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Abstract

A generalized isentropic gas model is derived following earlier work by Kouremenos
et al. [1–3] by replacing the traditional adiabatic exponent γ by the real exponents
γPv, γTv, and γPT , describing the isentropic pressure-volume, temperature-volume,
and pressure-temperature relations respectively. The real adiabatic exponents are ex-
pressed as functions of state variables to take into account compressibility effects on
the isentropic behavior of substances. Due to the implicit analytical nature of the real
exponents, any equation of state or thermodynamic library can be used for their eval-
uation. The theoretical limits and overall behavior of the real isentropic gas model are
explored for a Van der Waals substance. In the two opposing physical limits, the model
is shown to reduce to the incompressible substance model for liquid densities and the
ideal gas model as the temperature increases or the pressure goes to zero.

The relation of the generalized isentropic gas model with other thermodynamic
properties is explored, leading to the development of specific heat relations and other
thermodynamic properties in terms of the real exponents γPv, γTv, and γPT . Besides
providing alternative schemes for their evaluation, special features of thermodynamic
properties such as the state of maximum density and inversion temperature may be
related to the value of the isentropic exponents determined by the local compressibility
of the substance. Due to the exact definitions of the real adiabatic exponents at a
state point, the relations between properties is thermodynamically consistent – another
physical requirement.

The generalized isentropic gas model is then applied to isentropic flows to derive tra-
ditional gas dynamic relations such as speed of sound, stagnation properties, and choked
flow conditions for non-ideal compressible fluid flows. Exact solutions are provided for
Prandtl-Meyer expansion fans, and approximate Rankine-Hugoniot jump conditions are
explored for real gases. Finally, attributes of the fundamental derivative of gas dynam-
ics are explored under the generalized isentropic gas model to gain new insights into
its mathematical properties. Under the generalized isentropic model, the fundamental
derivative is shown to satisfy both liquid and gaseous physical limits. Non-classical
behavior is attributed to higher-order derivatives of the real exponents.

The application of the generalized isentropic gas model is demonstrated and val-
idated for use in non-ideal compressible fluid dynamic (NICFD) codes by simulation
of the one-dimensional Euler equations for a standard shock tube problem. Several
numerical schemes for the evaluation of thermodynamic properties of varying levels of
accuracy are presented for evaluation of the isentropic gas model. In the application of
the shock tube problem, the general equation for the speed of sound is demonstrated
to be equivalent to the speed of sound of a Van der Waals gas, proving the validity of
the model.
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Introduction

The burden placed upon the environment by the energy requirement of today’s society
urges humanity to develop new sustainable technologies to meet demands. An enormous
potential lies in the exploitation of geothermal reservoirs, ocean thermal gradients,
concentrated solar radiation, waste heat from prime movers and industrial processes,
and biomass combustion [4–7], typically consisting of small to medium size thermal
reservoirs at moderate temperature levels. Conventional thermal energy conversion
technologies – whom over the years have been optimized to operate at ever higher
temperature levels to improve conversion efficiency – are unsuitable for efficient thermal
conversion of these energy sources mostly due to the incompatibility of the working
fluid and the temperature profile of the thermal reservoir [8–11]. The critical point,
saturation line, specific heat capacities, and heat of evaporation associated with the
choice of working fluid translates directly into the size and temperature level of a thermal
reservoir to which a system can efficiently operate [8, 10, 12].

To adapt to the temperature profiles of renewable energy sources and waste heat
streams, a major development in the field of power generation technologies is the se-
lection of the working fluid as an additional degree of freedom to the design of energy
conversion systems. The fluid can be chosen such that it is optimal from a thermody-
namic and technical point of view [10, 11, 13]. Examples of such technologies are the
application of Organic Rankine Cycles (ORC) for low-temperature renewable sources
and waste heat utility applications [8, 12, 14, 15], supercritical carbon dioxide (sCO2)
power cycles for medium to high temperature solar or nuclear applications [9, 16–18],
and supercritical CO2 refrigeration cycles [19, 20].

Performance optimization of system components is of primary importance for the
successful implementation of these innovations. The combination of unusual working
fluid characteristics and the thermodynamic regime in which these technologies are to
operate makes for fluid behavior to depart greatly from ideal behavior [21–23]. Due
to the complexities of non-ideal compressible fluid dynamics (NICFD), the design and
analysis of equipment operating dense gas regime is one that is mainly driven by com-
putational fluid dynamics [24–27]. The development of NICFD codes, therefore, plays
a crucial role in the overall advancement of this research field.

At the same time, the conventional classification between “ideal” and “non-ideal”
fluids is distinctive for the lacking means to describe the behavior of fluids in a general
sense. Whereas the behavior of ideal gases is fully resolved, our capabilities are severely
limited when moving away from ideal conditions and force us to resort to thermody-
namic libraries and equations of state of (semi)-empirical nature [28, 29]. Having to rely
on thermodynamic libraries and complex multiparameter equations of state (MPEOS),
imposes heavy computational costs in the modeling of non-ideal compressible fluid flows.
Moreover, the absence or only partial availability of experimental data in the thermody-
namic region of interest introduces a level of uncertainty that makes robust and accurate
simulations of non-ideal fluid flows still a challenge [27, 30].
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In this work, an analytical framework for the evaluation of non-ideal gas behavior is
constructed, based on the generalized isentropic relations introduced by Kouremenos et
al. in the 1980s [1–3, 31, 32]. In a series of papers, they proposed a method to include
compressibility effects into the adiabatic constant γ used in classical ideal gas dynamics
– a model that could potentially be very useful in the modeling of non-ideal compressible
fluid flows. Though upon its introduction, the application of the isentropic model leaned
more towards empirical substitution of equations of state into compressible ideal gases
relations rather than analytical arguments. Isentropic flow relations for non-ideal gases
were presumed to retain their ideal form, and their exponents empirically evaluated [31].
Demonstrating these concepts based on analytical arguments will be the objective of
this work: “To analytically extend concepts of classical ideal compressible gas dynamics
to non-ideal gases using the generalized isentropic model.”

The extent to which ideal gas dynamics can be successfully extended to non-ideal
fluids will be investigated by addressing the following related topics:

i. Does the mathematical behavior of the generalized isentropic gas model comply
with physical limits, and to what extent can the model capture real gas behavior
between those limits?

ii. Is the isentropic gas model consistent with other thermodynamic properties?

iii. Can isentropic flow properties be extended to non-ideal fluids using the generalized
isentropic gas model, and what are the limits of its application?

By adoption of the generalized isentropic model, we will consider a fluid exhibiting
any gas dynamic behavior, henceforth referred to as a “real” fluid. The ideal gas
equation will be demonstrated to be a subclass of the real model, as indeed are any other
equations of state such as Van der Waals, Soave-Redlich-Kwong, Peng-Robinson, etc.
Classical analytical ideal gas concepts such as the speed of sound, stagnation properties,
choked flow conditions, and other thermodynamic identities, will be demonstrated to
inherit their formulation from fundamental mass, momentum, and energy conservation
equations that do not distinguish between ideal or non-ideal gases. These concepts
will be shown to be shared properties of ideal gases and real gases alike. The kind of
behavior that the substance exhibits is captured in the value of the adiabatic exponents
of the real isentropic model.

To effectively engage in this extensive collection of closely related topics, this work
has been divided into four parts. In Part I, the real isentropic model by Kouremenos is
formally introduced [1–3]. Its mathematical properties and limits are explored for the
underlying physics that governs fluid behavior. In Part II, the isentropic model is put
into the wider perspective of thermodynamic fluid properties concerning specific heat
relations, compressibility effects and entropy itself. In Part III, the isentropic model is
applied to extend familiar concepts of ideal gas dynamics to real fluid flows. The speed
of sound, stagnation properties, and choked flow conditions are derived for non-ideal
compressible isentropic flows. An attempt is made to derive shock wave properties in
real fluid flows. Finally, in Part IV, the application of the isentropic model in NICFD
codes is demonstrated by simulation of the shock tube problem for a real compressible
gas.
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PART I

Real Isentropic Relations

1 Real Isentropic Exponents 16
1.1 Pressure-Volume Exponent . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Temperature-Volume Exponent . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Pressure-Temperature Exponent . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Summary of the Isentropic Functions . . . . . . . . . . . . . . . . . . . . 21

2 Approximate Real Isentropes 22
2.1 Pressure-Volume Isentrope . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Temperature-Volume Isentrope . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Pressure-Temperature Isentrope . . . . . . . . . . . . . . . . . . . . . . . 26

3 Behavior of the Isentropic Exponents 27
3.1 Van der Waals Isentropic Exponents . . . . . . . . . . . . . . . . . . . . 27
3.2 Physical Limits of the Isentropic Exponents . . . . . . . . . . . . . . . . 30
3.3 Contours of the Isentropic Exponents . . . . . . . . . . . . . . . . . . . . 32

Part I of this work serves as an introduction of the generalized isentropic gas model
to the reader, which will be applied to thermodynamic property relations and isentropic
flows in subsequent parts. The isentropic relations of real substances will be introduced,
their functions formally derived, and their mathematical properties thoroughly investi-
gated.

The first two chapters will together substantiate the theoretical framework behind the
generalized isentropic relations based on earlier work by Kouremenos et al. [1–3]. Their
original derivation is expanded for clarity and completeness, whereby the equivalence
between the real isentropic gas model and the ideal isentropic gas model is explicitly
outlined. In the final chapter of this part, the behavior of the generalized isentropic
functions are investigated for Van der Waals gasses, and their physical limits explored.
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ONE

Real Isentropic Exponents

The isentropic relations for ideal gases will form our point of departure for the derivation
of their real gas counterparts. The isentropic relations of an ideal gas are readily derived
from the entropy equations [33, 34], given as

ds = cp
dT

T
+R

dP

P
, (1.1)

where ds = 0 for an isentropic process. Let R = cp − cv for an ideal gas. Integration of
Eq. (1.1) yields

lnT − cp − cv
cp

lnP = const. (1.2)

The integration constant is unique for each isentrope. Taking the exponential of
Eq. (1.2) we arrive at the description of the pressure-temperature isentrope in its
familiar form. Using the ideal gas relation Pv = RT the pressure-volume isentrope and
temperature-volume isentrope are also obtained:

Pvγ = const, (1.3a)

Tvγ−1 = const, (1.3b)

TP
1−γ
γ = const. (1.3c)

For the derivation of the isentropic relations for real gasses a solution in the form
of Eqs. (1.3a–1.3c) will be assumed for now, where the exponents are replaced by
γPv, γTv, and γPT . The purpose of this chapter will be to find implicit expressions
for the exponents in terms of state variables, based on earlier work by Kouremenos et
al. in the 1980s [1–3]. The original derivation is expanded by explicitly underlining
the equivalence between the isentropic relations in the ideal and real case. Moreover,
Chapter 2 will provide further closure of the problem by show that the assumed form
of the isentropes is indeed correct.

A special notice is reserved for recent work by Baltadjiev, who had been able to
independently come up with expressions for the real gas isentropes using a slightly
different choice of notation in terms of compressibility coefficients [35, 36]. The original
notation introduced by Kouremenos is preferred in this work as it conveniently adheres
to the ideal gas notation, thereby preserving familiar notations and emphasizing the
equivalence between the ideal and generalized isentropic gas models.
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1.1 Pressure-Volume Exponent

The isentropic pressure-volume relationship of an ideal gas is given by Eq. (1.3a).
For the general case, we introduce the unknown adiabatic function γPv which replaces
the ideal adiabatic coefficient γ = cp/cv. The generalized isentropic pressure-volume
relation becomes

PvγPv = const. (1.4)

To derive an expression for γPv in terms of state variables, let entropy be defined as a
function of pressure and specific volume s = s(P, v). In this case, the change in entropy
is expressed as (App. A.1)

ds =

(
∂s

∂P

)
v

dP +

(
∂s

∂v

)
P

dv = 0, (1.5)

where ds = 0 for an isentropic process. Rearranging the partial derivatives yields

(
dP

dv

)
s

= −

(
∂s

∂v

)
P(

∂s

∂P

)
v

. (1.6)

The left-hand side of Eq. (1.6) can be evaluated by differentiation of the assumed
isentropic pressure-volume relation Eq. (1.4) with respect to v, which becomes(

dP

dv

)
s

= −γPv
P

v
. (1.7)

The right-hand side of Eq. (1.6) can be re-expressed using Maxwell relations, and
subsequently expanded using the triple product (App. A.1–A.2)

−

(
∂s

∂v

)
P(

∂s

∂P

)
v

=

(
∂P

∂T

)
s(

∂v

∂T

)
s

, (1.8a)

=

(
∂P

∂s

)
T

(
∂s

∂T

)
P(

∂v

∂s

)
T

(
∂s

∂T

)
v

, (1.8b)

where (∂s/∂T )P = cp/T and (∂s/∂T )v = cv/T (App. A.3). Using the Maxwell relations
once more, the remaining partial derivatives can be expressed as

−

(
∂s

∂v

)
P(

∂s

∂P

)
v

= − cp
cv

(
∂T

∂v

)
P

(
∂P

∂T

)
v

, (1.9a)

17



=
cp
cv

(
∂P

∂v

)
T

. (1.9b)

Equating the left-hand side and right-hand side results, we find an implicit function of
γPv in terms of state variables based on the assumed form of the isentropic pressure-
volume relation [1]:

γPv = − v
P

cp
cv

(
∂P

∂v

)
T

.exponent γPv (1.10)

To evaluate the function γPv the expression must be made explicit by adopting an
equation of state, or by using a thermodynamic library. This will be the subject of
Part IV where the real isentropic gas model is used for modeling non-ideal compressible
flows. For now, we will use this concept to demonstrate that the isentropic pressure-
volume relation of an ideal gas is a subset of the solutions of Eq. (1.10). Evaluating the
derivative (∂P/∂v)T for the ideal gas equation yields(

∂P

∂v

)
T

= −RT
v2

. (1.11)

Elimination of the derivative in Eq. (1.10), we find that the function of γPv reduces to
the ratio of the specific heats, thereby demonstrating the equivalence between the ideal
gas and real gas isentropic pressure-volume relation as

γPv =
cp
cv

. (ideal gas) (1.12)

1.2 Temperature-Volume Exponent

Similarly, let us assume the general temperature-volume relation to be of the from of
Eq. (1.3b) where the adiabatic coefficient is replaced by the unknown function γTv.
The generalized temperature-volume relation along an isentrope becomes

TvγTv−1 = const. (1.13)

The procedure for deriving an implicit expression for the function γTv follows the same
steps as previously for the pressure-volume exponent. We start out by defining entropy
as a function of temperature and volume s = s(T, v). With ds = 0 for an isentropic
process, the derivatives can be related as (App. A.1)

(
dT

dv

)
s

= −

(
∂s

∂v

)
T(

∂s

∂T

)
v

. (1.14)

Again, a function for γTv can be found by evaluating both sides of Eq. (1.14). The left-
hand side of Eq. (1.14) can be evaluated by differentiation of the assumed temperature-
volume relation with respect to v

18



(
dT

dv

)
s

= −(γTv − 1)
T

v
. (1.15)

The partial derivatives on the right-hand side of Eq. (1.14) can be expanded using
Maxwell relations (App. A.2)

−

(
∂s

∂v

)
T(

∂s

∂T

)
v

= −

(
∂P

∂T

)
v(

∂s

∂T

)
v

, (1.16a)

= − T
cv

(
∂P

∂T

)
v

. (1.16b)

Equating the left-hand side and right-hand side in Eq. (1.14), the function for the
exponent γTv for an real isentropic process becomes [1]:

γTv = 1 +
v

cv

(
∂P

∂T

)
v

. exponent γTv(1.17)

Like in the case of γPv, the ideal adiabatic exponent can be shown to be a subset of
the solutions of γTv by evaluating the derivative (∂P/∂T )v using the ideal gas relation
which yields (

∂P

∂T

)
v

=
R

v
. (1.18)

Elimination of the partial derivative in Eq. (1.17) the exponent γTv is demonstrated
to reduce to the ratio of the specific heats in the ideal case

γTv = 1 +
R

cv
=
cp
cv

. (ideal gas) (1.19)

1.3 Pressure-Temperature Exponent

Finally, we introduce the function γPT to relate the isentropic pressure-temperature
relation in the general case. Again, the purpose is to find an implicit expression for γPT
in terms of state variables. The general pressure-temperature relation for an isentropic
process becomes

TP
1−γPT
γPT = const. (1.20)

We start by expressing entropy as an exact differential in terms of pressure and tem-
perature s = s(P, T ) (App. A.1). Again, with ds = 0 the following relation between
the partial derivatives is obtained

19



(
dP

dT

)
s

= −

(
∂s

∂T

)
P(

∂s

∂P

)
T

. (1.21)

The left-hand side of Eq. (1.21) is evaluated by differentiating the assumed pressure-
temperature relation with respect to temperature, giving(

dP

dT

)
s

=
γPT

γPT − 1

P

T
. (1.22)

The right-hand side of Eq. (1.21) can be expanded using Maxwell relations (App. A.2)

−

(
∂s

∂T

)
P(

∂s

∂P

)
T

=

(
∂s

∂T

)
P(

∂v

∂T

)
P

, (1.23a)

=
cp
T

(
∂T

∂v

)
P

. (1.23b)

Equating the left-hand side and right-hand side in Eq. (1.21), the following expression
is found for the function γPT in terms of state variables [1]:

γPT =
1

1− P

cp

(
∂v

∂T

)
P

.exponent γPT (1.24)

In agreement with the previous sections, the isentropic pressure-temperature relation
for an ideal gas can be demonstrated to be a subset of the solutions of Eq. (1.24). The
partial derivative (∂v/∂T )P for an ideal gas becomes(

∂v

∂T

)
P

=
R

P
. (1.25)

Elimination of the partial derivative in Eq. (1.24), the exponent γPT can be shown
to reduce to the ratio of the specific heats in the ideal gas case

γPT =
cp

cp −R
=
cp
cv

. (ideal gas) (1.26)
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1.4 Summary of the Isentropic Functions

In summary, the generalized isentropic relations for real substances introduced in the
previous sections for are expressed as [1]

PvγPv = const, (1.27)

TvγTv−1 = const, (1.28)

TP
1−γPT
γPT = const, (1.29)

where the isentropic exponents are functions of state variables summarized as

γPv = − v
P

cp
cv

(
∂P

∂v

)
T

, (1.30)

γTv = 1 +
v

cv

(
∂P

∂T

)
v

, (1.31)

γPT =
1

1− P

cp

(
∂v

∂T

)
P

. (1.32)

The isentropic functions Eqs. (1.30–1.32) are state variables that can be evaluated
using any thermodynamic library or equation of state. Moreover, the accuracy of the
generalized isentropic functions is determined only by the accuracy of the equation of
state using to relate the state variables [3].

