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Abstract—Critical infrastructures have to withstand advanced
and persistent threats, which can be addressed using Byzantine
fault tolerant state-machine replication (BFT-SMR). In practice,
unattended cyberdefense systems rely on threat level detectors
that synchronously inform them of changing threat levels. How-
ever, to have a BFT-SMR protocol operate unattended, the state-
of-the-art is still to configure them to withstand the highest
possible number of faulty replicas f they might encounter, which
limits their performance, or to make the strong assumption that
a trusted external reconfiguration service is available, which
introduces a single point of failure. In this work, we present
ThreatAdaptive the first BFT-SMR protocol that is automatically
strengthened or optimized by its replicas in reaction to threat
level changes. We first determine under which conditions replicas
can safely reconfigure a BFT-SMR system, i.e., adapt the number
of replicas n and the fault threshold f , so as to outpace an
adversary. Since replicas typically communicate with each other
using an asynchronous network they cannot rely on consensus
to decide how the system should be reconfigured. ThreatAdaptive
avoids this pitfall by proactively preparing the reconfiguration
that may be triggered by an increasing threat when it optimizes
its performance. Our evaluation shows that ThreatAdaptive can
meet the latency and throughput of BFT baselines configured
statically for a particular level of threat, and adapt 30% faster
than previous methods, which make stronger assumptions to
provide safety.

I. INTRODUCTION

Cyber infrastructures, which are used in domains such as fi-

nance, public administration (e-government), social networks,

or e-health, as well as cyber-physical systems (CPS), such

as the power grid or autonomous vehicles, increasingly face

cyber attacks of various threat levels [1]. Some of these attacks

might successfully compromise a subset of the machines used

in an infrastructure, which imposes periodical verification of a

system’s integrity and protection measures. However, the na-

ture of cyber-physical systems, and the increasing complexity

of both cyber-physical and cyber-only systems prevent manual

attack surveillance and mitigation [2]. Instead, systems have

to operate through times of ongoing and possibly persistent

incidents autonomously and unattended.

Fluctuations in the threat a system faces naturally arise from

variations of environmental effects (e.g., radiation levels vary

while planes taxi on ground and during flight [3]), or when

it comes to attacks, from the number and skill of adversarial

actors having put their attention to a system and from the

sophistication of the tools they use. In practice, cyber systems

rely on threat detectors [4] that indicate the level of threat they

are facing and that allows them to automatically adapt their

performance and resilience.

Byzantine fault tolerant state machine replication (BFT-

SMR) [5], combined with rejuvenation [6] and diversification

methods [7], [8] is a method that can be used to replicate

servers and tolerate powerful adversaries. BFT-SMR protocols

are typically configured with n≥ 3f+1 replicas to tolerate the

largest number f of faulty replicas [5] it might encounter, and

require 2k additional replicas (i.e., n≥3f+2k+1) if up to k
replicas are simultaneously rejuvenated every TR seconds [6].

However, the latency and throughput of BFT-SMR systems

deteriorate when f increases. Our work is the first to allow

BFT-SMR protocols to safely adapt to evolving threats by

leveraging threat detectors.

Traditional protocols [5] define a value for f once and for all

at deployment time, and therefore have a lower performance

than less resilient systems. Adaptive protocols [9] reclaim

some performance, but they also maintain f constant. To

some extent, dual mode and abortable protocols [10]–[13] can

optimize their performance by executing a protocol switch at

runtime, but they also keep the fault threshold f constant.

On the other hand, group membership protocols adjust the

system and quorum sizes using consensus [14]–[16]. How-

ever, group membership protocols cannot guarantee that the

system will enter a sufficiently resilient configuration before

it gets compromised, in particular when network synchrony

is lost. Finally, relying on an external reconfiguration service

introduces a single point of failure.

Fortunately, as we show in this paper, it is possible to

circumvent the limitations of these approaches by leveraging

threat detectors, which provide a lightweight trusted func-

tionality. Threat detectors issue warnings well in advance of

imminent increases of adversarial strength [17]–[20]. However,

threat detectors also report about threat level decreases, when

there is room for optimization.

We describe how to adapt to fluctuating adversarial threats.

We start by carefully analyzing the timing properties a threat

detector should have to allow the system to react in time

to adversarial strength increases. Building on those insights

we describe a reconfiguration protocol, ThreatAdaptive, which

allows the replicas of a system to: (i) use consensus to

agree on and switch to a less resilient, but better performing

1This work is partially funded by FNR through Pearl grant IISD and the
Core project ThreatAdapt C18/IS/1269492.
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configuration that is still resilient enough when possible; and

(ii) return to a configuration that is strong enough, which

has been agreed upon during the optimization phase, when

the threat detector informs them about an imminent increase

of adversarial strength. ThreatAdaptive allows a BFT-SMR

protocol to save the resources it does not require to ensure

safety at a given moment in time while increasing its efficiency

by operating with fewer active replicas whenever possible.

Overall, this work makes the following contributions: (i) We

establish when and how it is safely possible to reconfigure BFT

protocols when the adversarial strength evolves over time. (ii)

We present ThreatAdaptive, a BFT reconfiguration protocol

that allows replicas to optimize its use of system resources and

increase its resilience threshold. with respect to the perceived

adversarial strength. (iii) We implement our Threat-Adaptive

system design and evaluate its performance.

This paper is organized as follows. §II surveys the related

work. §III presents our system model and objectives. §IV
discusses threat detectors and presents the required conditions

for the safe reconfiguration of a BFT-SMR protocol that relies

on rejuvenation. §V describes our threat adaptive reconfig-

uration protocol for BFT-SMR protocols. §VI presents our

performance evaluation. §VII concludes this paper.

II. RELATED WORK

Dynamic performance optimization of BFT-SMR.
AWARE [9] periodically optimizes its performance by having

replicas evaluate the network latencies, and subsequently dis-

tribute among themselves voting weights and the leader role.

