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Chapter 1

Introduction

The drinking water in the Netherlands is of high quality and the pro-
duction cost is low. This is the result of extensive research in the

past decades to innovate and optimise the treatment processes. The pro-
cesses are monitored and operated by motivated and skilled operators
and process technologists, which leads to an operator-dependent, subjec-
tive, variable and possibly suboptimal operation of the treatment plants.
Furthermore, the extensive automation of the treatment plants reduces
the possible operator attention to the individual process units. The use
of mathematical process models might solve these problems. This thesis
focuses on the application of models in model-based monitoring, optimi-
sation and control of drinking-water treatment plants, with the Weesper-
karspel treatment plant of Waternet as a case study.

1.1 Challenges in Drinking-Water Production

In the past thirty years, drinking-water research in the Netherlands was focused
on improving the water quality and the robustness of the total system. Major part
of the improvements was related to the removal of pesticides, the softening of the
water (van Dijk and Wilms 1991), the distribution of biologically stable drinking
water and the abolition of the use of chlorine (van der Kooij et al. 1999; Rook et al.
1982). Research was generally focused on individual treatment steps with specific
objectives.

To determine the optimal use of a water treatment plant and to gain more in-
sight in the integral concept of the plant, studies have been carried out to simulate
and optimise the integral treatment plant (van der Helm et al. 2006). The main
conclusion is that the emphasis for integral optimisation of drinking-water treat-
ment plants should be put on maintaining a constant high drinking-water quality.

1



2 Chapter 1 Introduction

The reduction of the environmental impact and the financial costs using process
optimisations is limited. However, drinking water quality is directly related to
consumer confidence and water consumption.

The analysis of process performance at a drinking-water treatment plant is a
regular task for the treatment operators and water technologists. Based on a broad
experience with the operation of the treatment plant, they should know the critical
points in the process, and which focus is necessary to produce the desired water
quality with minimal effort. Given their long experience, operators are expected
to detect process changes and to react appropriately. However, it is difficult for
operators to oversee the consequences of their actions and to anticipate on gradual
changes in water quality, operational requirements or process performance. The
consequence is that the operation of the drinking-water treatment processes is
suboptimal in terms of product quality, costs and environmental emissions.

In the last decades, most drinking-water treatment plants have been auto-
mated. The use of automated operation increases objectivity and alleviates the
problems of variable and even contradictory heuristics between different oper-
ating personnel leading to inconsistent operation (Olsson et al. 2003; Bosklopper
et al. 2004). During the first automation projects, the goal was to operate the treat-
ment plant in the same way as the operators did before. Therefore the control
configurations consisted of a heuristic control strategy, based on historical opera-
tor experience.

In the research of Rietveld (2005) it is shown that mathematical process mod-
els are a reflection of the knowledge of the treatment processes. Different actors
in different circumstances gain knowledge about drinking-water treatment pro-
cesses. Operators get information from the full-scale plant, designers obtain their
data from pilot plants and researchers experiment at laboratory scale. If process
knowledge can be captured in a model, it will be retained. However, to use these
models for the control design of a treatment plant and apply them in the daily
operation of the treatment plant is not a trivial task.

The challenge is now to shift the operation of a drinking-water treatment plant
from experience-driven to knowledge-based. The operation should be pro-active,
based on the actual state of the plant and predicted operational conditions. The
use of a model-based approach seems obvious, but the models must be embedded
in an appropriate control framework, taking the process characteristics of a water
treatment plant into account.

1.2 Model-Based Approach

In the current practice of drinking-water production and distribution, model-
based control methods are only successfully applied for the control of water quan-
tity. The increased use of flow and level measurements has lead to the optimisa-
tion of the quantitative aspect of production and distribution (Bakker et al. 2003;
Hill et al. 2005). In the Netherlands, about 30% of the drinking-water is produced
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and distributed using advanced control to optimise the production capacity and
storage use (DHV 2009).

Model-Based Control of Water Quantity in Amsterdam
In Amsterdam, model-based control of drinking-water distribution is in operation
since January 2006. The aim is to optimise the control of the distribution pumps
to meet the operational criteria at the lowest energy costs (pump efficiency and
pressure optimisation). The operational constraints are the minimal and maximal
pressure throughout the entire distribution area, minimal and maximal level of
water storage tanks and the maximal production and distribution capacity at the
different treatment plants.

Thanks to model-based control, the pressure variations in the city are min-
imised, causing energy savings. In figure 1.1 (left), the pressure at a critical point
in the distribution area during the day is plotted for one week in April using data
from 2004 (manual operation) and 2007 (model-based control). In figure 1.1 (right)
the same data are plotted in a histogram, showing the percentage of the week that
a certain pressure is kept. It can be observed that the average pressure in the new
situation is lower (especially during high consumption hours), and that variations
in pressure are much lower. By reducing the pressure variations, the pressure can
be closer to the minimal pressure of 248 kPa.

0 5 10 15 20
230

240

250

260

270

280

P
re

ss
ur

e 
[k

P
a]

Time of the day [hours]

22−29 april 2004
22−29 april 2007

220 240 260 280 300
0

5

10

15

20

25

Pressure [kPa]

T
im

e 
[%

]

22−29 april 2004
22−29 april 2007

Figure 1.1: Left: Pressure at the critical point in Amsterdam before (2004) and after
(2007) implementation of model based control. Right: Histogram of the same data.
The minimal desired pressure is indicated by the dashed line.

Model-Based Control of Water Quality
To extend the model-based control of water quantity to the control of water qual-
ity, some steps have to be taken. The processes involving water quality are more
complex to model than water quantity. The relation between process state, con-
trol actions and measurements are not obvious and to describe these relations the
appropriate model type must be selected from the many types of models avail-
able (Ljung 2008). The models vary from so-called “white-box“ models, which
describe the physical processes from first principles, “grey-box“ models, which
contain some unknown parameters or structures, to “black-box“ models, which
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are based only on historical data. The white-box and grey-box models store pro-
cess knowledge found during process research and can be reused in other process
conditions or treatment facilities, while black-box models are limited to the situa-
tion described by the historical data.

In a model-based approach the model might be used in several ways to im-
prove the operation of a drinking-water treatment plant (figure 1.2). At the bot-
tom of the graph the treatment process is represented. The first layer of control
is the basic control. The basic control is implemented in a simple, but robust, au-
tomation configuration. In this configuration is no room for extensive calculations
or data retrieval. The basic control, however, might be improved by using process
models during control design.

Figure 1.2: Model-based approach for the control of a drinking-water treatment
plant

The second layer of control is the advanced control layer. This control layer
is used to do extensive calculations and to handle large amounts of historical
data. The advanced control layer consists of model-based monitoring and model-
based control. The model-based monitoring is used to determine the process state.
The process state can then be used in basic and model-based control or it can be
presented to the operator, to take appropriate action. However, the information
density in quality measurements is low and to use all information available, the
model-based monitoring must be able to use laboratory data. How these mea-
surements can be combined with a process model to find the process state and
how detailed the process state or complex the model can be to effectively be ap-
plied in drinking water treatment has to be determined. The model-based control
is used to determine the appropriate control actions based on the current process
state. Using the process analysis the control scheme must be elaborated, which



1.3 The Weesperkarspel Plant 5

uses the model effectively, but is also understandable for the operators and the
technologist of the treatment plant.

The thirst layer in the graph is the model-based optimisation. A validated
process model is used to determine the optimal process conditions within the op-
erational boundaries. These optimal conditions are then used in basic control and
model-based control. The process optimisation, however, must not be a magic
box, giving one optimum, but must extend process knowledge, by evaluating sen-
sitivity of the optimum and boundary conditions

This approach is applied to the Weesperkarspel treatment plant and in more
detail to the pellet-softening treatment step.

1.3 The Weesperkarspel Plant

The Weesperkarspel treatment plant is one of the two drinking-water treatment
plants of Waternet, the water-cycle company of Amsterdam and surrounding ar-
eas. The plant is taken as a case study in this research. The aim of the Weesper-
karspel treatment plant is to produce water that is always safe to drink, retains
its good quality during distribution and is tasteful. There are multiple barriers
against contaminants and processes to improve organoleptic water quality pa-
rameters, such as colour and total hardness.

The drinking-water treatment plant Weesperkarspel receives pre-treated water
from Loenderveen (figure 1.3). The raw water mainly consists of seepage water
from the Bethune polder, sometimes mixed with Amsterdam-Rhine Canal water.
At Loenderveen the raw water is coagulated with ferric chloride (FeCl3) and flocs
are removed in horizontal settling tanks, resulting in the removal of phosphate,
natural organic matter (NOM), suspended solids and heavy metals. The quality of
the water further improves thanks to sedimentation, nitrification of ammonium,
biodegradation, and other self-purification processes in a lake of 130 hectares with
a retention time of about 100 days. The remaining ammonium, suspended solids
and algae are removed during rapid sand filtration before the water is transported
over 10 kilometres to the Weesperkarspel treatment plant without chlorination.

The first process at the treatment plant Weesperkarspel is ozonation for disin-
fection (die-off of pathogenic micro-organisms) and oxidation of micro pollutants
and NOM, which results in an increase in the biodegradability of the organic mat-
ter. Thereafter, pellet reactors are used to reduce hardness (softening) and bio-
logical activated carbon (BAC) filtration is applied to remove organic matter and
organic micro pollutants. The last step in the treatment is slow sand filtration
for further nutrient removal and reduction of suspended solids. This process is
also the second important barrier in the treatment against pathogens and is es-
pecially important for removing persistent pathogens with low susceptibility to
ozone (e.g., Cryptosporidium). Drinking water is transported and distributed with-
out residual chlorine.
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Figure 1.3: Process scheme of pre-treatment at Loenderveen and drinking-water
treatment plant Weesperkarspel.

The softening process and the biological activated carbon process are studied
in more detail in this thesis. The pellet-softening treatment step has the largest
control complexity and recent analysis of the operation of the reactors at Waternet
shows that the current process operation gives large variations in process state (Ri-
etveld et al. 2006). The (biological) filtration process is one of the most important
processes in drinking-water production and there is a long history in the research
of the physical processes in the filters (Ives and Pienvichitr 1965; Ives 2002). How-
ever, in current practice the state of the process is not monitored online and the
physical insight found through research is not used in the daily operation. De-
tailed descriptions of the softening process and the biological activated filtration
process at Weesperkarspel are given in appendix A.

1.4 The Thesis

The aim of this thesis is to determine how to use mathematical process models to
shift the operation of drinking water treatment plants from experience-driven to
knowledge-based. First the process characteristics of the treatment plant must be
identified. Based on this analysis an appropriate control design method is sought
for. A validated model of the pellet-softening process is needed. The thesis then
focuses on how the pellet-softening model and other models can be applied in
control design, process monitoring, process optimisation and process control to
improve treatment plant performance. By using illustrative example applications
from the Weesperkarspel treatment plant of Amsterdam, the research focuses on
solutions just beyond the current practice.
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The thesis is split into three parts. The first part is the analysis of the drinking-
water treatment control problem (chapters 2-3). The second part consists of the
modelling of the most complex process, the pellet-softening process (chapter 4)
and the third part is the application of this model and other models in appropriate
model-based monitoring, optimisation and control schemes (chapter 5-7).

The outline of the thesis is as follows. In chapter 2, the processes in a drinking-
water treatment plant are analysed from a control perspective, focusing on objec-
tives, process characteristics and disturbances. This analysis is used in chapter 3
to deduce a control-design methodology for drinking-water treatment processes,
with a focus on the pellet-softening treatment step. The mathematical model of the
pellet-softening process, which is used in consecutive chapters, is deduced, cali-
brated and validated in chapter 4. In chapter 5 the softening model, a model of the
biological activated carbon filtration treatment step and a pH model of the inte-
gral treatment plant are used to monitor individual measurement devices, process
units, a treatment step and the entire treatment plant. In chapter 6 the white-box
model of the pellet-softening process is used to determine the optimal process con-
ditions of the softening reactors and the complete treatment step. Finally, chapter
7 discusses the complete model-based control scheme for the softening treatment
step, including lane control, fluidised bed control and dosage control.

The content of this thesis is based on multiple journal and conference papers.
The summary of each chapter cites the original publications.
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Chapter 2

Drinking-Water Treatment

Process Analysis

Before appropriate optimisation and control methods can be designed
and implemented, it is necessary to analyse the drinking-water

treatment processes. In general the treatment processes are robust, but
ignoring the typical process behaviour can hamper optimal performance.
Typical performance inhibitors are: large difference in time constants of
individual sub processes; time delays between processes; limited possi-
bility for disturbance rejection; limited online measurement possibilities;
limited or indirect control possibilities. Mathematical process models that
describe typical process behaviour are crucial for achieving further im-
provement in process performance.

2.1 Introduction

The analysis of a drinking-water treatment plant is a regular task for the treatment
operators and water technologists. Based on a broad experience of operation of
the treatment plant, they should know the critical points in the process, and which
focus is necessary to produce the desired water quality with minimal effort. Due
to their long experience, operators are expected to detect process changes and to
react appropriately.

With the increased automation of the process, the distance between operators
and the process, however, increases. The process objectives are supposed to be
met by the automation and changes in the process are automatically compensated
for. The automation of the plant, therefore, introduces new challenges to the pro-
cess operators in assessing their plant.

The analysis of the treatment processes from an automation point of view is
necessary to maximise the advantages that automation of the plant can bring. The

9



10 Chapter 2 Drinking-Water Treatment Process Analysis

optimal performance of a plant is not only achieved by implementing advanced
optimising control algorithms, but starts with the control design of the basic con-
trol loops. At every design stage, the plant objectives must be taken into account,
since each control loop contributes to the optimal operation of the integral plant.

To achieve an appropriate process analysis, the first steps of plant-wide control-
design procedures are followed, which have been applied to chemical plants (Luy-
ben et al. 1997; Skogestad 2000). In this chapter, the plant objectives are evaluated.
Based on the typical process characteristics, the possible disturbances are deter-
mined. The commonly used online and offline measurements are evaluated. Fi-
nally, the control actions, which are possible in current drinking-water treatment
plants, are discussed.

2.2 Process Objectives

The process objectives are divided into plant-wide objectives, which are directly
related to the final water quality, and the local process objectives, which are related
to the local process performance.

The plant-wide process objectives can be split into three categories (van der
Helm 2007). The first and most important category contains the objectives related
to the toxicological properties of the water produced. The water must be healthy
to drink, under all circumstances. The second category contains the objectives
related to the organoleptic properties of the water. Drinking water must be tasteful
and clear. The third category contains operational objectives. These objectives are
related to the minimisation of operational effort and cost, while maximising plant
reliability. The operational effort is not only related to the plant operation, but also
to the maintenance of the drinking-water distribution system.

