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Abstract
In this paper, we propose a new approach to pathologi-

cal speech synthesis. Instead of using healthy speech as a
source, we customise an existing pathological speech sample
to a new speaker’s voice characteristics. This approach allevi-
ates the evaluation problem one normally has when converting
typical speech to pathological speech, as in our approach, the
voice conversion (VC) model does not need to be optimised
for speech degradation but only for the speaker change. This
change in the optimisation ensures that any degradation found
in naturalness is due to the conversion process and not due to the
model exaggerating characteristics of a speech pathology. To
show a proof of concept of this method, we convert dysarthric
speech using the UASpeech database and an autoencoder-based
VC technique. Subjective evaluation results show reasonable
naturalness for high intelligibility dysarthric speakers, though
lower intelligibility seems to introduce a marginal degradation
in naturalness scores for mid and low intelligibility speakers
compared to ground truth. Conversion of speaker characteris-
tics for low and high intelligibility speakers is successful, but
not for mid. Whether the differences in the results for the dif-
ferent intelligibility levels is due to the intelligibility levels or
due to the speakers needs to be further investigated.
Index Terms: voice conversion, pathological speech, varia-
tional autoencoder

1. Introduction
Data-driven speech synthesis has recently been reaching new
heights with the introduction of deep neural networks (DNNs).
However, the success of these techniques is subject to high qual-
ity data and a large quantity of data, either of which is not
available for many applications. Pathological speech synthe-
sis, where the goal is to synthesise natural, but pathologically
sounding samples, is such an application. Pathological speech
synthesis has several motivations, the most notable being the
data augmentation for automatic speech recognisers (ASRs),
where the goal is to generate more data in order to improve
recognition of pathological speech [1, 2, 3]. The second moti-
vation for the development of pathological speech synthesis is
that it could assist in informed decision making for the medical
conditions at the root of the pathology. For instance, oral can-
cer surgery results in changes to a speaker’s voice. The avail-
ability of a synthesis model that can generate how the voice
could sound after surgery could help the patients and clinicians
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to make informed decisions about the surgery and alleviate the
stress of the patients [4, 5].

While there are many speech synthesis techniques for typi-
cal speech, not many of these are applicable if we wish to syn-
thesise highly natural pathological speech. Formant [6] and ar-
ticulatory synthesis [7] are lacking in naturalness compared to
DNN-based speech synthesis. Text-to-speech techniques (TTS)
lack both linguistic resources (i.e a pronunciation lexicon) and
the amount of data needed for these problems. The only promis-
ing method to synthesise pathological speech seems to be voice
conversion (VC), which only needs a relatively small amount of
data, compared to neural TTS.

However, synthesising pathological speech via VC is not
without challenges. Existing pathological speech corpora [8,
9, 5, 10] provide healthy control speakers, but healthy speech
recordings from the same pathological speaker are rarely avail-
able. This means that a successful pathological voice conver-
sion system needs to learn conversion of both, the voice and
pathological characteristics simultaneously, as suggested in pre-
vious work [4]. However, evaluation of such a setup is difficult.
This is because the VC system is directly optimised for speech
degradation in terms of the pathology, which would need the
listeners (the evaluators of these systems) to be able to rate the
success of generating the pathological characteristics and the
synthetic/natural aspects of the speech separately. As we will
show later in this paper, listeners struggle differentiating be-
tween speech severity and synthetic aspects of the speech. This
can result in two, counter-intuitive scenarios from the viewpoint
of typical VC: (1) a pathological VC system that is not able to
properly capture the characteristics of the pathological speech
could still receive better naturalness scores than the reference
pathological speech; (2) Conversely, a VC system that is able
to mimic the pathology, albeit exaggeratedly, could produce a
naturalness score that is a lot lower than that of the reference.