AWARE maintains constant the resilience parameters, namely

the number of replicas n, the fault threshold f , while we aim

at modifying these parameters depending on perceived threats

(along with the rejuvenation period TR).

Speculative agreement. Several works strive for protocol

intrinsic (i.e., situation independent) optimization by relaxing

the state machine semantics to accept transactions optimisti-

cally [21], [22] or to execute requests without causality prop-

erties [23]. We believe that our threat adaptative mechanisms

could also be used in combination with these systems.

Adaptive BFT-SMR protocols. CheapBFT [10] and

ReBFT [11] operate through error-free phases using only

n−f replicas (e.g., 2f+1 for ReBFT), and do not adjust the

fault threshold f . They switch to n replicas to mask faults.

Abortable protocols [12], [13] switch between several algo-

rithms to improve performance. The maximum fault threshold

is also maintained constant in those protocols. Reconfiguration

services in crash or Byzantine settings [24], [25] are also

closely related to our work. These services rely on an external

and centralized reconfiguration system, while we rely on a

simpler and smaller threat detector. Kuznetsov and Tonkikh re-

cently described a framework to reconfigure BFT systems [26].

This interesting work did not consider the threat adaptivity

problem that we tackle in this work.

Group membership protocols. Group membership proto-

cols, closely integrated with replication management proto-

cols [27], can adjust the composition of the replica group, and

hence n and f . However, replicas have to reach consensus

to perform these adjustments or must do so one replica at a

time [15], [16] with payload consensus interleaved between

subsequent additions. When confronted with an increasing

adversarial strength, these protocols cannot ensure that the

system’s fault threshold will be reconfigured early enough to

be safe. In such a scenario, our mechanisms allow a system

to automatically transition to more resilient configurations.

Architectural hybridization. Architectural hybridiza-

tion [28] has been introduced to provide synchrony guarantees

in an otherwise partially synchronous system. Verı́ssimo et

al. [29] show how to introduce such a notion, either locally or

in a distributed manner, with synchronously connected trusted-

trustworthy components, called wormholes. To adapt to an

increasing threat level, one could assume the existence of

a wormhole that would reconfigure the system and inform

replicas using synchronous communications. We assume a

smaller and simpler threat detector whose role is to inform

replicas synchronously of an increasing threat level.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We assume a replicated service for which replicas coordi-

nate agreement using a payload BFT-SMR protocol. We use

PBFT [5] for illustration purposes, but our dynamic member-

ship protocol is generic and can be applied to other BFT-SMR

protocols, or even to reliable broadcast protocols [30]. Replicas

are interconnected by a partially synchronous network. We

assume the availability of strong cryptographic primitives and

abstract from the steps necessary to establish trust in replicas

and their key material, initially and after they have been

rejuvenated.

The configuration of a BFT-SMR system is captured by

a tuple (Ni, fi, qi, ki, TR,i), where Ni is the set of active

replicas that execute the payload protocol, fi is the fault

threshold, qi is the quorum size, and, to support rejuvenation,

ki and TR,i respectively denote the number of replicas that

can be rejuvenated simultaneously and the time a proactive

rejuvenation of ki replicas takes. After a duration of
⌈
ni

ki

⌉
TR,i,

the system has proactively rejuvenated all ni replicas once, and

at most ki simultaneously. In general, the values of ki and TR,i

can be freely chosen as long as one takes into account that

replicas cannot be rejuvenated arbitrarily quickly.

For simplicity, we focus here exclusively on homogeneous

payload protocols (i.e., there are no trusted components that

replicas can use for the payload protocol, but they rely on

a threat detector for reconfigurations), where qi≤ni−fi and

2qi−ni≥fi+1 must hold for safe and live configurations,

which implies that ni≥3fi+2ki+1 and qi≥2fi+ki+1. We

assume an initial set of replicas Nmax and define a World
Configuration Cmax = (Nmax , fmax , qmax , kmax , TR,max ) as

the initial system configuration. We require the world config-

uration to be safe, live and capable of masking faults and

rejuvenating replicas as this will be the configuration the

system returns to in the most severe circumstances. During
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times when the system experiences synchrony, group member-

ship protocols can be used to adjust this world configuration.

Finally, we assume that the system is equipped with a threat

detector (TD), which we discuss in §IV.

B. Threat Adaptive Reconfigurations

We consider an adversary whose strength evolves over time.

We consider two ways in which this evolution can happen: i)

the adversary can corrupt less or more replicas overall (the

adversarial fault threshold fadv evolves); and ii) the adversary

requires less or more time to corrupt fadv replicas. We capture

those two aspects in the notion of adversarial strength, which

is a function TA(t, f) of time t and fault threshold f . We do

not instantiate the strength function for our analysis (cf. §IV).

The system can be configured to run the payload protocol

either more efficiently or with more resilience. A replica

r transitions through configurations and into a passive but

responsive operation mode [10], [11], e.g., a deep sleep

mode with wake-on-LAN, if it is not involved in the current

configuration (i.e., if r /∈Ni). We assume that passive replicas

are correct upon wake up and substantiate this assumption by

frequently rejuvenating passive replicas. Such a rejuvenation

is only limited by the rejuvenation time TR and not by ki.
Passive replicas can be rejuvenated simultaneously.

Classically, system reconfigurations are decided by a system

administrator. We opt for an automatic and internal reconfig-

uration orchestrated by the replicas themselves. Assuming an

external reconfiguration service only relocates the problem we

tackle, since this service has to be safe at all times. In order not

to introduce a single point of failure, this service would also

need to be replicated and either configured to the maximum

fault threshold or have the capability to reconfigure itself.

Our goal is to define a resilient system able to automatically

react to evolving threats safely and rapidly enough to outpace

the adversary in its attempt to compromise the system. Repli-

cas reconfigure the system to counter imminent threats, or to

optimize its performance when it is safely possible, based on

a threat detector’s signal. We call reactions and optimizations
the adaptations in consequence of an increasing or decreasing

adversarial strength, respectively.

