
High-Level Mutations for JSON Typed Data in Big
Data Fuzz Testing

L.E. Rhijnsburger, B.K. Özkan

Computer Science and Engineering
Delft University of Technology

June 27, 2021

Abstract
Fuzzing in Big Data applications is a relatively
new field which is still lacking effective tools to
support automated testing. Recently, a framework
called BigFuzz was published which made fuzz
testing for big data systems feasible. But there
was no solution to work with Big Data programs
that use JSON typed data. Big Data systems
often make use of JSON typed data and JSON
typed fuzzers for Big Data systems are currently
not publicly found. With this work it is now pos-
sible to support JSON typed input data and apply
fuzzing per iteration. The work requires a user de-
fined input specification of the set of valid JSON
inputs for the program under test, and a converted
Java program based on the Spark program to test.
However, it is almost certain the latter is not nec-
essary in the future since it is likely this conversion
can be automated.

This work is shown to be effective in finding
bugs in a rather small amount of trials. Oppo-
sitely, it loses the descriptive exceptions, since it
finds bugs later in the program instead of at the in-
put validation phase. The work still has its limits
to be applied extensively in the field of automatic
testing, but serves as a proof of concept that au-
tomatically finding bugs in Big Data applications
working with JSON typed data is in fact possible.

Keywords: json, input specification, input seed,
json schema, unique errors, big data systems, big-
fuzz, big data applications

1 Introduction
There is a huge growth in data in the last few
years and it is touching almost all aspects or our
life (Gupta & Rani, 2019). This rise in big data
is hard to keep up with from a processable and
computable kind of view, since testing Big Data
systems poses quite some challenges (Steidl et al.,
2020). Fuzz testing as a concept has already widely
used but falls behind for Big Data. This is due to
the fact that setting up automated tests for big
data applications takes a lot of overhead, making
the process very inefficient and time consuming.
In fact, if fuzzing would be used like it is used
today for Big Data applications, 98% of the time
would go to setting up the test environment, and
only 2% would go into fuzzing, which is highly in-
efficient (Zhang et al., 2020).

Recently, BigFuzz (Zhang et al., 2020) was
published. BigFuzz is a tool that makes use of
framework abstractions to be able to convert Spark
code into an equivalent Java program. With this
Java program, an extension of JQF (Padhye et
al., 2019) is used to fuzz test the program with
coverage guidance. The tool uses a user defined
input, and can automatically test converted Spark
programs.

However, the BigFuzz tool has its limitations.
As of this moment it supports only tabular input,
which keeps its application limited. BigFuzz was
built as a tool to test data-intensive scalable com-
puting systems (DISC systems), such as Apache
Spark. Spark can use JavaScript Object Notation
(JSON) as input and output structures in its pro-

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

grams. It is therefore only logical to be able to test
these programs for possible bugs and errors. As of
this moment there is no publicly known method
to fuzz test Big Data applications that use JSON
typed input data.

With this work providing support for JSON
typed data, programs that make use of JSON in-
puts can also be tested with fuzzing and there-
fore contribute to more reliable and better Big
Data programs. The main question of this re-
search therefore is: "How can high-level mutations
be implemented in a generic way for all kinds of
JSON typed data with input specifications?". To
answer this question, a closer look is taken to how
this goal is achieved and how it is made effective.
It is important to shed some light onto why this
work is necessary in general. Moreover, the work
must be effective to be used for automatic testing.
Therefore it should be evaluated in reasonable set-
tings. It is also interesting to look into a fully au-
tomatic variant of this work. Can this work be
ran in the background without any user input?
Finally, it is useful to look how and how well this
work performs in comparison to other fuzzers that
can work with JSON typed data.

For the evaluation of the implementation mul-
tiple benchmarks were used. These benchmarks
are the same as Zhang et al. used in their re-
search, but rewritten to make the programs sup-
port JSON typed input. With these benchmarks
it is found that descriptions of bugs are somewhat
lost, i.e. the bug report has less information about
the specifics of the bug. Positively, the bugs found
in this work are found in a rather small amount of
iterations.

