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Abstract

This thesis takes a step towards developing a vine-based regression method tailored to mixed-type
(continuous & discrete) data. We visualize the difference between continuous conditional quantile
functions of bivariate copulas and their discretized (discretized by binning the continuous variable
into bins of equal probability) conditional quantile functions. This showed how discretization
into a small number of bins loses dependence, especially in the tails. We show a different
binning procedure can improve the preservation of dependence after discretization, motivating
the development of methodologies which compute an ‘optimal’ (optimal in the sense of balancing
tail dependence with dependence around the median) binning procedure given some data. For
application in computing an ‘optimal’ binning procedure, we make an attempt at analytically
quantifying the difference between discretized conditional quantiles and continuous conditional
quantiles of bivariate copulas, but the analytical derivation is not possible for most settings (with
exceptions for bivariate Clayton and bivariate Frank copulas, and the smallest conditioning value
of discretized covariate).

From the aforementioned conclusion that discretization loses dependence, we infer a variable
selection measure tailored to mixed-type data should be biased against discretized covariates,
and that this bias should be monotone decreasing with the number of bins of the discretized
covariate. The bias for/against discretized covariates of various variable selection measures is
investigated, in a scenario with a single covariate and a scenario with two covariates. With a sin-
gle covariate, Pearson’s/polyserial correlation and Kendall’s tau/tau-b were found unsuitable as
variable selection measures for mixed-type data, due to a lack of bias against discretized covari-
ates. Conditional log-likelihood and check-loss at the quantile level 0.05 seem nearly identically
biased in the bivariate setting, although this should be said with the caveat that all simulation
scenarios are homoskedastic. Finally, we show in a three-dimensional setting that correlation
between covariates does not seem to affect the predictive performance when both covariates are
continuous, but correlation between covariates has significant negative effects on the predictive
performance when one of the covariates is discretized. This difference between the effect of dis-
cretization in two dimensions and three dimensions should be kept in mind when developing
variable selection procedures for mixed-type data.



1 | Introduction

A statistician makes predictions by extracting information from data collected in the past. In
theory (and only in theory), a perfect understanding of a perfect dataset should give one the
ability to predict the future. In an effort to get one step closer to the ability to predict the future,
this thesis investigates how dependence modeling methods using copulas should be adapted to
account for discrete variables in the data.

Understanding and modeling dependencies between variables is a central challenge in modern
statistics and data science. In many real-world applications, the data consists of a mix of con-
tinuous and discrete variables: for instance, in health data, one might encounter blood pressure
measurements alongside binary indicators for disease presence; in finance, stock returns co-exist
with credit ratings. Methods to model dependencies tend to be developed under the assumption
of a dataset containing only continuous variables. There is a necessity to investigate whether
these methods remain effective when applied to mixed-type (continuous & discrete) data.

Accurate modeling of dependencies requires a large amount of data. Data-collection is often
expensive and time-consuming, making the sharing of data between organizations necessary
to build effective models for prediction. Sharing data between organizations is not always legal,
however. Take for instance healthcare data from hospitals in the Netherlands. Every hospital has
some small amount of data on, say, bowel cancer patients’ post-surgery recovery. The amount of
data each hospital has is not enough to accurately model dependencies with, so they want to pool
all their data together to create a sufficiently large dataset. However, such sharing of personal
patient data with other organizations is heavily regulated under privacy laws. If it were possible
to modify (by way of binning continuous data into discrete groups) patient data such that (1)
patient-privacy is protected, and (2) dependencies in the data are largely unaffected, hospitals
would be able to share privacy-protected datasets with each other, which would allow them
to model their patients’ post-surgery recovery more accurately. Building a privacy-preserving
dataset which retains the most amount of information possible requires an understanding of how
currently used dependence modeling methods handle discrete data, and of how discretization of
covariates changes dependencies.

In short, a deeper understanding of how dependence modeling methods should be adapted
to account for discrete variables in the data opens the door to more accurate prediction in a
wide range of applications where discrete variables play a role (from healthcare to finance, and
everything in between) and brings us one step closer to building informative, privacy-preserving
datasets.



2 | Preliminaries

We begin by providing a brief introduction to topics relevant to understanding the contents of
this thesis. In particular, this section will cover dependence measures, copulas, vine copulas
and variable selection measures for the construction of vine copulas with the aim of conditional
quantile estimation. A thorough introduction to the topics covered can be found in the book by
Czado [1].

2.1 Dependence measures

Quantifying the strength of the dependence relationship between a pair of random variables is
a tricky task. This is evident from the fact that there does not exist a single measure which
quantifies completely the strength of dependence between a pair of random variables. Neverthe-
less, the literature is full of measures which quantify certain types of dependence. This section
summarizes the dependence measures used in this thesis.

A dependence measure is a function of two variables which measures the degree to which two
variables are dependent. In this thesis, we use the terms dependence measure and correlation
measure interchangeably.

Pearson’s correlation measure is a measure of linear correlation between two variables [2]. It
is given by

Cov(X,Y)
PXY = o
Var(X)Var(Y)

Essentially, it is a measure of the covariance between random variables X and Y, normalized
by their variance to take values in the interval [—1,1]. Since the covariance captures only linear
dependence, Pearson’s correlation also captures only linear dependence.

In the case where one of the variables is ordinal (discrete, with a clear ordering on its val-
ues), we can use polyserial correlation [3]. Polyserial correlation assumes the ordinal variable is
produced from an underlying, normally distributed latent variable. To illustrate, say we observe
a discrete (all discrete variables will be assumed to be ordinal in this thesis) variable X, which
can take b values {z1,z2,...,2p}, and a continuous variable Y. When estimating the polyserial
correlation between Y and X, we assume X is derived from an underlying normally distributed
variable X* based on some set of cut points, ¢1,...,cp_1, i.€.

(1’1, X < C
X9, X* e [61,02)

*
Ti—1, X" € [cp—2,cp-1)
Td, X*>cpor.

When we assume the distribution of Y and the distribution of X* are standard normal and
that the bivariate distribution (Y, X*) is Gaussian, we can estimate (e.g. through maximum-
likelihood estimation) the parameters of the distribution of X*, the cutpoints cy,...,cp—1, and
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finally the polyserial correlation p between Y and X as the Pearson’s correlation between Y and
the latent X*.

When both X and Y are ordinal, we can similarly estimate their correlation by assuming
both variables are derived from latent normal variables. This is called the polychoric correlation
of X and Y [3].

Correlation measures which are independent of marginal distributions are so-called rank-
based correlation measures. The rank of an observation refers to the rank of that observation
after sorting all observations from low to high. Kendall’s 7 is a rank-based measure of monotonic
dependence [4], which counts the number of discordant/concordant pairs of observations out of all
possible pairs. A pair of observations (1, y1), (22, y2) is concordant if (x1 > oAy > y2) V(21 <
zo AYy1 < y2) is true. Conversely, the pair is discordant if (1 > xo Ay < y2)V(x1 < 22AY1 > Y2)
is true. The sample-estimate of Kendall’s 7 is given by

. (number of concordant pairs) — (number of discordant pairs)
= number of pairs ’
From this definition it is clear that Kendall’s tau is always in the interval [—1, 1]. The definition of
concordant /discordant pairs uses a strict inequality between observations, which means Kendall’s
tau can not take values —1 and 1 when there are ties in the data, such as when one of the two
variables is discrete. To solve this, for discrete-continuous or discrete-discrete variable pairs
the alternative Kendall’s 73, is most commonly used. Kendall’s 7, uses a different denominator,
this denominator counts the maximum number of possible concordant/discordant pairs in the
presence of ties so that under perfect dependence it may take values —1 and 1.
Tail-dependence coefficients quantify the probability of joint extreme events. The standard
measures of lower /upper tail dependence between two random variables X and Y with marginal
distributions F'x and Fy are, respectively [5]:

AL = liﬁ)ﬂF’ (Y > Fyt(u) | X > Fy'l(w) (2.1)

Ay = li%ﬂP’ (Y < Fy't(u) | X < F''(w) , (2.2)

2.2 Copulas

Copulas allow us to model a joint distribution/density in a way which separates the modeling of
the marginal distributions from the modeling of the dependence between variables. Sklar’s the-
orem provides us with the connection between the joint distribution, the marginal distributions
of its components, and a copula. We define copulas as follows.

Definition 2.1 (Copula). A d-dimensional copula C is a distribution function C : [0,1]% — [0,1]
with uniform marginal distributions Uy,Us, ..., Ug ~ Unifl0,1], given by C(uy,ug,...,uq) =
PU; < u1,Us < ug,...,Uqg < ug). The copula density c(ui,...,uq) is then obtained by differ-

entiating with respect to each component, c(uq,...,uq) = LC(UL ceeyUd)-

~ Oui...0ug
Following this definition we give Sklar’s theorem.

Theorem 2.1 (Sklar’s theorem [6]). Let F' be a d-dimensional cumulative distribution function
with marginals Fy, Fs, ..., Fy. Then there exists a copula C : [0,1]* — [0,1] such that for all
x = (z1,72,...,2q) € R?,

F($1,$27 s ,ﬂfd) = C(Fl(Il), FQ(-’EQ), s ,Fd(fﬁd)),
with associated density or probability mass function

f(l’l,aﬁg e ,l’d) = C(F1(561), FQ(:IZQ), e ,Fd(a:d))fl(xl) e fd(a;d).
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Given F, C is uniquely determined on the Cartesian product of ranges Fy x Fy x -+ X Fy.
This implies C is unique if the marginals F; are all continuous.

The converse statement is also true. Let C : [0,1]% — [0,1] be a copula and Fy, Fy, ..., Fy
univariate marginal distributions, then the function C(Fy(z1), Fa(z2), ..., Fy(zq)) defines a d-
dimensional joint distribution.

The result of Sklar’s theorem allows data to be modeled in a two-step process. First, one
models the marginal distribution of each variable. Next, data is transformed to the so-called cop-
ula scale by applying the corresponding marginal distribution of each variable to the data of that
variable. This transformation is also called the probability integral transform. The probability
integral transform is best explained by an example. Suppose we have observations x1, xs,..., Ty
of some random variable X. We transform these observations to the copula scale by applying its
marginal distribution P(X < z1),P(X < z9),...,P(X < z,). In essence, what the probability
integral transform does is it removes the effect of marginal distributions by mapping all vari-
ables to a Unif[0, 1] distribution. The proof that this transformation yields uniformly distributed
random variables is relatively simple, so we will provide it here. For any ¢ € (0,1) and any
continuous distribution function Fx,

P(Fx(X) <q) =P(X < Fx'(¢9)) = Fx(Fx'(9)) = ¢,

therefore Fx(X) ~ Unif{0, 1].

Using the copula scale data, we can model the dependence between variables in a space which
is independent of their marginal distributions. This modeling of the dependence is done by finding
the appropriate copula family and parameter which connects the probability integral transform
of some set of variables, as in Sklar’s theorem. Copula-based dependence modeling has the
advantage of allowing for the modeling of tail dependence (co-movement between variables in their
extremes, defined in Equation 2.1), non-linear dependence, as well as asymmetric dependence
(different dependence between variables in their lower /upper tails).

2.2.1 Marginal distribution estimation

In order to obtain copula data, we require an estimate of the marginal distribution of each
variable. FErrors in the estimated marginal distribution propagate to errors in the estimated
copula, because it gives us perturbed copula data. A 2007 paper by Kim et al. [7] aimed to
compare the parametric inference for margins (IFM) method of marginal & copula estimation
(which uses a parametric estimate of the marginals) with the (semi-parametric) pseudo-ML
method (which uses a scaled empirical distribution function to estimate the marginals, i.e. a
non-parametric estimate). A simulation study showed IFM is not robust to misspecification of
the margins, and the non-parametric marginal estimation of the pseudo-ML method outperforms
parametric estimation in most practical situations. It has become standard practice to use non-
parametric estimation of marginal distributions, unless the parametric form of the marginal
distribution is known.

2.2.2 Copula families

A copula family is a set of copulas {Cy : § € O} indexed by a parameter 6 in some parameter
space O, where each Cy defines a specific copula/dependence structure. In this thesis, we will
work with copula families which have a one-to-one relationship between their parameter  and
their associated dependence strength given by the value of Kendall’s 7, so rather than specifying
the parameter value we will often specify Kendall’s 7 instead.

We separate the copula families discussed in this thesis into two categories, based on how
that copula family is constructed. The first construction method gives us the class of elliptical
copulas. These can be constructed by taking an ‘inverse’ of the equation in Sklar’s theorem and
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applying an elliptical joint distribution. The second class of copulas is the class of Archimedean
copulas, produced by a generator function.

Definition 2.2 (Elliptical copula). Let F' denote the cumulative distribution function (CDF) of
a multivariate elliptical distribution, and let F1, ..., Fy be arbitrary continuous marginal distri-
butions. The elliptical copula associated with these is obtained by the inverse of Sklar’s theorem:

Clut,...,uq) = F (Fy Nur), ..., Fy N ug)),  uiy..., uq € [0,1]. (2.3)
Two examples of elliptical copulas are the Gaussian- and ¢-copulas.

Example 2.1 (Bivariate Gaussian copula). Let ® denote the CDF of the standard normal dis-
tribution, and let @9 denote the CDF of a bivariate normal distribution with mean-vector 0, unit
variance and correlation p. FEquation 2.3 gives the bivariate Gaussian copula with correlation p
as

C(u1,ug; p) = Po(®(u1), @ H(uz); p),  w,uz € (0,1).

Its conditional distribution and conditional quantile function are

Cop(v|u) = @(q)_l(v) — pq)_l(u)> , u,v € (0,1) and

V1 — p?
Cz_ul(a | u) = @(@_1(04)\/1 — p? —i—pCI)_l(u)) , u,a € (0,1).

Its upper and lower tail coefficients are

Ay = AL =0.

Bivariatenormalcopula t =0.7)

Figure 2.1: Each point represents one out of n = 20000 simulated observations of a bivariate
Gaussian copula with parameter p = 0.8, or equivalently with Kendall’s 7 = 0.7. The marginal
distributions were chosen standard normal.

Example 2.2 (Bivariate Student’s t-copula). Let t, denote the CDF of the univariate Student’s
t-distribution with parameter v, and let to, denote the bivariate Student’s t-distribution with
mean-vector 0, unit variance and correlation p. Equation 2.3 gives the bivariate t-copula as

Clur,ug; p) = ta(t,  (u1),t,  (ug);v, p),  ur,uz € (0,1).
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Its conditional distribution function and conditional quantile function are
t,'(v) = pt, ' (u)
V=) (14 (6 (w)2/)

v+ (" (0))?
v+1

Cop(v|u) =ty , u,v € (0,1) and

O (a|u) =1t

211 (toh@) +pty (w) |, e € (0,1).

Its upper and lower tail coefficients are

1—
Au = A =2t,41 (—\/'U—i— 1 P) .

Bivariatet copula { =0.7)

Figure 2.2: Each point represents one out of n = 20000 simulated observations of a bivariate
Student’s t-copula with parameter p = 0.8 and v = 5. The marginal distributions were chosen
standard normal.