IV. THREAT DETECTORS AND REQUIREMENTS FOR

ADAPTING TO CHANGING ADVERSARIAL STRENGTH

This section first discusses threat detectors. We then present

our threat model, which encapsulates the notion of a changing

adversary, and state more precisely the threat detector require-

ments (i.e., how well in advance it should warn of a treat

change) using the proactive recovery threat model.

A. Threat Detectors

Threat detectors are fundamentally different from intrusion

detectors. Whereas the latter has to identify whether parts of

the system have been compromised, threat detectors merely

have to assess the risk of severe faults happening.

Threat levels have been defined by Singer as a product

of the estimated capabilities of malicious actors and their

intent [31]. Defense against cybersecurity threats requires

identifying such actors, their points of entry, attack vectors and

known vulnerabilities of the system to protect. The perception

of adaptive threats requires continuous monitoring of changes

of malicious actor capabilities (i.e., whether new, exploitable

vulnerabilities have been exposed or old ones patched), as

well as changes of a malicious actor’s intent (system in focus

of enemy military or intelligence actors, higher/lower black

market financial incentives for breaching the system).
The answer to this threat perception challenge lies in

implementing Cyber Threat Intelligence, which allows for

continuous and responsive cybersecurity information collec-

tion, dissemination and processing, and, as a result, enables

educated decisions on how to prepare the system to face

(perceived) threats [19]. Operational frameworks (STIX) and

standards of information exchange (TAXII) have been de-

signed to automatically evaluate threat levels [32]. Open threat

feeds [4], [33] are already available and the feasibility of such

systems is confirmed by their existence in notable institutions

like the Bank of England [20].
The threat detector (TD) generates and delivers indica-

tions of changes in the perceived adversarial strength TA to

replicas. TD endpoints at each replica are connected through

a synchronous network, that is separated from the regular

partially synchronous network that replicas use for the payload

protocol. This separated network is a wormhole [29].

B. Adversarial strength
We now determine how much in advance replicas should

be informed of an increasing adversarial strength so that they

can reconfigure the system to maintain it safe. Sousa et al. [6]

assume that during any time interval of duration TA the

adversary can compromise at most f replicas. A system with n
replicas is then said to be exhaustion safe if all faulty replicas

are repaired faster than TA. In the absence of perfect failure

detectors, this can be achieved by rejuvenating all n replicas

proactively faster than TA. For example, if k replicas can

be rejuvenated simultaneously well within TR, the system is

exhaustion safe if and only if
⌈
N
k

⌉
TR ≤ TA. In this scheme,

the number of replicas should be at least n ≥ 3f + 2k + 1 to

ensure safe and live quorums.
We extend Sousa et al.’s model and their exhaustion safety

notion by characterizing the combined adversarial strength TA

as a function of time t. However, while their adversary model

faces systems with a constant fault threshold f , we strive

for systems that adapt f in response to changing adversarial

strength. Therefore, to understand how strong an adversary

of strength TA(t) is against different configurations of the

systems, TA(t) must itself be a function mapping each con-

figuration’s fault threshold f to the length of the time interval

during which no more than f replicas can be compromised.

That is, TA(t, f) resembles Sousa et al.’s time interval for an

adversary with strength TA(t) at time t when it faces a system

that is capable of tolerating up to f simultaneous faults.

Definition 1 (Adversarial strength). Let TA : R × N → R

be a function that maps every point in time t ∈ R and
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Fig. 1: Time to compromise before, during and after the

increase of adversarial strength at tincrease . During red-dashed

intervals, the adversary cannot compromise more than f repli-

cas. The length of intervals including tincrease is not known

precisely and hence requires careful consideration.

every f ∈ N to a duration TA(t, f) such that at time t
the adversary cannot corrupt more than f replicas before a
duration TA(t, f) has elapsed. We shall assume in this work
that TA remains constant for extended periods of time and
that the duration of such a period Pi = [ti, ti+1) is larger
than TA(t, f) for all involved fault thresholds f (e.g., when
the system transitions from f1 to f2). We call TA(t, f) the
strength of the adversary during this period against a system
with fault threshold f .

In the following, for simplicity, we shall write TAi
(f)

instead of TA(t, f) where t ∈ Pi and TAi+1
(f) for TA(t, f)

while t ∈ Pi+1, to denote these noticeable changes in the ad-

versarial strength during subsequent periods of time Pi, Pi+1.

We say that the adversary becomes stronger relative to a given

f if it evolves from being characterized by TAi
and is now

characterized by TAi+1
where TAi+1

(f) < TAi
(f). We define

similarly a weaker adversary. We require TAi
to be monotonic

(i.e., TAi(f0) ≤ TAi(f1) for all f0 ≤ f1), but make no further

assumptions on TAi (such as linearity).

We define the time an adversary takes to corrupt f replicas:

Definition 2 (Time-to-compromise intervals). A time-to-
compromise interval [tl, tr) is any interval, between tl and tr
such that the adversary cannot corrupt more than f replicas.
If TAi remains constant between tl and tr it implies that
tr − tl ≤ TAi

(f).

The duration of time-to-compromise intervals that include

a change in the adversary’s strength requires careful consid-

eration. We denote by TAi→Ai+1(f) the adversarial strength

over such an interval and require only that TAi
(f) ≥

TAi→Ai+1
(f) ≥ TAi+1

(f). Fig. 1 illustrates this point.

In the following, we discuss how a system can react to

an increasing adversarial strength, namely: i) by increasing

the rejuvenation rate; or ii) by activating additional replicas.

For each situation, we describe how the system should be

reconfigured, and obtain a temporal bound before which the

reconfiguration should be effective. We finally combine both

results to identify all possible reconfigurations of the system.

Fig. 2: Increase of adversarial strength.