As an example, the plant-wide objectives for the Weesperkarspel treatment
plant of Waternet are determined. It is a surface water treatment plant handling
relatively high natural organic matter (NOM) concentrations. An overview of wa-
ter quality parameters and operational parameters, which are applicable for this
plant, is given in table 2.1. The parameters are then assigned to the three categories
and for each parameter, a setpoint or optimisation objective is formulated. Gen-
eral objectives in the first category are maximising disinfection, minimising disin-
fection by-product formation, minimising organic micro-pollutants, minimising
salt content and achieving a desired total hardness. Organoleptic objectives are
formulated for turbidity, colour, odour, taste and oxygen concentration of the wa-
ter. The operational optimisation consists of producing biologically stable water,
to minimise after growth in the distribution system, chemically stable water de-
termined by saturation index (SI), to prevent corrosion in the distribution system
and minimising the chemical and energy usage, while maximising the reliability
of the plant.

The local process objectives are predominantly determined by operational con-
straints of consecutive treatment steps. For each treatment step, the operational
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Table 2.1: Plant-wide control objectives of the Weesperkarspel treatment plant.

constraint on the incoming water quality must be defined. If there are restrictions
on water quality parameters for the performance of the process, these constraints
must be met by the preceding treatment steps. These quality requirements are
potentially not related to the plant-wide control objectives, and must be specified
separately.

As an example of a local process objective, the consecutive treatment steps soft-
ening (with acid dosage) and biological activated carbon of the Weesperkarspel
treatment plant are discussed. The plant-wide objective is to achieve a final satu-
ration index (SI) of 0.6 (see table 2.1). Due to the process conditions, the SI after
Softening is about 0.4, but the maximum SI for the biological activated carbon
(BAC) filtration is 0.1. A higher SI can result in calcium carbonate build up on the
carbon and this hampers the regeneration process. Therefore, extra acid is dosed
after the softening process to lower the SI from 0.4 to 0.1. The operational con-
straint for the SI before BAC filtration conflicts with the plant-wide objective for
SI. After the BAC filtration extra caustic soda is dosed to achieve the desired SI of
0.6.

Most of the objectives are defined as optimisation objectives, minimising or
maximising a specific criterion. Mathematical process models are, therefore, an
appropriate tool to evaluate the objectives, taking the process characteristics into
account.
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2.3 Process Characteristics

The characteristics of a drinking-water treatment plant determine how the process
objectives can be achieved. The process characteristics are split into three groups:
plant configuration; process dynamics; process delays.

2.3.1 Plant Configuration

A drinking-water treatment plant is typically configured as a number of treatment
steps in series and a small recycle flow of backwash water. Each treatment step
consists of a number of parallel lanes with identical processes. In the normal sit-
uation, there is no significant buffering between the treatment steps. Therefore,
each step operates at the same flow, but the total flow can be distributed unevenly
over the different process lanes and, in some processes, over a bypass. In figure
2.1 a schematic view of the treatment plant of Weesperkarspel is given, based on
the process scheme as given in figure 1.3. The ozonation treatment step consists
of four parallel lanes with ozone dosage and contact chambers. The flow over the
individual lanes (valve sign in figure 2.1) and the ozone dosage (arrow sign in fig-
ure 2.1) is controlled for each lane separately. After ozonation water is mixed and
transported to the softening treatment step. The softening and filtration treatment
steps are configured in a similar way.

Figure 2.1: Example configuration of a typical drinking-water treatment plant
(Weesperkarspel), where each treatment step consists of multiple lanes.

This configuration is normally chosen to increase the reliability of the plant.
Malfunctioning of a single lane does not endanger the total production of the
plant. However, this has the following operational consequences:
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• Since there is no significant buffering between the treatment steps, distur-
bances in previous steps are not filtered and they propagate to the next treat-
ment step.

• The disturbances in a single lane can propagate to other lanes in the next
treatment step.

• When all individual lanes have to be monitored, the number of necessary
measurement devices becomes large.

• The water quality measurements between the treatment steps (the practical
position to measure water quality) is influenced by the performance of the
individual lanes and the flow pattern at this point.

• The flow control to each lane is coupled to the other lanes (since there is no
buffering). Changes in flow in one lane therefore affect all the other lanes in
the treatment step. This is a potential risk for instabile flow control through
the lanes.

• The small recycle flow of backwash water can introduce quick disturbances
to the feed water quality, because the backwash water flow has a different
water quality.

2.3.2 Process Dynamics

Most drinking-water treatment processes can be modelled as non-linear, stiff sys-
tems (Rietveld 2005), whose dynamics are characterized by slow and fast modes.
The fast dynamics (seconds to minutes) of the process are directly influenced by
the water flow and chemical dosages. The slow dynamics (hours to days) are re-
lated to a change in performance of the process lanes (filter clogging, backwash
procedure, pellet growth, pellet discharge and so on).

As an example of the stiff behaviour, the head loss of an activated carbon filter
is shown in figure 2.2. The head loss is determined by calculating the difference
in pressure between the top and the bottom of the filter, corrected for the pressure
difference due to the static water height. The top graph shows the build-up of the
head loss in filter 13 of the Weesperkarspel treatment plant. The bottom graph is
the total flow for all hydraulically coupled filters. Slow head loss build-up occurs
during steady process operation. The speed of build-up, depends on filter load
and therefore water flow, but quick variations in head loss occur during change in
production flow and during filter backwashing. The head loss increases gradually
due to the clogging of the filter, until point A, where the total flow decreases and
therefore the flow through this filter changes. The change in flow causes immedi-
ately a change in head loss, but also changes the rate of clogging and the build-up
of head loss. At point B, another filter is being backwashed, and the total flow is
divided over fewer filters, causing an increase in flow per filter. At point C the
filter under consideration is backwashed.
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Figure 2.2: Head loss of filter 13 (top). Flow to filters 13 to 26 (bottom)

The different scales of process dynamics must be considered when evaluating
disturbances, measurements and control actions, because:

• Since the fast modes and slow modes of the process are coupled, quick vari-
ations influence the long-term performance of the process.

• Flow variations give very fast variations, compared to quality dynamics of
the processes.

• Measurements intended to capture the slow dynamics of the process can be
influenced by variations caused by the fast dynamics of the process.

• In the current practice, control actions intended to control the slow dynam-
ics of the process are often discontinuous and introduce in its turn quick
variations (backwash, pellet discharge).

2.3.3 Process Delay

Due to the desired contact time or maximal filtration velocity, the transport delay
between treatment steps can be hours. The actual delay depends on the actual
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flow, but for a period of constant flow, even small variations in quality parameters
can be used to determine the delay between treatment steps. Measuring the same
variables at different stages of the process, the delay can be found using the cross
correlation between two measurement signals. The measured delay (∆T ) is found
as the time shift of one signal, which maximises the cross correlation:

∆T = arg max
τ>0

(cor (m1(t),m2(t + τ))) (2.1)

Figure 2.3 gives an example of the delay calculation for the Weesperkarspel
treatment plant. A very small pH variation after the acid dosage at Loenderveen
can be observed after transport (10 km), ozonation, pellet softening and acid dosage.
During a period of four days the production flow rate was constant at about 2725
m3/h. The calculated delays, related to the pH measurement after acid dosage are
given in the legend of the graph. The plotted curves are shifted with the calculated
delay.
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Figure 2.3: Process delay. The pH variations at five consecutive treatment steps
from the Weesperkarspel treatment plant.

The delay in a process restricts the possible application of pure feedback con-
trol. The measured deviations in quality can normally not be compensated within
the given time delay. Using a model-based control scheme, dynamical transport
delays can be incorporated in control.
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2.4 Disturbances

The main objective of a drinking-water treatment plant is to produce a constant
drinking-water quality. The main purpose of control in a drinking-water treat-
ment plant is therefore the suppression of disturbances in the process. Before an
appropriate control approach is selected, the main disturbances of the treatment
plant must be identified and quantified:

• The largest disturbance for the drinking-water production related to quality,
is the production flow change. Due to the configuration of the plant, the
production flow rate affects all processes instantaneously. The water quality
however, is transported through the plant with a delay. As a consequence,
the final water quality is affected by past production flow rate changes.

• In the case the source water for the drinking-water treatment plant is ex-
tracted from a large water resource such as a lake or ground water reservoir,
the quality of the source water is relatively constant. However, for surface
water treatment plants, seasonal changes can affect the quality of the source
water significantly. Temperature, precipitation and algae growth are impor-
tant disturbances. However, these changes are relatively slow compared to
the retention time of the water in the treatment plant (days-weeks).

Although the delay between processes can be large, the effect of the distur-
bances at the beginning of the treatment train can be observed at the end of the
treatment. In figure 2.4 an example of a short but large pH variation (pH(t) -
pH(t0)) after the activated carbon filtration process is given, which is still present
after 9.5 hours retention time in the slow sand filtration. The pH variation is
caused by flow variation due to filter backwashing. The pH control, using caustic
soda dosage after the activated carbon filtration treatment step, does not compen-
sate for this flow change.

In general it can be stated that many fast changes (seconds to minutes) in wa-
ter quality are introduced in the treatment plant itself. These disturbances can be
minimised by using appropriate control schemes. Moreover, mathematical pro-
cess models can be used to determine the effects of the disturbances in the con-
secutive treatment steps and the measurements and control actions necessary to
handle them in an effective way.

2.5 Measurements

A drinking-water treatment plant is monitored extensively to guarantee the final
water quality. Monitoring can be split into four groups:

• Visual operator observations

• Laboratory measurements
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Figure 2.4: Process disturbances. The pH variations (pH(t) - pH(t0)) at two con-
secutive stages of the Weesperkarspel treatment plant.

• Semi-online measurements

• Online measurements

The visual operator observations are still common practice. Since most of the
processes have slow dynamics, a daily inspection of the process is considered to
be sufficient to determine the state of the process. The advantage of a visual in-
spection is that the observation can oversee large areas, like flow patterns in filters
or bubble patterns in ozone. This approach, however, becomes more difficult due
to the increased automation of drinking-water treatment plant and the increased
frequency of staff change: a proper visual observation requires an experienced
eye.

Laboratory measurements are essential to determine the quality of the pro-
duced water and the source water. They are required to show the compliance
with the legal standards. However, the delay between the sampling and the result
is relatively large, varying from days to weeks. Another disadvantage of labo-
ratory measurements is that they are based on a single sample taken by the lab
assistant. This is satisfactory for slowly changing water quality parameters, as in
source water, but these measurements are unable to detect a rapid change in the
process.

The semi-online measurements are executed by measurement devices which
require some kind of processing of the measured water before a result can be ob-
tained. These devices, therefore, give a measurement result after some processing
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delay. This delay between taking a water sample and availability of the measure-
ment result must be taken into account. The disadvantage of these devices is that
they are normally complex to maintain, due to the processing stage. An advantage
is that these devices can be configured to measure quality parameters in different
flows. Commonly used semi-online measurements are titration devices (e.g., to
determine hardness).

The online measurements give direct results, but are normally not directly
measuring water quality parameters or a process state. Detecting slowly changing
process values can be difficult with online measurement, due to a possible slow
drift of these measurements. Care must also be taken while comparing the same
measurement between lanes, since measuring error or offset can be close to the
measured difference between the lanes.

The pellet-softening process is shown as an example. The bed growth is a slow
process. The residence time of a grain (from garnet to pellet) is typically 100 days.
In this period the pellet size is not monitored online and, in the current control
configuration, the pressure drop measurement over the total bed determines the
automatic pellet discharge and garnet dosage. Regularly samples are taken from
the discharged pellets. After two days the laboratory results of the sieve analyses
are available. Based on these results, incidental discharge and charge actions are
applied. This makes the bed management is a time consuming job. Even with
this operation effort the aimed for pellet size of 1 mm is not achieved, as can be
observed in figure 2.5. The pellet size varies between 0.6 and 1.4 mm, with a
constant pressure drop measurement over the total bed. Thus, the pressure drop
measurement cannot directly be used to determine the process state as is the cur-
rent common practice.

For all measurements it must be considered that the size of a process step can
be large (e.g., one single activated carbon filter has a surface of 50 m2) and the
actual quality measurement is possibly not representative for the complete lane
or treatment step.

Based on this analysis, the combination of (semi-)online measurements and
a mathematical process model should be used to estimate the process state and
predict water quality parameters. Laboratory measurements can then be used to
validate the predicted water quality parameters. In this way the performance of
the plant can be monitored closely and deviations from the optimal situation can
be detected rapidly.

2.6 Control Actions

The possible control actions in a treatment plant are limited. In general there are
five types of control actions:

• Production flow
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Figure 2.5: Pressure drop over the total bed and discharged pellet size of reactor 4
at the Weesperkarspel treatment plant.

• Water distribution over lanes

• Dosing of chemicals

• Periodic cleaning

• Charge or discharge of treatment material

The average production flow rate of a treatment plant is determined by the
consumer demand. The available buffer capacity at the treatment facility can be
used to level off the quantity variations during a day. Selecting the appropriate
production flow is a trade-off between the number of production flow changes
and the amplitude of these changes.

The control of the water distribution over the lanes at each treatment step is
commonly only used for configuration changes, like backwashing of a filter. Ac-
tively controlling the distribution of water distribution between the lanes can be
used to optimise the performance of the total treatment step. Since the lanes in
one treatment step are coupled, water distribution is treatment step control. An
example of varying water distribution over filters is the declining rate filtration
(Akgiraya and Saatcia 1998). The flow rate to the filters is controlled in such a
way that the clean filters receive more water than the filters with longer run times.
For the clean filters, the filtration occurs deeper in the bed and the loading on a
filter can be increased. The backwashing of the filter can be postponed, resulting
in a lower usage of backwash water.
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The dosing of chemicals is a direct control action to influence the quality of
the drinking water. Achieving a good and rapid mixture of the chemical with the
water is important. The resulting water quality for a water stream mixed with
different dosages does not equal the average dosage (e.g., ozone dosage for dis-
infection). Since dosing has a direct influence on water quality, it has the most
potential to optimise the operation of the entire treatment plant. The total amount
of chemicals to be dosed must be minimised and introducing new disturbances
by chemical dosage variation must be prevented.

As an example the control of a single softening reactor is shown (see figure 2.6).
In the current control scheme, the caustic soda dosage is directly controlled by the
pH measurement at the end of the reactor. The influent pH of pellet-softening re-
actors at WPK varies over the year, but does not change rapidly. However, effluent
pH has considerable fast variations due to changes in water flow and dosing of
chemicals. These quick variations are difficult to compensate for using the acid
dosage after the softening reactors (van Schagen et al. 2005).

Apr Jul Oct Jan Apr
7

7.5

8

8.5

9

9.5

Date

pH
 [−

] 

Influent reactor 4
Effluent reactor 4

Figure 2.6: Influent and effluent pH of reactor 4 at the Weesperkarspel treatment
plant.