Definition 2.3 (8] Archimedean copula). Let ¢ : [0,1] x © — [0,00) be a continuous, strictly
decreasing, and convex function with (1) = 0, parametrized by some parameter § € ©. Then
the Archimedean copula with generator function ¢ and parameter 0 is

Cso(ula <oy Uds 0) = @_1(90(7“; 0) + e+ (p(ud; 0)7 9)7 ULy ...,Ud € [07 1]7
where o~ denotes the pseudo-inverse of ¢ given by

46) P l(t:6), 0<t<p(0:0),
e (t;0) =
0, ©(0;0) <t < oo.

The class of Archimedean copulas is large, and includes the Clayton, Gumbel, Frank and
Joe copulas. Archimedean copulas have the distinct advantage over elliptical copulas that they
are able to model asymmetric dependence, i.e. different dependence between variables in the
lower /upper tails.

Example 2.3 (Bivariate Clayton copula). The generator function of the Clayton copula is given
by o(x;9) = %(;10*‘S — 1), for 6 € [0,00). The CDF of the bivariate Clayton copula is

Cur,ug; 8) = (u7® 4 uy® — 1)%, ug,uz € [0, 1].
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Its conditional distribution and conditional quantile function are

—1/6-1
Cop(v|u) = (zf‘S +v70 = 1) vl ww e (0,1) and

=

C’Q_lll(a|u):((a_$—l>u*§+l)_ , u,a€(0,1).

Its upper and lower tail coefficients are

Figure 2.3: Each point represents one out of n = 20000 simulated observations of a bivariate
Clayton copula with parameter § = 4.67, or equivalently with Kendall’s 7 = 0.7. The marginal
distributions were chosen standard normal.

Example 2.4 (Bivariate Gumbel copula). The generator function of the Clayton copula is given
by o(x;0) = —(log(x))%, for 6 € [1,00). The CDF of the bivariate Gumbel copula is

1

Clu,ug;6) = exp | — ((=loguy)? + (—logug)®)’ ), wi,ug € 0,1].
(- )

Its conditional distribution is

1-6

Copi(v | u) = %(—logu)(s_1 ((—logu)‘s + (—logv)5> ° Ca(u,v), wu,ve(0,1).

The Gumbel copula has no analytical expression for its conditional quantile function, it needs to
be computed numerically by root-finding

CZ\I(U’u)_azov u,aE(O,l)
Its upper and lower tail coefficients are

Ay =2-25, A =0.
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Bivariategumbelcopula ¢ =0.7)

Figure 2.4: Each point represents one out of n = 20000 simulated observations of a bivariate
Gumbel copula with parameter § = 3.33, or equivalently with Kendall’s 7 = 0.7. The marginal
distributions were chosen standard normal.

Example 2.5 (Bivariate Frank copula). The generator function of the Frank copula is given by
o(x;0) = —log (676z_1)>. The CDF of the bivariate Frank copula is

e=%—1

(e e~ 1)
e 9 —1

-1
C(ui,u9;d) = Tlog (1 +

>, ul,UQE[O,l].

Its conditional distribution and conditional quantile function are

(1 _ 6751))(1 _ eféu)

1
C2|1(v|u):—log<1— >, u,v € (0,1) and

) 1—ed
1
Cii(au) = =S log(1— (L= e ™)1 —e™)e™™), wae(0,1)

Its upper and lower tail coefficients are

Figure 2.5: Each point represents one out of n = 20000 simulated observations of a bivariate
Frank copula with parameter § = 11.42, or equivalently with Kendall’s 7 = 0.7. The marginal
distributions were chosen standard normal.
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Example 2.6 (Bivariate Joe copula). The generator function of the Joe copula is given by
¢(x;0) = —log (1 — (1 — 2)?). The CDF of the bivariate Joe copula is

1

Qm“w%m=1—[u—ugﬂ+u—ugﬂ-u—ug%1—mﬁr, ut,us € [0,1].
Its conditional distribution is
Cov [w) = (1= Oy, 0)) ™ (L= (1= (1 —2)°) . w.ve(0,1) and

The Joe copula has no analytical expression for its conditional quantile function, it needs to be
computed numerically by root-finding

Cop(v|u)—a=0, wu,ac(01).
Its upper and lower tail coefficients are

Ay =2-25, A =0.

Bivariatejoe copula ¢ =0.7)

Z

Figure 2.6: Each point represents one out of n = 20000 simulated observations of a bivariate
Joe copula with parameter § = 5.46, or equivalently with Kendall’s 7 = 0.7. The marginal
distributions were chosen standard normal.

An overview of the CDF (C(u,v)), conditional distribution function (Cy/;(v | u)) and con-
tinuous quantile function (C, 11(04 | u)) of the Gaussian, Student ¢, Clayton, Gumbel, Frank and
Joe copulas can also be found in Appendix 7.1.

2.2.3 Modeling discrete variables with copulas

For any set of variables Sklar’s theorem guarantees uniqueness of the copula C' : [0, 1]¢ — [0, 1] on
the Cartesian product of the ranges of the marginals (see Theorem 2.1). In the case of continuous
marginal distributions, the range of the marginal is always the entirety of the interval [0, 1], so
the Cartesian product of ranges is identical to the domain of the copula, thus implying complete
uniqueness of the copula. The range of the marginal distribution of a discrete variable is not
the entirety of the interval [0, 1], but some subset of disconnected values, e.g. {0,0.5,1}. One
can see now that in a scenario with at least one discrete variable in the joint distribution, the
copula is no longer unique on the copula domain [0, 1]%. Moreover, copula-based modeling with
discrete variables is no longer margin-free since the marginal distribution of the discrete variable
determines the range on which the copula is unique. Modeling discrete variables with copulas
comes with a set of challenges, mainly due to this non-uniqueness of the copula. A detailed
explanation of the challenges of modeling discrete data with copulas can be found in [9].
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2.3 Vine copulas

When modeling multivariate (d > 2) data, the known closed-form multivariate copulas have
a glaring weakness: they are inflexible. Elliptical multivariate copulas are unable to model
asymmetric (different upper /lower tail) dependence between variables, and Archimedean copulas
model the same dependence structure between every pair of variables. Flexibility of multivariate
copula-based modeling can be improved through so-called pair-copula constructions. Pair-copula
constructions are decompositions of a joint density into bivariate copulas. By modeling a joint
density with many bivariate copulas instead of with a single multivariate copula, we regain
flexibility in our models because we are free to choose a different dependence structure for each
bivariate copula.

Before defining vines, we present a decomposition into bivariate copulas (i.e. a pair-copula
construction) of a joint density which motivated the development of vines. This decomposition
is originally due to Joe [10]. In our explanation, we will follow an approach similar to Aas et al.
[11].

2.3.1 Decomposing a joint density into bivariate copulas

In this subsection we will build up to the general form of a decomposition of any multivariate
joint density into the product of bivariate copulas and marginal densities. This decomposition
will motivate the introduction of vine copulas, the framework used in vine-based regression.

We combine the joint density expression in Sklar’s theorem (2.1) with Bayes theorem to obtain
an expression for the conditional density as a function of marginals and the copula density. In
two dimensions, we obtain

f(@1 | 22) = cra(Fi(z1), Fa(z2); 0) f1(21)- (2.4)

We can expand this to a conditioning vector v of arbitrary dimensions,
f@|v) = couyv (Fz [ v_g), Fvj | v_3);0) f(z | v5) (2.5)

where v; is an arbitrary element of v and v_j denotes the vector v excluding the j-th component.
For ease of writing we will drop the arguments and the parameter, and denote

cmﬂvﬂ,(F(l‘ | v_;), F(vj | v_j);0) simply as Crvjlv_;- Throughout this thesis we will make the
following assumption, namely that the parameter 6 p of any conditional copula

Cikip(Fjips Fip | 05 p) depends on the conditioning sets only through which variables are in the
conditioning sets, but does not depend on the specific values of the variables in the conditioning
set D. In other words, the copula parameter 6, p is independent of the values of the variables in
the conditioning set D. This is called the simplifying assumption. It allows for a more efficient
parametrization and fitting of copulas, at the risk of misspecification.

Note that Equation 2.5 of the conditional density is the product of a bivariate copula, and
distribution/density functions conditioned on a smaller set than the left-hand side. Therefore we
can apply this identity repeatedly to factorize any conditional density as a product of bivariate
copulas and marginal densities. In each step of this iteration, we have a choice regarding which
variable we take out of the conditioned set, with each choice yielding a different decomposition /-
parametrization. We provide an example below.

Example 2.7. Let us decompose a conditional density f(x1 | x2,x3) into the product of bivariate
copulas and marginal densities in the manner of the iterative procedure shown above. What is
more, we will give two distinct decompositions of f(x1 | x2,x3) to illustrate how a different choice
in each iteration leads to a different decomposition/parametrization. In every iteration, we apply
Equation 2.5 to the conditional density in the expression. This gives us a choice of which variable
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to take out of the conditioning set. If we first take xo out of the conditioning set, we obtain

(x| @2, 23) = cro3(F (21 | @3), F(22 | 23)) f(21 | 23)
= cig3(F (21 | 23), F(22 | 23))crs(F1(21), Fs(23)) fi(z1).

If we first take x3 out of the conditioning set, we obtain

f(@1 | 22, 23) = cigpp(F (21 | 22), F(w3 | 22)) f(21 | 22)
= cu3p(F (21 | 22), F(23 | 22))c12(Fi(x1), Fa(z2)) f1(21).
The arguments of the conditional copulas in the decomposition are conditional distributions
of the form F'(z | v). We can compute these by repeatedly applying the following identity, proven
by Joe [12]. For every j,
aszj\v,j (F(z | V—j)7F(Uj | V—j))
OF (vj | v—3)

F(z|v)= (2.6)
As before, notice how the conditional distribution can be expressed as a function of a bivariate
copula and conditioning distributions with smaller conditioning sets. For ease of notation, we
will denote these copula derivatives as h-functions

acm;ﬂv,j(F(l‘ | V—j)’F(vj |V_j))
hafe (Fapo_y (@ [ V) | Foypy_y (v | v-3) 3= OF(v; | v_j)

(2.7)

The arguments of the h-function are conditional distributions conditioned on a smaller set than
the left-hand side. Therefore, we can calculate any conditional distribution by recursively apply-
ing Equation 2.6, yielding a representation of conditional distributions as nested h-functions.

We return to the modeling of a joint density in d dimensions, f(x1,...,z4), and rewrite the
joint density as a product of conditional densities.

d
@122, 2q) = f(za | a1, 21) f(@a—1s .. 21) = - = (Hf(xz‘ | wi—l,---,ﬂfl)) - f(21)
=2

Remark. In this decomposition we used a sequential ordering of variables, but this is an arbitrary
choice made for convenience.

When we repeatedly apply Equation 2.5 and Equation 2.6 to this decomposition, we find
the joint density can be written as the product of numerous bivariate copula and the marginal
distributions, a pair-copula construction. As stated before, in each application of Equation 2.5
and Equation 2.6 we have the choice of which variable to take out of the conditioning set. One
can see that the number of possible pair-copula constructions grows very quickly as a function of
the dimension of the joint density. To be exact, the number of possible pair-copula constructions

of this kind on d variables is < - 2("2") [13].

2.3.2 Introduction of vine copulas

To organize the large number of possible pair-copula constructions of the joint density laid out
in the previous section, Bedford & Cooke introduce reqular vines [14].

Definition 2.4. A regular vine (also called R-vine) on d variables is a set of nested trees Ty =
(E1,N1),...,Ty—1 = (Eq—1,Ng_1) abiding by three conditions. Fori=1,...,d —1:

1. Ty has nodes Ny ={1,...,d} and edges E.

2. Tree T; has nodes N; = E;_1.
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3. Two edges in tree T; are joined in tree T;11 if they share a common node in tree T;.

An R-vine is nothing more than a set of trees following some specific conditions, which can
be used to graphically represent the previously laid out decomposition of a joint density into
bivariate copulas. Because each of these possible joint density decompositions into bivariate
copulas and marginal densities can be represented as a unique R-vine, these decompositions
are called vine copulas, and we may refer to its graphical representation as an R-vine or to its
representation as a decomposition interchangeably. Each tree in the R-vine represents all copulas
of a certain level of conditioning. The first tree represents all unconditional copulas, the second
tree represents all conditional copulas conditioned on one variable, etc. Within every tree, each
edge represents a bivariate copula in the decomposition. More precisely, an edge between two
nodes with index sets A and B corresponds to the copula ¢ 4up\anB)|(anB)- For example, an
edge between nodes labeled X9, Xo3 (index sets {1,2} and {2, 3}, respectively) corresponds to
the copula cy3)p.

To illustrate how R-vines represent a decomposition of the joint density, we give two examples
from two special classes of R-vines. The first is the class of D-vines, in which all nodes in every
tree have at most two adjacent nodes. The second is the class of C-vines, in which in every tree,
there is a node which is adjacent to all other nodes in that tree. These two classes of R-vines are
far from exhaustive, but they are the most common classes used in the literature.

Example 2.8 (D-vine). Consider a density in 4 dimensions, f(x1,x2,x3,24). As shown earlier,
we can decompose this density as

4

f(@1, 22, 3,24) = ( H f (7)) c12¢23€34¢132C24)3¢14]23
=1

where for ease of writing we drop the inputs of the copula densities. We represent this decompo-
sition graphically in the following D-vine.

(a) Tree T; in the D-vine. (b) Tree T in the D-vine.

) Tree T3 in the D-vine.

Figure 2.7: Figures of the trees in the D-vine.

We repeat that in an R-vine representation of a decomposition, it is not the nodes which
represent copulas, but the edges. FEach edge represents a single copula, and the specific copula
it represents is determined by the indexes of its nodes. An edge between two nodes with indices
A and B corresponds to the copula caup\anB)|(anB)- The edges in tree T1 represent copulas
C12,C23,c34. The edges in tree Ty represent copulas cy3j2,co43- The edge in tree T3 represents
the copula ci4p23. The decomposition of a D-vine is completely determined by the order of the
variables in its first tree.

Example 2.9 (C-vine). Consider a density in 4 dimensions, f(x1,22,x3,24). As shown earlier,
we can decompose this density as

4

f(@1, 0, 3, 24) = ( H f(xi))crac13¢14¢03)1 C3411 C24113-
=1
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We represent this decomposition graphically in the following C-vine.

x)
F)—()—x)

(a) Tree Ty in the C-vine. (b) Tree T in the C-vine.

(c) Tree T3 in the C-vine.

Figure 2.8: Figures of the trees in the C-vine.

The edges in tree T1 represent copulas ci2,c13,c14. The edges in tree Ty represent copulas
23115 C3a)1- The edge in tree Ty represents the copula coyp13.

In summary, vine copulas are highly flexible models for a joint density and consist of three
components: (1) a vine structure (the lay-out of each tree) to determine the decomposition, (2)
a set of copula families to fit on all copulas, and (3) a set of parameters of the copulas.