C. Accelerating rejuvenation

Let us assume an adversary that becomes stronger at time

tincrease , characterized through the functions TA0
and TA1

.

In particular, we have TA0
(f) ≥ TA1

(f). We first study how

and when the rejuvenation parameters can evolve so that no

more than f replicas are simultaneously faulty. This situation

is illustrated in Figure 2.

Exhaustion safe systems allow up to f faults to happen

in any window of size TA0
(f) that starts before t−A0 =

tincrease − TA0(f), and in any window of size TA1(f) that

starts after tincrease , provided the system is as well exhaus-

tion safe with the adjusted rejuvenation rate and the strong

adversary. We now investigate what happens over the time

intervals where the adversary becomes stronger, i.e., those that

contain tincrease. Those intervals start at a time t such that

t−A0 < t < tincrease , and have a duration comprised between

TA1(f) and TA0(f). We can therefore over-approximate the

adversary’s strength and state our first theorem:

Fig. 3: More frequent rejuvenation to counter a stronger

adversary. A blue rectangle shows the rejuvenation of a replica.

Theorem 1 (Reacting by accelerating rejuvenation). From an
exhaustion safe configuration (N, f, q, k0, TR0), if the adver-
sary’s strength evolves from TA0

to TA1
at time tincrease , the

system remains safe if it is reconfigured to an exhaustion safe
configuration (N, f, q, k1, TR1), where

⌈
|N |
k1

⌉
TR1

≤ TA1
(f)

before tincrease − TA1
(f).

Proof. We know that before tincrease , the additional adversary

strength has no effect. Therefore, there exists an interval

included in TI = [t−A0 , t−A1 = tincrease − TA1
(f)] such

that the time-to-compromise windows that start in this interval
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Fig. 4: Adding replicas to counter a stronger adversary.

(e.g., at t′ ∈ [t−A0 , t−A1 ]) cannot compromise the system in

less than tincrease−t′ because this window is entirely included

in the interval where the adversary is still weak.

The existence of this interval allows us to derive the point in

time when the system has to adjust its proactive rejuvenation

rate to counter the increase of adversarial strength. Having

over-approximated the adversary’s strength with TA1
(f) for

any window that starts after t−A1 , any attack launched during

any of these windows is countered by rejuvenating all replicas

in N faster than TA1
(f) (i.e., after adjustment,

⌈
|N |
k1

⌉
TR1

≤
TA1

(f) holds, which guarantees exhaustion safety for all

sliding windows after t−A1 ).

The system does not have to switch to this rate before

t−A1 because all time-to-compromise windows that start in the

interval TI contain interval [t−A1 , tincrease ] during which all

n replicas are rejuvenated. The time-to-compromise windows

that start earlier than t−A0 find all replicas repaired before

tincrease since we assume the weak system to be exhaustion

safe while the adversary is weak, and their possible overlap

with interval [t−A1 , tincrease ] only speeds up rejuvenation. Fig-

ure 3 illustrates this point. It is important to note that despite

the change of rejuvenation parameters of the configuration

(from k0 to k1 and from TR0
to TR1

), the order in which

replicas are rejuvenated must be preserved.

D. Adding replicas

Replicas cannot be rejuvenated arbitrarily fast. For example,

Garcia et al. found that rejuvenating a replica running Ubuntu

16.04 requires 40s [8]. Therefore, it might happen, that a

system is already rejuvenating replicas as fast as possible.

In this case, it will no longer be possible to react only by

accelerating the rejuvenation rate. Fortunately, the system can

also react to an increasing adversarial strength by increasing

its fault threshold, i.e., by adding replicas. Figure 4 illustrates

this strategy and Theorem 2 captures its effectiveness.

Theorem 2 (Reacting by adding replicas). From an exhaustion
safe configuration C0 = (N0, f0, q0, k, TR), if the adversarial
strength evolves from TA0

to TA1
at time tincrease , the system

remains exhaustion safe if it is reconfigured before tincrease
to a configuration C1 = (N1, f1, q1, k, TR), such that C1

is exhaustion safe relative to the stronger adversary (i.e.,⌈
|N1|
k

⌉
TR holds), provided that TA0(f0) ≤ TA1(f1), and

replicas continue to be rejuvenated in the same order.

Proof. The system starts with n0 = |N0| replicas and fault

threshold f0, and is reconfigured to involve n1 = |N1| replicas

with fault threshold f1. Let tswitch be the point in time where

the system starts reconfiguring itself, and teffect the time when

the new configuration is operational and capable of tolerating

f1 faults. During a time-to-compromise window that starts

before teffect −TA0
(f0) the replicas in N0 are rejuvenated by

the rejuvenation scheme of the weak configuration. Similarly,

time-to-compromise windows that start after teffect are ex-

haustion safe by our assumption that the strong configuration

fulfills this property.
We now consider the windows that overlap with teffect .

Let us assume that f1 was chosen so that f0 < f1 and

TA0
(f0) ≤ TA1

(f1), and that the rejuvenation order of replicas

is maintained through the reconfiguration. In this case, any

window that starts before teffect and goes beyond tincrease
does not lead to the compromise of more than f1 replicas.

The windows that start in [teffect −TA0
(f0), teffect ] overlap

with the new configuration. However, their length is larger

than TA1(f1), because the adversary’s strength over them

is sometimes lower than TA1
. However, since replicas that

get activated at teffect are correct, maintaining the same

rejuvenation order ensures that the replicas that were active

in the previous configuration, and which might be faulty,

are rejuvenated first. In fact one could regard such a correct

instantiation as a free simultaneous and instantaneous rejuve-

nation at teffect . As a consequence, no more than f1 replicas

get compromised within any window of size TA1
(f1) that

starts after teffect − TA(f0), since all n1 replicas in N1 are

rejuvenated in such a window.

