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ABSTRACT

Floating wind turbines (FWTs) are proposed as a method to harness the significant wind energy resource in deep
water. International research efforts have led to the development of coupled numerical global analysis tools for
FWTs in order to understand their behavior under wind and wave actions. The hydrodynamic models in such
tools are typically based on first-(and second-)order potential flow theory, sometimes also including Morison’s
equation. In order to accurately model highly nonlinear waves, their interaction with a floating platform, and
obtain estimates of the resulting loads on the structure, a numerical wave tank approach is generally needed.
In this thesis, the response of floating structures to nonlinear wave loading is investigated by means of two
different numerical approaches: a fully nonlinear Navier-Stokes/VOF solver and a second-order potential flow
theory solver. Firstly, the fully nonlinear Navier-Stokes/VOF numerical wave tank, developed within the open-
source CFD toolbox OpenFOAM®framework (version 1606+), is validated against experimental data for two
cases. These comprise the response of a 2D floating box and a 3D floating vertical cylinder. In order to model the
motions of the floating structures, together with the generation and absorption of the waves, the interDyMFoam
solver, provided by the OpenFOAM®library, is extended with the waves2Foam package, developed by Jacobsen
et al. (2012). Furthermore, a simple catenary mooring line is implemented for the moored cases. Secondly, a
potential flow theory based model of the OC5-semisubmersible floating platform is generated. The frequency-
domain analysis is done with the Wadam software and the time-domain simulations with SIMO. This model is
validated against measurement data from a 1:50 scale test campaign performed at the MARIN offshore wave
basin and the fully nonlinear validated CFD model. Lastly, both numerical models of the OC5-semisubmersible
are compared in order to assess the suitability of the diffraction model in two different conditions where nonlin-
earities are of relevance. The first one involves very long waves, with periods close to 20 s, which are likely to take
place under swell wave conditions. These may excite the OC5-semisubmersible platform in heave at its natural
frequency. The second situation deals with regular waves with increasing steepness.
In principle, the fully nonlinear CFD model, if no experimental data is available, is needed to calibrate the diffrac-
tion model. However, once the latter is adjusted and validated, results are given at a much lower computational
cost. According to the computations throughout this work, when dealing with waves with high steepness and
high excitation frequencies, the motions, as well as the peak forces, are properly captured by the diffraction
model. However, other local effects of importance for offshore structures, such as wave run-up, or the different
components in frequency of the loading, require the use of a fully nonlinear CFD solver. Therefore for prelimi-
nary design stages a diffraction model is able to give suitable results regarding the motions and peak inline and
vertical forces at a much lower computational cost; however, for detailed design, or optimisation phase stages,
where local effects are of relevance, a fully nonlinear CFD model is required.
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1
INTRODUCTION

The 12th December of 2015, an agreement was reached at the COP21, the Climate Change Conference, held in
Paris. The 195 nations involved in this agreement are bound to a common framework of progressive reductions in
greenhouse gas (GHG) emissions. Before this international agreement, the 2020 Objectives were defined by the
European Union leaders (EU (2010)). These set of targets were upgraded in 2015, within a new 2030 Framework
for climate and energy. These comprise a 40% cut in GHG emissions, at least a 27% share of renewable energy
consumption and at least 27% increase in energy efficiency (EU (2014)). Wind energy is playing a significant role
as a primary source of emission-free and self-sufficient energy production. Statistics presented in GWEC (2016)
state that the global cumulative installed capacity in 2016 was of almost 500 GW, from which more than 14 GW
were installed offshore. Although more recently developed, the latter presents various advantages compared to
the land based counterpart: wind climates are stronger and more stable, larger turbines are possible due to fewer
restrictions, and they do not represent a nuisance to nearby neighbourhoods due to noise.

1.1. OFFSHORE WIND ENERGY

Offshore wind energy in Europe saw a net 1.6 GW of additional installed grid-connected capacity in 2016. By
2020, offshore wind is projected to grow to a total installed capacity of 24.6 GW, as reported by Ho & Mbistrova
(2017). The average water depth of wind farms completed, or partially built in 2016 was 29 m, 30% more than in
2014, and the average distance to shore was 44 km, 34% further with respect to 2014; the tendency is to move fur-
ther from the coast to larger water depths. This has a direct consequence on the technology, since the feasibility
of current installed offshore wind turbine bottom-fixed foundations, mainly monopiles and jacket foundations,
is likely to be limited to a certain depth. Most of the current commercial scale offshore wind developments take
place in the North Sea, where the limited water depth and the geotechnical conditions allow for fixed founda-
tions. However, as stated in the Floating Offshore Wind Vision Statement (WindEurope (2017)) 80% of all the
offshore wind resource in Europe is located in waters 60 m and deeper, where traditional bottom-fixed founda-
tions are no longer as feasible. An example of this is certain places of the Mediterranean Sea or off the Norwegian
coast. This equally applies to numerous areas worldwide, such as Japan, which counts with more than 500 GW
wind resource potential located at larger water depths than 60 m. Therefore, floating offshore wind (FOW) holds
the key to access an inexhaustible energy source, not only in Europe but worldwide.

1.1.1. FLOATING WIND ENERGY

An increase in offshore wind installations is needed to meet renewable electricity generation targets set by the
European Commission, among others. The potential for floating wind capacity in Europe is of 4000 GW, found in
areas with larger water depth than 60 m. Therefore, improving conditions for floating offshore wind will enhance
the deployment of overall offshore wind capacity and subsequently support the EU in reaching the 2030 targets.
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2 1. INTRODUCTION

There are currently three main substructure designs for floating offshore wind with different stability criteria:
spar buoy, semisubmersible and tension leg platform, which are presented in Figure 1.1. The first two are loosely
moored to the seabed, allowing for easier installation, while the tension leg platform is more firmly connected to
the seabed, which allows for a more stable structure.

Figure 1.1: Floating offshore wind turbine concepts.

Spar buoy: its basic characteristic is the large vertical draft. Its stability is gravity-based, with the centre of gravity
as low as possible, and the distance from the keel to the buoyancy as large as possible. It is self-stabilised using
ballast, and moored by catenary lines. It is the simplest concept, but due to the large weight and the draft it
presents, water depths of at least 100 m are needed. It corresponds to subfigure (a) in Figure 1.1.
The spar-buoy concept Hywind (Jonkman (2010)) was tested in 2009 by the Norwegian company Statoil off the
coast of Norway, where large depths can be found. The same company has recently started the assembly of the
world’s first floating wind farm off the coast of Peterhead in Scotland. It consists of five wind turbines of 6 MW
each.

Semisubmersible: this concept is water-plane inertia based, meaning that it presents large geometrical inertia.
It is usually made of three or four vertical cylinders connected by pontoons or braces. The restoring force in the
horizontal motions is gained using catenary moorings. Heave plates are attached to the bottom of the columns,
to increase the added mass, damping and drag. It can be placed at a wide range of water depths, and it can be
installed at the quayside and then towed to site. However, it is a complex and heavy steel structure, and due to the
large wave loads to which it is subjected, tilt has to be limited, either by ballast, or by increasing its dimensions,
and therefore its weight. It corresponds to subfigure (b) in Figure 1.1.
Two examples of this type of concept are the WindFloat (Roddier et al. (2011)), from Principle Power, and the Tri-
Floater (Huijs et al. (2014)), from GustoMSC. The prototype of the former was installed off the coast of Portugal
until summer 2016, and is expected to be commissioned by 2018-2019.

Tension Leg Platform (TLP): this concept is kept upright by means of external forces, provided by stiff vertical
tethers, known as tendons, which counteract the excess of buoyancy that the structure presents. The excessive
buoyancy creates pretension and limits heave and pitch motions; these reduced motions are expected to de-
crease the structural loading on the tower and blades Bachynski (2014) compared to the other floating concepts,
without requiring the large draft of a spar or the spread mooring system and complex construction of a semisub-
mersible. However, the anchoring system may comprise a challenge. It corresponds to subfigure (c) in Figure 1.1.
Up until now no multi-MW prototypes of the TLP have been built, although some companies have established
different concepts. An example of these is the company Glosten, where the TLP concept PelaStar, has been de-
veloped.
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1.2. RESEARCH MOTIVATION

Within the objective of increasing the share of renewable energy sources in the market, the offshore wind en-
ergy industry is moving towards deeper waters, which requires the development of economically and technically
feasible structures. To understand the behaviour of these structures under wind and wave actions, international
research efforts have led to the implementation of coupled numerical global analysis tools. The current research
is therefore driven by the need of lowering the costs of floating wind energy by understanding the physical pro-
cesses involved with more efficient numerical models.

1.3. SCOPE AND RESEARCH OBJECTIVES

The aim of this research is to assess less computationally expensive potential flow diffraction solver perfor-
mance when dealing with complex fluid-structure interaction problems, compared to a fully nonlinear numeri-
cal model. This way, insight on when a diffraction model can be used for certain situations, or when a nonlinear
numerical model is required, can be provided. To achieve the main goal, an analysis of the response of the
DeepCWind OC5-semisubmersible offshore floating wind platform, depicted in Figure 1.2, with both numerical
models for different conditions, is completed, in order to answer the main research question:

How does a (second-order) potential flow theory based diffraction model compare to a fully nonlinear
Navier-Stokes numerical wave tank when solving complex fluid-structure interaction problems for offshore

floating wind platforms?

Three sub-questions are addressed to solve the main question:

1. Is the nonlinear numerical wave tank capable of predicting the motions and capturing the nonlinearities of
floating bodies subjected to steep regular waves?

Prior to comparing the performance of both models, an extended validation of the nonlinear numerical
wave tank for two floating structures is needed.

2. How does the motion of a semisubmersible floating platform under heave resonance conditions computed
by both numerical models compare?

Long period ocean swell following a storm can excite semisubmersibles at resonance in heave, and strong
nonlinear effects in the response may arise. This question aims at comparing both numerical models
structural response under these conditions.

3. What is the limit of a potential flow based solver regarding wave steepness?

Special attention is paid to extreme waves and their consequences for structures, for which a better un-
derstanding is needed. In this work the aim is to compare the fully nonlinear model response to waves
increasing in steepness against the diffraction model.

1.3.1. RESEARCH APPROACH

Five main research objectives have been set to answer the main research question and sub-questions.

1. To understand the assumptions and limitations of the two numerical models by:

• carrying out a literature review of the most used numerical tools used to model fluid-structure inter-
action and

• completing an in-depth research of the two numerical models to be assessed.
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2. To perform an extensive validation of the nonlinear numerical wave tank by analysing the behaviour of a
2D box and a 3D vertical floating cylinder by means of free decay tests, wave propagation and the response
of the body to steep regular waves.

3. To develop a diffraction model for the OC5-semisubmersible concept considering first- and second-order
potential flow effects including the computation of:

• its hydrodynamic properties in the frequency-domain and

• its response amplitude operator.

4. To validate the diffraction model against the fully nonlinear Navier-Stokes model and the experimental
data by means of:

• comparing the natural response and

• its response when subjected to regular waves.

5. To assess the performance of both numerical models:

• in regular waves with periods close to resonance conditions and

• in regular waves with increasing steepness, close to their breaking limit.

Figure 1.2: Schematic overview of the OC5 floating offshore wind turbine system. It consists of the 5MW NREL turbine on top and the tower
mounted on the semisubmersible try-floater, which is moored to the seabed by three catenary mooring lines.

1.4. THESIS OUTLINE

Chapter 2 provides a summary of the concepts and background information relevant to analyse the behaviour of
floating structures and the different waves characteristics. Chapter 3 reviews the two numerical models used to
asses the response of a floating structure. Chapter 4 presents the further validation of the nonlinear numerical
wave tank for two floating bodies. Further information on the cases is provided in Appendix A. Chapter 5 analy-
ses the OC5-semisubmersible floating wind platform and is extended by Appendix B, where the main structural
properties and dimensions of the structure are provided. Chapter 6 summarises the key findings and gives rec-
ommendations for future studies.



2
BACKGROUND AND THEORY

2.1. INTRODUCTION

This chapter gives an overview of the background information and theory on which the current research is based.
It is divided into two parts: the first one, Sections 2.2 and 2.3, describes the general hydrodynamics of floating
bodies, including their stability, their hydrodynamic properties, their unforced response and their behaviour to
incoming waves. The OC5-semisubmersible concept, to be evaluated at a further stage, is considered in par-
ticular. The second part, Sections 2.4 and 2.5, addresses the different types of free surface waves, including the
measure of nonlinearity degree and the main wave theories used to describe them. A brief background about
the numerical simulation state-of-the-art of wave-structure interaction is presented in Section 2.6. A schematic
overview of the structure of this chapter is depicted in Figure 2.1.

Figure 2.1: Scheme of Chapter 2 structure.

2.2. STABILITY OF FLOATING BODIES

The static equilibrium of a floating wind support structure is achieved when the total weight Mg of the system
is equal to the buoyancy force FB . The weight is calculated as the sum of the weight of every component. The
buoyancy force FB is defined by Journée & Massie (2001) as the vertical upthrust that the structure experiences
due to the displacement of the fluid. In other words, it is equal to the weight of the volume of displaced water due
to the presence of the floating system, as:

5



6 2. BACKGROUND AND THEORY

FB = ρgV , (2.1)

where ρ is the density of water, equal to 1025 kg/m3 and V the displaced volume. The centre of the displaced
volume is the centre of buoyancy (B), and its position in an inertial reference frame is denoted as zB . The centre
of gravity (COG) of the structure is the point through which the whole weight of the structure acts, for static
considerations, and its position in an inertial reference frame is denoted as zG . To be in equilibrium, the COG
and B have to be aligned. If the structure is brought out of equilibrium or balance by a disturbance, such as a
force or a moment, they are not aligned anymore, and the system translates and/or rotates about its centre of
gravity. The rotation about the structure longitudinal horizontal axis is known as the heel and its rotation about
the transverse horizontal axis as trim. This is influenced by both dynamic and static properties, as explained in
Journée & Massie (2001). The consequence of heeling with an angle φ is that the shape of the submerged part
of the structure changes, and the centre of buoyancy goes from B to Bφ on a line parallel to the line through the
centres of the emerged and immersed wedges ze zi .

(a) Rotational equilibrium at an angle of heel. (b) Righting and heeling moment at an angle of inclination.

Figure 2.2: Equilibrium of a floating body (a), modified from Journée & Massie (2001) and design standards regulation for heeling moment
and angle of inclination for floating wind turbines (b), modified from DNV (2013).

An equilibrium is achieved when the righting stability moment MS becomes equal to the external heeling mo-
ment MH , as:

MS = ρgV G Z , (2.2)

where G Z is the stability (or righting) lever arm, equal to GMφ sinφ; Mφ is the metacentre and G denotes the
COG . It is defined as the point of intersection of the lines through the buoyant vertical forces at a zero angle
of heel and an angle of heel φ. Its position depends on the new position of the centre of buoyancy, Bφ. The

metacentric height GM is the difference between the vertical level of the metacentre and the COG . If the latter
is below the metacentre, the floating body is at equilibrium, whereas if it is above, it is unstable. The metacentre
can be found analytically or experimentally, although it can be assumed to be fixed in the case that tilt angles are
small. Otherwise, it requires more extensive calculations. The B and COG positions, zB and zG , respectively, are
given by:

zB =
∑

i zB ,i Vi

V
and zG =

∑
i zG ,i Mi

M
, (2.3)

where zB ,i (zG ,i ) and Vi (Mi ) are the center of buoyancy (gravity) and volume (mass) of each element i in which
the structure can be decomposed, respectively. The metacentric height GM can be expressed in terms of the keel
K of the body as GM = K B +B M .
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Figure 2.3: Degrees of freedom of a floating rigid body: three translations along and around the x, y and z axes.

According to the standard code Design of Floating Wind Turbine Structures, DNV (2013), for column-stabilised
structures, such as semisubmersibles, a positive righting moment from upright position to the second intercept
of righting and wind heeling moment curves. Furthermore, the area between the righting moment curve and the
wind heeling moment to the angle of downflooding shall be equal to or greater than 130% of the area under the
wind heeling moment curve to the same limiting angle: this is known as the area-ratio-based criterion. Alter-
natively, dynamic-response-based intact stability criteria have recently been adopted for floating offshore wind
turbines, initially developed for column-stabilised drilling units and later extended to the design of floating pro-
duction installations, as reported in Masciola et al. (2008).

2.3. MOTIONS AND RESPONSE OF A SEMISUBMERSIBLE

This thesis deals with three different floating structural configurations, namely a 2D rectangular box, a vertical
cylinder and the OC5 Floating Offshore Wind Turbine (FOWT). The latter was developed within the Offshore
Code Comparison, Collaboration, Continued, with Correlation (OC5) project, as a continuation of the Offshore
Code Comparison Collaboration (OC3) and the two-phased Offshore Code Comparison Collaboration and Com-
parison (OC4), as reported by Robertson et al. (2014). It is a semisubmersible try-floater moored to the seabed by
three catenaries, as depicted in Figure 2.3. The pitch-controlled 5MW horizontal-axis wind turbine, developed by
Jonkman (2009) at the National Renewable Energy Laboratory (NREL), is mounted on it. Throughout this work
the floating structure is assumed to be a rigid body, meaning that it has six degrees of freedom along, or around,
it can translate, or rotate, as indicated in Figure 2.3. The behaviour of a floating structure in its six degrees of
freedom is described by the Equation of Motion:

[M+A] ẍ+Bẋ+ [C+K]x = Fexc , (2.4)

where A is the added mass matrix, B the damping matrix and C and K the restoring matrices. The former is given
by the hydrostatic stiffness, whereas the latter comes from, if existent, the mooring system, and x (t) is the motion
vector. Fexc denotes the wave excitation loads, corresponding to the Froude-Krilov and the diffraction loads.
From this equation the undamped natural frequencies of the system can be found by solving the homogeneous
system and solving for ω. If the coupling between the degrees of freedom is neglected, the undamped natural
frequency ωn,i (or natural period Tn,i ) for each degree of freedom i yields:

ωn,i =
√

Ci i +Ki i

Mi i + Ai i (ω)
−→ Tn,i = 2π

√
Mi i + Ai i (ω)

Ci i +Ki i
; i = 1,2, ...6, (2.5)

where Ci i and Ki i are the restoring coefficients and Ai i the added mass coefficients, dependent on the frequency.
The hydrostatic restoring coefficient is non-zero for the vertical motions, namely heave, roll and pitch. The
restoring coefficients Ki i are given by the mooring system stiffness. If the damping of the system is taken into
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account, the damped natural frequency, expressed with respect to the undamped natural frequency and the
critical damping ratio ξi , yields:

ωn,i ,d amp =ωn,i

√
1−ξ2

i , (2.6)

where the critical damping ratio is given by:

ξi = Bi i (ω)

2ωn(Mi i + Ai i (ω))
. (2.7)

In linear wave theory, the wave force is proportional to the wave amplitude, and is given by the response am-
plitude operator (RAO), defined as the response amplitude |xi | per unit wave amplitude A. Following from the
equation of motion in the frequency domain, the transfer function yields:

|xi |
A

= R AO(ω) = [−ω2(M+A(ω))+ iωB(ω)+C]−1F̃exc(ω). (2.8)

From the computation of the RAO, the most relevant frequencies of the structure are likely to show up; for in-
stance, the natural frequencies or the cancellation frequencies, where the response amplitude operator presents
the largest value and the smallest values, respectively. The degrees of freedom of main interest in the current
research are the heave and the pitch motion, for which their natural response derivation is presented in the
following.

NATURAL RESPONSE IN HEAVE

The undamped natural frequency in heave, neglecting any couplings, is derived from Equation 2.5, and yields:

ωn,3 =
√

C33 +K33

M33 + A33(ω)
, with C33 = ρw g Aw p . (2.9)

The terms that play a role are the added mass and the hydrostatic stiffness, which depend on the waterplane
area Aw p . In the case of the OC5-semisubmersible, it is given by the three main columns (MC) and the central
column (CC) section contribution. Three elliptical sections of the braces also contribute to this term, but their
diameter is negligible with respect to the columns one. Furthermore, the OC5 has three heave plates (HP) on
the base of the three main columns, which increase the added mass, and consequently, the natural period; this
way the structure first natural frequency in heave does not lie in a region where waves are likely to present a
large amount of energy. The inertia term in heave is formed by the total mass of the system and by the added
mass in heave. The latter depends on the frequency; for hand-calculations, the low-frequency limit is taken into
account. According to Sarpkaya & Isaacson (1981), the added mass of a disk oscillating along its axis can be
approximated as the mass of a sphere of water enclosing the disk, or 1/3ρD3. For the heave plates attached to
the main columns base, there is only a part that contributes to the added mass. A good approximation for the
current structure, formed by three main columns, a central one, three heave plates, and neglecting the slender
elements, is given by Tao & Cai (2004) as:

A33 = ρ
D3

CC

6
+3ρ

[
D3

HP

3
−

[
D2

MCπ

8

(
DHP −

√
D2

HP −D2
MC

)
+ π

24

(
DMC −

√
D2

HP −D2
MC

)2 (
2DHP +

√
D2

HP −D2
MC

)]]
(2.10)

The only term remaining is the mooring system stiffness contribution. In principle, this one is negligible with
respect to the hydrostatic one, and therefore has a relatively small effect on the natural response of the system in
heave.
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NATURAL RESPONSE IN PITCH

From Equation 2.5, the undamped natural frequency in pitch, if any couplings are neglected, is given as:

ωn,5 =
√

C55 +K55

I55 + A55(ω)
, with C55 = Mg (zB − zG )+ρg Iy , (2.11)

where Iy is local the moment of inertia of the waterplane area of the different elements. It is transferred to the
global axis of moments using Steiner’s theorem. For the main columns and the central column, the local moment
of inertia is equal to the moment of inertia of a circular cross-section area, πD4/64. For the hand calculations,
the slender elements contributions are neglected. The mass moment of inertia I55 is given by the mass moment
of inertia about the y-axis of the entire system, based on every element’s contribution.
The low-frequency limit added mass component in pitch A55 is computed based on strip theory and neglecting
the slender elements contribution. Based on Ghadimi et al. (2012), and assuming an added mass coefficient in
surge equal to one, it yields:

A55 = 3ρπ
D2

HP

4

( |zk,HP |3
3

+ (zG ,HP − zk,HP )2|zk,HP |+ (zG ,HP − zk,HP )|zk,HP |2
)
+

+ρπD2
CC

4

( |zk,CC |3
3

+ (zG ,CC − zk,CC )2|zk,CC |+ (zG ,CC − zk,CC )|zk,CC |2
)
+

3ρπ
D2

MC

4

( |zk,MC |3
3

+ (zG ,MC − zk,MC )2|zk,MC |+ (zG ,MC − zk,MC )|zk,MC |2
)

, (2.12)

where zk,i denotes the vertical position of the bottom of the respective element. The stiffness contribution from
the mooring system has a more important effect, relative to the one it has in the heave motion, although not as
relevant as the effect it has in the horizontal motions.

