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Towards functional robotic training: motor 
learning of dynamic tasks is enhanced by haptic 
rendering but hampered by arm weight support
Özhan Özen1* , Karin A. Buetler1 and Laura Marchal‑Crespo1,2 

Abstract 

Background: Current robot‑aided training allows for high‑intensity training but might hamper the transfer of 
learned skills to real daily tasks. Many of these tasks, e.g., carrying a cup of coffee, require manipulating objects with 
complex dynamics. Thus, the absence of somatosensory information regarding the interaction with virtual objects 
during robot‑aided training might be limiting the potential benefits of robotic training on motor (re)learning. We 
hypothesize that providing somatosensory information through the haptic rendering of virtual environments might 
enhance motor learning and skill transfer. Furthermore, the inclusion of haptic rendering might increase the task 
realism, enhancing participants’ agency and motivation. Providing arm weight support during training might also 
enhance learning by limiting participants’ fatigue.

Methods: We conducted a study with 40 healthy participants to evaluate how haptic rendering and arm weight 
support affect motor learning and skill transfer of a dynamic task. The task consisted of inverting a virtual pendulum 
whose dynamics were haptically rendered on an exoskeleton robot designed for upper limb neurorehabilitation. Par‑
ticipants trained with or without haptic rendering and with or without weight support. Participants’ task performance, 
movement strategy, effort, motivation, and agency were evaluated during baseline, short‑ and long‑term retention. 
We also evaluated if the skills acquired during training transferred to a similar task with a shorter pendulum.

Results: We found that haptic rendering significantly increases participants’ movement variability during training and 
the ability to synchronize their movements with the pendulum, which is correlated with better performance. Weight 
support also enhances participants’ movement variability during training and reduces participants’ physical effort. 
Importantly, we found that training with haptic rendering enhances motor learning and skill transfer, while training 
with weight support hampers learning compared to training without weight support. We did not observe any signifi‑
cant differences between training modalities regarding agency and motivation during training and retention tests.

Conclusion: Haptic rendering is a promising tool to boost robot‑aided motor learning and skill transfer to tasks with 
similar dynamics. However, further work is needed to find how to simultaneously provide robotic assistance and hap‑
tic rendering without hampering motor learning, especially in brain‑injured patients.

Trial registration https:// clini caltr ials. gov/ show/ NCT04 759976

Keywords: Motor learning, Motor control, Neurorehabilitation, Somatosensory information, Haptic rendering, 
Robotic assistance, Arm weight support, Variability, Effort, Motivation
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Background
Every year, millions of stroke survivors lose their func-
tional autonomy due to arm paralysis [1]. In the absence 
of a cure for stroke, clinical evidence suggests that 
patients should engage in functional task-specific [2], 
high-intensity [3] training to maximize their recovery. 
Rehabilitation robots can provide high-intensity train-
ing [4], but current robots seem to hamper the regain 
of functional movements needed to perform Activities 
of Daily Living (ADL) [5, 6]. A possible rationale behind 
this limitation is that current robot-aided interven-
tions rely on (rather abstract) visual feedback while the 
somatosensory feedback from the interaction with tan-
gible virtual objects is neglected [7].

Training with robots that do not incorporate soma-
tosensory feedback does not resemble real-life train-
ing conditions. As we do not expect people to learn 
how to ride a bike on a static bike or learn how to swim 
outside the water, how can we expect brain-injured 
patients to relearn functional movements if we do not 
allow them to see and feel the interaction with realistic, 
highly dynamic virtual environments? Yet, a consider-
able amount of ADLs, such as carrying a cup of coffee, 
require the physical interaction with objects that have 
complex dynamics [8]—e.g., non-linear, under-actuated, 
and even unstable dynamics. During this interaction, 
humans apply forces on the objects to manipulate them, 
and objects apply forces back to the humans according to 
their specific dynamics. The somatosensory information 
regarding these interaction forces, which is perceived 
through proprioceptive and tactile mechanoreceptors, 
plays an essential role in fine motor control [9, 10]. Fur-
thermore, fMRI studies have highlighted the importance 
of somatic information for forming internal models of 
object dynamics—e.g., strong activation was observed in 
brain areas associated with learning, namely the cerebel-
lum, when interacting with objects with complex dynam-
ics [11, 12]. Importantly, when the somatosensory cortex 
is disrupted, learning of a new task is impaired [13] and 
the recovery after stroke is hampered [14]. These findings 
indicate that somatosensory information is important 
not only for motor control but also for motor (re)learn-
ing [15]. Thus, providing somatosensory information 
(regarding the physical interaction with virtual objects) 
during robotic therapy might enhance motor learning 
and neurorehabilitation outcomes [16].

Somatic feedback could be potentially provided by 
robots through haptic rendering—i.e., by simulat-
ing the interaction forces from tangible virtual objects 
to the participants according to their dynamic mod-
els. The provision of congruent visuo-haptic feedback 
might provide a more realistic training environment 
that might enhance the skill transfer gained during 

robotic rehabilitation to ADLs [7, 17]. Importantly, the 
provision of multimodal feedback has been shown to 
enhance motor learning on highly realistic virtual real-
ity-based complex tasks [18, 19]. A more realistic and 
naturalistic virtual environment might also enhance 
the sense of agency—i.e., the feeling of control over 
own actions—and patients’ motivation, which are con-
sidered to be associated with enhanced motor learn-
ing [20–22]. Furthermore, haptic rendering has been 
shown to increase participants’ workspace exploration 
[23], crucial to enhance motor learning [24–26].

However, most current robotic therapies neglect the 
provision of somatosensory feedback during movement 
training by not providing the haptic rendering of virtual 
training environments [27, 28]. One reason is that while 
current heavily constructed exoskeletons enable the 
training of multijoint movements, their low transpar-
ency limits their capability to provide somatosensory 
stimulation through haptic rendering. Furthermore, by 
using robotic assistance methods to support patients’ 
movements [4, 29], the patients’ perception of the hap-
tic rendering might be hampered [30].

Nevertheless, robotic assistance is necessary to sup-
port brain-injured patients who cannot generate suffi-
cient force to move their limbs. Furthermore, robotic 
assistance might benefit motor learning by reducing 
the tasks’ challenge level during practice [31], enhanc-
ing patients’ motivation [32]. Moreover, robotic assis-
tance might limit patients’ fatigue during training [33], 
allowing higher-intensity therapy [4]. To minimize the 
potential interference between the haptic rendering 
and assisting forces, robotic assistance methods that do 
not affect general patterns of muscle activation (while 
reducing the average activation level) such as (human) 
arm weight support [34, 35] might be a better solution 
compared to movement-constraining methods such 
as haptic guidance [24]. Arm weight support methods 
limit muscle fatigue [36], increase patients’ movements 
workspace [37], and enhance their ability to generate 
quick coordinated motions [38], which is essential for 
successfully performing dynamic tasks. Furthermore, 
limiting the effort that patients need to put into coun-
terbalancing gravity might allow them to direct their 
efforts towards more effective interactions with the 
dynamic environment [23].