E. Accelerating rejuvenation and adding replicas
We have seen that the system can adjust the rejuvenation

rate to TA1
(f1) before time tincrease−TA1

(f1) so that the |N0|
replicas are rejuvenated over all time-to-compromise windows

located before or containing tincrease (Theorem 1). We have

also seen that replicas can be added so that they are active

before tincrease , so that the |N1| replicas are rejuvenated

over all time-to-compromise windows that start after tincrease
(Theorem 2). These results can be combined as follows.

Theorem 3 (Reacting by accelerating rejuvenation and

adding replicas). From an exhaustion safe configuration
(N0, f0, q0, k0, TR0

), if the adversarial strength evolves from
TA0 to TA1 at time tincrease , the system remains safe
if it is reconfigured to an exhaustion safe configuration
(N1, f1, q1, k1, TR1

), where
1) f1 is such that f0 ≤ f1 and TA0(f0) ≤ TA1(f1)
2) the rejuvenation frequency is changed before tincrease−

TA1
(f1) so that

⌈
|N1|
k1

⌉
TR1

≤ TA1
(f1)

3) the passive replicas become active before tincrease
4) replicas that appear in both configurations are rejuve-

nated in the same order after teffect
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Proof. by Theorem 1 and 2.

F. Consistent and Synchronized Information of Replicas

In addition to advance notice, consistency of the information

replicas receive and possible synchronization requirements

are further concerns to be considered in the threat detector

network. Clearly, if all replicas receive the same information

about imminent increases/decreases of adversarial strength at

the same time, no confusion can arise when some lagging

replicas are still reacting while others already optimize their

configuration. However, such a time synchronized response

introduces significant complexity and overhead in the threat

detector wormhole.

In Section V-D, we therefore show how our protocol avoids

this complexity, by first returning to the strongest required

configuration since the replica last reacted to increasing threats

before allowing this replica to advance with optimizations

since then. Threat detectors inform replicas about both the

strongest required configuration and whether it is safe to enter

the targeted configuration during optimization.

V. A THREAT-ADAPTIVE RECONFIGURATION PROTOCOL

Assuming the availability of a threat detector that reports

threat increases sufficiently in advance, as discussed in the

previous section, we now present our reconfiguration protocol

that replicas use to reconfigure the system.

A. Intuition

Receiving an adversarial strength decrease signal from the

threat detector allows replicas to optimize performance and

switch into a more efficient configuration that involves fewer

active replicas and possibly an adjusted rejuvenation scheme.

If threat detection gives replicas enough confidence that TA

remains constant for a period of time long enough to optimize,

execute the payload in the less resilient but more performant

configuration and return from there should threats increase,

replicas reach consensus about a less resilient configuration

and switch to it. Replicas involved in this configuration remain

active and return to the payload protocol after adopting the re-

juvenation scheme of this configuration. Replicas not involved

in this configuration passivate themselves, but remain attentive

to activation requests. In the mean time, they rejuvenate

themselves without coordinating with other replicas to remain

available (remember, in configuration Ci active replicas are

limited to rejuvenate at most ki replicas at a time; passive

replicas are not constrained in this way).

After the threat-detector wormhole informs the replicas

about an imminent increase of adversarial strength, correct

replicas must react within a bounded amount of time (see Sec-

tion IV-C), which, as we have seen, rules out using consensus.

Key to circumventing this impossibility is the observation that

the decision about how to react to a given threat can be already

taken well before the threat manifests itself. In this paper, we

will suggest preparing for the reaction to increasing adversarial

strength well ahead when reaching consensus about how to

optimize. Clearly, a first decision must be taken at this point

in time, but it is as well possible to revisit this decision several

times during the execution of the target configuration (e.g., to

compensate for permanent failure in passive replicas).

For simplicity, in this paper we shall only discuss reaction

by returning to the very same configurations from where the

system came from. That is, if the system, starting in the world

configuration Cmax progressed through a sequence of config-

urations C1, C2, . . . Ci, where Ci is the current configuration.

It will react by returning along this chain (i.e., from Ci to

Ci−1 to Ci−2, . . .) until it has reached a configuration that

is capable of withstanding the currently reported adversarial

strength. Since any such chain starts with Cmax , which is by

definition the most resilient configuration, it is always possible

to find such a configuration, provided the system can withstand

an adversary of this strength in the first place.

B. Reaching Consensus for Optimizations

The goal of our reconfiguration protocol is to safely transi-

tion the system from its current configuration Cs to a proposed

new configuration Ct, which is resilient enough to withstand

the current adversary of decreased strength. At the same time,

the protocol prepares for a later increase of adversarial strength

by creating the possibility to return to Cs and to previous

configurations in the chain without having to reach consensus.

In general, the replica set Nt of configuration Ct does not

need to be a subset of the current configuration’s replica set

Ns. In particular, quorums formed in Nt do not have to be

safe quorums in Ns and vice versa.

Our reconfiguration protocol has the following properties.

P.1 Replicas can prove to lagging replicas (and clients) that

Ct is the next configuration.

P.2 If Ct becomes active, enough replicas in this configuration

must know it so that they can report any progress made in Ct

in case the system requires to return to Cs. Otherwise replicas

in Cs or in a previous configuration would wait forever for

the progress of Ct and the system would not be live.

P.3 If Ct becomes active, enough replicas in Cs need to know

about this fact so that no quorum can be formed in Cs to

agree on a second configuration C ′t. Otherwise, both Ct and

C ′t could become active simultaneously and the system would

not be safe (i.e., clients could receive inconsistent replies if

both Ct and C ′t return to the payload protocol).