Therefore, we propose a new approach where instead of
using healthy speech as source for the VC, we use dysarthric
speech, which is already pathological, and the VC system only
has to customise it to a new (healthy/dysarthric) speaker’s voice
characteristics, i.e by using some representation of the speaker
(speaker embedding). This synthesis approach alleviates the
problem with naturalness ratings as the dysarthric-to-dysarthric
VC is not optimised directly for speech degradation, therefore
degradation is only due to the synthetic aspects compared to
the source pathological utterance. Our first goal is to assess
whether we can convert the voice characteristics of the patho-
logical speakers in this setup in a natural way, while simulta-
neously assessing how natural real pathological speech is per-
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ceived.
In order to perform the VC, an autoencoder-based method

will be used [11]. Autoencoder-based methods are of special
interest in clinical scenarios as they are non-parallel, thus allow
for incomplete data collection situations, while also being easier
to train than GAN-based methods due to well-defined conver-
gence criteria because they have only a single loss [12, 13, 14].
In this paper, we use HL-VQ-VAE-3 which is a type of varia-
tional autoencoder (VAE) using discrete representations. This
hierarchical design has recently shown to give better results for
VC [15] than the original VQ-VAE. Furthermore, by condition-
ing on speaker labels, the model allows to converting to/from
multiple speakers within one single model.

An important additional goal of this work is to investi-
gate whether standard VC techniques can be used for non-
standard speech. It is well known from other domains of
speech technology such as automatic speech recognition (ASR)
that standard ASR systems perform poorly on atypical speech
[16, 17, 18, 19, 20], making standard speech technology tech-
niques less accessible to people with atypical speech. Our paper
is thus also a preliminary investigation of a VQ-VAE-based VC
technique’s performance on converting a pathological source
utterance instead of a typical utterance from a non-dysarthric
speaker.

To summarise, in this paper we train a dysarthric-to-
dysarthric VC system to answer the following research ques-
tions: (RQ1) Can we convert the voice characteristics of a
pathological speaker to another pathological speaker of the
same severity with reasonable naturalness (where reasonable
means comparable to non-parallel VC methods on typical
speech)? In other words, is VC technology accessible to peo-
ple with pathological speech? (RQ2) How does (real) patho-
logical speech affect the mean opinion score (MOS)? In other
words, what is the maximum attainable naturalness of synthetic
pathological speech?

Section 2 will start with the discussion of the used
UASpeech dataset and the used VQ-VAE methods for the task,
and finally concluded by the experimental design to test the ap-
proach. The perceptual evaluation results are presented in Sec-
tion 3, followed by a discussion of the limitations of the pro-
posed method, and further comments on the accessibility of VC
to pathological speakers. Some of the samples are available at
https://pathologicalvc.github.io .

2. Design and methods
2.1. Description of the dataset and preprocessing

In this study we use the UASpeech corpus [8], which contains
isolated-word recordings of 15 speakers with dysarthria. These
recordings consist of 449 words which are divided into 3 blocks
of equal length (B1, B2 and B3). The speakers are divided into
four groups based on their intelligibility: very low, low, mid
and high, which correspond to 0-25%, 25-50%, 50-75% and 75-
100% human transcription word error rate (WER) of the record-
ings, respectively. The transcriptions were done by 5 American
English native speakers, who are non-expert listeners.

The vocoder used (see Section 2.2) is trained using the
VCTK dataset [21], which contains speech of 108 native En-
glish speakers with different accents. The preprocessing con-
sists of downsampling the tracks from 48 kHz to 24 kHz, which
is done with librosa [22].

The UASpeech data is preprocessed following [2]: station-
ary noise is removed using Noisereduce [23] and the silence
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Figure 1: Outline of our approach: the speech from a model
pathological speaker is converted into speech with the charac-
teristics of another pathological speaker. Red/orange colours
denote the identity of the speaker. The figure is further explained
in Section 2.

from the beginning and end of the clips is cut. Then, the audio
is resampled from 16 kHz to 24 kHz and normalised. Finally,
80-dimension mel-spectrograms (similar to [24]) are extracted
from the audio files and used to compute the mel-cepstrum,
which serves as input to our model.