The periodic cleaning of filtration material is probably one of the oldest con-
trol actions in drinking-water treatment. However, there is still research going on
about the best cleaning strategy (Ives 2002; Ross 2006). The control is normally
based on postponing the cleaning as long as possible. Before and after cleaning
the process performance differs. This performance difference can be used to op-
timise the performance of the treatment step. The time periods between cleaning
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differ significantly, from 24 hours between backwashing of sand filters to 400 days
between regeneration of biological activated carbon filters.

The charge or discharge of treatment material is normally used to keep a pro-
cess at a constant performance, like the periodic cleaning. The aim is to achieve a
close to continuous (dis)charge to minimise the disturbance of the process. Exam-
ples are the dosage of seeding material and the discharge of pellets in a softening
reactor.

2.7 Conclusions

The main objective for a drinking-water treatment plant is to produce drinking
water with a constant excellent water quality. To achieve this objective, the pro-
cess characteristics must be taken into account during operation of the plant. Due
to the limited water buffering in the treatment plant, production flow variations
directly influence the process performance at all treatment steps. Moreover, water-
quality variations present in the source water of the plant or introduced at a treat-
ment step are propagated through the consecutive treatment steps. These quality
variations are not levelled, despite the delay between the treatment steps, due to
the plug flow character of the treatment plant.

Most treatment processes have slowly varying behaviour, influenced by quick
variations in water-quality and control actions. This stiff behaviour must be taken
into account to achieve plant objectives. Most objectives are defined as optimisa-
tions, maximising or minimising certain criteria. It is, therefore, necessary to con-
tinuously monitor the slowly varying process behaviour, to dynamically adapt
the operation of the treatment plant to the current state of the processes.

However, continuously measuring the current process state of the treatment
processes is often impossible. In addition, direct measurement of water-quality
parameters can be difficult, due to the low concentrations, small variations and
the physical size of the treatment process. Individual measurements of water
quality are, therefore, unreliable for plant assessment. Direct measurements of
process parameters and laboratory measurements must also be used in combina-
tion with mathematical process models to asses the process state. However, to use
laboratory measurements in the day-to-day operation, the timestamp of the water
sample must be accurately registered to be able to couple online and laboratory
measurements.

The effect of control actions on the water quality can be very direct (chemical
dosage), or indirect (charge or discharge of treatment material). In both cases, the
introduction of quick variations of water quality parameters must be minimised.
Effects of control actions are potentially not directly measurable, but affect the
performance of the process on the long run. This long term effect on process per-
formance can be predicted using mathematical process models.

Process analyses and the development of new optimisation and control algo-
rithms should use mathematical process models to take the typical drinking-water
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treatment process characteristics into account. Besides process dynamics and de-
lays these models should describe the effect of possible disturbances and control
actions on the available online and laboratory measurements. Using these models,
appropriate measurements can be chosen, data can be validated, offline process
optimisation can take place, and online model based control can be implemented.



Chapter 3

Control-Design Methodology

for Drinking-Water Treatment

Processes

The control of a drinking-water treatment plant determines its perfor-
mance. To design the appropriate control system, a design method-

ology of five design steps is proposed, which takes the treatment process
characteristics into account. For each design step, the necessary actions
are defined and illustrated with examples from the Weesperkarspel treat-
ment plant. For the pellet-softening treatment step the control design is
elaborated in more detail. Using this design, a new control scheme for the
pellet-softening treatment step has been proposed and implemented in
the full-scale plant and a chemical usage reduction of 15% is achieved.
Corrective actions of operators are no longer necessary, reducing the
maintenance effort for this treatment step.

3.1 Introduction

The drinking-water treatment process analysis in the previous chapter illustrates
that the design of the process control for a drinking-water treatment plant is a
complex task. The control objectives of individual processes are related to con-
secutive processes and plant-wide control objectives. The treatment processes
are sensitive to process disturbances. The variations in flow directly influence
all processes, since there is no buffering between the processes. There are long
time delays between the processes, but water quality variations are transmitted
through the subsequent processes. The number of online water quality measure-
ments is limited, and the available online measurements are indirect process mea-
surements. In general, the available control actions are not directly related to the
process objectives.

23
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To maintain a high standard for drinking-water quality in fully automated
drinking-water treatment plants, the design of the control systems is thus essen-
tial. This will lead to a drinking-water production with water quality according to
well-defined objectives, without the influence of subjective operator judgement.

To realise a control system that meets these standards, a design methodology
for the basic control of drinking-water treatment plant is proposed in this chap-
ter. This methodology is related to existing design procedures for the plant-wide
control of chemical plants, which focus on economical optimisation (Luyben et al.
1997; Skogestad 2000; Huesman 2004; Konda et al. 2005). The control of drinking-
water treatment plants, however, typically focuses on water quality and on re-
liability (van der Helm 2007). In addition, there are more aspects, in which a
drinking-water treatment plant differs from a classical chemical plant:

• The production flow is set by the consumption of drinking water. The buffer
capacity in the treatment plant is mainly used to level the daily consumption
pattern. Day-to-day production flow rates can vary by up to 30% and these
variations must be handled by adjusting the production flow rate (Bakker
et al. 2003).

• There is no possibility to discharge off-spec material, all water that is pro-
duced must meet the water quality criteria.

• Each treatment step does not only serve one specific goal, but affects a num-
ber of water quality parameters. The quality control is therefore a plant-wide
control problem.

• The online measurements of water quality are inaccurate or indirect, and
laboratory measurements have a delay of several days to weeks.

The design procedure must, therefore, be modified for the application in drinking-
water treatment plants. The first section shows the existing design procedures and
the proposed design methodology, using examples from the Weesperkarspel treat-
ment plant of Waternet. A description of the plant can be found in section 1.3. For
the softening treatment step, the design methodology is elaborated in more de-
tail and results are shown of the implementation of the new control loops in the
full-scale treatment plant.

3.2 Design Methodology

The proposed procedure to determine a control configuration for a drinking-water
treatment plant is based on the design procedures given in literature (Luyben
et al. 1997; Skogestad 2000; Huesman 2004; Konda et al. 2005). The steps in these
approaches are summarized in table 3.1. The procedures are similar, but have
some differences. All approaches determine the control objectives and control
constraints. First the control objectives of the overall plant must be determined.
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In general, each objective is achieved using multiple treatment steps. The deter-
mination of the operational constraints for each treatment step is the second step
in the design procedure.

Table 3.1: Control-design procedures for chemical plants.

(Luyben et al. 1997) (Skogestad 2000)

1. Establish control objective
2. Determine control degrees of free-

dom
3. Establish energy management sys-

tem
4. Set production rate
5. Control product quality and han-

dle safety, operational and environ-
mental constraints

6. Control inventories (pressure and
levels) and fix a flow in every recy-
cle loop

7. Check component balances
8. Control individual unit operations
9. Optimise economics or improve

dynamic controllability

Tasks:
1. Selection of controlled variables
2. Selection of manipulated variables
3. Selection of measurements
4. Selection of control configuration
5. Selection of controller type

Steps:
1. Degrees of freedom analysis
2. Cost function and constraints
3. Identify the most important distur-

bances (uncertainty)
4. Optimisation
5. Identify candidate controlled vari-

ables
6. Evaluation of loss
7. Further analysis and selection

(Huesman 2004) (Konda et al. 2005)
1. Determine control objectives use
2. Determine number of degrees of

freedom
3. Develop material balances
4. Develop quality control

schemes
5. Check influences of recycles
6. Minimise operational costs
7. Simple checks
8. Simulations
9. Evaluate

1. Define plant-wide control objec-
tives

2. Determine control degrees of
freedom

3. Identify and analyse plant-wide
disturbances

4. Set performance and tuning cri-
teria

5. Product specifications
6. ”Must-controlled” variables
7. Control of unit operations
8. Check component material bal-

ances
9. Effects due to integration
10. Enhance control system perfor-

mance

The approaches of both Luyben et al. (1997) and Huesman (2004), focus on
setting the quality and quantity balances in the plant. Since production flow of
drinking water is determined by consumption and conversion of water quality
parameters is limited, this is not applicable for drinking-water production. The
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use of recycle flows as discussed in both articles is very limited in drinking-water
production and is left out of the analysis.

The approaches of Skogestad (2000) and Konda et al. (2005) search for the main
disturbances of the process. Due to inaccurate, indirect and laboratory measure-
ments, online identification of disturbances is frequently impossible. A thorough
analysis of possible disturbances of each treatment step and the influence on fol-
lowing treatment steps is therefore essential for the design of the integral control
system in drinking-water production.

As soon as the control objectives and the main disturbances are identified, in
most approaches the next step is to select appropriate controlled variables. Finally
the control actions (manipulated variables) and control configuration are chosen,
based on unit and plant-wide optimisation.

The proposed steps for the design procedure of an integral drinking-water
treatment control system are now:

1. Determine plant-wide control objectives

2. Determine operational constraints

3. Identify important disturbances

4. Determine controlled variables

5. Determine control configuration

Determine plant-wide control objectives
The plant-wide process objectives can be split into three water quality categories
(van der Helm 2007). The first and most important category contains the objec-
tives related to the toxicological properties of the produced water. The water must
be healthy to drink, under all circumstances. The second category contains the ob-
jectives related to the organoleptic properties of the water. Drinking water must
be attractive, without odour, tasteful and clear. The third category contains oper-
ational objectives. These objectives are related to the minimisation of operational
effort and cost and to the maximisation of plant reliability. The operational ef-
fort is not only related to the plant operation, but also to the maintenance of the
drinking-water distribution system.

For the Weesperkarspel treatment plant the plant-wide control objectives are
given in table 2.1.

Determine operational constraints

The operational constraints of each treatment step must be determined. The first
common constraint is the maximum production capacity of each treatment step.
Due to the configuration of a treatment plant the smallest capacity determines the
capacity of the total plant. The water quality for each treatment step is determined
by the previous steps. For each treatment step, the operational constraint on the
incoming water quality must be defined. If there are restrictions on water qual-
ity parameters for the performance of the process, these constraints must be met
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by the preceding treatment steps. These quality requirements are not necessarily
related to the plant-wide control objectives, and must be specified separately.

For the Weesperkarspel treatment plant, for instance, the ozone contact time
must be long enough to ensure that there is no more ozone in the water after the
contact chambers. This results in a maximum production flow rate and maxi-
mum dosage, which is temperature dependent, since the reaction rate of ozone
changes with temperature. Moreover, ozone dosage is maximised by disinfec-
tion by-products formation (van der Helm 2007). These are examples of opera-
tional constraints determined by reaction rates and the volume of the treatment
step. Other, more direct, constraints are the limited treatment capacity of back-
wash water, and therefore limited number of filters that can be backwashed in a
certain time frame. Filters must be backwashed before the head loss in the filter
gets larger than the water height, to prevent degasification. This leads also to a
maximum production rate, which is dependent on the speed of clogging of the
filters.

Identify disturbances
The largest variation for the drinking-water production related to quality is the
production flow. Other important disturbances must be identified and quantified.
The disturbances are not only related to the quality of the incoming water (e.g.,
temperature, pH). Since the concentrations are low and the deviations from de-
sired values are small, erroneous control and measurement devices can also cause
significant disturbances. Finally disturbances due to operational changes in pre-
vious treatment steps must be identified. For each disturbance, the relation to the
control objectives and operational constraints is evaluated.

The source water temperature of the Weesperkarspel treatment plant varies be-
tween approximately 2 ◦C and 25 ◦C (figure 3.1). The temperature variation has
direct influence on the performance of practically all treatment steps. The ozone
process is sensitive to changes in DOC concentration of the influent water. In case
of suddenly increased backwash intensity of the BAC filters, the DOC concentra-
tion in the water alters significantly through the recycle flow of the backwash-
water treatment. The change of DOC concentration disturbs the ozonation pro-
cess. The backwashing event of the filters cause flow variations after the BAC
filtration treatment step. In case of a backwash event, the number of filters in op-
eration varies, and, therefore, the flow through the filters. The flow variations do
not only disturb the filtration process, but also the caustic soda dosage and oxygen
dosage after this treatment step.

Determine controlled variables

The selection of the controlled variables is the creative part in the design proce-
dure. Based on the preceding three steps, variables must be chosen to be con-
trolled. The controlled variable is a water quality parameter, or a process value,
which is kept at a desired value using the available control actions. The ideal vari-
able has a desired value with a low sensitivity to disturbances and global optimi-
sations. This means that if the variable is kept constant, the process is optimal and
disturbances are effectively suppressed. To keep the variable at the desired value
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Figure 3.1: Temperature variations.

it should be sensitive to control actions. The combination of all controlled vari-
ables should achieve the desired control objectives, under the given operational
constraints of the treatment step and the consecutive steps.

To find the appropriate (new) controlled variables, mathematical process mod-
els must be used. With the models, the sensitivity to process objectives and pro-
cess disturbances are evaluated.

In the ozone treatment step of Weesperkarspel the ozone exposure (CT-value),
should be the controlled variable The disinfection performance and the formation
of disinfection by-products is directly related to this value (van der Helm 2007).
Currently this value is not being measured for the complete flow of the treatment
step. To maintain constant flows in the BAC filters, the head loss of each filter
should be the controlled variable. The head loss at a given state of clogging is
proportional to the flow (see section 5.4.1). Maintaining a setpoint for the head
loss, a constant flow through the filter is achieved. The setpoint changes gradually,
due to the clogging of the filter, but in the case of the backwash of other filters, the
filter can react directly, maintaining a constant production flow.

Determine control configuration
The control configuration couples the controlled variables to the possible control
actions. From the operational point of view, it is desired that the control config-
uration is modular for each treatment step in a way that operators and the plant
manager understand the process and the reaction of the controller to changes in
the process. The operator must be able to inactivate the automatic control sys-
tem in a treatment step, without negatively influencing the consecutive treatment
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steps. The control configuration is therefore defined for each treatment step, using
the controlled variables in that treatment step and the possible control actions.

The production flow of the treatment plant can only be set at one point in
the treatment plant, since buffering in the treatment plant is not available. The
normal production scheme should be a push scheme, where the production flow
is set at the beginning of the treatment plant based on the level in the reservoir
(normally just before distribution to the consumers) and limited by the smallest
capacity of the treatments steps (Luyben 1999). The controlled quality variables
will be controlled in each treatment step, keeping these values at the desired val-
ues. Preferably, each variable should be controlled with one controller.

Figure 3.2: Control configuration to minimise the flow variations in the BAC fil-
tration treatment step.