We provide P.1 thanks to configuration certificates Cs→t,

which loosely resemble view-change certificates of PBFT. To

enforce P.2 all nt = |Nt| replicas of the target configuration

Ct need to participate in a configuration certificate such that

at least nt−ft correct replicas are able to report any progress

made in Ct. The payload protocol liveness is guaranteed

despite waiting for a response from all nt replicas in Ct,

as long as subsequent optimization attempts are interleaved

with minimal progress in the payload protocol. Note that

an optimization may never succeed if target configurations

continue to include non-responsive replicas, but the above

guarantees progress nonetheless. Property P.3 requires a quo-

rum of replicas in the source configuration Cs to witness the

activation of Ct. We shall return to this aspect in Section V-E.
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1 reconfiguration (v,seq):
2 // leader sl ∈ Ns

3 compute Ct

4 propose 〈PrePrepareCfg , l, v, seq , Cs, Ct〉σ(sl)

5 // backups si ∈ Ns

6 relay PrePrepareCfg as 〈PrepareCfg , i, v, seq , Cs, Ct〉σ(si)

7 // all replicas si, sl ∈ Ns

8 wait for qs matching Pre/PrepareCfg messages
9 if TD. is valid (Ct)

10 send 〈CommitCfg , i, v, seq ,Cs→t〉σ(si)

11 to all replicas in Ns ∪Nt

12 // new mode replicas sj ∈ Nt

13 wait for qs matching CommitCfg messages
14 if Cs→t is valid
15 send 〈ConfirmCfg , j, v, seq ,Cs→t〉σ(sj)

16 to all replicas in Ns

17 // witnesses si ∈ Ns

18 wait for nt matching ConfirmCfg messages
19 send 〈AckCfg , i, v, seq ,Cs→t〉σ(si) to all replicas in Nt

20 if si /∈ Nt wait passively for Ct to return
21 // new mode replicas sj ∈ Nt

22 wait for qs matching AckCfg messages
23 resume payload in Ct with view v + 1

Fig. 5: Reconfiguration Protocol.

Fig. 5 shows the pseudocode of our optimization recon-

figuration protocol. Let sl be the current leader of the pay-

load protocol (i.e., the xth replica in the set Ns where

x = v mod |Ns|). We assume that the leader sl pro-

gressed in view v to request sequence number seq − 1
and proposes with seq the reconfiguration of the system as

〈PrePrepareCfg , l, v, seq , Cs, Ct〉σ(sl) (Ln 4). Here 〈. . .〉σ(si)
denotes a message signed by replica si. Cs, Ct are the source

and target configurations. Proposing this configuration in view

v and with sequence number seq ensures that backups (i.e.,

non-leader replicas) will try to optimize the system at the

same relative point in time. Following PBFT, backups relay the

leader proposal as 〈PrepareCfg , i, v, seq , Cs, Ct〉σ(si) (Ln 6)

before both leader and backups in Cs wait for qs match-

ing PrePrepageCfg and PrepareCfg messages from different

replicas (Ln 8). Forming configuration change certificate Cs→t

out of these qs messages, the replicas in Cs validate with their

threat detector TD, whether Ct is a valid configuration given

the current adversarial strength (Ln 9) and if so, they send

this certificate in a CommitCfg message to both the replicas

of the source configuration and all target configuration replicas

(Ln 10), which wake up passive replicas in Nt.

Replicas of both configurations then proceed with a hand-

shake to transition the system to Ct. Replicas of the target

configuration Ct confirm the receipt of a valid configuration

change certificate (Ln 14) and the replicas in the source con-

figuration Cs acknowledge the receipt of such confirmations

from all replicas in Ct (Ln 18-19). We call witnesses the source

configuration replicas that have seen these confirmations.

Whereas target configuration replicas resume execution of the

payload protocol in view v + 1 (Ln 23), replicas that are not

24 on TD strength increase or reconfig timeout :
25 // replica sj ∈ Nt in view v at seq
26 stop payload protocol
27 create local history lhj

28 send 〈History , j, v, seq + 1, lhj〉σ(sj) to all replicas in Ns

29 stop processing view v messages

30 // replica si ∈ Ns

31 wait for qt History messages
32 from different replicas (=Fig.4 Line 22)
33 combine lhj into global history gh
34 if Cs is strongest visited
35 apply gh
36 resume in Cs with view v + 1
37 else continue returning to the next config .
38 in the chain with lhi = gh

Fig. 6: Protocol to react to increasing adversarial strength, by

returning from Ct to the configuration Cs that activated Ct.

in the target configuration become passive but they can still

react to messages (Ln 20).

For better readability, we omit timeout handling in Fig. 5.

All participating replicas (i.e., all si∈Ns and after activation all

sj∈Nt) set a timer when engaging in the configuration change.

Timeouts cause replicas to abort their attempt to change to

configuration Ct, which typically leads replicas in Cs to retry

the configuration change. However, there are two exceptions:

(i) having sent AckCfg witnesses wait for replicas from Ct

to return, even if their timeout fires (Ln 31). This ensures

that progress in the target configuration Ct is not lost; and

(ii) replicas in the target configuration Ct return if the timeout

fires during the configuration change (see Figure 6 and Ln 24–

29). They will stop doing so after having received qs matching

AckCfg messages, which marks a successful reconfiguration.

C. Reacting to Increasing Adversarial Strength

Reaction closely resembles the switch protocol of

ReBFT [11] extended to traverse the chain of visited con-

figurations to the more resilient one(see Section IV).

Once in the targeted safe configuration, replicas resume

executing the payload protocol, possibly after catching up

with the progress their peers made relative to the history,

which has to be done using the synchronous wormhole. The

construction of local histories lhj and the application of the

global history gh depend on the payload protocol (Ln 27, 35).

For example, for PBFT, the latest checkpoint and the progress

made since then have to be reported. Prepared messages (i.e.,

those receiving qt matching PrePrepare or Prepare messages

from replicas in Ct) are executed. Client requests not in

this state are proposed again by the leader of the current

configuration. The combined global history merely reports all

received local histories and confirms with the signature of si
the transition if Cs is not the strongest visited.