2.3.1. LINEAR AND QUADRATIC DAMPING COEFFICIENTS CALCULATION

In this research, the natural periods of the floating structures are computed using decay tests. The structure is
displaced to a given offset and then released. From the response, the natural period, linear and quadratic damp-
ing coefficients are obtained. As described in Hoff (2001), the numerical recreation of a sinusoidal free-decay test
of a system can estimate the natural period of the motion and outputs the linear and quadratic damping coef-
ficients necessary to model the free-decay test. Assuming that the motions x are uncoupled and approximating
the restoring forces to be linear the decay for any degree of freedom is given by:

ẍ+b1ẋ+b2|ẋ|ẋ+ω2
n x = 0 (2.13)

where b1 and b2 are the linear and quadratic damping coefficients. The energy per mass V is given by:

V (t ) = 1

2
ẋ2 + 1

2
ω2

n x2 (2.14)

The loss of energy L(V ) over each cycle can be found as:

L(V ) =− d

d t
V = b1V +b2

8

3
2
p

2V 1.5 (2.15)

At the troughs and peaks at tn , ẋ = 0, so V is calculated from the amplitude xn with Equation 2.16. b1 and b2 are
obtained by a least-squares fit. ω0 can be initially approximated to the undamped natural frequency.

V (tn) = 1

2
ωn x2

n (2.16)
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Figure 2.4: Main parameters that describe a regular wave propagating in the x-direction. Modified from Rienecker & Fenton (1981).

2.4. WIND WAVES

Wind-waves take place at the free surface of bodies of water. The main parameters used to characterise them
are the water depth d , the wave height H , defined as the crest-to-trough distance, and the wave length λ, the
distance between two consecutive crests. Alternatively to the wave length, the period T or the frequency ω can
be used. They are related by the so-called dispersion relation, applicable to linear waves, and defined as:

(
2π

T

)2

=ω2 = g k tanh(kh), (2.17)

where k = 2π

λ
is the wave number. The asymptotic value of the dispersion relation in deep-water waves is

ω2 = g k. From this relation the wave celerity, or relative wave velocity, can be found as c = λ

T
. The presented

parameters are depicted in Figure 2.4.
There are several theories used to describe regular waves; the use of one or the other is mainly driven by the water
depth and by the wave height to wave length ratios. The former defines how the seabed may influence the wave
propagation, or, in other words, how large the depth with respect to the wave is. If the wave length is larger than
twenty times the water depth, the wave is said to be a shallow-water wave, whereas if it is smaller than seven,
it is a deep-water wave. If it lies between seven and twenty, then the wave is an intermediate-water wave. The
second ratio, which relates the wave height with the wave length, describes the steepness of the wave. It mea-
sures the nonlinearity of the wave: the larger the ratio, the steeper the wave. A similar parameter to measure the
steepness of the wave is the nondimensionalized wave amplitude k A. A third parameter is the ratio between the
wave height and the breaking wave height Hmax , which depends on the wave length and the water depth ratio,
and is defined, according to Fenton (1988), as:

Hmax

d
=

0.141063
λ

d
+0.0095721

(
λ

d

)2

+0.0077829

(
λ

d

)3

1+0.0788340
λ

d
+0.0317567

(
λ

d

)2

+0.0093407

(
λ

d

)3 . (2.18)

The applicability of the different regular wave theories depending on the water depth and the wave height is
depicted in Figure 2.5. Note that the named analytical theories are only valid up to the theoretical breaking wave
limit.
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Figure 2.5: Wave theories limit of application depending on the wave height to wave length and on the depth to wave length ratio DNV (2013).

SMALL NON-STEEP WAVES

Non-steep waves are in general characterised by k A = O(ε), where the nonlinearity ε << 1. The first-order solu-
tion is linear in ε and applies to those waves sufficiently small that propagate in intermediate to deep waters and
can be described as a sine function. The principle superposition applies for these cases. The theory assumes that
the fluid layer has a uniform mean depth and that the fluid flow is inviscid, incompressible and irrotational. They
are not relevant for extreme load cases. However, given the high frequency of occurrence, they become impor-
tant when dealing with fatigue loads on offshore structures. The shape of these waves is depicted in Figure 2.6,
(a).

STEEP NONBREAKING WAVES

This type of waves is characterized by k A ≈ O(10−1). As the degree of nonlinearity ε increases, either by a de-
crease in water depth or by an increase in wave height, the higher-order nonlinear effects, proportional to εn ,
where n = 2,3..., become larger. The wave can no longer be described by linear wave theory: the trough gets flat-
tered and the crest shorter, as depicted in Figure 2.6, (b). Two of the most well-known theories used to describe
higher-order waves are the Cnoidal theory or higher order Stokes solutions, based on perturbation methods.
However, they cannot be applied to every type of waves. The former wave theory is limited to shallow water ap-
plications, whereas the latter is mainly applicable for deep water waves. Neither can describe waves with higher
wave heights. On the effort to develop a have a theory that could describe every type of waves, the fully nonlin-
ear stream function was presented by Rienecker & Fenton (1981), based on the numerical determination of the
Fourier coefficients. Note that this theory is not applicable to realistic irregular seas.

2.5. WAVE LOADS ON SURFACE PIERCING CYLINDERS

The interaction of the sea (waves and current) and wind with offshore structures induces loads and motions,
which depend on the relative dimensions and features of the factors involved. Since circular cylinders are a fun-
damental part of many offshore structures, special attention is paid to loads on these. The dimensions are usually
defined by the diameter D , relative to the wave length λ and to the wave height H . Figure 2.7 provides a quali-
tative hydrodynamic classification of the dominant loads on a circular piercing cylinder, depending on λ/D and
H/D . Below the wave breaking limit, if a cylinder is relatively wide with respect to the wave length, λ

D < 5, diffrac-
tion loads are important, i.e. those induced by the incident waves and their modification (diffraction) due to the
structure. If λ

D > 5, the incident waves tend to be unaffected by the structure, and long-wave approximation can
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Figure 2.6: Types of waves on a floating structure. a) Linear waves, with a weak nonlinear wave forcing. b) Weakly nonlinear waves, with a
nonlinear wave forcing component. c) Breaking waves.

be used. In this case the induced loads are related to the kinematics of the incident waves at the centre of the
body. Mass loads, proportional to acceleration, are in general dominant if the wave steepness is small, H

D < 10. As
λ/D becomes larger, the wave behaves similarly to a slow-varying current. For H/D closer to the wave-breaking
limit, nonlinear effects become important. Above this limit, waves can easily break during the interaction with
the structure. Below this limit, if H

D > 10, for sufficiently large λ
D , viscous loads become dominant.

One of the most widespread approaches to compute the hydrodynamic loads on cylinders is the Morison’s equa-
tion (Morison et al. (1950)), a semi-empirical superposition of first-order inertial loads and second-order viscous
drag. Its formulation is given in Chapter 3, Section 3.3.5. The first assumption of this formulation is that the
diffraction potential is constant across the body. This does not apply to the main components of the floating
structure, in general, since λ/D for the most representative sea states is smaller than 5. The second assump-
tion is that the viscous drag dominates the drag loading, and therefore the radiation damping is ignored. In the
case of floating wind structures, this is not usually the case, since radiation damping is usually relevant. The
third simplification Morison’s equation implies, relevant to offshore wind floating structures, is the discard of the
added-mass induced coupling between the hydrodynamic force and the support structure acceleration. Another
short-come is the fact that it does not compute any end effects, which for floating cylinders may be relevant. Fur-
thermore, Morison’s equation is based on linear wave theory, so it is not able to describe nonlinear free-surface
effects, such as slamming, springing or ringing.

Figure 2.7: Wave theories limit of application depending on the wave height to wave length and the depth to wave length ratio.
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2.5.1. LOADS FROM STEEP REGULAR WAVES

These loads are caused by impacts from steep nonlinear waves. Weakly nonlinear solutions, based on pertur-
bation methods and accurate up to the third order in k A, have been derived by Faltinsen et al. (1995), known
as the FNV model, and Malenica & Molin (1995). The FNV analysis was extended for the case of unidirectional
irregular waves, as published by Newman (1996). Recently, Paulsen et al. (2014b) showed that Morison’s equation
predicted the time history of the inline force accurately on a circular cylinder from steep non-breaking waves,
although the detailed loading in the free surface region and the higher nonlinear forcing was not captured. This
type of wave forces can give rise to the third-order strong nonlinear phenomenon known as ringing, which is a
high-frequency transient response caused by very steep waves in extreme sea states, as studied by Rainey (2007).
Slamming is another strong nonlinear phenomenon that may arise, caused by a very steep or breaking wave.
Slamming forces may lead to large local damage, affecting not only the local structural integrity but also the
global elastic behaviour. Its occurrence depends on the local structure-fluid relative motion, and its features
depend on the local geometry in the impact region, as well as on the kinematic and dynamic conditions at the
impact. A thorough description of this phenomenon can be found in Faltinsen (2005).

2.6. NUMERICAL MODELLING OF WAVE-STRUCTURE INTERACTION

The numerical simulation of free surface flow problems has a high degree of importance in the development of
offshore structures. Several types of models exist, from which three main groups are well-known: Boussinesq-
type, potential flow and Navier-Stokes solvers.
Boussinesq-type solvers present low computational costs and a reasonable accuracy for linear and weakly non-
linear waves, as long as the wave length is large compared to the water depth. A thorough review and analysis of
these type of models is found in Madsen & Fuhrman (2012).
Potential flow theory is widely used to compute the wave loading on offshore structures. It assumes the fluid to
be incompressible, irrotational and inviscid. It can predict global wave pattern, and the grid is fully automated.
However, it cannot model breaking-waves or problems in which extreme nonlinearities take place. One of the
most well-known tools is the WAMIT® software, developed by Lee & Newman (1989). The diffraction model used
throughout this research is based on this one, as described in Chapter 3, Section 3.3.
Strongly nonlinear problems require the use of fully nonlinear viscous numerical models. These are computa-
tionally more expensive, but in the last years, the development of computational power has decreased the costs.
They solve the fully nonlinear Navier-Stokes equations together with the continuity equations. The methods are
under continuous research and development. Today there are three different main approaches to this problem:
Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and Reynolds Average Navier Stokes (RANS).
The first one solves the equations without the implementation of any turbulence model. Thus, to solve the small-
est eddies that may take place, the cell length scale has to be of the order of the smallest eddy in the turbulent
boundary layer. This method yields a more detailed solution of the flow field but requires a high demand of both
computational and time resources. The second method ignores the smallest length scales, which are the most
computationally expensive to resolve, using a low-pass filtering of the Navier–Stokes equations. However, the ef-
fect of this small-scale information from the numerical solution must be modelled for the problems that require
it. These two methods are more used in academia. The third, and most widespread approach in the industry
uses turbulence models, from which the most popular today is the standard κ−ε model. However, turbulence is
still not fully understood, and there are no convincing turbulence models available yet. In the current research
an unresolved DNS approach is used, or, in other words, no turbulence models are implemented, although the
mesh length scale is not as high as it should be for the eddies to be captured.
The discretisation of the fluid domain, to solve the equations, can be meshless or grid-based. An example of the
first type is the smoothed-particle hydrodynamics (SPH), which uses a Lagrangian approach, i.e. the coordinate
moves with the fluid. The main advantage is that they are better at dealing with large local distortions than grid-
based methods. Grid-based methods cannot intercept the free surface by themselves. Instead, an additional
equation is needed. There are two types of methods to describe the free-surface: the surface tracking methods
and the surface capturing methods. The first one uses a Lagrangian-type surface method. It is based on a rep-
resentation of the free surface by special marker points. Between marker points, interpolation is used. With this
method, the position of the interface is known, and it is advected across the domain. However, it does not assure
continuity, for instance, if the interface is significantly deformed or the vorticity is large. The second method is
an Eulerian-type volume method, which supports an implicit tracking of the surface of a two-phase flow. The
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fluid is marked on either side of the interface. To reconstruct the interface, specific techniques are needed, since
the exact position of the free surface is not known. One of the most widely used is the Volume of Fluid (VOF),
by Hirt & Nichols (1981). The indicator to mark the fluid is the volume fraction, a scalar between zero and one.
The main advantage is the assurance of the properties conservation. Many commercial software are based on
the coupling of this method with the Navier-Stokes solver, such as StarCCM+ and Fluent (Ansys).
The approach used throughout this research is OpenFOAM® (Open Field Operation And Manipulation), an
open-source model widely supported by a large user community. This library comes with a large number of
solvers for many different types of problems. Here, the interFoam solver provided by OpenFOAM® is extended
by the wave generation and absorption toolbox waves2Foam, developed by Jacobsen et al. (2012). The finite vol-
ume method is used for the fluid domain discretisation, whereas for the free-surface tracking the Volume of Fluid
method is used. This same approach, including the waves2Foam toolbox, was used in Paulsen et al. (2014a) to
analyse the wave forcing from steep and fully nonlinear wave on bottom-founded wind turbines.
Other approaches have been applied in order to compute nonlinear waves. One of them is the fluid-impulse the-
ory (FIT), published by Chan et al. (2015), used to calculate the nonlinear surge diffraction force on the MIT/N-
REL TLP turbine. It allows the evaluation of second-order and higher-order nonlinear effects by means of using
compact force expressions, applied as time derivatives of impulses. The quadratic wave loads are implemented
as integrals of the velocity potentials and the source strength distribution over a body wetted surface and the
internal waterplane area. This method avoids the meshing of the infinite exterior free surface.
Another approach to simulate wave-structure interaction, used in Viré et al. (2016), is the immersed-body method
(IBM). It uses two distinct meshes: one covers the entire computational domain and the other just the solid,
which is defined by means of a nonzero solid-concentration field. The boundary condition at the fluid-structure
interface is applied through a penalty force. One of the advantages is that each mesh can be used by a different
finite element.

2.7. SUMMARY

In this chapter, an overview of the background information and theory on which the current research is based
was given. In the first part, the general hydrodynamics of floating bodies, including their stability, their hydro-
dynamic properties, their unforced response and their behaviour to incoming waves were presented. In the
second, the different types of free surface regular waves, their measure of nonlinearity, their effects on the load-
ing, and the main wave theories used to describe them were addressed. During the third part, a brief background
regarding the state-of-the-art of the wave-structure interaction numerical simulation was given.
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NUMERICAL TOOLS

3.1. INTRODUCTION

This chapter presents the numerical tools used throughout this thesis to model the free surface flows and fluid-
structure interaction. The first numerical framework is the open-source CFD-software OpenFOAM® v1606+
version, based on the fully nonlinear Navier-Stokes/VOF solver and coupled with the toolbox waves2Foam. This
is described in Section 3.2, including its coupling to a 6DOF dynamic motion solver. The second numerical tool
used is based on potential flow theory and is introduced in Section 3.3. This one is applied within the frequency-
domain diffraction solver Wadam framework. A schematic overview of the structure of this chapter is depicted
in Figure 3.1.

Figure 3.1: Scheme of Chapter 3 structure.

3.2. NAVIER-STOKES SOLVER

Fluid-structure interaction can be accurately described by the Navier-Stokes equations combined with the con-
servation of mass equation. The numerical solution has to be found using a Computational Fluid Dynamics

15
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(CFD) model, because an analytical solution for this flow problem does not exist. A very well-known open-
source library for engineering applications is OpenFOAM®. Firstly, because of the discretisation method it ap-
plies, which ensures the conservation properties, and, secondly, because of the available schemes that direct the
solution towards stability, even for cases where convergence is not that trivial to be achieved, as it is the case with
coarse and unstructured meshes. Throughout this work the interFoam solver, coupled to the waves2Foam tool-
box, is used. This solver applies finite volume discretisation on collocated grids to solve the two-phase equations
of the flow. When the problem involves the motion of the structure, the waveDyMFoam solver, based on the
interDyMFoam solver, is applied. In this section, the governing equations for the interFoam solver, the needed
boundary conditions, and the choice of the different discretisation schemes, are presented.

3.2.1. GOVERNING EQUATIONS

The governing equations for an incompressible Newtonian fluid are based on the continuity and the momentum
conservation equation, which expressed in their differential form, yield:

∇·u = 0; (3.1)

ρ
Du

Dt
= ∂ρu

∂t
+ρu ·∇u =−∇p∗−gx∇ρ+ρµ∇2u, (3.2)

where ∇= (∂x ,∂y ,∂z ) is the three-dimensional gradient operator, u the velocity field in Cartesian coordinates, g
the gravitational constant, and p∗the excess pressure, equal to p∗ = p+ρg z. The local density ρ and the viscosity
µ, defined in terms of the water and air volume fraction α (subscripts a and w , respectively), are formulated as:

ρ =αρw +ρa(1−α) (3.3)

µ=αµw +µa(1−α). (3.4)

To solve these equations, OpenFOAM® uses the volume of fluid (VOF) method, developed by Hirt & Nichols
(1981), in which the scalar function α ∈ [0,1], represents the phase of the fluid in each cell (0 is air, and 1 is
water). This field is advanced in time once the velocity is known, following the modified transport equation,
formulated by Rusche (2002):

∂α

∂t
+∇·uα+∇·urα(1−α) = 0. (3.5)

The additional convective term keeps the interface sharp, even with the step-like nature of α. It is governed by
ur , an artificial velocity field normal to and pointing towards the free surface. Its magnitude is proportional to
the instantaneous velocity. This term exists if 0 <α< 1, i.e. at the vicinity of the interface, and if it were not used,
the air-water interface would be highly smeared. To ensure boundedness of the solution, a multidimensional
flux limited scheme, namely the Multidimensional Universal Limited for Explicit Solution (MULES), is used. It
should be noted that despite the existence of the artificial compression term, the free surface can be smeared
over a number of cells. This implies that there is not a specific location where the interface exists. For the cases
in which the air-water interface is needed, mainly for visualisation purposes, the iso-contour with α = 0.5 is
chosen, so that the level set between air and water is defined as:

Lai r−w ater (α) = {x|α(x) = 0.5} . (3.6)

For the free-surface location, the wave gauge functionality, included in the waves2Foam package, is applied. One
or more wave gauges are placed at certain positions in the numerical domain, so that the free surface elevation
ζ, relative to the still water level, is found as:

ζ=
∫ x1

x0

αd z −d , (3.7)
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Figure 3.2: Top: schematic overview of the boundary conditions implemented at the computational domain inthe Navier-Stokes/VOF solver,
where I and II correspond to the relaxation zones. Bottom: representation of the spatial weighting factor ξ(ε), as a function of the local
coordinate ε, at the relaxation zones.

where x0 and x1 are the user defined start and end points in the vertical line over which the α field is integrated,
d is the initial position of the still water level. This procedure is the one used in the current work.

3.2.2. BOUNDARY CONDITIONS

The integral form of the incompressible Navier-Stokes equations, combined with the continuity equation, is
solved for every point of the numerical domain. Boundary conditions are imposed to all the surfaces in the
numerical domain, including the ones from the structure if present. These conditions inherently depend on the
type of problem to be solved.
The velocity and the α field boundary conditions at the inlet and outlet surfaces are imposed by the wave theory
to be applied. In the current work, this is either a stream function or a potential current with zero velocity. At
the seabed, a slip condition is imposed, what directly implies that the viscous boundary layer effects, such as the
shear stresses, are neglected. At the front and back walls a slip condition is equally applied in the case of dealing
with a three-dimensional case. If a two-dimensional case is treated, the boundary condition at these walls is set
as empty. This implies that for the planes that are normal to the third dimension, no solution is required. At the
upper wall boundary, the total pressure is set equal to zero, and an atmospheric boundary condition is applied
for α and the velocity. This implies that air and water are allowed to leave the numerical domain, while only air
is allowed to flow back in. A schematic view of the domain, including the relaxation zones and the boundary
conditions, is depicted in Figure 3.2.

RELAXATION ZONES

The open-source wave generation and absorption toolbox waves2Foam, recently developed by Jacobsen et al.
(2012), allows for the implementation of relaxation zones, to avoid wave reflection from the outlet boundary and
also to prevent internally reflected waves. These can have an arbitrary shape, although for the cases treated here
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the shape is always rectangular. At these relaxation zones, the velocity u and the α fields are updated at every
time step according to:

φ= ξφt ar g et + (1−ξ)φcom , (3.8)

whereφt ar g et is the target solution in time and space given by one of the available wave theories in waves2Foam,
or by the fully nonlinear potential flow solver, OceanWave3D, developed by Paulsen et al. (2014b). The numeri-
cally computed quantityφcom is obtained by solving the governing equations. ξ(ε) is the weighting factor for each
of the two solutions. It depends on the local coordinate ε ∈ [0;1], being zero at the outer part of the relaxation
zone and one at the inner edge. It is given by:

ξ(ε) = 1− exp(ξβ)−1

exp(1)−1
, (3.9)

where β is the shape factor. In the present work the default value, β= 3.5, is used.