To evaluate the effects of haptic rendering in robot-
aided motor learning of a complex dynamic task, we 
conducted a between-subjects factorial design study 
with 40 healthy participants. We analyzed the effects of 
haptic rendering, arm weight support, and the interac-
tion of these two factors on motor learning. The highly 
dynamic motor task consisted of inverting a virtual pen-
dulum by moving their pivot point with the end-effector 
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of a six-degrees-of-freedom (DoF) arm exoskeleton reha-
bilitation robot (ARMin; Fig.  1). During training, par-
ticipants either felt the haptic rendering forces of the 
pendulum dynamics on the hand module or not, and 
were either provided arm weight support or not, depend-
ing on the group they were assigned to. We evaluated 
learning in the environment closest to reality, namely, 
in the presence of haptic rendering but without robotic 
assistance. Importantly, skill transfer was evaluated in a 
similar task: inverting a pendulum with different dynam-
ics. We assessed the participants’ ability to invert the 
pendulum, their ability to synchronize their hands’ move-
ments with the pendulum mass, participants’ movement 
variability, and their physical effort. Furthermore, partici-
pants’ sense of agency and motivation were assessed with 
questionnaires. 

We hypothesized that: 

1 Haptic rendering would encourage participants’ 
workspace exploration—i.e., higher movement vari-
ability—and physical effort during training compared 
to training without haptics.

2 Arm weight support would reduce participants’ 
physical effort and promote workspace exploration 
during training, compared to non-assistance.

3 There would not be any interaction effects of haptic 
rendering and arm weight support on the partici-
pants’ movement.

4 Training with haptic rendering would enhance motor 
learning, compared to training without haptics. This 
enhanced learning would be associated with a change 
in the participants’ ability to synchronize their move-
ments with the pendulum dynamics.

5 Training with haptic rendering would enhance skill 
transfer due to the congruent visuo-haptic informa-
tion during training.

6 Training with arm weight support would enhance 
learning, compared to training without, due to a 
more efficient allocation of participants’ effort into 
the dynamic environment and limited fatigue.

7 Finally, the inclusion of haptic rendering would 
increase the task realism, enhancing participants’ 
level of agency and motivation.

Methods
Experimental setup
The six DoF arm exoskeleton rehabilitation robot ARMin 
was employed for this experiment (Fig. 1) [39]. The actu-
ated DoFs are: shoulder elevation, abduction/adduction, 
internal/external rotation, elbow flexion, forearm supi-
nation/pronation, and wrist extension/flexion. To meas-
ure the interaction forces between the human and robot, 
three force/torque sensors (Mini45, ATI Industrial Auto-
mation, USA) were located at the hand module and the 
upper and lower arm cuffs, where the participant’s arm is 
attached to the exoskeleton (Fig. 1). The motion control 

Fig. 1 Experimental setup with the ARMin exoskeleton robot. The motor task consisted of inverting a pendulum and keeping it inverted. The pivot 
point of the pendulum was matched to the movement of the hand module of the robot. The force/torque sensors below the lower/upper arm 
cuffs and below the hand module allowed participants to move the robot transparently through the use of disturbance observers
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of ARMin and simulation of pendulum dynamics were 
performed with Simulink Realtime R2017b (MathWorks, 
Massachusetts, USA) at 3 kHz.

The Unity3D game engine (Unity Technologies, USA) 
was employed to implement the virtual environment 
(VE) and the experimental protocol. The VE was dis-
played on an LED screen (109 cm, 43UD79, LG, South 
Korea) located in front of the participant. The robot 
motion control and the game software communicated 
with UDP protocol.

Pendulum dynamics
The task to be learned consisted of inverting a virtual 
pendulum by moving the exoskeleton hand module. 
The position and orientation of the robot hand module 
were mapped to the virtual pendulum pivot point with 
an approximate scaling factor of 0.5. The virtual pendu-
lum pivot point is depicted as a handle inside the black 
circle of the pendulum in Fig. 2. 

Participants could move and rotate the hand mod-
ule in 3D, but only the movements in the vertical plane 
affected the pendulum movement. The rotation of the 
hand module, although did not influence the pendulum 
movement, still matched with the virtual pendulum 
handle depicted within the pendulum pivot point (EE 
in Fig.  2) to facilitate the understanding of the robot-
pendulum interface. While only the movement in the 
horizontal direction would be sufficient to invert the 
pendulum, we allowed movements in the vertical direc-
tion to analyze the effect of the arm weight support on 
the participants’ movements in the direction of gravity.

The pendulum dynamics had only one internal DoF: 
the pendulum angle ( θ ). The pendulum motion was 
simulated according to the following equation:

where y and z are the horizontal and vertical directions, 
respectively. The pendulum mass (m) and rod length (l) 
were selected as 2.5 kg and 0.35 m (0.25 m for the trans-
fer task). The damping coefficient (c= 0.16 N.s/rad) was 
required to stabilize the pendulum. We wanted to keep 
the velocity/acceleration-induced forces of the pendu-
lum (e.g., centrifugal and inertial forces) high, so that the 
participants could better feel that the pendulum reacts 
to their actions. To do this, we could either increase the 
mass—making the pendulum heavier and thus, increas-
ing excessively the participants’ fatigue and limiting 
the experiment duration—or reduce the gravity so that 
the pendulum is not too heavy while the mass is high. 

(1)θ̈ = −
1

l

(

ÿ cos θ + (z̈ + g) sin θ

)

−
c

ml2
θ̇

Therefore, we reduced the gravity coefficient (g) to 25% of 
the real earth gravity.

Haptic rendering
The haptic rendering forces of the pendulum in the direc-
tion of the pendulum rod were calculated according to 
the following equation:

The Frod was rendered at the robot hand module and 
transmitted to all robot joints using the hand module 
Jacobian. An invisible virtual safety table was also hap-
tically rendered at the participants’ leg level to prevent 
collisions. A warning was presented on the screen every 
time participants touched the (invisible) table and were 
prompted to elevate the pendulum.

To reduce the variability in the joint null space and 
facilitate playing the game, the wrist flexion and shoulder 
internal rotation were fixed at 0 ◦ and 30◦ with position 
controllers. The position controllers were soft enough 
( Kp = 100 N.m.kg−1 rad−1 , Kd = 20 N.m.s.kg−1 rad−1 ) to 
make participants feel the haptic rendering forces of the 
pendulum in all arm joints.

(2)Frod = m

(

θ̇2l − ÿ sin θ + (g + z̈) cos θ

)

.

