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Numerical Simulations of the Scattered Field Near a
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Abstract—The two-dimensional problem of horizontally polar-
ized wave scattering from an air-ground interface is considered.
The diffraction problem is formulated by means of the extinction
theorem, leading to a system of two simultaneous surface integral
equations. The small-slope approximation has been used to solve
this system. This solution was used as a fast forward solver in the
Monte Carlo simulations of the scattered field near to the rough
interface. Properties of the reflected field have been investigated
for a single realization of the rough interface as well as for a statis-
tical ensemble of such interfaces. Special attention has been paid
to the phase of the reflected field (in the case of a single realization)
and to the variance of the reflected field (in the case of a statis-
tical ensemble), which has direct relation with the surface clutter
in ground penetrating radars. A principal possibility to retrieve a
surface profile from interferometric measurements of the reflected
field near the surface is demonstrated.

Index Terms—Ground penetrating radar, rough surface scat-
tering, surface clutter.

I. INTRODUCTION

N ground penetrating radar (GPR) systems, which operate

close to the air-ground interface, scattering from the rough
interface plays an important role [1], [2]. This scattered field is
measured by GPR as clutter, which masks the response from
buried targets and reduces the available dynamic range of GPR.
In numerous previous studies of wave scattering from rough sur-
faces, far-field characteristics of the scattered field have been
investigated (see e.g., classical books [3], [4]). Much less atten-
tion has been paid to the scattered field near the rough surface
(see, e.g., [5]). The main reason for this is that it is difficult to
derive any analytical approximation for the field. With the de-
velopment of direct numerical methods for the scattered field
computation, this problem can be overcome. In this paper, we
investigate fluctuations of the scattered field near a rough inter-
face between two dielectric media using a numerical technique
based on the Monte Carlo approach.
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Fig. 1. Geometry of the problem.

For the Monte Carlo simulations a fast solver for the for-
ward scattering problem is needed. Direct numerical simula-
tion based on integral equation methods requires considerable
computational resources (for more details, see, e.g., [6]). If one
takes into account that the surface roughness has a typical height
below 10 cm, that the surface slope is not very steep and that the
GPR systems typically use frequencies below 1 GHz [1], one
can see that it is possible to use a relatively simple perturbative
approach like the small-slope approximation [7] or similar tech-
niques [8]-[10] to solve the forward scattering problem. Such an
approach can speed up Monte Carlo simulations tremendously
in comparison with a direct numerical solution based on the in-
tegral equation methods.

II. FORMULATION OF THE PROBLEM

We consider two homogeneous half spaces, characterized by
the dielectric permittivities €1 and €9, respectively, while the
magnetic permeability of the whole space equals the one for
free space (p0). The upper half space is supposed to be air,
thus e; equals the free-space value ¢, and the lower half space
contains a lossy dielectric medium (ground), so €2 can be pre-
sented as g2 = e9,60 + 902 /w, Where £, is the real part of
the ground dielectric permittivity, o5 is the ground conductivity,
and the circular frequency w corresponds to an exp(—jwt) time
dependence. The propagation constants in both half spaces are
k1 = ko = w\/opto and ky = w,/E2/10, respectively.

We limit our consideration to the two-dimensional (2-D) case,
where the interface between half spaces is described by a pro-
file function z = ((z) (see Fig. 1). We consider the case of
horizontal (or TE-) polarization and the letter ¥ denotes the
y-component of the electric field. The TM case can be treated
similarly. Physically the 2-D case means that the characteristic
size of surface inhomogeneities in one direction is considerably
larger than that in the perpendicular direction and larger than the
wavelength of the incident field. Practically it means also that
this characteristic size is larger than the size of an antenna spot
on the interface.
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We formulate the scattering problem based on the extinc-
tion theorem [or the extended boundary condition (EBC) or the
null-field method] [11], [12]. By application of Green’s identity
and Helmholtz equation, the following integral equations can be
derived
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where G and G are the 2-D Green functions corresponding
to homogeneous spaces with propagation constant kg and ko,
respectively. In (1) and (2), primed variables denote points on
the surface, i.e., 2/ = ((z'), the integration is over the whole
surface, and the superscript “+” or “—” denotes the total elec-
tric field value on the upper or lower side of the rough surface,
respectively. The vector 7 is unitary, normal to the surface and
directed upwards, corresponding to
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and 7 - V' is the normal derivative with respect to the primed
argument. As is well known, in the EBC approach the observa-
tion point is placed in an appropriate subset of each half space,
rather than on the rough interface itself, and thus the singularity
exhibited by the Green function when the observation point tra-
verses the source point is avoided.

