recommendations can be made.
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6 Conclusions & Recommen-
dations

This section starts with a summary of the thesis.
The general results are briefly discussed after which
the hypothesis is reviewed. After answering the re-
search questions, the report concludes with recom-
mendations on how future studies can contribute
to the UAV bathymetry mapping method.

Summary To be able to increase efficiency re-
garding the acquisition of bathymetric data, this
research aimed at contributing to the development
of the UAV bathymetry mapping method working
out every step in the process and investigating its
accuracy. The research utilized video footage ac-
quired by a Unmanned Aerial Vehicle to compute
water depths in the nearshore of a specific loca-
tion on the Dutch coast. The different videos as
captured in the survey qualitatively seemed very
similar. However, when comparing computed wa-
ter depths with ground truth acquired using a jetski
with an echo sounder, the method yielded different
accuracies ranging from a root mean squared error
(rmse) of 0.37 to 0.87 meters. The accuracy and
especially the variance between the rmse’s makes
the technology in its current state unsuitable for
coastal monitoring purposes. The largest contrib-
utor to the error of this method was found to be
the calculation of the geometry when pre process-
ing the video footage. A more standardized coor-
dinate calculation is estimated to decrease variance
which is required for the UAV bathymetry mapping
method to in the future partly replace conventional
bathymetry mapping methods.

Results This report includes bathymetries of an
area 500 meters in cross shore direction and 500
meters in longshore direction at Scheveningen in
the Netherlands. The bathymetries are calculated
from video imagery taken by an Unmanned Aerial
Vehicle. The process included three different steps.
The first step involved data acquisition. Step 2 in-
volved the rectification of the captured imagery and
in the third step the water depths were computed.

The data for this research was acquired on two
subsequent foggy days in February 2017. The days
yielded 2 (1.1 and 1.2) and 3 (2.1, 2.2 and 2.3) us-
able datasets respectively. As datasets 1.1 and 2.1
as well as 1.2 and 2.2 were very similar and dataset
2.3 yielded bad results from the start, the analy-
sis focuses on the first two datasets of each day.
With weather conditions being similar and wave

height of around 0.95 meter on the first day and
0.80 meters on the second, for each dataset 2 off-
shore ground control points (GCPS) and 2 static
GCPS on the beach were used to rectify every sub-
sequent image that was cut from the video at a rate
of 2 frames per second. The identified noise in the
data as induced by step 1 and 2 of the process was
established to be contributed to the foggy weather,
the relatively small waves, the error in the GPS
loggers positioned at the floating GCPS, the auto-
matic GCP detection, the opposing tidal current
and the geometry calculation for the image rectifi-
cation. Subsequently, the water depth that is cal-
culated by the depth inversion algorithm (cBathy)
in step 3 is an estimation of which an uncertainty
was expected.

The absolute rectification error ranged from 20
to 35 meters in the cross shore direction. Further-
more, an analysis to the pixel intensity of the grid
that was used as input data to the cBathy algo-
rithm showed similar values for the couples of sim-
ilar datasets. The average pixel intensities of the
cross section in the center of the area of interest
at Y = 0 for dataset 1.1 and 2.1 showed a simi-
lar curve as well as the intensities for dataset 1.2
and 2.2. Regarding the standard deviation over the
whole time series for the same cross section, dataset
2.2 was shown to have the largest value, while the
other three datasets seemed comparable.

After fine tuning the parameters of the cBathy
algorithm, the UAV bathymetry mapping method
yielded root mean squared errors ranging between
0.37 (dataset 1.1) and 1.3 (dataset 2.1) meters for
the predetermined area of interest 500 meters in
cross shore and 500 meter in longshore direction.
The datasets which yielded the best and the worst
accuracy were seemingly identical in terms of visi-
bility, ground control points used and their average
analyzed pixel intensities. A discrepancy was found
between the depth inversion accuracy of three dif-
ferent sub areas as compared to the total area of
interest. In general the area closest the shore (the
bank area) yielded more consistent results with a
RMSE ranging from 0.25 meters for dataset 1.1 to
0.62 meters for dataset 2.2. The area farther off-
shore on the left side of the captured recording also
seemed to perform well. The RMSE in this partic-
ular area ranged from 0.32 meters for dataset 1.1
to 0.64 meters for dataset 2.1. Whereas its RMSE
was generally larger than the RMSE in the bank
area, after dividing the error by the average water
depth that area, it even seemed to perform better
in most instances. On the other hand, for the off-
shore area on the right hand side of the recorded
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video, the algorithm seemed to constantly underes-
timate water depth. Subsequently, after comparing
the signal in three specific points, it was shown that
around the poorly performing area the cBathy al-
gorithm did not correctly model the specific wave
frequencies as well as in other areas. However, as
for every area it was shown that there were enough
frequencies modeled in a correct manner, the al-
gorithm should have been able to compute water
depths with a higher accuracy than observed.