At the Weesperkarspel treatment plant, the level of the supernatant water of
the slow sand filters should be used determine the production flow rate. Due to
the large surface of the filters, the level changes gradually and is not sensitive
to backwash events. The ozone dosage could be controlled with a grid of redox
measurements, which guarantee minimal ozone dosage in the complete flow. In
the BAC filtration, the flow through the filter (controlled by a valve after the fil-
ter) should be determined by the actual production rate, the number of filters in
production, the supernatant water level and the pressure drop over the filter. The
production rate and the number of filters in production determine the expected
flow per filter, which is related with a clogging factor to the head loss in the filter.
The effluent valve keeps the head loss at the determined level. The supernatant
water level determines the clogging factor. The control configuration is illustrated
in figure 3.2.
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3.3 Pellet-Softening Treatment step

3.3.1 Process Description

Commonly, several parallel pellet reactors are installed, increasing the reliability
of the system and the flexibility in operation. Reactors can be switched on and off
in case of flow changes, maintaining water velocities between 60 and 100 m/h.
Softening in a reactor is normally deeper than the required levels. Subsequently,
part of the water can be bypassed and mixed with the effluent of the reactors. Due
to the restricted height of the reactor, the water leaving the reactor is always super
saturated. The acid dosage after the reactor and bypass prevents crystallisation
in the next process step. Figure 3.3 gives a schematic view of a single softening
reactor with a bypass.

Figure 3.3: Fluidised bed reactor with bypass.

The softening process has four possible control actions for each reactor:

• Water flow through the reactor

• Base dosage

• Seeding material dosage

• Pellet discharge

and in addition two control actions for the complete treatment step:

• Water flow through the bypass

• Acid dosage

The currently available online measurements per reactor are:
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• Head loss over the total fluidised bed

• Bed height

• Head loss over 40 cm at the bottom of the fluidised bed

• Water flow

• Base dosage flow

• Turbidity

• pH

• Hardness (semi-online)

and in the complete treatment step:

• Water temperature

• pH of the source water

• pH after acid dosage

• Hardness (semi-online)

The pressure drop over 40 cm at the bottom of the fluidised bed has been re-
cently introduced (Rietveld et al. 2006). An extensive description of the pellet-
softening treatment step at the treatment plant of Weesperkarspel including the
past control scheme, is given in section A.1.

3.3.2 Control-Design Methodology

Determine control objectives

The main objective of the softening treatment step is to maintain the desired total
hardness in the mixed effluent of all reactors and the bypass. At the same time
the super-saturation of calcium carbonate should be minimised to prevent cal-
cium carbonate deposits in the subsequent water treatment step. The following
variables have to be kept at a desired value:

• Total hardness of the mixed effluent

• Saturation index (SI) of the mixed effluent

At the same time, the operational costs and environmental impact must be
minimised. This results in a minimisation goal of base dosage, acid dosage, seed-
ing material dosage and energy consumption. The maintenance effort must be
minimised by settings up a control scheme, which can keep the treatment step in
optimal operational range, under the varying circumstances.
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Determine operational constraints
The fluidised bed imposes a number of constraints. The bed height is restricted
to the height of the reactor. This limits the possible changes of flow through the
reactor and the seeding material dosage. The porosity of the fluidised bed in the
reactor must be sufficiently high for the pellets to segregate. As soon as the poros-
ity becomes too low, the reactor starts to clog (van Schagen et al. 2008b). There
is a lower bound on the discharged pellet size. Small pellets cannot be reused in
industry and will also cause discharge of seeding material.

The size of the discharged pellets cannot be changed easily. Increasing size is
only possible using natural growth of the pellet in the reactor, rapidly decreasing
size is only possible by removing a significant part of the fluidised bed of the
reactor. The seeding material dosed into the reactor cannot be removed from the
reactor. Overdosing will lead to bed growth, which can only be compensated by
pellet discharge.

There are upper limits on all control actions, but in practice only the seeding
material dosage is limited in maximum dosing capacity. Under steady-state situa-
tions, the dosage is low and, therefore, seeding material installations are typically
small. This can be limiting during start-up of a reactor.

Identify disturbances
The main disturbances to the process are the changes of raw water temperature
and production flow rate. The change in temperature has two effects. The first
effect is the change of fluidisation behaviour of the pellets, due to the changed
viscosity of the water. The second effect is the changed reaction speed of the crys-
tallisation process. The other source water quality parameters, which are related
to the softening process, are rather stable (e.g., Calcium).

At the Weesperkarspel treatment plant, the raw water temperature varies be-
tween 3 ◦C and 25 ◦C during the year (figure 3.1). The total hardness, m-alkalinity
and conductivity are almost constant at 2.25 mmol/l, 3.2 mmol/l and 54 mS/m
respectively.

The flow through the reactor depends on the pressure in the feeding header,
the valve position and the head loss in the reactor. Unexpected changes in these
parameters will cause flow variations in the reactor. If the flow through a reactor
changes, the fluidised bed does not only changes it porosity (and therefore bed
height), but dynamic effects occur, which can cause the fluidised bed to be mixed.

The operational disturbances consist of the start-up and shutdown of a reac-
tor, the clogging of the dosing nozzles and the manual discharge of parts of the
pellet bed. As a consequence, the bed composition (the diameter of the pellets at
different heights in the reactor) can differ from the natural build-up of the bed.

The sensors available to evaluate the process online are limited and often in-
direct. The ultrasonic bed height measurement is inaccurate, especially during
seeding material dosage, when fines are flushed out and the fluidised bed has to
settle. The head loss of the total bed is related to the total mass of pellets and
seeding material in the fluidised bed reactor. It is flow independent, but gives no
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direct information about the fluidised bed composition or bed height. The pres-
sure drop over 40 cm in the bottom of the bed is related to the porosity and pellet
diameter of the bed at the bottom of the reactor. However, the relation between
pressure drop and pellet size is dependent on flow and temperature. The pH and
measurement have a tendency to drift. The flow measurement of caustic soda is
sensitive to scaling and, therefore, has a measurement offset.

Determine controlled variables
The desired effluent water quality (hardness and SI) in the mixed effluent are log-
ical controlled variables. A semi-online measurement registers hardness and a
pH measurement yields the SI estimation. However, these measurements are not
very reliable. Additional online monitoring through a model-based monitoring
scheme is necessary to provide the desired confidence.

The water flow through the reactor should be directly controlled. Short-term
variations in flow prevent an optimal bed composition. Extra safety margins in
maximal bed height and minimal porosity have to be taken if the flow is allowed
to change unexpectedly. The setpoint for water flow to reactors depends on de-
sired porosity, expected bed height, desired pellet size and actual temperature.
To determine the optimal flow, a model-based optimisation scheme is necessary,
since the multiple aspects are related. The actual temperature (and not the ex-
pected temperature) is chosen in the scheme to maintain the same porosity, as
soon as temperature changes.

The bed height of the reactor should be directly controlled, to maximise the
fluidised bed height, and therefore the crystallisation surface. The porosity at
the bottom of the reactor should be controlled, to guarantee minimal fluidisation.
A pilot plant experiment confirmed the proposed controlled parameters. Using
constant flow and a pellet discharge based on the pressure drop at the bottom of
the reactor (which measures directly the porosity), the discharged pellet diameter
became constant and the uniformity of the pellets increased. This can be seen in
figure 3.4. The pellet diameter stabilises at 1.25 mm and the uniformity constant
drops to 1.2. A uniformity constant of 1 corresponds with all pellets having exactly
the same size.

The pressure in the feed headers to the reactors should be kept constant, to
minimise disturbances in the flow control to the reactors.

Determine control configuration
The control of a softening reactor is split into water quality control and fluidised
bed control. To minimise disturbance to the fluidised bed, the flow through the
reactor is only temperature dependant. The bypass flow directly controls the pres-
sure in the feed to the reactors. The fluidised bed control is now fairly simple, since
short-term disturbances are eliminated. The amount of base dosage is directly
controlled based on the measured hardness, with a feedforward action based on
total production flow, incoming hardness and number of reactors in operation.

Using the above analysis the following basic control configuration is proposed
(figure 3.5):
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Figure 3.4: Pilot plant results of discharged pellets, using the pressure drop in the
bottom of the reactor as controlled variable (October-December 2004).

• The flow setpoint through the reactor is only temperature dependent, to
maintain a constant porosity at a constant pellet size.

• The pressure on the combined header of the eight reactors is controlled by
the bypass valves.

• The number of reactors in operation (with caustic soda dosage) is deter-
mined by the desired bypass ratio. The rest of the reactors are not dosing
caustic soda and function as a bypass.

• The total caustic soda dosage has a feedforward, based on the total produc-
tion flow and the number of reactors in operation, and a feedback, based on
achieved total hardness of the mixed effluent.

• The pellet discharge is based on the pressure drop over 40 cm.

• The garnet sand charge is based on fluidised bed height.

This control scheme can be extended to a model-based scheme, as described
in Chapter 7, Model-Based Control of the Pellet-Softening Treatment Step. Using
a model-based scheme, setpoints chosen for the above controllers, can be adapted
online and an optimisation per reactor can be implemented.

Before the model-based scheme can be implemented, the basic scheme must
prove its merits in the full-scale plant. Therefore, only the basic control scheme
is implemented in the full-scale treatment plant of Weesperkarspel in November
2007.
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Figure 3.5: Control scheme for the softening treatment step at Weesperkarspel,
determined using the proposed control-design methodology.

3.3.3 Implementation Results

The proposed basic control scheme has been in operation since November 2007
and gives improved performance of the softening treatment step. In figure 3.6 a
comparison between the performance of the basic control loop in march 2007 (the
past control description can be found in section A.1) and march 2008 (new control)
is shown. The top graph is the total production flow of the plant in that period.
The second graph is the temperature of the source water. The daily fluctuations
due to sunshine on the lake are visible. The third graph shows the sum of the flows
through the reactors in operation. This shows an important difference between
the two control strategies. In 2007 the reactor flows varies, due to the varying
total flow, while the flow in 2008 is only slowly changing, due to temperature
variations. The reactors are operated at constant flow and bed conditions. In the
bottom graph the resulting chemical efficiency is shown. The chemical efficiency
is defined as the amount of total hardness removed per litre caustic soda dosed.

Using the new control strategy the treatment step removes the same amount
of total hardness with 15% less caustic soda usage, while the production flow is
increased by 10% and the temperature is on average 10% lower. There are two im-
portant factors contributing to the chemical usage reduction. Due to the constant
flow through the reactor, the pellet bed can be optimised. Using the bed height
measurement, the bed height is kept maximal. The second factor is the increased
bypass ratio of the reactors. Model studies demonstrate that this worsens the per-
formance of a single reactor, but improves the performance of the total treatment
step.

Due to the improved bed control, the number of corrective actions by the op-
erators diminished to practically none. There is no more day-to-day attention
necessary for this treatment step and the operation has stabilised.
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Figure 3.6: Comparison of past control (dashed) and new control(solid).

3.4 Conclusions

The process design of drinking-water treatment plants focuses on creating robust
and reliable drinking-water production, despite disturbances in the source water
quality or the treatment processes. The control design of these processes, however,
is assuming ideal behaviour, without disturbances and emphasizing on local op-
timisation, based on historical heuristics.

The proposed control-design methodology, takes the drinking-water treatment
process behaviour into account. At all levels of control the plant-wide objectives
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should be considered. An important design step is to consider the possible dis-
turbances to the treatment processes and determine the measurements that are
sensitive to these disturbances.

Although the design of a control system configuration seems obvious, using
the proposed design method, it can be concluded that for the Weesperkarspel
treatment plant current online measurements do not give sufficient information
for the automatic control of two treatment steps (ozone and biological activated
carbon). For one treatment step (softening), new controlled variables are pro-
posed, to make the softening step less sensitive to variations in temperature and
production flow.

The proposed design method is a useful tool to design the automatic control
system of a drinking-water treatment plant. To successfully apply the design pro-
cedure, it is necessary that the technologist, operator and control engineer are
involved in designing the control system. The knowledge of the process (from the
technologist) and its possible malfunctions (from the operator) is then used and
combined with process analyses on the basis of mathematical process models.
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Chapter 4

White-Box Model: Pellet

Softening

F
or model-based control of the pellet-softening treatment step an ac-
curate mathematical model of the pellet-softening process is devel-

oped, calibrated and validated. The model consists of two parts. The
first part is the fluidisation model of the pellet bed. Experiments were
carried out to investigate the fluidisation behaviour of calcium carbonate
pellets in water. The results of the fluidisation experiments are compared
to two commonly used modelling approaches for fluidisation (Ergun and
Richardon-Zaki). The second part is the model of the crystallisation pro-
cess in the reactor. The diffusion of the supersaturated water to the pel-
let surface is included in the model. The model is calibrated in a pilot
plant setup. Calibration results are validated in two different full-scale
plants. The model gives satisfactory results in predicting fluidised bed
porosity and water quality parameters such as calcium, pH, conductivity
and M-alkalinity. During validation it was shown, that even under regu-
lar process operation, the models can be used to identify malfunctioning
apparatus and identify undesired process operation.
Parts of this chapter have previously been published in van Schagen et al.
(2008a) and van Schagen et al. (2008b)

4.1 Introduction

The pellet softening treatment step is a suitable showcase for the application of
model-based control. The process has typical drinking-water treatment process
characteristics, such as large difference in the time scale of the sub-processes (typ-
ical retention time of pellets is 100 days, typical contact time of water is 4 minutes),
indirect measurement of the process state (pellet size cannot be measured directly
online), combination of online and semi-online measurements of water quality

39
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(pH and total hardness), direct control (chemical dosage and water distribution)
and indirect control (discharge of pellets). The pellet-softening process was de-
signed in the eighties of the previous century (Graveland et al. 1983; Dirken et al.
1990). For a process description, see appendix A.1.

There have been a number of publications on modelling laboratory-scale flu-
idised beds for other applications (Escudié et al. 2006a; Frances et al. 1994) and
model description and process kinetics for the crystallisation process for a given
fluidised bed (Harms and Robinson 1992; Tai and Hsu 2001; Costodes and Lewis
2006). A number of integral models have been developed (van Dijk and Wilms
1991; ter Bogt et al. 1992), but these models are steady-state models used for de-
sign purposes. However, there is not a known reference of an integral model of
fluidisation and crystallisation under varying circumstances, validated by full-
scale experiments.

This chapter describes a dynamic model of the pellet-softening process. The
model is derived in two parts. First the fluidised bed model is developed, by
analysing the fluidisation properties of uniform pellets and extending this to the
fluidised bed in the softening reactor. The second part consists of the crystallisa-
tion model and the transport of water through the softening reactor.

The softening process in a full-scale plant consists of a number of fluidised bed
reactors with a single bypass. The model of the complete treatment step (neces-
sary for the model-based approach) includes mixing of reactor effluent and by-
pass. However, the chemical reactions only take place in the reactor and the mix-
ing is modelled as instantaneous mixing (taking the calcium-carbonic equilibrium
into account) without any reaction kinetics. Further description of the mixing pro-
cess of reactor effluents and bypass water is therefore not given in this chapter.

