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Abstract

The non-Hermitian skin effect is a phenomenon in which an extensive number of states
accumulates at the boundaries of a system. It has been associated to nontrivial topology,
with nonzero bulk invariants predicting its appearance and its position in real space.
Here, we demonstrate that the non-Hermitian skin effect has weaker bulk-edge corre-
spondence than topological insulators: when translation symmetry is broken by a single
non-Hermitian impurity, skin modes are depleted at the boundary and accumulate at the
impurity site, without changing any bulk invariant. Similarly, a single non-Hermitian im-
purity may deplete the states from a region of Hermitian bulk.
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In the absence of long-range interactions, local changes made to an insulator have a local
effect. This phenomenon is known as the near-sightedness principle: far from the perturba-
tion, the properties of the system remain as they were [1,2]. Topological insulators, like trivial
insulators, obey the near-sightedness principle. The bulk properties of topological insulators
stabilize gapless modes at their boundaries in a phenomenon known as bulk-edge correspon-
dence (BEC). symmetry-preserving perturbation at the boundary that destroys the topological
phase will locally shift the position of the boundary modes but will not remove them.

In non-Hermitian systems, the near-sightedness principle fails. The spectrum and eigen-
states are highly sensitive to boundary conditions: shifting from periodic to open boundary
conditions (PBC and OBC) leads to the bulk modes exponentially localizing at the new bound-
aries [3]. This phenomenon is known as the non-Hermitian skin effect (NHSE). In early works,
when the NHSE was discussed from the point of view of non-trivial topology, it was considered
to be a failure of the conventional BEC [4]. More recently, it was shown that the 1D NHSE
is indeed a topological phenomenon, and the location of the edge modes is predicted by the
winding number of the bulk spectrum [5–8]. In higher dimensions however, especially when
eigenstate accumulation occurs at corners, multiple invariants have been proposed for differ-
ent types of NHSE. A recent review has concluded that understanding the formation of corner
skin modes is mostly done on a case-by-case basis, and that there is no current consensus on
the general theoretical formalism behind it [9].
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In the presence of impurities, the failure of the near-sightedness principle in non-Hermitian
systems is further demonstrated. Non-Hermitian impurities are observed to attract the modes
of the system with a localization length that is proportional to the system size [10–13]. This
phase is scale-invariant and is therefore considered distinct from the NHSE phase.

In this work, we show that an appropriately selected non-Hermitian impurity is capable of
exponentially localizing all modes present in the system, thus challenging the association be-
tween the NHSE and BEC. We show that when translation symmetry is broken, the appearance
of this effect as well as its position in real space becomes independent of any bulk topological
index. This phenomenon occurs even when the bulk is fully Hermitian, further highlighting
the breakdown of bulk-boundary correspondence and the near-sightedness principle. In the
following, we explore these features using a simple one-dimensional (1D) model, highlighting
first why this effect is expected to occur, followed by a concrete numerical demonstration. We
then show this effect is also are present in a two-dimensional (2D) model.

The NHSE can be understood in terms of transfer matrices that relates the wave function at
one boundary in a translationally invariant chain to the bulk wave function at a given energy
E [14,15]:

�

ψ(xN+1)
ψ(xN )

�

= T N
B (E)

�

ψ(x1)
ψ(x0)

�

, (1)

whereψ(xN ) is the possibly multi-component wave function of the N -th unit cell, and TB(E) is
the transfer matrix of one unit cell of the bulk of the chain. In non-Hermitian systems that host
the NHSE, there is a preferred direction of transmission towards the boundary with the skin
effect. The largest eigenvalue λB(E) of the transfer matrix TB(E) representing transmission
away from this boundary has a modulus smaller than 1, resulting in the largest eigenvalue
of the transfer matrix T N

B (E) being |λN
B (E)| ≪ 1. The magnitude of the eigenvalues of the

transfer matrices are therefore directly linked to the accumulation of modes at a certain site:
in non-Hermitian systems, they predict which boundary will host the NHSE.