Fine tuning data sampling parameters indicated
a potential increase in accuracy in several occa-
sions. Whereas decreasing the grid size of the input
matrix from 3 by 3 to 2 by 2 meters did not seem
to yield better results, increasing the sampling rate
from a 2 Hz to a 6 Hz frequency for the base (pre
fine tuned) scenario did decrease the the rmse by
0.05 m. Especially in the areas farther offshore the
accuracy increased. As the rectification noise is
higher farther offshore, this decrease in error could
arguably be contributed to the algorithm being able
to filter out the noise in a more effective way. Also,
as it increases the information available to resolve
the same number of degrees of freedom, increasing
the amount of ground control points used for the
rectification process from 4 to 8 resulted in a 0.05
m decrease of the rmse. Also, increasing the spatial
resolution of the data which is used to compute wa-
ter depths does not seem to influence the observed
signal and depth inversion in a positive way.

An investigation in the large rectification errors
showed that the largest contributor to the total
error with these particular measurements was an
incorrect calculation of the geometry in the recti-
fication process. Using different combinations of
GCPS for the calculation of the geometry yielded
significantly different mapped projections. It was
shown that there was a large discrepancy between
the location of a specific pixel according to the dif-
ferent GCP scenarios. This finding showed that
the end result of the UAV bathymetry mapping
method as it was performed in this research is sen-
sitive to the usage of differing GCPS for the ge-
ometry calculation. For dataset 2.1, increasing the
sheer amount of GCPs used therefore decreases the
total rmse from 1.3 to 0.87. Subsequently, only us-
ing the four floating GCPs when using the UAV
depth inversion method for datasets 1.2 and 2.2
decreased their rmse to 0.58 and 0.68 meters re-
spectively. A reduction of almost half a meter.

Main Question: Is it valuable to intensify
researching efforts regarding UAV bathymetry
mapping for future use in coastal monitor-

ing? The results from this research show that
it is possible to map a bathymetry with an rmse
of 0.37 meters. As this is a relatively accurate
bathymetry, the UAV bathymetry mapping method
shows potential. How, for the data to be valuable,
a low variance is desirable. Therefore, the discrep-
ancy between the total accuracies of the different
datasets renders the method unsuitable for coastal
monitoring purposes for the current state of the
technology.

Sub Question 1: What is the depth inversion
accuracy in the current state of the tech-
nology for coastal conditions in the Nether-
lands? After the geometry error was taken into
account, the eventual accuracy ranged from 0.37 to
0.87 meters rmse for an area of around 2500 square
meters for dataset 1.1 and 2.1 respectively. The
rmse’s of dataset 1.2 and 2.2 were 0.58 and 0.68
meters respectively.

Sub Question 2: Does the depth inversion
process yield consistent results within 0.2 me-
ters root mean squared error? The the depth
inversion results seem promising. However, the dis-
crepancy between the rmse of the different datasets
makes the technology in its current form unsuitable
for coastal monitoring purposes. For the measure-
ments used in this research the observed difference
between the rmse of dataset 1.1 and dataset 2.1 was
half a meter. Once the variance in the eventual ac-
curacies is brought down, the data becomes more
valuable and maybe eventually usable.

Sub Question 3: Which step in the UAV
depth inversion process is the largest con-
tributor to the water depth error budget? In
this research, an error in the calculation of the ge-
ometry when converting the two dimensional video
the a three dimensional projection was found to be
the largest contributor to the overall water depth
error. However, as it should be noted that differ-
ent image rectification strategies might yield differ-
ent results, other UAV bathymetry mapping efforts
might stumble upon errors in different parts of the
process. This is due to the large quantity of steps
in the process.