2.3.3 Extending vine copulas to discrete variables

An assumption we have made so far in the decompositions is that all variables are continuous.
This need not be the case, and we will explain how vine copulas can be used to represent
decompositions of multivariate probability mass functions of discrete variables, as shown by
Panagiotelis et al. [15]. The extension to joint distributions of mixed-type (continuous & discrete)
variables follows naturally.

In the case where X1, Xo, ..., Xy are discrete, the decomposition of the joint probability mass
function (pmf) into conditional pmf’s is identical to the continuous case.

d
P(z1,z2,...,2q) = (HIP’(:U, | zi—1, .. .,x1)> -P(x1).
1=2

Remark. Like in the continuous case, in this decomposition we used a sequential ordering of
variables but this is an arbitrary choice made for convenience.

We can therefore extend vine copulas to discrete variables by providing alternative formula-
tions of Equation 2.5 and Equation 2.6 for the discrete case. Let us show a discrete formulation
of Equation 2.5.

Pz, vj [ v_j)
P(vj | v_y)
1 1 i . )
Zh:o 21220(—1)7’1+22CX,VJ-|V,J-(FX|V,J~ (=1 | v_j), ij|v,j(vj —iz [ v_j))

- B(o; [v_y) 28)

Pz |v) =

This gives us an expression for a conditional probability mass which requires computing the
differences of some copulas with a conditioning set one smaller than the conditioning set we
started with. This equation can therefore be applied recursively to obtain an expression for any
conditional probability mass as differences of bivariate copulas.



16 2.3. VINE COPULAS

The discrete alternative for Equation 2.6 is required since the arguments in the copula of
Equation 2.8 again take the form of a conditional distribution.
PX <, Vi =vj[vy)
P(vj [ v—j)
- Oxyyv  (Fxpv (@ [ vy), By (v | vy) = Cx v (Fxpv (@ | veg), Fyv (0 — 1| vy))
- P(vj | v—5) '

Fx(z|v) =

(2.9)

One can now see how vine copulas can also be used to represent decompositions for joint
probability mass functions of discrete variables, and that this naturally allows us to represent
decompositions of joint densities of mixed-type variables as well. We give an example of a vine
copula decomposition of a density with both continuous and discrete variables below.

Example 2.10. We will provide a vine copula decomposition of a density of three variables
X1, X9, X3 (continuous, continuous, discrete, respectively). The vine copula will be a D-vine
with order X1 — Xo — X3 in the first tree. In the case of continuous variables, this would give us

fro3(z1, 22, 3) = fi(z1) fo(22)P(X5 = 23)c12¢03013)2-

Because X3 s discrete, the copula densities ca3,ci32 are not well-defined. A copula density

is the derivative of a copula distribution w.r.t. both of its arguments (see Sklar’s Theorem

2.1). Its arguments, which are marginal (conditional) distributions, are not continuous when

X3 is discrete. Instead, we look at what these copula densities represent, and find a way to

compute them without ;ﬁcak(mg L;he derivative. From Sklar’s Theorem, the copula density equals
23(T2,T3

ca3(Fo(x2), F3(x3)) = AL The right-hand side is well-defined even when X3 is discrete,
and we can compute it as

x3(Fa(w2), Fy(13)) = M

1 0
=—— —P(Xg <m9,X3=123), (now use Equation 2.9 to obtain)

fa(z2) f3(w3) Oxz

- fa(xa)lj%(xs) ' 3?62 (Cos(Fa(w2), F(3)) — (Cas(Fa(a), F(ws — 1))].
(2.10)

We can compute the version of ci32 when X3 is discrete in a similar way,

fig2(w1, 73 | 22)

513|2(F2(.7)2),F3($3)) = fl‘g(fl'l ’ xQ)fglg(.’I)g ’ 1’2)’ where
fijp(@1 | 22) = W = c12(Fi(z1), Fa(22)) f1(21),
fap (a3 | w2) = f2§c(;€;§3)
_ 9 [Co3(Fa(x2), F3(x3)) — (Coz(Fo(w2), F3(x3 — 1))])  (using Equation 2.9),
fo(z2)  Oxo
figp(z1, 23 | 22) = P(X1 = 21, X3 = 23 | Xo = ¥2)  (now use the denominator of Equation 2.8)
= ai [P(X1 <21, X3 <@z | 22) —P(Xy <21, X3 <3 — 1| 12)]
I
d

= 90 [Cisp(Fip(w1 | 22), Fyp(ws | 22)) — Chgje(Fija(z1 | ©2), Fyp(zs — 1| 22))] .

The decomposition for X3 discrete becomes

fro3(z1, 22, 3) = fi(z1) fo(22)P(X5 = 3)c12C23C13)2-
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2.3.4 Estimation of vine copulas

Now that we have an understanding of what vine copula models are, we outline the procedure
of estimating/fitting a vine copula model to a dataset. After modeling the marginal distribution
of each variable to obtain each variable’s (unconditional) copula data, fitting a vine copula is a
three-step process: first (1) select a catalog of copula families which the bivariate copula building
blocks in the vine will be fit to, then (2) select a vine structure (which determines the density
decomposition, and thus which copulas will need to be estimated), and finally (3) choose for each
copula in the vine which copula family in the catalogue fits best and estimate its parameter. We
will explain each of these steps, in order of increasing complexity.

Step one is relatively simple, unless under severe computational constraints, it is usually best
to keep the catalog of possible copula families as large as possible.

The details of the third step, copula selection and parameter estimation, require some ex-
planation. We have seen that vine copulas consist of layers of trees, where each tree in the vine
represents a degree of conditioning (the first tree models all unconditional dependence, the sec-
ond tree models all conditional dependence conditioned on a single variable, the third models all
conditional dependence conditioned on two variables, etc.). Parameter estimation of vine copulas
is done sequentially, tree-by-tree, starting with the tree which models unconditional dependen-
cies. This is necessary, because in order to estimate the parameter(s) of a conditional copula
cap|c between two variables A, B conditioned on a vector of variables C, we require access to
the copula data of that copula. From Equation 2.5, we see that the copula data is obtained by
applying conditional distributions Fyc, F'ipic to the data, and from Equation 2.6 we see that
this requires estimation of conditional copulas conditioned on a set with cardinality one smaller
than the cardinality of C. Thus, parameter estimation of vine copulas can be done tree-by-tree,
but estimation must start from the tree which models unconditional dependence. This has an
important consequence; estimation errors are propagated throughout the vine copula estimation
process. Minimizing this propagation of parameter estimation errors is the basis of many vine
structure selection methods.

The second step in vine-copula estimation, vine structure selection, is a much more complex
problem. With everything covered so far, one can see that although all possible vine-copula
decompositions of a joint density model the same density, not all vine-copula decompositions
are made equal. Specifically, (1) the copulas induced by different vine structures vary in the
severity in which they violate the simplifying assumption and how well the copula parameters
can be estimated, (2) since estimation errors are propagated in the sequential estimation of the
vine, one might want to model the most important dependencies first and lastly, (3) although
vine copulas model joint densities, in this thesis we are interested in the conditional density of
a response given a set of covariates, i.e. ‘distributional regression’ or ‘conditional distribution
estimation’. This conditional density can always be obtained through numerical integration,
which can be computationally expensive. In decompositions where the response variable is not
in the conditioning set of any copula, the conditional density can be obtained without numerical
integration, by simply multiplying all copulas with the response variable in the conditioned set
with the marginal distribution of the response variable (see [16]). In the R-vine, this restriction
on the conditioning sets is equivalent to having the node with the response variable as a leaf
node in every tree. Intuitively, when the response variable is a leaf node in every tree, we can
cut from each tree the node containing the response and obtain an R-vine for the covariates
alone. Then Bayes’ theorem allows us to evaluate the conditional density of the response given
covariates without numerical integration. The following example illustrates this.

Example 2.11. If we consider the vine shown in Figure 2.7 and imagine X1 to be the response
variable, we can obtain the density f(x1,x2,x3,24) from the vine copula as a whole and we
can obtain the density for the covariates f(xa2,x3,x4) by ‘cutting off” the node containing X1
from every tree, thereby obtaining a vine copula for the covariates Xo, X3, X4. Bayes’ theorem
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then allows us to obtain the conditional density of the response given covariates without need for
numerical integration.

On the other hand, if we imagine Xo to be the response variable, we can not cut off every node
containing Xo from each tree in the vine because this would not result in a complete vine structure
of the covariates X1, X3, Xy. Therefore in the scenario where Xo is imagined as the response
variable, the conditional density of the response given covariates would need to be obtained by
numerical integration of the following expression

f($1,1‘2,1f3,$4)
ff x17w2,$37$4)d$2

f(@o | @1, 23, 24) =

In conclusion, the problem of finding a (near-)optimal vine structure lies in the balancing of
all the aforementioned forces. We review current literature on vine structure selection in Section

3.

2.3.5 Simulating from vine copulas

The ability to simulate data from a vine copula is essential because it allows for the testing
and validation of models. To simulate data from a vine copula, we use the inverse Rosenblatt
transform. The inverse Rosenblatt transform maps a vector U = (Ul, .. Ud) of independent
uniform random variables to a vector X with some distribution F(F} (Ul) 7N (UY)) for
arbitrary marginals and joint distribution [17]. It is given by

Xy = F'(Uh)
Xy = qu (Ua | X1) = Fy (b 2H(UQ | X1)) (see Equation 2.7 for the definition of h-functions)
Xq=F, d|d 1, (Ud | Xg-1,X1) = <h;|d 1. (Ud | Xa—1,...,X1)).

The second equality in each line is the inverse of Equation 2.6. To illustrate how we can
calculate these (inverse) conditional distributions with h-functions recursively as claimed, let
us show the recursion for some arbitrary distribution function Fyp3. By repeatedly applying
Equation 2.6, we obtain the expression

Fhia3(Xa | Xo, X3) = hyjas(Frs(X1 | X3) | Fyz(Xa | X3))
= h1\23(h1|3(F1(X1) | F3(X3)) | has(Fa(X2) | F3(X3))).

The inverse then becomes computable using h-functions as well and is equal to

1|23(U1 | X2aX3) F (h1|3(h1|§3(U1 ’ F3(X3)) | h2\3(F2(X2) ‘ F3(X3)))

In the case where at least one of the variables is discrete, we need to handle the simulation
a bit more carefully. To simulate from a vine copula with discrete variables is a more tricky
procedure than the continuous case shown above because the conditional distributions are no
longer nested h-functions, they also contain differences of copula distribution functions (as can
be seen from Equation 2.9). We solve this problem by simulating copula data from a vine copula
with only continuous variables with the above procedure, and interpret that copula data as the
latent variables which generate the discrete variables. This interpretation makes the procedure
for simulating from vine copulas of continuous variables the same as for vine copulas of discrete
(or mixed-type) variables, but it also makes it harder to justify choosing a discrete marginal
distribution which can take infinitely many values (since the copula data will be computed at
finite precision, limiting the actual values the discrete variable can take). This is resolved by
limiting our choice of discrete marginal distributions to those taking a finite number of values.
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2.4 Variable selection measures

After fitting a vine copula model to some data, we obtain an estimate of the conditional distri-
bution of the response variable given the covariates. To understand the relation between this
estimate and the true conditional distribution, we compare the estimated conditional distribu-
tion to observations of the response variable with a performance measure which quantifies their
similarity.

As will be seen in the literature review (Section 3), these performance measures are often
also used as wvariable selection measures during the vine structure selection step of the vine
copula estimation process. Many vine structure selection methods rely on comparing performance
measures of different possible vine structures in order to choose the most favourable structure
for conditional distribution estimation. In this thesis, we focus on variable selection rather than
performance quantification, so from now on we will refer to these measures as variable selection
measures.

The conditional log-likelihood (CLL) is a natural first choice for a variable selection measure.
Although many readers will be very familiar with the CLL, we repeat the definition of the
for the sake of completeness. Let fy|x, . x, denote the conditional density of the response
variable Y given the covariates X1i,..., X4 The conditional log-likelihood over some data D =
{(YLXI,L e ,Xd71>, ey (Y'le,'m e ,de)} is given by

L(fy|xi,..x, 1 D)= Zlog(fnxl,.u,xd(yi | X1,y Xai))-
i1

The CLL is a good measure of overall model performance, but in many areas of application
(e.g. healthcare/financial risk modeling) accurate modeling of the tails of the distribution in
order to obtain, say, an accurate estimate of the 99-th quantile of the conditional distribution is
more important than overall fit. To assess model fit on a specific a-quantile, we use the check-loss
function, given by

() = alul, u>0 ( ) )
P =Y —a)ul, w<o 0T <0

Substituting u for the estimation error Y — Y, (where Y, is the estimate of the a-th quantile
of Y, note this is a constant estimate, i.e. without covariates), Koenker starts his 1978 paper
by stating that the minimizer over all data points of the check-loss function over Y, is equal to
the a-th sample quantile of Y [18] (stating also that he was not the first to show this). One can
think of minimizing the check-loss function as aiming to balance positive and negative estimation
errors, in the case where the weights for positive and negative errors are o and 1 — «, respectively.
Note that over all data points, a check-loss value of zero is unattainable when Y is not a constant.
The minimum value of the sum of p, (Y — Ya) over all data points is generally unknown, but
check-loss values can nevertheless be used to compare two models on a specific quantile.
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In this section, we review current literature on vine-based regression methods. We cover some
of the main topics in current research which are relevant to the contents of this thesis: vine
structure selection, improving computational complexity of vine-based regression, and vine-based
regression for discrete variables.

Vine structure selection

Vine structure selection is an active research area. The number of R-vine structures is vast, and
heuristics are necessary to search for the structure which provides the best fitting model.

Dissmann [19] introduced a greedy algorithm for R-vine structure selection. The algorithm
chooses each tree structure sequentially based on a maximum spanning tree (MST) maximizing
the sum of absolute empirical Kendall’s 7 among all copulas in the tree. This is based on the idea
of fitting the strongest dependencies first. This greedy structure is justified by the fact that the
lowest trees have the greatest influence on the overall model fit, and since estimation errors are
propagated one wants to estimate the most important copulas early in the estimation procedure.
In Dissmann’s paper, Kendall’s 7 was chosen as a metric for strength of dependence, but other
metrics for the strength of dependence have been tested as well. Czado et al. used the Akaike
Information Criterion (AIC) for each pair-copula as a metric for strength of dependence [20].
This is more expensive in higher dimensions than Kendall’s 7, since it requires maximizing a
likelihood for each pair-copula family. A notable flaw in these metrics for strength of dependence
is that they do not take the effect of the simplifying assumption into account. Two algorithms
which combine Kendall’s 7 with tests for severity of violation of the simplifying assumption are
given and tested in [21]. The authors show that their algorithm often provides a better model fit,
at the expense of computational cost. They suggest to use Dissmann’s algorithm, check whether
the number of pair-copulas which violate the simplifying assumption is greater than expected,
and repeat vine structure selection using their more computationally intensive method if this
is the case. Following this, Brechmann & Joe show Dissmann’s method can be improved by
additionally searching in a neighbourhood of each MST [22].