Adding an impurity to the system modifies the transfer matrix. The transfer matrix relating
the wave function components on the left side of the chain to those at an impurity on site N+2
is given by

T (N , E) = Timp(E)T
N
B (E) , (2)

where Timp(E) is the transfer matrix between the wave function components (ψ(xN ),ψ(xN−1))T

and (ψ(xN+1),ψ(xN ))T . If λimp(E), the smallest eigenvalue of the impurity transfer matrix
Timp(E), is much larger than λN

B (E), the largest eigenvalue of the bulk transfer matrix T N
B (E),

then all of the modes of the system will accumulate at the impurity site instead of the boundary
that hosts the NHSE. Therefore the condition for the NHSE to completely disappear from the
system boundary is:

min
E
|λN

B (E)λimp(E)| ≫ 1 , (3)

where E is any energy that lies within the boundary defined by the PBC eigenvalues of the
Hamiltonian—or in other words within the point gap. Eq. (3) describes the case where all of
the modes have shifted to the impurity, but the majority of the modes are likely displaced well
below this condition. The lower bound on the impurity strength provided by Eq. (3) directly
generalizes to the case when the bulk is disordered, in which case slowest decaying eigenvalue
of the transfer matrix is replaced by the largest Lyapunov exponent of the system [16]. Alter-
natively, a weaker but more straightforwardly valid lower bound follows by minimizing λB(E)
over disorder realizations in addition to energy.
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Figure 1: Breakdown of the correspondence of the skin effect and bulk topology via
a non-Hermitian hopping impurity in the bulk, model Eq. (4). (a) Schematic of the
tight-binding system Eq. (4) around the impurity site (in red). (b) The SPD [Eq. (5)]
of a 1D chain of 60 sites in a non-Hermitian system (tR = 0.9 and tL = 1.1) with
a non-Hermitian impurity located at ximp = 30, as a function of increasing impurity
strength himp. (c) Same as (b) for a Hermitian system (tR = 1 and tL = 1). Plot
details in App. A.

As a concrete example, we now apply our reasoning to the Hatano-Nelson Hamiltonian
[17,18], a 1D single-orbital non-Hermitian Hamiltonian:

H(m, N) =
N
∑

j ̸=m

tR| j〉〈 j − 1|+ tL| j − 1〉〈 j|+ ehimp tR|m〉〈m− 1|+ e−himp tL|m− 1〉〈m| , (4)

where the sum runs over the lattice sites j of the system, N is the total number of sites of
the chain, m corresponds to the impurity site, and himp models the magnitude of the hopping
asymmetry that defines the impurity [Fig. 1 (a)]. himp = 0 results in a uniform system with no
impurity. For simplicity we do not consider onsite terms, and the non-Hermiticity of the bulk
arises from the hopping asymmetry in the bulk, tR ̸= tL .

We observe the effect of a non-Hermitian impurity in this model by tracking the spatial
distribution of modes in the system, in order to determine its effect on the NHSE. An extensively
used method of characterizing the NHSE is the calculation of the real-space sum of probability
densities (SPD) of all eigenstates of a system:

SPD(x j) =
∑

n

|Ψn(x j)|2 , (5)

where Ψn(x j) is amplitude of the n-th eigenvector on site x j . While the local density of states
is defined for individual energies, the SPD is akin to a local density of states evaluated at all
energies of the system. We set tL > tR. In doing so, we realize a non-Hermitian system where
the NHSE appears on the left of the chain, with modes exponentially localized around site
j = 0. In non-Hermitian systems, as himp increases, the skin effect shifts away from the system
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Figure 2: Breakdown of bulk-edge correspondence in a system with an amplifying
non-Hermitian impurity, model Eq. (4). (a) The modulus of the largest eigenvalue
of TB [Eq. (6)] for all energies within the boundary defined by the PBC eigenvalues
(in red), for tR = 0.9 and tL = 1.1. (b)-(c) the smallest ratio of eigenvector compo-
nents at the impurity |Ψ(ximp)|2 and the eigenvector components at the left boundary
|Ψ(x0)|2 as a function of the impurity strength himp and impurity position ximp for
(b) non-Hermitian (tR = 0.0003 and tL = 2980) and (c) Hermitian systems (tR = 1
and tL = 1). The bound |λximp−2

B (E)λimp(E)| = 1 [Eq. (3)] is shown as a dotted line
in (b) and (c), where E is the energy for which the modulus of the wave component
at the impurity is the smallest. Plot details in App. A.

boundaries to the impurity site in the bulk, as evidenced by the change in SPD [Fig. 1 (b)]. In
Hermitian systems (tR = tL = 1), the non-Hermitian impurity depletes the modes to its left
and accumulates them to its right [Fig. 1 (c)].