Using the boundary conditions on the rough surface resulting
from continuity of the tangential component of the electric field
and of the normal component of the electric flux vector
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we derive from (1b) and (2a) the pair of simultaneous integral
equations for the unknown functions ¥+ and 7 - V¥, while
(1a) and (2a) are essentially an expression of the well-known
Helmholtz—Kirchhoff integral formula and they may subse-
quently be used to calculate the scattered fields. We introduce
the following notation for the unknown source functions

fla') =it - V'UH(E) [1+ [dfz(:)r

g(a') =W () )
substitute the well-known explicit integral expressions for Gy

and G into (1) and (2), assume that the incident field is a plane
wave

Uine(7) = exp[jko(zsinb; — z cosb;)] 6)

which impinges from the upper half-space with the incidence
angle ; (measured from the z axis). Finally, we carry out the
differentiations and interchange the order of integration (an op-
eration that should be interpreted in the sense of generalized
functions) in (1) and (2). As a result we arrive at the following
system of simultaneous integral, or, more properly speaking, op-
erator equations
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where
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The square root is defined according to the radiation condi-
tions, so that Re[v;(k)] > 0, Im[v;(x)] > 0. The reflected field,
derived from (1a) in a similar manner, is given by
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and the transmitted field inside the ground, from (2b), as
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From now on, the limits of integration —oo to +oo will be
omitted for simplicity.

At very low (near-grazing) scattering angles when k — +kq
and yo(k) — O the singularity appears in (11a). It has been
found that this singularity causes a loss of accuracy in the
near-grazing portion of the reflected angular spectrum. Scat-
tered waves at near-grazing directions have little effect on the
total scattered power, but they may be important for the field
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values just above the rough surface, which are of interest in this
study. To avoid the singularity we use a linear combination of
(11a) and (7a), which yields
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Equation (12) differs from (11a) only for any approximate so-
lution of (7). If exact solutions f and g of the system (7) were
available, (12) would be equivalent to (11a). A similar singu-
larity can occur for the transmitted field in (11b) (though only
in the case of lossless ground). Then this problem may be treated
in a similar manner.

III. ITERATIVE SOLUTION

In the case of an interface of an arbitrary profile ((z), the
system (7) cannot be solved analytically. The implementation
of different numerical methods is still limited by the amount
of required CPU time and computer memory. We apply to this
system the small-slope approximation [13]-[16] in a similar
manner as in [10]. We represent both unknown functions in the
form
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where fp, (), gm(z) are functions of order (" (z). We do not
discuss the convergence of (14) here, assuming that it holds in
some appropriate sense. Using the procedure described in [10],
one can derive a pair of iterative relations for f,, and g,
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Here we used the notations
Zm (K) = /exp [—ikz] (™ () dx
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In (14), as well as throughout the following, the tilde (~)
denotes the Fourier transform, i.e.

=0 (k)

f9= 3 @) = [ exp(—inof(a)d.

For the selected power spectrum of the surface roughness
(see next section) and the surface root-mean-square (rms) height
on = 01X, Ao = 27k L (which results in a surface rms slope
of about 0.14 radians), the perturbative solution (13) and (14)
is roughly 500 times faster than the method of moment solution
developed in [10].

IV. MONTE CARLO SIMULATION

To examine the statistical properties of the reflected field
we use the Monte Carlo approach, which employs three major
steps: generation of an ensemble of surface profiles with the de-
sired probability distribution and power spectrum; calculation of
the reflected field for each realization of the surface; and calcu-
lation of statistical moments of the reflected field by numerical
averaging over the whole ensemble. To generate an ensemble of
statistically rough surfaces with predefined statistical properties
we used the algorithm described in [17] and [18]. The generated
surface patch of final length is duplicated in the space domain
to construct infinite periodical surface. Periodicity of the surface
allows us to use discrete Fourier transform to evaluate numeri-
cally integrals from (11) and (12). On the other hand, periodicity
of the surface causes edge effects [19] (some distortion of sta-
tistical properties of the scattered field, which are often referred
to as spectral leakage) and discretization (quantization) of the
wavenumber spectrum. The former phenomenon might play an
important role for the scattered field in the far-zone of the sur-
face patch and tapering of the incident wave is typically intro-
duced in an attempt to minimize it [19]. However, in the near
field the edge effects will show up mainly locally nearby to the
ends of the surface patch and it is sufficient to use sufficiently
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large patch to decrease impact of these edge effects. Another
opportunity is windowing of the data (e.g., as it has been used
in [19]) to obtain a reliable statistical estimates. The latter phe-
nomenon (discretization of the wavenumber spectrum) requires
a proper choice of the surface patch length (a discretization step
in the wavenumber domain should be much smaller than a char-
acteristic width of the surface power spectrum) and causes dis-
cretization of the incident angle ;..