In a novel approach, Chang et al. adapt a Monte Carlo Tree Search (MCTS) algorithm for
vine structure learning [23]. This method seems to find a well-fitting structure, outperforming
both Dissmann and Brechmann & Joe in low- and high-dimensional settings, although the differ-
ence in performance becomes smaller as the set truncation level grows larger (as the truncation
level grows larger, the vines eventually become regular, untruncated vines). The computational
complexity of the algorithm is significantly greater than the previously mentioned alternative
algorithms.

All methods discussed so far construct the vine sequentially, starting from the first tree.
In 2011, Kurowicka published a method which works in the opposite direction, starting from
the last tree [24]. The aim of their algorithm was to construct an R-vine with a maximum
number of independence copulas in the last trees, i.e. a maximally truncated R-vine. The
motivation for such an algorithm was the same as for Dissmann’s algorithm: to force the strongest
dependencies to be modeled in the first trees of the vine. In simulation however, it was observed
that constructing an R-vine in the non-sequential direction (i.e the tree which models conditional
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dependencies with largest conditioning sets first) is not ideal as the choice of a small partial
correlation in tree T} may severely constrain the choices available in tree 7j_1.

For the sake of computational complexity, we desire a vine structure for which the condi-
tional density of the response variable is readily obtained without numerical integration. This
is equivalent to restricting ourselves to vine structures in which the response variable is a leaf
node in every tree. However, the algorithms mentioned thus far do not guarantee the conditional
density is available without numerical integration. In [25], the authors suggest a way of getting
around this problem, by using any of the aforementioned methods to find an optimal R-vine for
the set of covariates, and then link the response variable to the node which yields the conditional
response density while maximizing correlations with the response variable, thereby producing an
R-vine which satisfies our constraint.

In a regression problem, one might consider this approach of modeling the covariates first
and later adding the response variable an unnatural approach. The alternative, building a vine
structure around the response variable in such a way that the conditional density is available,
was first explored by Kraus & Czado in 2017, who proposed a method for D-vine regression
which built a D-vine with the response variable as a leaf node, sequentially adding the covariate
which maximized the conditional likelihood [26]. Note that this automatically performs feature
selection as well. The method has three major limitations, (1) the vine structure is restricted to
D-vines, (2) greedily maximizing the conditional likelihood does not guarantee a globally optimal
likelihood and is computationally intensive, and (3) all pair-copulas considered are parametric.

Zhu et al. extended this method to R-vines [27] by introducing a heuristic which chose the
R-vine in a way which maximizes the sum of partial correlations of the copulas in the R-vine
structure. For univariate conditional distribution estimation, the improvement of the extension to
R-vines was shown to be limited. An important distinction between the D-vine based method and
the R-vine based extension is that the latter can be used for estimating multivariate conditional
distributions as well.

Tepegjozova presented a modified version of Kraus & Czado’s 2017 algorithm which (par-
tially) addressed each of the three major limitations mentioned above [28]. They expanded
the algorithm to include both C-vines and D-vines, made the algorithm less greedy by looking
two steps ahead in the construction of the vines, and estimated all copulas nonparametrically.
Moreover, their method allows for controlling the computational cost of building the vine in-
dependently of the number of explanatory variables, although the number of computations is
generally high. In simulation, it was shown that Tepegjozova’s algorithm outperforms Kraus
& Czado’s in most scenarios, and the author suggested their algorithm could be improved by
combining both parametric and nonparametric estimation of copulas in an efficient way.

Computational complexity

Among the methods for vine structure selection presented in the previous section, some meth-
ods automatically include variable selection. These methods therefore provide a start-to-finish
algorithm for vine-based regression. Each of these methods considered thus far has computa-
tional complexity of O(d?) [29], where d is the number of variables in the data. However, certain
applications require faster conditional distribution estimation; for instance, in many domains of
application (genomics, healthcare, finance) the data may be very high-dimensional (d > 100),
and existing vine-based regression methods become incomputable. For this reason, decreasing
the computational complexity of vine-based regression algorithms is one of the major problems
in vine-based regression research.

A recent 2024 paper by Sahin & Czado provided a modification to Kraus & Czado’s algorithm
which improved computational complexity to O(d?) [30]. The result was obtained by speeding up
the variable selection process. As explained in the previous section, Kraus & Czado’s algorithm
chooses which variable to add to the D-vine by selecting the candidate variable which yields
the highest conditional likelihood of the response variable given the explanatory variables in the
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D-vine and the candidate variable. To compute this conditional likelihood, all bivariate copulas
induced by appending the candidate variable to the D-vine need to be estimated (this number of
copulas is equal to the number of explanatory variables already in the D-vine). The method of
Sahin & Czado requires less bivariate copula estimation in the variable selection process because
the variable to add is chosen through maximizing the conditional likelihood of the copula of the
residuals of the response variable (the difference in the value of the response variable and the
median as estimated by the D-vine constructed so far) and the candidate variable. To compute
this conditional likelihood, only a single bivariate copula needs to be estimated. The algorithms
by Kraus & Czado and Sahin & Czado were compared in a simulation study, which concluded
Sahin & Czado’s algorithm is not only computationally faster, but outperformed in eight out of
nine settings simulated.

Vine-based regression with discrete variables

As explained in Section 2.3.3, Panagiotelis et al. introduced vine copulas for modeling multi-
variate discrete data [15] and later presented a model selection method for discrete vine copulas
which modified Dissmann’s algorithm to select maximum spanning trees based on a modified
AIC, as opposed to Kendall’s 7 [31].

Nagler proved that under mild restrictions on the type of noise being added, one can estimate
a joint distribution of mixed-type data with an estimation of the joint distribution of continuous
data (obtained by adding continuous noise to the discrete variables, also called jittering) [32].
The latter estimation should be done nonparametrically since the convoluted discrete data can
usually not be appropriately captured by parametric forms. A comparison of nonparametric
copula estimators did not find any estimator to be uniformly better than all others, so the choice
should be made with context (i.e. strength of dependence, tail dependence) in mind [33].

Schallhorn et al. adapted the D-vine regression of Kraus & Czado (|26]) to allow for regression
on mixed-type data [34]. Schallhorn followed the scheme of Kraus & Czado, but used the afore-
mentioned continuous convolutions by Nagler and the nonparametric copula estimator proposed
in [35]. In simulations this method was shown to provide fast and accurate estimation com-
pared to other well-known quantile regression methods (linear/boosted additive/nonparametric
quantile regression). Jittering has some drawbacks, however. First, the results are dependent
on the choice of jittering distribution, therefore results may need to be averaged over many runs
with different jittering distributions to converge to an average. Second, the jittered data does
not necessarily have the same dependence structure as the original discrete data. Especially
for discrete variables with few categories, jittering can lead to biased correlation estimates [36].
Thus, there is still a need for vine-based regression methods for mixed-type data which do not
rely on jittering.



4 | (Discretized) conditional quantile func-
tions of (bivariate) copulas

This chapter investigates how the conditional quantile function of a bivariate copula changes
when the marginal distribution of the covariate is discrete rather than continuous, and how this
affects vine-based regression methods. First, we visualize and compare (empirically) continuous
conditional quantiles and discrete conditional quantiles. After that, we attempt to quantify the
difference between continuous conditional quantiles and discrete conditional quantiles analyti-
cally.

We will investigate the conditional quantile of a continuous response variable Y given a
covariate X, whose joint distribution is governed by a single-parameter copula (Gaussian/Clay-
ton/Gumbel /Frank/Joe copula). In the continuous case, the variables Y and X are assumed
to have standard normal marginal distributions, so as to more easily see conditional quantile
curves in the tails. In the discretized case, Y remains standard normally distributed but the
discretized X is generated by binning continuous X into b bins of equal probability. Throughout
this thesis, we will often generate discretized variables by binning a latent variable into bins of
equal probability, so for ease of reference we give a formal definition.

Definition 4.1 (Discretized variable). For a continuous random variable X , we generate a new,
discrete variable ‘discretized X’ with b values by separating X into b bins of equal probability.
Let 0 = ¢g < ¢1 < -+ < ¢, = 1 denote the quantile-boundaries. Discretized X takes value
k when X € By = (Fx'(ck—1), Fx'(ck)]. We impose that all bins are equally probable, so by
uniformity of the copula data this means the quantile-boundaries are evenly spaced out in the
interval [0, 1]. For example, for a discretization into 4 bins, the set of quantile-boundaries would
be {0,0.25,0.5,0.75,1}.

1, Xehb

2, Xeb
X discretized *=

b, X € By.

Before investigating the effect of discretization of the covariate on conditional quantiles, we
briefly explain how the continuous and discretized conditional quantile function are obtained
through copulas. When the covariate is continuous, we use that the continuous conditional
a-quantile of Y given X is

Fflo| X =a) = Iy (c;llx(a | FX(:C))) . ae(0,1),

which follows directly from Fyx(Y <y | X = ) = Cy|x(Fy(y) | Fx(x)), where the latter is
the following
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C’y|X(uY ’ UX) == ]P)(Fy(Y) < uy | Fx(X) == UX) (Where Fy(Y),Fx(X) ~ Unif[O, 1])
 P(Fy(Y) <uy, Fx(X) = ux)
B P(Fx (X) = ux)
9 (Fy(Y) < UY,F)((X) < u )

_ Oux i < - ~ Uni
= %P(FX X) < ux) (the denominator equals 1; Fix(X) ~ Unif[0, 1])
= T B(Fy(Y) < uy, Fx(X) < ux)

3¢
_ gcy,my,m (4.1)

3¢

The continuous conditional a-quantile (F;‘lx(oz | X = z)) can then be found by solving
Fyix(Y <y | X =2) —a =0 for y. For some copula families (Gaussian, Frank, Clayton),
the continuous conditional quantile function has a closed-form expression. For those families for
which a closed-form expression exists, the continuous conditional quantile function can be found
in the table in Appendix 7.1.

Next, we formalize the notion of a ‘discretized’ conditional a-quantile.

Definition 4.2 (Discretized conditional quantile). Partition the support of a continuous covari-
ate X into b bins defined by the quantile-boundaries

By = (F);l(ck—l)vF);l(ck)]a k=1,...,b,

where 0 = ¢y < ¢ < -+ < ¢y, = 1. For any fized o € (0,1) and bin By, define the discretized
conditional a-quantile as

Fyx(a| X € By) =inf{y: Fyx(Y <y| X € By) > a}.

In the case where X is discretized, we need a different procedure for obtaining the conditional
distribution function since it is no longer possible to take derivatives of the copula distribution
function with respect to Fix(z) (it is no longer continuous w.r.t. Fx(z)). We will provide a
formulation for the conditional distribution function of Y conditioned on discretized X, then the
discretized conditional quantile function is naturally its inverse. Let k& € {1,2,...,b}, and let
ck—1, ¢ be the quantile-boundaries of the k-th bin. Then the conditional distribution function is

Fyx(Y<y|Xe€By)=Fyx (Y <y|X e (Fy'(ch), Fx'(ck)])
_ Fyx (Y <y, X < Fyl'(e) — Fyx (Y <y, X < Fy'l'(oe-1))
a P (X < Fy'(er)) =P (X < Fy'(ck-1))
_ Ovix (Fy(y), cx) = Oy x (Fy (y), k1)
Ck — Ck—1

(4.2)

Just like for the continuous conditional quantile function, the continuous discretized a-quantile
can then be found by solving Fy | x(Y <y | X € By) —a =0 for y.

Now that we have formulations for the conditional quantile functions in both the continuous
and discrete case, we can continue our investigation of the impact of discretization on condi-
tional quantile functions. In their 2015 paper, Bernard & Czado present plots of the continuous
conditional quantile function for normal marginals of Y and X, and various copula families [37].
We extend those plots to include the discretized conditional quantile function. In Figure 4.1
we plot the conditional quantiles for continuous X and discretized X of the Joe copula. The
plots for Frank/Clayton/Gaussian/Gumbel copulas are found in Appendix 7.2.1. We chose to
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present the Joe copula here as it illustrates the effect of discretization on the conditional quantile
function when the copula does not model tail dependence (lower tail, asymptotically constant),
and is strongly tail dependent (upper tail, asymptotically linear) with different number of bins
for discretized X.

Joe copula witl®=2.81 Joe copula witl$=2.81
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Figure 4.1: Plots of the conditional quantile function of the Joe copula with § = 2.81 (Kendall’s
7 = 0.49), for quantiles « € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the conditioning value
of X in the continuous case is shown, and the corresponding continuous conditional quantile
functions are red lines. On the top x-axis, the conditioning value of X in the discretized case,
with the corresponding discretized conditional quantile values given as blue circle in the middle
of the associated bin. To illustrate, the eighth bin in plot (c) corresponds to the range of values
(1.15,00) on the lower x-axis. The values of the conditional quantiles were obtained numerically
through root-finding.

Inspecting the figures for every copula (see Appendix 7.2.1) gives insight into how much
information on the conditional quantiles can be lost through discretization of the covariate. As
shown in Table 4.1, when b = 2, the conditional 0.5-quantiles in each bin for discretized X are
nearly identical for all copulas.
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Gaussian (p = 0.7) | Clayton (6 = 1.95) | Gumbel (6 = 1.97) | Frank (6 = 5.63) | Joe (0 = 2.81)
bin 1 (b=2) | -0.54 -0.59 -0.52 -0.56 -0.50
bin 2 (b=2) | 0.54 0.50 0.56 0.56 0.59
bin1l (b=4) | -0.88 -1.06 -0.79 -0.86 -0.66
bin 2 (b=4) | -0.23 20.16 027 0.28 20.34
bin 3 (b=4) | 0.23 0.33 0.19 0.28 0.16
bin 4 (b=4) | 0.88 0.67 0.98 0.86 1.07

Table 4.1: Discretized conditional 0.5-quantile values of Gaussian (p = 0.7), Clayton (6 = 1.95),
Gumbel (§ = 1.97), Frank (§ = 5.63) and Joe (0 = 2.81) copulas, for number of bins b = 2 and
b = 4. The parameter of each copula was chosen such that each copula has Kendall’s 7 = 0.49.
The marginal distribution of Y is standard normal. The values of the discretized conditional
quantiles were obtained numerically through root-finding.

The difference between discretized conditional quantile values in the same bin for different
copulas is very small, illustrating how discretization of a continuous covariate into a small (b < 4)
number of bins of equal probability loses a lot of the characteristics of the dependency of the
response with the continuous covariate. For a closer look at the robustness of this conclusion to
different marginal distributions of Y, we give the same table for Y uniform. Conditional quantile
plots with Y uniform can be found in Appendix 7.2.2.