This paper is organized as follows. Section 2
provides a background of fuzzing with big data and
input specifications for JSON. Section 3 describes
the method used to answer the research questions.
Section 4 elaborates on how the support of JSON
typed input is added to the BigFuzz tool and
how this work works. Section 5 explains how the
benchmarks were used and how the effectiveness
of this work was evaluated. Section 6 reflects on
the reproducibility of the research. Section 7 sum-
marises the results found within this research and
its contribution to the research field, and Section 8
elaborates on the possible shortcomings and states
some interesting parts of this research that could
be worth giving more attention.

2 Background
For this research two topics are important to know
about. Firstly, it is useful to know about input
specifications for JSON typed data. Secondly it
is necessary to take a closer look at the BigFuzz
tool, since this framework will be extended with
JSON support.

2.1 Input specification for JSON
Over the past few years, JSON has become the
main data exchange format over the World Wide
Web (Lv et al., 2018). For the scope of this re-
search some definition is needed to define a set
of JSON objects or arrays, and be able to vali-
date if some object or array is valid within the
restrictions given by the user or not. Some years
ago a way of generalizing JSON objects and ar-
rays was made: JSON Schemas. Wright and An-
drews (2018) defined a JSON Schema document,
or simply a schema, as a JSON document used
to describe a JSON instance. A schema defines
the types that can appear in a JSON instance
and each defined type can have several properties.
These properties vary from minimal or maximal
lengths, to Regular Expression (Regex) patterns
for strings, to complex object definitions with ref-
erences to elsewhere defined values.

With the help of these schemas, it is now possi-
ble to validate a JSON instance against a schema.
All properties of the instance are checked against
the requirements from the schema which can dis-
tinguish an instance as valid, or invalid. While
this is very useful, for the scope of this research the
goal is not quite yet reached. It is necessary to be
able to generate and mutate JSON instances. For-
tunately, JSON schemas still have some use since
the schemas can be used to generate a valid JSON
instance as well. There are some minor implemen-
tations of this, but they lack either randomness of
the generation, or completeness due to the fact
that they only implement a single primitive ele-
ment (e.g. booleans). The most complete imple-
mentation is json-generator (Dhua, 2019), which
implementation correctly generates valid JSON in-
stances, but lacks randomness. This library was
therefore extended to support more random input
generation (Rhijnsburger, 2021).

2

2.2 BigFuzz
BigFuzz was build as a tool to test Data-Intensive
Scalable Computing systems (DISC systems), such
as Apache Spark. The BigFuzz algorithm con-
verts the given Spark program to a Java program,
which does exactly the same to the input data as
the original program. It converts Resilient Dis-
tributed Datasets (RDD’s) to ArrayLists holding
instances of the items that were in the RDD (e.g.
a row of integers gets converted to an ArrayList
holding integers). The converted program is then
run with the input that is specified by the user.
For example, a program can run some operation
based on student numbers within a range. That
range needs to be specified by the user before the
program under test (PUT) is ran. This input spec-
ification is used by the tool to generate and later
mutate the input parameters for the PUT.

BigFuzz is a grey-box fuzzing tool. It uses a
form of guidance to find new branches in the code
more effectively. It keeps track of when these new
branches get covered, and saves those mutated in-
puts for later, to more in depth cover those new
branches to find bugs and/or errors. The tool uses
a run configuration which indicates what program
to test, and how many loops it runs to find bugs
and/or errors. BigFuzz prints its results to the
console each iteration and saves iterations to a text
file if that mutation resulted in an bug and/or er-
ror. The guidance that is used during a test run
can be customised by the user as an extension of
JQF (Padhye et al., 2019). The underlying tools
that BigFuzz uses include JQF and JUnit (la
Cruz Morales & Gwihs, 2000).

3 Approach
The aim of this research is to extend the frame-
work to support JSON typed inputs. To support
JSON typed data in the BigFuzz tool, a closer
look to the code and the assumptions made by
the framework, had to be taken. All implemen-
tations need to comply with the workflow and in-
terfaces BigFuzz uses as well. Additionally a dif-
ferent data type is added to the framework, which
means there needs to a be certain structure in the
program to support the input, and eventually re-
turn a useful result. At last a comment is made
about what full automation for this work would
look like.

3.1 Contributing to the framework
There are certain interfaces and workflows within
BigFuzz that enable fuzz testing. The important
parts include the driver, the guidance and the mu-
tation class.

The driver creates an instance of the guidance
and starts up the program. It takes the arguments
necessary for a run, which include the driver to
use, the method to test and the amount of trials
for the particular run. The driver needed almost
no changed to work with JSON typed data.