··y

··z

EE

g

l
y

z

Frod

θ

Fig. 2 Pendulum dynamics. The m, l, and g represent the pendulum 
mass, rod length, and gravity, respectively. The pendulum pivot point 
(EE) was matched to the robot hand module (a stick). The haptic 
rendering forces from the pendulum dynamics ( Frod ) were applied 
at the robot hand module. The pendulum is depicted in its unstable 
equilibrium position
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A Disturbance Observer (DOB) was implemented 
for each robot joint to compensate for the robot distur-
bances (e.g., friction, robot weight) and allow the robot 
to follow the participants’ self-generated movements 
transparently [39]. The DOBs employed the force/torque 
measurements as input. However, please note that the 
perception of the pendulum haptic rendering was still 
slightly affected by the transparency of the robot as the 
robot inertia could not be fully compensated.

Arm weight support
We chose arm weight support as the assisting method 
because this type of assistance does not depend on the 
movement, and therefore, we expected minimal interac-
tion between the supporting forces and the haptic ren-
dering. If any interaction between the haptic rendering 
and the arm weight support was to be observed, this 
would most probably be more evident when the robot 
supports completely the weight of the participants’ arms, 
and therefore, we decided to support 100 % of the partici-
pants’ arm weight.

The arm weight support method—first presented in 
[40]—uses a model of the participant’s arm to cancel the 
effect of gravity regardless of the arm pose. The method 
requires that the individual upper/lower arm weights 
are estimated. This estimation was performed at the 
beginning of the experiment, asking each participant 
to keep for 10  s a fixed pose [−10◦ shoulder elevation, 
−10◦ abduction, 30◦ external rotation, −30◦ elbow flex-
ion, 0 ◦ forearm supination, and 0 ◦ wrist extension]. This 
fixed pose was selected to maximize the accuracy of the 
parameter estimation [40].

The inverted pendulum task
The experimental task consisted of inverting the pendu-
lum and keeping it vertically inverted as long as possible 
( θ = π rad, θ̇ = 0 rad/s) by moving the robot hand mod-
ule. A score was shown on the screen as feedback to the 
participants. The score increased according to the follow-
ing equation:

When the pendulum angle reached the inversion bound-
aries [ |θ − π | < π/6]  rad with a small rotational speed 
( |θ̇ | < π/3  rad/s), the inversion was considered as initi-
ated ( invbegin ), and the score started increasing propor-
tionally (k = 19) to |θ − π | . The inversion was considered 
to end once the pendulum fell outside of these conditions 

(3)
Score =

∫ invend

invbegin

k(π/6− |θ − π |)dt, if:

|θ − π | < π/6 rad, and |θ̇ | < π/3 rad/s.

( invend ). Within each experimental block, if the par-
ticipant dropped the pendulum down, the score was 
retained until it was inverted again. At the beginning of a 
new block, the score and θ were reset to zero.

Study protocol
The experiment was approved by the Cantonal Ethics 
Committee and the Swiss Agency for Therapeutic Prod-
ucts (Swissmedics) and followed the Declaration of Hel-
sinki. We recruited 41 healthy right-handed participants 
for the study—evaluated with the Waterloo handed-
ness questionnaire [41]—, but due to a data acquisition 
problem with one participant, only 40 participants were 
included in the data analysis (20 females, 20 males, age 
mean: 29, std.: 5.7 y.o.). All participants gave written con-
sent to take part in the experiment.

Participants were randomly assigned to one of four 
training modalities—ten participants per modality, 
between 4 and 6 females per modality. Each training 
modality corresponded to combinations of two factors: 
Haptic Rendering (HR) and arm Weight Support (WS):

• Visual: Neither haptic rendering nor arm weight sup-
port was provided (HR:OFF, WS:OFF).

• Supported Visual: Arm weight support was provided, 
but not haptic rendering (HR:OFF, WS:ON).

• Visuo-Haptic: The haptic rendering of the pendulum 
dynamics was provided at the hand module, but not 
arm weight support (HR:ON, WS:OFF).

• Supported Visuo-Haptic: Arm weight support was 
provided in addition to haptic rendering (HR:ON, 
WS:ON).

The experiment consisted of two experimental sessions 
that were one to three days apart. Participants sat com-
fortably on a chair with a backrest and their right arms 
were attached to the exoskeleton cuffs with  Velcro® 
straps. The exoskeleton height and links lengths were 
adjusted for each participant. The experiment started 
with a short calibration phase ( ≈  2–3 min) to adjust 
the height of the virtual safety table just above the par-
ticipant’s legs and to estimate the individual participants’ 
upper/lower arm weights.

The participants were instructed to swing the pen-
dulum, to invert it and keep it inverted as long as pos-
sible. The instructions could be read on the screen. We 
included an exemplary video to facilitate the task under-
standing. After the instructions, participants performed 
two baseline blocks (BL) of 30 s each with the Visuo-Hap-
tic modality (Fig. 3). Visuo-Haptic was chosen as the test 
modality as it was closest to reality—i.e., with haptics and 
no support. The participants then performed two transfer 
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baseline blocks (TBL) (30 s each) with the Visuo-Haptic 
modality but with a shorter pendulum. The shorter pen-
dulum length—0.25 m instead of 0.35 m—corresponded 
to a higher pendulum natural (swing) frequency, there-
fore, resulted in different pendulum dynamics. Partici-
pants rested their arms for 30 s between all experimental 
blocks. 

After baseline, the training phase started. The training 
consisted of 24 experimental blocks of 30 s each. Twenty 
of these blocks were training blocks (T), in which partici-
pants trained with the modality according to the group 
they were assigned—either Visual, Supported Visual, 
Visuo-Haptic, or Supported Visuo-Haptic. The other four 
blocks were catch-trial blocks (CT) in which the partici-
pants trained with the Visuo-Haptic modality (as in base-
line). The CT blocks were included to detect and remove 
potential learning effects from the training blocks during 
data analysis. The order of the CT blocks was uniformly 
distributed over time—5th, 9th, 13th, and 17th blocks—
to counterbalance potential learning effects when com-
paring the training and catch-trial blocks. Participants 
rested their arms for 30 s between all training blocks.

Shortly after the last training block, participants 
performed a short-term retention test. Similar to the 
baseline test blocks, the participants performed two 
short-term retention blocks (STR) and two transfer 
short-term retention blocks with the Visuo-Haptic 
modality. The first experimental session lasted around 
1 h.

The second experimental session consisted of only 
the long-term retention test. Participants performed 
two long-term retention blocks (LTR) and two trans-
fer long-term retention blocks with the Visuo-Haptic 
modality.