2.2. Voice conversion model

The model is a 3-stage VQ-VAE. In the first stage, the input x to
the model is a mel-cepstrum that goes through the convolutional
encoder resulting in a hidden variable u1 and a latent variable
z1. The second stage is identical to the first stage, except instead
of x, now u1 is fed into another convolutional encoder, resulting
in u2 and z2. This is repeated for the third stage, feeding u2 to
obtain z3 and u3. This successive encoding serves to model the
features in the speech that are present on successively longer
temporal scales.

The variables zn are all quantised using a nearest neighbour
classifier with respect to the codebook’s codewords of the corre-
sponding stage. Then, we perform the decoding of the quantised
variables qn at each stage. The decoder is also convolutional
which is additionally conditioned on a speaker label. During
training, a speaker embedding table is learned from the train-
ing speakers, and during conversion/inference, this embedding
will correspond to the target speaker of the conversion, which
we can get by a table lookup. The decoding starts at the third
stage and goes back to the first stage. The input of the third
stage decoder is q3 while for the second and first level the qn
signal is concatenated with the output vn of the previous stage
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(the output v2 of the 3rd stage is fed to the 2nd and the output
v1 of the 2nd is fed to the 1st).

For the conversion, the trained model receives the input
mel-cepstrum from a source speaker which is encoded and
quantised in the same way as it is during training. Then, the
speaker embedding is used to condition the decoder on a target
speaker, so the source speaker quantised latent variables qn are
decoded conditioned on the target speaker embedding, which
results in the decoded mel-cepstrum. Finally, the mel-cepstrum
is resynthesised to the speech waveform using a Parallel Wave-
GAN vocoder1 [25].

2.3. Details of the experimental design

As a reminder, in this study, we customise pathological speech
to a different pathological speaker’s voice characteristics. How-
ever, the clinical application would need customisation to a
healthy speaker’s characteristics. In the top panel of Figure 1,
the application scenario is visualised, i.e., how the system could
be used in a clinical setting. In the bottom part, our proposed
evaluation scenario - the experiments that we do in the paper -
is illustrated.

Looking at the top panel, a source pathological speaker is
first selected from a large voice bank consisting of many sam-
ples of pathological speakers. Based on metadata, a clinical
team could decide the kind of pathological speech degradation
which is most likely for a patient. In this paper, we pair up
by severity, but in actual practice an appropriate source speaker
could be found matched by age, region, and type of treatment.
This leads to a selection of a source pathological speaker. Us-
ing a small amount of a new patient’s voice (target speaker), a
speaker embedding can be extracted using the VQ-VAE based
technique. Finally, we obtain the converted speech, which is
expected to be pathological, but with the new patient’s voice
characteristics. The problem is that for the UASpeech, we don’t
have parallel pre-pathology and post-pathology voices. There-
fore, a separate evaluation scheme has to be setup where we as-
sume that the pathological and the healthy speaker embeddings
should be unchanged for the same speaker, which is not always
true, we refer to further discussion about this in Section 3.3.

The evaluation scheme is explained in the bottom panel.
To circumvent the problem with the pre-pathology and post-
pathology, we change the conversion process for the evaluation
as follows. Instead of a new healthy speaker, we enroll a new
dysarthric speaker with a matched intelligibility of the speech
pathology from the UASpeech dataset because a ground truth
(GT) is available there. The converted speech can then be com-
pared to this GT to provide a proof of concept for the system.

Table 1: Speaker pairs used for the VC experiments and their
subjective WER differences.

Speaker A (WER%) Speaker B (WER%) ∆WER (%)
M04 (2%) M12 (7.4%) 5.4%
M05 (58%) M11 (62%) 4%
M08 (93%) M10 (93%) 0%

In our experiments, we convert the speech of three speaker
pairs in both directions The setup for the experiments is the fol-
lowing. We train the VC model with all B1 and B3 sets of words
of every dysarthric speaker to stay consistent with the standard
UASpeech train-test partitioning.

1https://github.com/kan-bayashi/ParallelWaveGAN

We perform VC on the speech from B2 between speak-
ers with a similar level of dysarthria. The selected dysarthric
speaker pairs along with their corresponding human transcrip-
tion error rates from UASpeech are summarised in Table 1. Un-
fortunately, it has not been possible to include females speak-
ers because all female speakers had a different severity in the
UASpeech dataset. We also refrained from controlling for the
type of dysarthria in our experimental design, as that would
have led to certain speaker pairs having excessive difference in
their intelligibility, which would contrive the aim of the paper.