The guidance is an important part of the Big-
Fuzz framework, since it controls how and on what
the mutations are applied and handles all situa-
tions where an exception is thrown. The guidance
was hardly changed since this work focused on sup-
porting a new data type and any changes to the
guidance were not necessary to reach this goal.

The mutation class is the class where all the
mutations to a test input are handled. It is used
by the guidance to apply a mutation on a test
input, but the class itself chooses what mutation
is chosen each trial and processes these changes to
the data.

All in all, to keep the framework as generic as
possible, the driver and guidance are modified as
little as possible, since these classes are also used
to run benchmarks other than the JSON versions.
The mutation class created in the guidance how-
ever, is made in a generic way to support all types
of JSON input. To support the contribution of
JSON within BigFuzz, the mutation class is made
to implement the mutation interface as defined by
BigFuzz.

3.2 Input assumptions
Supporting another input type to run the test frame-
work with, is not trivial, because the whole Big-
Fuzz framework is build to support their own vari-
ant of Comma Separated Value (CSV) files. Triv-
ially the input files used in this work are JSON
files. BigFuzz is able to work with multiple in-
puts and input files. This functionality should not
be lost with this work and therefore some choices
had to be made to make this possible. For ex-
ample, an input file of the original benchmarks
could contain multiple rows. This is due to the
fact that the framework sometimes generates new
rows for a given input, which are then saved as
well after this trial. JSON objects can however

3

have many structures to support the same infor-
mation. Some assumptions of the structure had
to be made to make the sure this functionality
of multiple rows was still supported. The work as-
sumes that a single row, should be a JSON object,
and these rows should be contained in a JSON ar-
ray. This means that if an input file has 4 rows,
the file would contain a JSON array with 4 JSON
objects. The JSON object can be whatever the
user wants it to be, but it should be specified by
a JSON schema.

These JSON schemas are needed for two key
points in this work. Firstly, during a run of the
framework, the input file is always mutated, and
there is a 50% chance that more input objects are
generated during a mutation. For both these pro-
cedures, the JSON schema is necessary to consis-
tently satisfy the assumed structure of the JSON
input. When the input file is mutated, it chooses
one of the possible mutations. One of the muta-
tions from BigFuzz is the Data Distribution Mu-
tation, which generates a new value for a given
row and column, but ignoring the possibly speci-
fied range for this value. For example if the cho-
sen row and column is a zip-code with the restric-
tion of being in the range 900000 to 90099, a Data
Distribution Mutation could mutate this value to
90100, which is not in the specified range. The
schema is in this case (just like some other muta-
tions) necessary to keep the type of the value that
should be mutated, and use or ignore the allowed
range of this value.

Secondly, for the generation it is trivial why
the schema is needed. Some new valid instances
of the input need to be created, and as described
in Section 2.1, this can be done with the specified
JSON schema.

3.3 Automation
The process of creating a schema could also be
fully automated but this will be less effective due
to the fact that an automated process can only
create a schema which will be less strict or exactly
as strict as the input schema defined by the user.
This is due to the fact that it is very hard to op-
timally choose a schema for a set of inputs since
there is a trade-of between succinctness and pre-
cision (Baazizi et al., 2019). Because a set of valid
JSON inputs is needed and not one that describes
a single instance of JSON optimally, this choice
for the trade-of is very hard. Also, the input spec-

ification can not be omitted because of the guided
mutations that work with the input specifications
data.

This work is also unique in the fact that it
supports JSON accompanied with guidance to find
bugs. There are however other fuzzers out there
that learn the specification of JSON input. For
example (Mathis et al., 2020), which focuses on
getting past the input validation stage. This is
something this work already does automatically,
since it has the user defined input specification.

4 JSON Support
The contribution of JSON support for Big Data
fuzz testing sounds quite trivial, but the imple-
mentation had some obstacles to overcome to make
sure no functionality is lost within this work which
was present in BigFuzz. Moreover, this work
should still be easy to use for users not knowing
the details of what happens inside the work.

This paragraph will go over the two aspects of
this work: 1) The input. What is expected from
the user to be able to run the work, and 2) The
mutations. What happens to the data given as
input during a run, and how does it find bugs?