Gaussian (p = 0.7) | Clayton (6 = 1.95) | Gumbel (6 = 1.97) | Frank (6 = 5.63) | Joe (0 = 2.81)
bin1l (b=2) | 0.29 0.28 0.30 0.29 0.31
bin 2 (b=2) | 0.71 0.69 0.71 0.71 0.72
bin 1 (b=4) | 0.19 0.14 0.21 0.20 0.26
bin 2 (b=4) | 0.41 0.44 0.39 0.39 0.37
bin 3 (b=4) | 0.59 0.63 0.58 0.61 0.56
bin4 (b=4) | 0.81 0.75 0.84 0.80 0.86

Table 4.2: Discretized conditional 0.5-quantile values of Gaussian (p = 0.7), Clayton (§ = 1.95),
Gumbel (§ = 1.97), Frank (§ = 5.63) and Joe (0 = 2.81) copulas, for number of bins b = 2 and
b = 4. The parameter of each copula was chosen such that each copula has Kendall’s 7 = 0.49.
The marginal distribution of Y is uniform on [0,1]. The values of the discretized conditional
quantiles were obtained numerically through root-finding.

For Y uniform, we find again that discretization into a small (b < 4) number of bins of equal
probability makes different copula families nearly indistinguishable.

As b increases, discretized conditional quantile values for different copulas become easier
to distinguish, but even then certain copulas give remarkably similar discretized conditional
quantiles, such as the Frank and Gaussian copulas (see Figure 4.2 below), despite them having
different asymptotic conditional quantile behaviours (asymptotically constant and weakly linear,
respectively) [25].
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Figure 4.2: Plots of the conditional quantile function of the Frank and Gaussian copula, both
with parameter such that Kendall’s 7 = 0.49, for quantiles « € {0.01,0.1,0.5,0.9,0.99}. On the
lower x-axis, the conditioning value of X in the continuous case is shown, and the corresponding
continuous conditional quantile functions are red lines. On the top x-axis, we have the condition-
ing value of X in the discretized case, with the corresponding discretized conditional quantile
values given as blue circle in the middle of the associated bin. The values of the conditional
quantiles were obtained numerically through root-finding.

In short, discretization of a covariate into a small number of bins of equal probability causes
the loss of significant dependence characteristics, to the point where different copulas may become
indistinguishable.

In the conditional quantile plots, as the number of bins increases the discretized conditional
quantiles become more accurate around the median of the covariate relatively quickly, but even
for a large number of bins (b = 20) tail dependence is not captured well. This is problematic,
considering the fact that vine-based regression is often favoured over other quantile regression
methods specifically for its ability to flexibly capture tail dependence. For scenarios where the
discretization can be chosen by the researcher, such as for building privacy-preserving datasets in
healthcare, the degree to which tail dependence is lost through discretization may be improved
through a different approach to binning. One could make the bins around the median condi-
tioning value of X larger, accepting that this introduces some more error when conditioning on
a value close to the median of X, but obtaining more accurate discretized conditional quantile
values on the tails in return.

For a proof-of-concept, we recreate Table 4.1 with a different approach to binning, making
the bins around the median wider. For instance, for b = 4, bins of equal probability would
have quantile-boundaries {0,0.25,0.5,0.75,1}. We could discretize X in a way which preserves
more of the dependence characteristics between Y and X in the tails of X, by choosing quantile-
boundaries {0,0.1,0.5,0.9,1}. By preserving more dependence characteristics in the tails, differ-
ent copula families should become more easily distinguishable based on discretized conditional
quantiles, see the table below.
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Gaussian (p = 0.7) | Clayton (6 = 1.95) | Gumbel (6 = 1.97) | Frank (6 = 5.63) | Joe (0 = 2.81)
binl (b=4) | -1.22 -1.57 -1.04 -1.04 -0.74
bin 2 (b=4) | -0.39 -0.39 -0.40 -0.45 -0.44
bin 3 (b=4) | 0.39 0.44 0.38 0.45 0.40
bin4 (b=4) | 1.22 0.76 1.47 1.04 1.58

Table 4.3: Discretized conditional 0.5-quantile values of Gaussian (p = 0.7), Clayton (6 = 1.95),
Gumbel (6 = 1.97), Frank (§ = 5.63) and Joe (6 = 2.81) copulas, for number of bins b = 4. The
quantile boundaries of the bins were chosen {0,0.1,0.5,0.9,1}. The parameter of each copula
was chosen such that each copula has Kendall’s 7 = 0.49. The marginal distribution of Y is
standard normal. The values of the discretized conditional quantiles were obtained numerically
through root-finding.

With this tail-favoured binning procedure, the discretized conditional quantiles of the studied
copula families are much easier to distinguish than the discretized conditional quantiles under
the equal probability binning procedure. For instance, note how in Table 4.3 the Gaussian and
Frank copulas are now easy to distinguish by the discretized conditional quantiles in their lowest
and highest bins, whereas before they were nearly identical (see Table 4.1).

We have seen that although dependence around the median of the variable which generates the
discretized covariate is captured well even for a moderate number of bins, tail dependence is not
well-captured unless the binning procedure is tailored specifically to capturing tail-dependence.
For application of discretization in building privacy-preserving datasets, we would want to be
able to compute an ‘optimal choice of binning’ (i.e. quantile boundaries) which retains the most
important dependence characteristics. Although we will not go so far as to solve this problem,
we aim to take a small step towards solving this ‘optimal choice of binning’ by quantifying
the difference between some continuous conditional a-quantile and its corresponding discretized
conditional a-quantile,

F;‘IX (a | X € (F;l(ckfl),Fgl(ck)}) — F;‘lx(a | X =x), (x € (Fgl(ck,l),Fgl(ck)) )

This quantification may be simplified if we can express the discretized conditional a-quantile as
the continuous conditional a-quantile conditioned on some continuous conditioning value. The
following lemma shows the existence of such a conditioning value.

Lemma 4.1. Let Y, X be two random variables with continuous marginal distributions Fy, Fx,
governed by a copula C with continuously differentiable CDF Cy x. Let X be discretized into b
bins where the k-th bin has quantile-boundaries cp_1, ck, i.e.

Bk = (F)zl(ckil%F)zl(Ck)], kzl,,b

The discretized conditional a-quantile in the k-th bin F;‘IX (o | X € By) is equal to the conditional

a-quantile F;l a| X =a*) for some * € By. Moreover, this x* is unique.

x

Proof. As shown in Equation 4.1, the conditional distribution for Y given X in terms of their
copula Cy, x is defined as

Crix (Pl | Fx(2)) = g Coox (). P ().

By the assumption of continuous differentiability, Cy|x (Fy (y) | Fx(x)) is continuous.
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The discretized conditional a-quantile Fy, L

X (o | X € By,) is equal to y such that

— Cyx(Fy (y),cr) — Cy,x (Fy (y), cr-1)

=« (using Equation 4.2)

Ck — Ck—1
Ck 8
A —Cy,x(Fy(y),ux)dux = a(cy — cx—1)
Ck—1 auX
Ck
= CYlX(FY<Z/) | ux)dux = afcp — cp—1).
Ck—1

By continuity of the integrand and the mean-value theorem for integrals, for any y there exists
some
Wy € (cp_1,ck] = o* = F'(u) € By,

such that
Ck
/ Cyx (Fr(y) | ux)dux = Cyx (Fy (y) | ) (e — er) = alcx — cu),
Ck—1

which implies

Fyk (| X € By) = Fy/i(a| X =a7).

Thus the discretized conditional a-quantile on the bin By coincides with the continuous condi-
tional a-quantile at some intermediate covariate value z*. This shows existence, and by continuity
and monotonicity of the continuous conditional quantile function also uniqueness of z*. O

The previous lemma shows existence of a conditioning value x* such that the discretized
conditional quantile in some bin is equal to the continuous conditional quantile function at z*.
This x* which allow for the discretized conditional quantile to be ‘pinned’ onto the continuous
conditional quantile theoretically exist for every copula family and every bin, but an analytical
expression is not always available. From now on, we will define * as a function of copula family,
bin, and quantile.

Definition 4.3. Let Y and X be continuous random variables with marginal distribution func-
tions Fy, Fx, and assume their dependence is modeled by some copula family C with continu-
ously differentiable CDF Cy,x. Let X be discretized into b bins where the k-th bin has quantile-
boundaries ci_1, ¢k, i.e.

By, = (F)?l(ck—l)vF);l(Ck‘)]a k:1>7b
For each o € (0,1) and bin index k, define xf(a, k) to be the value in By, satisfying
F;|1X(a | X € By) = F;‘IX (a| X = z5(a, k).

Analytical expressions for x5 (o, k) may be useful in proving asymptotic behaviour of dis-
cretized conditional quantile functions, or for finding analytical solutions to the ‘optimal bin-
ning’ problem for privacy-preserving discretization. The following lemma shows that in the case
of bivariate Clayton and Frank dependence structures, we can find an analytical expression for
zc(a, 1). However, such expressions are in general not available. To the best of our knowledge,
such z* are only analytically available for bin 1 of the bivariate Clayton and Frank copulas be-
cause to obtain an expression for £*, an analytical expression for both the discretized conditional
quantile and the continuous conditional quantile need to be available.
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Lemma 4.2. Let ¢y denote the quantile-boundary for the first bin. For continuous marginal
distributions Fy, Fx, and a copula C in the bivariate Clayton or Frank copula families, we can
find the unique conditioning value xf(a,1) € (0, ¢1] such that

Fyx(a] X € (F'(0), Fy'(en)]) = Fy (| X =28 (a, 1)),
1.e. we can anchor the discretized conditional quantile function in the first bin on the continuous
conditional quantile function. These x* are as follows.

=1
Lok _ -1 —1+a~ 9% o
Clayton: z*(a,1) = Fy —_ta c1
—14qd+1

Frank: v*(a,1) = Fy' (_Tl log (ﬁ <% - a)))

Proof. The derivation of z* follows the same three steps, no matter the copula family. The

derivations of the z* corresponding to each copula family will be in the order presented above.
First, assume a Clayton dependence structure with parameter 9.

Step 1: Find a closed-form expression for the discretized conditional quantile in bin 1

From our definition of a discretized conditional a-quantile (4.2):

Fy|x(a| X € (0,¢1]) = a, using Equation 2.9:

— Cyx(Fy(y),c1) — Cvix(Fy (y),0) _
&1

<= Cyx(Fy(y),c1) = ac;, under Clayton dependence:
= (B +e’ - 17 =aa

— Fy(y)~° + 01_5 —1=(ae)™®

= Fr(y) = ((ac)” =’ + )7
= y= F;l (((0401)_‘S - 01_5 + 1)%1)

Step 2: Find a closed-form expression for the conditional quantile
We use the definition of the conditional quantile, as given in Equation 4.1. F;|1X(a | X =2)is
equal to y such that:

Cy|x(Fy(y) | Fx(7)) = @, under Clayton dependence:

= (@ +Bw7-1)" At =a

=y=FK' ((1 ~ Fx(2) (aFX(x)“l)%) ?)

Step 3: Solve the resulting equality
Now we can find a conditioning value z* as desired by setting the closed-form expressions for the
discretized conditional quantile and the conditional quantile equal to each other. This gives us:

(ac)™ = +1)7 = (1 — Fyx(z*)™° + (OéFX(x*)é'f‘l)%)%
= (~1+a7)Fx(e") ™ = (-1 +a7%)c;?

-1 -0
— Fy(z") 0 = (—i—a ) o
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Assume a Frank dependence structure with parameter 6.
Step 1: Find a closed-form expression for the discretized conditional quantile in bin 1
We know FY‘X (@] X € (F)}l(ck_l),F);l(ck)D is y such that

Cy x(Fy(y),c1) = acy, under Frank dependence:

—dc1 _ —0Fy (y) _
(e 1) (e D):aq
(&

-1
— Tlog (1 +

. (e0e1 — 1)(e~9Fr®) — 1) _ daer
e 0 —1
e oY) (e70 —1)(e7% — 1)
e~da —1
(-1 (70 —1)(e 0t — 1)
_ -1
= y=1Fy <5log< i P +1

Step 2: Find a closed-form expression for the conditional quantile
We use the definition of the conditional quantile, as given in Equation 4.1. F;|1X(a | X =) is
equal to y such that:

Cy|x(Fy(y) | Fx(z)) = o, under Frank dependence:
e OFx(@)(] — e~ 0FY (¥))
—e= 0 — e 0(Fx(@)+Fy(y) 4+ ¢—0Fx(z) @—5FY(

1 (-1 a(l —e?
— 1{_ - _
—y=Fy <5 log(l e*5Fx()+a(1—e P (@) >>
(-1 a(l —e9)
_ -1
—y=Fy (5log (1— (l—a)e_éFX(z)—i—a))

Step 3: Solve the resulting equality

—

=«

Now we can find a conditioning value xz* as desired by setting the closed-form expressions for the
discretized conditional quantile and the conditional quantile equal to each other. This gives us:

i a(l —e™?) (e —1)(e70er — 1) 41
e*‘SFX(x*) + Oé(l _ 675Fx($*)) - 67501 —1
—6Fx (a* Copy )y _ —a(l—e %) (e’ — 1)
et rall—e X(»_(KLJW4W—U
. —oer 1
< (]. - Oé)eiéFX(m ) + o = (M

. (-1 1 [ae™ —1
=z :FX1 <5log<1_a< 6(50‘01—1) —a>>> O

This section investigated the amount of information lost in discretization of a covariate
through examining the difference between discretized conditional quantiles and continuous condi-
tional quantiles. We demonstrated that the right choice of ‘binning’ (i.e. the quantile boundaries
of the discretized covariate) has the potential to retain more information on the dependence struc-
ture with the response than discretization into bins of equal probability, although an analytical
solution to the ‘optimal binning’ problem seems out of reach.

It is clear a variable selection measure tailored to mixed-type data should be biased against
discrete covariates. Moreover, this bias should be monotone decreasing with the number of bins
of the discretized covariate. In the next section, we look at how commonly used variable selection
measures are biased for/against discretized covariates.



5 | Variable selection measures under
discretization

This section investigates how common variable selection measures (Pearson’s/polyserial corre-
lation, Kendall’s tau/tau-b, conditional log-likelihood, check-loss) behave under discretization.
Specifically, we compute the value of these variable selection measures with a continuous co-
variate and compare this to the value of the variable selection measure when computed with
a discretized version of that covariate. Understanding how variable selection measures behave
under discretization is an initial step towards designing a variable selection method tailored to
mixed-type data with vines.

5.1 Variable selection measures under discretization, in 2D

First, we investigate the behaviour of variable selection measures in the simplest possible sce-
nario. We will simulate a response variable Y and a single covariate X, both continuous with
standard normal marginal distribution. The discretized X is generated from X with the pro-
cedure outlined in Definition 4.1. The dependence between Y and X will be governed by a
Gaussian/Clayton/Gumbel /Frank/Joe copula, whose parameters will be changed so as to see
the variable selection measures’ biases for/against discretized variables over the range of depen-
dence strength. The copula-parameter is determined by Kendall’s 7. The range of Kendall’s 7 we
iterate over is 7 € [0.20,0.95], because in the lower end of the range variable selection measures
barely differentiate between continuous and discretized variables, and in the upper end of the
range variable selection measures such as CLL increases exponentially, which makes it harder to
see what happens in the rest of the range of 7.

5.1.1 Pearson’s/polyserial correlation

Figure 5.1 below plots estimated Pearson’s correlation between Y and X, and estimated polyserial
correlation between Y and discretized X, for a variety of copula families and a range of copula
parameters.