4.2 Modelling the Fluidised Bed

The aim is to model the relation between bed expansion (porosity), pellet diame-
ter, water velocity and water temperature for a bed of uniform pellets. Numerous
models for the expansion of fluidised beds exist. Two approaches are commonly
used (Davidson and Harrison 1971; Yates 1983): the approach formulated by Er-
gun (1952), based on forces acting on the particles and the approach based on the
expansion formula by Richardson and Zaki (1954). The formula for the expansion
of uniform pellets is then used to model the bed in the pellet-softening reactor,
with varying pellet size at different heights in the reactor.

4.2.1 Ergun Approach

In the Ergun approach (Ergun 1952), the porosity is determined by the balance
between the pressure gradient over the fluidised bed due to the mass of the pellets
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and the drag force of the water on the pellets. The pressure gradient is given by
the submerged weight of the pellets:

∆P

∆L
= (ρp − ρw)(1 − p)g (4.1)

The pressure gradient caused by the drag force is derived from the drag force on
one particle. Taking the porosity p into account the pressure gradient is given by:

∆P

∆L
=

3

2
Cw1

v2

2

1 − p

p3

ρw

dp

(4.2)

The drag coefficient Cw1 must be determined experimentally. Commonly used is
the following empirical formula:

Cw1 = 2.3 +
150

Reh

(4.3)

Where Reh is the particle Reynolds number, given by:

Reh =
2

3

vdp

(1 − p)ν
(4.4)

In the range of Reh between 5 and 100, which is the typical range for pellets in
softening reactors, equation (4.3) can be approximated by:

Cw1 ≈ 125

Re0.8
h

(4.5)

Combining (4.1), (4.2) and (4.5) yields the following equation for porosity:

p3

(1 − p)0.8
= 130

v1.2

g

ν0.8

d1.8
p

ρw

ρp − ρw

(4.6)

This equation (van Dijk and Wilms 1991) has commonly been used in previous
research related to pellet softening (Tai and Hsu 2001; Rietveld 2005), but has not
been validated in previous research.

4.2.2 Richardson-Zaki Approach

The second approach is the experimental relation of porosity in fluidised beds of
Richardson and Zaki (1954):

p =

(

v

v0

)
1

n

(4.7)

The terminal settling velocity v0 and the exponent n are experimentally deter-
mined properties of a single particle. In the case of perfectly round, smooth and
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uniform particles, v0 can be determined using the Newton-Stokes equation (Bird
et al. 1960):

v2
0 =

4

3

dp(ρp − ρw)g

Cw2ρw

(4.8)

An estimate of the drag coefficient Cw2 is given by Schiller and Naumann (1933):

Cw2 =
24

Re0
(1 + 0.15Re0.687

0 ) (4.9)

where the terminal settling Reynolds number is given by:

Re0 =
v0dp

ν
(4.10)

Richardson and Zaki found the following empirical relationship for the exponent
n:

n =















4.6 for Re0 < 0.2
4.4Re−0.03

0 for 0.2 ≤ Re0 < 1

4.4Re−0.1
0 for 1 ≤ Re0 < 500

2.4 for Re0 ≥ 500

(4.11)

Both models assume perfectly round, smooth and uniform particles. In the
practice of water softening this is not the case. To compensate for these irregular-
ities, the drag coefficients are generalised here:

Cw1 = α1 +
α2

Reh

Cw2 =
24

Re0
(1 + β1Reβ2

0 ) (4.12)

where α1, α2, β1 and β2 are constants, which are calibrated based on experimental
data.

4.2.3 Pellet Size and Density

For both model approaches, the density and the size of the pellets must be known.
The difference in density between seeding material and crystallised material must
be taken into account. The pellet size depends on the amount of crystallised ma-
terial. Assuming an even distribution of the mass over the grains, the pellet diam-
eter is calculated as follows:

dp = dg
3

√

1 +
mc

mg

ρg

ρc

(4.13)
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The density of the pellets is a function of the accumulated mass of the crystallised
material (mc) and the mass of the grains (mg):

ρp = (mc + mg)

(

mc

ρc

+
mg

ρg

)−1

(4.14)

4.2.4 Model of the Fluidised Bed in a Pellet Reactor

The model is deduced by dividing the reactor in layers as shown in figure 4.1.
Each layer consists of uniform pellets. The water flow is schematised as a one-
dimensional upward flow, keeping the bed of pellets fluidised. In the case of a
pellet discharge the pellets are transported downward. The state variables of the
fluidised bed model are the mass of the calcium carbonate mc and the mass of the
grains mg .

Figure 4.1: Modelled layers in the reactor.

Each layer is divided into three fractions: the volume of grains (mg,i/ρg), the
volume of calcium carbonate (mc,i/ρc) and the water volume determined by the
porosity (pi). The height of each layer is given by the porosity of the bed and the
mass of pellets, consisting of grains and calcium carbonate:

∆xi =

(

mg,i

ρg

+
mc,i

ρc

)

(1 − pi)
−1A−1 (4.15)

where A is the surface of the reactor.

The pressure drop over each layer is given by the submerged weight of the
fluidised pellets in each layer (using equation (4.1)):

∆Pi = (ρp,i − ρw)(1 − pi)g∆xi (4.16)

The transportation of pellets is modelled as a transportation of grain material
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with the calcium carbonate attached. The velocity of transportation vp,i is given
in kilograms of grain material per second. The transportation of the calcium car-
bonate part of the pellet is given by the ratio of calcium carbonate mass and grain
mass. Since grain material can be accumulated in the reactor, the transportation of
grains into the layer is different from the transportation of grains out of the layer.
The accumulation of calcium carbonate caused by pellet transportation through
the reactor is given by:

dmc,i

dt
= vp,i+1

mc,i+1

mg,i+1
− vp,i

mc,i

mg,i

(4.17)

4.2.5 Experiments

Four data sets are used for calibration and validation. These data sets are acquired
in four different plants (see table 4.1). The aim is to compare the two modelling
approaches, calibrate the models and validate them under various circumstances
varying from laboratory-scale plants to full-scale plants.

Table 4.1: Data sets and experiments
Data set Plant Material Aim
A Laboratory-scale #1 Sieved pellets Calibration

Pilot-scale Garnet
B Laboratory-scale #2 Sieved pellets 1st validation

Pilot-scale Garnet
C Pilot-scale Discharged pellets 2nd validation
D Full-scale Pellet bed 3rd validation

The first data set (A) is used to compare and calibrate the models based on the
approaches of Ergun and Richardson-Zaki. The calibrated models are also com-
pared to the Van Dijk approximation (4.5-4.6). The experiments for this data set
are carried out on laboratory-scale and pilot-scale plants. In the laboratory-scale
setup, the pellets from a full-scale reactor of Waternet are sieved and for each sieve
fraction the fluidised bed height is determined as a function of flow velocity. The
pellets used in this setup have a narrow size distribution. The uniformity coeffi-
cient of the pellets is smaller than 1.2. In the pilot-scale experiment, the pressure
gradient of the seeding material (garnet sand) is determined as a function of the
flow velocity.

The second data set (B) is used for the first validation of the models. The data
are acquired in a second laboratory-scale setup and the pilot-scale setup. The
experiments are the same as the experiments for data set A, but are performed at
a different plant.

The third data set (C) is used for the second validation. The data are acquired
from the pilot-scale plant at normal operation conditions. The plant is operated
at optimal conditions for 4 months. In this way, the pellet are grown as in the
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full-scale plant and a normal pellet size distribution is formed in the reactor The
uniformity coefficient of the pellets at the bottom of the reactor varies between 1.2
and 1.8. The pressure gradient in the lowest part of the reactor is measured for
different pellet sizes, temperatures and flow velocities.

The fourth data set (D) is used for the third validation. This validation is per-
formed with data from a full-scale plant of the drinking-water company DZH. The
pellet size distribution at different heights in the reactor is determined using sieve
analyses. At the same time, the pressure drop over the total bed, the temperature
and the influent water qualities are measured to validate the modelled pressure
drop.

To compare the data from the experiments with the model the normalised
mean squared error (MSE) is used.

MSE =

√

√

√

√

1

N

N
∑

j=1

(

pmodel,j − pdata,j

pdata,j

)2

(4.18)

Laboratory-Scale Experiments
Two independent sets of laboratory experiments were performed in Perspex columns
with a diameter of 56 mm (data set 1) and with a diameter of 40 mm (data set 2).
The columns were filled with sieved pellets and fed with tap water. The water
flow velocity through the column varied from 50 to 150 m/h. The experiments
were performed at different temperatures (8.0 - 14.5◦C) and for different sieve
fractions (0.425 - 2.0 mm). The mass and density of the dry sieve fraction was
measured before each experiment. The experimental data are given in table 4.2.
In separate tests it was verified that pellets have a garnet core and the density of
the pellets was diameter dependent in accordance to equations (4.13-4.14), with
the density of garnet material of 4100 kg/m3 and the density of calcium carbonate
of 2660 kg/m3.

To determine the porosity of the fluidised bed, the height of the bed is mea-
sured. Since the pellet density and pellet mass are known, the porosity can be
determined using the following equation for the mass of the pellets in the column:

mp = ρp Vp

= ρp (1 − p) L A (4.19)

from which the measured porosity is given by:

p = 1 − mp

ρp L A
(4.20)

Pilot-Scale Experiments
The softening process in the pilot plant consists of two columns with a diameter
of 31 cm and a height of 4.5 m. A regulated valve controls the flow between
4 m3/h and 7 m3/h. In addition to online measurements of water flow and water
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Table 4.2: Experiment data set 1.(left) and data set 2. (right)

No diameter temp. mass
[mm] [◦C] [kg]

1 0.425-0.5 8.0 1.6
2 1.7-2.0 7.9 1.3
3 1.7-2.0 7.9 1.3
4 1.4-1.7 9.7 1.7
5 1.4-1.7 9.7 1.7
6 1.18-1.4 7.0 1.7
7 1.18-1.4 7.0 1.7
8 1.0-1.18 8.5 1.7
9 0.85-1.0 11.9 1.9
10 0.85-1.0 8.5 1.7
11 0.85-1.0 8.5 1.7
12 0.71-0.85 8.6 1.9
13 0.71-0.85 9.9 1.7
14 0.6-0.71 8.2 1.7
15 0.6-0.71 10.3 1.7
16 0.5-0.6 9.0 1.9
17 0.5-0.6 9.0 1.9
18 0.5-0.6 7.4 2.0
19 0.5-0.6 9.7 1.7
20 0.5-0.6 9.8 1.8
21 0.425-0.5 8.0 1.6

No diameter temp. mass
[mm] [◦C] [kg]

1 1.0-1.18 12.7 1.0
2 0.425-0.5 13.3 0.1
3 0.85-1.0 14.4 0.5
4 0.71-0.85 12.7 1.0
5 0.85-1.0 14.4 0.5
6 0.6-0.71 14.5 0.5
7 0.5-0.6 13.4 1.0

temperature, the reactors are equipped with online measurements of bed height,
pressure drop over the total fluidised bed and pressure drop between 20 and 60
cm from the bottom of the reactor.

For the calibration and validation of the fluidisation properties of garnet sand
(data set A and B), two reactors were filled with 150 kg standard garnet material
with an average diameter of 0.25 mm. The flow velocity through the reactor was
varied between 40 and 100 m/h and the pressure drop between 20 and 60 cm was
measured. The experiments were performed at two different temperatures: 14◦C
and 4◦C. Using the known density of garnet sand and the measurement of the
pressure drop between 20 and 60 cm of the reactor the porosity follows directly
from equation (4.1):

p = 1 − ∆P20−60

0.4 (ρp − ρw) g
(4.21)

For the second validation experiment (C) the reactors were operated at con-
stant conditions. The pellets are discharged regularly, but with a varying dis-
charge rate, to obtain different pellet sizes in the bottom of the reactor. The water
velocity is varied between 60 and 80 m/h. The water temperature is between 4◦C
and 24 ◦C. Based on the average diameter dp found from a sieve analysis of the
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discharged pellets the average density of the discharged pellets was determined
from equations (4.13) and (4.14):

ρp = (1 −
d3

g

d3
p

)ρc +
d3

g

d3
p

ρg (4.22)

Using this density, the measured porosity from equation (4.21) is compared to the
modelled porosity.

Full-Scale Experiments
To validate the model in full-scale situation, data from another location than the
previous experiments is used. Data of the water treatment plant Katwijk of the
DZH are used. This treatment plant treats dune water and has four softening
reactors with a height of 6 meter. The seeding material is garnet sand and caustic
soda is dosed. The reactors operate at a constant flow velocity of 90 m/h. The
pellet discharge control is based on the total pressure drop and the garnet sand
dosage is based on measured bed height.

The drinking-water company DZH provided accurate sieve analysis at dif-
ferent heights in the reactor under different full-scale operation conditions. The
measurements are taken for water temperatures between 10 ◦C and 16 ◦C.

The validation is performed by comparing the calculated total pressure drop
with the measured pressure drop. Based on the sieve analyses at different heights
in the bed and the total bed height, the bed composition is determined. The reac-
tor is divided in as many layers as there are sieve analyses (6 to 8). The modelled
porosity of the layer is calculated using the models and the measured pellet di-
ameter and water flow velocity. The density of the pellets (garnet and calcium
carbonate) in each layer is found using equation (4.22). The pressure drop for
each layer is given by equation (4.1). The measured total pressure drop is then
compared to the calculated pressure drop, which is the sum of the pressure drops
in each layer.

4.2.6 Parameter Calibration

The measured porosity from the experiments is first compared to the modelled
porosity from the Ergun and Richardson-Zaki models. For data set A the MSE are
given in figure 4.2. The MSE is plotted as a function of the diameter of the pel-
lets/grains. Each experiment is a marker in the plot. The lines are interpolations
of the median MSE for each pellet diameter. The Ergun model, without calibra-
tion, gives good results for large pellets, whereas the Richardson-Zaki, without
calibration, approach gives better results for the smaller pellets. The model per-
formance of the approximated Ergun model has the highest error for small pellets,
but is better than the original Richardson-Zaki model for large pellets.

The Ergun model and the Richardson-Zaki model are calibrated by adjust-
ing the drag coefficients in equations (4.3) and (4.9). Using the data from data
set A the drag coefficients are calibrated by optimising the parameters in equation
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Figure 4.2: Model performance for data set A. All experimental results (markers)
and interpolation of the median per diameter (lines).

(4.12), minimising the MSE (equation 4.18) for the porosity. The following drag
coefficients are found:

Cw1 = 3.1 +
97

Reh

(4.23)

Cw2 =
24

Re0
(1 + 0.079Re0.87

0 ) (4.24)

The resulting MSE for the calibrated models is also shown in figure 4.2. For
both calibrated models, the MSE is fairly constant for the different diameters.