4.1 User defined input
As mentioned in Section 3.2, the user should spec-
ify the input specification in order to automati-
cally test the program. Currently, the framework
targets Java programs, since the BigFuzz trans-
form module, which transforms Apache Spark pro-
grams to Java programs, is not working on the
public repository of the original authors. How-
ever, it is likely to assume that this process can be
automated in the future, as claimed by Zhang et
al..

With a program to test, there are still two spec-
ifications needed from the user: the initial input
seed and the JSON schema. The JSON schema de-
scribes the set of valid JSON instances that should
be accepted by the PUT. This schema is neces-
sary to be able to mutate the data ran through
the PUT, and to generate more valid inputs in
50% of the iterations. The initial input seed, is an
initial input ran through the program. This input
is valid, meaning the program will be able to suc-
cessfully parse it. The user can also choose not
to define a initial input seed, or define an invalid

4

input seed. The effect of this is further elaborated
in Section 5.

4.2 High-level mutations
Six high-level mutations as defined in the Big-
Fuzz paper are converted to support JSON typed
input as well. There are only some slight changes
to the mutations since the data type of what must
be mutated now has a different structure, namely
JSON. The mutations that happen exactly like de-
fined in the original paper (Zhang et al., 2020) are
the following:

• The Data Distribution Mutation (M1)

• The Data Type Mutation (M2)

• The Data Column Mutation (M3)

• The Empty Data Mutation (M4)

The Data Format Mutation (M5) as defined
in BigFuzz is completely removed. In the Big-
Fuzz paper this mutation is defined by that it re-
places a delimiter with a random other character.
The files used in the original framework are semi-
structured with comma separated values. JSON
does not have a delimiter and the mutation can
therefore not be applied. One could argue that
JSON is also a semi-structured data type, but it
does format its data differently. Although it is
possible to change one of the special characters in
JSON (e.g. { } or []) to some other character,
this would not be useful. When working with a
program that takes in JSON as input data, it is
trivial that it would not support something that
is not a valid JSON value.

The Null Data Mutation (M6) is slightly dif-
ferent for another reason. In the original paper,
Zhang et al. define this mutation as removing a
column from the input and continuing with one
less column. With JSON there are no columns,
just objects with properties. The implementation
of this mutation is therefore changed to remove
a certain property from the input, to create the
same effect as the Null Data Mutation on the tab-
ular input from BigFuzz.

During the process of mutating, the user de-
fined JSON schema is also used. It is parsed upon
creation of the mutation class instance, and used
in two separate places: 1) when a property needs
to be selected at random to be mutated, and 2)
when there need to be generated more rows. This

Figure 1: Average number of unique errors found
against the number of trials on the benchmarks
over 10 runs with a valid input seed

is an addition to BigFuzz since it creates the pos-
sibility to create more effective mutations. The
original framework does also apply the mutations
in this way, but does not currently infer the type
of a value, but has it defined by the programmer
of the mutation class. The JSON mutation class
is therefore more generic and able to support more
kinds of input without having to alter the muta-
tion code.

5 Evaluation
For this research some of the benchmarks from
BigFuzz were rewritten to work with JSON in-
stead of the tabular input from BigFuzz. They
are considered as new benchmarks. The used bench-
marks can be found in Table 3. Two empirical
evaluations were run on the work of this research.
First, The JSON contribution was run with the
new benchmarks with a valid and invalid input
seed. The results of this point out some effec-
tiveness compared to the results of BigFuzz, but
one important note should be taken into account.
These benchmarks are completely different algo-
rithms since they are rewritten to support JSON.
One of the benchmarks might simply be better
written, resulting in fewer bugs found by the frame-
work or this work. Secondly, another way to eval-
uate the effectiveness and usefulness is to see what
will be the difference when running it with a valid
input seed or without an input seed at all. When
the program does not receive any initial input seed,
it will generate a valid one by itself, resulting in a
different valid input seed for every run.