The main difference of our approach from previous studies
is utilization in the Monte Carlo simulations of a band-limited
power-law spectrum as suggested, e.g., in [20]
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where the exponent s is usually between 3 and 4, and x; and
Ky, are the lower and upper cutoff wavenumbers, respectively.
The choice of the power-law spectrum is motivated by recent
studies [20], [21] which show that the spectrum (15) is much
more suitable for the description of natural surfaces than the
Gaussian spectrum.

Use of the spectrum (15) requires a careful choice of the upper
bound for the value of «,,. At the first glance, k., is restricted by
the sampling theorem

Ky <

S

where d is the sampling period. However, the use of higher-
order terms in the perturbation series imposes more stringent
limitations. The nth term of the perturbation series contains the
nth power of the profile function {(z) (in the space domain).
Thus, the spectral bandwidth of this term extends to n times the
bandwidth &, of the profile function. Taking into account the
shift in the spectral domain on the wavenumber ¢ = kg sin 6;
of the incident field, we arrive at the following estimation of the
spectral bandwidth:

NmaxRu + |k0 sin Hz| S NmaxRu + kO

where 1.« 1S the highest order of the perturbation series terms
kept in the approximate expressions for the unknown functions
f and g. The spectral bandwidth of all perturbation terms should
not exceed the limitation imposed by the sampling theorem

™
Rmax = E

Thus, in the most general case, the upper bound for the band-
width of the profile function is

s ko

K <

(16)

nmaxd nmax

Numerical tests have shown that failure to comply with this
restriction results in high-frequency oscillations in the values
computed for the surface unknown functions. The high-fre-
quency character of these oscillations is attributed to the fact
that violation of (16) distorts the upper side of the spectrum of
the corresponding perturbation terms.
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Fig. 3. Surface correlation function s = 3.5, k; = 0.1kq, k, = 2ko.

Regarding to the lower cutoff wavenumber &, it should be
chosen at least several times large than the discretization step
in the wavenumber domain in order to obtain a proper surface
power spectrum estimate.

Because we had changed the surface power spectrum com-
pared to that in previous studies [17], [18], it was necessary to
check again whether there is convergence of the power spec-
trum (and the correlation function) of the generated surface en-
semble to the predetermined surface power spectrum (and the
correlation function) during Monte Carlo simulation. It has been
found that the desired shape of the surface power spectrum is
achieved after averaging of 50 realizations of the surface (with
4096 sampling points). Further increase of the number of aver-
aging suppresses the small ripples from the low-frequency part
of the spectrum, but this does not change the shape of the spec-
tral estimates (see Fig. 2). The estimates of surface correlation
function change only slightly when the averaging number is in-
creased to above 50 (Fig. 3). The impact of the lower cutoff
wavenumber x; on the surface correlation function is shown in
Fig. 4. By a fixed rms height of the surface decrease of the lower
cutoff wavenumber causes “stretching” of the surface correla-
tion function, so the inversed lower cutoff wavenumber 1/x;
plays a role of the spatial correlation length.
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Fig. 4. Surface correlation function (calculated from 200 realizations of the
surface profile) for different values of x; (s = 3.5, Ky = 2ko, 0 = 0.1X)).

At the final stage of the Monte Carlo procedure, the calcu-
lated reflected electric field is averaged over all realizations of
the surface to obtain ( E,.(z,,)), where angle brackets (. . .) mean
ensemble averaging. The field (E, (x,,)) can be further aver-
aged in the space domain, i.e., over the number of samples rep-
resenting the surface patch

N
1
Er,mean = N nz=:1 (ET (x’ﬂ)> (17)

providing an estimation of the coherent component of the re-
flected field. Fluctuations of the reflected field are estimated by
their variance o, where

(7523 = <(Er —(E)) (B, — (Er>)*>

and by the correlation function.