3.2.3. DISCRETISATION

To solve the hydrodynamic problem, the partial differential equations have to be replaced by difference equa-
tions in the flow domain, so a process of discretisation has to be applied. Firstly, a domain discretisation method
is needed, followed by the partial differential equation terms, both spatial and temporal, discretisation.

DOMAIN DISCRETISATION

There are four grid-based discretisation techniques widely used within the CFD community: the finite difference
method, the finite element method, the finite volume method and the spectral element method. OpenFOAM®
uses the finite volume method, based on the application of the conservation principles applied to a finite region
in space known as control-volume. Here the discretisation is applied to an integral formulation of the equation
and is based on balancing fluxes between control-volumes. Hence, the flow characteristics are directly used.
The advantages of this method over the others are, firstly, the local and global mass conservation satisfaction
and, second, the treatment of boundary conditions for complex geometry in a less cumbersome way.

TEMPORAL AND SPATIAL DISCRETISATION SCHEMES

Differential schemes are used for the numerical approximation of the terms in the governing equations 3.1, 3.2
and 3.5. One of the major challenges in the field is the treatment of the advective term of the Navier-Stokes equa-
tion (Eq. 3.2). Several options exist: the central difference scheme, which is not usually used in CFD applications,
the upwind schemes and the Total Diminishing Variation (TVD) schemes. Based on the conclusions presented
in Bruinsma (2016), after comparing a first-order upwind and a second-order MUSCL scheme (TVD), the former
is used throughout the current numerical analysis.
An overview of the discretisation schemes used in this work is given in Table 3.1.

3.2.4. COUPLING OF NAVIER-STOKES-6DOF SOLVER. INTERDYMFOAM/WAVEDYMFOAM

If the fluid-structure interaction problem implies the motion in any of the six degrees of freedom of the struc-
ture within the numerical domain, the 6DOF solver interDyMFoam is used. Moreover, if the body is subjected to
waves, interDyMFoam is coupled to the waveDyMFoam solver, provided by the wave2Foam toolbox. The total
force and moments exerted at the COG of the body may come from the action of the fluid, or by other exter-
nal forces, such as the gravity force, or the forces and moments coming from restraints, such as the mooring
lines. The fluid forces Fk and moments Mk for each degree of freedom k of the body are calculated by means of
integrating the pressures on the body surface SoB as:

[
Fk

Mk

]
=

∫
SoB

p

[
n

r×n

]
dSoB . (3.10)
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Table 3.1: Numerical schemes used throughout this work.

Term Discretisation

Spatial domain Finite Volume (FV) Method

Temporal derivative
d

d t
Euler. Second-order

Gradient (∇u, ∇α) Gauss linear. First-order

Divergence ∇· (ρφu) Gauss upwind. First-order
∇· (φα) Gauss upwind. First-order

∇· (ρφr bα) Gauss interface compression. First-order

Laplacian ∇2 Gauss linear corrected. First-order

The pressure is derived from Equation 3.2, from where four unknowns remain, namely the pressure itself and the
three components of velocity u. However, just three equations are available: the momentum equation for the
three velocity components and the continuity equation. The latter, for an incompressible fluid, does not present
the pressure term. So, to be able to use the mass conservation equation, a semi-discretisation of the momentum
equation is made, or in other words, only the derivatives in time are discretised, while the spatial derivatives
are kept in their partial differential form. By taking the divergence of the momentum equation and using the
continuity equation, the Poisson equation for pressure (∆p = f (U ,∇p)), can be used. The equations are solved
based on the so-called pressure-momentum coupling algorithms. The most widespread ones are the SIMPLE,
PISO and PIMPLE algorithms. As a rule of thumb, the first one is used for steady-state analyses, the second one
for transient calculations, and is limited by the time step, and the third one (SIMPLE+PISO) is a combination of
the former and allows for bigger time-steps. A thorough explanation of these algorithms can be found in Ferziger
& Perić (2012) and Moukalled et al. (2015). In the current work, the PIMPLE algorithm is used, comprised by the
following steps:

• Momentum predictor: the momentum equation is solved, based on a non-exact pressure gradient.

• Pressure solution: based on the found velocities the solution of the discretised Poisson equation gives an
estimation of the new pressure field.

• Velocity correction: the velocity is corrected explicitly with the new pressure field.

To ensure numerical stability the maximum the Courant-Friedrichs-Lewy (CFL) condition has to be fulfilled, as:

Co = |ui | ·∆t

∆xi
≤ 1, (3.11)

where |ui | is the magnitude of the velocity in i -direction,∆t the time step, and∆xi the cell size in the i -direction.
Throughout this work, the maximum Courant number Comax is set to 0.25, unless otherwise specified. The
time step is chosen to be adjustable. The algorithm, within one time step, looks for the equilibrium. Once the
velocities are obtained, the acceleration is calculated. Stability can be ensured using two different approaches:
the under-relaxation method and the predictor-corrector method. The choice to use one or the other for the
different cases studied throughout this work is based on the thorough analysis of both methods performance
completed in Bruinsma (2016).
The under-relaxation method applies a relaxation factor fa to the computed acceleration from the forces and
moments, as follows:

a∗
i = fa ai + (1− fa)a∗

i−1, (3.12)

where a∗
i is the under-relaxed acceleration of the COG at the instantaneous time step. In this case, the accelera-

tion is treated as a total variation diminishing (TVD) property. It increases the stability, although a diffusive term
is introduced, which may affect the convergence rate of the solution. Unless otherwise specified, an acceleration-
relaxation factor of 0.5 is used for the validation cases presented in Chapter 4.
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Figure 3.3: Left: representation of the quasi-static approach of modelling the mooring lines behaviour with respect to the dynamic model
behaviour. Right: decomposition of the forces acting on the mooring line.

The predictor-corrector method implies an initial step of predicting the displacement of the body, based on the
forces acting on it, and, consequently, the correcting steps, during which the pressure field is updated, and the
corrected displacement of the body is applied. In order to achieve a smooth convergence, the pressure is relaxed
with the relaxation factor fp , as:

p∗
i = fp pi + (1− fp )p∗

i−1, (3.13)

where p∗
i is the under-relaxed pressure at the instantaneous time step. A constant under-relaxation factor fp ,

equal to 0.5, is applied during all the iteration loops, except for the last one, in which fp is set to one, to ensure
time consistency.

DYNAMIC MESHING

Once the motion of the rigid body is determined, it is necessary to move the boundary as well as the mesh
surrounding it to maintain the high quality of the mesh. This can be done using the dynamicFvMesh solver.
Two different approaches for the mesh adjustment may be used. The first one involves a solver that allows for
topological changes, which implies that the number of points, faces, and cells in the mesh can vary to comply
with the motion of the body. The second one entails the dynamic mesh to be based just on pure deformation, so
that the number of faces, points and cells, does not change, and therefore no topological changes are allowed. In
the current case the sixDoFRigidBodyMotion solver, within the dynamicMotionSolverFvMesh, which corresponds
to the second case of dynamic mesh solvers, is applied. The area in which the cells are allowed to deform is known
as the outer area and is defined by an outer radius. Another smaller area, in which the initial mesh orthogonality
is preserved, is defined by an inner radius. There the cells translate and rotate with the moving wall boundary of
the body.
Besides the area where the mesh is allowed to deform, the version of OpenFOAM® used through this research
work supports run-time selectable integrators for the mesh motion: the explicit symplectic solver, the implicit
Crank-Nicolson and implicit Newmark methods, all of which are 2nd-order in time. The one applied here is the
standard Newmark implicit solver for the time integration of the mesh motion. Regarding the mesh deformation,
the spherical linear interpolation (Slerp) function is used, as opposed to other methods applied in earlier versions
of OpenFOAM®, which were based on conventional elliptic equation solvers. Within the Slerp interpolation, the
translations and rotations are expressed by septentrions and quaternions. Good insight on this topic is given in
the works by Samareh (2002), who performed a mesh deformation method using quaternions to preserve mesh
orthogonality around boundaries in two-dimensional cases, and by Maruyama et al. (2012).

RESTRAINTS

The implementation of restraints for moving boundary surfaces was done by Niels G. Jacobsen (Researcher/ ad-
visor at Deltares) for the OpenFOAM®-v1606+ version, and is publicly available. The two restraints implemented
are a linear spring and a simple catenary type mooring line. The method to obtain the forces for both of them
are described in the following.
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Figure 3.4: Different configurations of the mooring system based on its implementation in OpenFOAM®.

Linear Spring. The linear spring implementation is straightforward, based on a stiffness k and a rest length lr ,
i.e. the length for which the spring force is zero. No damping is taken into account. The force exerted by the
linear spring is given by:

F0 =−k
r

‖r‖2
(‖r‖2 − lr ) =−F1, (3.14)

where F0 and F1 are the forces at p0 and p1, respectively, and r = p0 −p1.

Mooring Line. The behaviour of the mooring lines can be modelled statically, quasi-statically or dynamically.
Static models consider constant loads only, such as gravity, buoyancy or non-time varying current and wind.
Equilibrium is therefore determined between the constant environmental loads and the restoring force of the
mooring lines. The quasi-static approach assumes that the motion of the system is uniform and linear between
two static positions during a given time step, or in other words, at every time step, the system reaches a new
static equilibrium. Any dynamic effects on the mooring system, such as hydrodynamic and inertial forces on
the line, are ignored. In the dynamic models, the dynamics of the mooring lines are based on Newton’s second
law, where the resulting motions are due to forces acting on the body. A thorough review of the different mod-
elling approaches can be found in Penalba et al. (2017). The general equations of motion for the mooring system
are solved using the explicit integration method described in Tedesco et al. (1999), based on a central difference
approximation. The three possible configurations of the mooring system are: simple state, resting state and
hanging state.

In the simple state, represented in Figure 3.4, (a), the mooring line is completely suspended, implying that the
anchor point p0 is the same as the touchdown point pt . The state of the line can be ordinary, or length exceeded.
The first one is based on the catenary equations between two attachment points, as explained in Krenk (2001).
In this case, the distance between the attachment points is less than the unstretched length of the line lc . The
horizontal component FH and the vertical component FV of the restoring force are given, respectively, as:

FH = s2 −d 2

2d
msub g and (3.15)

FV = msub g s, (3.16)

where s is the instantaneous length of the mooring line, equal to lc in this case, d the vertical distance and msub

the submerged mass per length of the mooring line. The total force can be straightforwardly obtained.

The second possible state is the resting state, represented in Figure 3.4, (b). In this case, the distance in the x-
direction between the structure and the anchor point is sufficiently small to have part of the line resting on the
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seabed. The suspended part behaves as a catenary line. To compute the restoring force acting on the body, the
touchdown point is needed, so that the instantaneous length of the suspended part of the line is known. Once
this length is known, the forces can be straightforwardly obtained using Equations 3.15 and 3.16.
The third possibility is defined as the hanging state, represented in Figure 3.4, (c). In this case, the floating ob-
ject is so close to the anchor point that the piecewise linear configuration of the mooring line is shorter than
the length of the mooring line itself. This case takes place if the angle between the attachment point and the
horizontal is higher than 88◦, and consequently, just a vertical force is acting.

3.3. POTENTIAL FLOW THEORY SOLVER

Potential flow solvers, also known as diffraction solvers, are numerical tools that predict wave-induced motions
and loads on large volume structures at zero velocity. In the next sections the governing equations, based on
the main assumptions of first-and second-order potential flow theory, are presented. Furthermore, the main
parameters concerning the frequency- and time-domain analyses are addressed.

3.3.1. GOVERNING EQUATIONS. BOUNDARY VALUE PROBLEM

The first assumption of potential flow theory is that the fluid is inviscid. Kelvin’s circulation theorem states that
a flow that is irrotational in an inviscid flow remains irrotational. This implies that vorticity ω is zero everywhere
in the fluid, and by definition:

ω
def= ∇×u(x, t ) = 0, (3.17)

where ∇× is the three-dimensional rotational operator and u(x, t ) = u(x, y, z, t ) the velocity field in Cartesian
coordinates, also dependent on time. The velocity field u can thus be defined by means of the so-called velocity
potential φ(x, t ) as:

∇φ= u =
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
. (3.18)

The third characteristic of potential flow is the incompressibility. If the continuity equation for incompressible
flows is invoked, the velocity potential has to satisfy Laplace’s Equation 3.19 in the fluid domain Ω. This is the
governing equation for potential flow theory, and is expressed as:

∇2φ(x, t ) = 0. (3.19)

This reduces the number of unknowns from four, namely the three velocity components and the pressure, to just
two: the velocity potential φ and the pressure p. The potential can be solved using several methods; one of the
most widespread is the boundary element method (BEM) called panel method. If the irrotational and inviscid
Navier-Stokes equations are combined with the continuity equation, the well-known Euler equation is obtained.
If it is expressed with respect to the velocity potential φ, and the vertical component is taken, Bernoulli’s equa-
tion, depending on p yields:

p −pa =−ρ ∂φ
∂t

−ρ 1

2
|∆φ2|−ρg z. (3.20)

The forces derive from the integration of p around the body surface, as defined in Equation 3.10.

3.3.2. BOUNDARY CONDITIONS

To solve these equations, the boundary conditions have to be set, analogous to the boundary conditions imposed
when solving the Navier-Stokes equations. These are enumerated hereafter and are based on the fluid domain
presented in Figure 3.5.
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Figure 3.5: Overview of the fluid domain of the Boundary Value Problem (BVP).

• Sea-bottom kinematic condition, which denotes the condition of impermeability at the bottom SB .

∂φ

∂n
= 0 on SB (3.21)

• Body kinematic condition, which implies the impermeability on the body surface SoB .

∂φ

∂n
= VB ·n on SoB , (3.22)

where VB is the body velocity and n = (n1,n2,n3) and x×n = (n4,n5,n6).

• Free surface kinematic condition, which indicates that the particles at the free surface ζ remain there.

D(z −ζ)

Dt
= 0 −→ ∂φ

∂z
= ∂ζ

∂t
+ ∂φ

∂x

∂ζ

∂x
+ ∂φ

∂y

∂ζ

∂y
at z = ζ(x, y, t ) (3.23)

• Free surface dynamic condition, which denotes that the pressure at the free surface SF S is equal to the
atmospheric pressure.

gζ+ ∂φ

∂t
+ 1

2
|∇φ|2 = 0 at z = ζ(x, y, t ) (3.24)

• Far-field (or radiation) condition, which implies the outgoing nature of waves.

The governing equation and the boundary conditions define the boundary value problem (BVP) to be solved. It
can be inferred that the problem is nonlinear due to the two conditions at the free surface. Fully nonlinear po-
tential flow solvers are usually used to solve the problem without getting rid of these nonlinearities. However, the
first- and second-order potential flow solver presented here get rid of the second and third order nonlinearities,
respectively, by means of a perturbation method.

3.3.3. FIRST-ORDER POTENTIAL FLOW THEORY

The first-order potential flow solution is found by solving the first-order velocity potential Φ(1). The fluid pres-
sure and the velocity of fluid particles on the free surface are linearised using a perturbation approach, the full
nonlinear velocity potential φ and the free surface elevation ζ can be expressed as:

φ=Φ(1)ε+Φ(2)ε2 +Φ(3)ε3 + ... (3.25)

ζ= ζ1ε+ζ2ε
2 +ζ3ε

3 + ... (3.26)

where ε = k A is the nonlinearity of the wave, as presented in Chapter 2, Section 2.4. If ε is small, the higher
order terms (ε2, ε3...) can be eliminated. If just the terms O(1) from Equation 3.25 are retained and plugged
into the governing Equation 3.19, and the boundary conditions are Taylor expanded around the mean boundary
configuration, the linearised kinematic free surface condition at z = 0 yields:
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− ∂ζ

∂t
+ ∂φ

∂z
= 0. (3.27)

The first-order linear solution implies that the motions have zero mean value and that they oscillate with the
frequency of the incident waves. If Equation 3.25 is invoked, and the terms of higher order than one are neglected,
the harmonic time dependence of the total first-order potential, Φ(1), allows the definition of a complex velocity
potential φ1, related toΦ(1) by:

Φ(1)(x, t ) = Re(φ1(x, y, z)exp(iωt )), (3.28)

where Re denotes the real part and ω is the frequency of the incident wave. Here the time and spatial depen-
dencies are separated. Furthermore, the linearity of the problem allows solving the problem independently as
two subproblems, since the principle of superposition applies. The first one deals with the forces and moments
on the body when the structure is subjected to incident waves, but restrained from moving. This subproblem,
known as the diffraction problem, is related to the wave excitation loads, namely the Froude-Krylov and the
diffraction forces and moments. The potentials attached to this problem are the incident waves potential φI and
the diffraction potential φS , respectively. The second subproblem, known as the radiation problem, is related to
the forces and moments on the body when the structure is forced to oscillate at a certain frequency in any of its
rigid-body modes, with no incident waves. The potential of this subproblem is known as the radiation potential
φR . From the latter, the added mass, damping and restoring terms can be obtained. A detailed derivation of this
problem can be found in Faltinsen (1990). The total potential yields:

φ=φI +φS +φR =φD +φR , (3.29)

where φD is known as the diffraction potential. The spatial potential for the diffraction problem satisfies the
impermeability condition, with n as the generalised normal vector, according to:

∂φS

∂n
=−∂φI

∂n
−→ ∂(φI +φS )

∂n
= 0. (3.30)

The radiation potential φR can be obtained as the linear combination of the components corresponding to the
six degrees of freedom k as:

φR = Re

(
6∑

k=1
η̇kφk

)
, (3.31)

where η̇k is the velocity in mode k andφk the complex spatial velocity potential for the body oscillating with unit
amplitude of motion in mode k. Since the three potentials related to the diffraction and radiation problems are
known, the total excitation forces on the body can be found by means of integrating the dynamic pressure along
the mean wetted surface of the body, which expressed in terms of the potentials, yields:

Fexc,k =−
∫

SoB
ρ
∂φ0

∂t
nk dS −

∫
SoB

ρ
∂φD

∂t
nk dS −

∫
SoB

ρ
∂φR

∂t
nk dS k = 1...6, (3.32)

where the first two terms of the right-hand side correspond to the waves excitation loads, Froude-Krylov and
diffraction loads, respectively. The added mass and damping components derived from the radiation problem
can be directly found from the radiation term in Equation 3.32, since the added mass loads are proportional to
the acceleration, whereas the damping ones are proportional to the velocity. The hydrostatic restoring terms are
connected with the variation of the buoyancy due to the body motions. Note that in the linear solution presented
here, both the free-surface condition and the body boundary condition are satisfied at the mean position of the
free-surface and the submerged hull surface, respectively.
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3.3.4. SECOND-ORDER POTENTIAL FLOW THEORY

As the incident waves become steeper and therefore k A increases, also higher order terms must be retained for a
suitable estimate of the loads and motions. Therefore, the second-order terms from the perturbation approach,
Equation 3.25, are included to examine these effects. This way the boundary conditions are solved with a smaller
error. In particular, the impermeability of the body at its instantaneous positions of the body is applied. Fur-
thermore, the pressure is enforced to be the atmospheric one at the instantaneous free surface, and the normal
fluid velocity at the free surface is closer to the free-surface normal velocity. Hence, by applying the second-order
potential theory, all the terms in the velocity potential, fluid pressure and wave loads are assumed to be either
linear with the wave amplitude or proportional to the square of the wave amplitude. The second-order potential
flow theory solution results in mean forces and forces oscillating with difference-and sum-frequency oscillations,
besides the linear solution. The mean forces yield a mean drift. The difference- and sum-frequency effects de-
rive from the interaction between different frequencies components. Their interaction results in an excitation
outside the waves excitation ranges. The full second-order potential can thus be expressed as:

Φ(2)(x, t ) = Re
∑

i

∑
j
φ+

i , j (x)expi (ωi+ω j )t +φ−
i , j (x)expi (ωi−ω j )t . (3.33)

The problem is still approximated, but with a smaller error (O(ε3)). It presents sum-frequency components,
denoted as φ+

i , j , and difference-frequency, or slow-varying, components denoted as φ−
i , j , which can be solved

separately. The latter are obtained by integrating the pressure from the difference-frequency potential. For a
given sea state with N wave components of frequency ωi , amplitude Ai and phase εi , the slowly-varying forces
and moments F SV

i are defined by:

F SV
i =

N∑
i=1

N∑
j=1

Ai A j

[
T i c

i j cos(ωi −ω j )t + (εi −ε j )+T i s
i j sin(ωi −ω j )t + (εi −ε j )

]
, (3.34)

where i , j = 1 : 6 and T i c
i j and T i s

i j are the transfer functions for the difference-frequency forces. These can be

conveniently simplified by means of Newman’s approximation, as:

T i c
i , j = T i c

j ,i = 0.5(T i c
i ,i +T i c

j , j ); (3.35)

T i s
i , j =−T i s

j ,i = 0. (3.36)

Both of them can be computed from the first-order solution and therefore there is no need to calculateΦ(2). This
approximation is applicable in the following two cases: if the natural frequency of the body is very low, so that
the interest lies in regions where ω j −ωi is small, or if T i c

i , j and T i c
j ,i do not change significantly with frequency.

Slowly-varying drift loads are important for semisubmersible structures and the mooring lines. A detailed anal-
ysis may be found in Faltinsen (1990).

The sum-frequency terms come from the square velocity component in Bernoulli’s Equation 3.20. An effect
deriving from these is the springing, which is a steady-state resonant elastic motion of the platform in the vertical
plane. This phenomenon is relevant to be considered on TLP structures mainly, due to their typical lower natural
heave period.