5

Exception Cause
ArrayIndexOutOfBounds Array access at incorrect index
NumberFormat String parsing error
StringIndexOutOfBounds String access with incorrect index

Table 1: Exceptions found on the benchmarks by BigFuzz

Exception Cause

ClassCast
Double can not be cast to Long
String can not be cast to Long

NullPointer Lookup of a removed property
NumberFormat String parsing error

Table 2: Exceptions found on the JSON bench-
marks

P1 ExternalUDF
P2 FindSalary
P3 MovieRating
P4 Property
P5 SalaryAnalysis
P6 StudentGrades

Table 3: The benchmarks used for the evaluation

Figure 2: Average number of unique errors found
against the number of trials on the benchmarks
over 10 runs with an invalid input seed

Figure 3: Average number of unique errors found
against the number of trials on the benchmarks
over 10 runs with a random input seed

5.1 This work compared to BigFuzz
The JSON contribution yields some interesting re-
sults compared to BigFuzz. It was expected that
the JSON benchmarks should find the same bugs
as the tabular version of BigFuzz, but this is not
the case. The BigFuzz variant finds the Java Ex-
ceptions stated in Table 1, and the JSON work
finds the Exceptions as seen in Table 2. This dif-
ference can be explained by the different way of
parsing. Parsing errors are out of scope for this
research, but below an explanation is given for the
difference in the errors found by the framework.

BigFuzz handles all input as strings, and parses
those strings in the program itself to the corre-
sponding type. For example, a zip-code 90024 is
stored and parsed into the program as a string.
Only when this column is needed for calculation it
is parsed to an integer. With JSON, the input is
parsed as a JSON object, with each type immedi-
ately inferred from what is present. Meaning that
if a zip-code property is an integer, it is stored and
parsed as an integer. However when it is mutated
to contain a character (e.g. 900#24), it is imme-
diately stored as a string, and also parsed again
as a string. The program however still assumes
it will get an integer from this column, resulting
in a ClassCastException when retrieved from a
JSON object. This explains the difference in the
ClassCastException and NumberFormatExceptions.
An exception to this is P2, which still needs to
parse an integer from a string, since it accepts in-
tegers prepended with the $ sign as well.

The NullPointerException is linked to the
ArrayIndexOutOfBoundsException, since these
both happen when a column or property is re-
moved from the input rows or object. BigFuzz
tries to access an index in an array to access the
column where a value should be present, and the
JSON contribution tries to access the value of some
property which is no longer in the JSON object,
resulting in a null value. The StringIndexOutOf-
BoundsException corresponds to the ClassCast-
Exception. This happens in BigFuzz when a col-
umn is replaced with an empty string, which will

6

result in the said exception when it tries to parse a
value out of this empty string. In this work this re-
sults in a ClassCastException again since there
is a string in a place where another type of value
is expected.

5.2 Valid input seed vs invalid input
seed

Since the user has the option to specify an input
seed, it is useful to see how well this work performs
when given a valid input seed versus an invalid
input seed. To compare these two options, the
framework is run 10 times, keeping track of the
number of unique errors found in which amount
of trials, for a valid and invalid initial input. An
invalid input can be defined in two ways: 1) an
input that makes the program crash, or 2) an in-
put that does not make the program crash, but is
not within a valid range as defined by the user.
The way the framework is built, a user can de-
fine multiple input objects, which are both used
during a test run. Because of this it was chosen
to use both options in the invalid input test runs.
The results this can be seen in Figure 1 and 2. As
can be seen in these Figures, using a valid input
seed mostly outperforms or matches the invalid in-
put seed. For a single benchmark, P6, the invalid
input seed performs only slightly better than the
valid input seed. It is also visible that the valid
input seed converges either quicker or as quick as
the invalid input seed does. Since the valid in-
put seed either performs better or as well as the
invalid input seed, with a single exception to the
rule, the use of a valid input seed is preferred over
an invalid input seed.

5.3 Valid input seed vs random in-
put seed

Another way to look at the work, is to look at
how well it performs with a random input seed.
This random input seed is created from the JSON
schema which is specified by the user. This gener-
ated input seed will also be a valid one, but this
time its a random input seed instead of one cho-
sen by the user. The results of each benchmark
ran with a random input seed can be seen in Fig-
ure 3, and can best be compared with the valid
input seeds from Figure 1. When comparing the
results, it is seen that the random input seed is
mostly outperformed by the valid input seed. The

only case the random input seed performs better is
P3. On all other benchmarks the valid input seed
either converges faster or finds more bugs on aver-
age. Looking at effectiveness, it is therefore con-
cluded that a valid input seed works better than
a random input seed. However, a positive aspect
from the random input seed can be that you do
not need to have a user defined valid input. Once
the user has a schema, it can run the JSON fuzzer
without any issue, only with less optimal results.