Additionally, as each of the isentropic functions has some derivative of pressure,
temperature, or volume, they can be shown to be interdependent using the chain rule.
One can use the cyclic P -v-T relation and eliminate the partial derivatives by Eqs.
(1.30–1.32) to relate the isentropic exponents(

∂P

∂v

)
s

=

(
∂T

∂v

)
s

(
∂P

∂T

)
s

. (1.33)

Elimination of the partial derivatives using Eq. (1.7), Eq. (1.15) and Eq. (1.22), we
find [1]:

γPv
γTv − 1

=
γPT

γPT − 1
.

relation
between
exponents

(1.34)
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TWO

Approximate Real Isentropes

In the previous chapter, the isentropic relations for real gases were derived based on the
presumed form of the pressure, volume, and temperature relation along an isentrope,
Eqs. (1.27–1.29). The legitimacy of this assumption will be demonstrated in this chap-
ter. However, we shall begin with a general notion on the ability of the real isentropic
gas model to describe isentropic state changes.

Each of the isentropic exponents introduced in the previous chapter possesses a
multivariate dependency on state variables, whose values change continuously along an
isentrope. The isentropic exponents are therefore themselves state variables. However,
we may think of thermodynamic regions where the values of the isentropic exponents are
locally constant – such is the case of ideal gases for example where the adiabatic ratio
is assumed constant. Similarly, to evaluate isentropic state changes of real gases, the
isentropic exponents γPv, γTv, and γPT may assumed to be locally constant functions.
This approximation is of a somewhat higher order than the assumption of constant
specific heat ratio of ideal gases, as the latter indirectly imposes restrictions on the
variation of the isobaric heat capacity cp. The assumption locally constant values of the
isentropic exponents will be used throughout this work to relate states isentropic state
changes.

The limits of this assumption may be clarified by Figure 2.1, which shows the dis-
crepancy between the isentropic constant in Eq. (1.27) calculated with variable and
constant values of the isentropic exponent γPv. As the value of the constant in Eq.
(1.27) is unique along each isentrope, the contours of the isentropic constant outline
the contours of the isentropes by requirement. In Figure 2.1 the isentropes are approxi-
mated by their values of γPv at the critical pressure. The critical pressure level has been
chosen to demonstrate the ability of the continuous isentropic pressure-volume relation
– the solid lines in Figure 2.1 – to demonstrate the ability of the model Eq. (1.27) to
capture the highly non-linear fluid behavior at critical conditions. Note for example
the curvature of the isentropes theoretically encountered in dense gases in Figure 2.1b
[37–41], which is the subject of Chapter 10. The polytropic Van der Waals equation
of state has been used to evaluate the function of γPv, Eq. (1.30). The details of this
procedure are discussed in Chapter 11.

Two important physical aspects can be outlined from this figure. Firstly, the ap-
proximate isentropes – the dashed lines in Figure 2.1 – form an increasingly better fit
moving away from the critical point, in the limit where the solid and dashed lines will
eventually coincide in the ideal limit for increasingly higher temperatures. Secondly, the
discrepancy between the approximate and continuous isentropes increases with increas-
ing molecular weight. The deviations are caused by higher order compressibility effects
caused by the increased molecular complexity as the molecular size increases [37–41].
However, note that Figure 2.1 only displays the contours of the isentropic constants
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Figure 2.1: Pressure-volume isentropes Eq. (1.27) with variable ( ) and constant ( ) expo-
nents for a molecular light and heavy Van der Waals substance.
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regardless of their actual values. In the next chapter, we will see that the variation of
the exponents γPv, γTv and γPT reduces with increased molecular weight.

Nevertheless, the message conveyed by Figure 2.1 on the validity of the assumption of
constant isentropic exponents must be bared in mind throughout the subsequent chap-
ters of this work. It presents the context in which the application of the approximated
isentropic relations in later chapters are to be viewed.

2.1 Pressure-Volume Isentrope

In this and the following sections, the validity of the form of the isentropic relations
assumed in Chapter 1 will be demonstrated, starting with the pressure-volume rela-
tionship. The form of the pressure-volume isentrope of section 1.1, can be shown to be
correct by expressing the exact differential of entropy in terms of pressure and volume

ds =

(
∂s

∂P

)
v

dP +

(
∂s

∂v

)
P

dv. (2.1)

The partial differentials of Eq. (2.1) can be rewritten using Maxwell relations (App.
A.2). The resulting derivatives −(∂v/∂T )s and (∂P/∂T )s, in turn, may be evaluated
as the derivative of the isentropes in terms of temperature and volume Eq. (1.15), and
pressure and temperature Eq. (1.22), summarized as

(
∂v

∂T

)
s

= − 1

γTv − 1

v

T
, (2.2a)

(
∂P

∂T

)
s

=
γPT

γPT − 1

P

T
. (2.2b)

Here we introduce the assumption of a locally constant value for the isentropic func-
tions. From a mathematical point of view, the isentropes derived in this chapter may be
viewed as approximation of an exponential function by a power function. Substitution
of the partial derivatives back into Eq. (2.1) yields

ds =
1

γTv − 1

v

T
dP +

γPT
γPT − 1

P

T
dv. (2.3)

Introducing the real gas relation Pv = ZRT into the equation we obtain

ds =
1

γTv − 1
ZR

dP

P
+

γPT
γPT − 1

ZR
dv

v
. (2.4)

Rearranging terms, and introducing the relation between the isentropic exponents, Eq.
(1.34), yields

γTv − 1

ZR
ds =

dP

P
+ γPv

dv

v
. (2.5)

The ratio ZR/(γTv − 1), will be shown to be equal to the isochoric heat capacity
cv in Chapter 4. With respect to Eq. (4.13), the above equation does not include any
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derivative terms following from the assumption of a constant value for the isentropic
exponent γPv. Integration of Eq. (2.5) between state zero and the arbitrary state s(P, v)
gives

∆s

cv
= lnP + γPv ln v + C. (2.6)

Rearranging terms, we arrive at

PvγPv = e
∆s
cv

+C
. (2.7)

When relating states along an isentrope, the change in entropy ∆s = 0, for which
the right-hand side of Eq. (2.7) becomes a constant whose value is unique for each
isentrope. Moreover, as the isentropic exponent γPv reduces to the ratio of the specific
heats in the ideal case, it is easily verified that the ideal isentropes are a subset of the
solutions of Eq. (2.7).

2.2 Temperature-Volume Isentrope

Similarly, the assumed form of the temperature-volume isentrope in section 1.2 can
be demonstrated to be correct. Let the change in entropy be expressed as an exact
differential in terms of temperature and volume

ds =

(
∂s

∂T

)
v

dT +

(
∂s

∂v

)
T

dv, (2.8)

where the partial derivative (∂s/∂T )v = cv/T according to Maxwell relations. The
right-hand side term of Eq. (2.8) is expanded using the triple product (App. A.1–A.2)(

∂s

∂v

)
T

= −cv
T

(
∂T

∂v

)
s

. (2.9)

Again, the partial derivative term (∂T/∂v)s is evaluated as the derivative of the Tv-
isentrope, Eq. (1.15) in section 1.2(

∂T

∂v

)
s

= −(γTv − 1)
T

v
. (2.10)

Substitution of the derivatives into Eq. (2.9), the entropy change for real gasses can be
expressed as

ds = cv
dT

T
+ cv(γTv − 1)

dv

v
. (2.11)

Integration between state zero an arbitrary state s(T, v) gives

∆s

cv
= lnT + (γTv − 1) ln v + C. (2.12)

Rearranging terms, we finally arrive at

TvγTv−1 = e
∆s
cv

+C
. (2.13)
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It appears that for an isentropic process, for which ∆s = 0, the right-hand side of
Eq. (2.13) becomes constant along an isentrope, whose value is uniquely determined by
the integration constant C that is unique for each isentrope.

2.3 Pressure-Temperature Isentrope

Lastly, the form of the isentropic pressure-temperature relation assumed in section
1.3 can be demonstrated to be correct in a very similar way as it was done for the
temperature-volume isentrope. The only difference between the two will be the in-
troduction of the isobaric specific heat capacity instead of the isochoric specific heat
capacity. Again, let the entropy be a function of pressure and temperature. The change
in entropy can be expressed as

ds =

(
∂s

∂T

)
P

dT +

(
∂s

∂P

)
T

dP, (2.14)

where the partial derivative (∂s/∂T )P = cp/T following Maxwell relations. Like
previously, the right-hand side term of Eq. (2.14) can be expanded using the triple
product (App. A.1–A.2) (

∂s

∂P

)
T

= −cp
T

(
∂T

∂P

)
s

. (2.15)

The partial differential (∂T/∂P )s can be evaluated as the derivative of the pressure-
volume isentrope, Eq. (1.22) (

dT

dP

)
s

=
γPT − 1

γPT

T

P
. (2.16)

Substitution of the partial derivatives back into Eq. (2.14), we obtain

ds = cp
dT

T
− cp

γPT − 1

γPT

dP

P
. (2.17)

Integration of relation Eq. (2.17) between the zero state and the arbitrary state s(P, T )
gives

∆s

cp
= lnT +

1− γPT
γPT

lnP + C. (2.18)

Rearranging terms, we arrive at

TP
1−γPT
γPT = e

∆s
cp

+C
. (2.19)

Again, in the isentropic case ∆s vanishes and the right-hand side of Eq. (2.19) reduces
to a constant, that is uniquely determined for each isentrope by the integration constant
C. Therefore, Eq. (2.18) reduces to the assumed form the PT -isentrope in case of an
isentropic process.
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THREE

Behavior of the Isentropic Exponents

The isentropic relations for real gasses were formally introduced in the preceding chap-
ters. In this chapter, the limits and overall behavior of the isentropic exponents will be
explored.

After the initial derivation of the real exponents γPv, γTv, and γPT , Kouremenos
and his co-authors engaged in similar investigations on the behavior of the exponents
for different substances including dry steam, ammonia, and some refrigerants [2, 32]. In
this respect, their work had mostly been of semi-empirical nature rather than a rigorous
analytical investigation.

Having demonstrated the generalized application of the isentropic relations Eqs.
(1.27–1.29) in Chapter 2, we will now focus on understanding the behavior of the isen-
tropic exponents themselves. The present study will be a general investigation into the
trends observed in the behavior of the real isentropic exponents. The Van der Waals
equation of state is of particular interest for qualitative analysis, owing to the mathe-
matically simple modification to the ideal gas law to incorporate fundamental molecular
interactions. With the intent of a general investigation, the Van der Waals will be ex-
pressed in reduced form, which allows comparison of the results for different substances
according to the principle of corresponding states.

3.1 Van der Waals Isentropic Exponents

Expressing the isentropic exponents for a Van der Waals substance is indeed very
straightforward and is mostly an exercise in algebraic manipulations. Each of the terms
in the definitions of the isentropic functions are evaluated by the Van der Waals equa-
tion. The results of this procedure are summarized in Table 3.1. A summary of the Van
der Waals equation is provided in Chapter 11 on numerical simulation of real gases,
along with the Soave-Redlich-Kwong and Peng-Robinson equations of state.

Note that the Van der Waals relations for the isentropic exponents in Table 3.1 can
be verified independently, as they are associated according to the relation between the
exponents Eq. (1.34). The combination of any two expressions will result in the third
exponent.
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Table 3.1: Isentropic exponents for a Van der Waals substance in reduced form, explicit in
temperature and volume, and pressure and volume.

Pv-plane

γTv(Pr, vr) = 1 +
R

cv

3vr
3vr − 1

γPv(Pr, vr) =
cp
cv

3vr
3(Pr + 3/vr

2)− 6(3vr − 1)

vr2(Pr + 3/vr2)(3vr − 1)− 3(3vr − 1)

γPT (Pr, vr) =
1

1− R

cp

vr
3(Pr + 3/vr

2)− 3vr
vr3(Pr + 3/vr2)− 2(3vr − 1)

Tv-plane

γTv(Tr, vr) = 1 +
R

cv

3vr
3vr − 1

γPv(Tr, vr) =
cp
cv

24vr
3Tr − 6(3vr − 1)2

8vr2Tr(3vr − 1)− 3(3vr − 1)2

γPT (Tr, vr) =
1

1− R

cp

8vr
3Tr − 3vr(3vr − 1)

8vr3Tr − 2(3vr − 1)2

Although the reduced Van der Waals equation in principle does not require any
information to characterize the substance, this is no longer true if we wish to evaluate
the isentropic exponents due to their dependency on the specific heat capacities cv
and cp. To close the problem, the isochoric and isobaric heat capacities need to be
quantified. The isochoric heat capacity will be assumed constant between states and
to be solely a function of the molecular structure of the substance according to the
equipartition theorem [34, 42], also known as the polytropic gas model [26, 39, 43].
Under this assumption, the isochoric heat capacity is expressed as

cv =
f

2
R, (3.1)

where f is the molecular degrees-of-freedom. The minimum d.o.f of a single molecule
is 3 – one along each dimension for translation through three-dimensional space. More
complex molecular structures have additional other types of internal motions such as
molecular vibrations or rotations, adding to the total molecular degree-of-freedom. The
dependency of the d.o.f of a molecule to the number of molecules N is presented in
Table 3.2.

The specific heat capacities are related by Eq. (3.2) by definition [34]. Under the
assumption of a constant value of the isochoric heat capacity, the variation of the isobaric
heat capacity is entirely determined by the equation of state according to
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Table 3.2: Relation between the molecular degrees-of-freedom and molecular size according to
the equipartition theorem.

monatomic N = 1 f = 3

diatomic N = 2 f = 5

linear polyatomic N > 2 f = 3N

cp = cv + T

(
∂v

∂T

)
P

(
∂P

∂T

)
v

. (3.2)

Before we continue with the real gas analysis, let us reason about the limiting values
of Eq. (3.2) in the ideal case. In this case, Eq. (3.2) reduces to cp − cv = R. As the
isochoric specific heat capacity cv is only a function of the molecular degree of freedom
under the polytropic gas assumption, the same hold for the isobaric heat capacity cp.
In the ideal gas limit we have

cv =
f

2
R, cp =

(
1 +

f

2

)
R, and γ = 1 +

2

f
. (3.3)

Referring to the specific heat ratio in relation to the molecular degree of freedom
Table 3.2, the ideal adiabatic coefficient γ can be demonstrated to attain a maximum
value of 1.6 for a monatomic gas, and approaches the value of 1 as the size of the
molecule increases [33, 34]. Although this is not the general case for the real isentropic
exponents, the same limit is satisfied in the ideal limit.

We will now continue with the real gas analysis using the Van der Waals equation
of state. The relation between the specific heats Eq. (3.2) can be expressed as [44]

cp = cv +
R

1− (3vr − 1)2

4Trvr3

. (3.4)

Due to the dependency of the specific heat capacities on the molecular composi-
tion, the analysis of behavior of the real isentropic exponents will explore two molec-
ular species representing two limiting cases regarding molecular size. A light diatomic
molecule will be considered, for which cv = 2.5R, and a much heavier molecule for
which cv = 50R.

Although the isobaric specific heat capacity is no longer solely a function of the
molecular size as in the ideal case, the limits of cp in the non-ideal case may be explored
in a similar way. With an increase of the molecular size, the term cv in the expression
for cp above becomes increasingly more dominant, in the limiting case where cp → cv for
a infinitely large molecule. The variation of the isobaric heat capacity on the isochoric
heat capacity, therefore, becomes less pronounced as the molecular size increases, in the
limit where cp also becomes constant.
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3.2 Physical Limits of the Isentropic Exponents

Physical limits bind the domain of the isentropic functions, forming a natural condition
for validity of the isentropic gas model. Exploring these limits provides an intuitive
way to start the investigation of the behavior of the isentropic relations, for which an
equation of state does not yet have to be specified.

Two limits can be identified in the positive pressure-volume plane, consisting off the
ideal gas limit as vr >> 1 and the incompressible liquid model as vr << 1. These
two conditions are to be satisfied as boundary condition for the generalized isentropic
substance model. The ideal gas limit is attained as either the temperature goes to
infinity or the pressure of the system tends to zero [33, 34]. The incompressible limit
for a Van der Waals substance is attained as the reduced volume as vr tends to 1/3,
corresponding to the limit where the size of the system becomes equal to molecular
volume denoted as coefficient b in the Van der Waals equation. The area to the left of
vr = 1/3 is therefore unphysical and excluded from further discussion.