(18)

V. NUMERICAL RESULTS AND DISCUSSION

The simulations have been carried out for the following pa-
rameter values. The frequency of the incident wave is chosen as
100 MHz (which determines typical values of dielectric permit-
tivity and ohmic losses of the ground) and the incidence angle
is chosen equal to zero (6, = 0°). The power s in the surface
power spectrum has been selected based on studies of natural
surfaces [20], [21]. Aiming to implement a really wide-band
spectrum we chose «; considerably lower than the wavenumber
of the incident field and ., higher than the wavenumber of the
incident field. This result in the following parameters of the
power-law spectrum

s =3.5, K =0.1ky, Ky = 2ko.

In a few cases we have used other than 0.1%( values for the
lower cutoff wavenumber, and in these cases the value of x;
will be mentioned explicitly. Having in mind (16) we chose a
sampling interval (discretization step) of d = 0.05)g, which
corresponds to 20 sampling points per the wavelength (in
previous studies [17]-[19] for surfaces with Gaussian surface
power spectrum a number of sampling points per the wave-
length of the incident field have chosen from 5 to 10 been used,
while the band-limited power-law spectrum requires in general
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rms height o}, equals 0.33 X, the elevation of the observation point above the
mean position of the rough surface equals 0.33 A, the dielectric permittivity of
the ground &,,. equals 6, and the ground conductivity o> equals 0.01 S/m.

denser sampling due to its larger bandwidth in wavenumber
domain). To achieve considerably denser wavenumber spec-
trum and to minimize edge effects we chose the total length of
the simulated surface patch of N = 4096 samples. To check
the influence of the patch length on the statistical estimates
for the reflected field we performed also simulations for the
shorter patch (with N = 1024 samples). The differences less
than 1% have been observed in the statistical estimates for
these two patches. From that experiment we have concluded
that the surface patch with V = 4096 samples is long enough
to provide sufficiently accurate results.

The accuracy of the simulations has been checked thoroughly.
For a single realization of the random surface from each en-
semble, a comparison with the method of moments [10] results
has been made. The accuracy of the simulation has been esti-
mated based on the relative error, which is defined as the nor-
malized rms difference between the reflected field as found by
the perturbation technique and the MoM solution

S |Er(2n) = EM(2,)]°
Y= n (19)
Y |EM ()

where the superscript M denotes the corresponding values
found by the benchmark. A threshold value of 1% for the
relative error X has been chosen, so that the results obtained by
the perturbative technique can be considered as “exact” ones.
To achieve this threshold, terms up to the fifth-order have been
used in the perturbative solution.

We start our numerical analysis with a description of the scat-
tering from a single realization of the air-ground interface. In
this analysis, we selected values of the surface rms height o, in
the range o, < 0.1\, because for a chosen power spectrum of
the surface roughness the surface rms height of o, = 0.1\ re-
sults in a surface rms slope of about 0.14 radians. Such value of
the slope is very close to the limit, after which the power series
(14) do not converge any more. We found that for all selected
values of the surface rms height o},, the phase of the reflected
field near the surface follows the surface profile (Fig. 5). The

1/2
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correlation coefficient between the surface profile and the re-
flected field phase is about —0.75 when the observation plane
is just above the rough surface. This simple relation between the
phase of the reflected field and the surface profile is valid only
near the rough surface (by elevation of the observation plane
up to one wavelength above the rough surface) as is shown in
Fig. 6. The phase shifts due to different elevations of the obser-
vation point above the surface have been compensated in Fig. 6.
The magnitude of the reflected field cannot easily be associ-
ated with the surface profile (Fig. 7). Spatial variations of the
reflected field magnitude change considerably with the eleva-
tion of the observation plane. With increase of the surface rms
height o}, the deviations of the magnitude and the phase of the
reflected field increase (Figs. 7 and 8). While spatial variations
of the magnitude change with increase of oy, the variations of
the phase still follow the surface profile.

The relationship between the surface profile and the re-
flected field phase explains why adding the phase term
exp[—jvo(xo)((z)] into the description of the reflected field
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Fig. 8. Phase of the reflected field versus distance over the patch for different
values of the surface rms height. The elevation of the observation point above the
mean position of the rough surface equals 0.33Aq. The dielectric permittivity
of the ground €5, equals 6, and the ground conductivity o> equals 0.01 S/m.