6 Responsible Research
During this research, the best effort was made to
make sure this research was reproducible and that
it could be validated by others. The evaluation
of this work is mostly based on empirical results
compared to itself. This is due to the fact that
there were some issues in reproducing the results
from BigFuzz. This section will go into detail
about the reproducibility of BigFuzz and the re-
producibility and validity of this work. After that
a small comment is made about automated testing
with this work.

6.1 Reproducing BigFuzz
There are some comments to be made about the
reproducibility of BigFuzz. The repository linked
by the BigFuzz paper (Zhang et al., 2020), was
quite different from what is claimed in the paper
itself. Several parts of the framework did either
not run at all, or ran in a way that the paper
did not describe it. An example of the latter is
that the BigFuzz paper talks about schema-aware
mutations, while the mutations in the repository
happen with benchmark specific mutation classes
which are not schema-aware. Since it was not in
the scope of the project to remake the repository
as described by Zhang et al., no effort went into
fixing this. Bear in mind, that this is no criticism
towards the authors of BigFuzz, since it could
very well be that they did made a mistake in up-
loading the latest version of their work or do not
want to publish their final work due to some un-
known reason.

6.2 Reproducibility and Validity
During this research, a big effort was made to
make this work reproducible, so that interested

7

readers or researchers are able to validate every-
thing that is claimed by this paper. The most
helpful step is that the full repository is published
publicly (van den Berg et al., 2021). Further-
more, the work executes in such a way that after
each run, the output is stored in a structured way.
It contains all input used for each generation, in
which trials what amount of unique failures were
found and which unique failures were found specif-
ically.

Moreover, the parts that the user should spec-
ify before a run, are either explained or referenced
by the repository, such that a user knows what
to specify or make before a correct run can be
made. An important part about this is the Java
converted Spark program. BigFuzz claimed they
automated this part, such that a user only has to
specify a Spark program and an initial input to
run the framework. As mentioned in Section 6.1,
not all parts worked in their published repository,
of which also the transformation module, as men-
tioned in Section 3.2. Because of this, these equiv-
alent Java programs have to be made by the user.
This work has done so for 6 benchmarks from Big-
Fuzz, and these are well documented, such that
any user with programming experience is able to
make the tool work with their own program.

6.3 Automated testing
Another important comment on this research is
its usefulness. The framework and this work are
meant to find unexpected bugs in programs. The
keyword here is unexpected, since the framework
really works the limits of what programs can and
cannot handle. For example the framework finds
bugs for missing values or incorrect formats of val-
ues. This is unexpected input and is what Big-
Fuzz was intended to do according to Zhang et
al.. The comment that should be made here, is
that the framework is biased to find certain errors
and lacks a bit of focus on the somewhat more
trivial cases. For example when a program takes
and integer as input somewhere without any size
limits, the framework would almost never try pos-
sible edge cases or integers, usually being 0 or 1.
These trivial edge cases exist for more types of
input, and are found very rarely by BigFuzz or
this work. Therefore it is very important to keep
in mind that the framework, as well as this work,
is not meant to replace all testing procedures. It
should still be used along with user tests or some

other tool.

7 Conclusions
Fuzz testing for Big Data that works with JSON
was not yet automatically possible. With this
work this process can be partially automated. Given
an initial input, a JSON schema as input specifi-
cation, and a Java conversion of the Spark pro-
gram to test, the said work is able to find bugs in
rather small amount of time compared to Big-
Fuzz which is very well suited for quick semi-
automated testing. Empirically, it is shown that
the JSON contribution works best with a valid in-
put seed. Nonetheless, a drawback is that the bugs
found by this work, are less descriptive than the
bugs found by BigFuzz. Moreover, it is not possi-
ble to automate the input schema generation, due
to the lack of precision of a user defined schema.
An automatically generated JSON schema will not
cover the set of valid JSON input as well as a user
is able to do so. Besides, this work also is very
well able to get past the input validation stage be-
cause of the input specifications given by the user,
which ensures that the testing done by the frame-
work actually tests the program of the user.

8 Future work
The work from this paper is a promising contri-
bution to Big Data testing in the future. The ex-
tension of testing JSON typed programs as well
means the tool is closer to be used as a generic
tool for all types of Big Data programs. How-
ever, several aspects can still be improved. The
types of mutations in this research come from the
BigFuzz tool and no effort went into looking for
better or more effective mutations, while this is
very interesting since JSON is a whole other data
type than tabular data. Furthermore there is still
a lot of progress to gain on the coverage guidance
for the framework in general, and especially while
working with specific data types. The guidance
works fine with the small benchmarks used in this
project, but interesting results may follow from
in depth research into specific guidance for JSON
typed data.