3.3.5. VISCOUS FORCES AND DAMPING

For cylindrical structures with small diameters, viscous forces and flow separation have to be taken into account
when severe sea states with long waves and high wave heights take place. Then, the potential flow solution for
large volume bodies might be combined with Morison’s equation.
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MORISON’S EQUATION

As already presented in Section 2.5, Chapter 2, Morison’s equation is used to calculate wave loads on circular
cylindrical structural members when viscous forces matter and wave scattering (diffraction) is secondary. This is
the case for slender structures (D <λ/5), since in that case the diffraction effect and radiation damping become
negligible. The inline force per unit length fN acting on a moving cylinder can be expressed as:

fN (t ) = ρπD2

4
u̇ +ρCaπ

D2

4
(u̇ − v̇)+ 1

2
ρCD D(u − v)|(u − v)|, (3.37)

where u is the transverse wave particle velocity, v the local transverse body velocity, CD the drag coefficient and
Ca the added mass coefficient, equal to (CM −1), where CM is the inertia coefficient. The first term in Morison’s
equation represents the Froude-Krylov force, the second one the added mass force and the third one the viscous
drag forces.
In general, CM and CD have to be estimated empirically, since they depend on the Keulegan-Carpenter number
KC and Reynold’s number Re, as presented in Sumer & Fredsøe (2006). These non-dimensional numbers are
defined as:

Re = uD

ν
and (3.38)

KC = UM T

D
, (3.39)

where D is the characteristic length, which in this case it is the cylinder diameter, UM the maximum fluid velocity
and ν the kinematic viscosity, equal to 10-6 m2/s. The drag and inertia coefficients dependence on Re and CM is
depicted in Figure 3.6, respectively, for a smooth cylinder.
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Figure 3.6: Drag (a) and inertia (b) coefficients dependence on Re and KC for a smooth cylinder. Modified from Sumer & Fredsøe (2006).

3.3.6. FREQUENCY-DOMAIN ANALYSIS

The motions of a floating rigid structure in the time-domain are described by Equation 2.4, presented in Chap-
ter 2. In the case of considering a linear analysis, the problem can be stated in the frequency domain, which
implies a lower computational time. The equations of motion of a rigid floating body with 6DOF in a regular
wave can be written in the frequency domain as:

−ω2 [M+A∞(ω)] x̃+ (iωA(ω)+B(ω))iωx̃+ [C+K] x̃ = F̃exc (ω), (3.40)
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where the superscript tilde denotes the variable in the frequency domain and A∞ is the infinite-frequency limit
added mass constant value. The added mass matrix and the damping matrix coefficients, and the excitation
forces depend on the frequency. Note that no second-order forces are included. In order to obtain the frequency-
dependent terms, the tool Wadam (HydroD), based on the WAMIT software, developed by Lee (1995), is used. It
evaluates the unsteady hydrodynamic pressure, loads and motions of the body, as well as the induced pressure
and velocity in the fluid domain. The free-surface and body-boundary conditions are linearised as already pre-
sented, using a perturbation method. Since the flow is assumed to be potential, it is free of separation or lifting
effects. A harmonic time dependence is adopted.
Within this tool, the radiation-diffraction problem is solved using a 3D panel method, with the so-called source-
sink technique. The main idea behind is that the wetted body surface is divided into quadrilateral panels. The
unknowns are assumed to be constant over each panel. To derive integral equations for the radiation and diffrac-
tion velocity potentials on the body boundary, Green’s theorem is used (Lee & Newman (1989)). The integral
equation for each of the potentials is enforced at the centroid of each panel. It solves up to second-order poten-
tial flow theory, so for obtaining the second-order potential, based on the perturbation method, the first-order
motions need to be computed. It should also be noted that the integral equations for each of the potentials have
nonunique solutions at the so-called irregular frequencies, leading to numerical solutions of these equations that
are erroneous near these. The full derivation is thoroughly presented in Lee & Newman (1989). For this work, the
tool used for the conceptual panel modelling to be exported to Wadam is GeniE.

3.3.7. TIME-DOMAIN ANALYSIS

The frequency-domain analysis outputs the hydrodynamic properties of the system straightforwardly. In order
to carry out time-domain simulations, the software tool used is the RIFLEX-SIMO (SIMA), developed by MARIN-
TEK. Here, the frequency-dependent hydrodynamic properties are transformed by means of a retardation func-
tion, based on the convolution theory. By applying the Fourier transformation, Equation 3.40 can be converted
to the time-domain as:

(Mi j + A∞)ẍ j (t )+
∫ t

0
Ki j (t −τ)ẋ j (τ)dτ+Ci j x j (t ) = Fi ,exc (t ); i , j = 1,2, ...6. (3.41)

where Ki j (t ) is known as the retardation function. The time convolution of the radiation impulse-response func-
tions with the platform velocities allows accounting for the linear memory effects within the time domain hydro-
dynamic models. This memory effect captures the load on the platform that persists from the outgoing free-
surface waves radiated away by the platform motion. A detailed analysis of the time convolution of the radiation
impulse-response functions can be found in Lee (1995).
The frequency-dependent added mass, damping and excitation forces can be expressed in terms of the retarda-
tion function as follows:

Ai j (ω) =− 1

ω

∫ ∞

0
Ki j (τ)sin(ωτ)dτ; (3.42)

Bi j (ω) =
∫ ∞

0
Ki j (τ)cos(ωτ)dτ. (3.43)

From these expressions the retardation function is computed, and if the forcing F̃i ,exc (ω) is inverted to Fi ,exc (t ),
all the terms involved in Equation 3.41 are known. The time-domain integration is done using the third order
Runge-Kutta numerical method, as explained in SIMO (2012).

3.4. SUMMARY

In this chapter the background of the numerical tools to be used throughout the research, namely Navier-Stokes/VOF
and potential flow theory, was given. A schematic summary is depicted in Figure 3.7.
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Figure 3.7: Overview of the two numerical models used throughout this research.



4
FURTHER VALIDATION OF THE NONLINEAR

NUMERICAL WAVE TANK

4.1. INTRODUCTION

In this chapter, the fully nonlinear numerical wave tank performance is further validated for two floating struc-
tures subjected to steep regular waves. The first case, presented in Section 4.2, comprises a two-dimensional
floating box. The second one, presented in Section 4.3, is a vertical floating cylinder. The numerical results are
analysed and compared to the experiments carried out by Ming et al. (2014) and Palm et al. (2016) respectively.
For the two-dimensional case, the unforced response of the structure in roll is analysed using a free decay test.
To study the response of the body in its three degrees of freedom, namely heave, roll and sway, it is subjected to
incoming waves. The three-dimensional case is validated by performing free and moored heave and pitch decay,
and by comparing the results to the experimental data. The structure of this chapter is depicted in Figure 4.1.

Figure 4.1: Scheme of Chapter 4 structure.

4.2. RESPONSE OF A TWO-DIMENSIONAL FLOATING BOX

This section presents the analysis of the response of a floating rectangular box in a two-dimensional domain.
Firstly, the numerical set-up in which the numerical simulations are completed is presented. Secondly, the un-
forced response of the box is evaluated. Lastly, the wave-interaction problem is studied.

29
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4.2.1. NUMERICAL SET-UP

The two-dimensional numerical wave tank is depicted in Figure 4.2, which emulates the experimental conditions
described in Ming et al. (2014). The floating structure is placed at x = 0 m, 6 m away from the wave generation
zone, and 12 m away from the absorption zone. The reason for such a relatively long domain is to limit any wave
reflections from the outlet boundary. It should be noted that the experimental domain is longer; however, the
position of the body with respect to the wave-maker is not specified. Therefore this distance cannot be exactly
reproduced. Nevertheless, as long as a wave convergence study is completed to verify that there are no reflections
from the boundaries (see Section 4.2.3), this difference does not affect the response. In the experiments the body
is free to heave, roll and sway. It is not restricted from surging, pitching or yawing itself. To set the experiments
as close as possible to a 2D domain, 1 mm distance is left from the walls to the body boundaries, as depicted in
Figure 4.3. In the numerical domain, the body is free to move in the three degrees of freedom. The characteristics
of the structure are presented in Table 4.1.

Figure 4.2: Numerical domain set-up dimensions. The dimensions, in meters, wavelength (w.l.) and length of the box (L), are: a = b = 2.3 m
= 7.7 L = 1 w.l.; c = 6 m = 20 L = 2.7 w.l.; d = 12 m = 40 L = 5.2 w.l.; e = 1.5 m; f = 1.1 m; g = 0.4 m. The dimensions are given in number of wave
lengths based on the wave-structure interaction in Section 4.2.3.

Table 4.1: Floating box structural characteristics.

L [m] B [m] D [m] Draft [m] Mass [kg] zG [m] Izz [kg· m2]

0.30 0.42 0.20 0.10 16.20 0.00 0.47

Figure 4.3: Overview of the experimental set-up (top-view).

The background mesh of the spatial domain is discretised by nxm cells with a unit aspect ratio. It is generated in
OpenFOAM® by the blockMesh utility. The refinement of the background mesh is based on the convergence of
the solution, which is said to be convergent when an increase in the grid resolution does not lead to significant
changes in the results.
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Prior to solving the governing equations, the boundary conditions are specified. The inlet and outlet boundaries
are given by the implemented wave theory. The decay test is carried out in still water, and therefore the imposed
boundary condition at both the inlet and the outlet is a potential current with zero velocity. When the body is
subjected to incoming regular waves, the inlet boundary condition is set as a stream function, as presented in
Section 4.2.3. A slip condition is applied at the bottom boundary. The boundary condition at the front and back
walls is set as empty, since these planes are normal to the third dimension, and therefore no solution is required.
Physically, it means that there is no x-component in the equations.
The body is set in the numerical domain using an STL (stereolithography) file. Different levels of refinement
around the structure can be applied, which may be achieved by various means. In this case, it is done with the
snappyHexMesh utility, which generates two- and three-dimensional meshes containing hexahedra, and split-
hexahedra, from triangulated surface geometries in Stereolithography (STL) format. It requires an already ex-
isting base mesh, where the body is sculpted, by iteratively refining the base mesh and morphing the resulting
split-hex mesh to the surface geometry. The aspect ratio of the cells at this area should be as close as possible
to unity. Since the body is floating and free to move in its 3 DOF , the mesh has to be able to deform, so that
the body is allowed to move, without losing mesh quality. For this purpose, the dynamic mesh solver previously
presented in Chapter 3 is applied. To relax the acceleration that results from the forces on the structure, the
acceleration-relaxation approach, with a = 0.5 is used, based on the findings in Bruinsma (2016).

4.2.2. FREE ROLL DECAY TEST

To analyse and compare the unforced response of the body in roll, a free decay test is executed. The initial rota-
tion of the body is already applied on the STL, before importing it to the CFD domain.
The first uncoupled natural frequency in roll can be determined using a Fast Fourier Transform (fft), or by count-
ing the number of oscillations and dividing by the time. The former method is influenced by the time interval
in the simulation and by its length, which may compromise the accuracy. Therefore, in this case, the latter is
applied. Besides the natural frequency, the linear and quadratic damping coefficients are estimated using the
method presented in Hoff (2001) briefly described in Section 2.3.

RESULTS AND ANALYSIS OF THE FREE ROLL DECAY TEST

The time series of the roll displacement, for different levels of mesh refinement, is presented in Figure 4.4. The
cell size is defined by the number of points per structure length (p.p.s.l.), where the characteristic length, in
this case, is L = 0.3m. The response in roll is normalised with respect to the maximum roll angle φmax , which
coincides with the initial rotation of the centre of mass, equal to 9.43°.
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Figure 4.4: Roll free decay test time series, experimentally and numerically obtained for different grid refinements. It is normalised by the
initial, and maximum, angular amplitude.

From Figure 4.4, it is firstly seen that the numerical solution converges. Secondly, although in general a good
agreement with respect to the experimental solution is observed, the numerical result that corresponds to the
highest discretisation shows an overestimation of the damping for the first and second periods of oscillation.
However, for the last two periods, the damping seems to be better captured. Another observation is that the
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period of oscillation for the experimental case is not constant. The reason behind can be found in the nonlinear-
ities, or vortices, that are developed, and shed, as the body moves. Table 4.2 compares the natural period of the
body in roll, and presents the linear and quadratic damping coefficients, b1 and b2, respectively, for three decay
periods. Note that the way of obtaining the damping parameters is simplified, and that research in this field is
ongoing. If just the first three oscillation periods are analysed, the mean period of the experimental model is
1.53 s, equal to the numerical model natural period. However, if two more cycles are taken into account, the
mean period is increased to 1.57 s, whereas for the numerical model it stays approximately the same. The linear
and quadratic experimental damping coefficients calculated based on the first three periods are 0.181 rad/s and
0.017 rad−1, respectively.

Table 4.2: Comparison of the roll natural period an damping coefficients for the different spatial discretisations, based on the first three
periods.

Spatial discretisation [p.p.s.l.] Tn4,num b1 [rad/s] b2 [1/rad]

30 1.54 0.014 0.031
40 1.53 0.077 0.042
50 1.53 0.170 0.045

Although the method to obtain these should be more sophisticated, a comparison can still be carried out be-
tween the two models regarding the obtained results. The linear damping for the highest resolution case is bet-
ter captured, as can already be expected from the analysis of Figure 4.4. However, it is especially remarkable the
lower quadratic (nonlinear) damping from the experimental data, which could be explained by different facts.
The first one is related to the non-trivial difficulties to overcome when measuring roll in physical experiments,
which may lead to not so accurate results. Another possible reason to explain the mismatch in damping is the
approach used to estimate it. Although the procedure applied throughout this work is widely used in industry,
it should be born in mind that roll damping implies a highly nonlinear mechanism, as described in Chakrabarti
(2001), which may also involve higher-order components. The third one is related to the fact that no turbulence
model is implemented in this simulation. This implies that, unless the mesh is fine enough to be able to solve
the turbulent boundary layer, the characteristic shear stresses resulting from the small eddies, are not captured.
Since, due to computational resources restriction, the mesh is too coarse to capture these effects, it is reasonable
to state that the numerical solution is likely to present a lower damping. A fourth reason for this lower damping
can derive from the 3D-effects. In the numerical domain, these 3D effects are completely neglected, whereas in
the experiments, although it is a channel with a much smaller third dimension, it is not a pure two-dimensional
set-up, and consequently the presence of 3D effects cannot be entirely ruled out. A fifth reason can be found in
the fact that the numerical model is not able to capture all the effects of the nonlinearities, as can be proven by
the fact that the period remains approximately constant, as opposed to the variation in the experimental model.
Despite these discrepancies between the numerical and experimental solution, it can be concluded that the ex-
perimental results presented in Ming et al. (2014) for the roll decay test are generally well reproduced.

4.2.3. WAVE-STRUCTURE INTERACTION

In this section, the motion response of the floating box to steep regular waves is presented and analysed. Prior
to subjecting the structure to these waves, which propagate along the y-axis, a convergence study of the wave
propagation is completed.

WAVE PROPAGATION

In Ming et al. (2014) it is stated that the waves are linearly generated by a piston-type wave-maker. However, it
should be noted that it is, in general, very difficult to send perfect linear waves, since the nonlinear terms are
likely to show up. For this reason, in the numerical simulation, the wave is generated based on the stream func-
tion wave theory (or Fourier approximation wave theory) presented in Fenton (1988). The target solution of the
outlet boundary can be defined by applying the same wave conditions as it is done for the inlet boundary or
by setting a constant current with zero velocity. The former is advisable if the target solution is known before-
hand. In this case, the latter is used. The characteristics of the generated stream function wave in the numerical
simulation are presented in Table 4.3.
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Table 4.3: Wave parameters of the fully nonlinear steep regular wave, generated as a stream function.

f [Hz] T [s] H [m] λ [m]
d

g T 2

H

g T 2 Fourier modes

0.83 1.2 0.06 1.95 0.028 0.00425 32

There are two ways to implement the wave. The first one implies a ramping-up stage, whereas the second one
consists of applying the fully developed wave from the beginning of the simulation. In this case, the second ap-
proach is implemented, due to the meshing restrictions described in the following section. To determine the free
surface elevation, the wave gauges are set between the generation zone and 0.25 m downstream the body, which
corresponds to the maximum distance that the body is expected to move in the y-direction.

In Figure 4.5a the numerical surface elevation time series measured 0.25 m away from the body centre of mass,
is compared to the analytical solution of the stream function. Figure 4.5b compares the amplitude of the first
wave harmonic along the domain to the analytical solution. The highest level of refinement here presented is
of 40 p.p.s.l., which corresponds to a number of points per wavelength of 300 and 8 points per wave height.
The 20 p.p.s.l. refinement corresponds to 4 points per wave height and 150 points per wave length. Note that
just the first fifteen wave periods are taken into account for the computations. From the time series it can be
appreciated how after approximately two and a half wave periods, the wave amplitude decreases with respect
to the analytical solution. The cause for this is found on the surface smearing, even though this effect is already
reduced by including an interface compression term in the α field transport equation, as explained in Chapter 3.
By comparing the analytical and the numerical solutions, it can be stated that a mesh resolution of 20 points per
structure length yields an error in surface elevation, due to numerical diffusion, of no more than 4.5% for the first
harmonic amplitude.

Given the small error if the lowest grid resolution (20 p.p.s.l.) is used, the background mesh presents this re-
finement, to decrease the computational costs. It should nevertheless be born in mind that even though the
background mesh resolution is of 20 p.p.s.l., a refinement around the structure surface is carefully applied since
relevant physical phenomena are likely to happen at the region immediately next to the structure surface. Hence
the refinement is applied according to the results of the roll decay test study (see Figure 4.4), i.e. with a spatial
discretisation around the structure of 40 p.p.s.l. It should be noted that throughout the current case, a difficulty
concerning the dynamic mesh motion utility was encountered, based on the fact that the current set-up restricts
the mesh deformation by an outer radial distance, as already defined in Chapter 3. This radial distance cannot
be larger than the water depth, unless the boundary condition for the mesh displacement at the bottom is mod-
ified. Thus, the first solution to get around this problem is to initialise the wave at the COG of the body at the
corresponding phase, as an attempt to make it coincide with the experiments. This way, an initial motion in sway
of the body while the ramping-up is taking place is avoided, allowing for a higher computational time before the
grid squeezeness surpasses the limits. The second strategy to overcome this problem is to change the boundary
condition at the bottom concerning the point displacement. Therefore, the fixed value boundary condition is
changed to a zero gradient condition. For the same reason, a convergence study of the background mesh can-
not be completed since a finer mesh implies that the cells are more squeezed. Nevertheless, this is not relevant,
since, as already stated when the background mesh convergence study was presented, a refinement of 20 p.p.s.l.
was already proven to yield a sufficiently low diffusive error in the wave propagation.

RESULTS AND ANALYSIS OF THE WAVE-STRUCTURE INTERACTION

Figures 4.6a, 4.6b and 4.6c present the motions of the floating structure as a result of the incoming regular waves,
for five wave periods, from the second wave period on. The previous wave period is discarded to avoid the initial
impact on the body.

The response in heave, normalised by the wave height, shows a good agreement with the experimental results,
both in phase and in amplitude. The response in roll shows a larger error in amplitude, although the phase is
in accordance with the experiments. A non-zero mean roll angle, caused by a mean roll moment, is observed
in both the experiments and numerical results. Its magnitude is seen to be well captured. After 4.5 periods, a
small decrease in the roll amplitude is observed in the numerical solution. This can be explained if the response
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Figure 4.5: Comparison between the numerical results for different grid refinements and the analytical solution of the stream function. a1 is
the amplitude of the first harmonic component of the incoming wave, and x/L = 0 corresponds to the point where the COG of the cylinder
is to be placed.

in sway is analysed at this same time-step, when the drift starts to differ. The reason lies on an artificial stiffness
coming from the mesh being squeezed as the body drifts further. This has a consequence in both the sway and,
as seen, roll responses amplitude. The response in sway shows a mean drift motion of the floating body, caused
by the mean drift force. As a consequence of the first-order loading, the body sways periodically. The three
components oscillate with the same period, which is slightly larger than the wave period. This is explained by
the effect of the drift motion, since it takes more time for the wave to reach the body as it moves further in the
y-direction. The computational error for the body motion response is presented in Table 4.4, where |ηnum | is
the mean of the peak-to-peak total amplitude of the numerical response, in the respective DOF , and |ηexp | the
experimental one. Note that the former amplitudes are computed based on the four periods presented. From
these numbers, it can be concluded that, despite the dynamic mesh set-up difficulties, the numerical results are
in good agreement with the experimental data.

Table 4.4: Error study for a background mesh refinement of 20 p.p.s.l., based on five wave periods.

DOF |x̄i ,num | |x̄i ,exp | ∆x̄i [%]

Heave [m] 0.065 0.066 1.7
Roll [deg] 0.160 0.140 7.1
Sway [m] 1.580 1.500 2.3
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Figure 4.6: Response of the floating box due to an incoming regular wave. The heave is normalised by the wave amplitude and the sway by
the characteristic length of the box. The time is normalised by the incoming wave period.

4.3. RESPONSE OF A THREE-DIMENSIONAL VERTICAL FLOATING CYLINDER

Throughout this section, the response of a floating vertical cylinder is evaluated. Firstly, free heave and pitch
decay tests are completed and compared to the experimental results presented in Palm et al. (2016), where a
wave energy converter with the same structural properties is analysed. At a second stage, the structural response
of the same vertical cylinder, moored and subjected to regular waves, is examined.
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4.3.1. NUMERICAL SET-UP

The current case is run in a three-dimensional domain, with the main dimensions depicted in Figure 4.7. Note
that four relaxation zone could be applied, but to have the most similar configuration to the experimental set-
up, two relaxation zones are set in the x-direction. The schemes and boundary conditions used for the domain
disretisation are the same ones applied to the two-dimensional case. The only change is the boundary condition
at the front and back faces of the numerical domain for which in this case, a slip condition is imposed. The body
is free in its six degrees of freedom. The characteristics of the structure are presented in Table 4.5.

Figure 4.7: Numerical domain set-up, with the dimensions indicated with letters. The dimensions, in meters and cylinder diameters (D), are:
a = 0.5 m = 1 D = b; c = 3 m = 5.8 D = d; e = 1.8 m; f = 0.9 m; g = 0.9 m. The width is 5 m.