When the temperature tends to infinity, the behavior of any gas has been proven
to approach ideal gas behavior under any circumstance [34]. The original authors also
demonstrated that the real isentropic exponents tend to the value of γ = cp/cv at
increasingly higher temperatures, but did not explicitly demonstrated the equivalence
between the two [1].

Inversely, one might of the resemblance with the ideal gas case to be a mathematical
requirement, since the derivation of the real gas isentropic relations started out by the
assumption of the ideal formulation. In fact, under the ideal analysis, the exponents
γPv, γTv, and γPT together form different terms of Mayer’s relation for an ideal gas [33,
34]

γPv =
cp
cv
, γTv =

cv +R

cv
, and γPT =

cp
cp −R

.ideal gas limit (3.5)

(a) Piston

P

v

(b) Pv-diagram

T

P

(c) PT -diagram

Figure 3.1: Compression of an incompressible liquid

30



Conversely, the incompressible substance model must be satisfied for liquid states.
The values for the isentropic exponents for an incompressible fluid can be obtained by
letting the reduced volume vr → 1/3 in the Van der Waals expressions of the isentropic
exponents. The incompressible limit can be explored heuristically, by considering a liq-
uid brought under pressure in a piston arrangement Figure 3.1a. For an incompressible
substance, the isentropic pressure-volume relationship reduces to an isochoric process
for which γPv → ∞, Figure 3.1b. Upon isentropic compression of an incompressible
fluid, the internal energy, and therefore the temperature, should remain unchanged.
From here follows that the temperature is completely independent of changes in either
pressure or volume for an incompressible substance, Figure 3.1c. Accordingly, the ex-
ponents γTv and γPT tend to infinity and one in the incompressible limit, respectively.
The incompressible limit can be summarized as

γPv =∞, γTv =∞, and γPT = 1.
incompressible
limit(3.6)

Between the two volumetric limits, the two-phase region predicted by the Van der
Waals equation imposes another boundary of the domain of the isentropic functions.
The specific heat capacities are undefined in the coexistence region, thus neither are the
exponents γPv, γTv, and γPT . From here we can conclude that the applicability of the
generalized isentropic model is limited to stable single phase substances, as is also the
case of the ideal isentropic model.

We conclude our discussion on the limits of the isentropic exponents by the limit
imposed by the thermodynamic singularity at the critical point. This limit may be
explored by setting Tr = 1 in the Van der Waals expressions for the isentropic expo-
nents and by letting vr → 1. At the critical point, the isentropic exponents assume
indeterminate forms, the exponent γTv being the only exception which assumes a value
of 1 + 3R/2cv. The limits of the isentropic exponents are summarized in Table 3.3.

Table 3.3: Isentropic limits in the pressure-volume diagram

incompressible limit
vr → 1

3

critical limit
vr = 1

ideal gas limit
vr →∞

γPv →∞

γTv →∞

γPT → 1

γPv =∞

γTv = 1 +
3R

2cv

γPT =∞

γPv =
cp
cv

γTv =
cv +R

cv

γPT =
cp

cp −R
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3.3 Contours of the Isentropic Exponents

Now that the boundaries of the domain of the isentropic functions have been identified,
their general behavior between those limits can be studied using the Van der Waals
equation of state. We will turn to contour plots of the isentropic exponents which
provide a graphical way to interpret their behavior, with it also raising the question of
what lines of constant γPv, γTv, and γPT physically represent. To answer this underlying
thought, observe that in the definition of the isentropic exponents Eqs. (1.30–1.32) all
three exponents are composed of two physically different terms; either an explicit or
implicit formulation of the specific heat ratio and a term involving compressibility of the
state. The isentropic exponents may, therefore, be viewed as “compressibility corrected
heat capacity ratios” where the derivative term is corrected according to its gas behavior
and its density. The isentropic exponent γPv, for example, includes the derivative term
(∂P/∂v)T which for a given pressure is “corrected” for its location in the Pv-diagram
as the compressibility of low-density gasses is naturally higher than liquids which have
a much higher density.
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(b) High molecular weight cv = 50R

Figure 3.2: Contours of γTv of a Van der Waals substance

The contours of γTv in Figure 3.2a and 3.2b consist of logarithmically spaced ver-
tical lines, which is not surprising given the fact that the reduced volume is the only
variable in the polytropic Van der Waals model for γTv (see Table 3.1). The volumetric
limit bounds the left-hand side at vr = 1/3 for which γTv goes to infinity, causing the
logarithmic spacing of the contours towards this limit. At the right-hand side of the
domain, the value of γTv tends to the ideal gas limit and approaches 1 +R/cv in both
cases.
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By definition, γTv is always positive as none of the terms in the analytical expression
Eq. (1.31) can attain a negative sign. The derivative term (∂P/∂T )v, or the pressure
change by heating of a closed volume, must be positive from the condition of mechanical
stability [34]. From here γTv can be reasoned to be bound by the domain:

∞ > γTv ≥ 1 +
R

cv
. domain γTv(3.7)

The contour levels plotted for the light molecule cv = 2.5R and the heavy molecule
cv = 50R in Figure 3.2 are of the same order of magnitude. Although the plots of both
substances possess the same general features, due to the reduced variation of the isobaric
heat capacity for large molecules, as was reasoned in section 3.1, the variation of γTv
has become more gradual, and its features are “squeezed” towards the incompressible
limit. This trend will also be observed in the contour plots of γPv and γTv as we shall
now see.
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(b) High molecular weight cv = 50R

Figure 3.3: Contours of γPv of a Van der Waals substance

Contours of the isentropic exponent γPv are displayed in Figure 3.3a and 3.3b, bound by
the same limits as γTv. Because the value of γPv tends to infinity as the reduced volume
vr → 1/3, a logarithmic spacing of the contour lines toward this limit is again observed.
The latter is more pronounced for the larger molecules than the smaller molecules, due
to the reduced variations between the specific heats cp and cv for larger molecules.

Similar to γTv the isentropic exponent γPv can be reasoned to be restricted to
positive values only, as solely the derivative term (∂P/∂v)T in the definition of γPv can
change sign. The sign change predicted by the Van der Waals equation can be seen
graphically by looking at the isotherms plotted in Figure 3.4.
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Figure 3.4: Van der Waals isotherms and spinodal line

The derivative (∂P/∂v)T is negative for any stable single phase substance by the
requirement of mechanical stability [33, 34]. Due to the minus sign in the definition of
γPv, the exponent γPv, Eq. (1.30) is always positive. Moreover, the region where the
partial derivative (∂P/∂v)T is predicted to change sign by the Van der Waals equation
is enclosed by the two-phase region. The conditions of mechanical and thermal stability
in the two-phase region are replaced by the requirement of equal chemical potential
between the phases. The line where (∂P/∂v)T is zero – or alternatively, where γPv is
zero – denotes the line of ultimate stability of a single phase substance. Equating the
exponent γPv in Table 3.1 to zero we find the analytical expression of the dashed line
in Figure 3.4, better known as the Van der Waals spinodal [45, 46] expressed as:

Pr =
3vr − 2

vr3
, and Tr =

(3vr − 1)2

4vr3
. (for γPv = 0)Van der Waals

spinodals
(3.8)

This feature of γPv is of course not reserved for the Van der Waals substances only.
The spinodal line of any equation of state that predicts phase transitions can be obtained
by equating the exponent γPv to zero.

From the above discussion follows that the γPv spans the entire domain of positive
rational numbers from zero to infinity:

∞ > γPv ≥ 0.domain γPv (3.9)

Values between zero the ideal limit cp/cv are observed in a narrow band along the
spinodal line on the vapor side, which perhaps might be the result of the over prediction
of the Van der Waals equation in this region.
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Figure 3.5: Contours of γPT of a Van der Waals substance

We conclude this section on the behavior of the isentropic exponents by looking
at the contours of γPT in Figure 3.5a and 3.5b. The contours of γPT look distinctly
different from those of γPv and γTv, mostly due to absence of a limit towards infinity
in the incompressible limit.

The limit of γPT to one in the incompressible case has another effect, shown in Figure
3.5b. As the isobaric heat capacity tend to the isochoric heat capacity for increasingly
larger molecules cp → cv, the ideal gas limit also tend to one. As a result, the variation
of γPT becomes ever more uniform throughout the Pv-plane fro high molecular weight
substances. Only the metastable states around the spinodal lines show slight changes
in γTv.

Lastly, note that the partial derivative (∂v/∂T )P in the definition of γPT must
be positive for any single phase substance by the condition of thermal stability [34].
Furthermore, as neither P nor cp can be negative, it follows that γPT is always positive,
and cannot attain values smaller than one:

∞ > γPT ≥ 1. domain γPT(3.10)

The limit where γPT is equal to 1 will be demonstrated to have special significance
in Chapter 5, denoting the state of maximum density of a substance.

The trend of reduced variation of the isentropic exponents for high molecular weight
substances was generally observed in this section. What does this say about the behav-
ioral differences between high and low molecular weight species? From a mathematical
point of view, a region where the isentropic exponents show only small variations can
be reasoned to have isentropes with only small variations in their shape. Turning to the
isentropic relations Eqs. (1.27), (1.28), and (1.29) of Chapter 1, a reduced variation of
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the isentropic exponents between adjacent isentropes implies that the isentropic state
change is less dependent on the initial state.

Although this argument is certainly true from a mathematical point of view, the
reality is more complicated. Recall from our previous discussion on the isentropic limits,
that high values of γPv and γTv are associated with reduced compressibility moving
towards liquid states. As the “sqeezing” of the contours towards the incompressible
limit is a featured shared by both γPv and γTv, the former implies that high molecular
weight substances in a supercritical state retain their gaseous compressibility longer
than lower molecular weight species. The use of the term “gaseous compressibility” in
this context is relative, however, as high molecular weight substances already exhibit
reduced compressibility owing to higher densities in the gaseous phase.
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In Part II of this work, the relation between the real isentropic gas model and other
thermodynamic properties is explored and tested for consistency. Moreover, by relating
the isentropic model to other thermodynamic properties, the model will be put into a
broader perspective from which new insights will arise. In this process, we will also derive
thermodynamic properties and derivatives in terms of the real isentropic exponents which
may provide an alternative approach in calculating thermodynamic quantities in non-
ideal compressible gas flow simulations. The development of these relations will be the
aim of Chapters 4 and 5. These relations will then be used in the final two chapters
of this Part where the isentropic compression work of a real gasses is derived, and the
ideal gas entropy change is extended to real gases.
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FOUR

Real Specific Heat Functions
and Compressibility

When we take a closer look at the definitions of the exponents of the generalized isen-
tropic gas model Eqs. (1.27–1.32), we may recognize a multivariate dependency on
both mechanical and thermal properties. In this regard, one might wonder how the
isentropic gas model is related to other thermodynamic properties and concepts. This
feeling furthermore emphasized by the notion that the ideal gas adiabatic coefficient
γ = cp/cv makes a frequent reappearance in – seemingly different – thermodynamic
concepts.

In this chapter, we will explore the connection between the real isentropic gas model
and the specific heat relations. Given the fact that the specific heat capacities of an
ideal gas can be elegantly related to the universal gas constant, one might suspect a
similar relation to hold for substances in general, involving the real adiabatic coefficients
γPv, γTv, and γPT . The specific heats of an ideal gas are related by [33, 34]

cp − cv = R. (4.1)

The specific heats can in turn be expressed as a function of the adiabatic coefficient and
the universal gas constant

cp =
γ

γ − 1
R, and cv =

R

γ − 1
. (4.2)

Demonstrating how Eq. (4.1) and Eq. (4.2) are related to the real isentropic expo-
nents for calorically imperfect gases will be the purpose of this chapter. But first, we
may elaborate on how the above expressions relate to gas compressibility.

Under the equipartition theorem, each molecular degree of freedom is demonstrated
to contribute to the total internal energy of the molecule in equal parts [34, 42]. For a
substance in thermal equilibrium, the macroscopic temperature of the gas is related to
the average kinetic energy of its microscopic particles by the Boltzmann constant kb,
providing a physical relation between the energy and absolute temperature scales. The
same holds true for the universal gas constant R, which may be thought of as a special
case of the Boltzmann constant on a per mole basis by multiplication with Avogadro’s
number as

kb =
R

NA
. (4.3)

In a more traditional sense, the universal gas constant was initially derived as the
common limiting value as the pressure tends to zero, summarized as
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Figure 4.1: Universal gas constant as limiting value for P → 0.


lim
P→0

Pv

T
= R, (4.4a)

lim
P→0

Z = 1. (4.4b)

The limits in Eq. (4.4) are displayed graphically in Figure 4.1, written as ZR =
Pv/T . It is from here that we may start to appreciate the true implication of the term
ZR – a term which will make a frequent appearance throughout this work. Whereas the
compressibility factor is mostly defined as the ratio between the real and ideal volume
of a gas, capturing the departure of mechanical behavior of a gas from the ideal case,
the term ZR may be regarded as the departure of thermal behavior from the ideal case

lim
P→0

ZR = R. (4.5)

4.1 Specific Heat Relation
for Calorically Imperfect Gases

We will now turn to the relation between the specific heats to generalize this function for
calorically imperfect gases. Considering the preceding discussion, we might already be
able to guess that such a relation can be expressed solely in terms of the compressibility
factor, universal gas constant and temperature. Developing this relationship will be the
aim of this section.

Recall the relation between the specific heat capacities, defined as

cp − cv = T

(
∂v

∂T

)
P

(
∂P

∂T

)
v

. (4.6)

41



The compressibility factor Z is introduced into the derivative terms. As the compress-
ibility factor itself has a multivariate dependency on P , v, and T , the chain rule will
give us addition derivatives in Z and T

(
∂v

∂T

)
P

=
ZR

P
+
RT

P

(
∂Z

∂T

)
P

, (4.7a)

(
∂P

∂T

)
v

=
ZR

v
+
RT

v

(
∂Z

∂T

)
v

. (4.7b)

Substitution of expressions Eq. (4.7a) and Eq. (4.7b) in to the original relation yields

cp − cv = T

[
ZR

P
+
RT

P

(
∂Z

∂T

)
P

] [
ZR

v
+
RT

v

(
∂Z

∂T

)
v

]
. (4.8)

Rearranging terms, and further reduction of variables by again introducing the com-
pressibility factor Z = Pv/RT , the relation between the specific heat capacities can be
expressed solely in terms of the combination of thermal properties Z, R, and T .

cp − cv =
R

Z

[
Z + T

(
∂Z

∂T

)
P

] [
Z + T

(
∂Z

∂T

)
v

]
specific heat

relation (4.9)

It can be readily shown that the specific heat relation for an calorically perfect gas
is a special case of Eq. (4.9), for which Z = 1 and constant. The latter implies the
derivatives involving the compressibility factor reduce to zero, for which can be seen
that Eq. (4.9) reduces to cp − cv = R in the ideal gas case.

4.2 Real Specific Heat Functions

Using the same methodology, the specific heat capacities may be related to the isen-
tropic exponents and the gas compressibility as for and ideal gas. Developing the real
counterparts of the ideal specific heat functions will be the purpose of this section.

An expression for cp can be derived with a similar manipulation as was done pre-
viously for the relation between the specific heats. Starting from the definition of the
isentropic exponent γPT Eq. (1.32), the derivative term (∂v/∂T )P can be evaluated
using the compressibility factor written as v = ZRT/P . Elimination of the derivative
using Eq. (4.7a) yields

γPT =
1

1− R

cp

[
Z + T

(
∂Z

∂T

)
P

] . (4.10)

Rearranging in terms of cp, the following expression is found for the isobaric heat
capacity as a function of the compressibility factor, temperature and the ideal gas
constant as
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cp =
γPT

γPT − 1
R

[
Z + T

(
∂Z

∂T

)
P

]
.

isobaric heat
function(4.11)

It can be shown that the equation for the isobaric heat capacity Eq. (4.11) is
equivalent to the ideal gas form, as the gas compressibility factor is equal to one and
constant for an ideal gas, reducing any derivative in Z to zero. Moreover, as γPT is just
cp/cv in the ideal gas case, the above relation indeed reduces to the ideal form.

Similarly, the isochoric heat capacity can be expressed in terms of the gas compress-
ibility by elimination of the derivative (∂P/∂T )v in the definition of γTv by Eq. (4.7b)
resulting in

γTv = 1 +
R

cv

[
Z + T

(
∂Z

∂T

)
v

]
. (4.12)

Rearranging in terms of cv the following relation is obtained:

cv =
R

γTv − 1

[
Z + T

(
∂Z

∂T

)
v

]
.

isochoric heat
function(4.13)

Using the same arguments as before, it is clear that under the ideal gas assumption Eq.
(4.13) reduces to the ideal gas case Eq. (4.2).