4.2.7 Validation

This section evaluates the performance of the models (Approximated Ergun, Er-
gun, Richardson-Zaki, Calibrated Ergun and Calibrated Richardson-Zaki).

The MSE results for data set B show that the calibrated models are on average
more accurate in predicting the porosity in the bed than the other models (see
figure 4.3) for large pellets. The models are less accurate for garnet material (with
a diameter of 0.25 mm) than for larger pellets.

Using the data of the pilot plant operating under normal circumstances (data
set C), the porosity is determined using the measured average pellet diameter.
The resulting MSE for the porosity is shown in figure 4.4. It can be observed that
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Figure 4.3: First model validation with data set B. All experimental results (mark-
ers) and interpolation of the median values per diameter (lines).

the calibrated models perform better than the original models. The calibrated
Richardson-Zaki model estimates the porosity better for small pellets.

Finally, the data from the Katwijk full-scale plant are compared to the mod-
elled pressure drop over the fluidised bed. The MSE of the total pressure drop
over the bed is used to evaluate the performance of the models. In total, eleven
data sets with measurements at different heights in the bed are available. After
the first calculations, it turned out that three data sets give large deviations from
model results. Further analysis of the data shows that for two cases the discharged
pellets are too large for complete fluidisation and the models are not valid for this
circumstance. For the third data set, it turned out that the reactor was clogged.
The results from the reduced data set are shown in figure (4.5). In this figure, the
accuracy of the pressure drop calculations is related to the temperature of the wa-
ter, since the pellet size varies over the height and a characteristic diameter is not
available as in the previous validations.

The MSE of the three validation experiments are summarised in table 4.3. One
extra column is given for data set D. The column gives the MSE for reduced data
set from the full-scale validation, with only valid data. The results show that
the calibrated model-based on laboratory-scale and pilot-scale experiments can
be up-scaled to full-scale application. To quantify the accuracy of the calibration,
a direct calibration based on full-scale data is performed. The resulting MSE of
0.055 is close to the MSE found in the reduced data set D (0.066).

The calibrated Richardson-Zaki model gives the lowest average MSE for the
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Figure 4.4: Second model validation with data set C. All experimental results
(markers) and interpolation of the median values per diameter (lines).
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validation data sets and will be used in the model of the crystallisation process.
The Van Dijk approximation is two to three times less accurate in predicting the
porosity in the fluidised bed than the calibrated Richardson-Zaki model.

Table 4.3: MSE for models and data sets A, B, C and D
Model A B C D D

(reduced)
Approximated Ergun 0.069 0.092 0.133 0.192 0.221
Ergun 0.048 0.072 0.097 0.152 0.165
Calibrated Ergun 0.025 0.051 0.044 0.133 0.085
Richardson-Zaki 0.068 0.044 0.054 0.140 0.078
Calibrated Richardson-Zaki 0.033 0.037 0.026 0.138 0.066

4.3 Modelling the Crystallisation Process

The model of the crystallisation process is based on the super-saturation of cal-
cium carbonate in the water, the available crystallisation surface and the porosity
throughout the fluidised bed.

Based on the calibration and validation results of the fluidised bed model, it is
concluded that the fluidised bed is best modelled using the calibrated Richardson-
Zaki expansion formula, described by the equations (4.7) - (4.11) and the calibra-
tion result in equation (4.24).

The super-saturation of calcium carbonate is determined by the calcium car-
bonic equilibrium, given in the next section. The crystallisation model describes
the crystallisation of calcium carbonate on the pellets in the bed and the trans-
portation of the dissolved components through the bed.

4.3.1 Calcium Carbonic Equilibrium

The crystallisation of calcium carbonate is a shift in the equilibrium between the
solid and soluble state of calcium carbonate (Wiechers et al. 1975):

Ca2+ + CO2−
3

Ks

⇆ CaCO3 (4.25)

Ks = f8[Ca2+][CO2−
3 ] (4.26)

where Ks is an experimentally determined equilibrium constant depending on
the water temperature. The activity factor f is based on the ionic strength (IS) of
the water and is given by (Schock 1984):

log(f) =
−0.5

√
IS√

1000 +
√

IS
+ 0.00015IS (4.27)
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To determine the carbonate concentration, the carbonic equilibrium must be taken
into account. This is the balance between three carbonic fractions (CO2, HCO−

3

and CO2−
3 ). The ratio between the concentrations of these fractions has a strong

relation with the pH. The following reactions describe the equilibrium:

CO2 + 2H2O
K1

⇆ H3O
+ + HCO−

3

HCO−
3 + H2O

K2

⇆ H3O
+ + CO2−

3 (4.28)

H3O
+ + OH−

Kw

⇆ 2H2O

The rates of these reactions are high, and it is therefore assumed that the carbonic
fractions are always in equilibrium. The conservative parameters m-alkalinity
(M ) and the p-alkalinity (P ) are used to describe the equilibrium. These numbers
are conservative, as they follow the normal rules of mixing (the pH does not).
The actual concentrations of the equilibrium can now be found by solving the
following set of algebraic equations:

M = 2[CO2−
3 ] + [HCO−

3 ] + [OH−] − [H3O
+]

P = [CO2−
3 ] − [CO2] + [OH−] − [H3O

+]

K1 = f2[HCO−
3 ][H3O

+][CO2]
−1 (4.29)

K2 = f4[CO2−
3 ][H3O

+][HCO−
3 ]−1

Kw = f2[H3O
+][OH−]

where K1,K2 en Kw are experimentally well determined constants depending on
the water temperature (Jacobsen and Langmuir 1974; Plummer and Busenberg
1982). equation (4.29) is a set of five equations with seven unknown concentra-
tions (M , P , CO2, HCO−

3 , CO2−
3 , H3O

+ and OH−). Two concentrations must be
known to determine the remaining ones. The H3O

+ and the HCO−
3 are known

concentrations in the raw water of the softening reactors. The H3O
+ concentra-

tion is normally measured as pH:

pH = − log(f [H3O
+]) (4.30)

It is now possible to determine the carbonate concentration throughout the crys-
tallisation process. Based on the raw water pH and HCO−

3 concentration, the m-
alkalinity and the p-alkalinity are determined using equations (4.29) and (4.30).
The dosing of caustic soda causes an increase of the m-alkalinity and p-alkalinity
due to the feed of OH−. With the new m-alkalinity and p-alkalinity, the CO2−

3

concentration is determined. Due to the crystallisation of calcium carbonate (and
thus the removal of carbonate from the water) the m-alkalinity and p-alkalinity
are lowered. A new equilibrium settles and based on the lowered m-alkalinity
and p-alkalinity the new carbonate concentration is determined.

Two parameters describe the super-saturation of calcium carbonate in water.
The saturation index (SI) is defined as the pH offset at which the actual calcium
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concentration is in equilibrium with the carbonate:

SI = log

(

f8[Ca2+][CO2−
3 ]

Ks

)

(4.31)

and is a measure for the driving force in the crystallisation process. The TCCP
(theoretical calcium carbonate crystallisation potential) is the amount of calcium
in (mmol/l) that crystallises to obtain water in chemical equilibrium (saturation
index is zero). The TCCP is a measure for the amount of calcium carbonate that
can be formed in consecutive process steps. The saturation index is a measure
for the driving force of the crystallisation process. The two indices are strongly
related, but are both used separately to quantify the performance of the crystalli-
sation process.

4.3.2 Model of Crystallisation in a Pellet Reactor

The crystallisation model is deduced using layers of the reactor as given in figure
4.1. The m-alkalinity, p-alkalinity and ionic strength in a layer determine carbonic
equilibrium as described by equations (4.29) and (4.27). The crystallisation rate
of the equilibrium in equation (4.25) is determined by the crystallisation kinet-
ics K, the available crystallisation surface S and the super-saturation of calcium
carbonate (Wiechers et al. 1975):

C = K · S ·
(

[Ca2+][CO2−
3 ] − Ks

f8

)

(4.32)

The specific surface of the pellets is determined by the porosity p of the layer from
equation (4.7) and the diameter of the pellet in the layer from equation (4.13).

S =
6(1 − p)

dp

(4.33)

The crystallisation kinetics is modelled as a two-stage crystallisation process (Karpin-
ski 1980). The first stage is the transportation of supersaturated water to the pellet
surface (kf ), which depends on water flow and temperature. The second stage
is the crystallisation of the supersaturated water on the pellet (kT ), which only
depends on temperature.

K =
kT · kf

kT + kf

(4.34)

The transportation of the supersaturated water to the surface of the pellets de-
pends on the flow pattern of the water between the pellets (Budz et al. 1984).
Based on the Reynolds number of the water flow in the bed Reh (equation (4.4))
and the Schmidt number Sc the Sherwood number Sh is given by the Froessling
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equation:

Sc =
ν

Df

(4.35)

Sh = 0.66Re0.5
h Sc0.33 (4.36)

The transportation coefficient in equation (4.34) is given by:

kf =
Sh · Df

dp

(4.37)

The temperature dependency of kT is found by Wiechers et al. (1975) as:

kT = 1.053(T−20) · kT20 (4.38)

The change of m-alkalinity, p-alkalinity and ionic strength and calcium over time
in one layer is now given by the combination of water flow through the reactor
and crystallisation of calcium carbonate. Based on the mass balance over the layer,
this is given by:

piA∆xi

d[Ca2+]i
dt

= Fw([Ca2+]i−1 − [Ca2+]i) − A∆xiC (4.39)

piA∆xi

dMi

dt
= Fw(Mi−1 − Mi) − 2A∆xiC (4.40)

piA∆xi

dPi

dt
= Fw(Pi−1 − Pi) − A∆xiC (4.41)

piA∆xi

dISi

dt
= Fw(ISi−1 − ISi) − 2A∆xiC (4.42)

At the bottom of the reactor, where caustic soda is dosed, the concentration of the
water flowing into the first section is given as:

M0 =
(MrawFw + [OH−]Fl)

Fw + Fl

(4.43)

P0 =
(PrawFw + [OH−]Fl)

Fw + Fl

(4.44)

IS0 =
(ISrawFw + 0.5[OH−]Fl)

Fw + Fl

(4.45)

Finally the increase of crystallised material in the layer is equal to the crystallised
mass of calcium in mol times the molecular weight of calcium carbonate (Mc):

dmc,i

dt
= A ∆xi Mc C (4.46)



4.3 Modelling the Crystallisation Process 55

4.3.3 Experiments

To determine the parameters of the model, the model was calibrated at the pilot
plant of the Weesperkarspel treatment plant of Waternet, the water cycle company
of Amsterdam and surroundings. The calibrated model is validated using data
from two full-scale plants. The first validation is performed with data from the
full-scale plant of Weesperkarspel. The second validation is performed with data
from the full-scale plant of DZH at WTP Katwijk.

The aim is to calibrate the crystallisation constant kT and diffusion constant Df

in the model. The model with the calibrated constants minimise the MSE based
on the measurements of total hardness, pH and m-alkalinity.

Pilot-Scale Experiments
The model is calibrated with data from the Weesperkarspel pilot plant. The soft-
ening process in the pilot plant consists of two columns with a diameter of 31 cm
and a height of 4.5 m. A regulated valve controls the flow between 4 m3/h and 7
m3/h. Caustic soda dosage is controlled between 0 and 2 l/h. To determine the
fluidised bed status, the reactors are equipped with online measurements of wa-
ter flow, water temperature, bed height, pressure drop over the total fluidised bed
and pressure drop between 20 and 60 cm from the bottom of the reactor. To follow
the crystallisation process, the turbidity, pH, total hardness, m-alkalinity and the
conductivity are automatically measured using an online titration unit (Applikon
ADI 2040) every 15 minutes.

Before calibration, one reactor was operated at constant flow (6 m3/h) and
caustic soda dosage (1 l/h) during one month (February 2005). In this period the
discharge of pellets was controlled using the pressure drop measurement at the
bottom of the reactor (setpoint of 3.5 kPa), resulting in a constant pellet size at
the bottom of the reactor. The bed height was kept constant at a height of 4 m by
dosing garnet sand as seeding material.

The composition of the bed was constant after this month. The state of the
bed (described by mc,i and mg,i) is identified using manual pressure drop mea-
surements at 5 heights in the bed and the online bed height measurement at 3
different flows. The identification was performed with a different number of lay-
ers, to determine the influence on the prediction of the pressure drop and level
measurements. The best estimate minimises the mean squared error (MSE) us-
ing a nonlinear optimisation technique. The MSE is used for all calibration and
validation experiments and is generically given by:

MSE =
1

N

N
∑

j=1

√

√

√

√

1

Nj

Nj
∑

i=1

(

ymodel,j,i − ydata,j,i

ydata,j,i

)2

(4.47)

where y are the N outputs from the model and the measurement data and Nj are
the number of samples for the jth output.

In the calibration experiment, the water flow through the reactor and caustic
soda flow were changed every 20 minutes. The water flow was varied between 4



56 Chapter 4 White-Box Model: Pellet Softening

m3/h and 7 m3/h and the caustic soda was varied between 0.5 and 1.5 l/h. After
20 minutes, the water quality parameters were measured automatically. In this
manner, 40 different combinations of water flow and caustic soda dosage settings
were performed in a random order. This procedure was repeated three times.

Full-scale Experiments
The model for the pellet-softening process is first validated with data from the
eight softening reactors of WTP Weesperkarspel of Waternet. The Weesperkarspel
treatment plant uses lake water with relatively high organic concentrations as
source water, before softening the water is treated with ozone.

The reactors operate at a variable flow velocity of 60-100 m/h to keep the ratio
between bypass and reactor flow constant for different total flows. The reactor
height is 4.5 meter, the seeding material is garnet sand and the dosage is caustic
soda. The pellet discharge is based on the total pressure drop and the garnet sand
dosage is based on the amount of discharged pellets.

The aim is to validate the dynamic output of the model. Therefore data from
the full-scale plant is selected on relatively large variations in flow and caustic
soda. For five days in this period (15-20 October 2005), the dynamic simulation is
performed for all 8 reactors. The inputs for the simulation model are the on line
measured temperature, water flow and caustic soda flow. The quality data (pH,
Bicarbonate, conductivity) are assumed constant, based on laboratory values from
that particular week. The state of the bed is deduced from the sieve analyses from
the corresponding day.

The outputs of the model are compared to the online measured pH of the full-
scale plant. The laboratory measurement of calcium is only performed once a day.
This measurement is also compared to the simulated value.

A second validation is performed at WTP Katwijk of DZH. The treatment plant
of Katwijk treats dune water. At WTP Katwijk there are 4 softening reactors with
a height of 6 meter. The seeding material is garnet sand and caustic soda is dosed.
The reactors operate at a constant flow velocity of 90 m/h. The dosage and bypass
are varied to get the desired effluent concentration for different water flows. The
pellet discharge is based on the total pressure drop and the garnet sand dosage is
based on measured bed height.