Table 4.5: Floating cylinder structural properties.

d [m] H [m] Draft [m] Mass [kg] KG [m] Iy y = Ixx [kg· m2]

0.515 0.401 0.272 35.85 0.0758 0.9

4.3.2. HEAVE AND PITCH DECAY TESTS

The following cases are presented and analysed throughout this section: moored and free heave and pitch decay
tests. For the free heave decay test the centre of mass of the cylinder is displaced 0.076 m from its equilibrium.
To determine the convergence of the solution, three spatial discretisations are examined, related to the num-
ber of points per cylinder diameter (p.p.c.d., analogous to the points per structure length for the previous two-
dimensional case). For the free pitch decay test, the centre of mass is initially rotated 8.88◦ from its equilibrium.
The initial rotation of the body is previously implemented in the STL file and then exported to the numerical
domain. A convergence study based on the level of mesh refinement around the body is equally carried out. In
addition, a sensitivity analysis is completed, to demonstrate how the response of the cylinder in pitch is affected
by small variations in the structural properties, namely the moment of inertia and the centre of mass position.

RESULTS AND ANALYSIS OF THE DECAY TESTS

The response in heave is depicted in Figure 4.8. It is normalised by the initial displacement. The two finest
grids show very close results, and in good agreement with the experiments. The coarsest mesh presents a large
difference in damping, and also in natural period, with an error six times as large as the finest grid evaluated
here, as can be seen in Table 4.6. The natural period obtained from the heave decay test experimental data is
1.112 s. The numerical heave natural period for the three levels of refinement is computed based on the first
three periods.
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Figure 4.8: Time series of the free heave decay test. The motion of the COG is normalised by the maximum displacement, and the time is
normalised by the heave experimental natural period of the structure.

Table 4.6: Comparison of the heave natural period for the different spatial discretisations, based on the first three oscillations.

Spatial discretisation [p.p.c.d.] Tn3,num Error [%]

10 1.121 0.81
15 1.114 0.18
20 1.111 0.08

Given the low error, a discretisation of 15 p.p.c.d. is chosen for the following case, which comprises the same
heave decay test, but moored. The modelling approach of the mooring lines in OpenFOAM® is explained in
Chapter 3, Section 3.2. The mass per length of the chain is 0.1447 kg/m, the submerged weight 1.24 N/m and
the diameter 0.0048 m. Therefore the implementation of the mooring lines implies a higher mass and a higher
stiffness. It is expected to increase or decrease depending on how much the increase in mass outweighs the in-
crease in stiffness. The heave period is not expected to be significantly affected. The experimental model natural
period in heave shows a slight increase, according to Palm et al. (2016). However, this is not seen in the numer-
ical results, which show almost the same natural period, as seen in Figure 4.9, in which the response in heave,
normalised by a maximum initial displacement equal to 0.075 m, is depicted. The natural period experimentally
obtained is 1.13 s, whereas the numerically obtained is of 1.113, a 1.5% lower.
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Figure 4.9: Moored heave decay test time series. The motion of the COG is normalised by the maximum initial displacement and the time by
the heave experimental natural period of the structure.

The response of the body for the pitch free decay test is presented in Figure 4.11, compared to the experimental
data. Please note that due to the process of digitising the experimental time series, there are some discontinuities,
which do not correspond to the solution, but just to the low number of points digitised. The results are obtained
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for a background mesh of 15 p.p.c.d since the level of refinement of the background mesh is not likely to affect the
response as much as the refinement around the structure. The results for different levels of refinement around
the structure are presented, and defined as level 1, level 2 and level 3. They are depicted in Figure 4.10. The
first level has the highest refinement around the structure, but the least between layers of refinement, so the
cells close to the surface boundary are approximately one sixty-fourth of the size of the base mesh. The third
level presents a lower degree of refinement around the structure, but more layers of refinement between the
levels. The cells close to the surface boundary are approximately one sixteenth of the size of the base mesh. The
second case lies in between the first and the third. The first level presents an abrupt change in the dimensions
of the respective neighbour cells between the different layers. This leads to an artificial, or numerical, damping
in the response, which can be visualised in Figure 4.11. Here the model with the largest refinement around the
structure, but at the same time, with more abrupt changes within the cell size between layers, shows the largest
damping. Note that the heave decay tests were carried out with a level 3 of refinement.

(a) Level 1. (b) Level 2. (c) Level 3.

Figure 4.10: Levels of refinement around the floating cylinder for the pitch decay test.
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Figure 4.11: Free pitch decay test. The rotation of the COG is normalised by the maximum rotation, and the time is normalised by the
experimental pitch natural period of the structure.

Table 4.7: Comparison of the pitch natural period for the different spatial discretisations.

Refinement level around structure Tn5,num [s] Error [%]

1 1.098 6.15
2 1.098 6.15
3 1.110 5.13

Besides the overestimation of the damping, the natural period is seen to be relatively off for the three cases if it is
compared to the experimental results, as also seen in Table 4.7. The natural period of the experimental model is
stated to be 1.17 s in Palm et al. (2016). If the uncoupled natural period is calculated according to:
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Tn,5 =
√

I55 + A55

C55
, (4.1)

with the hydrodynamic properties stated in Palm et al. (2016), and taking the lower limit of the added mass A55,
the period results to be 1.11 s. The numerical results presented in Palm et al. (2016) also show these differences
compared to the experimental data presented. This leads to the conclusion that there are some unavoidable
inaccuracies in the experimental measurements. The origin of those may be in the measurement of the inertia
around the y-axis, or in the position of the centre of mass with respect to the keel of the body. To verify this,
a sensitivity analysis varying these parameters is completed and presented in Figure 4.12. From Table 4.8 (and
from Figure 4.12), it is seen how the period is increased if the pitch moment of inertia, Iy y = I55, also does, and
the metacentric height GM of the body decreases due to the increment of KG .
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Figure 4.12: Sensitivity analysis of the pitch unforced response for with varying KG and I55.

Table 4.8: Comparison of the pitch natural period for different KG and I55.

KG [m] I55 [kg·m2] Tn5,num [s]

0.0758 0.90 1.098
0.0788 0.95 1.130
0.0818 0.95 1.147

If the period is hand-calculated for an inertia equal to 0.95 kg·m2, and KG = 0.0818 m, the natural period in-
creases to 1.17 s, which is the one presented in the reference paper. The results from the numerical model for
this case are proven to be closer to the theoretical one, as well as to the experimental model. Hence two conclu-
sions can be drawn from the time series of the pitch decay response. The first one concerns the difficulties when
measuring the dynamic properties of a floating body and its response. The second one is that the numerical
model is capable of fairly reproducing the experiments, and also to be sensitive to any minimal change in the
structural properties.

One more aspect of this model has to be noted: the proximity of two natural frequencies for two degrees of
freedom, namely heave and pitch. This leads to the excitation of the heave motion if the pitch is also excited, as
it is the case, and vice-versa. Consequently, the pitch restoring coefficient varies harmonically, due to the heave
variation. The exchange of energy between the two degrees of freedom can be depicted in Figure 4.13, where the
amplitude of the motion in heave is seen to increase, while the pitch is damped.

The pitch motion can be described as:

(I55 + A55)
d 2η5

d t 2 +B55
dη5

d t
+C55(t )η5 = 0, (4.2)
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Figure 4.13: Heave response for the pitch decay test.

with C55 equal to ρgV (GMTm +δGMT sin(ωe t )), where δGMTm , ωe and β are, respectively, the amplitude of the
time oscillations of the transverse metacentric height GMT , its frequency and its phase. These oscillations are
caused in the current case by the heave and pitch motions. GMTm is the mean transverse metacentric height,
associated with the mean restoring coefficient as C55 = ρgV GMTm . If Equation 4.2 is divided by (I55 + A55), it
yields:

d 2η5

d t 2 +2ξωn
dη5

d t
+ω2

n

[
1+ δGMT

GMTm
sin(ωe t )

]
η5 = 0 (4.3)

where ξ= B55/[2(I55+A55)ωn] is the fraction of the damping relative to the critical one andωn = 2π

√
C55

(I55 + A55)
.

From this equation both the coupling in pitch and heave and the displaced volume and change in the metacen-
tric height GM of the cylinder variation in time, can be seen. This is known as Mathieu’s (damped) equation,
which is a specific case of the second-order ordinary differential equation type known as Hill’s equation, with the
form that follows:

ẍ + cẋ + (α+βcos t )x = 0. (4.4)

If Equation 4.3 is divided by the heave frequency of oscillation ω3 squared, and is compared to Eq. 4.4, the pa-
rameters α, β and c yield:

α= ρgV GM

(I55 + A55)ω2
3

= ω2
5

ω2
3

, β= 0.5ρgV δGMT

(I55 + A55)ω2
3

, c = B55

(I55 + A55)ω2
3

.

The condition of instability in Mathieu’s equation depends on these parameters. It can be identified using a
parametric plane, shown in Figure 4.14, and also known as Strutt diagram. Its derivation is based on the solu-
tion of the Hill’s equation with the Mathieu parameters and can be consulted in Koo et al. (2004). Here α and
δGMT /GMTm are approximately equal to unity (green point). The damping of the system, as well as the incre-
ment of α, reduce the area of instability. However, in this case, the damping ξ is calculated and proven to be too
low to avoid the unstable region, which is not a desired situation. Nevertheless, the scope of this section is not
to design a stable system but to further validate the nonlinear numerical wave tank. Therefore the identification
of this instability arising confirms that the numerical model can capture these type of instabilities, arising from
nonlinearities. A rigorous study of these is beyond the scope of this master thesis, although a thorough analysis
can be found in MacLachlan (1947) or Nayfeh & Mook (1995).
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Figure 4.14: Stability diagram for undamped Mathieu’s equation. Note that it is symmetric around the α-axis.

The moored pitch decay test is very similar to the free one. The time series is presented in Figure 4.15, from which
it can, once again, be inferred that the main parameters affecting the natural response in pitch are very sensitive.
Since it was already proven to be the case for the free pitch decay test, a sensitivity analysis is not carried out. The
results for the original configuration are presented in Table 4.15 and the time series in Figure 4.15.
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Figure 4.15: Vertical floating cylinder moored pitch decay test. The rotation of the COG is normalised by the maximum rotation, and the
time is normalised by the experimental pitch natural period of the structure.

Table 4.9: Comparison of the pitch moored natural period for the different spatial discretisations with the counting method.

Spatial discretisation [p.p.c.d.] Tn5,exp [s] Tn5,num [s] Error [%]

15 1.16 1.05 10.25

4.3.3. WAVE-STRUCTURE INTERACTION

This section presents the response of the moored circular cylinder in heave, pitch and surge to the incoming reg-
ular waves presented in Table 4.11. The dimensions of the numerical domain set-up, as referred to in Figure 4.7
are indicated in Table 4.10.

Table 4.10: Dimension of the numerical set-up, with the letters referred to Figure 4.7, in meters (m), diameters (D) and wavelengths (w.l.).

a b = c d

(m) 3 6 9
(D) 5.80 11.65 17.50

(w.l.) 1.35 2.70 4.00
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Prior to subjecting the body to the waves, a convergence study regarding the incoming waves is completed, and
presented in Figure 4.16. The cells are efficiently distributed so that the area around the body and the free surface
are well refined. The number of cells per wave height is 400, and the number of cells per wavelength is 67,
upstream of where the body is going to be placed. Downstream of the structure the number of cells decreases
linearly. This way not only the computational costs are lowered but also the transmitted waves downstream are
more diffused, and reflections from the relaxation zones are even less likely to occur. The mesh, already with the
body there, is presented in Appendix A, Figure A.1.

Table 4.11: Wave parameters of the fully nonlinear regular wave, generated as a stream function.

f [Hz] T [s] H [m] λ [m]
d

g T 2

H

g T 2 Fourier modes

0.83 1.2 0.04 2.23 0.063 0.00283 32
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(a) Time series of the surface elevation at x/D = 0.
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Figure 4.16: Comparison of the numerical results using waveFoam and the analytical solution of the stream function. a1 is the amplitude of
the first harmonic component of the incoming wave, and x/D = 0 corresponds to the point where the COG of the cylinder is to be placed.

RESULTS AND ANALYSIS

Figure 4.17 presents the motions of the cylinder as a result of the incoming regular waves, shown for four wave pe-
riods, from the nineteenth one on. The previous ones are discarded to avoid the ramping-up of the wave, as well
as the initial impact on the body. The results are presented for both stability methods for the pressure-velocity
coupling algorithm presented in Chapter 3, namely the acceleration-relaxation and the predictor-corrector method.
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(a) Heave response.
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(b) Pitch response.
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(c) Surge response.

Figure 4.17: Response of the floating cylinder due to an incoming regular wave. The heave is normalised by the wave amplitude. The time is
normalised by the incoming wave period.

The experimental data provide the time series for the five periods here depicted. The heave and pitch response
show good agreement for both stability methods, with a peak-to-peak error of less than 8% in heave and 9%
in pitch. However, the response in surge shows a different behaviour. If a frequency analysis is done for the
numerical time series, three clear components show up: the one corresponding to the main wave excitation
frequency (around 1.2 s), the second one to the second harmonic of the wave (around 2.4 s) and the lowest one
to the natural frequency in surge (around 9 s). The response in the frequency-domain is presented in Appendix A,
Section A.1. The main frequency component, which corresponds to the first wave excitation frequency, is seen
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to be in agreement with the experimental data, although the amplitude of the motion in the numerical model
is a 17% larger. The predictor-corrector solution shows a lower error in amplitude. The lower component is not
seen in the experimental data for the length of the time series shown. This is expected to be part of the transient
response, but in the numerical results, it does not disappear completely, which may indicate that there is some
excitation due to loading related to the combination of the first-order motion and the wave elevation exciting this
lower component. The mean force is not captured either. Since the motion in surge is mainly governed by the
restoring stiffness coming from the mooring lines, an analysis of the forces at the fairlead is done. These, together
with the respective components, are presented in Appendix A, Figure A.4. The amplitude of the back mooring
line total force from the experiments is seen to be very similar to the numerical ones, although the mean value
of the experimental one is slightly lower. The front mooring lines force present a lower amplitude compared
to the experimental data, which complies with the smaller amplitude of the main frequency component in the
experimental data. In other words, the restoring response in the experiments to the wave excitation is larger, and
therefore the motion in surge, smaller.

4.4. SUMMARY

This chapter presented an extensive validation of the fully nonlinear numerical wave tank for a 2D floating box
and a 3D vertical floating cylinder. Both cases were compared to experimental data. For the 2D case, despite the
difficulties encountered in the dynamic mesh implementation, the results were satisfactory. The 3D case also
showed good agreement with the experimental data for the two vertical motions (heave and pitch), both for the
decay tests and for the structure subjected to steep regular waves.



5
OC5-SEMISUBMERSIBLE CASE STUDY

5.1. INTRODUCTION

The Offshore Code Comparison, Collaboration, Continued, with Correlation (OC5) project is run under the In-
ternational Energy Agency (IEA) Wind Research Task 30 and is focused on validating the tools used for modelling
offshore wind systems through the comparison of simulated responses of several designs to physical test data.
For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system, such as
the nonlinear Navier-Stokes numerical wave tank in Bruinsma (2016), were validated using measurement data
from a 1:50 scale test campaign performed at the MARIN offshore wave basin, as part of the TO2 Floating Wind
project. The full-scale dimensions and structural properties of the OC5-semisubmersible concept can be con-
sulted in Appendix B.
The following sections describe the modelling of the floating system within the two frameworks used through-
out the current research, namely the fully nonlinear Navier-Stokes/VOF solver (referred to it as (fully nonlinear)
CFD model, or when presenting the results as waveDyMFoam) and the diffraction solver. The latter is validated
with respect to the former and the experimental data from the tests held at MARIN, in Section 5.4; it is done by
comparing the unforced response of the structure in heave and pitch decay tests and to incoming regular waves
to the corresponding experimental data or the CFD model results. The last part of the chapter compares the
response of the structure in heave resonance conditions and steep waves of both numerical models. They are
presented in Section 5.5 and 5.6. The structure of this chapter is depicted in Figure 5.1.

Figure 5.1: Scheme of Chapter 5 structure.

45
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Figure 5.2: Schematic overview of the OC5-semisubmersible experimental set-up, including the mooring lines system. The total length l is
200 m, the width is 4 m and the water depth d is 4 m.

5.2. PHYSICAL EXPERIMENTS SET-UP

Within the TO2 project physical experiments were held at one of the wave tanks in MARIN to study the behaviour
of the OC5-semisubmersible floating platform, at a 1:50 scale. The basin is equipped with a wave-maker and a
wind field generator. The wave tank is depicted in Figure 5.2, where the OC5 is placed approximately at the cen-
tre. The down scaling is done based on the Froude number F n. Since surface waves are gravity driven, equality
in the F n number ensures that the wave resistance and other wave forces are correctly scaled.
The original design of the OC5 has three catenary mooring lines anchored to the seabed and connected to the
structure at the top of the heave plates. However, due to the limited extension of the wave tank, compared to the
one that the original configuration of the mooring lines required, the mooring system had to be adapted. There-
fore the mooring system was implemented as two moorings, one in the front and the other in the back, and two
additional horizontal linear springs, as depicted in Figure 5.2. This way the restoring stiffness was approximately
the same as the one of the original configuration. To get the right balance of the structure, an extension arm
was constructed at the back part of the structure. All the attachment points, dimensions and properties of the
mooring lines are given in Appendix B.
The experimental data used throughout the present work are the ones from the decay tests in still water and one
of the four wave loading cases that were performed within the same test campaign.

5.3. NONLINEAR NUMERICAL MODEL SET-UP

The OC5-semisubmersible nonlinear numerical model was set-up by Niek Bruinsma (Researcher/advisor at
Deltares) and presented in Bruinsma (2016), and in Figure 5.4b. Throughout the current work, the CFD model
computations are slightly modified depending on the case.
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The implementation of the mooring lines in the fully nonlinear CFD model is done quasi-statically, the same way
as it is done in the 3D vertical floating cylinder validation case in Chapter 4. The position and the initial condi-
tions of the mooring configuration of the experiments is precisely reproduced in the CFD model, as presented
in Figure 5.3. The numerical domain is built as similar as possible to the experimental set-up, for the cases to be
validated. The domain is rectangular, 6.4 m long and 4 m wide. The dimensions are indicated in Figure 5.3. The
boundary conditions are the same as for the 3D validation case presented in Chapter 4, with the side walls being
fully reflective. The total number of points was measured with respect to the main columns diameter, which
yields 5 p.p.c.d. for the decay tests cases base mesh, and 10 p.p.c.d. for the incoming regular wave validation
case. A multi-grading technique was used in the vertical direction, so that the majority of the cells are found at
the free surface. On top of this base mesh, a refinement is completed around the structure with snappyHexMesh,
as it was done for the 2D and 3D validation cases. The structure was modelled with an STL file, and exported to
the numerical wave tank.

Figure 5.3: Overview of the OC5-semisubmersible numerical set-up, without moorings, for the validation cases against the experimental
data. The dimensions, in model-scale, are denoted with letters, corresponding to: a = b = 0.7 m; c = d = 2.0 m; e = 5.2 m; f = 1.2 m; g = 4 m. The
width is 4 m.

The numerical schemes and boundary conditions do not differ from the ones presented in Chapter 3, which were
the same used for the 3D validation case presented in Chapter 4. Note that for the velocity-pressure coupling sta-
bility outer-correctors (predictor-corrector method) are used, instead of the acceleration-relaxation factor, except
for the first of the validation cases, the free heave decay test, for which an acceleration-relaxation factor of 0.5 is
applied.

5.4. DIFFRACTION NUMERICAL MODEL SET-UP AND VALIDATION

The diffraction model set-up is divided in two main steps. The first one deals with the discretisation of the
model in panels, to carry out the frequency-domain analysis and obtain the velocity potential for each of the
subproblems involved. The second one consists of the time-domain analysis using the obtained hydrodynamic
properties. The description of these two steps is given in the following sections.

5.4.1. FREQUENCY-DOMAIN ANALYSIS. PANEL MODEL SET-UP

The frequency-domain analysis is done using the software tool supported by DNV-GL, found within the SESAM
package. Firstly, GeniE is used to generate the mesh of the panel model, which includes the structure and the free
surface to be implemented in Wadam, where the hydrodynamic properties are computed, based on the source-
sink approach. The base model in GeniE comprises just half of the body, since symmetry can be applied with
respect to the xz-plane. The panel model is depicted in Figure 5.4a. Note that the diffraction model presents
full-scale dimensions.
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(a) Panel model. (b) CFD model.

Figure 5.4: OC5 models with the two numerical frameworks used throughout this work. In the panel model, the main columns (MC), the
central column (CC) and the heave plates (HP) are depicted in light blue. The braces, treated as slender elements are in dark blue.