8

References
Baazizi, M.-A., Colazzo, D., Ghelli, G., & Sar-

tiani, C. (2019). A Type System for
Interactive JSON Schema Inference (Ex-
tended Abstract). In C. Baier, I. Chatzi-
giannakis, P. Flocchini, & S. Leonardi
(Eds.), 46th international colloquium on
automata, languages, and programming
(icalp 2019) (Vol. 132, pp. 101:1–101:13).
Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. Re-
trieved from http://drops.dagstuhl.de/
opus/volltexte/2019/10677 doi: 10
.4230/LIPIcs.ICALP.2019.101

Dhua, J. (2019). json-generator. Retrieved 2021-
05-26, from https://github.com/jignesh
-dhua/json-generator

Gupta, D., & Rani, R. (2019). A study of big data
evolution and research challenges. Journal of
Information Science, 45 (3). doi: 10.1177/
0165551518789880

la Cruz Morales, J. L. D., & Gwihs, S. (2000).
JUnit. Retrieved 2021-05-27, from https://
junit.org

Lv, T., Yan, P., & He, W. (2018). Survey
on JSON Data Modelling. In Journal of
physics: Conf. series. doi: 10.1088/1742
-6596/1069/1/012101

Mathis, Björn, Gopinath, Rahul, Zeller, & An-
dreas. (2020). Learning input tokens for
effective fuzzing. In Issta 2020 - proceedings
of the 29th acm sigsoft international sympo-
sium on software testing and analysis. doi:
10.1145/3395363.3397348

Padhye, R., Lemieux, C., & Sen, K. (2019).
JQF: Coverage-guided property-based test-
ing in Java. In Issta 2019 - proceedings of
the 28th acm sigsoft international sympo-
sium on software testing and analysis. doi:
10.1145/3293882.3339002

Rhijnsburger, L. (2021). json-generator-v1.0. Re-
trieved 2021-05-26, from https://github
.com/LarsRhijns/json-generator

Steidl, M., Breu, R., & Hupfauf, B. (2020). Chal-
lenges in Testing Big Data Systems: An
Exploratory Survey. In Lecture notes in
business information processing (Vol. 371
LNBIP). doi: 10.1007/978-3-030-35510-4
_2

van den Berg, B., van Koetsveld van Ankeren, L.,
Rhijnsburger, L., Smits, M., & Oudemans,

M. (2021). bigfuzz-json-contribution. Re-
trieved 2021-06-07, from https://github
.com/LarsRhijns/Json-Fuzzer

Wright, A., & Andrews, H. (2018). JSON Schema:
A Media Type for Describing JSON Doc-
uments. Retrieved 2021-05-26, from
https://json-schema.org/draft-07/
json-schema-core.html#rfc.section.1

Zhang, Q., Wang, J., Gulzar, M. A., Padhye, R., &
Kim, M. (2020). Bigfuzz: Efficient fuzz test-
ing for data analytics using framework ab-
straction.. doi: 10.1145/3324884.3416641

9

http://drops.dagstuhl.de/opus/volltexte/2019/10677
http://drops.dagstuhl.de/opus/volltexte/2019/10677
https://github.com/jignesh-dhua/json-generator
https://github.com/jignesh-dhua/json-generator
https://junit.org
https://junit.org
https://github.com/LarsRhijns/json-generator
https://github.com/LarsRhijns/json-generator
https://github.com/LarsRhijns/Json-Fuzzer
https://github.com/LarsRhijns/Json-Fuzzer
https://json-schema.org/draft-07/json-schema-core.html#rfc.section.1
https://json-schema.org/draft-07/json-schema-core.html#rfc.section.1

	Introduction
	Background
	Input specification for JSON
	BigFuzz

	Approach
	Contributing to the framework
	Input assumptions
	Automation

	JSON Support
	User defined input
	High-level mutations

	Evaluation
	This work compared to BigFuzz
	Valid input seed vs invalid input seed
	Valid input seed vs random input seed

	Responsible Research
	Reproducing BigFuzz
	Reproducibility and Validity
	Automated testing

	Conclusions
	Future work
	References