2.4. Subjective evaluation experiments

In order to answer our research questions, we performed sub-
jective evaluation experiments. For RQ1 a subjective speaker
similarity experiment was carried out, while for RQ2 a sub-
jective naturalness experiment was carried out. The design
of these experiments (including the composition of different
stimuli) closely follow those of the VCC challenge standards
[26, 27]. These experiments were run on the Qualtrics platform,
and the participants (10 American English native listeners) were
recruited through Prolific. All participants were remunerated
justly (7.80 GBP per hour).

For the naturalness experiment, we used a mean opinion
score (MOS) naturalness test. We hypothesised that listeners
will not be able to distinguish between the distortions in the au-
dio and the pathological characteristics of the speech. In order
to account for this, we included GT stimuli in the naturalness
test, which allows direct comparison of naturalness with real
samples. The GT shows the maximum attainable naturalness
(second part of RQ2) and the differences of the GT and VC
scores show the reduction due to the synthetic aspects. To an-
swer the first part of RQ2, we included healthy, natural stimuli,
which allows us to measure the reduction in naturalness due to
the reduction intelligibility. Nevertheless, we encouraged lis-
teners to ignore the atypical aspects of the speech by adopt-
ing the naturalness question from the VCC2020 [26], which
was proposed for cross-lingual VC, where pronunciation errors
could appear, similar to pathological speech. For the speaker
similarity test, we used an AB test in which listeners were
asked to listen to two stimuli, and indicate if they thought they
came from the same speaker, and rate their confidence in this
decision. The question for the speaker similarity was directly
adopted from the VCC2016 challenge [27].

3. Results and discussion
3.1. Naturalness

The results of the naturalness experiments are presented in Fig-
ure 2, which shows the MOS score for each of the seven types
of speech tested, grouped by intelligibility, and with their 95%
confidence intervals indicated. For clarity, the actual MOS
scores are indicated on top of each bar.

We first focus on the question how GT pathological speech
affects the naturalness perceived by listeners which is measured
by the MOS score (our RQ2). Figure 2 shows that healthy
speech and GT high intelligibility dysarthric speech have a sim-
ilar MOS score. However, as intelligibility decreases, so does
the MOS score, indicating that the MOS score not only captures
naturalness but is influenced by the intelligibility of the speech.
These results show that naive listeners cannot separate sever-
ity of a pathology and unnaturalness when asked to judge the
naturalness of a speech sample. This also means that the GT
MOS results are an upper bound on the achievable naturalness

21



of synthetic pathological samples.
Regarding the synthetic pathological speech, the perfor-

mance on the high (VC) samples is somewhat lower than the
performance of the HL-VQ-VAE-3 model on the VCC2020
challenge and identical to the performance of autoencoder-
based models (2.1) [15]. However, the type of stimuli is dif-
ferent, so the differences in MOS are not directly comparable.
The difference is most likely due to channel differences, the de-
creased intelligibility of the speech, and the different sampling
frequency (UASpeech is 16 kHz, while VCC2020 is 24 kHz).
When we compare the MOS scores for the converted speech of
the different intelligibility speakers, we observe a slight degra-
dation in naturalness with decreasing intelligibility. Compar-
ing the VC and GT results, however, we observe a large degra-
dation for the converted high intelligibility speech (Wilcoxon
signed-rank test: p ≤ 0.05). The difference in VC and GT
MOS scores for the mid and low intelligibility speakers is much
smaller (Wilcoxon signed-rank test: mid p ≤ 0.05, low p ≥
0.05). It is possible that the standard 5-point MOS does not
allow to express the nuances between mid and low samples ap-
propriately. Therefore, for future studies concerning naturalness
of pathological speech, we would recommend using a slightly
wider, 7-point scale. Returning to RQ1, we can conclude that
the synthetic speech of mid and low intelligibility pathologi-
cal speakers have a naturalness that is perceived similar to that
of real pathological speech, while synthetic high intelligibility
pathological speech is not perceived as being as natural as real
high intelligibility pathological speech.