The validation is performed with five data sets recorded under the typical con-
stant operation conditions. The data sets are given in table 4.4 with the typical
values. The last three data sets are randomly chosen from all available data.

The validation of the model consists of two steps. The first one is the valida-
tion of the pressure drop of the total bed. Based on the sieve analysis at different
heights in the bed and the total bed height, the bed composition is determined.
The reactor is divided in as many layers as there are sieve analyses (6 to 8). The
modelled porosity of the layer is calculated using the fluidisation theory (equa-
tion (4.7)) based on the measured pellet diameter and water velocity. The volume
and mass of pellets (garnet and calcium carbonate) in each layer is found using
the calculated porosity. The mass in each layer contributes to the total pressure
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Table 4.4: Data sets for the validation experiments (Katwijk).
incoming

No Calcium [mg/l] Temperature [◦C] Description
A 69 10 Average conditions
B 67 11 Low calcium concentration
C 80 9 High calcium concentration
D 75 9 Low temperature
E 71 16 High temperature
F 75 12 Random set 1
G 79 9 Random set 2
H 67 11 Random set 3

drop. The measured total pressure drop is then compared to the calculated pres-
sure drop from the model.

The second validation is of the crystallisation model in the reactor. The model
is verified for calcium, pH, conductivity and m-alkalinity. Using the estimated
bed composition, the effluent water quality parameters are calculated by integrat-
ing equation (4.42) over the height of the reactor. Since the caustic soda dosage
in equation (4.45) is not measured regularly, this dosage is calculated using the
available [Na+] measurement from the laboratory data. The increase in sodium
concentration in the reactor is caused by the caustic soda ([NaOH]) dosage.

4.3.4 Parameter Calibration

After one month of constant operation at the pilot plant, the total pressure drop in
the bed is at a constant level of 29 kPa. The bed is at the desired height of 4 meters
and the pressure drop between 20 and 60 cm above the bottom of the reactor is 3.5
kPa. The temperature of the water is 11 ◦C.

From the pressure drop measurements, the composition of the bed is identi-
fied. For a water flow of 6.5 m3/h the estimated pellet diameters are plotted in
figure 4.6 (left). In the graph, the estimated pellet diameter is plotted at the mod-
elled height of the layer in the reactor, for different number of modelled layers.
As expected, the bottom part of the reactor is filled with large pellets, while the
top part is filled with small pellets. The resulting MSE, based on pressure drop
and bed height, for the different number of layers is shown in figure 4.6 (right).
The MSE decreases for an increasing number of layers and becomes practically
constant after 5 layers.

The parameters for the crystallisation (kT20 and Df ) are calibrated using the
estimated bed compositions. During model calibration, it turned out that the pH
measurement of the experimental setup had a slow drift over time (see figure
4.7). This caused a large offset at the time of this experiment, therefore a pH off-
set (∆pH ) was calibrated. The results from the calibration are given in table 4.5,
where the MSE calculation is based on the calcium concentration, pH and the m-
alkalinity in the effluent of the reactor.
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Figure 4.6: Estimated composition of the bed (left) and the MSE (right) for differ-
ent number of modelled layers.

Table 4.5: Calibration results.
No layers kT Df ∆pH MSE
2 0.0308 1.33e-010 -1.00 0.022
3 0.0237 6.89e-011 -1.00 0.023
4 0.0267 4.55e-011 -0.98 0.022
5 0.0195 3.54e-011 -0.96 0.023
6 0.0221 3.07e-011 -0.98 0.023
7 0.0254 2.67e-011 -0.99 0.022
8 0.0219 3.05e-011 -0.98 0.023
9 0.0406 2.86e-011 -1.00 0.022
10 0.0218 3.08e-011 -0.98 0.023

It must be noted that the performance (MSE) of the estimate does not improve
if the number of layers is increased. The MSE is almost constant at about 0.022. But
the calibrated diffusion constant decreases as the number of layers increases and
becomes constant at about 7 modelled layers. The transportation model (equa-
tions (4.34)-(4.37)) is independent of the number of modelled layers, if the reactor
is modelled with minimal 7 layers. The calibrated crystallisation constant kT is
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close to the crystallisation constant of 0.0255 found in batch experiments for con-
ditions without diffusion (Wiechers et al. 1975).
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Figure 4.7: pH measurement of the pilot plant influent water.

4.3.5 Validation

Validation at Weesperkarspel Full-Scale Plant
The results of the validation are shown in table 4.6. The first column shows the
MSE for the simulated and measured pH. This value is calculated using the 7200
values of the online pH measurement. The accuracy of the model varies between
7% and 0.8%. This is larger than the absolute measurement error of pH (2%). The
online pH measurement suffers from static offset due to drift of the measurement
device. For reactor 6, the pH measurement was recalibrated on the 18th of October,
after which the pH measurement is close to the simulated value (see figure 4.8).
If the offset of the pH measurement is corrected, the MSE gets smaller than the
measurement error except for reactor 2. Reactor 2 was in a fresh startup in that
period (2 days in operation), which may have caused the difference.

Table 4.6: Validation data WTP Weesperkarspel.
MSE MSE MSE

Reactor pH corr. pH (correction) Calcium
1 0.015 0.006 (-0.1) NaN
2 0.069 0.058 (0.3) NaN
3 0.010 0.005 (0.1) NaN
4 0.022 0.006 (-0.2) 0.12
5 0.018 0.006 (0.1) NaN
6 0.024 0.013 (0.2) 0.13
7 0.008 0.006 (0.0) 0.11
8 0.049 0.009 (-0.4) 0.07
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Figure 4.8: Measured and simulated pH for reactor 6.

The laboratory data of calcium concentration for Reactor 1,2,3 and 5 are miss-
ing, but the simulation results for the other reactors are at about 10% accuracy.
This is probably caused by the moment of sampling of the water, because the
exact sampling moment is not known and the selected period is chosen for the
instable process conditions.

Validation at Katwijk Full-Scale Plant
The validation of the fluidised bed model gives the results shown in table 4.7. The
pressure drop of the model is within 0.3 kPa for five data sets. There are 3 data
sets which show larger deviations. For data sets D and G, the diameter of the
pellets in the bottom of the reactor turned out to be large. In these cases the bed
is not fluidised, therefore, the measured pressure drop is lower than the modelled
pressure drop. For data set C, the pressure drop over the reactor nozzles (27 kPa) is
larger than the normal pressure drop over these nozzles (13-14 kPa). This indicates
that part of the nozzles in the bottom of the reactor are clogged and only a part of
the reactor surface is effectively used for fluidisation, causing higher water flows
and thus a leaner bed.

For data sets A, B, E, F and H, the resulting bed composition is simulated with
the given influent quality of the water. Based on the modelled and measured val-
ues of calcium, pH, conductivity and m-alkalinity the relative error ( model−data

data
)

and the MSE is determined and listed in table 4.8.

To analyse accuracy of the quality data, a balance over the reactor is made. The
only reaction taking place in the reactor is the crystallisation of calcium carbonate
(equation (4.25)). The removal of calcium in a reactor must therefore be equal to
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Table 4.7: Fluidised bed data WTP Katwijk.
Pressure drop Max. pellet Nozzle

Measured [kPa] Model [kPa] MSE diameter [mm] drop [kPa]
A 2.24 2.23 0.004 1.4 15.6
B 2.42 2.53 0.046 1.9 12.5
C 2.40 2.83 0.178 1.8 27.1
D 2.44 2.92 0.198 2.0 14.2
E 2.41 2.18 0.094 1.7 12.7
F 2.61 2.66 0.019 1.8 12.9
G 2.29 3.03 0.321 2.0 14.7
H 2.53 2.43 0.039 1.6 13.0

Table 4.8: Results and data accuracy for WTP Katwijk.
calcium pH EGV m-alkalinity MSE balance accuracy (B)

A -0.12 -0.01 -0.04 -0.07 0.074 -0.101
B 0.06 0.01 -0.02 0.01 0.030 -0.034
E -0.12 0.00 -0.05 -0.05 0.072 -0.058
F -0.19 0.02 -0.05 -0.06 0.103 0.668
H 0.00 0.01 -0.03 -0.02 0.018 -0.001

twice the reduction of m-alkalinity in the reactor. The relative error in the data is
given by:

B =
2([Ca2+]raw − [Ca2+]reactor) − (Mraw + [OH−]dos − Mreactor)

2([Ca2+]raw − [Ca2+]reactor)
(4.48)

This relative error is given in the last column of table 4.8. Only for data set H, the
relative error in the data is smaller than measurement error of 2% of the individual
measurement devices. For these data sets, the model predicts the effluent quality
parameters almost perfectly, with a MSE of only 1.8%. The data sets A, B, E and
F all have higher relative errors in the measurement data. Especially in data set
F the reduction of calcium in comparison to the reduction in m-alkalinity is 66%
off. From the data it cannot be deduced which of the measurements is erroneous.
However, if the model is correct, it can be concluded that the calcium measure-
ment of the reactor effluent is probably incorrect, since this measurement has the
biggest relative error between data and model.

4.4 Conclusions

Taking the quality of the measurement data into account, the calibrated white-
box model gives a good estimate if the fluidised bed is operated in completely
fluidised state. As soon as the fluidisation is disturbed, the model of the reactor
becomes inaccurate. However, incomplete fluidisation is an undesired process
condition, which must be resolved as soon as it is detected. Accurately modelling
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incomplete fluidisation is thus not necessary for operational use of the model.

The Ergun and Richardson-Zaki models for the fluidised bed are not suffi-
ciently accurate to describe the fluidised bed in a pellet-softening reactor. There-
fore, calibration is necessary to correct for the irregularities in the pellets. The cal-
ibrated Richardson-Zaki model gives the lowest normalised mean squared error
(MSE). In the current experiments, the approximation of the Ergun model results
in an up to five times higher MSE.

The number of layers needed to model the reactor at the Weesperkarspel treat-
ment plant accurately is found to be at least 7 layers. If more layers are used, the
model accuracy does not increase. This holds for the fluidisation model and the
crystallisation process.

During the calibration and validation procedure, the measurement data taken
from the pilot plant process and full-scale process showed unexpected deviations
from the process model. It turned out that most of these errors were not caused by
modelling errors, but by measurement errors or unexpected process conditions.
An apparent application of the model is, therefore, the evaluation of the process
operation and the detection of undesired process conditions. Using the available
data and the validated model, data and model can be compared and process ab-
normalities can be identified. This can be used in the basic day-to-day process
operation. Model and data mismatch is caused by process abnormalities, which
can be remedied by operator action.



Chapter 5

Model-Based Monitoring of

Drinking-Water Treatment

The different measurements (online and laboratory) can be combined
with a priori process knowledge, using mathematical models, to ob-

jectively monitor the treatment processes and measurement devices. The
model-based monitoring is applied to different levels of plant and model
detail. The applications vary from validating measurement devices to de-
termining plant-wide reaction rates, using static semi-physical (grey-box)
models and detailed dynamic physical (white-box) models. It is shown
that, using these models, it is possible to asses the processes and mea-
surement devices effectively, even if detailed information of the specific
processes is unknown. In this way, the state of the treatment plant is mon-
itored continuously and changes in plant performance can be detected
appropriately.
Parts of this chapter have previously been published in van Schagen et al.
(2006) and van Schagen et al. (2008).

5.1 Introduction

With the introduction of process automation in drinking-water treatment plants
more measurements in the plant are available for online monitoring, while these
plants are operated by fewer operators. The maintenance of the measurement de-
vices takes relatively much effort. The fluctuations in measured values are small,
and therefore the measurement accuracy must be high, in order to detect changes
in the process using only one individual measurement. The measurement reliabil-
ity can be improved by using multiple measurement devices at a single measure-
ment location, which, however, increases investment cost and maintenance effort.
Another solution is to correlate the measurements at different measurement loca-
tion, by using mathematical process models.

63
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There are many types of models, that can be used for model-based monitor-
ing (Ljung 2008). The models vary from so-called white-box models, which de-
scribe the physical processes from first principles, grey-box models, which con-
tain some unknown parameters or structures, to black models, which are based
only on historical data. All models can be dynamical models, describing the pro-
cesses accurately under varying circumstances, or static, by omitting the dynam-
ics, and assuming steady state situations. Which model must be applied depends
on the available models and the desired application. Preferably, white-box models
should be used, to use all available knowledge. However, a white-box model of
the complete treatment plant tends to become too complex for a practical applica-
tion. Reducing model complexity and combining all physical reactions in a single
reaction process yields a grey-box model.

Much effort has been spent on modelling individual processes using white-
box and grey-box models (chapter 4, White-Box Model: Pellet Softening; Rietveld
(2005); van der Helm (2007)). These models describe the water flow and process
state and are especially used for process analysis. Black models are rarely used in
drinking-water treatment, due to the limited information density in the available
measurement data.

The applications of model-based monitoring schemes in drinking-water treat-
ment are diverse. Using the design methodology for control scheme of the plant
(see chapter 3, Control-Design Methodology for Drinking-Water Treatment Pro-
cesses), the possible disturbances for optimal performance of the treatment pro-
cesses are identified. Common disturbances are measurement errors for critical
measurements, changing reaction rates and load changes.

To verify the application of model-based monitoring in drinking-water treat-
ment, four model-based monitoring schemes are shown here. These examples
use four kinds of models (dynamic white-box, static white-box, dynamic grey-
box and static grey-box) for four kinds of process detail (equipment, process unit,
treatment step and entire plant) as shown in figure 5.1. The model-based monitor-
ing of the hardness measurement uses a mass balance (a static white-box model)
to validate the measurement. The model-based monitoring of the softening re-
actor uses the detailed white-box model of chapter 4 to estimate the state of the
softening reactor and predict the effluent total hardness concentration and satu-
ration index. A static grey-box model is used to monitor the hydraulic loading
and the biological activity of the BAC filtration treatment step. Finally, an appli-
cation of model-based monitoring is shown for the pH at all treatment steps at the
Weesperkarspel treatment plant of Waternet, based on a dynamic grey-box model.

5.2 Total Hardness Measurement Monitoring

To determine the total hardness in the effluent of softening reactors, a semi-online
titration device is used in the treatment plant of Weesperkarspel. This titration de-
vice determines total hardness in water by taking a sample of the water (effluent of
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Figure 5.1: Model-based monitoring applications for different levels of modelling
detail and process detail.

the reactor) and performing a titration with EDTA (using an Applicon ADI4200).
The documented accuracy of the titration device is 0.05 mmol/l for each titra-
tion. Using a model-based monitoring scheme, the actual accuracy of the device
is analysed, using data from the pilot plant of Weesperkarspel, for wide variety
of hardness concentrations. This accuracy is compared to the data found in the
full-scale plant.