This leaves one exponent being unused. Looking at the definition of γPv in Eq. (1.30)
the ratio of the specific heats is instantly recognized. Using the previous relations for the
specific heat capacity cv and cp, the equivalence between γPv and the ratio of specific
heats is further emphasized. Let γPv be expressed in terms of the other exponents
(1.34)

γPv = (γTv − 1)

(
γPT

γPT − 1

)
. (4.14)

Substitution of the expressions for γPT (4.10) and γTv (4.12) and rearranging terms the
expression for the adiabatic exponent γPv yields

γPv =
cp
cv

[
Z + T

(
∂Z
∂T

)
v

Z + T
(
∂Z
∂T

)
P

]
, (4.15)

where the adiabatic coefficient simply reduces to cp/cv under the ideal gas assumption.
Alternatively, the following expression is found for the ratio of the specific heats:

cp
cv

= γPv

[
Z + T

(
∂Z
∂T

)
P

Z + T
(
∂Z
∂T

)
v

]
.

heat ratio
function(4.16)
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FIVE

Other Thermodynamic Properties
and Derivatives

In the previous chapter we demonstrated the relation between the real isentropic expo-
nents and the specific heat functions, thereby reaffirming our suspicions of a broader
connection to other thermodynamic quantities. Continuing this line of reasoning, the
generalized isentropic gas model will be brought in relation to a variety of other ther-
modynamic properties in this chapter. In doing so, we will fully resolve the derivatives
between thermodynamic properties, whose general applicability can provide a more
usable and direct way to obtain derivatives in non-ideal compressible gas flows simula-
tions. The derivatives will be derived in this chapter, and are listed in Appendix A.3
for convenience.

5.1 Derivatives of Mechanical Properties

The real isentropic exponents were dubbed “compressibility corrected specific heat ra-
tios” in Chapter 3. Indeed, the similarity between the isentropic exponents and the
specific heat ratio cp/cv in the ideal case has been demonstrated on several occasions,
ultimately leading to the development of the specific heat functions for calorically im-
perfect gases in the previous chapter. The latter part of this interpretation, the relation
between the isentropic exponents and compressibility coefficients, will be outlined in
this section.

In recent work by Baltadjiev on “An Investigation of Real Gas Effects in Supercritical
CO2 compressors” in 2012 [35, 36], the relation between the isentropic exponents and
the compressibility coefficients has been demonstrated by incorporating them into their
definitions . In the current discussion, however, we will aim to relate some of the special
features of the compressibility coefficients to the value of the isentropic exponents.

Let the volume of a single phase substance be a function of natural variables, those of
temperature and pressure v = v(T, P ). The change in specific volume becomes

dv =

(
∂v

∂T

)
P

dT +

(
∂v

∂P

)
T

dP. (5.1)

The two thermodynamic properties related to the partial derivatives appearing in Eq.
(5.1) are the thermal expansion coefficient β and the isothermal compressibility κ com-
monly expressed as

β =
1

v

(
∂v

∂T

)
P

, and κ = −1

v

(
∂v

∂P

)
T

. (5.2)
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We will first consider the the thermal expansion coefficient β. The thermal expansion
coefficients describes the volume change of a substance caused by heating at constant
pressure. The case where β is equal to zero refers to a special state, designated the state
of maximum density. A notable example is the state of maximum density of water at a
temperature of around 4◦C at atmospheric pressure [47].

As the definitions of the isentropic exponents are exact a a state, the thermal ex-
pansion coefficient β can be related to the isentropic exponent γPT in Eq. (1.32) as [35,
36]

β =
γPT − 1

γPT

cp
Pv

, or β =
γPT − 1

γPT

cp
ZRT

. (5.3)

The condition of maximum density, may thus be related to the value of γPT being
equal to one. This limit was demonstrated to be the lower bound of the domain of γPT
in Chapter 3. As “gaseous” equations of state do not accurately predict liquid densities,
this feature of water was not captured by the Van der Waals equation in Chapter 3. For
a calculation, one must resort to a liquid equation of state such as the Tait equation to
evaluate γPT for liquid states [48, 49].

Similarly, the isothermal compressibility coefficient κmay be related to the isentropic
exponent γPv by elimination of the derivative (∂v/∂P )T by Eq. (1.30). Although this
leads to a very trivial result in case of gases, a more special form is obtained if we consider
liquid states. Instead of the isothermal compressibility coefficient κ, we introduce the
adiabatic bulk modulus K for liquids [50], defined as

K = −v
(
dP

dv

)
T

. (5.4)

The bulk modulus is a measure of the incompressibility – or “spring constant” –
of liquids, and defines the speed of sound in liquids according to the Newton-Laplace
equation [50–52]. Comparing the Newton-Laplace equation with the general speed of
sound equation Eq. (8.3), which will be formally introduced in Chapter 8, we obtain
the following relation between the liquid bulk modulus and the isentropic exponent γPv:

c =

√
K

ρ
, where K = γPvP.

Newton-
Laplace
equation

(5.5)

From classical thermodynamics, the adiabatic bulk modulus of ideal gases can be
readily derived as K = γP [51, 52]. The relation between the bulk modulus and the
isentropic exponent γPv presented in (5.5) can therefore be concluded to be the general
from of this relation.

Values of the bulk modulus K between gaseous and liquid states differ by several
orders of magnitude (kPa∼MPa for gases, GPa for liquids [51, 52]). In the former case,
the order of magnitude is completely determined by the pressure of the gas. In the
latter case, the derivative (∂P/∂v)T becomes large due substance incompressibility, the
order of magnitude of K for liquids is a combination of liquid incompressibility and the
exerted pressure. The Newton-Laplace equation and the ideal gas relation for the speed
of sound are therefore two limiting cases of the general speed of sound relation Eq. (8.3)
in Chapter 8.
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5.2 Derivatives of Internal Energy and Enthalpy

Another fundamental set of thermodynamic derivatives is formed by derivatives in in-
ternal energy and enthalpy, which will conclude this our investigation between the real
isentropic model and other thermodynamic properties. In this process, we will ulti-
mately derive of the Joule coefficient µJ and Joule-Thomson coefficient µJT [33, 34]
in terms of the isentropic exponents. Although the Joule coefficient – defined as the
derivative of temperature with respect to volume at constant internal energy – has lim-
ited practical significance, it is included in this section for sake of completeness. The
derivatives developed in this process are listed in Appendix A.3.

Let the enthalpy of a system be describe in terms of temperature and pressure
h = h(T, P ). For an isenthalpic process, the change in enthalpy can be written as

dh =

(
∂h

∂T

)
P

dT +

(
∂h

∂P

)
T

dP. (5.6)

The partial derivatives in Eq. (5.6) can be expressed as(
∂h

∂T

)
P

= cp, and

(
∂h

∂P

)
T

= −T
(
∂v

∂T

)
P

+ v. (5.7)

Furthermore, the partial derivative (∂T/∂P )h defined as the Joule-Thomson coeffi-
cient can be expressed in terms of the partial derivatives in Eq. (5.7) using the triple
product (App. A.1). Combining the two partial derivatives we find:

µJT =

(
∂T

∂P

)
h

=
1

cp

[
T

(
∂v

∂T

)
P

− v
]
. (5.8)

Eliminating the partial derivative (∂v/∂T )P by the isentropic exponent γPT , the Joule-
Thomson coefficient µJT can be expressed as:

µJT =
T

P

γPT − 1

γPT
− v

cp
, or µJT =

T

P

[
γPT − 1

γPT
− ZR

cp

]
. (5.9)

The Joule-Thomson effect describes the temperature change of substances when
undergoing an adiabatic throttling process. Since this effect is absent in ideal gases,
its occurrence can be completely attributed to molecular kinetics in real gases [33, 34].
Moreover, as real gas effects are included into the isentropic gas model, the slope of the
isenthalpic curve described by the Joule-Thomson coefficient can, therefore, be related
to conditions related to the value of the isentropic exponent γPT .

It can be verified that Eq. (5.9) reduces to zero in the ideal case for which the
isentropic exponent γPT reduces to the ratio of the specific heats. By equating µJT
to zero, one can relate the properties of the Joule-Thomson coefficient explicitly to the
value of γPT . Moreover, given the relation between the isentropic exponent γPT and
the specific heat capacity cp Eq. (4.11), the sign of uJT can be related to the value and
sign of the derivative (∂Z/∂T )P , see Table 5.1.
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A similar reasoning can be performed for derivatives related to internal energy. We
chose the natural variables temperature and internal energy to define the internal energy
of a substance, e = e(T, v). For an iso-energetic process, we can write

de =

(
∂e

∂T

)
v

dT +

(
∂e

∂v

)
T

dv. (5.10)

The partial derivatives in Eq. (5.10) expressed as(
∂e

∂T

)
v

= cv, and

(
∂e

∂v

)
T

= T

(
∂P

∂T

)
v

− P. (5.11)

Again, the third partial derivative (∂T/∂v)e, known as Joule’s coefficient, can be ex-
pressed as a function of the other derivatives using the triple product giving

µJ =

(
∂T

∂v

)
e

= − 1

cv

[
T

(
∂P

∂T

)
v

+ P

]
. (5.12)

The partial derivative (∂P/∂T )v can be eliminated by the isentropic exponent γTv
to yield Eq. (5.13). Like for the Joule-Thomson coefficient, one could relate similar
conditions of µJ to the value of the isentropic exponent γTv. However, this will not be
shown here, as the Joule coefficient has limited practical importance.

µJ =
T

v
(1− γTv)− P

cv
, or µJ =

T

v

[
(1− γTv)− ZR

cv

]
. (5.13)

Table 5.1: Conditions relating the value of (γPT − 1)/γPT and the derivative (∂Z/∂T )P to the
sign of the Joule-Thomson coefficient.

cooling µJT > 0
γPT − 1

γPT
>
ZR

cp

(
∂Z

∂T

)
P

< 0

inversion µJT = 0
γPT − 1

γPT
=
ZR

cp

(
∂Z

∂T

)
P

= 0

heating µJT < 0
γPT − 1

γPT
<
ZR

cp

(
∂Z

∂T

)
P

> 0
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SIX

Isentropic Work

The isentropic work defines the theoretical path-of-least-energy of an compression or
expansion process between two states, providing an absolute reference to which the
operation of non-reversible processes can be compared. In this chapter, the isentropic
compression and expansion of a real fluid will be derived and their implications dis-
cussed.

Starting from the definition of enthalpy, the change in enthlapy for an isentropic
process becomes a function of vdP , depending only on the initial and final states 1 and
2 from

dh = T��ds + vdP, (6.1)

where ds = 0. The finite enthalpy difference ∆h is obtained by integration of Eq. (6.1)
between arbitrary states 1 and 2 expressed as

∆h =

∫ 2

1

vdP. (6.2)

The pressure-volume relationship along an isentrope is described by Eq. (1.27)
which can be expressed as PvγPv = P1v1

γPv . Here the assumption of a locally constant
value of the function γPv is introduced. The validity of this assumption is bound to
compressibility effects set by the thermodynamic region. Eliminating the volume in Eq.
(6.2), the integral becomes explicit in pressure:

∆h =

∫ 2

1

v1

(
P1

P

) 1
γPv

dP. (6.3)

The change in enthalpy for an isentropic compression process becomes

Wc21 = h2 − h1 = v1P1
γPv

γPv − 1

(P2

P1

) γPv−1
γPv

− 1

 , (6.4)

and for an isentropic expansion process we have
isentropic

work process

Wt21 = h2 − h1 = v1P1
γPv

γPv − 1

1−
(
P2

P1

) 1−γPv
γPv

 . (6.5)

Eqs. (6.4) and (6.5) are plotted in Figure 6.1 in nondimensional form against the
compression ratio r = P2/P1 for several values of γPv. It was reasoned in Chapter 3
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that values of γPv for ideal gases are limited to 1.0 < γPv < 1.6, depending on the
composition of the gas molecules. Values higher than γPv > 1.6 can be obtained under
a real gas analysis. Figure 6.1 demonstrates some interesting features of the above
equations. The trend is observed that the nondimensional form of the isentropic work
increases with γPv, to the limit where the work W becomes linear in the compression
ratio r as the exponent (γPv − 1)/γPv → 1 for increasing values of γPv. This limit
corresponds to the compression of liquids for which γPv becomes large. In fact, Eq.
(6.4) can be shown to reduce to the familiar pump work equation for liquid states [53]

Wpump = v1 (P2 − P1) . (6.6)

From these considerations, one can conclude that the isentropic work equations Eqs.
(6.4) and (6.5) are generally applicable to gases and fluids alike, of which the ideal gas
form and the pump equations are two limiting cases. This notation is supported by
observations made in the development of supercritical carbon dioxide (sCO2) compres-
sors, which are reported to exhibit “pump-like” behavior [54–57] (see App. B). This
observation can be explained by looking at Eq. (6.4) as the exponent γPv has a local
maximum at the critical point, although not quite of the order of magnitude of liquids.

Looking at the nondimensionalized form of Figure 6.1, one might wonder what the
benefits are of operating compressors in the critical region as the nondimensionalized
specific work increases with γPv. Although this is certainly the case in the nondi-
mensional sense, this effect is essentially mitigated by the term Pv, which is far more
dominant in determining the order of magnitude of the isentropic work.

As Pv = ZRT , it can be reasoned that the isentropic work relates more or less
proportionally to temperature, which is particularly true for turbines operating at high
temperatures. For compressors and pumps, it is the density which dominates the work
requirement. Due to the inverse relation between specific volume and density, the isen-
tropic compression work of a pump is much lower than that of a compressor operating
between the same initial pressure and the same compression ratio, owing to the high
density of the fluid. The same holds true for compressors operating in the dense gas
regime which require less work input than traditional compressors due to the increased
gas density, giving rise to the interest in supercritical Brayton cycles [8, 9, 16].
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Figure 6.1: Isentropic compression work for several values of γPv as a function of compression
ratio r. Values for γPv are limited to 1 < γPv ≤ 1.6 for an ideal gas, values larger than
γPv > 1.6 can be obtained under real gas analysis.
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SEVEN

Real Entropy Changes
and Carnot’s Theorem

The entropy change of non-ideal was briefly discussed in Chapter 2 used in developing
the isentropic functions Eqs. (1.27–1.29) for the isentropic gas model. In this final
chapter of Part II, we will briefly review the entropy change of real gases based on the
specific heat relations developed in the beginning of this part. Having demonstrated that
the ideal isentropic relations are in fact a subset of the generalized isentropic relations
in Chapter 1, the entropy change of ideal gases can likewise be demonstrated to be a
specific case of the generalized form. Afterwards, the entropy change of real gases will
be used to demonstrate Carnot’s theorem – a prerequisite for validity of the model.

The TdS-equations are obtained from rearranging the First Law and Second Law
in terms of entropy:

Tds = du+ pdv, (7.1a)

Tds = dh− vdP. (7.1b)

Under the assumption of constant values of the specific heats, Eq. (7.1a) and Eq. (7.1b)
for ideal gases reduces to a very simple mathematical from:

s2 − s1 = cv ln
T2

T1
+R ln

P2

P1
, (7.2a)

s2 − s1 = cp ln
T2

T1
−R ln

P2

P1
. (7.2b)

Similarly to the ideal gas model, the isentropic exponents γPv, γTv, and γPT can be
assumed to have locally constant values whose extend of validity is determined by its
place in the thermodynamic domain. Under this assumption, the entropy relations used
in developing the isentropic functions in Chapter 2, Eq. (2.12) and Eq. (2.18) can be
expressed as:

s2 − s1 = cv ln
T2

T1
+ cv (γTv − 1) ln

v2
v1
, (7.3a)

s2 − s1 = cp ln
T2

T1
− cp

γPT − 1

γPT
ln
P2

P1
. (7.3b)
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The entropy change of an ideal gas can be reasoned to be a specific case of the above
relations, as the right-hand side term can be shown to reduce to the universal gas
constant in the ideal limit:

cv(γTv − 1) = R, and cp
γPT

γPT − 1
= R. (ideal gas) (7.4)

This feature is demonstrated even more explicitly by introducing the specific heat
relations developed in Chapter 4. The entropy changes according to relations Eq. (7.1)
and Eq. (7.5) are equivalent, although Eq. (7.3) might be of a more usable from.
One could also have obtained Eq. (7.5) by introducing the compressibility relation
Pv = ZRT in the derivation of the entropy change in the ideal gas case

s2 − s1 = cv ln
T2

T1
+R

[
Z + T

(
∂Z

∂T

)
v

]
ln
v2
v1
, (7.5a)

s2 − s1 = cp ln
T2

T1
−R

[
Z + T

(
∂Z

∂T

)
P

]
ln
P2

P1
. (7.5b)

7.1 Carnot’s Theorem Reviewed

The Carnot heat engine was conceived as a theoretical framework to present the Carnot
corollaries, stating that the efficiency of any reversible heat engine depends only on the
temperature of the hot and cold reservoirs between which the heat engine communicates.
The theorem developed by Carnot eventually lead to the development of the concept
of entropy, therefore presents itself as a natural case to conclude our investigation of
entropy changes of real gases. The TS-diagram of the Carnot process is presented in
Figure 7.1. Carnot’s theorem is centred around the maximum thermal efficiency, which,
for any reversible heat engine is give by

η = 1− Tc
Th
. (7.6)

The thermal efficiency of a reversible heat engine is solely a function of the temperatures
of the thermal reservoirs. This should of course be true regardless of the behavior of the
working fluid. We will assume an idealized cycle where the isentropic exponents γPv,
γTv and γPT are constant throughout the cycle. Applying the First Law to the system
boundaries of the Carnot heat engine, the thermal efficiency can be expressed as

η = 1− Qc
Qh

, (7.7)

where the heat flow across the system boundary is equal to the change in entropy at
constant temperature

dQ = Tds. (7.8)
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Figure 7.1: Carnot Heat Engine

Process 1-2: Reversible adiabatic compression

Process 2-3: Isothermal heat addition at Th

Process 3-4: Reversible adiabatic expansion

Process 4-1: Isothermal heat rejection at Tc

The change in enthalpy at constant temperature may be evaluated using either Eq.
(7.3a) or Eq. (7.3b). Elimination of ds in Eq. (7.8), the Carnot efficiency can be
expressed as

η = 1−
cvTc (γTv − 1) ln

v1
v4

cvTh (γTv − 1) ln
v2
v3

. (7.9)

Under the assumption of constant values for the isochoric specific heat capacity cv and
the isentropic exponent γTv, the efficiency of the Carnot cycle becomes

η = 1−
Tc ln

v1
v4

Th ln
v2
v3

. (7.10)

Using the isentropic temperature-volume relation, Eq. (1.28), the specific volumes in
each state can be related to each other. It follows from here that in the volumetric ratio
during the isothermal heat addition an rejection phases are equal

v4
v3

=
v1
v2
, or

v1
v4

=
v2
v3
. (7.11)

Hence, the thermal efficiency of a real gas Carnot cycle reduces to:

η = 1− Tc
Th
. (7.12)
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In Part III of this work, the generalized isentropic relations are used to describe
non-ideal compressible gas flows under the assumption of locally constant values of the
isentropic exponents. Starting with isentropic flows in Chapter 8, fundamental concepts
in gas dynamics such as stagnation properties and choked flow conditions will be de-
rived for real compressible gas flows for implementation in non-ideal compressible fluid
dynamics (NICFD) codes. Moreover, the isentropic flow relations will retain their fa-
miliar form by our choice to adhere to the ideal gas notation of the isentropic relations
in Chapter 1. The departure from ideal behavior will solely be determined by the value
of the real exponents γPv, γTv, and γPT in the equations. In chapters 9 and 10, we will
depart from isentropicity with an investigation of discontinuities in non-ideal gas flows.