To summarise, pathological speech is not perceived natural
according to the MOS scale by naive listeners. In the case of
mid and low intelligibility pathological speech, the perceived
naturalness is similar between that of synthetic and real patho-
logical speech. This is, however, not the case for high intelli-
gibility synthesised pathological speech which is rated as being
far less natural than real pathological speech. The performance
of the VC approach is comparable to the one observed with typ-
ical speakers, therefore the current method is accessible to typ-
ical speakers, however this does not mean that VC is accessible
to typical speakers (see Section 3.4).

Healthy
High (GT)

High (VC)
Mid (GT)

Mid (VC)
Low (GT)

Low (VC)
1

2

3

4

5

M
OS

 sc
or

e

4.32 4.3

2.5
2.02.1 1.9 1.8

Figure 2: Mean opinion scores for naturalness grouped by intel-
ligibility with 95% confidence intervals. Blue denotes original,
while orange denotes VC samples.

3.2. Similarity

This section presents and discusses the results of the similar-
ity experiments in order to answer the question whether it is
possible to convert voice characteristics of pathological speak-
ers. The results are presented in Figure 3. In each of the 12

panels, we visualise the results of comparing a voice converted
(VC-D / VC-S) sample with the GT source (S) (Similarity to
source) or the GT target (Similarity to target). Also, the GT
samples are compared between them: S samples are compared
to S samples to know how recognisable the source speaker is, T
samples are compared to T samples to know how recognisable
the target speaker is and S samples are compared to T samples
in order to know how distinguishable is the source from the tar-
get speaker. Note that for each speaker pair in the top panel the
source speaker is the target one in the bottom panel and vice
versa, so this information appears repeated in Figure 3. Addi-
tionally letters in the case of the VC comparisons are used to
help interpretation of the figures: VC-D stands for VC-different
(i.e when converting M04 to M12, the converted should be dif-
ferent from M04), VC-S stands for VC-same (similarly, when
converting M04 to M12, the converted should be same as M12).

For the low intelligibility pair (left 2 columns of Figure 3),
the speakers seem reasonably distinguishable when looking at
the GT as there is a 100% of agreement that M04 samples are
produced by M04 and 90% for M12. For the speech samples
of speaker M04 converted to speaker M12 (top panels), 73.33%
of the converted samples were indicated as being from speaker
M12 (VC-S), meaning that the conversion is fairly successful
for that pair. For the speech samples of speaker M12 converted
to speaker M04 (bottom panels), 56.33% of the converted M12-
M04 samples (VC-S) were indicated as being from speaker
M04. The results show that for the M12-M04 conversion the
model is able to remove some of the source speaker (M12) char-
acteristics and add some of the target (M04) ones, although to
a lesser extent than in the M04-M12 conversion. Therefore, we
conclude that the voice characteristic conversions for the low
intelligibility speakers are successful.

For the mid intelligibility pair (middle four panels), the
M11 seems to be clearly recognisable as there is a 90% of
agreement that M11 samples are produced by M11, however lis-
teners have difficulties recognising the voice characteristics of
M05, i.e., only 20% of the trials where both samples were from
speaker M05 were judged as both being from M05. For M05-
M11 the VC performs poorly, which is indicated by 90% per-
ceiving it different from the target (VC-S result). For M05-M11
the VC-S reaches a 20% of absolutely sure agreement. Notice
that although it is a low score, it is the same that the GT samples
exhibit. The voice characteristic conversions for the mid intel-
ligibility speakers are thus inconclusive: while in one case the
VC fails, in the other participants fail to recognise the speaker
even from the GT samples. Further experimentation with more
speaker pairs is needed.