The main columns and the heave plates are part of the panel model, whereas the braces are modelled as slender
elements, so that Morison’s equation is applied. The added mass and the damping coefficients are obtained for a
set of frequencies within the wave excitation frequencies range, so from 0.3 to 1.5 rad/s. The wave incidence an-
gle is 0◦, i.e. waves propagate along the positive x-axis. The location of the centre of buoyancy zB and the centre
of gravity zG are the same as if the whole system were there, and therefore the mass to be taken into account is
the total one from the system.
To be consistent with the experiments and with the nonlinear model, the mooring lines effects are modelled by
including an additional stiffness matrix for the hydrodynamic calculations. Note that this approach is static (and
linear), as opposed to the quasi-static one applied in the nonlinear CFD model mooring system. The additional
restoring stiffness matrix elements are calculated as presented in Appendix B, Section B.3.
The nonlinear viscous damping contribution from the main and slender members has to be accounted for in the
frequency-domain analysis. The values are obtained from the experimental results computed by MARIN. The
added mass from the slender elements is taken into account, although not their contribution to the quadratic
drag since it is already accounted for it in the quadratic damping matrix. The values of this matrix are pre-
sented in Table B.6 in Appendix B. To prove that the model set-up during the frequency-domain analysis is well-
established, the first-order response amplitude operator (RAO) is computed, and compared to the one from the
numerical simulations and experiments completed at MARIN, as presented in Figure 5.5. The RAO calculated
from the experiments, based on white-noise excitation, is presented in blue, whereas the one computed by the
diffraction model established here is depicted in yellow. The one in red corresponds to the diffraction model
computed by MARIN.
The response amplitude operator in surge is in good agreement with the numerical model from MARIN, quan-
titatively and qualitatively. However, none of these show the peak at 0.36 rad/s, which corresponds to the heave
first natural frequency, meaning that they do not capture cross-coupling interactions. Despite this difference at
this frequency, the tendency of the RAO is in agreement with the experimental data.
The response amplitude operator in heave is of greater interest, since its natural frequency lies in a region where
the waves might present a high energy content, for instance, in swell sea-states. The first natural frequency of
the structure in heave is at 0.36 rad/s, or at 17.5 s. Waves with this excitation frequency are considered to be in
a long-wave regime. This implies that the radiation damping in this region is very low. Therefore, the type of
damping that plays a role in the response is the quadratic one, which comes from viscous effects; this remarks
the importance of properly adjusting these in the diffraction model. The amplitude of the motion at this region
is decreased by adding heave plates. Their effect on the total response of the structure is seen in the RAO, not
only at the natural frequency, but also at around 0.4 rad/s. The dip observed at this frequency in the numerical
models is connected with cancellation effects in the excitation-force contribution in the potential-flow solution,
which implies that at this frequency the only excitation forces are the wave induced drag ones. The cancellation
frequency is given by:
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ωc =
ω3,n√

1− zm

g
ω2

3,n

, (5.1)

where zm is the z-coordinate of the geometric centre of the heave plate, equal to 17 m in this case. The full deriva-
tion can be consulted in Faltinsen (1990). There is a difference of a 2% between the two numerical models. Since
the panel model developed here shows the exact computed cancellation frequency, the difference is neglected.
Note that for the rest of the frequencies the RAO is seen to be in agreement. In the time-domain simulations
computed in this work, the additional quadratic drag of the heave plates is added explicitly, besides the addi-
tional one that accounts for the rest of the contribution of the elements to viscous effects.
The pitch response amplitude operator for the current model is in agreement with the experimental one for
higher frequencies. However, at the heave resonance region, the coupling between motions is not properly cap-
tured, and the response amplitude lies at half the value. It should be once again noted that it is very complicated
to rigorously obtain the response amplitude operator at these low frequencies, in particular with the white-noise
technique used for obtaining the RAO of the experimental model.
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(a) Surge RAO.
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(b) Heave RAO.
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(c) Pitch RAO.

Figure 5.5: Response amplitude operator in surge (a), heave (b) and pitch (c) of the experimental model (in blue), and the two potential flow
based models computed at MARIN and within this thesis (in red and yellow), respectively.

SECOND-ORDER TRANSFER FUNCTION

In general, second-order effects are harder to estimate since they are typically small relative to the first-order con-
tributions. In the current case irregular waves are not considered, and therefore difference- or sum-frequency
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second-order effects coming from the wave frequency interactions are not likely to arise. However, as already
presented in Chapter 3, other second-order effects, such as mean forces deriving from the second-order velocity
potential, may be present. These are usually smaller than the ones coming from wave frequency interactions,
but to account for them, the free surface is modelled in GeniE, and implemented in the frequency-domain cal-
culations. Wadam only allows a maximum of 3000 panels in the base free-surface model, which consequently
requires a thorough planning of the free-surface meshing. It has to be as fine as possible in the vicinities of the
structure, but at the same time its radius Rm has to be sufficiently broad to capture all the free surface effects.
According to Wadam user manual (Wadam (2010)), the radius of the free surface mesh has to be Rm ≈ O(H) in
the case of shallow waters and Rm ≈O(λ) for deep waters. In the present work the full-scale depth is 200 m, and
therefore for waves shorter than 16 s approximately, deep water assumption applies. The mesh is finally chosen
to have a radius Rm of 200 m, to apply a grid refinement closer to the structure, without exceeding 3000 panels.
The final mesh has 2896 elements. Since there are no significant second-order effects in the simulations anal-
ysed here, the mesh is not presented in the main text, although it can be consulted in Appendix B, Figure B.5,
together with the difference-frequency quadratic transfer function (QTF), based on Pinkster’s theory, presented
in Pinkster & Huijsmans (1982).

5.4.2. TIME-DOMAIN ANALYSES

To validate the diffraction model against the experiments and the CFD model, time-domain analyses, namely
decay tests and tests in regular waves, are completed. For this purpose, the frequency dependent hydrodynamic
properties are converted to the time-domain, using the retardation function, as presented in Chapter 3, Sec-
tion 3.3.6. The linear damping values are the ones obtained from Wadam. Since the slender elements are not
directly exported, their non-negligible effect to the added mass has to be accounted for. Furthermore, the addi-
tional contribution of the heave plates to the quadratic drag is explicitly included. A quadratic drag coefficient of
0.68 is applied, based on the reference model (Robertson et al. (2014)).
The heave free decay test is validated by comparing the results to the fully nonlinear CFD model, whereas the
free pitch decay test is validated with respect to the experimental data. The moored decay tests and the test in
regular waves of 12 s excitation period are validated for both the experiments and the CFD model.

HEAVE AND PITCH FREE DECAY TESTS

A free decay in heave is done for two different initial conditions. During the first test, the body is subjected to an
initial displacement in heave of 1 m, whereas the initial displacement corresponding to the second test is of 6 m.
Note that even though in the experiments the draft of the structure without the moorings is of 19.49 m, full-scale,
the numerical equilibrium in the nonlinear CFD model is achieved at a draft of 20 m. This could be explained by
a mismatch in mass of 193 tonnes in full-scale, or 1.5 kg in model-scale. Since the further steps of the validation
are compared to this model, the draft taken into account is consistently chosen to be equal to this one. There
are no experiments available for the free heave decay test, so the results are compared to the ones presented
in Dunbar et al. (2015), where a CFD model of the OC5-semisubmersible, solved with a tightly-coupled version
of the OpenFOAM® interDyMFoam solver, is compared to the time-domain solver FAST, from NREL. The time
series for the free heave decay test is presented in Figure 5.6.
The diffraction model for the free floating structure is in good agreement with the other models regarding the
natural period for both initial displacements. However, whereas the time series that correspond to an initial
displacement of 1 m present similar amplitudes, the second initial displacement test time series show a clear
discrepancy in amplitude during the first period. There is a good correspondence between the two CFD models
and the two diffraction models. An explanation of this can be found in the way that the quadratic drag is tuned;
it is adjusted based on a specific KC number, which is proportional to the maximum relative velocity. However,
as shown in Figure 3.6a, the CD is dependent on the KC number. In both tests, the velocity is different; this
yields the difference in amplitude of the first period. During the following periods, the model computed with
waveDyMFoam shows a higher damping than the tightly-coupled one, and closer to the two diffraction models.
The damping in the SIMO diffraction model and the waveDyMFoam nonlinear model is compared using the
corresponding linear and quadratic coefficients, based on the three first periods; these are presented in Table 5.1.
Although research is ongoing regarding the calculation of the damping coefficients, with the method used here,
usually applied in the industry, a good agreement in the quadratic damping coefficients is observed. The linear
damping for the two initial displacements is different, although the values for both models are in agreement.
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(b) Initial displacement of 6 m.

Figure 5.6: Free heave displacement of the COG . Both of them are normalised by the maximum displacement, equal to the initial one. The
time is normalised by the natural heave period. The waveDyMFoam and interDyMFoam legend correspond to nonlinear numerical models,
whereas Diffraction is referred to the time-domain simulations of the diffraction model, with the used tool indicated accordingly.

Table 5.1: Damping coefficients computed for the decay tests with different initial displacements.

Initial displacement [m] b1 [m/s] b2 [1/m]

waveDyMFoam - CFD 1 0.004 0.16
6 0.027 0.14

SIMO - diffraction 1 0.003 0.11
6 0.017 0.10

Figure 5.7 presents the pitch response of the freely floating body, for both the experimental and the diffraction
model. Since in this case the validation is made with respect to the former, the draft is 19.49 m. The structure
is initially rotated 3.13◦ around the y-axis. The body is implemented with this initial rotation in the nonlinear
numerical wave tank using an STL file, as it is previously done with the vertical floating cylinder during the 3D
vertical floating cylinder validation case in Chapter 4.
The periods of both decay tests are calculated by applying a fft, since it yields more accurate results than the
counting method, and in this case the sufficient length of the time-series allows this procedure. Table 5.2 presents
the error in the period, which is seen to be less than 1% in heave, and almost non-existent in pitch. It can there-
fore be concluded that the free floating OC5-semisubmersible SIMO diffraction model without the moorings is
properly adjusted with respect to the experimental data.
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Figure 5.7: Free pitch decay test, normalised by the maximum rotation, equal to the initial one. The time is normalised by the experimental
natural pitch period, 35.50 s.

Table 5.2: First natural periods in heave and in pitch for the unmoored floating body.

DOF Tw aveD y MFoam/Texp [s] TSI MO [s] ∆T [%]

Heave 17.50 17.57 0.39
Pitch 35.50 35.48 0.03

HEAVE AND PITCH MOORED DECAY TESTS

The mooring lines are implemented for the current case. A difference in draft of 0.543 m, measured in full-scale,
is equally observed, which implies 2.75% increase with respect to the experimental one. The time series of the
COG displacement in the heave decay test for the three models, with an initial displacement of 1 m, is presented
in Figure 5.8a. The natural period is well captured in the diffraction model, as indicated in Table 5.3. However, the
damping is higher from the second period on. It could be explained by the fact that low-frequency components
show up if the entire experimental data time series is analysed for the 2000 s it lasts. One of the low-frequency
components takes place at 81.5 s, which corresponds to the yaw natural frequency. However, this is not the only
one, as shown in Figure B.7, in Appendix B. The source may be found on disturbances in the experiments, which
may yield to excitation forces. Regardless, the numerical models show good correspondence.

The pitch unforced response of the diffraction model, together with the fully nonlinear CFD model response and
the experimental data, is depicted in Figure 5.8b. The initial rotation angle in pitch is 3.34◦. The natural period is
in agreement with the CFD model, although it is shorter compared to the experimental data. The damping is also
properly reproduced. From both the free and moored decay tests analyses and the calculated natural periods,
presented in Table 5.3, it can be concluded that the diffraction model is able to reproduce the response of the
floating platform for the different decay tests performed.

Table 5.3: First natural periods in heave and pitch for the moored floating body. Note that the one presented for the pitch corresponds to the
one adjusted to the CFD model.

DOF Tw aveD y MFoam [s] TSI MO [s] ∆T [%]

Heave 17.48 17.46 0.11
Pitch 32.65 32.65 0.00
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(a) Heave moored decay test. The time is normalised by the experimental model heave natural period, 17.5 s.
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(b) Pitch moored decay test. The time is normalised by the experimental model heave natural period, 33.1 s.

Figure 5.8: Moored decay tests in heave and pitch. The displacements are normalised by the maximum initial values.

WAVE-STRUCTURE INTERACTION

Additionally to the validation of the diffraction model based on decay tests, the structure is subjected to a regular
incoming wave whose characteristics are presented in Table 5.4. The results are compared against the corre-
sponding experimental data and the CFD model response.

Table 5.4: Regular wave parameters.

f [Hz] T [s] H [m] λ [m]
d

g T 2

H

g T 2 Wave theory CFD

0.08 12.1 7.1 231.0 0.139 0.005 Stream function

Before the structure is in the nonlinear numerical wave tank, the free surface elevation is measured at the same
x-coordinate as where the COG of the body is to be placed. The distances to the wave generator are not the
same as in the experimental model, as neither is the ramping-up time span. The domain dimensions are the
same ones used for the decay tests, although this time the absorption relaxation zone is extended two meters,
resulting in 4 m length, which corresponds to approximately one wave length. The absorption zone is imposed
to be a potential current with zero velocity, i.e. still water. Table 5.5 presents the dimensions of the nonlinear
numerical domain for this specific case, where the letters are indicated in Figure 5.3. The dimensions e, f and g,
as well as the width, do not change. The total number of cells is 6 million, with 95 points per wave length.

The surface elevation amplitude, aligned with respect to the experimental data, is in good agreement with the
experiments, although a higher crest and smoother trough start to be devised in the fully nonlinear CFD solution,
since the wave is not linear anymore. The ramping-up process is depicted in the experimental data time series
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Table 5.5: Dimension of the numerical set-up, with the letters referred to Figure 5.3, in wave lengths (w.l.).
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Figure 5.9: Free surface elevation measured right after the generation zone (a), heave (b) and pitch (b) response of the moored floating
platform.

and in the CFD model response; in the former an overshooting of the wave elevation right after the fourth wave
period is seen, which consequently increases the response in pitch and heave. Note that there is no ramping-
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up of the wave in the diffraction model. If the surface elevation is analysed from the sixth wave period on, the
amplitude complies with the experiments, for both of the numerical models.
The response of the diffraction model in heave amplitude matches both the experimental data and the nonlinear
CFD model. A lower frequency component is identified in the latter at 36 s period, which indicates that the pitch
is excited around its natural frequency by the third harmonic of the wave, and due to the coupling, it shows
up in the heave response. Both responses present an almost negligible phase shift in heave with respect to the
excitation one.
For the pitch response, a good agreement is observed with the experiments. Both the experimental data and the
CFD model show again a lower frequency component at the same period as the response in heave, around the
pitch natural frequency, which is excited by the third harmonic of the wave. The amplitude of heave and pitch
responses of the diffraction model comply with the obtained RAO for the case of the experimental model data
and the diffraction model computations, as seen in Table 5.6. As previously discussed, at this frequency range the
effect of the heave plates is not as relevant as closer to the resonance region. In this table, RAO experiment and
RAO diffraction indicate the ones experimentally obtained and from the frequency-domain analysis with Wadam,
respectively. The MARIN exp, waveDyMFoam and SIMO simul. indicate the averaged amplitude oscillation at the
main excitation frequency component, taking into account from the sixth period on of the time series presented
in Figure 5.9. These amplitudes can be visualised in Figure 5.18 for an excitation frequency of 0.52 rad/s, with the
results obtained for the fully nonlinear CFD model denoted with black stars, and the ones corresponding to the
diffraction model, indicated by red triangles.

Table 5.6: Response amplitude in m/m for the different models at an excitation frequency of 0.52 rad/s.

DOF RAO experiment MARIN exp. waveDyMFoam RAO diffraction SIMO simul.

Heave [m/m] 0.31 0.28 0.32 0.27 0.28
Pitch [deg/m] 0.29 0.32 0.35 0.26 0.31

5.5. RESPONSE IN HEAVE RESONANCE CONDITIONS

The natural frequencies of the semisubmersible floating platform treated here in pitch and roll are over 30 s. At
these periods the wave energy is expected to be small, and therefore large resonant motions are not likely to take
place in these modes. However, the heave natural frequency is lower than 20 s; waves with such long periods
may be given after a storm generated far away. These periods may lead to the structure’s excitation in heave. This
section addresses the response of the floating platform in pitch and heave under these conditions. The incoming
wave is defined by the parameters presented in Table 5.7. To estimate the length of the domain given such a large
wave length, a propagation study of the wave without the presence of the structure at the numerical wave tank is
done, to verify that no reflections from the boundaries take place. After several iterations, the minimum length of
the numerical domain to avoid any disturbances results to be 22 m, with the absorption zone of at least one wave
length long. Table 5.8 presents the dimensions of the nonlinear numerical domain for this specific case, where
the letters are indicated in Figure 5.3. The dimensions e, f and g, as well as the width, do not change. In order to
be as computationally efficient as possible, the same multi-grading meshing strategy as it was followed for the
floating vertical cylinder subjected to waves is applied: from the wave generation zone up to 1.25 m downstream
the body, the mesh cells present a constant aspect ratio equal to unity, with 100 points per wave length. This
yields a numerical diffusion of less than 4% at the point where the structure will be placed, as seen in Figure 5.11.
Downstream, the mesh is expanded linearly, so the further from the body, the larger ∆x, as seen in Figure 5.10.

Table 5.7: Wave parameters of the fully nonlinear regular wave with a period close to heave resonance of the structure.

f [Hz] T [s] H [m] λ [m]
d

g T 2

H

g T 2 Wave theory CFD

0.06 17.4 3.0 472.70 0.0673 0.001 Stream function

The response of the structure to the 17.4 s wave excitation period is presented in Figure 5.12. The undisturbed
free surface elevation at the generation zone, as well as its phase, is seen to be in complete agreement for the two
models.
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Table 5.8: Dimension of the numerical set-up, with the letters as indicated in Figure 5.3, in wave lengths (w.l.).

a b c d

(w.l.) 0.2 1.1 0.3 2.0

Figure 5.10: Background mesh of the resonance in heave conditions.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

x [m]

0

0.2

0.4

0.6

0.8

1

a
1
/
a
1
,a
n
a
ly
ti
ca
l
[-
]

stream function

waveFoam, 15 p.p.c.d.

Figure 5.11: Comparison of the numerical free-surface elevation against the analytical solution given by the stream function. the horizontal
coordinate is the distance to the first main column. a1 is the amplitude of the first harmonic component of the incoming wave in the
nonlinear CFD tank.

Due to the small potential damping given at this excitation frequency, the resonant motion is governed almost
entirely by nonlinear drag forces on the platform. The amplitude of the CFD nonlinear model heave response
is seen to increase up to the sixth period, from where it seems to reach a steady-state. The response of the
diffraction model is 40% lower, although it complies with the RAO experimentally obtained, since the model was
adjusted to this one. The vertical velocities are larger in these conditions, which has an effect on the KC and Re
number, and therefore on the drag coefficient, as depicted in Figure 3.6a. Furthermore, the wave height affects
the transfer function in heave, particularly close to resonance, as studied in Kirk (1985). Here the amplitude
operator for semisubmersibles in resonant heave conditions, i.e. with excitation periods around 20 s, is expressed
as a function of the wave height, and is also compared to the results for similar structures given in Paulling (1977),
Kim & Chou (1972) and Clauss (1978). This does not directly imply that the diffraction model here developed is
not able to capture the amplitude of the heave motion in resonance, but that the adjustment of the model for
conditions close to resonance should be carefully done, and studied for different wave heights.
The response amplitude as computed here with the fully nonlinear CFD model is seen to be of almost 1.8 times
the wave amplitude. Since waves with 17.4 s wave period may present large wave heights, other techniques to
limit the motions at this frequency should be proposed. The response in pitch shows better agreement between
the models; it also complies with the obtained RAO in pitch at this frequency, as seen in Figure 5.18b.
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(a) Free surface elevation.
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(b) Heave response.
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(c) Pitch response.

Figure 5.12: Free surface elevation (a), heave (b) and pitch (b) response of the moored floating platform.

5.6. RESPONSE TO WAVES INCREASING IN STEEPNESS

To investigate the response of both numerical models to waves increasing in steepness, four waves are chosen
based on the data in Li et al. (2013). The wave parameters are presented in Table 5.9. The maximum wave height
is calculated with Equation 2.18, and the parameters according to the fully nonlinear stream theory (Fenton
(1988)), for the CFD model. Note that for the sake of consistency the wave amplitude is considered to be H/2.
The dimensions of the numerical set-up of the CFD model are the same ones as indicated in Figure 5.3. The
number of points per wave length is 41 at the free surface for the four cases.
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Table 5.9: Wave parameters of the fully nonlinear regular waves with increasing steepness.

H/Hmax [-] d [m] H [m] T [s] λ [m] D [m] kA [-] kd [-] kD [-]

0.50 200 6.76 8 105.88 55.44 0.20 11.87 3.29

0.55 200 7.73 8 107.82 55.44 0.23 11.65 3.23

0.60 200 8.45 8 108.77 55.44 0.24 11.55 3.20

0.73 200 10.30 8 112.35 55.44 0.29 11.19 3.10

The free surface elevation of the undisturbed incident waves for the four cases, as generated in the nonlinear
numerical wave tank, is presented in Figure 5.13, normalised by the water depth. The higher the steepness, the
shorter the crest and the wider the trough.
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Figure 5.13: Surface elevation of the incident stream function waves, normalised by the water depth. Note that the crest is aligned to the first
wave period, for visualisation purposes.

From the generation zone of the nonlinear numerical wave tank up to approximately 1 m upstream the COG
(or 0.25 m upstream the front main column of the floater), the wave presents an 8% lower wave height, due to
numerical diffusion. Therefore, for the sake of consistency in the comparison of the two numerical models, the
same wave height is applied in the diffraction model. The ideal practice should be to avoid the numerical diffu-
sion, but due to time restrictions and computational resources, the adopted approach is the most feasible one.
The undisturbed free surface elevation in Figure 5.14a, measured 0.25 m upstream the COG of the structure, cor-
responds to an effective H/Hmax = 0.5. The steeper waves, presented in Appendix B, Section B.7, correspond to
effective incident wave heights of H/Hmax = 0.55, H/Hmax = 0.60 and H/Hmax = 0.73, respectively, as presented
in Table 5.9.

5.6.1. MOTIONS

The response in heave and pitch for an incident wave height of H/Hmax = 0.5 is presented in Figure 5.14.
A transient response is observed up to the sixth period, from where steady-state is reached. The motions are
very small compared to the incoming wave height. The response is inertia dominated, which implies that the
drag forces do not play such an important role; furthermore, a shift in the response phase with respect to the
incoming excitation one takes place. The nonlinearity of the wave is identified in the response in heave of the
CFD model, which presents a slightly lower amplitude at the trough. The RAO values at this frequency (0.79 rad/s)
are indicated in Figure 5.18: they are approximately 0.1. Note that this value is used just for reference purposes,
since it is not certain that the number of waves at 8 s with the wave height used to compute the experimental RAO
is enough to be able to directly compare the results obtained. The phase of the motions is well captured by both
models. The mean difference in peak-to-peak amplitude, calculated based on the last ten periods, is presented in
Table 5.10. The main difference in heave comes from the amplitude at the trough. Based on a frequency-domain
analysis of the CFD model response, a lower frequency component is also observed in the pitch time series: the
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one corresponding to the natural frequency in this same mode, which may be excited by the fourth harmonic
of the wave. Even though its content in frequency is negligible with respect the three first ones, it may still be
enough to excite the pitch around its natural frequency.
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(a) Undisturbed free surface elevation 0.25 m upstream the structure, normalised by the incoming wave height.
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(b) Heave response of the COG , normalised by the incoming wave height.
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(c) Pitch response of the COG .