The original authors behind the real isentropic exponents pursued a similar goal
to derive gas dynamic relations for non-ideal compressible flows [31, 32, 58], though
their investigations were more based on empiricism rather than analytical descriptions.
More recently, Baltadijev also engaged in deriving relations for real gas flows, using an
alternative notation [35, 36]. Nonetheless, his insights remain relevant for our present
discussion.
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EIGHT

One-Dimensional Real Isentropic Flow Relations

Classical compressible flow problems like steady constant cross-section duct flows, and
accelerated nozzle and diffusers flows, can be approximately described as isentropic
flows, which we are now able to review for real substances from the perspective of the
generalized isentropic gas model. Starting with the fundamental speed of sound relation
for real gases, this chapter will progressively expand the analytical description of real
isentropic flows following with the derivation of real stagnation properties, and finally
work towards critical conditions for real gas flows.

Section 8.1 on the speed of sound will be based on the original derivation by Koure-
menos et al. [32, 58]. Although they did write on empirical stagnation properties, a
formal derivation for analytical isentropic flow relations will be provided in this work.
The stagnation properties of a real isentropic flow will be derived in section 8.2, based
on the work of Baltadjiev which he derived in an alternative form [35, 36]. The last
two sections will provide new insights on the characteristic speeds and critical flow
conditions of real gas flows.

8.1 Speed of Sound in Real Gases

The speed of propagation of a sound wave in a non-ideal compressible gas flow is derived
from the same fundamental mass and momentum conservation equations applied at the
wavefront as for ideal gases, see Figure 8.1.

P
T
ρ

P + dP
T + dT
ρ + dρ

u = 0

c

u + du

Figure 8.1: Propagation of sound through a substance [59]
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conservation of mass

conservation of momentum

ρc = (ρ+ dρ)(c− du),

du = c
dρ

ρ
,

P + ρcc = (P + dP ) + ρc(c− du),

dP = ρc du.

Where the pressure disturbance may be assumed to be small, the second-order term
dρdu appearing in the conservation equation can be neglected. The simplified mass
conservation shows that du > 0 if dρ is positive, implying that the fluid behind the
passing wavefront moves in the direction of the wave as shown in Figure 8.1. Eliminating
du in the mass and momentum conservation equations yields the fundamental equation
for the speed of sound in a gas [50, 59, 60] expressed as

c2 =
dP

dρ
. (8.1)

The question remains at which constant property the derivative dP/dρ is to be
evaluated. Pressure disturbances in the fluid are observed to cause small changes in
temperature due to the compression and expansion effect of the passing disturbance
[59]. This process is shown to behave approximately isentropic as the gas particles
undergo near reversible and adiabatic compression and expansion. In fact, the entropy
production across a sound wave can be demonstrated to be proportional to pressure
according to ds ∝ dP 3 [59]. Hence, the assumption of an isentropic sound wave is,
therefore, reasonable for small pressure disturbances. Hence, the propagation velocity
of a pressure disturbance in a medium becomes

c2 = −v2
(
∂P

∂v

)
s

. (8.2)

The partial derivative (∂P/∂v)s is simply the derivative of the pressure-volume
isentrope Eq. (1.27). The speed of sound in a real compressible gas becomes [31,
32]

c2 = γPvPv, or c2 = γPvZRT. speed of sound(8.3)

And the Mach number of real gasses is expressed as

M =
u√

γPvPv
, or M =

u√
γPvZRT

. Mach number(8.4)

Due to the choice of notation, the speed of sound in Eq. (8.3) retains its familiar
ideal gas from, where any real gas effects are incorporated into the term γPv. Eq. (8.3)
is, therefore, a general definition for the speed of sound in any single phase fluid as the
definition of the real exponent γPv is exact. This feature will be explicitly demonstrated
in Chapter 12 where Eq. (8.3) is compared to the speed of sound of a Van der Waals gas
in solving the Riemann problem. For now, we can already reason that Eq. (8.3) reduces
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to the ideal notation in the ideal gas case, for which γPv simply reduces to the ratio
of the specific heats. Moreover, as mentioned in Chapter 5, γPv reduces the the liquid
bulk modulus as cp ≈ cv. In this case Eq. (8.3) takes the form of the Newton-Laplace
equation for the speed of sound in liquids [50].

8.2 Real Stagnation Properties

Having established the analytical expression for the speed of sound in real gasses, the
aim of this section is to derive dynamic properties of a steady adiabatic one-dimensional
flow. Consider the constant cross-section stream tube in Figure 8.2. No matter is able
to pass through the stream surface S, nor is there any exchange of heat or work across
the stream tube surface by the requirement of the adiabatic condition.

P2

h2

ρ2

u2

S

P1

h1

ρ1

u1

Figure 8.2: Conservation equations along a constant cross-section adiabatic stream tube.

The mass, momentum, and energy conservation equations in integral form can be ex-
pressed as:

conservation of mass

conservation of momentum

conservation of energy

u1ρ1 = u2ρ2,

P1 + ρ1u1
2 = P2 + ρ2u2

2,

h1 +
u2
1

2
= h2 +

u2
2

2
.

The concept of a stagnation state, or the total flow condition, provides a convenient
reference state for a fluid in motion. The definition of the stagnation state of a fluid is
the final state a fluid would attain if it was isentropically decelerated from the initial
velocity u to rest. From this definition, it follows that the total enthalpy is constant
throughout the isentropic flow field in absence of heat or work terms. The total enthalpy
is defined as

h0 = h1 +
u2
1

2
= h2 +

u2
2

2
= const.

stagnation
enthalpy (8.5)
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In the traditional derivation of the stagnation state for ideal gases, one would proceed
by relating the total temperature to the total enthalpy by the isobaric heat capacity cp
according to

dh = cpdT. (8.6)

h

s

h0

P0

1

0

h1

P1

Figure 8.3: Graphical interpreta-
tion of the stagnation enthalpy be-
tween static and dynamic states.

Although the stagnation temperature will most
certainly be constant for an isentropic flow, as would
all stagnation properties, it is no longer possible to
simply relate the stagnation temperature to the to-
tal enthalpy by the isobaric heat capacity Eq. (8.6).
Another approach must be sought in order to derive
stagnation properties for real gasses. Here we will di-
verge from the ideal derivation, resorting to the ap-
proach taken by Baltadjiev [35, 36].

Figure 8.3 provides a graphical definition of the
stagnation enthalpy. The difference in energy be-
tween state 1 and state 0 may be thought of in two
ways, either it being the difference in kinetic energy
between the dynamic state 1 and the static state 0, or
the isentropic compression work between two static
states 1 and 2f. The former interpretation can be
expressed as

∆h = h0 − h =
u2

2
. (8.7)

Elimination of the velocity u by the definition of the Mach number Eq. (8.4) the kinetic
energy relation can be written as

∆h =
M2

2
γPvPv. (8.8)

Alternatively, the enthalpy difference between states 1 and 0 in Figure 8.3 can be
interpreted as the isentropic compression work between P1 to P0. We recall our result
of Eq. (6.4) obtained in Chapter 6, repeated here for convenience

∆h = v0P0
γPv

γPv − 1

(P0

P

) γPv−1
γPv

− 1

 . (8.9)

Finally, as the two interpretation must yield the same energy difference between
states 1 and 0, the stagnation pressure ratio for real gasses can be derived by equating
the expressions Eqs. (8.8) and (8.9) for ∆h.

P0

P
=

[
1 +

γPv − 1

2
M2

] γPv
γPv−1

.
stagnation
pressure(8.10)
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As γPv reduces to the ratio of the specific heats in the ideal gas case, Eq. (8.10)
is equivalent to its ideal gas counterpart. From the interpretation of an isentropic
compression process between pressures P and P0, other stagnation properties of real
gasses can now be derived using the real isentropic relations of Chapter 1. Here the
assumption of locally constant values for the isentropic exponents between isentropic
states is introduced. As the kinetic energy of the flow is usually much smaller than the
static enthalpy of the flow – and therefore the isentropic state change is small – the
assumption of constant exponents is justified (see App. B).

The stagnation temperature can be related to the stagnation pressure using the
isentropic relation as a function of temperature and pressure, Eq. (1.29)

T0

T
=

(
P0

P

) γPT−1
γPT

, (8.11a)

=

[
1 +

γPv − 1

2
M2

] γPv
γPv−1

γPT−1
γPT

. (8.11b)

Using the relation between the isentropic exponents Eq. (1.34), the exponent can be
rewritten as:

T0

T
=

[
1 +

γPv − 1

2
M2

] γTv−1
γPv−1

.
stagnation

temperature (8.12)

Most notably about the stagnation temperature ratio is the addition of an exponent
in the expression, whereas the ideal gas notation has none. Though, the reader is
assured that as exponents γTv = γPv = γ in the ideal case, the stagnation temperature
relation is also equivalent to its ideal gas counterpart.

Likewise, the stagnation density can be expressed in terms of the stagnation pressure
using Eq. (1.27)

ρ0
ρ

=

(
P0

P

) 1
γPv

, (8.13)

ρ0
ρ

=

[
1 +

γPv − 1

2
M2

] 1
γPv−1

.
stagnation

density (8.14)

Again, note that γPv is equal to γ for ideal gasses reducing the formulation of the
stagnation density to the ideal gas formulation.

In order to close the P -v-T relationship for real gasses, the stagnation compressibility
may also be defined in terms of the other stagnation properties

Z0

Z
=
P0

P

ρ

ρ0

T

T0
. (8.15)
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Substitution of the stagnation property ratios, the stagnation compressibility can be
expressed as

Z0

Z
=

[
1 +

γPv − 1

2
M2

] γPv−γTv
γPv−1

.
stagnation
compressibility(8.16)

In the ideal case γPv = γTv for which the stagnation compressibility ratio reduces to
Z0/Z = 1.

The inverse of the stagnation pressure ratio Eq. (8.10), stagnation density ratio
Eq. (8.14), stagnation speed of sound Eq. (8.19) and critical area ratio Eq. (8.34) are
plotted against the Mach number in Figure 8.4 for a range of values of the isentropic
exponent γPv. As was reasoned in Chapter 3, values for γPv of polytropic ideal gas are
limited between 1 and 1.6 depending on the molecular structure. Higher values for the
isentropic exponent may be obtained for real gases as the fluid states moves towards
the critical point.

An important feature demonstrated in Figure 8.4 is the reduced choked flow margin
implied by the critical area ratio A∗/A for supersonic Mach numbers as γPv increases.
The critical area ratio A∗/A, which will be formally derived in section 8.4, suggests
that real gas flows with exceedingly reduced compressibility have a greater tendency
to become choked. This notion agrees with observations made in the operation and
design of state-of-art ORC turbomachinery, where low values of the speed of sound and
volumetric expansion cause the flow to become supersonic at modest pressure ratios
[10, 25]. The dominant need of reducing the number of stages leads to acceptance of
an efficiency penalty induced by loss mechanisms caused by strong shock waves in the
nozzle and blade outlet regions [10, 21, 25, 61]. The occurrence of shock waves may
therefore be explained by the combination of a reduced choking margin implied by the
area ratio A∗/A and the unusual converging-diverging nozzle-blade configurations in
ORC turbines [25, 61]. The reduced choking margin also implies a narrower operating
envelope for turbomachinery dealing with non-ideal compressible gas flows [35, 36].

For the reason as why the choking margin is reduced, Figure 8.4 also hints at a
possible explanation. The stagnation density ratio ρ/ρ0 also increased with increasing
values of the exponent γPv, indicating that reduced compressibility in the region where
high values of γPv generally arise is the reason behind the reduced choking margin.
As the density of the gas tends to that of a liquid and the compressibility of the flow
decreases, ever smaller area ratios are required for the flow to become choked, in the
limit where the area ratio is constant for an incompressible choked flow.

8.3 Real Characteristic Velocities

The Mach number defined in Eq. (8.4) may sometimes not be sufficient to describe the
flow condition, as the Mach number is not directly proportional to the flow velocity
[60]. The sound velocity itself is a variable that depends on the local flow state. This
has lead to the development of several characteristic flow speeds that can be used to
represent the overall properties of the flow.
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Figure 8.4: Stagnation property ratios Eqs. (8.10), (8.14), (8.19), and critical area ratio Eq.
(8.34) for several values of γPv . For ideal gases, the value of γPv is limited to 1 < γPv ≤ 1.6.
Higher values may be encountered under a real gas analysis.
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The stagnation speed of sound corresponding to the stagnation state of the fluid is
defined as

c0
2 = γPv

P0

ρ0
. (8.17)

The right-hand side of Eq. (8.17) can be expanded as

c0
2 = γPv

P

ρ

P0/P

ρ0/ρ
= c2

P0/P

ρ0/ρ
. (8.18)

Substitution of the stagnation property ratios P0/P and ρ0/ρ, Eqs. (8.10) and (8.14),
the familiar expression is obtained for the stagnation speed of sound:

c0
2

c2
= 1 +

γPv − 1

2
M2.

stagnation
speed of sound(8.19)

In the process of deriving the stagnation properties in section 8.2, we have essentially
transformed the isentropic relations in terms of the speed of sound. The reappearing
bracketed term in the definition of the stagnation property ratios may be recognized as
the dimensionless velocity ratio (c0/c)

2. This equivalence is readily demonstrated by
substitution of the definition of the speed of sound in any of the isentropic relations:

P0

P
=

(
c0

2

c2

) γPv
γPv−1

, (8.20a)

T0

T
=

(
c0

2

c2

) γTv−1
γPv−1

, (8.20b)

ρ0
ρ

=

(
c0

2

c2

) 1
γPv−1

, (8.20c)

Z0

Z
=

(
c0

2

c2

) γPv−γTv
γPv−1

. (8.20d)

The critical speed of sound ratio is readily derived from Eq. (8.19) as the critical speed
of sound c = c∗ for M = 1 [60]:

c0
2

c∗2
=
γPv + 1

2
.

critical speed
of sound(8.21)

Subsequently, the critical Mach number M∗ can be derived using the critical speed
of sound ratio. The critical Mach number provides a convenient dimensionless speed as
it is directly related to the flow velocity itself [60]. The critical Mach number is defined
as

M∗
2

=
( u
c∗

)2
. (8.22)
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Using the velocity relation u = Mc, Eq. (8.22) can be expanded as

M∗
2

= M2
( c
c∗

)2
. (8.23)

The speed of sound can be expressed in terms of the stagnation speed of sound by
elimination of the speed of sound in Eq. (8.19), yielding

M∗
2

=
M2

1 +
γPv − 1

2
M2

( c0
c∗

)2
. (8.24)

The critical Mach number can be directly related to the Mach number by substitution
of Eq. (8.21):

M∗
2

=
(γPv + 1)M2

2 + (γPv − 1)M2
.

critical Mach
number ratio (8.25)

Inversely, the Mach number can be expressed explicitly in terms of the critical Mach
number:

M2 =

2

γPv + 1
M∗2

1− γPv − 1

γPv + 1
M∗2

.
critical Mach
number ratio (8.26)

From Eq. (8.25) the following special cases can be identified relating the Mach number
and critical Mach number for real gasses [60]:

M = 0 and M∗ = 0,

M = 1 and M∗ = 1,

M =∞ and M∗ =
γPv − 1

γPv + 1
.

(8.27)

Lastly, using the previous relations, the stagnation speed of sound can be expressed
in terms of the velocity like

u

c0
=

u

c∗
c∗

c0
, (8.28)

where u/c∗ = M∗. Elimination of the ratio of the critical and stagnation speed of sound
by Eq. (8.21) yields:

u

c0
= M∗

[
2

γPv + 1

] 1
2

.
stagnation

sound velocity (8.29)

Alternatively, the ratio u/c0 may be expressed in terms of the Mach number by substi-
tution of Eq. (8.25) [60]:
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u

c0
=

 M2

1 +
γPv − 1

2
M2


1
2

.
stagnation
sound velocity(8.30)

The alternative representations for the fluid velocity presented in this section are solely
related to the real isentropic exponent γPv and are equivalent to their ideal gas formu-
lations for which γPv reduces to the ratio of the specific heats.