Notice that although the return may proceed through several

configurations in the chain, only the final configuration will

resume the payload protocol. Moreover, the replicas initiating
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this process will continue being rejuvenated in the pattern of

their configuration while it is active. All other replicas and

those that become passive will undergo frequent reconfigura-

tions without first having to coordinate with others. Therefore,

between the moment where the reconfiguration starts tswitch

and the moment teffect where it is effective even if multiple

configurations are passed, Theorems 2 and 3 hold because

none of these transitionally passed configurations become

active in the sense of entering the payload protocol.

To prevent a client from ever accepting replies from a faulty

quorum of replicas, in particular after a threat increase, replicas

drop the private key they were using to interact with the

client when they receive a threat increase notification. Replicas

then generate a new set of keys to interact with the clients

and broadcast the public keys to other replicas. To identify

the currently active configuration, clients contact the world

configuration and successively walks down the optimizations.

Note that we could also rely on a forward-secure digital

signature scheme [26] to replace the keys of replicas.

D. Lagging Replicas and Successive Reconfigurations

One important detail concerns passive or lagging replicas

that have not been able to enter the current configuration

before the system optimizes to decreasing threats. Without

further precautions, faulty replicas could activate a configu-

ration with the lagging replicas while agreeing on a different

operation to activate with the replicas that aim to optimize the

system. To avoid this issue, replicas do not engage in optimiza-

tions before they have returned to the stronger configuration

that can withstand the increasing adversarial strength. (see

Section IV-F). From this configuration, lagging replicas follow

the configurations the system was reconfigured into until they

reach the currently active configuration or become passive in

the progress. Only in this active configuration will they resume

participating in potential optimizations.

E. Witnesses

To conclude the discussion of our protocol, let us give

further details on the witness role (Ln 17–20) and show how

it ensures property P.3, i.e., safety and liveness of the system.

Liveness. Replicas in the target configuration Ct react to

increasing adversarial strength once they receive qs matching

CommitCfg messages (Ln 13). However, they only start pro-

cessing the payload protocol after receiving the same number

of qs matching AckCfg messages (Ln 22). This step ensures

that replicas from Ct will already return control to Cs, even

if they are not yet ready to advance to entering the payload

protocol. Conversely, witnesses in Cs will only acknowledge

the configuration transition if they are sure that enough replicas

in Ct will report the progress Ct might make (Ln 13ff).

This is the case after all nt replicas confirmed, because then

nt − ft ≥ qt correct replicas are guaranteed to communicate

back their progress. In combination, this ensures liveness, even

if the target configuration Ct is only partially activated.

Safety. We have to ensure that no two configurations ever

execute the payload protocol (i.e., configurations may only be

simultaneously active as part of the above transition protocols).

Witnesses ensure this by refusing to participate in re-executing

the reconfiguration protocol in Figure 5 (e.g., for agreeing on

a different configuration in case the optimization failed) unless

the activated target configuration returned. For a partially

activated target configuration (i.e., one receiving only fewer

than qs acknowledgments from witnesses), this is the case

after the reconfiguration timeout expires. But in this case,

already nt replicas of Ct confirmed, which guarantees that

those witnesses that have acknowledged Ct receive a correct

history (although with no progress made since the payload

protocol did not restart). This refusal to participate in a re-

election before Ct returns ensures safety.

Replay Attacks. Replay attacks would not lead to the

activation of two configurations. Key to preventing such replay

attacks is the fact that to obtain all messages required for the

activation (i.e., qs AckCfg messages), a quorum in Ct must

confirm this configuration. From this moment onward, replicas

no longer react to messages with the confirmed view v after

replicas in Ct returned (see Line 32 in Figure 6). Moreover,

correct witnesses do not produce AckCfg messages before they

receive confirmation from Ct. Consequently, if the required

messages are available, Ct can be activated only until the point

in time when Ct returns, but such a return is necessary for the

witnesses to resume in the protocols of Fig. 5 and 6 and hence

to agree on a different configuration to activate.

VI. PERFORMANCE EVALUATION

Setup. We implemented our reconfiguration protocol, which

we name Threat-Adaptive, on top of BFT-SMaRt [25]. For our

experiments we use 4 Ubuntu 18.04+ desktops each equipped

with an Intel i7 6th generation processor and 8 GB of memory.

The desktops are interconnected with a Linksys WRT54G

router. For each experiment, replicas are evenly distributed on

the machines. We ran BFT-SMaRt’s microbenchmarks with

160 clients that send 100 Bytes requests every 150ms to keep

replicas continuously busy. Messages are delivered in batches

of 1024 and experiments start with fresh views. Our goal is

to demonstrate that despite the threat adaptation mechanisms

we described, the performance of the payload protocol is

maintained close to the respective native configurations.

Baselines. We compare the performance of Threat-Adaptive

to the following five baselines.

1) BFT-SMaRt-4 and BFT-SMaRt-10 are unmodified BFT-

SMaRT [25] deployments with n=4 (i.e., f=1) and

n=10 (i.e., f=3) without rejuvenation (i.e., k=0). BFT-
SMaRt-6 and BFT-SMaRt-12 are the equivalent config-

urations (i.e., f=1 or 3) with rejuvenation and k=1.

2) StoppableBFT stops the system execution before restart-

ing it in a new configuration. This protocol emulates the

unrealistic scenario where a sysadmin would immedi-

ately reconfigure the system before each threat increase.

3) GroupMembership is a consensus-based reconfiguration

protocol, similar to Rampart et al. [27].

4) ReBFT [11] is the optimistic mode of BFT-SMaRt where

the system runs with n− f replicas (here 7), but would
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Protocol Safety depends on
BFT-SMaRt-4 #faults ≤ 1
BFT-SMaRt-10 #faults ≤ 3

Stoppable
sysadmin being faster than attackers to

reconfigure (not guaranteed)

Group
Membership

reaching consensus during attack (not

guaranteed)

ReBFT #faults≤f (mode if #faults�=0)

Speculative
#faults ≤ f (gracious execution if

#faults=0)

ThreatAdaptive
(this work)

Safe if TD signal arrives early enough

so that Thm. 3’s conditions are verified.