We now analyze the model Eq. (4) in terms of transfer matrices and the condition Eq. (3).
We first examine the transfer matrix of the system without impurities. The transfer matrix
relating wave functions of different unit cells in the bulk of the chain is given by:

TB(E) =

�

E/tL −tR/tL
1 0

�

. (6)

As shown in Fig. 2 (a), the modulus of the largest eigenvalue of TB(E) [Eq. (6)] is smaller than
1 for any energy that lies within the limits of the PBC spectrum. This means that the largest
eigenvalue of the transfer matrix connecting increasingly distant points of the chain will be
much smaller than 1.

We now consider the system with an impurity (himp ̸= 0). The transfer matrix relating
(ψ(ximp),ψ(ximp−1))T to (ψ(ximp−1),ψ(ximp−2))T is:

Timp(E) =

�

ehimp E/tL −e2himp tR/tL
1 0

�

. (7)

We diagonalize Eq. (4) for various hopping asymmetry strengths at the impurity located at
ximp, and extract the components of all the eigenvectors at the boundary Ψn(x0) and the com-
ponents at the impurity site Ψn(ximp). The smallest ratio of these components

min
n
|Ψn(ximp)|2/|Ψn(x0)|2 , (8)

belongs to the eigenstate of the system that is the most localized at the boundary. With de-
creasing impurity distance from the boundary and/or increasing impurity strength, this ra-
tio can be made arbitrarily large [Fig. 2 (b)], indicating that all of the modes of the sys-
tem accumulate at the impurity for a large enough hopping asymmetry at the impurity.
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Figure 3: Shifting modes via a non-Hermitian impurity in a 2D non-Hermitian sys-
tem hosting the NHSE. (a) Schematic of the 2D system with an impurity at the center.
Black arrows indicate the direction of transfer operated by the rectangular transfer
matrix TR across the boundary marked by a black dashed line. Red arrows indicate
the direction of transfer of the impurity transfer matrix Timp across the boundary
marked by the red dashed line. (b) SPD [Eq. (5)] of a 2D non-Hermitian system
Eq. (9) with no impurities. Darker color indicates a larger SPD. (c) SPD of the same
bulk non-Hermitian Hamiltonian with an impurity himp/x imp = 6. Darker color in-
dicates a larger SPD. (d) SPD at the impurity site as a function of increasing impurity
hopping asymmetry himp/ximp, in a system with tL = tU = e1 and tR = tD = e−1.
Plot details in App. A.

We also calculate λ
ximp−2
B (E)λimp(E), where E is the energy for which the modulus of the

wave function at the impurity is the smallest. We use this expression to determine the
threshold where the eigenvector most localized at the edge starts to shift towards the im-
purity, by plotting λ

ximp−2
B (E)λimp(E) = 1. As shown in Fig. 2 (b), this threshold aligns with

min
n
|Ψn(ximp)|2/|Ψn(x0)|2 = 1, where the most localized eigenstate is equally present at the

system boundary and at the impurity. For a fully Hermitian bulk (tR = tL = 1), the crossover
threshold is located at himp = 0 [Fig. 2 (c)]. Fluctuations in min

n
|Ψn(ximp)|2/|Ψn(x0)|2 present

in Fig. 2 (b)-(c) are due to finite-size effects, see App. A.
We now extend our analysis to higher-dimensional systems. In a general d-dimensional

system, we conjecture that a similar analysis can be performed by examining transfer matrices
in the radial direction. We take 2D systems as an example [Fig. 3 (a)]. We consider the
following 2D Hamiltonian:

H(mx , my , Nx , Ny) =
Nx
∑

jx ̸=mx

Ny
∑

jy ̸=my

tR| jx + 1, jy〉〈 jx , jy |+ tL| jx , jy〉〈 jx + 1, jy |

+ tU | jx , jy + 1〉〈 jx , jy |+ tD| jx , jy〉〈 jx , jy + 1|

+ ehimp(tL|mx , my〉〈mx + 1, my |+ tR|mx , my〉〈mx − 1, my |
+ tD|mx , my〉〈mx , my + 1|+ tU |mx , my〉〈mx , my − 1|)

+ e−himp(tL|mx + 1, my〉〈mx , my |+ tR|mx − 1, my〉〈mx , my |
+ tD|mx , my + 1〉〈mx , my |+ tU |mx , my − 1〉〈mx , my |) ,

(9)

where the sums run over the coordinate indices of the lattice sites jx , jy of the system, the
impurity is located at ( jx , jy) = (mx , my), and for simplicity we consider the hopping asym-
metry at the impurity himp to be the same in both the x and y directions. There are four
hopping asymmetry impurities, two to the immediate left and right of the impurity site, and
two immediately above and below the impurity site.
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In a one-dimensional chain, a transfer matrix argument connecting neighboring sites is suf-
ficient to track the shifting of the modes towards an impurity [Fig. 2 (b)]. In two dimensions,
we extend this argument to transfer matrices TR(E) that connect outer regions of a sample to
its inner regions, following the example shown in Fig. 3 (a):

ψin = TR(E)ψout , (10)

where ψin are the wave components on the sites that lie immediately within the boundary
denoted by the black dashed line, andψout are the wave components on sites lying immediately
outside the same boundary. Since the size of ψin is smaller than the size of ψout, TR(E) is a
rectangular matrix.