The main takeaway from these figures is that for some copula families (Gaussian, Gumbel,
Clayton & Joe for 7 < 0.5), polyserial correlation between Y and discretized X is very close to
Pearson’s correlation between Y and X, and for other copula families (Frank, Clayton & Joe for
7 > 0.5), polyserial correlation between Y and discretized X is greater than Pearson’s correlation
between Y and X. This means that when Pearson’s/polyserial correlation is used as a variable
selection tool for vine-based regression, a discretized variable generated from a latent variable
with some Pearson’s correlation with the response will be measured as equally good/better to
add to the vine when compared to the generating variable itself.
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Figure 5.1: Both Y and X have A(0, 1) marginal distributions. Dependence structure of Y’
and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response
and continuous covariate X, which determines the parameter of the copula between Y and X.
Pearson’s/polyserial correlation was computed for 7 = 0.20,0.21,...,0.95, but curves were drawn
in a continuous manner by linear interpolation between points. The blue line represents Pearson
correlation of Y and X. The red lines represent polyserial correlation between Y and discretized
X. The red lines (although they are not easily distinguishable) correspond to b = 2, 3,4, 6,8, 20.
The number of observations over which Pearson’s/polyserial correlation were computed is n =

10000.
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Pearson’s and polyserial correlation are not margin-free, that is, their values are affected by
the marginal distributions of ¥ and X. For a short look at the robustness of the conclusion
that Pearson’s/polyserial correlation is unsuitable as a variable selection measure for mixed-type
variables, we repeat the simulation from Figure 5.1, this time with uniform marginal distributions
for Y and X.

From Figure 5.2 below, it seems the issues with overestimation get worse when the assumption
of normality from polyserial correlation fails. For uniform marginals we see again that polyserial
correlation gives a greater estimate of correlation with the response than Pearson’s correlation,
confirming our conclusion that Pearson’s/polyserial correlation is not an ideal variable selection
measure for mixed-type data because it is biased in favour of discrete variables, rather than
against.
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Figure 5.2: Both Y and X have Unif]0, 1] marginal distributions. Dependence structure of Y’
and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response
and continuous covariate X, which determines the parameter of the copula between Y and X.
Pearson’s/polyserial correlation was computed for 7 = 0.20,0.21,...,0.95, but curves were drawn
in a continuous manner by linear interpolation between points. The blue line represents Pearson
correlation of Y and X. The red lines represent polyserial correlation between Y and discretized
X. The red lines (although they are not easily distinguishable) correspond to b = 2, 3,4, 6, 8, 20.
The number of observations over which Pearson’s/polyserial correlation were computed is n =
10000.
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5.1.2 Kendall’s tau/tau-b

Figure 5.3 below plots estimated Kendall’s tau between Y and X, and estimated Kendall’s tau-b
between Y and discretized X, for a variety of copula families and a range of copula parameters.

As expected, estimated Kendall’s tau and Kendall’s tau-b seem (visually, at least) unaffected
by the copula family governing Y and X. This is as expected because Kendall’s tau characterizes
the strength of dependence of a copula, but it is not dependent on the specific dependence
characteristics (i.e. shape of distribution function) of that copula. An important drawback of
Kendall’s tau/tau-b as a variable selection measure is that a discretized variable is not necessarily
scored as less attractive than its generating variable; Kendall’s tau-b of Y and discretized X may
be greater than Kendall’s tau of Y and X. In fact for discretized variables with a large number
of bins (b = 6, 8,20) Kendall’s tau-b of Y and the discretized variable is consistently greater than
estimated Kendall’s tau of Y and the continuous covariate.
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Figure 5.3: Dependence structure of Y and X is given in the subtitle of each plot. Presented
on the x-axis is Kendall’s 7 of the response and continuous covariate X, which determines the
parameter of the copula between Y and X. Estimated Kendall’s tau and tau-b were computed
for 7 = 0.20,0.21,...,0.95, but curves were drawn in a continuous manner by linear interpolation
between points. The blue line represents estimated Kendall’s tau of Y and X. The red lines
represent Kendall’s tau-b between Y and discretized X. The red lines correspond, from lowest
to highest, to b = 2,3,4,6,8,20. The number of observations over which Kendall’s tau/tau-b
were computed is n = 10000.
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5.1.3 Conditional log-likelihood

Figure 5.4 below plots the conditional log-likelihood (CLL) of Y given X, and conditional log-
likelihood of Y given discretized X for a variety of copula families and a range of copula param-
eters.

Note in these figures that the CLL of Y given discretized X is monotone in the number of
bins b of the discretized covariate (as opposed to previously seen Pearson’s/polyserial correlation
and Kendall’s tau/tau-b), but not linear. For example, for any fixed dependence strength
the increase in CLL when going from b = 2 to b = 6 is roughly the same as the increase from
b = 6 to the CLL with the continuous covariate. This is likely due to an effect observed with
the discretized conditional quantiles in Section 4, where we observed "...as the number of bins
increases the discretized conditional quantiles become more accurate around the median of the
covariate relatively quickly, but even for a large number of bins (b = 20) tail dependence is not
captured well”.

The CLL is predominantly affected by predictive performance around the conditional mean
of the response. For a variable selection measure which focuses more on predictive performance
on the tail of the response, such as check-loss at o = 0.05, the spacing between bins may look
quite different, with larger differences between check-loss at o = 0.05 using continuous covariates
and check-loss at o = 0.05 using discretized covariates.
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Figure 5.4: Both Y and X have N(0,1) marginal distributions. Dependence structure of
Y and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the
response and continuous covariate X, which determines the parameter of the copula between Y
and X. Conditional log-likelihood of Y given X and Y given discretized X were computed for
7 =0.20,0.21,...,0.95, but curves were drawn in a continuous manner by linear interpolation
between points. The blue line represents CLL of Y and X. The red lines represent CLL between
Y and discretized X. The red lines correspond, from lowest to highest, to b = 2,3,4,6,8, 20.
The number of observations over which CLL was computed is n = 10000.
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To quantify the bias of CLL as a variable selection measure against discretized covariates,
we want to quantify the difference in CLL between continuous and its discretized covariate as
a function of dependence strength between response and covariate (Kendall’s 7) and number
of bins of the discretized covariate (b). In lieu of an analytical approach to quantifying this
difference in CLL between some continuous variable and its discretized variable, we fit a function
to the CLL for each setting (continuous covariate, discretized covariate with b € {2, 3,4, 6, 8,20})
by way of minimizing mean-squared error. These fitted functions provide an estimate of the CLL
of Y given a covariate based on characteristics of the marginal of the covariate (whether it is
continuous and otherwise the number of bins of the marginal) and Kendall’s tau of Y and the
variable which generates the covariate. This allows us to compare the estimated CLL of response
given a covariate between two covariates with different type (continuous/discrete), discretization
procedure (number of bins), and Kendall’s 7 with Y. A more detailed explanation of the fitting
procedure can be found in Appendix 7.3.1. For an illustration, Figure 5.5 below plots the function
fitted on the Gaussian subplot of Figure 5.4.
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Figure 5.5: Both Y and X have N(0,1) marginal distributions. Dependence structure of ¥’
and X is Gaussian. Presented on the x-axis is Kendall’s 7 of the response Y and continuous
covariate X. The blue line represents the function fitted on CLL of Y given X of Figure 5.4.
The red lines represent the function fitted on CLL of Y given discretized X of Figure 5.4. The
red lines correspond, from top to bottom, to b = 2,3, 4,6, 8, 20.

As said earlier, we can use these functions fitted on the CLL for different types of marginal
distributions (continuous/discretized) to compare any pair of variables based on their ‘estimated’
(estimation by way of evaluating the fitted function) CLL under a given copula. Figure 5.6 below
plots a conversion of Kendall’s tau of the variable which generates the discretized covariate to
the Kendall’s tau of the continuous covariate with equal ‘estimated’ CLL. For an example of
how to interpret Figure 5.6, from the line for b = 2 in the subplot corresponding to Gaussian
dependence we read that the estimated CLL for a discretized variable with b = 2 bins generated
from a variable which has Kendall’s tau with the response equal to 0.6, is equal to the estimated
CLL for continuous covariate with Kendall’s tau with the response equal to 0.4. In other words,
when using CLL as a variable selection measure, a continuous covariate with Kendall’s tau with
the response equal to 0.4 is measured as equally informative for Y as a discretized covariate
with b = 2 whose latent variable has Kendall’s tau with the response equal to 0.6. These figures
allow for a rough comparison in CLL between any two variables, without needing to fit copulas
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connecting the variables to the response to compute the CLL exactly. This gives insight into the
biases of CLL as a variable selection measure in the bivariate setting.
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Figure 5.6: Both Y and X have N(0,1) marginal distributions. Dependence structure of ¥’
and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response
and the variable which generates the discretized X. By way of evaluating the function fitted on
the empirical CLL-values of Figure 5.4, we estimate the CLL corresponding to that discretized

covariate. On the y-axis is Kendall’s 7 of the response and continuous X with the same estimated
CLL.
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Remark. The fitted curves on the Frank subplot of Figure 5.6 and Figure 7.10 deviate more from
the empirical values compared to other families. While fitting an alternative functional form might
give a better visual fit, we chose to use a consistent fitting approach across all subplots to ensure
comparability. Since the discrepancy does not affect the overall interpretation or conclusions, no
additional adjustment was applied.

As mentioned earlier, these plots reinforce the idea that CLL punishes discretization mostly
for a low (b < 4) number of bins, but a discretized variable with a moderate to high number of
bins (b > 6) is measured as only slightly less informative for prediction of Y than its continuous
latent variable.

We reproduce Figure 5.6 for uniform marginals of ¥ and X, to understand whether the
marginal distributions have an effect on the bias of CLL against discretized covariates when used
as a variable selection measure. The conversion plots for all copula families can be found in Figure
7.10 in the Appendix. The plot below compares the Gaussian subplot of Figure 5.6 (conversion
plots of CLL with normal marginals) to the Gaussian subplot of Figure 7.10 (conversion plots of
CLL with uniform marginals).
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(a) Both Y and X have NV (0, 1) marginal dis-
tributions. Dependence structure of Y and
X is Gaussian. Presented on the x-axis is
Kendall’s 7 of the response and the variable
which generates the discretized X. By way
of evaluating the function fitted on the em-
pirical CLL-values of Figure 5.4, we estimate
the CLL corresponding to that discretized co-
variate. On the y-axis is Kendall’'s 7 of the
response and continuous X with the same es-
timated CLL.

Figure 5.7

(b) Both Y and X have Unif]0, 1] marginal
distributions. Dependence structure of Y and
X is Gaussian. Presented on the x-axis is
Kendall’s 7 of the response and the variable
which generates the discretized X. By way
of evaluating the function fitted on the em-
pirical CLL-values of Figure 5.4, we estimate
the CLL corresponding to that discretized co-
variate. On the y-axis is Kendall’'s 7 of the
response and continuous X with the same es-
timated CLL.

Comparing Figure 5.6 with Figure 7.10, the shape of the plots are visually identical. This
implies that the bias of variables using CLL as a variable selection measure does not depend
significantly on the marginal distributions of the response or continuous covariate.

5.1.4 Check-loss at o = 0.05

From the previous section regarding CLL, we found the CLL of a discretized covariate improves
very quickly as the number of bins b of the discretized covariate increases from 2 to 3/4/6. We
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hypothesized that a variable selection measure which favours predictive performance on the tails
would see a smaller effect of increasing b from low to a moderate number of bins, because we have
seen in Section 4 that tail dependence remains poorly captured as the number of bins increases.
We test this hypothesis by repeating the simulation, this time with check-loss at o = 0.05 as the
variable selection measure.

For an accurate comparison between the biases of CLL and check-loss at a = 0.05 as variable
selection measures, we create a conversion plot similar to Figure 5.6, this time for check-loss at
a = 0.05. A more detailed explanation of how these conversion plots for check-loss at o = 0.05
were created can be found in Appendix 7.3.3. We present the conversion plots in Figure 5.8
below.
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Figure 5.8: Both Y and X have NV(0, 1) marginal distributions. Dependence structure of Y and
X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response and
the variable which generates the discretized X. By way of evaluating the function fitted on the
empirical check-loss values of Figure 7.11, we estimate the check-loss (o = 0.05) corresponding
to that discretized covariate. On the y-axis is Kendall’s 7 of the response and continuous X with
the same estimated check-loss (v = 0.05).
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Despite our hypothesis that a variable selection measure which favours covariates which
capture tail dependence would see a greater bias against discretization than CLL, this is not
what the conversion plot of check-loss at a = 0.05 tells us. In fact, the conversion plots of
check-loss at @ = 0.05 and CLL are nearly identical. One possible explanation for this is that
the 0.05-quantile is not far enough in the tails to see a clear difference in the behaviours of CLL
and check-loss.

To see if the behaviour of check-loss as a variable selection measure (i.e. the shape of the
conversion plots of Figure 5.8) depends significantly on the chosen marginal distributions of YV
and X and the a-quantile at which check-loss is computed, we plot Figure 5.8, this time with (1)
check-loss at o = 0.01 (see Figure 7.13 in Appendix), a more extreme tail quantile, and (2) Y
and X uniform (see Figure 7.14 in Appendix). For illustration, we plot the Gaussian sub-plots
of the aforementioned figures below, the full figures can be found in the Appendix.
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(a) Both Y and X have A/(0,1) marginal dis-
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Gaussian. Presented on the x-axis is Kendall’s
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the function fitted on the empirical check-loss
(o = 0.01) values we estimate the check-loss
(a = 0.01) corresponding to that discretized
covariate. On the y-axis is Kendall’s 7 of the
response and continuous X with the same esti-
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(b) Both Y and X have Unif|0, 1] marginal dis-
tributions. Dependence structure of Y and X is
Gaussian. Presented on the x-axis is Kendall’s
7 of the response and the variable which gen-
erates the discretized X. By way of evaluating
the function fitted on the empirical check-loss
(v = 0.05) values, we estimate the check-loss
(o = 0.05) corresponding to that discretized
covariate. On the y-axis is Kendall’s 7 of the
response and continuous X with the same esti-
mated check-loss (o = 0.05).

Comparing both Gaussian sub-plots, we see the behaviour (i.e. the bias against discretized
covariates) of check-loss as variable selection measure is somewhat dependent on the marginals
of Y and X, but largely independent of the tail-quantile at which check-loss is evaluated. The
fact that under uniform marginals check-loss is less biased against discretization is possibly due
to the boundedness of the uniform distribution. Because the uniform distribution is bounded,
even a bad prediction (for instance, using a discretized covariate) stays quite close to the correct
prediction (using the continuous covariate), which is not the case for normal marginal distribu-
tions.
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5.2 Variable selection measures under discretization, in 3D

In the previous section, we quantified the impact of discretization on variable selection measures
in a setting with a single covariate and saw that in the bivariate setting Pearson/polyserial
correlation and Kendall’s 7/7, are not biased enough against discretized covariates to be used
in vine-based regression for mixed-type data, and that CLL and check-loss (v = 0.05) were
closely aligned in the simulated bivariate scenario. This section investigates CLL and check-loss
at a = 0.05 in the 3-dimensional scenario.