(13) considerably improves performance of the perturbative
methods. This relationship also provides a principal possibility
to reconstruct the surface profile from the phase measurements
of the reflected field near the ground. Such reconstruction will
not be exact, because the correlation coefficient between the
surface profile and the reflected field phase is less than 1 in
absolute magnitude. However, this “qualitative” reconstruction
is possible and it is much simpler than previously suggested
algorithms, which require measurements of both magnitude
and phase of the electric field scattered in all directions from
the surface [22]. The measurement techniques for such kind of
measurements are already developed for the antenna near-field
measurements. The experimental proof of principal possibility
to measure the scattered field phase and reconstruction the
surface profile has been recently done in IRCTR [23].

The next step of the analysis is the investigation of field re-
flected from a statistical ensemble of surfaces. We start with
analysis of distribution of magnitude and phase of the reflected
field (Figs. 9 and 10). With increase of the surface rms height
oy, one can observe increase of dispersion on the distribution of
magnitudes and on the distribution of phases. The latter is espe-
cially important because it causes a decrease of the mean value
of the reflected field F; mean. Figs. 9 and 10 mean that the major
impact of the surface roughness (in the range o, < 0.1\ and
for the selected surface correlation function) is the phase modu-
lation of the reflected field. Under the assumptions of this study,
this modulation is proportional to the local height of the surface
and thus it increases with increase of ratio o, /\g. At the same
time, the magnitude of the reflected field is much less effected
by the surface roughness.

Variations of the spatial length of the surface correlation func-
tion (which can be technically simulated by variations of the
lower cutoff wavenumber in the surface power spectrum) cause
mainly changes in the magnitude distribution of the reflected
field (Figs. 11 and 12). As the rms height of the surface by these
variations remain unchanged, the phase distribution remains al-
most constant. This results in almost constant value of the mean
reflected field F; hean-
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Fig. 11. Distribution of the reflected field magnitude for different values of

the lower cutoff wavenumber «; of the surface power spectrum (s = 3.5, K, =
2ko, o, = 0.05X0). The elevation of the observation point above the mean
position of the rough surface equals 0.33X,. The dielectric permittivity of the
ground &5, equals 6, and the ground conductivity o2 equals 0.01 S/m.
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Fig. 12. Distribution of the reflected field phase for different values of the
lower cutoff wavenumber «, of the surface power spectrum (s = 3.5, k,, =
2ko, o, = 0.05X). The elevation of the observation point above the mean
position of the rough surface equals 0.33A,. The dielectric permittivity of the
ground €,, equals 6, and the ground conductivity o, equals 0.01 S/m.
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Fig. 13. Magnitude of the coherent E, n,e.n and the noncoherent o,
components of the reflected field as functions of the surface rms height o,.
The elevation of the observation point above the mean position of the rough
surface equals 0.5Aq. The dielectric permittivity of the ground ¢, equals 6,
and the ground conductivity o5 equals 0.01 S/m.

Analysis of statistical estimates of the reflected field we con-
tinue with analysis of dependency of the mean value . yean
and that of the standard deviation of the reflected field o, on
rms height o;,. These dependencies are plotted in Fig. 13. While
the mean value of the reflected field decreases with an increase
of oy, the fluctuations of the reflected field o, increase. The
dotted line in Fig. 13 shows the dependence of o, predicted by
the Born approximation. It can clearly be seen that already for
a very small value of the surface rms height (oj, = 0.03)¢) the
“exact” value of o, deviates from the Born approximation. For
the Gaussian surface power spectrum such a deviation has been
observed for considerably larger values of rms height (o, =
0.05)9) [24].

Another interesting result is that the standard deviation of the
reflected field 0. becomes larger than the mean value F, ean
at rms height o, > 0.065). It means that near the rough sur-
face, the noncoherent component of the reflected field already
starts to dominate the coherent component even for reasonably
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Fig. 14. Magnitude of the coherent E, ,,c.n and the noncoherent o,
components of the reflected field as functions of real part of the ground
dielectric permittivity. The elevation of the observation point above the mean
position of the rough surface equals 0.33 ¢, surface rms height equals 0.05Ag.
The conductivity of the ground equals 0.01 S/m.

smooth surfaces. In other words, the magnitude of the surface
clutter reaches the mean value of the reflected signal for reason-
ably smooth surfaces.