Figure 5.14: Free surface elevation (a), heave (b) and pitch (b) response of the moored floating platform. The time is normalised by the
incoming wave period, 8 s.

For steeper wave conditions the results are presented in Appendix B, section B.7, Figures B.8 to B.10; they follow
the same pattern as for the presented wave height. The response amplitude operator remains the same, so the
responses increase with the wave height; the motions of the structure in heave are still small in absolute value,
even for the steepest wave case. A wave height of 0.73Hmax , with a crest elevation of 10.3 m, yields a heave crest
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amplitude of approximately 0.5 m, according to both numerical models. Since the structure has a free-board
of approximately 12 m, in principle no green water or downflooding is likely to occur. However, this is not the
maximum wave height that can be given at these conditions, and therefore an analysis with larger wave heights
is recommended. Figure 5.17 presents the snapshots for the two steepest waves. Although the wave run-up does
not seem to have any contribution to the motions, this one should be considered for detailed design purposes of
the structure, as discussed in the following section.

Table 5.10: Mean peak-to-peak (crest-to-trough) amplitude of the motions for both models, based on the last ten periods, and the difference
in percentage. The heave motion is given in meters per wave height.

DOF |x̄i ,C F D | |x̄i ,di f f | ∆|x̄i | [%]

Heave [m/m] 0.12 0.16 25
Pitch [deg] 1.25 1.60 22

5.6.2. HYDRODYNAMIC LOADS ON THE STRUCTURE

The total vertical and inline integrated hydrodynamic forces to which the structure is subjected are calculated
for both models. Note that the overall response is inertia dominated. Prior to comparing the loads, the forcing
computed with the diffraction model is decomposed into the excitation forces (Fexc ), added mass, total damping
and restoring forces (Fam , Fd amp and Fr est , respectively). The linear and quadratic drag forces are not presented
since the relative contribution is negligible. It is presented in Figure 5.15, for a wave with H = 0.5Hmax . The
vertical force main contribution comes from the added mass and from the excitation forces, whereas for the
inline force the latter is the largest contributor.
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(a) Vertical force components.
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(b) Horizontal force components.

Figure 5.15: Force components of the total forcing on the structure computed with the diffraction model for a wave height of 0.5Hmax,br eak .

Both numerical models are compared in Figure 5.16 for one loading period. The forces are aligned to a zero-
crossing at t/T = 0.5. The order of magnitude of the peak-force vertical component is very similar for both
models, with a maximum difference in the steepest case of less than 14%. The difference at the crest and the
trough is explained by the shape of the wave itself. The loading shape of the diffraction model corresponds to the
first, linear, mode of the wave. However, the CFD model shows a different pattern. An initial analysis of this one,
based on the observations, is done, supported by the snapshots for the two steepest waves-structure interaction
in Figure 5.17 and in Figures B.11 and B.12, in Appendix B.

The general loading pattern for the three waves is very similar. The wave hits the main column at the front
(at around t/T = 0.21 in Figure 5.17). Then the wave is diffracted, and right after passing the first column,
and hitting the braces, it hits back the first column, after which it impacts at the other two main columns. At
around t/T = 0.55 the vertical accelerations are zero at the main part of the body (central column and back main
columns), whereas the horizontal ones are maximum at this same point. Once it has passed the whole body, the
wave propagates upstream and impacts the two main columns at the back. Although the same loading sequence
is observed for the three waves, the degree of steepness is seen to have an influence.
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(a) Total integrated vertical loading for H = 0.5Hmax .
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(b) Total integrated horizontal loading for H = 0.5Hmax .
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(c) Total integrated vertical loading for H = 0.6Hmax .
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(d) Total integrated horizontal loading for H = 0.6Hmax .
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(e) Total integrated vertical loading for H = 0.73Hmax .
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(f) Total integrated horizontal loading for H = 0.73Hmax .

Figure 5.16: Vertical and horizontal forcing.

From the frequency-domain analysis of the vertical loading it is seen that besides the main first wave harmonic
component, there is a lower frequency component that coincides approximately with the heave natural fre-
quency, at 17.8 s. The higher harmonics components of the wave, up to the sixth one, are also observed. The
natural frequency of the structure in roll is at around 32 s, which implies that the fourth harmonic of the wave
may excite it. For the inline force, the first four wave harmonics show up in the frequency-domain. This feature
cannot be identified by means of the diffraction model.
The maximum values of the vertical force for the two steepest waves (H = 0.73Hmax and H = 0.60Hmax ) are given
when the trough of the wave is hitting the main part of the body (central column and the two back main cylin-
ders) at around t/T = 0.20. Note the delay in the structure’s response to the two waves with different steepness.
This can be explained by a larger displacement caused by a larger impact of the steepest wave, which causes the
phase of the wave to arrive later to a same part of the body. Then the wave crest arrives at the main column and
causes a local force (around t/T = 0.37); part of the wave is reflected back, and part diffracts and moves forward,
and hits this first column at its back part, causing a local forcing at this point. This is followed by the impact of
the wave crest at the main part of the structure, namely the central column and the two back main columns. The
body has approximately half the diameter of the wave length, so when the crest hits the main body, the trough is
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at the front column. Since the vertical accelerations are maximum in absolute value at the crest and the trough,
when the maximum overall vertical loading takes place, so the trough is hitting the main part of the body, the
crest is approximately at the first main column. From this point, the largest accelerations at the main part of the
body start to decrease more slowly than the accelerations at the front main column increase, due to the shape of
the wave. In the case with lower steepness, the accelerations at the front column increase with a lower gradient
than for the steepest case (H = 0.73Hmax ); on the contrary, the accelerations at the main part of the structure
decrease faster than for the steepest case. Consequently, the small dip before the zero-crossing of the loading
is seen to be more pronounced for this case. The same is observed after the zero-crossing, where the positive
accelerations taking place at the front main column in the less steep case make less negative the overall loading
at this point. To better understand the different contributions of the elements involved and their interaction
with the wave phase, and how the local effects influence the total vertical loading, a further study on the different
elements of the structure should be completed.
The maximum horizontal force is given at t/T = 0.69 for H = 0.73Hmax and at t/T = 0.59 for the wave with
H = 0.60Hmax . The delay of the instants at which the maximum forces take place for both cases is seen in Fig-
ure 5.17, at t/T = 0.55. The maximum horizontal accelerations in absolute values are given at the zero-crossings
of the wave. Right before the maximum load in the steepest case, a dip is observed. A possible explanation for
it is the wider trough and its influence while the maximum accelerations are taking place at the main part of the
body. There are larger negative gradients at the front main column than the positive gradients at the main part
of the structure; the former will decrease the overall force, as seen where the dip is observed. For the wave with
H = 0.60Hmax , while the main part of the structure is being subjected to the acceleration previous to the largest
ones, the front main column is also contributing to decreasing the overall force, but with lower negative gradi-
ents. Another remarkable factor that should be addressed is the heave plates interaction with the wave, which
present a much larger diameter, and at the bottom of these the accelerations have still an important contribu-
tion. A thorough study of the different elements and their contribution to the overall horizontal loading should
be completed.

(a) H/Hmax = 0.60.

(b) H/Hmax = 0.73.

Figure 5.17: Snapshots of the free surface elevation showing the passage of the steep wave. Note that the mooring lines are not visualised.

The purpose of this structure is to have a wind turbine mounted on top. This has been disregarded for the hydro-
dynamic study. The most relevant effect observed here is wave run-up. Maximum run-up levels determine the
design of the platform. Furthermore, a good estimation of the wave run-up allows for an optimal location of the
boat landing, ladder and door. Several studies concerning the effects of highly nonlinear waves have been done
on semisubmersibles, such as the one reported in Paulling (2009), where wave run-up on the platform columns
and fluid pressures at various locations are calculated with a Navier-Stokes/VOF solver and verified against ex-
periments. These are proven to be underestimated by linear theory, as reported in Martin et al. (2001), where
an experimental investigation of wave run-up on columns was conducted on semisubmersibles in steep regu-
lar waves. L. Vos (2007) developed and validated a semi-empirical approach to predict wave run-up, based on
a small-scale experimental study that examined both regular and irregular wave run-up cylindrical and conical
pile foundations.
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5.7. SUMMARY

Throughout this chapter firstly a validation of the OC5-semisubmersible diffraction model against 1:50 scale ex-
perimental data and fully nonlinear CFD model was done, based on free and moored decay tests in pitch and
heave and on a wave-structure interaction case. The diffraction model showed to be properly adjusted with
respect to both the experimental and the fully nonlinear numerical models. Since some discrepancies were ob-
served between the CFD and the experimental model, the diffraction model was adjusted with a focus on the
former, given that the cases to be analysed at a latter stage were compared to this one. The wave-structure in-
teraction validation case (waves at ω=0.52 rad/s) shows a good correspondence of the experiments and the two
numerical models, both for pitch and heave, as it can be inferred from the summarising Figure 5.18, where all
the amplitude responses for different excitation frequencies are presented.
Secondly, the structure was subjected to a regular incoming wave with a period equal to the heave natural one
(at ω=0.36 rad/s). The amplitude in heave of the response of the diffraction model was seen to be 40% lower, al-
though it complies with the RAO experimentally obtained, as seen in Figure 5.18a, since the model was adjusted
to this one. However, as the transfer function at this region depends on the wave height, the diffraction should
be adjusted accordingly, not only with different wave heights, but concerning the drag coefficient, dependent on
the KC and Re numbers. The amplitude of the response in pitch is the same for both numerical models.
Lastly, the wave-structure interaction for three regular waves with the same frequency (at ω=0.79 rad/s), but in-
creasing in wave height, or in steepness, was studied. The response in motion of the diffraction model was seen
to be very similar to the CFD model, although the difference in the trough amplitude due to the nonlinearity of
the wave led to a larger error, as it can also be depicted from Figure 5.18. From this figure, it is seen that the
diffraction model complies with the calculated and experimental RAO. However, at this region, with such wave
height, the task of obtaining an accurate RAO based on the white-noise technique is not trivial. Furthermore,
linear wave theory did not apply in this case. The vertical and inline loads on the structure were also presented.
A good agreement between both models is seen in terms of the total integrated peak forces, both vertical and
inline. However, the loading pattern, as well as the visualisation of the structure subjected to waves, indicate that
the diffraction model does not capture other phenomena, such as wave run-up, resulting from waves with high
nonlinearities.
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Figure 5.18: In blue, the RAO obtained from the experiments at MARIN, based on white-noise technique; in red the one obtained from the
diffraction model developed at MARIN. In yellow, the RAO computed with Wadam, reproducing the model from the experiments. The blue
crosses correspond to the model in SIMO, but reproducing identically the CFD model. The black stars correspond to the RAO based on the
simulations with OpenFOAM®. The red triangles is the RAO based on the same simulations with SIMO, based on the nonlinear numerical
model.





6
CONCLUSIONS AND FURTHER RESEARCH

In this thesis, the response of three different floating structures to nonlinear wave loading is investigated using
a fully nonlinear Navier-Stokes/VOF solver (in the following referred to as fully nonlinear CFD model). The third
of the structures, the OC5-semisubmersible floating platform, is also studied with a second-order potential flow
theory solver (in the following referred to as diffraction model).
First, the fully nonlinear Navier-Stokes/VOF numerical wave tank, developed within the open-source CFD tool-
box OpenFOAM® framework (version 1606+), is validated against experimental data that include the response
of a 2D floating box and a 3D floating vertical cylinder. To model the motions of the floating structures and the
generation and absorption of waves, the interDyMFoam solver, provided by the OpenFOAM® library, is extended
with the waveFoam package, developed by Jacobsen et al. (2012). Furthermore, a simple catenary mooring line,
developed by Niels G. Jacobsen (Deltares), is implemented for the moored cases. The OC5-semisubmersible
floating platform study is also completed in this numerical wave tank.
Second, a potential flow theory based model of the OC5-semisubmersible floating platform is generated. The
frequency-domain analysis is done with the Wadam software and the time-domain simulations with SIMO. Both
tools are commercial software found within the SESAM package by DNV-GL. The diffraction model is validated
against the experimental data and the fully nonlinear CFD solver described above.
Lastly, both numerical approaches are compared to assess their suitability for modelling two different conditions
where nonlinearities are of relevance: heave resonance conditions and regular waves with increasing steepness.
A discussion of the results and conclusions, followed by recommended further research, are presented in the
following sections.

6.1. DISCUSSION

To answer the main research question, presented in Chapter 1, three sub-questions are addressed. The first one is
covered in Chapter 4, whereas the answer to the second and third sub-questions are presented within Chapter 5.
The discussion of these is provided below.

• Is the nonlinear numerical wave tank capable of predicting the motions and capturing the nonlinearities of
floating bodies subjected to steep regular waves?

This sub-question is answered in two parts, corresponding to the two validation cases (floating box in a
2D domain and vertical floating cylinder in a 3D domain) treated here to assess the fully nonlinear CFD
numerical wave tank capability for predicting the motions and capturing the nonlinearities:

– 2D floating box: this case is run in a 2D numerical domain. Physically, it implies that the body has
three degrees of freedom, namely heave, roll and sway. Numerically, it means that the Navier-Stokes
equations are not solved in the third dimension. A roll decay test is performed to obtain the natural
period and the damping coefficients for different mesh refinements. The results are seen to converge
to a solution which is in agreement with the experimental data presented in Ming et al. (2014), both in
natural period and in the computed damping. Prior to subjecting the structure to incoming waves, a
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wave propagation convergence study is done and a wave-structure interaction case is also computed
and compared to the experimental data. Despite the difficulties encountered in the dynamic mesh
capabilities, the numerical wave tank is validated for this 2D case, as proven in Section 4.2.

– 3D floating vertical cylinder: this case considers a cylinder allowed to rotate and translate in six
degrees of freedom. The results of the different tests computed in this part are validated against ex-
perimental data from Palm et al. (2016). Firstly, heave and pitch free decay tests are done, to compare
the unforced response of the body, and to compute the degree of linear and nonlinear damping. The
heave decay test is in agreement with the experimental data, whereas the pitch response shows dis-
crepancies. These are not due to the model itself, but due to inaccuracies when measuring these in
the experimental model and to the sensitivity of the response to changes in the structural properties,
as proven in Section 4.3. Furthermore, the fully nonlinear CFD solver is capable of capturing an insta-
bility arising from the transfer of energy between heave and pitch, known as Mathieu instability. Sec-
ondly, moored decay tests are carried out for the same configuration. The response of the structure
with the mooring lines implementation does not show different results compared to the free decay
tests. Lastly, the moored vertical cylinder is subjected to incoming steep regular waves. The struc-
tural response is in agreement with the experimental data for both heave and pitch, although not
for surge. Given this mismatch between the fully nonlinear numerical model and the experimental
results, a study with a different stability method for the velocity-pressure coupling is executed. This
modification yields a better agreement between the numerical and the experimental data, although
the difference is still considerable. The forces on the fairlead of the cylinder are also computed, to
verify that these are in agreement with the experimental data. The mean value of the front fairleads
is properly captured, although the amplitude is underestimated by the CFD model. The mean value
at the back mooring is underestimated, although the amplitude is in good agreement. A possible rea-
son may lie on the use of a quasi-static model of the mooring lines, instead of a dynamic one. Despite
these differences, the phase of the response, as well as the amplitude of the system, is well predicted.

Based on the analysis of the previously discussed results, it can be stated that the fully nonlinear Navier-
Stokes solver is capable of predicting the motions and capturing the nonlinearities involved in both cases.

• How does the motion of a semisubmersible floating platform under heave resonance conditions computed
by both numerical models compare?

Prior to addressing this sub-question, the OC5-semisubmersible diffraction model is built, as described
in Section 5.4. A frequency-domain analysis is done for obtaining the frequency-dependent hydrody-
namic properties of the floating structure, including the response amplitude operators (RAO). The non-
linear damping is adjusted based on the experimental data from MARIN. To validate the diffraction model
against the experimental results and the fully nonlinear numerical model first heave and pitch decays are
performed, after which the floating structure is subjected to linear regular waves. The diffraction model
is proven to be capable of reproducing the experimental data, as well as the fully nonlinear CFD model
response.
At the next stage the structure is subjected to incoming regular waves with a period of 17.4 s, i.e. right at the
heave resonance one. Due to the small potential damping given at this excitation frequency, the resonant
motion is governed by nonlinear drag forces on the floating platform. The amplitude of the fully nonlinear
CFD model steady-state response in heave is 40% higher. The response of the diffraction model complies
with the RAO experimentally obtained, since the model was adjusted to this one. However, the vertical
velocities are larger in these conditions; these affect the KC and Re number which inherently influence
the drag coefficient.
Furthermore, as proven by Paulling (1977), the wave height has an effect on the transfer function in heave,
particularly close to resonance, so the RAO should be obtained for different wave heights. This does not
directly imply that the diffraction model is not able to capture the amplitude of the heave motion in reso-
nance, but that the way of adjusting the model for conditions close to resonance should be carefully done,
and studied for different wave heights. The response in pitch shows a good agreement between the models;
it also complies with the obtained RAO in pitch.
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• What is the limit of a potential flow based solver regarding wave steepness?

The last point of this work addresses the response of both models of the OC5-semisubmersible when it is
subjected to three waves with a period of 8 s, but with increasing wave height, or steepness, up to 73% of
the wave height breaking limit. Both the motions in heave and pitch and the inline and vertical forces are
calculated and compared. It is observed that the motions computed with the diffraction model are larger,
which is explained by the shape of the nonlinear wave, whose trough does not reach such a large value.
From the vertical and horizontal loads analysis, it is seen that the peak forces are in agreement between
the models, with a mere maximum discrepancy of less than 14% for the steepest wave case. However, the
loading pattern is not in agreement. The interactions of the steepest waves with the elements of the struc-
ture should be further analysed. No green water on-deck is observed, although the case treated here does
not correspond to the steepest wave that can take place. The most relevant effect observed in the current
case is wave run-up, which may affect secondary elements on offshore wind turbine platforms, such as
boat landing facilities, J-Tubes, ladders or accessing doors. Therefore for these cases either a diffraction
model in combination with a validated semi-empirical model is used, or a fully nonlinear CFD is needed.

6.2. CONCLUSION

The sub-questions were discussed to provide an answer to the following main research question:

How does a (second-order) potential flow theory based diffraction model compare to a fully nonlinear
Navier-Stokes numerical wave tank when solving complex fluid-structure interaction problems for offshore

floating wind platforms?

To answer this question, the main conclusions that support the final analysis are presented. The conclusions
drawn from the first part of the thesis, in which the nonlinear wave tank is further validated for two floating
structures (2D floating box and 3D floating vertical cylinder) are given in the following.

• The fully nonlinear Navier-Stokes/VOF numerical wave tank is successfully validated for a floating box in
a 2D domain and a floating vertical cylinder in a 3D domain.

• The waveDyMFoam solver with a quasi-static mooring system model implementation is capable of pre-
dicting the vertical motions and capturing the nonlinearities of floating bodies subjected to steep regular
waves.

• The under-relaxation method is seen to provide decent and stable results for the cases studied here.

The conclusions that can be drawn from the second part of the thesis, which concerns the two numerical models
of the OC5-semisubmersible floating wind platform, are enumerated hereafter.

• Both the diffraction and the fully nonlinear CFD model are capable of reproducing wave-structure interac-
tion where linear wave theory applies. However, the computational cost of the diffraction model is much
lower.

• Under heave resonance conditions, the response in heave of the diffraction model shows a 40% lower am-
plitude. The reason behind is related to the transfer function dependency on the wave height. Moreover,
the velocities in these conditions are different to the ones used to adjust the quadratic damping of the
diffraction model. The response in pitch for both numerical models is in agreement.

• The peak vertical and horizontal loads predicted by both numerical models are proven to be in agreement,
although the loading pattern is not captured by the diffraction model. Furthermore, the main local effect
identified here, a wave run-up on the columns as the wave crest impacts on them, cannot be captured by
the diffraction model.

The main research question is answered based on the presented conclusions. The numerical tools that are used
throughout this research represent two very different approaches to solving the same problem. On the one side,
the diffraction model solves the inviscid and irrotational governing equations of the boundary value problem up
to the second-order. On the other side, the fully nonlinear CFD solver resolves the fully nonlinear Navier-Stokes
equations.
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During the current research, two different types of three-dimensional wave-structure interaction problem are
studied with the fully nonlinear CFD solver. On the one hand, the second validation case (the 3D vertical floating
cylinder) comprises a geometry with low complexity. This permits the a refinement of the mesh at specific lo-
cations without exceeding a large computational cost. Consequently, the nonlinear effects are captured and can
be analysed in detail at not so high computational costs. On the other hand, the OC5-semisubmersible presents
a more complex geometry, which implies a larger amount of cells, and therefore higher computational resources
for the same length-scales. Hence a high degree of refinement in the areas of interest is not as feasible, due to
computational resources.
Therefore, from a computational efficiency point of view, the answer to the research question is that for structures
with low geometrical complexity, for capturing and studying the physical phenomena involved, a nonlinear CFD
model is recommended. For structural design purposes, which usually imply more complex geometrical shapes
than a cylinder or a box, a fully nonlinear CFD model is needed to calibrate the diffraction model. However,
once the latter is adjusted and validated, the results are given at a much lower computational cost. Based on
the findings during the current research, for more detailed design and optimisation stages, a CFD model should
be applied, so that local effects of nonlinearities on the structure, and their consequences, are captured and
analysed. These events include wave run-up, slamming loads on secondary elements or green-water on deck.
Moreover, the possible frequency components different from the first (and second) mode on the loading are
usually not captured by a diffraction model. These might be of higher relevance for TLP structures, which are
more likely to be excited by higher-order components. For these, and other types of offshore structures, a similar
analysis should be done, since depending on the structural properties the effects of nonlinearities may differ. A
summary of the conclusions discussed is presented in Table 6.1.