In the presence of an impurity at the center of a N ×N lattice, the transfer matrix from the
outer boundaries to the impurity is given by:

T (E) = T1(E)T2(E) · · · TN/2−1(E)Timp(E) , (11)

where Ti(E) are rectangular transfer matrices, and Timp(E) is the impurity transfer matrix as
shown schematically in Fig. 3 (a). Since the radial transfer matrices are rectangular, there
are wave functions at the edge of the system that inevitably have an exactly zero weight at
the impurity. However, wave functions satisfying generic and not fine-tuned boundary condi-
tions have weight in all the components, and therefore have a finite coupling to the impurity.
Therefore we expect that in the general case, a non-Hermitian impurity that amplifies wave
functions incoming from all directions should suppress all NHSE in a finite sample.

We now verify numerically that a non-Hermitian impurity in 2D is capable of attracting
all of the modes in the system. We first consider the system with no impurity (himp = 0). We
set tL = tD = 1.1 and tR = tU = 0.9, which results in a NHSE manifesting at the lower-left
region of the 2D system [Fig. 3 (b)]. By then increasing himp, all of the modes of the system
are attracted to the impurity [Fig. 3 (c)-(d)]. For Hermitian systems, a similar accumulation
of system modes at the impurity site is observed to occur.

We have shown that local non-Hermitian perturbations draw the NHSE into the bulk of a
system, which demonstrates the breakdown of BEC of the NHSE in 1D and 2D in the absence
of translation symmetry. Predicting the position of the skin effect using topological invari-
ants thus becomes unreliable once translation symmetry is broken. In real/non-ideal systems,
translation symmetry is not guaranteed to be preserved, highlighting the importance of study-
ing non-Hermitian systems in a manner that is sensitive to local details, such as wave packet
dynamics [19], rather than bulk invariants.

The non-Hermitian impurities that we have considered here affect only a few hoppings,
but they not purely local perturbations, in the sense that global information (the system size)
is required in order to know how strong the hopping asymmetry at the impurity has to be
before attracting all of the modes of the system.

Our work indicates that, owing to lack of a near-sightedness principle, impurities play a
much larger role in non-Hermitian systems than they do in Hermitian ones. This may prove
useful for experiments seeking to produce a non-Hermitian skin effect in a variety of mate-
rial and meta-material systems [20–24]. Rather than tailor gain and loss or nonreciprocity
throughout the entire bulk of the experimental system, a single, non-Hermitian local pertur-
bation would be sufficient to generate the NHSE.
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A Model and plotting parameters

In this section additional details of the plots are listed in order of appearance.
For Fig. 1, simulations were done for 1D systems composed of 60 sites. The values of himp

used are 0, 0.05L, and 0.25L, for both the non-Hermitian and the Hermitian systems. For
panel (b), the bulk Hamiltonian parameters are tL = e0.1 = 1.1 and tR = e−0.1 = 0.9. For
panel (c), the bulk Hamiltonian parameters are tL = 1 and tR = 1.
For Fig. 2 (a), simulations were done for 1D systems composed of 10 sites. For the
non-Hermitian system shown in panel (b), bulk parameters tL = e8 and tR = e−8 were
used. The high hopping asymmetry in the bulk is used to reduce the oscillations of
min

n
|Ψn(ximp)|2/|Ψn(x0)|2 that arise due to the penetration of the skin effect into the bulk (as

shown for example in Fig. 1 (b)). Parameters tL = 1 and tR = 1 were used for the Hermitian
system shown in panel (c).

For Fig. 3, simulations shown in panels (b)-(d) were performed using 2D systems composed
of 31× 31 sites with bulk hopping parameters tL = tU = e1 and tR = tD = e−1 (see (9)). In
panels (b) and (c), the impurity hopping asymmetry is himp/ximp = 0 in (b) and himp/ximp = 6
in (c).
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