TABLE I: Safety conditions of the protocols considered.

Fig. 7: Latency with increasing adversarial strength. σ=3
during transitions, and 2 otherwise (no rejuvenation).

need to return to a configuration with n = 10 replicas

to handle faults.

5) Speculative implements an optimization presented where

clients wait for 3f+1 replies [22]. Replicas rollback

and re-execute requests if these replies are not received

within a bounded time.

Metrics. We measure the throughput and latency of the

payload protocol, in particular when reconfigurations happen,

and the delay that is required to react to increasing threat

levels. We measure latency as the average time required to

process all client requests received within a one second interval

at the replica side. To improve the readibility of the graphs,

we plot the average of 11 measurements per sliding-window

and indicate the standard deviation σ in the figure captions.

A. Reacting to Increasing Threat Levels

We first consider the situation where the threat level in-

creases. Fig. 7 illustrates ThreatAdaptive’s latency when the

threat level increases from f=1 to 2 at 110s, and from f=2
to 3 at 230s. ThreatAdaptive’s latency evolves from the one

of BFT-SMaRt-4 before 110s to the one of BFT-SMaRt-10 at

230s, while obtaining an intermediary performance between

110s and 230s, and remains stable despite the reconfigurations.

Protocols with a lower latency are those that do not guarantee

safety or that are executing without faulty replicas. To precise

this point, we summarize in Table I the safety conditions

for the baselines and ThreatAdaptive in that situation. The

GroupMembership and the BFT-SMaRt-4 baselines may no

System Recfg. increasing f (n=3f+1)

1→ 2 2→ 3 3→ 4 4→ 5

GroupMembership 3561 3656 3825 3948

ThreatAdaptive
(inclusive)

2404 2445 2589 2781

ThreatAdaptive
(overlapping)

2690 2856 3012 3379

TABLE II: Reaction time (teffect−tswitch) in ms (no rejuve-

nation).

longer be safe in the scenario we consider, and StoppableBFT

would be safe only if the administrator reacts quickly enough.

GroupMembership replaces replicas using consensus, which

would always finish in time if consensus is provided as

a functionality of a synchronous wormhole. ThreatAdaptive

assumes a simpler synchronous wormhole whose task is to

inform replicas sufficiently in advance of a threat level increase

so that histories can be transmitted in time (through the

synchronous wormhole) to the replicas involved in the next

configuration. We now precise this condition.

B. Outpacing Adversaries

Table II shows the time required for ThreatAdaptive to

return to a safe configuration after the adversarial strength

increases. We evaluate two extremes supported by our witness

scheme: (i) inclusive returns from Ct to an inclusive config-

uration Cs, where Nt ⊆ Ns; and (ii) overlapping returns to

a configuration that activates passive replicas that have never

been active in previous configurations. The inclusive scheme

outperforms GroupMembership by 30% since the reconfigura-

tion decision is made in advance. As expected, replicas si that

remain active in both configurations (i.e., si ∈ Nt∩Ns) speed

up the reconfiguration process. These results precise condition

3 of Theorem 3 to indicate the time required for replicas

to transmit their histories and for passive replicas to become

active. For example, the threat detector would need to inform

replicas that the threat level evolves from f=1 to 2 only 3,561

ms in advance with the GroupMembership baseline, whereas

with our approach (with the inclusive witness scheme) only

2,404 ms would be required.

C. Optimization Reconfiguration

We now consider the case where the threat level decreases

from f=3 to 2 at 110s, and from f=2 to 1 at 230s. Fig. 8

shows that the throughput of ThreatAdaptive during two

optimization reconfigurations is similar to the two BFT-SMaRt

baselines (i.e., BFT-SMaRT-10 and BFT-SMaRT-4) when they

are configured for a similar threat level. In addition, between

110s and 230s ThreatAdaptive is able to use 7 replicas, which

provides a better latency and throughput than BFT-SMaRt-10

and is safe, contrary to BFT-SMaRt-4 in that interval.

For the same experiment, Fig. 9 illustrates the latency

of the protocols. ThreatAdaptive comes close to the BFT-

SMaRt baselines when the threat level allows it. In the second

phase, we see slightly higher latencies than StoppableBFT,
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Fig. 8: Throughput with optimizations at 110s and 200s (no

rejuvenation, σ=65 at 110s and 200s, and 34 otherwise).

Fig. 9: Latency of ThreatAdaptive and the 5 baseline protocols

(no rejuvenation, σ ≤ 3).

this is because outliers present in StoppableBFT reconfigura-

tions were averaged out (i.e., masked in the sliding window

average). StoppableBFT’s restart costs are much higher than

other protocols because the payload protocol has to be stopped,

reconfigured and relaunched, which is much slower than

executing view changes.

VII. CONCLUSION

In this paper, we established the conditions that allow a

BFT-SMR protocol, which potentially rejuvenates its replicas,

to safely reconfigure itself to tolerate an increasingly power-

ful adversary based on a threat detector that communicates

synchronously with replicas. We designed ThreatAdaptive, a

novel BFT-SMR protocol that proactively agrees on more

resilient fall-back reconfigurations before optimizing its con-

figuration. Our results allow a protocol to dynamically and

safely optimize its performance by reducing the number of

replicas that actively participate in the protocol’s execution.

ThreatAdaptive is the first protocol that guarantees safe re-

configurations directly executed by the replicas assuming that

a threat increase signal is received sufficiently in advance.

Our experiments showed that our threat adaptive protocol

achieves a throughput and latency comparable to the non-

adaptive baselines in stable phases, and that reconfigurations

are 30% faster than using previous methods, which make

stronger assumptions to provide safety. Future work includes

extending our methods to BFT protocols that use trusted

components and to consider weaker threat detector models.
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