Both the mean value and the standard deviation of the re-
flected field increase with the real part of dielectric permittivity
of the ground (see Fig. 14). However, while for small values of
the ground dielectric permittivity (e.g., 4) and for the chosen
surface power spectrum the standard deviation of the reflected
field o, equals 1/7 of the field mean value E; jean, for large
values of the ground dielectric permittivity (e.g., 20) o, reaches
a level of one—third for F; ,can. It means that with an increase
of the real part of the dielectric permittivity, the relative value
of the surface clutter increases as well.

Similar to described above dependencies of the coherent and
noncoherent components of the reflected field on the surface
rms height and the dielectric permittivity of the ground are pre-
dicted by far-field theories of scattering from rough surfaces
(e.g., [25]). However, in these theories the noncoherent com-
ponent of the reflected field is characterized not by its absolute
magnitude, but by the scattering cross-section of a patch of the
rough surface. So in the framework of these theories it was not
possible to compare directly absolute values of the coherent and
noncoherent components.

Finally the correlation function of the reflected field has been
investigated (see Fig. 15). It can be seen that for very smooth
surfaces (o5, = 0.01)¢) the correlation function of the reflected
field repeats the correlation function of the rough surface. For
larger values of the surface rms height (o5, > 0.05)g) the field
correlation function starts to deviate from the correlation func-
tion for the surface roughness. Taking into account the previous
results, we can state that the field correlation function coin-
cides with the correlation functions of the rough surface when
the scattering is weak and the scattered field magnitude is lin-
early related to the Fourier spectrum of the rough surface profile
(Born approximation). In practice this condition can be formu-
lated as the condition under which the coherent component of
the reflected field dominates the noncoherent component. In all
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Fig. 15. Correlation function of the reflected electric field for different values
of the surface rms height. The elevation of the observation point above the mean
position of the rough surface equals 0.33Aq. The dielectric permittivity of the
ground &2, equals 6, and the ground conductivity o2 equals 0.01 S/m.
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Fig. 16. Correlation function of the phase of the reflected electric field for
different values of the surface rms height. The elevation of the observation point
above the mean position of the rough surface equals 0.33A,. The dielectric
permittivity of the ground 2, equals 6, and the ground conductivity o> equals
0.01 S/m.

simulated scenarios the correlation function of the phase of the
reflected field remains the same as the correlation function of
the surface roughness (Fig. 16).

VI. CONCLUSION

In this paper, we have analyzed the scattered field near a
rough air-ground interface. The initial scattering problem has
been formulated in terms of a system of two simultaneous
integral equations derived by means of the extinction the-
orem. The Monte Carlo technique has been used to evaluate
statistical properties of the scattered field. To achieve more
realistic results, instead of a Gaussian spectrum of the surface
roughness, we used the fractional Brownian motion model with
a power-law spectrum. To speed up simulations we applied
a small-slope perturbation technique to solve the system of
integral equations. A benchmark solution based on the method
of moments has been used to check the accuracy of the pertur-
bation techniques for each simulation.
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It has been found that the phase of the reflected field
measured nearby a rough interface follows the profile of the
interface, while the magnitude of the reflected field cannot
be associated in a simple way with the interface profile. So
the surface profile can be retrieved from the near-field inter-
ferometric measurements. Another important finding is that
the phase modulation of the reflected field due to the surface
roughness is the main mechanism in development of the sur-
face clutter. The magnitude of the surface clutter exceeds the
mean value of the ground reflection if the surface rms height
is larger than 0.065)\ (that is, if the real part of dielectric per-
mittivity is about 4). With the increase of the ground dielectric
permittivity, the magnitude of the surface clutter increases rel-
atively to the averaged reflection from the ground. And finally
we found that the correlation function of the reflected field
coincides with the correlation function of the rough surface
if the magnitude of the surface clutter is considerably less
than the mean value of the ground reflection. The correlation
function of the phase of the reflected field coincides with the
correlation function of the surface roughness.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their comments and suggestions.

REFERENCES

[1] D.J. Daniels, Surface-Penetrating Radar. London: IEE, 1996.

[2] K. O’Neill, R. F. Lussky Jr., and K. D. Paulsen, “Scattering from a
metallic object embedded near the randomly rough surface of a lossy di-
electric,” IEEE Trans. Geosci. Remote Sens., vol. GE-34, pp. 367-376,
Mar. 1996.

[3] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic
Waves From Rough Surfaces. New York: Macmillan, 1963.