8.4 Real Critical Properties

We conclude this chapter on real gas isentropic gas flows with the discussion of choked
conditions. Knowing the physical conditions under which choking of the flow occurs is
relevant to many practical engineering applications like the operation of turbomachinery
and the design of flow devices such as gauges and valves [62] (see App. B).

The critical property ratios P ∗/P0, T ∗/T0, ρ∗/ρ0, and Z∗/Z0 naturally follow from
the different definitions of the stagnation properties by imposing critical flow conditions,
and can be expressed as

P ∗

P0
=

[
2

γPv + 1

] γPv
γPv−1

, (8.31a)

T ∗

T0
=

[
2

γPv + 1

] γTv−1
γPv−1

, (8.31b)
critical

property ratios
ρ∗

ρ0
=

[
2

γPv + 1

] 1
γPv−1

, (8.31c)

Z∗

Z0
=

[
2

γPv + 1

] γPv−γTv
γPv−1

. (8.31d)

Using the critical property ratios, the critical area and mass ratio can be derived from
the mass conservation equation. The critical area ratio can be written as

A

A∗
=
ρ∗

ρ

c∗

u
=
ρ∗

ρ0

ρ0
ρ

c∗

c

c

u
. (8.32)

The term c∗/c is eliminated by substitution of the definition of the speed of sound
Eq. (8.3). Under the assumption of a local constant value of the isentropic exponents,
the term γPv drops out of the equation. Gathering the remaining terms, the critical
area ratio A/A∗ can be expressed as

A

A∗
=

[
ρ∗

ρ0

ρ0
ρ

P ∗

P0

P0

P

] 1
2 1

M
. (8.33)
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Substitution of the stagnation property ratios and the critical ratios, the following
relation is found for the critical area ratio

A

A∗
=

1

M

[
2 + (γPv − 1)M2

γPv + 1

] γPv+1

2(γPv−1)

.
critical

area ratio (8.34)

The formulation of the critical area ratio can be shown to be equivalent to the ideal gas
formulation for which γPv reduces to the ratio of specific heats.

The critical mass flow ratio is derived in a similar way as the critical area ratio from
mass continuity. Starting with the definition of the mass flow rate of a one-dimensional
flow, the mass flow rate can be expressed in terms of the flow area and the Mach number

ṁ = ρAu = ρ0
ρ

ρ0
AMc. (8.35)

Using the isentropic pressure-volume relation and the speed of sound yields

ṁ = ρ0AM

√
γPv

P

ρ

(
P

P0

) 1
γPv

, (8.36a)

= AM

√
γPvρ0P0

P

P0

ρ0
ρ

(
P

P0

) 1
γPv

, (8.36b)

where ρ0/ρ = P/P
−1/γPv
0 . Bringing all terms in P/P0 into the same exponent, Eq.

(8.36b) can be written as

ṁ = AM
√
γPvρ0P0

(
P

P0

) 1
2γPv

+1

. (8.37)

Finally, by substitution of the stagnation pressure Eq. (8.9) and setting M = 1, we
arrive at:

ṁ∗ = A∗
√
γPvρ0P0

(
2

γPv + 1

) γPv+1

2(γPv−1)
.

critical mass
flow (8.38)
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NINE

Real Shock Waves

In the previous chapter, the classical isentropic flow description of ideal gases was ex-
tended to include real gas behavior. Shock waves present themselves as the logical
step next to continue our discussion on real compressible gas dynamics. Shock waves
are flow discontinuities usually accompanied by abrupt state changes, encountered in a
wide variety of flow problems like detonation waves, supersonic flows past solid bodies
and supersonic duct flows. Most significantly, the destruction of pressure across shock
waves is an important loss mechanism in turbomachinery operation, especially in ORC
turbines owing to high expansion across turbine stages [25, 61]. The prevention of shock
wave occurrence, therefore, is an important aspect of turbomachinery design.

In this chapter we will attempt to relate thermodynamic properties across normal
shock waves in real gases. It will appear that the mechanical properties of pressure
and density may be readily related across the shock wave using the Rankine-Hugoniot
conditions. Thermal properties however must be related by the introduction of an
equation of state. But first, we will turn towards Prandtl-Meyer expansion waves. A
wave phenomena which, due to its isentropic nature, may be described analytically
using the isentropic relations for real gases introduced in the first part of this work.

9.1 Prandtl-Meyer Expansion Fans

Unlike irreversible normal or oblique shock waves, Prandtl-Meyer expansion waves can
be described analytically as the flow may be treated as approximately isentropic [60,
63]. The analysis of expansion waves in real gas flows is therefore completely analogous
to the ideal case starting from the notion that the stagnation properties are constant
throughout the flow field due the assumption of an isentropic flow.

As the flow bends around corner O in Figure 9.1, the gas is to accelerate downwards if
the downstream flow is to remain attached to the slope OB. The downward acceleration
can only be achieved if the gas expands around the corner, therefore P2 < P1. An
expansion of the fluid across a flow discontinuity would be accompanied by a decrease
in its entropy, a requirement that is in violation with the Second Law. Consequently, the
discontinuity is decomposed into a continuous field of weak Mach waves, across which
the infinitesimal property changes of the flow are approximately isentropic [59, 60].
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Figure 9.1: Prandtl-Meyer expansion fan

The Prandtl-Meyer analysis is based on the following assumptions [60]:

i. Steady two-dimensional isentropic flow.

ii. The streamlines in the pre-shock condition are parallel to AO, and the flow prop-
erties are homogeneous.

iii. The streamlines in the post-shock condition are parallel to OB and the flow prop-
erties are homogeneous.

iv. The flow properties are constant along each Mach line originating from the corner
O.

v. The isentropic exponents are constant across the expansion fan.

For sake of completeness, the complete derivation of the Prandtl-Meyer flow will be
presented here, starting with the governing differential equation for the infinitesimal
deflection dδ across a single Mach line. From the assumption of homogeneous flow prop-
erties in pre-shock and post-shock conditions, it follows that there can be no tangential
pressure gradient along the Mach line. Hence, the tangential velocity component ut in
Figure 9.2 is constant. The tangential velocity component in pre-shock and post-shock
condition can be written as

ut = u cosα = (u+ du) cos(α− dδ), (9.1)

where the trigonometric term in Eq. (9.1) can expanded as

cos(α− dδ) = cosα cos dδ + sinα sin dδ = cosα+ dδ sinα. (9.2)

For infinitesimal deflection angles dδ, the identities cos dδ ≈ 1 and sin dδ ≈ dδ. Com-
bining equations Eqs. (9.1) and (9.2), and neglecting higer-order terms yields

du

u
= − tanαdδ. (9.3)
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Figure 9.2: Governing equations across a single Mach line with infinitesimal change in flow
direction δ

The identity tanα can be demonstrated to be equal to 1/
√
M2 − 1 from Mach-cone

geometry [60]. Hence, Eq. (9.3) can be expressed as

dδ = −
√
M2 − 1

du

u
. (9.4)

Eq. (9.4) is known as the governing differential equation for a Prandtl-Meyer expansion
wave, which relates the infinitesimal deflection angle across a single Mach line of the
expansion wave to the flow velocity.

From the notion of an isentropic flow, it follows that the stagnation properties are
constant throughout the flow field. As such, the change in dynamic properties across
the expansion fan are readily related by equating the expressions for the stagnation
properties from section 8.2 between the pre- and post shock condition in Figure 9.1,
summarized as

P2

P1
=

[
1 + γPv−1

2
M1

2

1 + γPv−1
2

M2
2

] γPv
γPv−1

, (9.5a)

ρ2
ρ1

=

[
1 + γPv−1

2
M1

2

1 + γPv−1
2

M2
2

] 1
γPv−1

, (9.5b)
expansion fan

property ratios
T2

T1
=

[
1 + γPv−1

2
M1

2

1 + γPv−1
2

M2
2

] γTv−1
γPv−1

, (9.5c)

Z2

Z1
=

[
1 + γPv−1

2
M1

2

1 + γPv−1
2

M2
2

] γTv−γPv
γPv−1

. (9.5d)
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The real isentropic exponents γPv, γTv and γPT are assumed constant between the
dynamic and static states. Using the property relations across the shock wave above
and the governing differential for the Prandtl-Meyer expansion wave, it is possible to
relate the terminal velocities across the shock wave from the notion that the stagnation
speed of sound is constant everywhere written as

c01
2 = c02

2. (9.6)

The velocity is related to the stagnation speed of sound as a function of the Mach
number by relation Eq. (8.30) in section 8.3. Substitution yields

u1
2

[
1 + γPv−1

2
M1

2

M1
2

]
= u2

2

[
1 + γPv−1

2
M2

2

M2
2

]
, (9.7)

hence the terminal velocity ratio becomes

u2
2

u1
2

=
M2

2

M1
2

[
1 + γPv−1

2
M1

2

1 + γPv−1
2

M2
2

]
.

terminal
velocity ratio (9.8)

Alternatively, the velocities across the expansion fan can be related to the deflection
angle using the differential form instead of the integral form of Eq. (9.8). Starting from
the relation between the velocity and stagnation acoustic speed, Eq. (8.29), the velocity
can be expressed as

u2 =
c0

2M2

1 + γPv−1
2

M2
. (9.9)

Since c0 is constant, the velocity can be related explicitly as a function of the Mach
number of the flow by logarithmic differentiation of Eq. (9.9), yielding

du

u
=

1

1 + γPv−1
2

M2

dM

M
. (9.10)

Replacing the differential du/u by the governing differential of a Prandtl-Meyer fan Eq.
9.4, the deflection angle can be related to the Mach number

dδ = −
√
M2 − 1

1 + γPv−1
2

M2

dM

M
. (9.11)

Integration of Eq. (9.11) yields [60]

δ = −
√
γPv + 1

γPv − 1
tan−1

√
γPv − 1

γPv + 1
(M2 − 1) + tan−1

√
M2 − 1 + C. (9.12)

The integration constant C is uniquely determined by the initial flow Mach number M1

and the deflection angle δ1. In the special case where M1 is unity and the initial flow
deflection angle δ1 is zero, the integration constant is zero. For this case, the symbol δ
is replaced by the symbol ν for the Prandtl-Meyer function [60], commonly expressed
as
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ν = −
√
γPv + 1

γPv − 1
tan−1

√
γPv − 1

γPv + 1
(M2 − 1) + tan−1

√
M2 − 1.

Prandtl-Meyer
function(9.13)

The function of ν is plotted against a range of Mach numbers in Figure 9.3 for
some values of the real isentropic exponent γPv. The general trend is observed that
the Prandtl-Meyer angle ν decreases for increasing value of γPv. Figure 9.3 actually
shows two general effects of the real gas exponent γPv relating to molecular size of the
substance and compressibility.

Firstly, as γPv reduces to the ratio of the specific heats in the ideal gas limit, it was
reasoned in Chapter 3 that the value of γPv has a theoretical maximum of 1.6 for a
monatomic gas and tends to one for increasingly larger molecules. According to Figure
9.3, larger deflection angles may be anticipated for increasingly larger molecules within
the ideal gas domain.

Values for γPv exceeding the ideal theoretical ideal limit of 1.6 may be anticipated in
the dense gas region, as the density increases and the compressibility decreases. As the
downward acceleration of the fluid is driven by expansion of the fluid, the trend shows
that as γPv increases – and hence the compressibility decreases – smaller deflection
angles are encountered, tending to zero as γPv →∞ for liquids.
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Figure 9.3: Prandtl-Meyer angle as a function of the Mach number for several values of the the
real exponent γPv . For ideal gases, γPv is limited to values between 1 < γPv ≤ 1.6. Higher
values can be obtained for real gases.
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9.2 Normal Shock Waves

Finally, we will turn to the problem of the change of thermodynamic properties across
a normal shock wave. The normal shock waves represent flow discontinuities across
which an abrupt change of thermodynamic state takes place. Because of the instan-
taneous change of thermodynamic properties across a normal shock wave, this process
can no longer assumed to be isentropic. Kinetic energy is destroyed in the process lead-
ing to heating of the gas above the corresponding isentropic compression value, and,
consequently, the entropy in the post shock condition increases [60].

The analysis of real normal shock waves is confined to the same assumptions as for
an ideal gas:

i. The flow is assumed to be inviscid.

ii. The thickness of the flow structures that make up the wavefront is of the order of a
few micrometers [59, 63]. The flow area is therefore assumed constant throughout
the shock process, irrespective of the actual angle of the walls.

iii. The shock wave is perpendicular to the flow by definition.

iv. The flow process is adiabatic, and no external work or body forces are present.

v. The isentropic exponents are assumed constant across the shock interface.

Figure 9.4 illustrates a control volume enclosing a normal shock wave. As the ther-
modynamic properties vary approximately discontinuously across the shock wave, the
governing mass, momentum, and energy equations are presented in integral form.

As the mass and momentum conservation equations do not differentiate between
ideal and real gasses, the Rankine-Hugonoit condition for relating pressure and density
across normal shock waves remains nevertheless valid for real gas flows.

M1 M2

P1

ρ1

h1

P2

ρ2

h2

Figure 9.4: Change of thermodynamic state across a normal shock wave
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conservation of mass

conservation of momentum

conservation of energy

u1ρ1 = u2ρ2,

P1 + ρ1u1
2 = P2 + ρ2V2

2,

h1 +
u2
1

2
= h2 +

u2
2

2
.

By the definition of enthalpy, the energy equation may be rewritten in terms of the
change of internal energy across the normal shock wave, leading to the classical Rankine-
Hugoniot equation

e2 − e1 =
1

2
(p1 − p2) (v1 − v2) . (9.14)

Under the assumption that the upstream conditions are known, one is able to relate
the downstream enthalpy or internal energy to the pressure and density h2 = h2(P2, ρ2)
or e2 = e2(P2, ρ2) using an equation of state, such that the Rankine-Hugoniot equation
contains only thermodynamic quantities [58, 63].

Further rearranging the momentum equation, the pressure and density may be re-
lated explicitly across the shock wave as a function of the Mach number. The pressure
ratio across a normal shock wave may be derived from the momentum equation, ex-
pressed as

P1

(
1 +

ρ1
P1
u1

2

)
= P2

(
1 +

ρ2
P2
u2

2

)
. (9.15)

The velocity terms may be eliminated using the definition of the Mach number and the
speed of sound derived in the previous chapter

u = Mc = M

√
γPv

P

ρ
. (9.16)

Introducing Eq. (9.16) into the momentum equation, the pressure ratio across the
normal shock wave may be related explicitly in terms of the pre-shock and post-shock
Mach numbers [31, 58]:

P2

P1
=

1 + γPv1M1
2

1 + γPv2M2
2 .

normal shock
pressure ratio(9.17)

The isentropic exponent γPv between the two states will not be equal in the general
case. Depending on the strength of the shock wave and the thermodynamic region, the
isentropic exponent may be held constant across the shock wave. This approximation
holds for non-ideal gas flows whose thermodynamic state is far removed from the non-
linear behavior of thermodynamic properties in the vicinity of the critical point.

The density across the shock wave may be related similarly as was the pressure ratio.
The mass continuity equation may be expressed as:

ρ2
ρ1

=
M1

2P1

M2
2P2

. (9.18)
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Elimination of the pressure ratio Eq. (9.17), we find an explicit function of the density
ratio across the normal shock wave as a function of the Mach number.

ρ2
ρ1

=
M1

2

M2
2

[
1 + γPv2M2

2

1 + γPv1M1
2

]
.

normal shock
density ratio (9.19)

In case of a perfect gas, the Rankine-Hugoniot conditions, derived from the funda-
mental conservation equations, can be closed by the proportional relationship between
enthalpy and temperature by the isobaric specific heat capacity, thereby allowing to
express the post-shock Mach number M2 as an explicit function of M1. This is not the
general case for real gases however. Are there perhaps different means of closing this
problem?

A definitive answer to this question arises when taking the alternative approach of
decomposition of the shock wave process into a sequence of processes, as presented in
Figure 9.5. Instead of seeking to directly relate the pre-shock and post-shock conditions
1 and 2, we can instead define a series of thermodynamic processes whose net result is
a change from state 1 to state 2:

h

s

1

2

∆s

h0

0201

Figure 9.5: Decomposition of a shock wave process

i. Isentropic compression 1 −→ 01

ii. Isenthalpic expansion 01 −→ 02

iii. Isentropic expansion 02 −→ 2

Using the stagnation properties derived in the previous chapter, the decomposition
of the shock tube process reduces the problem to an isenthalpic expansion process. The
ratio of the speed of sound between the stagnation states 01 and 02 presents itself as a
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particularly useful quantity, as it forms a natural connection between mechanical and
thermal properties (

c02
c01

)2

=
Z02T02

Z01T01
=
P02ρ01
P01ρ02

. (9.20)

The stagnation pressure and density can be related by combining the stagnation prop-
erties and the Rankine-Hugoniot equations for pressure and density, summarized as

P02

P01
=

[
1 + γPvM1

2

1 + γPvM2
2

] [
1 + γPv−1

2
M2

2

1 + γPv−1
2

M1
2

] γPv
γPv−1

, (9.21a)

ρ02
ρ01

=
M1

2

M2
2

[
1 + γPvM2

2

1 + γPvM1
2

] [
1 + γPv−1

2
M2

2

1 + γPv−1
2

M1
2

] 1
γPv−1

. (9.21b)

It becomes apparent that the difficulty lies in explicitly relating the stagnation com-
pressibility factor ratio Z02/Z01 across the shock wave. This feat is also demonstrated
in Eq. (9.20), where the thermal property ratio Z02T02/Z01T01 is simply unity for a
perfect gas. This allows the post-shock condition to be related the upstream condition
under such condition by equating Eqs. (9.21a) and (9.21b).
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TEN

Fundamental Derivative
of Gas Dynamics

The preceding chapters covering this part on real gas dynamics sought to quantify non-
ideal compressible flow problems, whilst withholding from the qualification of real gas
behavior. In fact, one can conclude that the formulation and structure of the isentropic
flow relations presented in Chapter 8 – such as stagnation properties and choked flow
conditions – are a consequence of conservation equations rather than the ideal gas model
in their traditional derivation. The gas dynamic behavior of a substance in the one-
dimensional real isentropic flow relations is captured by the local values of the real
exponents γPv, γTv and γPT . Moreover, the value of the exponents in the isentropic
relations in Chapter 1 describe the local shape of the isentrope and how “ideal” or
“non-ideal” the shape isentrope is. Hence, the kind of gas dynamic behavior exhibited
by a substance may be attributed to the local shape of the isentropes, determined by
the values of the real isentropic exponents. The exponents, and therefore the shape of
the isentropes, are a function of the molecular structure and the thermodynamic region
in question as outlined in Chapter 3. In this chapter we will review the implications of
the real isentropic gas model on gas dynamic behavior.