The participants’ sense of agency and subjective moti-
vation were assessed with questionnaires (see Additional 
file  1: Questionnaire for a complete list) after the first 
two baseline blocks, right after the last training block, 
and after the first two long-term retention blocks. To 
assess the sense of agency, we adapted three statements 
from the embodiment questionnaire from Piryankova 
et al. [42] to the pendulum task. Participants ranked their 
agreement with each of the three statements using a Lik-
ert scale between -3 (“strongly disagree”) and 3 (“strongly 
agree”). Twelve statements from the well-established 
Intrinsic Motivation Inventory (IMI, [43]) were used to 
assess the participants’ motivation. These statements 
were selected from the four subscales: interest/enjoy-
ment, effort/importance, pressure/tension, and perceived 
competence. A Likert scale between 1 (“not at all”) and 
7 (“very true”) was used for the answers. The question-
naire was presented in English. The (previous) responses 
given during the experiment were always visible for each 
participant to minimize the possibility that differences in 
participants’ memory skills confound the results [44].

Outcome metrics
We used different metrics to analyze the participants’ 
task performance, movement, and physical effort. 
Each of these metrics provided one data point for one 
experimental block. Additionally, we used question-
naires to evaluate the participants’ level of agency and 
motivation.

Task performance
To evaluate how well participants performed the motor 
task—i.e., inverting the pendulum—the score was 

Fig. 3 Study protocol. Participants were randomly assigned to one of four possible training modalities: Visuo‑Haptic, Supported Visuo‑Haptic, Visual, 
or Supported Visual. Training blocks (× 20) and catch‑trials blocks (× 4) were used to assess the effect of providing haptic rendering and arm weight 
support on motor performance during training. Changes from baseline blocks (BL) to short‑term retention (STR) and long‑term retention blocks 
(LTR) were used to assess participants’ motor learning and had the Visuo‑Haptic modality. Transfer learning was assessed with changes from transfer 
baseline blocks to short‑ and long‑term transfer retention blocks, also with the Visuo‑Haptic modality, but with a shorter pendulum (i.e., different 
dynamics). Participants’ sense of agency and motivation were assessed with questionnaires after baseline, training, and long‑term retention blocks



Page 7 of 18Özen et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:19  

employed as the task performance metric. The score 
(eq. 3) increased depending on how vertically and still the 
pendulum was kept inverted, and for how long.

Movement strategy
To achieve a high score, one first needs to be able to lift 
the pendulum ball. This requires providing sufficient 
momentum to the pendulum ball. This can be achieved 
by making the pendulum pivot point lead the movement 
of the pendulum ball—i.e., when the pivot point applies a 
force to the ball through the rod.

The movement of the pivot point and the relative 
movement of the pendulum ball w.r.t. the pivot point 
are both almost cyclic. Thus, leading the pendulum 
ball corresponds to maintaining a positive phase differ-
ence between the pivot point movement and the relative 
movement of the pendulum ball w.r.t. the pivot point. To 
quantify this synchronicity, we first extracted the velocity 
of the pivot point and the relative velocity of the pendu-
lum ball w.r.t. the pivot point in the horizontal direction, 
only during the time the pendulum was not yet inverted. 
We did not analyze the vertical direction because the 
analysis focuses on the part where the pendulum was 
not inverted, which ignores most of the data in the 
upward direction ( +z ), biasing the calculations. We then 
band-filtered the velocity time series to exclude the low-
frequency drifts and high-frequency noise using second-
order Butterworth bandpass filters with 0.5 Hz and 10 Hz 
cut-off frequencies. Next, the Hilbert transform was 
applied to the normalized velocity signals—with zero 
mean and unit standard deviation—and the phase signals 
(time-series) for the pivot point and the pendulum ball 
were obtained. Finally, the mean difference between the 
two phase signals within a block was calculated (move-
ment phase difference). A positive movement phase dif-
ference is desired since it means the participant is leading 
the pendulum motion—i.e., the pivoting point is ahead of 
the pendulum ball. However, since the phase is defined 
only in the range between −π and π , the optimum move-
ment phase difference to achieve good performance is 
not known a priori, and needs to be checked with its cor-
relation with task performance.

To evaluate how much participants explored the envi-
ronment, we analyzed the participants’ movement vari-
ability with the standard deviation of the hand module 
position in both y—horizontal movement variabil-
ity—and z—vertical movement variability—directions. 
Analyzing both directions independently allows for the 
evaluation of the potential direction-specific effects of 
weight support, which is acting only on the vertical direc-
tion, on the participants’ workspace variability.

Physical effort
The participants’ physical effort was estimated by norm 
averaging their joint torques. The generated joint torque 
was estimated by summing the recorded interaction tor-
ques and the torques needed by the participants to hold 
their arm at each position, online-calculated by the arm 
weight support algorithm [23].

Agency and motivation
The sense of agency and the four subscales of the IMI—i.e., 
interest/enjoyment, effort/importance, pressure/tension, 
perceived competence—had three questions each  (Addi-
tional file  1: Questionnaire section). The averages of the 
three questions were calculated for each participant. Two 
participants did not answer one question each; therefore, 
the average of two questions was performed for the cor-
responding subscales.

Statistical analysis
To evaluate potential differences during baseline between 
training groups (factor: Visual, Supported Visual, Visuo-
Haptic, Supported Visuo-Haptic), we compared the base-
line data—mean of the two baseline blocks—for each 
outcome metric between groups using one-way ANOVA.

To evaluate whether the task performance (score) is 
associated with the movement phase difference between 
the pivoting point and the pendulum ball, the relation-
ship between the movement phase difference and the 
score was analyzed with Pearson correlations, separately 
at BL, STR, and LTR, with each participant providing one 
data point.

To check if the learning continued linearly during the 
whole training or whether it reached a plateau by the end 
of the training (e.g., logarithmic), we fit generalized linear 
models for the score metric with block number as a con-
tinuous time variable similar to [45], and tested whether 
the addition of the nonlinear part significantly improved 
the model.

To determine how providing Haptic Rendering (HR) 
and/or Arm Weight Support (WS) affected the partici-
pants’ performance during training (T), compared to 
not providing HR/WS, we first subtracted the learning 
effects—mean of catch trials (CT)—from the training 
performance—mean of the 20 T blocks—for each out-
come metric and participant, based on the assumption 
that learning curves were approximately linear. Then, 
the resulting T−CT values were analyzed with two-way 
ANOVAs (or two Kruskal-Wallis tests for the effects of 
HR and WS, respectively, if T−CT was non-normally 
distributed) with two factors: HR and WS; each factor 
having two levels: OFF and ON. If there was a significant 
(HR x WS) interaction, post hoc tests were performed to 
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evaluate: the HR effect for WS:OFF and WS:ON; and the 
WS effect for HR:OFF and HR:ON.

To analyze the short-term learning effects of training 
with HR and/or WS, we took the difference of the short-
term retention (STR) and baseline (BL) values—averaged 
between the two test blocks—of each outcome metric 
and participant. The effects of HR and WS on the STR−
BL differences were analyzed either with two-way ANO-
VAs or with two Kruskal-Wallis tests, depending on the 
data distribution. For the analysis of the training modality 
on long-term learning, the same analyses were employed, 
but with the LTR−BL difference.