In this section, we aim to achieve a similar result in a setting with a single response Y and
two covariates, X1 and Xy, where one of the covariates is discretized (again in the manner laid
out in Definition 4.1). Observations will be generated from a D-vine with order Y — X1 —X5. In a
setting with two covariates, we naturally have a choice of which of the two covariates to discretize.
Discretization of X; may not yield equal CLL/check-loss values as the discretization of X9, as the
roles these covariates play in the vine are not identical. The most notable difference is that due
to X5 being a leaf node in the vine, X5 is never conditioned on, whereas X is conditioned on in
the copula cyx,|x,. Discretization may have a different impact on a variable in the conditioned
set than a variable which is never conditioned on. As we will see, the multivariate setting is
much more complicated than the univariate setting.

In the bivariate analysis in Section 5.1, we computed the effect of discretization on CLL and
check-loss for many strengths of dependence, from 7 = 0.20 to 7 = 0.95. There, we saw the
effect of discretization is dependent on the strength of dependence of the discretized variable
with the response. In the 3-dimensional setting with Xy as the discretized variable, there are
two copulas which affect the strength of dependence between Y and either covariate. Thus,
there are two copulas whose dependence strength we want to adjust. When X5 is discretized, we
adjust the dependence strength of the copula cx, x, and the conditional copula cyx, x,. Due to
time-constraints, we only consider the D-vine with X5 discretized.

Vine with X5, discretized

We will do a simulation study to compute CLL and check-loss at a = 0.05 of vines with different
parameters and number of bins b with which discretized Xo is generated. We sample n =
1000 observations from the D-vine with order ¥ — X; — X5. The marginal distributions of
the continuous variables, Y and X;, are standard normal. Discretized X5 is generated through
binning its latent variable X5 into bins of equal probability, as illustrated in Definition 4.1.
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(a) On the y-axis, check-loss at @ = 0.05 of

Y given X; and (discretized or continuous)
X5 over n = 1000 observations. On the x-
axis, Kendall’s 7 of copulas cx, x, and ¢y x,|x; -
Kendall’s 7 of copula cyx, is fixed at 7 = 0.5.
From lowest to highest line in the graph, we see
check-loss at 0.05-quantile for continuous Xs,
then check-loss at 0.05 for discretized X5 with
bins b = 20, 8, 6, 4, 3, 2, respectively.

(b) On the y-axis, CLL of Y given X; and (dis-
cretized or continuous) X5 over n = 1000 ob-
servations. On the x-axis, Kendall’s 7 of cop-
ulas cx, x, and cy x,|x,. Kendall’s 7 of copula
cyx, is fixed at 7 = 0.5. From highest to low-
est line in the graph, you see CLL for continu-
ous X5, then CLL for discretized X, with bins
b= 20,8,6,4, 3,2, respectively.

Figure 5.10

Observe the strange effect discretization has on the CLL and check-loss in this scenario. One
would expect them to be decreasing as 7 goes to 1 (as they did in the bivariate analysis), but for
discretized X5 predictive performance gets worse after reaching an optimum around 7 ~ 0.8. One
might find a hypothetical reason for this worsening predictive performance when one considers
that on the x-axis, two different copula parameters are changed; the parameter of cx, x, and
the parameter of cyx,x,. It is known that correlation between covariates is undesirable for
predictive performance in regression problems. So, perhaps the negative effect of increasing the
dependence between covariates X1 and Xo takes over from the positive effect of increasing the
dependence between Y, Xo | X; around 7 ~ 0.8. This hypothesis would explain why predictive
performance using discretized X» gets worse after reaching an optimum at 7 < 1, but it does not
explain why predictive performance using the continuous version of X5 steadily improves as T
goes up. Still, to test this hypothesis let us make a similar plot as Figure 5.10, this time keeping
the dependence strength of the copula cx, x, constant at 7 = 0.7 (deliberately chosen smaller
than the value where CLL and check-loss move back in the unfavourable direction), and varying
only the dependence strength of the conditional copula cy x, x; -
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(a) Generated in a near-identical setting as Fig-
ure 5.10, only with Kendall’s 7 of copula cx;, x,
fixed at 7 = 0.7. On the y-axis, check-loss at
a = 0.05 of Y given X and (discretized or con-
tinuous) X5. On the x-axis, Kendall’s 7 of cop-
ula cyx,|x,. Kendall’s 7 of copulas cyx, and
cx,x, are fixed at 7 = 0.5 and 7 = 0.7, re-
spectively. From lowest to highest line in the
graph, you see check-loss at 0.05-quantile for
continuous Xy, then check-loss at o = 0.05 for
discretized Xo with bins b = 20,8, 6,4, 3,2, re-
spectively.
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Kendalls tau of copulas connected to (latent) X2

(b) Generated in a near-identical setting as
Figure 5.10, only with Kendall’s 7 of copula
cx, x, fixed at 7 = 0.7. On the y-axis, CLL of
Y given X; and (discretized or continuous) Xo.
On the x-axis, Kendall’s 7 of copula cyx,|x;-
Kendall’s 7 of copulas ¢y x, and cx, x, are fixed
at 7 = 0.5 and 7 = 0.7, respectively. From
highest to lowest line in the graph, you see CLL
for continuous X5, then CLL for discretized Xo
with bins b = 20, 8, 6, 4, 3, 2, respectively.

Figure 5.11

This looks more like what one would expect, with CLL and check-loss using discretized Xs
decreasing steadily as 7 becomes larger. This leads us to conclude that in this 3-dimensional
setting with Xy discretized, very high correlation between X; and X5 has a very strong negative
effect on predictive performance. Now, let us explain why it is only the CLL and check-loss for
discretized Xo which suffer so much from high correlation between X; and X5, whereas CLL and
check-loss using continuous Xs do not.

To explain this, let us make a first observation; changing the parameter of cx, x, does not
change the Y- or X;-values of the observations generated by the D-vine. In other words, under
the simulation settings of Figure 5.10 and Figure 5.11, where the parameter of cx, x, is the only
difference between the two settings, the columns corresponding to Y and X7 are identical in both
datasets. Thus, we may gauge visually the predictive power X5 has after conditioning on some
value of X, by plotting for both simulation settings all values (X2,Y") which correspond to a
value for X;. Then we can see how much predictive power Xo has after removing the effect of

Xj.
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(continuous) X2

(a) Values (X2,Y) of all observations whose corre-
sponding X;-value is in (—0.025,0]. Observations
were generated with a D-vine with Kendall’s tau
of copulas ¢y x,, ¢x,x,, Cyx,|x, equal to 0.5, 0.9
and 0.9, respectively. This is equivalent to the sim-
ulation setting of Figure 5.10 at 7 = 0.9.

Figure 5.12

(continuous) X2

(b) Values (X2,Y) of all observations whose corre-
sponding X;-value is in (—0.025,0]. Observations
were generated with a D-vine with Kendall’s tau
of copulas ¢y x,, €x,x,, Cyx,|x, equal to 0.5, 0.7
and 0.9, respectively. This is equivalent to the sim-
ulation setting of Figure 5.11 at 7 = 0.9.

Higher correlation between X; and Xs does not affect the predictive power of X, after
adjusting for X;. Note one big difference between Figure 5.12a and Figure 5.12b is the width of
the x-axis, i.e. the width of the range of values Xo attains in observations with corresponding
X1 € (0.025,0]. Now let us look at plots produced in the same conditions, only with discretized
X5, discretized into b = 20 bins, because the effect of worsening CLL and check-loss as 7 goes
to 1 in Figure 5.10 is most pronounced for b = 20.
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(a) Values (X2,Y) of all observations whose corre-
sponding X;-value is in (—0.025,0]. Observations
were generated with a D-vine with Kendall’s tau
of copulas cy x,, ¢x, x,, €y x,|x, equal to 0.5, 0.98
and 0.98, respectively. This is equivalent to the
simulation setting of Figure 5.10 at 7 = 0.98. Dis-
cretized X is obtained by quantile binning with
b = 20 bins of equal quantile-width.
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(b) Values (X5,Y) of all observations whose corre-
sponding X;-value is in (—0.025,0]. Observations
were generated with a D-vine with Kendall’s tau of
copulas ¢y x, , €x,X,, Cy x,|x; equal to 0.5, 0.9 and
0.9, respectively. This is equivalent to the simula-
tion setting of Figure 5.10 at 7 = 0.9. Discretized
X5 is obtained by quantile binning with b = 20
bins of equal quantile-width.

Figure 5.13
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(c) Values (X3,Y) of all observations whose corre-
sponding X;-value is in (—0.025,0]. Observations
were generated with a D-vine with Kendall’s tau of
copulas ¢y x,, €x,X,, Cy x,|x; equal to 0.5, 0.7 and
0.9, respectively. This is equivalent to the simula-
tion setting of Figure 5.11 at 7 = 0.9. Discretized
X5 is obtained by quantile binning with b = 20
bins of equal quantile-width.
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Clearly, the higher correlation between X; and X» has a significant impact on the predictive
power discretized X9 has over Y after adjusting for X;. This is because the higher correlation
between X7 and X narrows the range of values Xy takes for any given X7 value. Thus, after
discretization, the number of bins X5 falls in for a given X; value decreases as the correlation
of X1 and X5 increases, causing discretized Xo to contribute less and less new information on
Y additional to the information on Y already given by Xj. The slice of X; values used in
Figure 5.12 and Figure 5.13 is equal to its 0.49*" and 0.50*" quantiles, which is very close to the
quantile-boundary between the 10" and 11" bins. Because this slice is right on the boundary
between two bins, discretized Xs takes two values in Figure 5.13a. If the slice of X; values
lies closer to the middle of a quantile bin, then discretized Xs might only attain a single value,
making it completely uninformative for Y after adjusting for X;. This is why in Figure 5.10,
the CLL and check-loss at 7 = 0.99 using discretized X5 go back to their respective values at
7 = 0.01, because when correlation between X; and Xs is nearly perfect, discretized Xs attains
only a single value for any small slice of X7 values, making it completely uninformative for Y
after adjusting for X, despite correlation of its generating variable (X2) with Y given X; being
extremely high. Finally, careful inspection of Figure 5.10 reveals that the value of 7 at which
the CLL and check-loss of discretized X5 start to creep back up is lower for smaller number of
bins. This is also explainable; when b is smaller, less correlation between X; and Xs is needed
before discretized X5 becomes uninformative because the interior of quantile bins is larger when
b is smaller.

In summary, in a D-vine with order Y — X7 — X5, correlation between covariates does not
seem to affect predictive performance when both covariates are continuous, but when X is
discretized, correlation with X7 has a very significant impact on predictive performance. As
correlation between X; and X, goes to 7 = 1, discretized X, contributes less and less new
information on Y additional to the information on Y already given by X7, no matter how high
the correlation between Y, X5 | X; is. One question left unanswered in this section is whether
correlation between a variable which generates a discretized covariate and any other continuous
covariate has this effect on the predictive power of a discretized covariate, or whether it is only
correlation with covariates which are in the conditioning set of the copula which connect the
discretized covariate with the response which has this effect.



6 | Discussion & further research

This thesis investigated the effect of discretization of covariates on conditional quantile functions
of bivariate copulas and variable selection measures, in an effort to take a step towards building
privacy-preserving datasets using discretization of covariates and towards vine-based regression
methods tailored to mixed-type (continuous & discrete) data.

In Section 4, we investigated the impact of discretization on different (bivariate) copula
families, marginal distributions and binning procedures. We visualized discretized conditional
quantiles over continuous conditional quantiles, giving some sense of how much information is lost
in discretization. Initially, discretization was done in bins of equal probability. These discretized
conditional quantiles lost so much dependence characteristics that some copula families became
nearly indistinguishable, regardless of the marginal distribution of the response. The amount
of information a discretized covariate provides about the dependence of the response and its
generating variable may be improved significantly with a different approach to binning. In an
effort to understand how one can choose the ‘optimal’ approach to discretizing a covariate (i.e.
the optimal choice of quantile-boundaries), we took a step towards analytical quantification of
the error in conditional quantiles caused by discretization (see Lemma 4.2), although a fully
analytical solution to this problem seems unlikely due to the impossibility of analytically solving
equations with certain copula families’ (conditional) distribution functions. Solutions to the
optimal-binning problem will require a numerical approach and/or heuristics.

The study of discretized conditional quantile functions showed us a variable selection measure
tailored to mixed-type data should be biased against discrete variables due to the significant loss
of information caused by discretization. Moreover, we desire such a variable selection measure to
be monotone increasing in the number of bins of the discretized covariate. Section 5 investigated
how common variable selection measures (Pearson’s/polyserial correlation, Kendall’s tau/tau-b,
conditional log-likelihood, check-loss at a tail quantile) are biased for/against discretized vari-
ables. Pearson’s/polyserial correlation and Kendall’s tau/tau-b were found unsuitable for mixed-
type data because they were not biased against discretized covariates and/or non-monotone. In
the bivariate setting, conditional log-likelihood and check-loss at a tail quantile were found to
have nearly identical biases against a discretized covariate, but note the caveat that we only in-
vestigated homoskedastic simulation scenarios. Before drawing conclusions about the exchange-
ability of CLL and check-loss at o = 0.05 as variable selection measures in the bivariate setting,
the biases against discretized covariates of conditional log-likelihood and check-loss at o = 0.05
should be compared in a heteroskedastic scenario as well. Finally, the bias of conditional log-
likelihood against discretized covariates seemed unaffected by the choice of marginals. On the
other hand, the bias of check-loss @ = 0.5 was somewhat affected by choice of marginals, but
seemed unaffected by the choice of a-quantile at which check-loss was evaluated when tested
with o = 0.01.

In a 3-dimensional setting with two covariates, we saw discretization has a different effect than
in the 2-dimensional setting. Specifically, correlation between the covariates may have a strong
negative effect on predictive performance when a covariate is discretized, to the point of making
the discretized covariate completely uninformative for Y, as if it were (conditionally) independent
from the response. This has important implications for the computational complexity of vine-
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based regression tailored to mixed-type data. Namely, the method by Sahin & Czado ([30]) which
reduced computational complexity of vine-based regression to O(d?) by considering variable
selection measures with the residual rather than with the vine as a whole, does not take into
account the effect of correlation on discretized covariates, thereby overestimating the additional
information discretized covariates would provide to the vine.

We present some avenues for further research. Some of which are related to the content of
this thesis, others were ideas which could not be investigated fully due to time constraints.

6.1 D-vine regression for mixed data through latent variable es-
timation

Under the assumption that any discrete variable is generated from a continuous latent vari-
able, the value of the discrete variable gives information about the range its latent variable is
in. Rather than using variable selection measures tailored to mixed-type data, we might work
around the problem of discrete variables by constructing a second dataset, where the discrete
variables are replaced by their estimated latent data. Standard variable selection measures for
continuous variables can then be used. Moreover, estimating latent data may be useful after
variable selection as well. Copulas could be fit on the second dataset containing estimated la-
tent data and predictions made using estimated latent data, completely bypassing the need for
developing methods tailored to mixed-type data.