Figure 6.1: Overview of the suitability for numerical models for the cases treated during the current research.

6.3. FURTHER RESEARCH

Although the capability of the fully nonlinear CFD solver to predict motions and to capture the nonlinearities
has been proven during the validation process of the same in Chapter 4, several areas that require improvement
have been identified. These are listed as recommendations for further research.

• Capabilities of the dynamic mesh in the Navier-Stokes/VOF solver. For moored floating wind structures
this should not be as relevant, since they are likely to be studied under deep-water conditions, and there-
fore the radial outer mesh function of the dynamic mesh solver should not be a problem. However, for
other offshore applications, such as wave energy converters, where shallower waters apply, the dynamic
mesh motion should not be limited by the radial distance, which cannot be larger than the water depth,
although it is still on an improvement stage. The new version of OpenFOAM®, v1706, includes a new
functionality which would enable to perform overset mesh calculations. Therefore the application of this
technique to avoid the difficulties encountered in this research should be investigated for wave-structure
interaction problems dealing with long waves.
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• Implementation of turbulent models in the Navier-Stokes/VOF solver. In all the validation cases anal-
ysed, the viscous boundaries are neglected, by applying slip conditions to the solid wall boundaries. For
further research, the effect of shear stresses at the wall boundaries should be studied.

• Procedure to calculate the damping of the system, especially in roll/pitch. The linear-plus-quadratic
damping model used throughout this work is widely applied in industry. However, it should be born in
mind that the task of identifying roll damping is not trivial, due to the highly nonlinear damping mecha-
nism, as described in Chakrabarti (2001), which may also involve higher-order components.

• Validation of the motions and loads of the quasi-static model of the mooring lines. The model imple-
mented here shows good results in the vertical motions. However, the moorings are substantial for the
horizontal ones, and therefore a validation of the model implemented here should be done.

Regarding the second part of this research, further development is recommended in the following areas.

• Efficiency of the fully nonlinear CFD model for long waves. One of the alternatives to the use of relaxation
zones for absorbing the waves in order to avoid reflections is the Generating and Absorbing Boundary
Conditions (GABC), as presented in Düz et al. (2017), although it still presents some limitations.

• Effects of the wave height in the response amplitude operator under resonance conditions. In order to
be able to fully understand how the wave height affects the behaviour of semisubmersibles, not only for
wind energy purposes, more analyses in these conditions, but with different wave heights, should be done.

• Effects of the heave plates under heave resonance conditions. An analysis of the nonlinear physical phe-
nomena taking place in resonance conditions at the heave plates should be investigated.

• Computation of wave loads on the moored structure. The computed loads with both models should be
validated with experimental data.

• Computation of the local effects of steep waves on the different structural elements. The nonlinear ef-
fects deriving from steeper waves should be studied at the different elements of the floating platform.

• Computation of impact loads on semisubmersibles in irregular sea states. Additional sea states to make
a better comparison of both models, including phase-focused irregular sea states, using the efficient fully
nonlinear potential flow solver developed by Paulsen et al. (2014a), should be implemented.

• Development of semi-empirical models to be coupled with diffraction models. In order to be able to de-
crease the computational costs related to phenomena that imply high nonlinearities, the development and
coupling of semi-empirical models with diffraction models, such as the ones mentioned here concerning
wave run-up, should be investigated and validated.
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A
VALIDATION CASES

A.1. 3D CASE. FLOATING VERTICAL CYLINDER

The mesh of the numerical domain of the 3D vertical floating cylinder when subjected to steep regular waves,
presented in Chapter 4, Section 4.3.3 is depicted in Figure A.1. The finest mesh is identified upstream the body
and around the free surface; downstream the grid coarsens linearly.

Figure A.1: Overview of the numerical set-up of the vertical floating cylinder.

A.1.1. SURGE RESPONSE TO INCOMING WAVES FREQUENCY ANALYSIS

Figure A.2 presents the frequency-domain decomposition of the time-domain response of the floating vertical
cylinder subjected to regular waves (T = 1.2 s and H = 0.04 m), as presented in Chapter 4, Section 4.3.3. Three
frequencies are identified: the one corresponding to the main wave excitation frequency (around 1.2 s), the sec-
ond one to the second harmonic of the wave (around 2.4 s) and the lowest one to the natural frequency in surge
(around 9 s).
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Figure A.2: Response of the floating cylinder to the waves in surge in the frequency-domain.
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A.1.2. MOORING LINES FORCES

The mooring system consists of three mooring lines, implemented quasi-statically on the floating cylinder. The
one in the back is placed at a zero degree angle, with respect to the incident waves angle. The two mooring lines
in the front are implemented 120◦ separated from each other, as it can be seen in Figures A.1 and A.3. The mass
per length of the chain is 0.1447 kg/m, the submerged weight 1.24 N/m and the diameter 0.0048 m, as stated in
Palm et al. (2016).

Figure A.3: Geometric description of the experimental setup and the mooring cable configuration (Palm et al. (2016)). Here cable 1 and cable
3 correspond to the front 1 and front2 mooring lines, respectively.

The forces are calculated at the fairlead position. The initial vertical component is equal to the submerged weight
of the mooring line. All the reactions are consistent with each other. However, the total force does not match
the one measured experimentally. The results presented here correspond to the simulation completed with the
predictor-corrector method.
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0 2 4 6 8 10 12 14 16 18

Time, t/T [-]

-4

-2

0

2

4

6

F
o
rc
e
m
o
o
ri
n
g
fr
o
n
t1

[N
]

experiments, Palm et al.

waveDyMFoam, total force

x-component force

y-component force

z-component force

(b) Total force and components at the fairlead of the front mooring line.

0 2 4 6 8 10 12 14 16 18

Time, t/T [-]

-4

-2

0

2

4

6

F
o
rc
e
m
o
o
ri
n
g
fr
o
n
t2

[N
]

experiments, Palm et al.

waveDyMFoam, total force

x-component force

y-component force

z-component force

(c) Total and components at the fairlead of the front mooring line.

Figure A.4: Mooring lines total forces and the components.





B
OC5-SEMISUBMERSIBLE CASE STUDY

B.1. DIMENSIONS OF THE OC5-SEMISUBMERSIBLE FLOATING SUBSTRUCTURE

Table B.1: Dimensions of the of the full-scale OC5-semisubmersible sub-structure of the floating wind system, as indicated in Figures B.1, B.2
and B.3.

Indicator a b c d e f g h i j k

Length [m] 14.0 24.0 6.0 26.0 43.3 28.9 14.4 24.0 3.0 26.4 50.0

Figure B.1: Left-view of the sub-structure of the floating wind structure, the OC5-semisubmersible. All the dimensions, referred with letters,
are defined in Table B.1. The COG is denoted as I.
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Figure B.2: Back-view of the sub-structure of the floating wind structure, the OC5-semisubmersible. All the dimensions, referred with letters,
are defined in Table B.1. The COG is denoted as I.

Figure B.3: Top-view of the sub-structure of the floating wind structure.
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B.2. FLOATING PLATFORM STRUCTURAL PROPERTIES

Table B.2: Dimensions of the main components of the full-scale OC5-semisubmersible floating structure.

Element [m] Number Diameter [m] Length [m]

Transition piece (TP) 1 7 6
Central column (CC) 1 6.5 26
Main columns (MC) 3 12 26

Heave plates (HP) 3 24 6
Braces 9 1.6 -

Table B.3: Properties of the full-scale OC5-semisubmersible floating platform as implemented in the numerical models. Note that d1 and d2

denote the draft with and without moorings, respectively.

d1 d2 KG Total mass Buoyancy Ixx Iy y Izz

20.54 m 20.00 m 11.93 m 1.42·107 kg 13900 m3 1.55·1010 kg·m2 1.49·1010 kg·m2 1.37·1010 kg·m2

B.3. RESTRAINTS (MOORING LINES AND HORIZONTAL SPRINGS)

Table B.4: Properties of the full-scale restraining system of the floating wind structure and points of attachment on the body (fairlead) and at
the seabed (anchor). In brackets the label for each element as indicated in Figures in Figures B.1, B.2 and B.3 is given.

Unstretched length [m] Submerged weight [N/m] Fairlead Anchor

COG (I) - - 0.0, 0.0, 5.93 -

Front mooring (II) 919.09 1066.35 (40.9, 0.0, 0.0) (921.7, 0.0, 0.0)
Back mooring (III) 835.50 1066.35 (-40.9, 0.0, 0.0) (838.1, 0.0, 0.0)

Springs (IV, V) - k = 37250 (-20.4, -/+35.4, 30.0) (-20.4, -/+100.0, 30.0)

B.3.1. MOORING LINES STIFFNESS

To account for the mooring system stiffness in the diffraction model, the stiffness components of the lines are
calculated according to the following expressions:

k11 = Sh cos2αx

k21 = Sh cosαx sinαx

k51 = k11z = k15

k22 = Sh sin2αx

k41 = −k21z = k14

k42 = −k22z = k24

k62 = k22x −k21 y = k26

k44 = −k42z +Py y +Pz z
k46 = k24x −k41 y −Px z
k64 = k24x −k41 y −Pz x
k55 = k51z −k53x +Px x +Pz z
k66 = k62x −k61 y +Py y +Px x

(B.1)

Sh is the horizontal constant and αx is the angle at which the fairlead is placed with respect to the positive x-
direction. Px and Py are the x- and y- components of the pre-tension. In order to illustrate stiffness derivation
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procedure for every component, the one in surge (K11) is derived in the following.

Sh =µsub g

 −2√
1+2

τ∗

h

+cosh−1
(
1+ h

τ∗

) , (B.2)

where µ is the submerged mass and τ∗ = τhor
µg , where τhor is the horizontal pretension, already known. h is the

vertical coordinate of the touchdown point, and is given by:

h =
µsub g l 2

e f f

2E A
+τ∗

√
1+

(
le f f

τ∗

)2

−1

 (B.3)

The effective length le f f , indicated in Figure B.4, is calculated iteratively by:

lr est = ltot − le f f = lhor,tot − lhor = lhor,tot −τ∗ sinh−1
(

le f f

τ∗

)
− τhor le f f

E A
, (B.4)

where ltot is the total length of the catenary, from pl to p0. The total restoring stiffness in surge is given by the
sum of the two mooring lines contributions, 1 and 2, respectively, as:

K11 = k11,1 +k11,2 = Sh,1 cos2αx,1 +Sh,2 cos2αx,2, (B.5)

where αx,1 and αx,2 are 0◦ and 180◦, respectively.

Figure B.4: Catenary mooring line, with p0 the anchor point, pt the touchdown point and pl the fairlead.
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B.4. HYDRODYNAMIC PROPERTIES

Table B.5: Hydrostatic stiffness of the full-scale OC5-semisubmersible floating platform diffraction model.

C33 [N/m] C44 [N·m] C55 [N·m]

3.8·106 7.5·108 7.5·108

Table B.6: Viscous (quadratic) damping implemented in the hydrodynamic computations in Wadam. Obtained form the computations based
on the experiments carried out in MARIN.

B∗
11 [Ns2/m2] B∗

22 [Ns2/m2] B∗
33 [Ns2/m2] B∗

44 [Ns2m] B∗
55 [Ns2m]

1.02·106 1.02·106 1.90·106 2.91·109 2.91·109

B.5. QUADRATIC TRANSFER FUNCTION (QTF)

Figure B.5: Free surface mesh.
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Figure B.6: Difference-frequency quadratic transfer function in heave and in pitch.

B.6. VALIDATION OF THE DIFFRACTION MODEL

The frequency-domain decomposition of the experimental decay test (presented in Section 5.3, Figure 5.8a) from
MARIN and the diffraction model is presented in order to identify the lower frequency components.
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Figure B.7: Frequency-domain decomposition of the heave decay test.
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B.7. RESPONSE TO REGULAR WAVES INCREASING IN STEEPNESS

Here the free surface elevation, together with the motions with waves increasing in steepness is presented.

B.7.1. H/HMAX = 0.55
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(a) Undisturbed free surface elevation 0.25 m upstream of the structure, normalised by the incoming wave height.
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(b) Heave response.
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(c) Pitch response.

Figure B.8: Free surface elevation (a), heave (b) and pitch (c) response of the moored floating platform.
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B.7.2. H/HMAX = 0.60
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(a) Undisturbed free surface elevation 0.25 m upstream of the structure, normalised by the incoming wave height.
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(b) Heave response.
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(c) Pitch response.

Figure B.9: Free surface elevation (a), heave (b) and pitch (c) response of the moored floating platform.
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B.7.3. H/HMAX = 0.73
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(a) Undisturbed free surface elevation 0.25 m upstream of the structure, normalised by the incoming wave height.
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(b) Heave response.
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(c) Pitch response.

Figure B.10: Free surface elevation (a), heave (b) and pitch (c) response of the moored floating platform.
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B.7.4. VELOCITY COMPONENTS OF THE STEEPEST WAVES (H/HMAX = 0.60 AND H/HMAX =
0.73)

(a) x-component of the wave celerity.

(b) z-component of the wave celerity.

Figure B.11: Snapshots of the velocity components for H/Hmax = 0.60.

(a) x-component of the wave celerity.

(b) z-component of the wave celerity.

Figure B.12: Snapshots of the velocity components for H/Hmax = 0.73.



C
OPENFOAM® CODES

C.1. WAVEFOAM

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 2011−2016 OpenFOAM Foundation

\\/ M anipulation |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
License

This f i l e i s part of OpenFOAM.

OpenFOAM i s free software : you can r e d i s t r i b u t e i t and/ or modify i t
under the terms of the GNU General Public License as published by
the Free Software Foundation , e i ther version 3 of the License , or
( at your option ) any l a t e r version .

OpenFOAM i s distr ibuted in the hope that i t w i l l be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more d e t a i l s .

You should have received a copy of the GNU General Public License
along with OpenFOAM. I f not , see <http : / /www. gnu . org / l icenses / >.

Application
interFoam

Description
Solver for 2 incompressible , isothermal immiscible f l u i d s using a VOF
( volume of f l u i d ) phase−f r a c t i o n based i n t e r f a c e capturing approach .

The momentum and other f l u i d properties are of the " mixture " and a singl e
momentum equation i s solved .

Turbulence modelling i s generic , i . e . laminar , RAS or LES may be selected .

For a two−f l u i d approach see twoPhaseEulerFoam .
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\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

#include "fvCFD .H"
#include "CMULES.H"
#include "EulerDdtScheme .H"
#include "localEulerDdtScheme .H"
#include "CrankNicolsonDdtScheme .H"
#include "subCycle .H"
#include "immiscibleIncompressibleTwoPhaseMixture .H"
#include " turbulentTransportModel .H"
#include "pimpleControl .H"
#include " fvOptions .H"
#include " CorrectPhi .H"
#include "localEulerDdtScheme .H"
#include "fvcSmooth .H"

#include " relaxationZone .H"
#include " externalWaveForcing .H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

i n t main( i n t argc , char * argv [ ] )
{

#include " postProcess .H"

#include " setRootCase .H"
#include " createTime .H"
#include "createMesh .H"
#include " createControl .H"
#include " createTimeControls .H"
#include " createRDeltaT .H"
#include " initContinuityErrs .H"

#include " createFields .H"
#include " createFvOptions .H"
#include " correctPhi .H"

turbulence−>v a l i d at e ( ) ;

i f ( ! LTS)
{

#include "readTimeControls .H"
#include "CourantNo .H"
#include " s e t I n i t i a l D e l t a T .H"

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info << "\ nStarting time loop\n" << endl ;

while ( runTime . run ( ) )
{

#include "readTimeControls .H"
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i f (LTS)
{

#include " setRDeltaT .H"
}
else
{

#include "CourantNo .H"
#include "alphaCourantNo .H"
#include " setDeltaT .H"

}

runTime++;

Info << "Time = " << runTime . timeName ( ) << nl << endl ;

externalWave−>step ( ) ;

// −−− Pressure−v e l o c i t y PIMPLE corrector loop
while ( pimple . loop ( ) )
{

#include " alphaControls .H"
#include "alphaEqnSubCycle .H"

relaxing . correct ( ) ;

mixture . correct ( ) ;

#include "UEqn.H"

// −−− Pressure corrector loop
while ( pimple . correct ( ) )
{

#include "pEqn .H"
}

i f ( pimple . turbCorr ( ) )
{

turbulence−>correct ( ) ;
}

}

runTime . write ( ) ;

Info << "ExecutionTime = " << runTime . elapsedCpuTime ( ) << " s "
<< " ClockTime = " << runTime . elapsedClockTime ( ) << " s "
<< nl << endl ;

}

// Close down the external wave forcing in a nice manner
externalWave−>close ( ) ;

Info << "End\n" << endl ;

return 0 ;
}
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

C.2. WAVEDYMFOAM

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 2011−2016 OpenFOAM Foundation

\\/ M anipulation |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
License

This f i l e i s part of OpenFOAM.

OpenFOAM i s free software : you can r e d i s t r i b u t e i t and/ or modify i t
under the terms of the GNU General Public License as published by
the Free Software Foundation , e i ther version 3 of the License , or
( at your option ) any l a t e r version .

OpenFOAM i s distr ibuted in the hope that i t w i l l be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more d e t a i l s .

You should have received a copy of the GNU General Public License
along with OpenFOAM. I f not , see <http : / /www. gnu . org / l icenses / >.

Application
interDyMFoam

Group
grpMultiphaseSolvers grpMovingMeshSolvers

Description
Solver for 2 incompressible , isothermal immiscible f l u i d s using a VOF
( volume of f l u i d ) phase−f r a c t i o n based i n t e r f a c e capturing approach ,
with optional mesh motion and mesh topology changes including adaptive
re−meshing .

\*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

#include "fvCFD .H"
#include "dynamicFvMesh .H"
#include "CMULES.H"
#include "EulerDdtScheme .H"
#include "localEulerDdtScheme .H"
#include "CrankNicolsonDdtScheme .H"
#include "subCycle .H"
#include "immiscibleIncompressibleTwoPhaseMixture .H"
#include " turbulentTransportModel .H"
#include "pimpleControl .H"
#include " fvOptions .H"
#include " CorrectPhi .H"
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#include "localEulerDdtScheme .H"
#include "fvcSmooth .H"
#include "fvcSmooth .H"

#include " relaxationZone .H"
#include " externalWaveForcing .H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

i n t main( i n t argc , char * argv [ ] )
{

#include " setRootCase .H"
#include " createTime .H"
#include "createDynamicFvMesh .H"
#include " initContinuityErrs .H"

#include " readGravitationalAcceleration .H"
#include " readWaveProperties .H"
#include " createExternalWaveForcing .H"

pimpleControl pimple (mesh ) ;

#include " createControls .H"
#include " createRDeltaT .H"
#include " createFields .H"
#include "createMRF .H"
#include " createFvOptions .H"

volScalarFie ld rAU
(

IOobject
(

"rAU" ,
runTime . timeName ( ) ,
mesh,
IOobject : : READ_IF_PRESENT,
IOobject : : AUTO_WRITE

) ,
mesh,
dimensionedScalar ( " rAUf " , dimTime/rho . dimensions ( ) , 1 . 0 )

) ;

#include " correctPhi .H"
#include " createUf .H"

turbulence−>v a l i d at e ( ) ;

i f ( ! LTS)
{

#include "CourantNo .H"
#include " s e t I n i t i a l D e l t a T .H"

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\ nStarting time loop\n" << endl ;
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while ( runTime . run ( ) )
{

#include " readControls .H"

i f (LTS)
{

#include " setRDeltaT .H"
}
else
{

#include "CourantNo .H"
#include "alphaCourantNo .H"
#include " setDeltaT .H"

}

runTime++;

Info << "Time = " << runTime . timeName ( ) << nl << endl ;

// −−− Pressure−v e l o c i t y PIMPLE corrector loop
while ( pimple . loop ( ) )
{

i f ( pimple . f i r s t I t e r ( ) | | moveMeshOuterCorrectors )
{

s c a l a r timeBeforeMeshUpdate = runTime . elapsedCpuTime ( ) ;

mesh . update ( ) ;

i f (mesh . changing ( ) )
{

Info << " Execution time for mesh . update ( ) = "
<< runTime . elapsedCpuTime ( ) − timeBeforeMeshUpdate
<< " s " << endl ;

gh = ( g & mesh .C( ) ) − ghRef ;
ghf = ( g & mesh . Cf ( ) ) − ghRef ;

}

i f (mesh . changing ( ) && correctPhi )
{

// Calculate absolute f l u x from the mapped surface v e l o c i t y
phi = mesh . Sf ( ) & Uf ;

#include " correctPhi .H"

// Make the f l u x r e l a t i v e to the mesh motion
fvc : : makeRelative ( phi , U) ;

mixture . correct ( ) ;
}

i f (mesh . changing ( ) && checkMeshCourantNo )
{

#include "meshCourantNo .H"
}
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}

#include " alphaControls .H"
#include "alphaEqnSubCycle .H"

relaxing . correct ( ) ;

mixture . correct ( ) ;

#include "UEqn.H"

// −−− Pressure corrector loop
while ( pimple . correct ( ) )
{

#include "pEqn .H"
}

i f ( pimple . turbCorr ( ) )
{

turbulence−>correct ( ) ;
}

}

runTime . write ( ) ;

Info << "ExecutionTime = " << runTime . elapsedCpuTime ( ) << " s "
<< " ClockTime = " << runTime . elapsedClockTime ( ) << " s "
<< nl << endl ;

}

Info << "End\n" << endl ;

return 0 ;
}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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