The short-/long-term effects of training with HR and/
or WS on skill transfer were analyzed by comparing the 
differences between levels of HR and WS for the changes 
of score from baseline transfer to short-/long-term 
retention (STR/LTR) transfer using two-way ANOVAs. 
Furthermore, we analyzed if participants moved differ-
ently—i.e., with different movement variability and hand 
module speed—when performing the main task com-
pared to the transfer task with a shorter pendulum rod at 
long-term retention. We used a mixed ANOVA for this 
comparison with pendulum length as a within-subject 
factor (levels: short, long), and training modality as the 
between-subjects factor.

The effect of HR and WS on participants’ agency and 
motivation levels after training (T−BL) and at long-
term retention (LTR−BL) were analyzed using two-way 
ANOVA or two Kruskal-Wallis tests, depending on the 
questionnaire data distribution.

The normality of the data was visually inspected and 
evaluated using Kolmogorov-Smirnov tests from the 
Scipy module of Python. For one-/two-way ANOVAs, 
Afex package of R [46]; and for Kruskal-Wallis tests (used 
when the distributions were non-normal), Scipy module 
of Python [47] were employed. Bonferroni correction was 
used for multiple comparisons. The significance level was 
set to α = 0.05 for all statistical tests.

Results
We did not find significant differences between train-
ing modalities during baseline for any of the outcome 
metrics.

The Pearson correlation between the absolute values 
of the movement phase difference and the score was not 
significant for baseline ( r = −0.181 , p = 0.264 ), but sig-
nificant for short- ( r = 0.594 , p < 0.001 ) and long-term 
retention ( r = 0.336 , p = 0.034 ). This correlation sug-
gest that the participants who achieved higher move-
ment phase difference after training also achieved higher 
scores.

We found that the addition of nonlinear time vari-
ables to the generalized linear models—that represent 

logarithmic learning curves—did not improve the models 
significantly. This indicates that the learning was approxi-
mately linear and probably not completed after training 
ended. Furthermore, the maximum score that can be 
reached (by holding the pendulum vertically inverted for 
30 s) is around 250, which no participants achieved so far.

Effect of haptic rendering and weight support 
on participants’ performance during training
We did not find any significant effects of haptic rendering 
and weight support on the score during training (Addi-
tional file 1: Fig. S1, Results section).

We found significant main effects of haptic rendering 
and weight support on the movement phase difference 
(Table 1). In particular, the addition of haptic rendering 
and/or weight support reduced the movement phase dif-
ference (Fig. 4a). 

We found a significant interaction between haptic ren-
dering and weight support in the horizontal movement 
variability during training (Table  1). In particular, when 
participants practiced with weight support, the addition 
of haptic rendering increased the horizontal movement 
variability (t(36) = 4.34, p < 0.001, Fig. 4b). Both practic-
ing with haptic rendering and weight support resulted in 
significantly greater vertical movement variability when 
compared to practicing without them (Fig. 4c, Table 1). 

Finally, we found significant main effects for both hap-
tic rendering and arm weight support on the joint tor-
ques (Table  1). While the addition of haptic rendering 
increased the forces participants’ created, the addition of 
weight support reduced them (Fig. 4d).

Effects of haptic rendering and weight support on motor 
learning and skill transfer
We found a significant main effect of haptic rendering 
on the score change from baseline to short-term reten-
tion and long-term retention (Table  1, Fig.  5a). We also 
found a significant main effect of weight support on long-
term learning. While the addition of haptic rendering 
enhanced short- and long-term learning, the addition of 
weight support hampered learning.

We found significant main effects of haptic rendering 
and weight support on the movement phase difference 
changes from baseline to short- and long-term reten-
tion (Table  1). While the addition of haptic rendering 
increased the movement phase difference, the addition of 
weight support decreased it (Fig. 4b). 

Training with haptic rendering also significantly 
enhanced short- and long-term skill transfer—i.e., 
increased the transfer task score—compared to training 
without haptics (Table 1; Fig. 5c). Furthermore, we found 
that participants made less variable (in the horizon-
tal direction; F(1,36) = 9.34, p = 0.004) and faster hand 
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movements (F(1,36) = 7.63, p = 0.009) with the short 
pendulum rod (transfer task) compared to the long pen-
dulum rod (main task) during long-term transfer.

Effects of haptic rendering and weight support on agency 
and motivation
We did not find significant effects of haptic rendering 
and weight support on participants’ sense of agency nor 
in any of the IMI subscales for the changes from base-
line to after training, nor at long-term retention (Table 1, 
Additional file 1: Fig. S2, Results section).

Overall, the mean sense of agency was high during 
training (1.7 over 3) and at long-term retention (2.0). The 
mean interest/enjoyment and effort/importance were 
also high (5.6 and 5.5 over a maximum of 7) through-
out the experiment (Additional file  1: Fig. S2, Results 
section).

Discussion
We found that training with haptic rendering was more 
effective, compared to training without haptics, for learn-
ing a dynamic task and transferring the acquired skills to 
a different dynamic system. Training with assistance, on 
the other hand, hampered learning. In discussing these 
results, we return to the seven hypotheses stated in the 
“Introduction” that we aimed to test with our experiment.

Haptic rendering encourages workspace exploration 
and increases physical effort during training
We hypothesized that haptic rendering would encourage 
participants’ workspace exploration—i.e., higher move-
ment variability—and increase their physical effort dur-
ing training compared to training without haptics. The 
addition of somatosensory information regarding the 
interaction forces with virtual tangible objects through 
haptic rendering has been suggested to change both the 

Table 1 Results (F and p‑values) from the two‑way ANOVAs (or Kruskal‑Wallis tests if distributions were non‑normal) from evaluating 
the effects of haptic rendering (HR) and arm weight support (WS) on the outcome metrics during training (T‑CT), short‑term learning 
(STR‑BL), and long‑term learning (LTR‑BL)

F values—or H values if Kruskal-Wallis tests were used—are indicated in brackets for F(0,36)—or H(1). Significant p-values are indicated in bold font