A direction for further research could be to investigate whether estimating the value of the
latent variable through its polyserial /polychoric correlations with other covariates improves the
predictive performance of the model, when compared to using the discrete variable. Estimating
the value of the latent variable has two parts; (1) computing the distribution of the latent variable
conditional on the value of its discrete variable and the other covariates, and (2) sampling from
this distribution effectively.

For an illustration of how latent data may be estimated, we show how we obtain the distribu-
tion of the latent variable conditioned on covariate values. Let X7, X5, ..., X} denote continuous
covariates. Let X4, X denote a discrete covariate and its latent variable, respectively. We work
under the assumption that all marginals and dependence is Gaussian. In our data, we have access
to the value of X, only. This tells us the range its latent variable X is in. We will condition on
covariate values and the event X, = k, letting cg, cx_1 be the right- and left-boundaries of the
k-th bin, respectively. We find

P(X; <z ‘ Xl,XQ,...,Xk,Xd:k) :P(X; <z | )(1,)(2,...,)(k,)(:ik S (Ck,ckfl])
]P)(X;; SZL’ ’ Xl,XQ,...,Xk)—P(X;; S Cl—1 |X1,X2,...,Xk)

P(XG <cp| X1, Xay oo, Xi) = P(X] < cpr | X1, Xy, X))

Each term is known, since by our assumption that all marginals and dependence structures are
Gaussian we can use the well-known result of conditioning a multivariate normal, which states

that when
X1 M1 ] [U 11 0’12])
X = ~N , ,
[X—l] ( [N—l 021 X2
the conditional distribution of X7 given X _q is

z— (1 + 01285 (X1 — p1))

1
\/0'11 — 012325, 021

Fxx_,(z) =@

To illustrate how the density of a latent variable which generates a binary discrete variable
changes when conditioning on other covariate values, we set the covariance of all covariates to
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0.5 and condition on the covariate values (X7 = —1, Xo, = —1, X3 = —1, Xy = —1, X} € (—00,0])
to present the following figure.
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Figure 6.1: The red line shows the density fx:(- | Xj € (—o0,0]), the blue line shows the
density fx:(- [ X1 =—-1,Xs = -1, X3 = —1,X4 = -1, X € (—00,0]). The variables each have
standard normal marginals, and covariance between any pair of variables is set to 0.5.

As can be seen from the figure, conditioning on covariate values may be informative for the
distribution of the latent variable.

The next step to investigate is the sampling strategy. The sampling strategy should effectively
explore the distribution of the latent variable computed previously, while balancing computa-
tional limits. Remember, each datapoint in the original dataset (D) produces its own distribution
of the latent variable through its unique set of covariate values. To effectively explore each such
distribution, we will sample from it multiple (ngppror) times. These ngpprop samples will be put
into a new dataset, NewD, which will thus contain ngppro. times as many datapoints as D. To
find all copula families and parameters of the D-vine, weighted MLE may be used on the new
dataset NewD. Computing the weight for each datapoint will be part of the sampling strategy.

Possible sampling strategies include:

1. Sampling ngppror quantiles from a Unif[0, 1] distribution, taking each sample as the inverse
of the conditional latent variable distribution at that quantile and the weight of that sample
as the density of the conditional latent variable evaluated at that sample.

2. Sampling ngppror quantiles such that they are equidistant and in the range (0,1), taking
each sample as the inverse of the conditional latent variable distribution at that quantile
and the weight of that sample as the density of the conditional latent variable evaluated
at that sample.

3. Sampling ngppror quantiles such that they are equidistant and in the range (0, 1), taking
each sample as the inverse of the conditional latent variable distribution at that quantile ¢
and the weight of that sample as the density of the conditional latent variable evaluated at
that sample multiplied by a factor 1 + A(0.5 — ¢)?, so that points on the tail are weighted
more.
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6.2 Quantification of error in conditional quantiles caused by dis-
cretization

In Section 4, we considered a way of quantifying the error in conditional quantiles caused by
discretization by way of expressing this error, the difference between a continuous conditional
quantile and the discretized conditional quantile, as a difference between two continuous con-
ditional quantile functions at different conditioning values. This lead to error quantification
for a very small subset of copula families and bins. Better conditional quantile error quantifi-
cation/estimation would aid in designing an optimal binning strategy, to be used in building
privacy-preserving datasets. Considering the difficulty of analytical solutions for this problem,
we suggest efforts should be put towards estimation of discretization error in conditional quantile
functions, rather than solving exactly.

6.3 Estimation of Kendall’s tau of latent variable with response

The conversion plots of Figure 5.8 and Figure 5.6 plot on the x-axis the value of Kendall’s tau
between the response and the latent variable of a discretized covariate. From Figure 5.3, we saw
Kendall’s tau-b is not necessarily a good estimator for Kendall’s tau between latent variable and
the response. In order to use the conversion plots more effectively, a better estimate of Kendall’s
tau between latent variable and response may be investigated, in the situation when one has
access only to data of the discretized covariate and the response.

6.4 Variable selection for vine-based regression for mixed-type
data

The larger problem this thesis aims to address is vine-based regression for mixed-type data. The
difference in impact of discretization in a two-dimensional or multi-dimensional setting should
be taken into account when developing variable selection procedures for vine-based regression
tailored to mixed-type data. We consider the main problem to be the loss of predictive power
of discretized covariates when they are highly correlated with a continuous covariate. Further
research could investigate when correlation between covariates of different type cause the loss of
predictive power, and try to quantify this loss. One could start with the question left unanswered
in this thesis, namely whether correlation between a variable which generates a discretized co-
variate and any other continuous covariate has a negative effect on the predictive power of a
discretized covariate, or whether it is only correlation with covariates which are in the condition-
ing set of the copula which connect the discretized covariate with the response which has this
effect.
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7.1 List of copula functions

Table 7.1: Bivariate copulas: expressions for CDF, conditional distribution, conditional quantile
function.

Copula Functions
Gaussian copula, p € [—1,1] Clu,v) = (2 (u), 2 (v)),
®, is the CDF of a standard Cop(v|u) = @(él(qi)/%pil(“) )
bivariate normal with correlation -
p
Cyptlar | w) = @(qu(a)m — 2+ p@—l(u)).
Student ¢ copula, p € [-1,1], Clu,v) =ty (t; (u), ;1 (v)),
v e N\ {0}
t, is the CDF of the Student ¢ Cop(v|u) =ty < t;l(v)fptil(u) ),
with v degrees of freedom \/(1*'”2)(1*@” (“))2/”)

tp is the CDF of the bivariate Cill(a | u) = t,jl( %ﬁ“w (t;il(a)) + ptl,l(u))
Student t (correlation p, degrees
of freedom v)

Frank copula, § # 0 C(u,v) = —% log(l + %),
675u _67611
02|1(U | u) = _6—5_676(u(jv)+6—5)u+e—5v7

— a(l—e=9
Oy (a | u) = —5log (1 - W)

Clayton copula, § >0 C(u,v) = (u® +0v7% — 1)~/
Cop(v]u)=(u?+v70— 1)_1/5_1 v

it 1w = (o —1)u 1)
Gumbel copula, 0 > 1 Ca(u,v) = eXP{_ [(—logu)’ + (—log v)é]l/é}
Cas(o | ) = (= logu)* ! ((~logw)’ + (~1og)*) T C(

U

,0)

IS

=

Joe copula, 6§ > 1 Crlu,v) =1—[(1—w)? + (1 —u)? — (1 — w)? (1 — ug)?]
Con (v [u) = (1= Cy(u,v) " (1= w)’~* (1= (1—v)f)
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7.2 Appendix to Section 4

7.2.1 Conditional quantile plots, Y standard normal
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Figure 7.1: Plots of the conditional quantile function of the Frank copula with § = 5.63
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is standard normal. The values of the conditional quantiles were
obtained numerically through root-finding.
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Figure 7.2: Plots of the conditional quantile function of the Clayton copula with § = 1.95
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is standard normal. The values of the conditional quantiles were
obtained numerically through root-finding.
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Figure 7.3: Plots of the conditional quantile function of the Gaussian copula with p = 0.7
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is standard normal. The values of the conditional quantiles were
obtained numerically through root-finding.
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Figure 7.4: Plots of the conditional quantile function of the Gumbel copula with § = 1.97
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is standard normal. The values of the conditional quantiles were

obtained numerically through root-finding.
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7.2.2 Conditional quantile plots, Y uniform
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Figure 7.5: Plots of the conditional quantile function of the Frank copula with § = 5.63
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution o Y is uniform. The values of the conditional quantiles were obtained

numerically through root-finding.
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Figure 7.6: Plots of the conditional quantile function of the Clayton copula with § = 1.95
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is uniform. The values of the conditional quantiles were obtained

numerically through root-finding.
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Figure 7.7: Plots of the conditional quantile function of the Gaussian copula with p = 0.7
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is uniform. The values of the conditional quantiles were obtained

numerically through root-finding.
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Figure 7.8: Plots of the conditional quantile function of the Gumbel copula with § = 1.97
(corresponding 7 = 0.49), for quantile 7 € {0.01,0.1,0.5,0.9,0.99}. On the lower x-axis, the
conditioning value of X in the continuous case, the corresponding conditional quantile functions
in red lines. On the top x-axis, the conditional value of X in the discretized case, with the
corresponding conditional quantile values given as blue circle in the middle of the associated bin.
The marginal distribution of Y is uniform. The values of the conditional quantiles were obtained
numerically through root-finding.

7.3 Appendix to Section 5
7.3.1 Creating conversion plots from conditional log-likelihood plots of Fig-
ure 5.4, normal marginals

With some empirical testing, functions of the form f(z) = ax?® + ba® + cx'® + d were found to
have lowest MSE when fit on the CLL plots of Figure 5.4.
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Figure 7.9: Both Y and X have A(0,1) marginal distributions. Dependence structure of Y’
and X is given in each subplot. Presented on the x-axis is Kendall’s 7 of the response Y and
continuous covariate X. The blue line represents the function fitted on CLL of Y given X of
Figure 5.4. The red lines represent the function fitted on CLL of Y given discretized X of Figure
5.4. The red lines correspond, from top to bottom, to b = 2, 3,4, 6,8, 20.
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With these fitted functions, the conversion plots can be made by evaluating the fitted function
of a discretized covariate at some Kendall’s 7, and finding the value of Kendall’s 75 such that
continuous covariate at 7 has the same CLL as the discretized covariate at 7. For instance, the
fitted function of the Gaussian subplot shows a discretized covariate with b = 2 and Kendall’s
tau (between response and its latent variable) equal to 0.6 has the same CLL as a continuous
covariate with Kendall’s tau equal to 0.4. So in the conversion plot, the line corresponding to
b = 2 will take value 0.4 on the y-axis at 0.6 on the x-axis.

7.3.2 Conversion plots for conditional log-likelihood, uniform marginals

Below are the conversion plots for the conditional log-likelihood, with Y and X uniform.
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Figure 7.10: Both Y and X have Unif[0, 1] marginal distributions. Dependence structure of
Y and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the
response and continuous covariate X, which determines the parameter of the copula between Y
and X. The blue line represents CLL of Y and X. The red lines represent CLL between Y and
discretized X. The red lines correspond, from lowest to highest, to b = 2, 3,4, 6, 8, 20.
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7.3.3 Creating conversion plots from check-loss (« = 0.05) plots of Figure 7.11
The simulation study gave the check-loss (o = 0.05) plots posted below.
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Figure 7.11: Both Y and X have A(0, 1) marginal distributions. Dependence structure of Y’
and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response
Y and continuous covariate X, which determines the parameter of the copula between Y and
X. Check-loss was computed for 7 = 0.01,0.02,0.03,...,0.99,1, but curves were drawn in a
continuous manner by linear interpolation between points. The blue line represents check-loss at
a = 0.05 for prediction of Y given X. The red lines represent check-loss at & = 0.05 for prediction
of Y given discretized X. The red lines correspond, from top to bottom, to b = 2, 3,4, 6,8, 20.
Number of observations n = 10.000.
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With some empirical testing, functions of the form f(z) = az + bx? + ¢ were found to have
lowest MSE when fit on the check-loss (o = 0.05) plots of Figure 7.11.
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Figure 7.12: Both Y and X have A(0, 1) marginal distributions. Dependence structure of Y’
and X is given in each subplot. Presented on the x-axis is Kendall’s 7 of the response Y and
continuous covariate X. The blue line represents the function fitted on check-loss (o = 0.05) of Y’
given X of Figure 7.11. The red lines represent the function fitted on CLL of Y given discretized
X of Figure 7.11. The red lines correspond, from top to bottom, to b = 2, 3,4, 6,8, 20.
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These fitted functions allow us to create the conversion plots of Figure 5.8, in the manner
explained in the previous section.

7.3.4 Conversion plots for check-loss (o« = 0.01)

Posted below are the conversion plots for check-loss at a more extreme tail quantile, « = 0.01.
The conversion plots for a@ = 0.01 are nearly identical to the conversion plots for check-loss
at a = 0.05, showing the amount of bias check-loss has against discretized covariates does not
depend significantly on the tail-quantile where check-loss is evaluated. The main difference
between the conversion plots for the different values of « is that for a = 0.01, the subplot for the
Joe copula had check-loss for discretized covariate which started at a higher value than check-loss
for continuous covariate, so the conversion from the former to the latter does not exist on the
left-hand side of the x-axis.
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Figure 7.13: Both Y and X have A/ (0, 1) marginal distributions. Dependence structure of Y’
and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response
and continuous covariate X, which determines the parameter of the copula between Y and X.
The blue line represents check-loss at & = 0.01 of Y given X. The red lines represent check-loss

at @ = 0.01 of Y given discretized X. The red lines correspond, from lowest to highest, to
b=2,3,4,6,8,20.
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7.3.5 Conversion plots for check-loss (o = 0.05), uniform marginals

To observe whether the behaviour/bias of check-loss at @ = 0.05 changes when the marginal
distributions of Y and X change, we plot the conversion plots below for uniform marginals.

Note the subplot for the Joe copula had fitted check-loss for discretized covariate which
started at a higher value than fitted check-loss for continuous covariate, so the conversion from
the former to the latter does not exist on the left-hand side of the x-axis.

The conversion plots with Y, X uniform below are hard to distinguish from the conversion
plots with Y, X normal, supporting the idea that the amount of bias check-loss at a = 0.05 has
against discretized covariates is very consistent for different marginals.
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Figure 7.14: Both Y and X have Unif[0, 1] marginal distributions. Dependence structure of YV
and X is given in the subtitle of each plot. Presented on the x-axis is Kendall’s 7 of the response
and continuous covariate X, which determines the parameter of the copula between Y and X.
The blue line represents check-loss at & = 0.05 of Y given X. The red lines represent check-loss

at @ = 0.05 of Y given discretized X. The red lines correspond, from lowest to highest, to
b=2,3,4,6,8,20.
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