[4] F. G. Bass and I. M. Fuks, Wave Scattering From Statistically Rough
Surfaces. Oxford: Pergamon, 1979.

[5] N. Garsia and E. Stoll, “Near-field effects and scattered intensities of

electromagnetic waves from random rough surfaces,” J. Opt. Soc. Amer.

A., vol. 12, pp. 2240-2243, Dec. 1985.

L. Tsang, C. C. Chan, K. Pak, and H. Sangani, “Monte Carlo simu-

lations of large -scale problems of random rough surface scattering

and applications to grazing incidence with the BMIA/canonical grid

method,” IEEE Trans. Antennas Propagat., vol. AP-43, pp. 851-859,

Aug. 1995.

[71 A. G. Voronovich, “Small-slope approximation for electromagnetic

wave scattering at a rough interface of two dielectric half-spaces,”

Waves in Random Media, vol. 4, pp. 337-367, 1994.

V. I. Tatarskii, “The expansion of the solution of the rough-surface scat-

tering problem in powers of quasislopes,” Waves in Random Media, vol.

3, pp. 127-146, 1993.

[9]1 A.G. Yarovoy, “Small-slope iteration technique for wave scattering from

a rough interface of two media,” IEEE Trans. Antennas Propagat., vol.

AP-44, pp. 1433-1437, Nov. 1996.

C. N. Vazouras, A. G. Yarovoy, M. A. Moyssidis, R. V. de Jongh, J.

G. Fikioris, and L. P. Ligthart, “Application of perturbation techniques

to the problem of low-frequency electromagnetic wave scattering from

an air-ground interface,” Radio Sci., vol. 35, pp. 1049-1064, Sept.—Oct.

2000.

[11] P.C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic

scattering,” Phys. Rev. D, vol. 3, no. 4, pp. 825-839, 1971.

G. S. Agarwal, “Relation between waterman’s extended boundary con-

dition and the generalized extinction theorem,” Phys. Rev. D, vol. 14,

no. 4, pp. 1168-1171, 1976.

[13] A. G. Voronovich, “Small-slope approximation in wave scattering from

rough surfaces,” Sov. Phys.-JETP, vol. 62, pp. 65-70, 1985.
[14] E.Rodriguez and Y. Kim, “A unified perturbation expansion for surface
scattering,” Radio Sci., vol. 27, no. 1, pp. 79-93, 1992.

[6

oy

[8

—_

[10]

[12]

[15] E. Rodriguez, Y. Kim, and S. L. Durden, “A numerical assessment of
rough surface scattering theories: Horizontal polarization,” Radio Sci.,
vol. 27, no. 4, pp. 497-513, 1992.

Y. Kim, E. Rodriguez, and S. L. Durden, “A numerical assessment of

rough surface scattering theories: Vertical polarization,” Radio Sci., vol.

27, no. 4, pp. 515-527, 1992.

[17] R. M. Axline and A. K. Fung, “Numerical computation of scattering
from a perfectly conducting random surface,” IEEE Trans. Antennas
Propagat., vol. AP-26, pp. 482-488, May 1978.

[18] A. K. Fung and M. F. Chen, “Numerical simulation of scattering from
simple and composite random surfaces,” J. Opt. Soc. Amer. A, vol. 2, pp.
2274-2284, Dec. 1985.

[19] E. L. Thorsos, “The validity of the Kirchhoff approximation for rough
surface scattering using a gaussian roughness spectrum,” J. Acoust. Soc.
Amer., vol. 83, pp. 78-92, Jan. 1988.

[20] G. Franceschetti, A. Iodice, M. Migliaccio, and D. Riccio, “Scattering
from a natural surface described by the fractional brownian motion
model: Small perturbation method,” in Proc. IGARSS 99, vol. 5, pp.
2416-2419.

[21] F. Mattia, T. L. Toan, M. Davidson, and M. Borgeaud, “On the scat-
tering from natural rough surfaces,” in Proc. IGARSS 99, vol. 5, pp.
2413-2415.

[22] R.J. Wombell and J. A. DeSanto, “Reconstruction of rough-surface pro-
files with the kirchhoff approximation,” J. Opt. Soc. Amer. A, vol. 8, no.
12, pp. 1892-1897, Dec. 1991.

[23] B. Sai and L. P. Ligthart, “Characterization of local 3D rough
surfaces using UWB near-range phase-based GPR signatures from
wide-beamwidth antennas,” in Proc. IGARSS 02, vol. 6, pp. 3582-3584.