T−CT STR−BL LTR−BL

HR WS HR x WS HR WS HR x WS HR WS HR x WS

Score (3.36)
0.075

(1.39)
0.245

(0.38)
0.539

(6.13) 
0.018 

(2.71)
0.108

(0.24)
0.628

(8.47)
0.006

(6.05)
0.019

(1.21)
0.280

Movement phase difference (18.32)
<0.001

(4.74)
0.036

(1.03)
0.316

(9.76)
0.004

(4.62)
0.038

(0.01)
0.939

(8.36)
0.006

(5.43)
0.026

(1.09)
0.303

Horizontal movement variability (12.35)
0.001

(0.35)
0.556

(6.90)
0.013

(0.71)
0.403

(0.20)
0.654

(0.82)
0.372

(0.16)
0.688

(1.81)
0.187

(0.76)
0.389

Vertical movement variability (74.90)
<0.001

(10.52)
0.003

(1.36)
0.251

(1.29)
0.263

(0.02)
0.897

(0.15)
0.704

(0.19)
0.666

(0.31)
0.583

0.22
0.641

Joint torques (44.74)
<0.001

(71.28)
<0.001

(0.07)
0.789

(0.59)
0.449

(0.42)
0.523

(<0.01)
0.955

(H(1)=0.70)
0.402

(H(1)=0.39)
0.534

–

T−BL STR−BL LTR−BL

HR WS HR x WS HR WS HR x WS HR WS HR x WS

Transfer task score – – – (8.72)
0.006

(1.60)
0.214

(2.51)
0.121

(4.64)
0.038

(2.11)
0.155

(0.85)
0.362

Sense of agency (0.11)
0.741

(1.56)
0.220

(0.56)
0.459

– – – (0.86)
0.360

(0.69)
0.412

(0.19)
0.663

Interest/enjoyment (0.19)
0.662

(1.38)
0.247

(0.54)
0.467

– – – (0.03)
0.857

(1.06)
0.310

(1.62)
0.212

Effort/importance (0)
1.000

(2.14)
0.153

(1.37)
0.218

– – – (0.75)
0.392

(1.08)
0.305

(0.03)
0.863

Pressure/tension (0.54)
0.468

(0.02)
0.884

(3.10)
0.087

– – – (0.54)
0.468

(0.54)
0.468

(0.08)
0.779

Perceived competence (1.41)
0.243

(2.37)
0.133

(0.33)
0.571

– – – (1.35)
0.254

(3.96)
0.054

(0.44)
0.511
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Fig. 4 Effects of haptic rendering and weight support on participants’ outcome metrics during training. The differences between training blocks 
and catch‑trial blocks, T−CT, are shown. The error bars indicate the 95% confidence interval
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information and power exchange between the partici-
pants and the virtual training environment [48]. Such 
changes might alter participants’ movement strategies 
during task performance as a result of new aspects to 
be learned—e.g., predicting the task dynamics—and/or 
changes in the nature of the robot-human interaction—
i.e., the inclusion of interaction forces.

We confirmed that when haptic rendering is added 
during training, the participants’ vertical movement 
variability significantly increases compared to training 
without haptics. The higher movement variability can 
be interpreted as an increase in workspace exploration 
as participants cover more workspace. One explanation 
might be that haptic rendering prompts participants to 
not only explore the kinematic behavior of the pendulum 

but also to predict and compensate for the interaction 
forces from its dynamics [49], which might require more 
exploration to learn.

We also confirmed that adding haptic rendering sig-
nificantly increases the participants’ physical effort, esti-
mated as joint torques. The increase in the participants’ 
physical effort is probably due to the forces from the pen-
dulum dynamics projected on the participants’ hands—
e.g., the pendulum weight and centrifugal force—that the 
participants need to compensate to achieve the task.

Nevertheless, while haptic rendering affects the partici-
pants’ movement strategy, it does not improve their task 
performance (score) during training. Probably, exploit-
ing the haptic information to enhance the task perfor-
mance is a slow process that requires learning, unlike the 

Fig. 5 Effects of haptic rendering and weight support on participants’ motor learning and skill transfer. Short‑/Long‑term changes correspond to 
the differences between short‑/long‑term retention blocks and baseline blocks: (STR−BL) and (LTR−BL). The error bars indicate the 95% confidence 
interval
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short-term but temporary benefits on the training perfor-
mance observed in other haptic assisting methods [29].

Weight support decreases physical effort during training 
and encourages workspace exploration
We expected that arm weight support would reduce par-
ticipants’ physical effort during training compared to 
non-assistance and would promote workspace explora-
tion since participants do not have to bear the weight of 
their own arms.

As expected, training with arm weight support reduces 
the participants’ physical effort significantly. This is in 
line with previous research that found reduced levels 
of muscle activity during movement in healthy young 
participants [50], elderly participants [35], and stroke 
patients [34].

We also found that weight support significantly 
enhances workspace exploration, but only in the verti-
cal movement direction. The increase in the vertical 
movement variability could be explained by the facili-
tated vertical arm movements resulting from the reduc-
tion of participants’ effort to counterbalance their arms 
against gravity. However, contrary to previous literature 
on stroke patients [37], we did not find a significant main 
effect of weight support on the horizontal movement 
variability during training. We see this as an opportunity, 
rather than a limitation, since in most normal everyday 
tasks, the arm movements are predominantly in the ver-
tical plane [51]. Thus, as hypothesized by Krakauer and 
Carmichael in [52], the provision of weight support in 
3D seems to allow the exploration and practice of move-
ments that are functional and useful to many activities of 
daily living.

Arm weight support together with haptic rendering 
enhances horizontal workspace exploration
An important problem with robotic assistance meth-
ods is that the assisting forces might alter the perceived 
task dynamics provided through haptic rendering via 
the same actuators [30]. Therefore, robotic assistance, if 
not applied adequately, could hamper any potential ben-
efits of haptic rendering on participants’ movements. 
We proposed that using robotic assisting methods that 
do not constrain the participants’ movement might be a 
good strategy to prevent the interference between hap-
tic rendering and assistance. Arm weight support does 
not depend on the movement [40] and does not enforce 
a fixed trajectory [24]. It has been shown to reduce the 
average muscle activation level without affecting the 
general patterns of muscle activation in healthy young 
individuals [50], healthy elderly individuals [35], and 
stroke patients [34]. Moreover, there is evidence that the 
nervous system processes static (e.g., gravitational) and 

dynamic (e.g., inertial) forces separately [53, 54], which 
hints that the compensation of the pendulum haptic ren-
dering forces could be separated from the arm weight 
support, which is purely static [55]. Arm weight sup-
port only counterbalances the arm weight with a fixed 
magnitude through the workspace, and therefore, per-
ceiving the dynamic haptic rendering would still be pos-
sible, especially in the directions perpendicular to gravity. 
Therefore, we did not expect any significant interaction 
between the haptic rendering and arm weight support on 
the participants’ movements.

Contrary to our expectations, we found a significant 
interaction between the arm weight support and haptic 
rendering on the horizontal movement variability during 
training. One reason for this interaction could be that the 
static part of the pendulum haptic rendering forces—i.e., 
gravitational forces—was high enough to interact with 
the arm weight support, which is also static by design. 
This interaction might be, however, beneficial, as the 
addition of weight support on top of the haptic render-
ing enhances the workspace exploration in the horizon-
tal direction. This could be due to the weight support 
increasing the participants’ force-generating capacity, as 
the weight support reduces the participants’ effort during 
training. Thus, weight support seems to promote haptic 
rendering-induced workspace exploration, which might 
be beneficial for motor learning [24, 25].