This is a heuristic derivation of the thermodynamic quantity called the fundamental
derivative of gas dynamics Γ, whose value is known to govern the compressible behavior
of substances [37–41]. The fundamental derivative is defined as the change in the sound
velocity with pressure or density at constant entropy [37, 38], written as

Γ = 1− c

v

(
∂c

∂v

)
s

, or
fundamental

derivative Γ = 1 +
c

v

(
∂c

∂P

)
s

. (10.1)

Conditions related to the value of the fundamental derivative suggest the occurrence
of ideal gas behavior, and the departure from such behavior, of substances [37–39]. The
conditions related to the fundamental derivative are summarized in Table 10.1.

Table 10.1: Conditions related to the sign and value of the fundamental derivative Γ and the
behavior of compressible substances [39].

Γ > 1

0 < Γ < 1

Γ < 0

(
∂c

∂v

)
s

< 0

0 <

(
∂c

∂v

)
s

<
c

v(
∂c

∂v

)
s

>
c

v

classical ideal behavior

classical real behavior

non-classical behavior
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As the speed of sound itself is defined as the derivative of the pressure-volume
isentrope Eq. (8.2), the fundamental derivative is essentially the second derivative – or
curvature – of the isentrope in the P -v plane [37–40]

Γ =
v3

2c2

(
∂2P

∂v2

)
s

. (10.2)

From this definition of the fundamental derivative follows the connection with the
real isentropes introduced in Part I. The second derivative of the pressure-volume isen-
trope Eq. (1.27) using the the assumption of a local constant value of the isentropic
exponent, can be expressed as(

∂2P

∂v2

)
s

= γPv (γPv + 1)
P

v2
. (10.3)

It must be emphasized that Eq. (10.3) excludes the derivative of γPv with respect to
volume, due to the assumption of local constant values of the isentropic exponents.

Elimination of the second order derivative and the speed of sound in Eq. (10.2), the
fundamental derivative becomes

Γ =
γPv + 1

2
. (10.4)

One can easily verify that the perfect gas case Γ = (γ + 1)/2 is a solution of Eq.
(10.4), as the isentropic exponent γPv reduces to the ratio of the specific heats in the
ideal case. Furthermore, from Eq. (10.4), it can be reasoned that the existence of non-
classical behavior predicted by the fundamental derivative, can be attributed to the
chain rule of the derivative of γPv with respect to volume when treated as a variable, as
γPv cannot be negative. This feature has also been demonstrated by Thompson, who
incorporated the derivative of the adiabatic coefficient in the formulation of Γ for ideal
gases [38].

Moreover, as was stressed in Chapter 8, there is no reason why Eq. (10.4) should
be only applicable for gases. If γPv were to be evaluated for a liquid, using the Tait
equation of state for example [48, 49], the value of Γ can be calculated for liquids [38,
63].

Table 10.2: The fundamental derivative evaluated for two common equation of state, satisfying
two opposing limits, i.e. gas and liquid [63].

perfect gas (γ + 1)/2

tait liquid (K + 1)/2
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10.1 Fundamental Derivative and Isentropic Flows

In its relation to isentropic flows, the fundamental derivative governs is known to govern
the relation between change in Mach number with change in velocity [38, 63]

du

u
=

dM/M

1 + (Γ− 1)M2
. (10.5)

For Γ ≥ 1, the Mach number increases monotonically with velocity. This condition
is satisfied for most fluids, as (γ+1)/2 ≥ 1 for ideal gases [63], see Table 10.2. Yet, there
is no reason as to believe that Γ is greater than unity or even positive in the general
case [63]. These conditions are referred to as classical real behavior and non-classical
behavior in Table 10.1, respectively.

Let us further explore the implications of Eq. (10.5) for isentropic flows. Moreover,
the form taken on by the fundamental derivative in Eq. (10.4) hints at yet another
relation, namely that of the ratio between the stagnation speed of sound and critical
speed of sound (c0/c

∗)2 Eq. (8.21). To demonstrate this equivalence, we will first derive
Eq. (10.5) from the momentum equation of a one-dimensional inviscid flow, or Bernoulli
equation, where changes in elevation have been discarded

udu+ vdP = 0. (10.6)

The definition of the fundamental derivative Eq. (10.1) can be rearranged in the
following form [38]

vdP =
cdc

Γ− 1
. (10.7)

Substitution of the term vdP in Eq. (10.6), the one-dimensional momentum equation
for a frictionless flow can be expressed as

udu+
cdc

Γ− 1
= 0. (10.8)

Subsequent elimination of the sound velocity by c = u/M , the momentum equation
is expressed explicitly in terms of the flow velocity and the dimensionless quantities M
and Γ

udu = −

u

M
d
u

M
Γ− 1

. (10.9)

The derivative du/M in Eq. (10.9) can be expanded using the chain rule

d
u

M
=

1

M
du− u

M2
dM. (10.10)

Substitution of Eq. (10.10) into Eq. (10.9) yields the following relation between the
velocity and the Mach number [38]:
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du

u
=

1

1 + (Γ− 1)M2

dM

M
. (10.11)

Eq. (10.11) may be recognized as the relation between the flow velocity and Mach
number for Prandtl-Meyer expansion waves Eq. (9.10), obtained by logarithmic differ-
entiation. The relation between Γ and the characteristic speed (c0/c

∗)2 can be showed
by performing the inverse of this process

lnu = lnM − 1

2
ln(1 + (Γ− 1)M2) + lnC, (10.12)

where C is the constant of integration. The integration constant will be demonstrated
to be the stagnation speed of sound c0 for an isentropic flow. Combining terms yields

u2 =
C2M2

1 + (Γ− 1)M2
. (10.13)

The value of C can be determined by introducing a non-trivial combination of u
and M . It his case, we let u = c∗ for M = 1. Solving for the integration constant, the
relation between the fundamental derivative and the ratio (c0/c

∗)2 of Eq. (8.21) for a
real isentrope with constant exponent is demonstrated

C2 = c∗
2

Γ = c∗
2 γPv + 1

2
= c0

2. (10.14)

Hence, we have proven the relation between the fundamental derivative and the ratio
(c0/c

∗)2 for real isentropes assuming a local constant value of the exponent γPv:

Γ =
c0

2

c∗2
=
γPv + 1

2
. (10.15)

Alternatively, Eq. (10.13) can be expressed as:

u

c0
=

[
M2

1 + (Γ− 1)M2

] 1
2

. (10.16)

Eq. (10.16) is an alternative notation of the relation between the flow velocity and
the stagnation speed of sound Eq. (8.30) in Chapter 8. Furthermore, Eq. (10.16) can
be expressed as the ratio between the speed of sound and the stagnation speed of sound,
Eq. (8.19):

c0
2

c2
= 1 + (Γ− 1)M2. (10.17)

The stagnation properties and critical properties naturally follow from Eq. (10.17) for
a non-ideal isentropic compressible flow.
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Table 10.3: Non-ideal isentropic compressible flow properties expressed in terms of the funda-
mental derivative Γ under the assumption of a local constant value of the isentropic exponents.

Stagnation Properties

P0

P
=
[
1 + (Γ− 1)M2] γPv

γPv−1

T0

T
=
[
1 + (Γ− 1)M2] γTv−1

γPv−1

ρ0
ρ

=
[
1 + (Γ− 1)M2] 1

γPv−1

Z0

Z
=
[
1 + (Γ− 1)M2] γPv−γTv

γPv−1

Critical Properties

P0

P ∗
= Γ

γPv
γPv−1

T0

T ∗
= Γ

γTv−1
γPv−1

ρ0
ρ∗

= Γ
1

γPv−1

Z0

Z∗
= Γ

γPv−γTv
γPv−1
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PART IV

Numerical Simulation

of Real Gas Flows

11 Explicit Numerical Schemes 86
11.1 The Van der Waals Equation of State . . . . . . . . . . . . . . . . . . . 88
11.2 Soave-Redlich-Kwong Equation of State . . . . . . . . . . . . . . . . . . 89
11.3 Peng-Robinson Equation of State . . . . . . . . . . . . . . . . . . . . . . 89

12 The Riemann Problem 92

By condensing all unknowns that describe the isentropic behavior of substances into
the variables γPv, γTv and γPT in Part I, an implicit form has been obtained which
allowed for the evaluation of thermodynamic properties in Part II, and was used to
describe non-ideal isentropic compressible flows in Part III. In the final part of this work,
the real isentropic gas model will take on an explicit form by introducing equations of
states, look-up tables, or a thermodynamic library to evaluate their terms for application
of numerical simulations of non-ideal compressible flows.

Chapter 11 is written to serve as a reference for the numerical modeling of non-
ideal compressible fluid dynamics (NICFD). Several options for numerical schemes are
discussed for the evaluation of the isentropic exponents. Additionally, an overview is
provided of the Van der Waal, Soave-Redlich-Kwong, and Peng-Robinson equations of
states for code implementation. In Chapter 12, the Van der Waals scheme is selected
for the numerical simulation of a common shock tube problem for validation of the
generalized isentropic gas model presented in this work.
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ELEVEN

Explicit Numerical Schemes

In this chapter, the generalized isentropic gas model will be evaluated in a straightfor-
ward approach using equations of state explicit in pressure, volume and temperature.
The Van der Waals (VdW), Soave-Redlich-Kwong (SRK), and Peng-Robinson (PR)
equations of state will be treated in sections 11.1 through 11.3 to be used as a reference.

Where an equation of state is used explicit in pressure, volume, or temperature,
a modular approach can be pursued where thermodynamic models that exhibit this
property can be readily interchanged. The goal of such an approach is to fully resolve the
P -v-T behavior of a substance and its derivatives and then use thermodynamic relations
to obtain other properties rather than explicitly express thermodynamic quantities in
terms of the equation of state of choice.

In Chapter 3 the “polytropic gas” model was introduced for gases whose isochoric
specific heat capacity cv is assumed constant [43] and a function of its molecular struc-
ture [34, 42]. Although the polytropic gas model does lead to inaccuracies approaching
the critical point, their application is justifiable for qualitative studies, the initialization
of simulations where non-ideal flow effects are of concern, and where high computational
efficiency is required [26].

The polytropic gas model is no longer sufficient if a high degree of accuracy is de-
sired. The isentropic properties may then be evaluated using multiparameter equations
of state (MPEOS) like the Span-Wagner equation of state [64], or by use of thermody-
namic libraries [65, 66], in the latter case at the cost of reduced computational efficiency.
Alternatively, a look-up table (LuT) approach may be used as a compromise between
high computational-speed and high accuracy [30, 67]. In such a scheme, the isentropic
exponents may be pre-computed to speed up simulations. Other thermodynamic prop-
erties and stagnation properties can then be evaluated by the exact thermodynamic
definition summarized in Table 11.1.

A hybrid scheme is also conceivable. In such a scheme, the P -v-T behavior in the
simulation is captured by an equation of state of choice, and the true isochoric heat
capacity cv is provided in the form of a look-up table. The straightforward, yet sig-
nificant improvement over the polytropic gas model of such a scheme by including the
real change of the isochoric heat capacity could improve the accuracy the simulation
at a minimal increase in computational costs. Moreover, the isochoric heat capacity
makes for a readily tabulated property, as its relatively small variations require less
consideration of meshing of different thermodynamic regions with regard to interpola-
tion accuracy.
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Table 11.1: Relevant equations of application to CFD code

Specific Heats

cv =
f

2
R

cp = cv + T

(
∂v

∂T

)
T

(
∂P

∂T

)
T

Isentropic Exponents

γPv = − v
P

cp
cv

(
∂P

∂v

)
T

γTv = 1 +
v

cv

(
∂P

∂T

)
v

γPT =
1

1− P

cp

(
∂v

∂T

)
P

Speed of Sound

c =
√
γPvPv

Stagnation Properties

P0

P
=

[
1 +

γPv − 1

2
M2

] γPv
γPv−1

T0

T
=

[
1 +

γPv − 1

2
M2

] γTv−1
γPv−1

ρ0
ρ

=

[
1 +

γPv − 1

2
M2

] 1
γPv−1

Critical Mass Flux

M∗

A∗
=
√
γPvρ0P0

(
2

γPv + 1

) γPv+1
γPv−1
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11.1 The Van der Waals Equation of State

The Van der Waals equation of state was the first, simplest and best-known equation of
state to account for real gas effects [44]. Due to the statistical nature of thermodynamic
properties, the Van der Waals equation served as the earliest connection between the
macroscopic behavior of substances and the microscopic interaction of molecules. Al-
though lacking in accuracy, the two-parameter extension of the ideal gas law to include
real gas effects laid the foundation towards more complex and more accurate empirical
equations of state such as the Redlich-Kwong and the Peng-Robinson equations of state
also included in this discussion.

The convenience of the Van der Waals equation lies in the simplicity of the two-
parameter approach to capturing the influence of fundamental molecular interactions
on the overall behavior of the substance [44]. The two-parameter approach is based on
two concepts related to molecular interactions. The first is the notion that molecules
themselves have a finite volume, parameter b, that should be subtracted from the mea-
surable volume occupied by a gas. Secondly, concerning intermolecular forces, it is
reasoned that the collective force exerted by a molecule on a surface – i.e. the statisti-
cal definition of pressure – is reduced by intermolecular attraction forces that increase
in density, parameter a [68, 69].

The Van der Waals equation is summarized in Table 11.2. When the P -v-T behavior
at a state is fully resolved, the derivatives may be used to evaluate other thermodynamic
quantities according to Table 11.1.

Table 11.2: Summary of the Van der Waals equation of state

Van der Waals

P (T, v) =
RT

v − b −
a

v2

e(T, v) = cvT −
a

v

s(T, v) = cv lnT +R ln(v − b)

where a =
27

64

R2Tc
2

Pc
and b =

1

8

RTc
Pc(

∂P

∂T

)
v

=
R

v − b(
∂P

∂v

)
T

= − RT

(v − b)2 +
2a

v3(
∂v

∂T

)
P

= −
(
∂P

∂T

)
v

/(
∂P

∂v

)
T
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11.2 Soave-Redlich-Kwong Equation of State

Over the years many modifications were proposed to improve the Van der Waals equa-
tion. Some by the empirical fitting of data, others by capturing specific molecular inter-
actions that persist in certain kinds of molecules such as hydrogen bonds or molecular
bipolarity. Either way, most of the modifications addressed the attraction coefficient a
in the original Van der Waals equation that incorporates these effects [28, 29].

One of the most successful modifications has been the Redlich-Kwong equation of
state, that gave an empirical temperature dependency to the attraction term. The
change of the attraction term was entirely empirical without any rigorous substantiation
[70]. The Redlich-Kwong equation of state performs well for substances above the
critical temperature but lacks the ability to predict phase-equilibria accurately even for
single phase substances [29, 71].

G. Soave proposed an improvement on the temperature dependency of the attraction
coefficient to better predict phase transitions. The improvement arose from solving the
iso-fugacity for the vapor pressure at the vapor-liquid boundary [29, 71]. This modifi-
cation is now known as the Soave-Redlich-Kwong equation of state and is summarized
in Table 11.3.

11.3 Peng-Robinson Equation of State

The Soave-Redlich-Kwong equation rapidly established itself as an industry standard
given the accuracy for its relative simplicity of use and its ability to predict vapor-liquid
equilibria of mixtures with reasonable accuracy [28, 72], even though the SRK equation
provided unsatisfactory results when it came to the prediction of the densities in the
liquid phase and the critical region.

To resolve this issue, Peng and Robinson proposed a further modification of the SRK
equation, based on semi-empirical arguments, to change the volumetric dependency of
the attraction term to yield more realistic values for the critical compressibility factor
[72]. The temperature dependence of the attraction term proposed by Soave was left
intact due to its previous successful application to the Redlich-Kwong equation of state.
The Peng-Robinson equation is summarized in Table 11.4.