Sub Question 4: On which aspect of the UAV
bathymetry mapping method should future
research be focused to increase its accuracy?
In future attempts, especially the error variance
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needs to be brought down. The reduction in vari-
ance can be established when sensitive areas like
the geometry calculations are more standardized.
Clear quality benchmarks should be established for
every step in the process to be able to use the data
without a reference bathymetry.

Recommendations It can be concluded that the
algorithm is able to compute water depths with
0.37 meters root mean squared error. However, it
is also shown that there is a large variance between
four datasets which were very similar in terms of
measuring setup and pixel intensities. On before-
hand the bottleneck of the UAV depth inversion
method was estimated to be the bottleneck in com-
piling an accurate bathymetry. However for the
method used in this research, the rectification part
of the process was a larger contributor to the total
error budget. Therefore, to optimize the method
used for this research, it is advised first increase the
accuracy of the rectification. Thereafter, the depth
inversion algorithm can be tested more thoroughly.
Also, investigations regarding the data sampling
and settings to be used for the depth inversion
algorithm gave some indications for potential in-
cremental improvements. These tests were done
with the already well performing dataset 2.1. As
these incremental improvements are only interest-
ing when the bathymetry is already relatively ac-
curate, provided that the rectification is calculated
correctly, future research can investigate whether
the indicated incremental improvements are valid
for datasets recorded during differing conditions.

To become a widely adopted method in the fu-
ture, the consistency of the UAV depth inversion
method has to be improved. The lack of consis-
tency is considered to be a larger drawback than its
0.37 meter rmse accuracy. If in a future scenario
the variance in rmse’s between different datasets
could be decreased to 0.2 meters, the data could
be usable for coastal monitoring purposes. Subse-
quently, efforts can also decrease the absolute error
after which current jetski measurement technolo-
gies could be partly replaced. An existing method
to decrease variance in bathymetry accuracy uses a
Kalman filter. For every location the cBathy algo-
rithm calculates quality control parameters, which
seems to perform well. These parameters indicate
whether the cBathy algorithm is confident that the
optical signal is analyzed in a correct way. When
multiple datasets are captured for the same area,
the chance of at least one good wave field estima-
tion for a specific coordinate increases. This is a
method currently used for Argus stations, and is

assumed to work equally well for drone measure-
ments. The downside is that each individual drone
flight is labor intensive when compared to the Ar-
gus system. A potential strategy when using the
Kalman filter would be to subsequently measure
stretches of beach with a width of around 400 me-
ters (approximately the width of the base of the
projection) for the entire stretch of coast that needs
to be measured. Thereafter, this process could be
repeated a couple of times until there is enough
data for the Kalman filter process to yield consis-
tent results. It is therefore recommended to re-
search how many measurements of 1 specific stretch
of coast are necessary to be able to compute con-
sistent bathymetry accuracy when using a Kalman
filter. Even though repeating the measurements
is a time consuming job, it is still estimated to be
more cost and labor efficient than the current jetski
measurements. Another strategy would be to over-
lap the measurements making the effective depth
inversion area narrower. Provided that the wave
and lighting conditions are sufficient, these strate-
gies make sure that for every coordinate in the area
of interest there is a high chance of a good skill
value for the estimated water depth and therefore
a consistent accuracy.

If these future implementations could decrease
accuracy variance and eventually even total water
depth errors, the UAV method can replace jetski
measuring methods in some occasions. When com-
pared to jetksi depth measurements, there are sig-
nificantly more factors throughout the measuring
process that contribute to an error in the computed
water depth. Therefore, it would involve extensive
efforts to achieve a similar accuracy. Whereas it is
not estimated that this will happen in the near fu-
ture, the drone measurements could serve in situa-
tions where a five centimeter accuracy is not specif-
ically required. For a first estimation of the layout
of a specific area of interest or for generating input
data for computational models, the drone measure-
ments could be suitable.

The power of Argus stations lies in its near-
continuous monitoring. As continuous monitoring
of a specific coastal regions with UAV’s would re-
quire a lot of repetitive efforts, for long term projects
Argus station would be more desirable. However,
for situations where only a bathymetric snapshot is
required, its flexibility could make UAV bathymetry
mapping a desirable solution. As worldwide there
are only a couple jetskis equipped to measure water
depth, the sheer number of drones available indi-
cates a future with a wide range of applications.
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