[24] M. F. Chen and A. K. Fung, “A numerical study of the regions of va-
lidity of the kirchhoff and small-perturbation rough surface scattering
models,” Radio Sci., vol. 23, pp. 163-170, Mar.—Apr. 1988.

[25] N. P. Zhuk and A. G. Yarovoi, “Electromagnetic wave reflection from
rough interface,” Opt. Spectrosc.(USSR), vol. 67, no. 5, pp. 661-664,
Nov. 1989.

[16]

- J Alexander G. Yarovoy (M’96) received the
- Diploma with honors in radiophysics and electronics
from the Kharkov State University, Ukraine, in
1984. He received the Candidate Physics and Math.
Science and Dr. Physics and Math. Science degrees
in radiophysics in 1987 and 1994, respectively.

In 1987, he joined the Department of Radio-
physics, Kharkov State University, as a Researcher
and became a Professor there in 1997. From
September 1994 through 1996, he was with Tech-
nical University of Ilmenau, Germany, as a Visiting
Researcher. Since 1999, he has been with the International Research Centre for
Telecommunications-Transmission and Radar (IRCTR), Delft University of
Technology, The Netherlands, where he coordinates all GPR-related projects.
His main research interests are in ultrawideband electromagnetics, wave
scattering from statistically rough surfaces and penetrable obstacles, and
computational methods in electromagnetics.

Prof. Yarovoy is the recipient of a 1996 International Scientific Radio
Union (URSI) “Young Scientists Award” and the co-recipient of the European
Microwave Week Radar Award in 2001 for the paper that best advances the
state-of-the-art in radar technology.

& 7

Christos N. Vazouras was born in Pharsala, Greece,
in 1966. He received the Dipl.Eng. and the Ph.D. de-
grees in 1990 and 1995, respectively, from the De-
partment of Electrical and Computer Engineering of
the National Technical University of Athens, Greece.

He has worked in the private sector on project
management and MIS software development. Since
1997, he has been a Special Scientist with the
Hellenic Naval Academy. His research interests
include electromagnetic scattering, microwave
communication systems design, wave interaction
with anisotropic media, and biomedical engineering.



YAROVOY et al.: NUMERICAL SIMULATIONS OF THE SCATTERED FIELD

John G. Fikioris was born in Sparti, Greece, on April
9, 1931. He received the Diploma of E.E. and M.E.
from the National Technical University of Athens,
Greece, in 1955, the M.S.E.E. degree from Rensse-
laer Polytechnic Institute, Troy, NY, in 1958, and the
M.A. and Ph.D. degrees in applied physics from Har-
vard University, Cambridge, MA, in 1963.

From 1962 until early 1966, he was a Research Sci-
entist with the RAD division of Avco Corporation,
Wilmington, MA. From January 1966 to June 1972,
he was a Professor of electrical engineering with the
University of Toledo, OH. In May 1972, he was elected Professor of Wireless
and Long Distance Communications at the National Technical University of
Athens (NTUA). He held this position until his retirement in September 1998
as Professor Emeritus of NTUA. His main fields of interest include antennas and
wave propagation, guiding phenomena, wave optics, diffraction and scattering,
acoustic and electromagnetic field evaluations in the source region, singular in-
tegral equations, and applied mathematics.

Dr. Fikioris is a Member of Sigma Xi. He served as Chairman of the Inter-
national Scientific Radio Union (URSI) Member Committee for Greece from
1981 to 1998.

789

Leo P. Ligthart (M’94-SM’95-F’02) was born
in Rotterdam, The Netherlands, on September 15,
1946. He received the Engineer’s degree (cum laude)
and the Doctor of Technology degree from Delft
University of Technology, The Netherlands, in 1969
and 1985, respectively, and the Doctorates (honoris
causa) from Moscow State Technical University
of Civil Aviation, Moscow, U.S.S.R., in 1999 and
Tomsk State University of Control Systems and
Radioelectronics in 2001.

Since 1992, he has held the Chair of Microwave
Transmission, Radar and Remote Sensing, Department of Information Tech-
nology and Systems, Delft University of Technology. In 1994, he became Di-
rector of the International Research Center for Telecommunications-Transmis-
sion and Radar. His principal areas of specialization include antennas and propa-
gation and radar and remote sensing. He has also been active in satellite, mobile,
and radio communications.