Training with haptic rendering enhances motor learning
We hypothesized that training with haptic rendering 
would enhance motor learning and skill transfer due to 
enhanced workspace exploration. Furthermore, feeling 
the haptic forces from the pendulum would provide extra 
multisensory information about the highly dynamic task 
compared to training without haptics, resulting in par-
ticipants learning to better synchronize their movements 
with the pendulum dynamics, and ultimately, enhancing 
learning. The results support our hypothesis: The provi-
sion of haptic rendering during training enhances motor 
learning in both short- and long-term retention.

We argue that several rationales might be behind the 
positive influence of haptic rendering on motor learn-
ing. First, predicting the interaction forces with a vir-
tual object requires learning an internal model of the 
object dynamics [56]. Haptic rendering might facilitate 
the acquisition of this internal model during training by 
increasing the workspace exploration, e.g., by promot-
ing workspace variability and prompting participants to 
discover better movement strategies to invert the pen-
dulum. The positive effect of workspace exploration on 
motor learning has already been reported in previous 
studies that showed an association between higher move-
ment variability and accelerated motor learning [24–26].
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Secondly, the addition of haptic information on top of 
the visual information might provide more enriched mul-
timodal information about the dynamic environment, 
compared to only visual feedback, which may enhance 
the learning of this especially complex task [18, 19, 57]. 
The haptic rendering provides extra information about 
the weight of the pendulum through the magnitude of 
the rod force, and about the pendulum angle through 
the direction of the force. The amount of task-relevant 
information conveyed by the haptic rendering on top of 
the visual feedback might, therefore, reduce the condi-
tional task difficulty—i.e., the challenge presented to the 
learner—and, in line with the challenge point framework 
[58], enhance motor learning.

The enhanced motor learning observed after train-
ing with haptic rendering might also be related to the 
acquisition of a better motor strategy to invert the pen-
dulum. We found that the absolute values of the score 
and movement phase difference between the pendulum 
ball and the hand module are positively correlated dur-
ing short- and long-term retention. This correlation sug-
gests that high movement phase difference is associated 
with high task performance. Importantly, we found that 
training with haptic rendering significantly increases the 
participants’ ability to synchronize their movement with 
the movement of the pendulum ball in order to maintain 
a high movement phase difference. As the pull force that 
the participants feel when haptic rendering is applied 
depends on their movement phase difference through the 
inertial forces, participants probably were more aware of 
their movement phase difference than participants who 
trained without haptic rendering. This extra information 
might have helped them to discover and maintain more 
efficient movement phase differences, which resulted in 
high scores after training.

Training with haptic rendering enhances skill transfer
As hypothesized, participants who trained with haptic 
rendering generalized the acquired skill to the transfer 
task to a greater extent than participants who trained 
without haptics. Only a few studies have evaluated motor 
skill transfer from training in a virtual environment with 
only visual feedback to more realistic environments in 
healthy and neurologically impaired populations (see 
[7] for a review). The majority of the studies reviewed 
by Levac et  al. found that the internal models acquired 
during training in virtual environments do not generalize 
to more realistic tasks that also incorporate haptics (e.g., 
[49, 59]).

In their review [7], Levac et  al. discussed that the 
lack of skill transfer is, among others, due to the lack 
of haptic input in the virtual task. This lack of haptic 

rendering prompted participants to rely only on the pro-
vided visual information during training, resulting in dif-
ferent perceptual-motor couplings compared to more 
realistic tasks. According to the specificity of learning 
hypothesis [60], the optimal source of sensory informa-
tion is used to perform a movement and it is expected 
that skill transfer is enhanced when the training condi-
tions are similar to the conditions of real-life perfor-
mance [61]. In our experiment, training with haptic 
rendering allowed participants to experience and learn 
to compensate for the interaction forces from the hap-
tic rendering and they probably employed the acquired 
skill to handle external forces to successfully perform the 
transfer task.

Levac et  al. also attributed the limited skill transfer 
to the differences in participants’ movement kinemat-
ics performed in the virtual vs. real environments with 
complex dynamics. While we did not test for a “real” ver-
sion of the pendulum task (without a robot), our transfer 
task with a shorter pendulum could be considered dif-
ferent enough from the main trained task with haptics. 
Differences in the dynamical properties of virtual objects 
(i.e., pendulum length) were found to affect the move-
ment strategy adopted by individuals when manipulating 
dynamic objects [62, 63]. In our experiment, the transfer 
task consisted of inverting a pendulum with a shorter rod 
length than the one used in the test task. We found that 
participants move differently to achieve the transfer task, 
i.e., with less variable and faster movements, compared to 
the main task. This difference in kinematics was expected 
based on previous literature [62, 63], as pendulums with 
longer rods are inherently more stable than short-rod 
pendulums. Nevertheless, although participants in the 
haptic rendering group showed different movement kin-
ematics between the virtual and transfer tasks, the simi-
lar sensorimotor integration experienced during training 
with haptic information [7, 17] probably facilitated skill 
transfer.

Weight support hampers motor learning
We hypothesized that arm weight support would 
enhance motor learning due to a more efficient allocation 
of participants’ effort into the dynamic environment and 
reduction of participants’ fatigue. However, contrary to 
our expectations, training with arm weight support sig-
nificantly hampers long-term motor learning compared 
to training without assistance. Importantly, weight sup-
port significantly decreases the participants’ ability to 
synchronize their movement with the pendulum ball—
i.e., reduces the movement phase difference—in short- 
and long-term retention, which we found to be correlated 
with good task performance (high score).
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Our findings are inconsistent with previous studies 
that showed enhanced motor learning when arm weight 
support is provided during training, e.g., in children 
with cerebral palsy [64] and stroke patients [65]. How-
ever, to our knowledge, no studies have examined the 
effect of arm weight support in learning complex motor 
tasks in healthy participants. An interpretation for these 
unforeseen results is that the weight support disrupts 
motor learning because participants rely on the assis-
tance during training and fail to learn the motor com-
mands required to perform the desired task unassisted at 
retention [66]. The weight support level provided to par-
ticipants—100 % of their arm weight—might have been 
excessive. Perhaps, lower levels of weight support and 
even weight support levels that adapt according to the 
ongoing performance of the participants [67, 68], might 
have yielded better learning results.

Furthermore, the arm weight support constantly 
pushes the arm up to counterbalance gravity. Thus, 
healthy participants might overshoot during training 
when they move in the vertical direction as they have an 
internal model of their own arm dynamics that does not 
include the support of the robot. This idea is supported 
by the observed increase of the vertical movement vari-
ability during training with weight support. The highly 
dynamic and unstable nature of the pendulum task and 
the fact that the complex dynamic task requires to work 
against gravity probably exacerbated this problem.

We also expected that weight support would enhance 
motor learning due to a reduction of participants’ fatigue. 
Although we found that participants’ effort decreased 
when weight support was added during training, little 
can be said about their level of fatigue. The quantifica-
tion of the physical effort through the norm of joint tor-
ques was only an estimation and we did not measure the 
fatigue directly, e.g., with electromyography [69]. As par-
ticipants were allowed to rest between experimental task 
blocks (30  s rest between each block), this might have 
been sufficient to prevent participants’ fatigue, even in 
the absence of weight support.