The Peng-Robinson equation performs equally well or better as the Soave-Redlich-
Kwong [29, 72]. Both have become industry standard due to their ease of use, and
their ability to accurately describe temperature, pressure and phase compositions in
binary and multicomponent systems. However, the success is limited by the calculation
of liquid saturation densities, which are invariably overpredicted [28].
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Table 11.3: Summary of the Soave-Redlich-Kwong Equation of State [71]

Soave-Redlich-Kwong

P (T, v) =
RT

v − b −
aα2(T )

v(v + b)

e(T, v) = cvT +
a

b

(
α2(T )− 2α(T )α′(T )

)
ln

v

v + b

s(T, v) = cv lnT +
2a

b
α(T )α′(T ) ln

v + b

v

where a = 0.42748
R2Tc

2

P 2
c

and b = 0.08664
RTc
Pc

α = 1 + κ

(
1−

√
T

Tc

)

κ = 0.480 + 1.574ω − 0.176ω2

(
∂P

∂T

)
v

=
R

v − b −
2aα(T )α′(T )

v(v + b)
where α′ =

dα

dT(
∂P

∂v

)
T

= − RT

(v − b)2 +
aα2(T )(2v − b)
v2(v + b)2(

∂v

∂T

)
P

= −
(
∂P

∂T

)
v

/(
∂P

∂v

)
T
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Table 11.4: Summary of the Peng-Robinson Equation of State [72]

Peng-Robinson

P (T, v) =
RT

v − b −
aα2(T )

v(v + b) + b(v − b)

e(T, v) = cvT −
aα(T )(κ+ 1)

b
√

2
tanh−1 b

√
2

v + b

s(T, v) = cv lnT +R ln(v − b)− aα(T )κ

b
√

2TTc
tanh−1 b

√
2

v + b

where a = 0.45724
R2Tc

2

P 2
c

and b = 0.0778
RTc
Pc

α = 1 + κ

(
1−

√
T

Tc

)

κ = 0.37464 + 1.54226ω − 0.26992ω2

(
∂P

∂T

)
v

=
R

v − b −
2aα(T )α′(T )

v(v + b) + b(v − b) where α′ =
dα

dT(
∂P

∂v

)
T

= − RT

(v − b)2 +
2aα2(v + b)

[v(v + b) + b(v − b)]2(
∂v

∂T

)
P

= −
(
∂P

∂T

)
v

/(
∂P

∂v

)
T
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TWELVE

The Riemann Problem

In this final chapter, the real isentropic gas model presented in this work is applied in
solving the one-dimensional Euler equations for the Riemann problem [73] for a non-
ideal compressible flow. Doing so, we will combine the theoretical investigations of
earlier parts with the numerical schemes of the previous chapter to demonstrate and
validate the real isentropic gas model for NICFD codes [24, 26, 27]. The validation
will lie in the affirmation that the general equation of the speed of sound Eq. (8.3), is
capable of correctly calculating the sound velocity for non-ideal fluid flows for a selected
equation of state. If this is true, any other concepts related to the isentropic exponents
evaluated at a state is also exact, as discussed in Chapter 2.

A standard shock tube problem has been selected for this exercise [74] whose initial
conditions are based on the work of Rinaldi et al [23]. In this work, an exact scheme
is presented for solving the Riemann problem for real gas flows. Moreover, the work
conducted by Rinaldi concentrates on numerical simulations in the dense gas region
for single phase substances. The real isentropic gas model is also confined to stable
single phase substances since the specific heat capacities are undefined in the two-phase
region, as outlined in Chapter 3.

Unlike Rinaldi’s work, which relied on a thermodynamic library for the evaluation
of gas properties [23, 65], fluid properties will be evaluated using the polytropic Van der
Waals model of the previous chapter for a qualitative validation. The substance under
investigation is Helium, with the initial conditions as presented in Table 12.1. The fluid
is initially at rest.

Table 12.1: Initial conditions for the shock tube problem

left right

temperature

density

1.275Tr

6.624

1.400ρr

101.594

1.100Tr

5.715

0.400ρr

29.027

K

K

kg/m3

kg/m3

pressure 5.648Pr

1285.530

1.029Pr

234.294

kPa

kPa
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The polytropic Van der Waals model has been implemented in both the exact solver
and the numerical solver [23, 75]. The only difference between them is the way in which
the speed of sound is defined across both solvers. For the exact solver, the explicit
definition of the sound velocity of a Van der Waals gas had been implemented [39]

c2 =

(
1 +

2

f

)
RT

(
v

v − b

)2

− 2a

v
. (solver) (12.1)

The numerical solver, on the other hand, uses the general relation for the speed of
sound repeated here for convenience:

c2 = γPvPv. (simulation) (12.2)

The exponent γPv is treated as a variable, whose value is re-evaluated for each control
volume for every time step.

The AUSM flux splitting scheme is implemented in the numerical solver [73, 76,
77]. The grid stretches a length of one meter from (−0.5, 0.5), where the initial state
discontinuity is placed at the origin. The grid is discretized in 500 equal intervals. The
CFL number is set to 0.10, resulting in a time step of ∆t = 7.1684 × 10−7s [77]. The
simulation is run for 2000 time steps.

The result of the numerical simulation is presented in Figure 12.1, and compared
to the exact solution. The exact solution and the numerical simulation show to be
in good agreement with each other. The fact that the locations of the expansion fan,
contact discontinuity, and the shock discontinuity between the exact and numerical
solver coincide implies that the definitions of the speed of sound given by Eqs. (12.1)
and (12.2) are indeed equivalent. We have thereby demonstrated the validity of the real
isentropic gas model.

We can perhaps demonstrate this equivalence even more explicitly. Namely, if the
exact solution of the Riemann problem yields the same results if the definitions of the
speed of sound Eqs. (12.1) and (12.2) were interchanged. In fact, let us derive Eq.
(12.1) for a Van der Waals gas from the general definition of the speed of sound.

Substitution of the definition of γPv Eq. (1.30) into the definition of the speed of
sound yields

c2 = −v2 cp
cv

(
∂P

∂v

)
T

. (12.3)

The isobaric heat capacity is related to the isochoric heat capacity according to

cp = cv + T

(
∂v

∂T

)
P

(
∂P

∂T

)
v

. (12.4)

Eliminating cp, and using the reciprocity between the partial derivatives, Eq. (12.3)
can be expressed as

93



-0.5 -0.25 0 0.25 0.5
x [m]

20

40

60

80

100
ρ 

[k
g/

m
3 ]

(a) Density

200

400

600

800

1000

1200

1400

-0.5 -0.25 0 0.25 0.5
x [m]

P 
[k

Pa
]

(b) Pressure

-0.5 -0.25 0 0.25 0.5
x [m]

u 
[m

/s
]

0

10

20

30

40

(c) Velocity

5.5
-0.5 -0.25 0 0.25 0.5

x [m]

T
 [K

] 6.5

6.0

7.0

(d) Temperature

10

15

20

25

-0.5 -0.25 0 0.25 0.5
x [m]

e 
[k

J/
kg

]

(e) Energy

-0.5 -0.25 0 0.25 0.5
x [m]

s 
[k

J/
kg

 K
]

1.0

0.0

2.0

3.0

(f) Entropy

Figure 12.1: Solution of the Riemann problem for the initial conditions selected in Table 12.1
for Helium, modeled as a polytropic Van der Waals gas. The numerical simulation ( ) shows
good correspondence with the exact solution ( ) provided by Rinaldi [23].
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c2 =
v2

cv
T

(
∂P

∂T

)
v

2

− v2
(
∂P

∂v

)
T

. (12.5)

The partial derivatives (∂P/∂T )v and (∂P/∂v)T are evaluated for a Van der Waals
gas (see Table 11.2). Elimination of the derivatives we can write

c2 =
1

cv
RT

(
v

v − b

)2

+

[
RT

(
v

v − b

)2

− 2a

v

]
. (12.6)

Finally, for a polytropic gas, the isochoric heat capacity is defined as cv = f/2R.
Rearranging of Eq. (12.6), we indeed find the explicit expression of the speed of sound
for a Van der Waals gas:

c2 =

(
1 +

2

f

)
RT

(
v

v − b

)2

− 2a

v
. (12.7)

This result perhaps might not be surprising. As any departure of gas dynamic
behavior from ideal behavior is captured by the term γPv, the validity of the model lies
in the correctness of its definition. A definition which, apart from the assumed from
the isentropes, Eqs. (1.27–1.29), had been based on nothing but exact differentials and
Maxwell transformations. The previous outcome is, therefore, not just a confirmation
of the generalized equation for the speed of sound, but more so a reaffirmation that our
the assumed form of the isentropes in Chapter 1 was indeed correct.
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Conclusion

The generalized isentropic gas model has been successfully used to extend ideal com-
pressible gas relations to real gas flows. The state functions of the real isentropic
exponents can be adapted to take on the form of any equation of state, which deter-
mines the accuracy of their evaluation. Moreover, by adhering to the ideal gas notation
of the isentropic relations, the real gas relation retain their familiar form, emphasizing
the equivalence between the ideal gas relations and the general case. The applicability
of the model to non-ideal fluid dynamics (NICFD) codes has been demonstrated and
validated.

The isentropic gas model was found to satisfy all necessary physical requirements for
application throughout the single phase domain ranging from liquid to gaseous states.
Its limits were determined to satisfy physical constraints, reducing to the incompressible
substance model at high densities and reducing to the ideal gas model at low densities
and high temperature respectively. Between the volumetric limits, the model loses its
validity within the two-phase region – except for metastable states up to the spinodal
lines – as the specific heat capacities are undefined here and the requirements for ther-
modynamic stability are violated.

The model is reasoned to be exact at a state point. As a consequence, the isentropic
model is thermodynamically consistent with other properties at a point and can thus
be used to evaluate those properties. This has lead to new insights regarding the caloric
behavior, compressibility coefficients, Joule-Thomson coefficient, and entropy relations
of real fluids in the general case, all of which can be shown to reduce to the ideal case
in the ideal limit.

When it comes to relating states, the ability to accurately relate isentropic states
using the assumption of locally constant values of the real isentropic exponents depends
on the thermodynamic region and the molecular complexity of the substance. The va-
lidity of the assumption improves moving away from the critical point as the influence
of higher-order derivatives diminishes, in the limit where the isentropes with approx-
imated exponents and isentropes with continuously varying exponents coincide for an
ideal gas. Although the approximation deteriorates with increasing molecular complex-
ity, this effect is partially counteracted by reduced variation of the isentropic exponents
as the molecular weight increases. Though, the assumption of constant exponents is
found to be acceptable for small isentropic changes such as stagnation properties and
other isentropic flow properties.
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Recommendations

This work was intended to be both an introduction and extension of the generalized
isentropic gas model, following the theoretical nature of the investigation. The choice
not to go in-depth on practical applications, therefore, has been a deliberate one, as
is the nature of fundamental research. During this period, the following matters arose
which certainly do have practical relevance.

• The implicit and analytical character of the generalized isentropic gas model makes
it suitable for a modular implementation into computer codes, where any equation
of state, thermodynamic library, or look-up table may be used for its evaluation.
The modular approach, combined with the significantly reduced complexity of
thermodynamic relations, like the generalized speed of sound equation, has much
potential to reduce computational costs of non-ideal compressible fluid simula-
tions.

• Use of the model in simulations also presents several options to make effective
compromises between accuracy and computational costs. For this purpose, a
hybrid scheme is proposed where an accurate semi-empirical equation of state
may be combined with a look-up table for the isochoric heat capacity constructed
by a thermodynamic library. In a more experimental scheme, one could also
choose to tabulate two of the three isentropic exponents. If the pressure, volume,
and temperature are known, other properties such as the speed of sound, and
Joule-Thomson coefficient can be obtained in a straightforward approach.

• The assumption of locally constant values for the isentropic exponents γPv, γTv,
and γPT has frequently been used throughout this work providing the necessary
means to treat real substances as if it were ideal gases. To improve the accuracy
this assumption, one might include derivatives of the real exponents into the func-
tions relating states along an isentrope. Although this could be done analytically,
this will likely be a most complex procedure due to the multivariate dependency
of the isentropic exponent on state variables. Regarding NICFD simulations, per-
haps a more useful extension would be to numerically linearize the exponents
at a state point using a Taylor expansion to include the local variation of the
exponents.

• The definition of the fundamental derivative in terms of the real exponent γPv
presented in Chapter 10 could be completed by introducing the derivative of the
exponent with respect to volume. Including the derivative of the exponent may
yield a general expression for the fundamental derivative, whose terms can be
evaluated directly using any equation of state. Completing the expression may
also yield interesting insights in the relation between the fundamental derivative
and isentropic flows demonstrated in that chapter.
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APPENDIX A

Thermodynamic Identities

A.1 Exact Differentials

Exact differential:

dX =

(
∂X

∂Y

)
Z

dY +
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dZ. (A.1)

Test for exactness: (
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A.3 Derivatives
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APPENDIX B

Supercritical CO2 Compressor

In this section, the application of some of the real isentropic gas relations presented in
this work are demonstrated for the thermodynamic analysis of a supercritical CO2 com-
pressor. The analytical expressions for the isentropic outlet state, stagnation properties,
and critical area ratios are compared to values obtained by the conventional approach
of using a thermodynamic library [66].

The supercritical CO2 compressor of the SANDIA supercritical Brayton cycle test
program has been selected for this exercise, as the operational status of this program is
more advanced in its progress than any other such facility and is well documented. The
compressor geometry and operating point are taken from the 2010 SANDIA report on
the progress of the project [78].

The values of the isentropic exponents are calculated at the inlet state, and assumed
to be constant throughout the compressor stage. When a greater degree of accuracy is
required, one could define intermediate pressure levels where the isentropic exponents
could be re-evaluated. The flow area A is calculated based on shroud and hub radii.
Accordingly, the fluid velocity follows from the mass flow rate and the inlet density.

Table B.1: sCO2 compressor operation condi-
tions.

flow: m 3.53 kg/s

u 22.7 m/s

geometry: A 255 mm2

inlet: P1 7690 kPa

T1 305 K

Z1 0.219 –

ρ1 608.8 kg/m3

c1 215.2 m/s

h1 304.6 kJ/kg

s1 1.341 kJ/kgK

outlet: P2 14000 kPa

exponents: γPv 3.668 –

γTv 1.345 –

γPT 1.103 –

T [K]

s [kJ/kgK]

2

1
305

1.341

Figure B.1: sCO2 compressor T -s diagram
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Table B.2: Calculated quantities of the thermodynamic analysis of the SANDIA sCO2 com-
pressor compared to values obtained from REFPROP [66].

Outlet Isentropic State

T2s Eq. (1.29) 322.6 K
err. 0.28 %

refprop 321.7 K

ρ2s Eq. (1.27) 716.8 kg/m3

err. 4.38 %
refprop 686.7 kg/m3

Isentropic Work

∆hs12 Eq. (6.4) 9.663 kJ/kg
err. 1.85 %

refprop 9.484 kJ/kg

Inlet Stagnation Properties

P01 Eq. (8.10) 7874.1 kPa
err. 0.00 %

refprop 7874.1 kPa

T01 Eq. (8.12) 305.6 K
err. 0.00 %

refprop 305.6 K

ρ01 Eq. (8.14) 612.1 kg/m3

err. 0.01 %
refprop 612.2 kg/m3

Z01 Eq. (8.16) 0.222 –
err. 0.00 %

refprop 0.222 –

Unfortunately, the choked flow conditions cannot be verified by a thermodynamic li-
brary, nor is the critical mass flux of the SANDIA sCO2 compressor documented in
literature. Instead, we can calculate the area at which the flow is predicted to choke,
and then check the corresponding critical mass flux to match the mass flux in Table
B.1.

Table B.3: Chocked flow conditions of SANDIA sCO2 compressor.

A/A∗ Eq. (8.34) 4.56 –

A∗ 55.82 mm2

m∗ Eq. (8.38) 3.53 kg/s err. 0.00 %

112


	Abstract
	Acknowledgements
	Table of Contents
	Nomenclature
	Introduction
	I Real Isentropic Relations
	Real Isentropic Exponents
	Pressure-Volume Exponent
	Temperature-Volume Exponent
	Pressure-Temperature Exponent
	Summary of the Isentropic Functions

	Approximate Real Isentropes
	Pressure-Volume Isentrope
	Temperature-Volume Isentrope
	Pressure-Temperature Isentrope

	Behavior of the Isentropic Exponents
	Van der Waals Isentropic Exponents
	Physical Limits of the Isentropic Exponents
	Contours of the Isentropic Exponents


	II Real Property Relations
	Real Specific Heat Functions and Compressibility
	Specific Heat Relation for Calorically Imperfect Gases
	Real Specific Heat Functions

	Other Thermodynamic Properties and Derivatives
	Derivatives of Mechanical Properties
	Derivatives of Internal Energy and Enthalpy

	Isentropic Work
	Real Entropy Changes and Carnot's Theorem
	Carnot's Theorem Reviewed


	III Real Gas Dynamics
	One-Dimensional Real Isentropic Flow Relations
	Speed of Sound in Real Gases
	Real Stagnation Properties
	Real Characteristic Velocities
	Real Critical Properties

	Real Shock Waves
	Prandtl-Meyer Expansion Fans
	Normal Shock Waves

	Fundamental Derivative of Gas Dynamics
	Fundamental Derivative and Isentropic Flows


	IV Numerical Simulations of Real Gas Flows
	Explicit Numerical Schemes
	The Van der Waals Equation of State
	Soave-Redlich-Kwong Equation of State
	Peng-Robinson Equation of State

	The Riemann Problem

	Conclusion
	Recommendations
	Bibliography
	Appendix
	Thermodynamic Identities
	Exact Differentials
	Maxwell Relations
	Derivatives

	Supercritical CO2 Compressor