For the high intelligibility pairs (right 2 columns of Fig-
ure 3), the speakers seem reasonably distinguishable. We can
see that there is a 70% of agreement that M08 samples are pro-
duced by M08 and an 80% for M10. For M08-M10, there is
a 46.66% of agreement that the converted samples sound like
M10. For M10 to M08 VC, 75% of the listeners indicate that
the converted samples sound like M08. We can see that some
of the voice characteristics are successfully transferred for the
high intelligibility samples, however while on the conversions
M10 to M08 the result is similar to the GT samples, on the other
direction (M08 to M10) there is a gap of 33.33% with respect to
the GT. This behaviour is the same that we observed with low
intelligibility pair conversions: although the speakers from the
same pair are recognised with a similar agreement (100% and
90% for low intelligibility and 80% and 70% for the high intel-
ligibility) the conversions are more successful in one direction
than on the other.
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Figure 3: Results of the speaker similarity experiments grouped by intelligibility pairs. S stands for source, T for target, VC-D for voice
conversion different (VC samples should be different from source) and VC-S for voice conversion same (VC samples should be same as
target).

3.3. Limitations of the proposed approach

An assumption of the proposed approach is that the speaker
identity is not affected by the speech pathology, which is cer-
tainly untrue for speech pathologies which are dysphonic, i.e.
where the voice characteristics are known to be affected. By
performing AB testing with GT speakers, we have tried to ac-
count for these scenarios in the perceptual evaluations. From
the speaker similarity experiment, we have seen that in some
cases (i.e., M05) listeners had difficulties of recognising the
voice characteristics even in the GT. These results confirm that
the proposed approach cannot be used for all types of speech
pathologies. To solve this issue, we would need to have a deeper
understanding of what happens to the speaker characteristics
in these speech pathologies. For example, the speaker embed-
dings themselves could be used to predict the new pathological
speaker embeddings of the same speaker, transformed accord-
ing to the vocal pathology (i.e. type of dysphonia).

3.4. Accessibility of VC to atypical speakers

VC of atypical speech produced similar naturalness in the high
intelligibility case as typical speech on VQ-VAE based meth-
ods. Nevertheless, we see that there is room for improvement
compared to typical speech, as other studies employing cer-
tain non-parallel VC approaches can achieve human-like nat-
uralness. Unfortunately, these VC approaches cannot easily be
used for our task as they often leverage linguistic features or
ASR bottleneck features [28, 29]. The need for ASR features
is especially problematic as these features are extracted from
ASR systems, whose performance on atypical speech is gener-
ally much worse than that on typical speech, meaning that the
quality of these extracted features are also expected to be lower
for these speakers. Therefore, we conclude that accessibility to
VC is limited for atypical speakers, but this is because parallel
and ASR-based techniques can hardly be used by them.

4. Conclusions
In this paper, we propose a new approach to pathological speech
synthesis, by customising an existing pathological speech sam-

ple to a new speaker’s voice characteristics. In order to do
this pathological-to-pathological speech conversion, we use an
autoencoder-based voice conversion (VC) technique. When
comparing our results with the ones obtained in the VCC2020
challenge dataset [15], we can see that ours are somewhat lower,
which is most likely due to channel differences, the decrease
in the speech intelligibility and the different sampling rate. We
find that even real pathological speech seems to affect perceived
naturalness as shown by MOS scores, meaning that there is a
bound on achievable naturalness for pathological speech con-
version. Overall, we observe a decreasing trend in MOS with
decreasing intelligibility. Therefore, for low and mid intelligi-
bility, the difference in perceived naturalness between real and
VC is small. Conversion of voice characteristics for low intel-
ligibility speakers is successful, for high intelligibility it is also
possible to transfer the voice characteristics partially. However,
more experimentation is needed for the mid intelligibility with
more speakers: we experienced that in one case the VC failed,
and on the other participants fail to recognise the speaker even
from the real recordings. Whether the differences in the results
for the different intelligibility levels is due to the intelligibility
levels or due to other speech characteristics needs to be further
investigated. The question of pathological intergender (male
to female) and female VC also needs to be investigated. The
performance of the approach is comparable to the one observed
with typical speakers, therefore the current method is accessible
to atypical speakers. However, in the paper, we outlined some
issues such as the need for linguistic resources and parallel data,
as an obstacle for more natural VC for pathological speakers.
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