Training with haptic rendering and weight support does 
not affect agency and motivation
Finally, we expected that the inclusion of haptic render-
ing during training would enhance the participants’ level 
of agency and motivation. The sense of agency—i.e., the 
subjective feeling of being in control over own actions 
[70]—is associated with the ability to accurately predict 
the consequences of the own actions [71] and the move-
ments of the objects one interacts with [72]. We expected 
that haptic rendering would support the formation of 
the internal model of the pendulum through reinforced 
sensorimotor integration, allowing for a more accurate 

prediction of the pendulum motion, ultimately enhanc-
ing participants’ agency.

However, we did not observe any significant effects of 
haptic rendering or weight support on the participants’ 
agency, neither during training nor in long-term reten-
tion. The level of agency reached high values regardless 
of the training modality already during training. There-
fore, ceiling effects may have prevented us from detecting 
significant effects in the long-term retention. Question-
naires assessing agency in the middle of the training 
phase, rather than at the end, might have been able to 
show/capture differences between training modalities.

Furthermore, the addition of haptic information has 
been shown to enhance the level of immersion—closely 
related to the subjective feeling of presence—in virtual 
environments [73]. Higher immersion has been reported 
to enhance motivation by lowering the pressure/ten-
sion during training in virtual reality [22]. Therefore, we 
hypothesized that haptic rendering would enhance par-
ticipants’ motivation through higher immersion.

However, contrary to our expectations, training with 
haptic rendering did not affect the motivation level sig-
nificantly—assessed on four subscales: pressure/tension, 
interest/enjoyment, effort/importance, and perceived 
competence—compared to training without haptics. 
Similar to the perceived agency, participants’ mean inter-
est/enjoyment and effort/importance were high during 
the entire experiment, resulting in a potential ceiling 
effect [74]. Furthermore, the inter-personal variances in 
the pressure/tension and perceived competence metrics 
probably masked the potential differences across modali-
ties. Nevertheless, we observed a trend for a smaller 
increase of the perceived competence in long-term reten-
tion after training with arm weight support, compared 
to training without assistance. The smaller performance 
gains from baseline to long-term after training with arm 
weight support compared to training without assistance 
likely prevented participants from experiencing higher 
levels of competence.

Lessons learned and implications for functional robot 
neurorehabilitation
Although our study was performed with healthy partici-
pants, motor recovery is generally accepted to be a form 
of motor (re)learning [75]. Therefore, our findings might 
have important implications for the neurorehabilitation 
of brain-injured patients.

One of the main aims of neurorehabilitation is to 
enhance patients’ capabilities to successfully perform 
ADLs independently [7]. Therefore, it is important that 
the improvements observed in motor performance after 
robot-assisted training transfer to functional movements. 
A significant number of ADLs involve the physical 
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interaction with environments with complex dynamics, 
such as carrying a cup of coffee or watering plants [8]. 
Our findings indicate that the provision of haptic render-
ing during robot-assisted training enhances healthy indi-
viduals’ learning of motor tasks that require manipulating 
objects with complex dynamics and promotes skill trans-
fer to tasks with different dynamics. Therefore, includ-
ing haptic rendering during robotic neurorehabilitation 
might indeed provide a multisensory enriched environ-
ment for training, and consequently promote functional 
gains [28]. However, patients with cognitive and sensory 
impairments might find challenging the perception and 
interpretation of the haptic rendering forces [76]. Future 
research is needed to investigate how haptic rendering 
should be designed to support the neurorehabilitation of 
brain-injured patients [28].

Our results also indicate that arm weight support ham-
pers motor learning and skill transfer for this complex 
task in healthy young participants. While not providing 
robotic assistance during training might be possible in 
healthy individuals, stroke patients might need physical 
support to train sensorimotor skills with high intensity 
[4]. Therefore, providing arm weight support might still 
enhance neurorehabilitation in patients by enabling them 
to practise movements. Moreover, intermediate and/
or adaptive levels of arm weight support might provide 
good trade-offs between enabling patients to train com-
plex motor skills and limiting the detrimental effects of 
excessive physical robotic assistance on motor learning. 
In future studies, we will investigate whether adaptive 
weight support might be beneficial for learning complex 
motor skills.

Study limitations
The first limitation of our study is that the test blocks—
baseline, short- and long-term retention—were only 
performed with the Visuo-Haptic modality. We did 
not include test blocks with different modalities—e.g., 
Visual—because we aim to evaluate the effect of train-
ing with haptic rendering and arm weight support on 
a task that is close to reality, namely in the presence of 
haptics. However, we did not test whether the observed 
effects of haptic rendering and arm weight support on 
motor learning would generalize to practicing the test 
and transfer tasks without haptics. We decided to keep 
the study relatively short to prevent participants to get 
unmotivated and exhausted and to avoid that partici-
pants already learned the task during baseline.

A second study limitation is that we did not have direct 
measurements of the participants’ physical effort and 
fatigue. Electromyography [69] and periodic measure-
ments of maximum voluntary contraction (measure-
ment of muscle strength [77]) are common methods to 

measure participants’ effort and fatigue. However, the 
employment of these techniques would have increased 
the experiment duration, which might negatively affect 
participants’ motivation, and possibly motor learning. 
Therefore, we estimated the participants’ physical effort 
through the average norm of joint torques, similarly to 
[78].

A final study limitation is that we did not perform the 
study with brain-injured patients but with health young 
participants. This limits the extent to which our study 
findings can be generalized to brain-injured patients. 
Patients might not be able to perform the required move-
ments to fulfill the task without physical support, and 
thus, arm weight support could have, indeed, positive 
effects on motor learning, in contrast to our study find-
ings obtained in healthy young participants.

Conclusion
We demonstrated that training with haptic rendering of 
virtual environments enhances motor learning and skill 
transfer of dynamic tasks compared to training without 
haptic rendering. The additional somatosensory informa-
tion provided through haptic rendering increases work-
space exploration and physical effort during training, 
allows participants to get better at synchronizing their 
movements with the dynamics of the object they interact 
with, and may enforce the resemblance to real-life train-
ing. Consequently, the enhanced learning associated with 
haptic rendering is generalized to different dynamic sys-
tems. If employed in robotic neurorehabilitation, haptic 
rendering might promote functional gains and enhance 
the transfer of clinical improvements into activities of 
daily living.

We also demonstrated that the assisting forces from 
human arm weight support hamper motor learning in 
young healthy participants. Although weight support 
increases participants’ workspace exploration during 
training, it also prevents them from coordinating their 
movements with the object dynamics. Future research 
should investigate intermediate and adaptive levels of 
robotic assistance to prevent the adverse effects of exces-
sive physical assistance on motor learning of health 
participants and neurorehabilitation of brain-injured 
patients.
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