A static white-box model is used, to analyse the performance of the semi-
online titration device. A mass balance over the reactor is made. The removal
of calcium in a reactor must be equal to the reduction of carbonate in the reactor.
The initial carbonate concentration is raised by the dosing of caustic soda. The
balance between the total hardness (calcium plus magnesium) and M-alkalinity
(2[CO2−

3 ] + [HCO−
3 ] + [OH−] − [H3O

+]) is therefore given by:

2([TH]in − [TH]r) = ([M ]in + [OH−]dos − [M ]r) (5.1)

where the [.]in are the source water concentrations, [.]r the effluent concentrations
and [OH−]dos is the increase in OH− concentration by the base dosage.

At the pilot plant, the influent and effluent total hardness and M-alkalinity
were measured in 836 experiments, for different flows and caustic soda dosages.
Figure 5.2 shows the results from the experiments. The expected accuracy of 0.1
mmol/l is only achieved for 78% of the measurements, but the performance of the
titration device is the same for difference levels of dosage.

At the full-scale plant, a titration device for total hardness is present. The M-
alkalinity is measured at the laboratory at regular intervals. The results in figure
5.3 (top) show that the online device gives an accurate result only for 27% of the
measurements. To verify that the measuring errors occur in the titration device,
the results are also determined using laboratory data for the total hardness. Fig-
ure 5.3 (bottom) illustrates that only 16% of the measurements are now outside
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Figure 5.2: Total hardness M-alkalinity balance for the pilot plant.

the 0.1 mmol/l bound and the error is not caused by erroneous caustic soda mea-
surements. It is concluded that the data of the titration device must be inaccurate.

The semi-online titration device cannot be used directly to determine the per-
formance of the individual reactors. At least a static white-box model (mass bal-
ance) must be used to validate the measurements.

5.3 Softening Reactor Monitoring

Water softening is a complex process that requires performance monitoring in real
time. It is the only process in the treatment plant that directly influences the to-
tal hardness of the treated water. Therefore, total hardness should be at desired
value after the softening treatment step. The saturation index (SI) of the effluent
of the softening is a measure for the performance of the reactor. If the SI becomes
too high, the crystallisation process is suboptimal and the effluent water has an
increased crystallisation potential.

Continuously measuring water quality parameters in the reactor is difficult,
due to the super-saturation of calcium carbonate. All measurement devices tend
to become clogged with limestone. Online measurements, therefore, have a large
measurement uncertainty and laboratory measurements must be used to verify
measurement results. However, the results of laboratory measurements are only
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Figure 5.3: Total hardness - M-alkalinity balance for the full-scale plant based on
semi-online data (top) and laboratory data (bottom).

available after several days and the measurement only shows the performance of
the process at the sample moment.

To combine the best of the online and laboratory measurements, a model-
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based monitoring scheme is proposed. The scheme uses the white-box model of
chapter 4, White-Box Model: Pellet Softening, in a particle filter (Ristic et al. 2004)
to estimate the effluent quality parameters taking all uncertainties into account.
A particle filter is chosen because multiple uncertainties exist and measurement
data are sampled at irregular time intervals, with significant uncertainty in the
measurement.

The model-based monitoring scheme is applied to real measured data from
the full-scale treatment plant at Weesperkarspel. The particle filter is fed with the
laboratory measurements (total hardness, bicarbonate and conductivity), which
was measured every week. The accuracy for these measurements is taken to be
two percent. This includes the inaccuracy, due to the fact that the exact sample
moment for the measurement is not known. The online pH measurement and
head loss over the total reactor are used. The pH measurement is inaccurate and
an error of 0.5 is used. For the head-loss measurement, an accuracy of 2 kPa is
assumed.

5.3.1 Particle Filter

The goal of the particle filter is to estimate effluent water quality parameters. The
non linear dynamic white-box model of the softening reactor (chapter 4, equations
(4.15) - (4.17) and (4.42) - (4.46)) is the main model in the particle filter. However,
a number of inputs to this model are unknown and have to be estimated. The
water quality of the source water is not measured online (except for temperature).
The measured caustic soda dosage tends to have an unknown offset. The garnet
dosage and pellet discharge are not measured.

To determine the model for the source water quality parameters, the varia-
tion in influent quality parameters is analysed. The water quality in the lake,
which is the source for the treatment plant of Weesperkarspel, is constant. The
pre-treatment is normally in a constant operation mode. Therefore, it is expected
that the water quality of the influent water for the softening process is relatively
constant. The state of the model is extended with an estimate of the influent qual-
ity parameters ũq (conductivity, total hardness, pH and bicarbonate). If laboratory
data cq are available the state is equal to the laboratory data. Between laboratory
measurements a random walk model is used.

ũq,k = cq,k if laboratory data are available
ũq,k = ũq,k−1 + ǫq if laboratory data are not available

(5.2)

where cq,k are the source water quality parameters at time k measured in the lab-
oratory and ũq,k are the modelled influent quality parameters at time k.

The offset in caustic soda dosage measurement is caused by scaling. This is a
slow process and the difference between actual caustic dosage and the measured
dosage is modelled as random walk:

∆Fs,k+1 = ∆Fs,k + ǫs (5.3)
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where ∆Fs,k is the modelled offset in the caustic soda dosage.

The pellet discharge and garnet dosage are not available online. Since man-
ual discharge of garnet and pellet material occurs, online measurements are not
sufficient to estimate these inputs. Again, the pellet discharge and garnet dosage
under normal operation change gradually, and a random walk model is chosen:

vp,k+1 = vp,k + ǫp (5.4)

where vp,k is the modelled pellet discharge and garnet sand dosage at time k.

A schematic view of the process with the augmented model is given in figure
5.4.

Figure 5.4: The augmented model used in the particle filter to estimate the state
of the softening reactor.

The model is discretised with a sampling interval of one hour. Since the dis-
solved components in the dynamic white-box model have a retention time of sev-
eral minutes the dynamics of these components is neglected and the steady state
profile for the given bed composition is used for the calculations. The model de-
scribes the growth of the pellets in the reactor (by accumulation of calcium car-
bonate) and the change of total mass of grains in the reactor (by pellet discharge
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and garnet charge).

The total model can now be constructed using the augmented state xk and
input uk:

uk =









Tw,k

Fw,k

cq,k

Fs,k









xk =









xr,k

ũq,k

∆Fs,k

vp,k









(5.5)

The model of the reactor and input uncertainty can now be written as:

xk+1 = f(xk,uk, ǫk) (5.6)

yk = h(xk,uk, ǫk) (5.7)

where yk are the water quality parameters in the effluent of the reactor (conduc-
tivity, total hardness, pH and bicarbonate) and the total head loss over the reactor.

Using a particle filter, an online estimate of the performance of the reactor
can now be determined using estimates of the states of the model x̂k. A detailed
explanation of the particle filter algorithm is given in Appendix B.

5.3.2 Estimation Results

Analysis of raw water laboratory data shown over a period of 470 days (2003-
2004) shows that absolute variations in water quality parameters in the lake are
limited (table 5.1). The standard deviation is about 2% of the average value. The
model of the influent water quality in equation (5.2) is therefore applicable with a
bound on maximum and minimum quality values.

Table 5.1: Average water quality before softening (2003-2004)
Quality Value ∆/day

# x σ min. max. x σ min. max.
Total hardness 459 2.3 0.04 2.22 2.39 0 0.01 -0.08 0.04
pH 94 7.56 0.08 7.39 7.73 0 0.03 -0.20 0.09
Bicarbonate 30 206 4.6 196 215 0 0.2 -0.4 0.4
Conductivity 31 54.0 1.4 52.2 56.7 0 0.03 -0.06 0.06

One reactor is selected to illustrate the results. The total hardness in the efflu-
ent of reactor 2 is shown in figure 5.5 (top). The dark solid line is the estimate of
the total hardness in the reactor effluent using the particle filter. The particle filter
determines a probability function of the estimate and the 50% boundaries of the
estimate are also given. At this boundary the probability is 50% of the maximum
probability at the given sample time.

The estimate shows variations despite the constant raw water quality, but
agrees with the laboratory data. The changes can be explained by the variations in
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Figure 5.5: Total hardness (top) and pH (bottom) in the effluent of reactor 2.

caustic soda dosage. These changes occur due to the nature of the current control
loop. In practice, the caustic soda dosage is controlled by the online pH measure-
ment in the effluent, but changes in pH do not always reflect the changes in total
hardness, see figure 5.5 (bottom). The semi-online measurement of total hardness
shows the expected behaviour with sometimes correct measurement values, but
often erroneous results. The device proves to be unreliable as absolute measure-
ment under the existing circumstances and maintenance effort.

For optimisation purposes it is desirable to monitor the performance of the
individual reactors continuously. To determine the reactor performance reactor
the saturation index (SI) is used. The SI is a measure for the super-saturation of
calcium carbonate in the reactor effluent. An estimate of the SI from the particle
filter is given in figure 5.6. This index is measured rarely by the laboratory and is
not used in the particle filter as measurement data. From the graph it can be seen
that the estimated index corresponds to the infrequent laboratory measurements.
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Figure 5.6: Saturation index of Reactor 2 estimate and laboratory measurement.

5.4 Biological Activated Carbon Filtration Monitoring

5.4.1 Process Analysis

The biological activated carbon (BAC) filters are divided into two parallel streams:
North stream and South stream. The South stream was newly built to operate
as a BAC filter (filter numbers 13 through 26). A flow control valve controls the
division of flow between the two streams. In the control loop the flow to the South
stream is kept constant. A detailed description of the process is given in section
A.2.

The focus of this research is on the South filters, since these are operated at a
constant feed flow to the treatment step. The layout of the filters is given in figure
5.7. The water enters the building on the left and in the central gutter the water is
divided over 14 weirs to the filters. For each filter the head loss is measured. In
the combined effluent of all filters the oxygen concentration is measured.

The largest change in process condition occurs during the backwash of a filter.
The filters are backwashed at regular intervals in a cyclic manner. The total water
flow is not changed during backwashing and the same amount of water is divided
over fewer filters. The backwash procedure consists of the following steps:

1. The water supply to the filter is stopped and the supernatant water level is
lowered by leaving the effluent valve open

2. The effluent valve is closed and the filter is backwashed with water and air
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Figure 5.7: Layout of biological activated carbon filters (top view).

3. The influent is opened, but the produced water is disposed

4. The effluent is opened

The head loss during backwashing is shown in figure 5.8 (top). Lowering the su-
pernatant water level gives a short rise in head loss, due to the increased flow,
while backwashing with water gives a negative head loss. The head loss in the
other filters is shown in figure 5.8 (middle). A short period after closure of the in-
fluent valve of the backwashed filter the other filters show a rise in head loss due
to the increased water flow to the filters. The oxygen concentration of the mixed
effluent is shown in figure 5.8 (bottom). The hydraulic retention time in the filters
causes a delay between the change in process conditions and the oxygen mea-
surement. It can be seen that due to the increased flow over the remaining filters
and the resulting shorter contact time, the oxygen concentration in the combined
effluent increases.

Hydraulic Loading

The water flow to the individual filters is not actively controlled. The water is
hydraulically distributed over the filters. The flow to the filter, therefore, depends
on the water height over the free overflow and the flow pattern in the central
influent gutter. However, to investigate the performance of the individual filters
it is necessary to know the hydraulic loading of each filter. Since the flow to the
individual filters is not measured, the loading cannot be checked directly.

To determine the hydraulic loading per filter online using the routinely mea-
sured parameters, the head loss measurements in the individual filters are used.
Since the water flow velocity through each filter is slow (< 7 m/h) and Reynold
numbers are low, the head loss in each filter ∆Pl linearly depends on the flow
through the filter (Ives and Pienvichitr 1965; Comiti and Renaud 1989; Montillet
et al. 2007):

∆Pl = rlFl (5.8)
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Figure 5.8: Head loss in backwashed filter and status influent and effluent slide
(top). Head loss of other filters (middle) and oxygen concentration in the mixed
effluent (bottom)

The resistance factor rl varies due to clogging of the filter and water temperature
variations. For relatively short periods in time (<1 hour), this factor can be con-
sidered to be constant.

This was verified in the pilot plant of Weesperkarspel at different stages of
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clogging of the filters. During four weeks, a pilot plant filter was operated at
constant flow of 2 m3/h. After each week a variation experiment was started:
the flow through the filter was varied between 0.5 and 3 m3/h. In figure 5.9, the
measured head loss and flow data are plotted (dots) and a linear dependency is
found.
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Figure 5.9: Headloss versus flow in a pilot plant filter in Weesperkarspel during
short flow variations at four stages of clogging.

The change in head loss is thus a direct measure for the change of water flow
over the filter

Ft+∆t

Ft

≈ ∆Pt+∆t

∆Pt

(5.9)

During normal operation the total water flow is divided over the filters:

Ftot =
∑

l=1..n

Fl =
∑

l=1..n

flFtot (5.10)

where fl is the fraction of water flowing to the lth filter, if all filters are in operation.
As soon as filter m is backwashed the influent slide is closed and the total water
flow is divided over the remaining filters.

Ftot =
∑

l=1..n;l 6=m

fl

(1 − fm)
Ftot (5.11)

In this approach it is assumed that the water of filter m is equally divided over
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the other filters. The fraction fm, based on the change in head loss of the lth filter
can now be calculated using the flow over the filter before the backwash (Fl) and
during the backwash (Fl,m):

fl,m = 1 − Fl,m

Fl

≈ 1 − ∆Pl,m

∆Pl

(5.12)

Since the head loss measurements vary due to effluent control actions (see figure
5.8) it is necessary to use the average of the calculated fractions of all the filters in
operation:

f̂m =
1

n − 1

∑

l=1..n;l 6=m

1 − ∆Pl,m

∆Pl

(5.13)

Biological Activity
The biological activity of the filters is of interest to the operators, since it indicates
the performance related to the removal of biodegradable organic compounds.
Furthermore it is important that the oxygen concentration in each filter remains
above a minimal value. The filters do not have an individual oxygen measure-
ment and are not monitored online for low oxygen concentrations. As soon as the
oxygen concentration in the mixed effluent is too low it is not possible to identify,
which filter is close to minimum oxygen concentration.

A grey-box model is used to estimate the oxygen concentration in the efflu-
ent of each individual filter. It is assumed that the biological activity in a filter
is predominantly dependent on the present biomass in the filter. Changing con-
centrations of oxygen and biologically degradable material in the influent do not
influence the short-term biological activity. The oxygen consumption of the fil-
ter is therefore given by the biological activity rate b, the yield Y and the present
biomass Xl in the lth filter:

dOl

dt
= − b

Y
Xl (5.14)

Since the height of biological active layer is limited and the influent flow and oxy-
gen concentration are constant, equation (5.14) can be integrated over the height
of the biological active layer giving the oxygen concentration Ol of the lth filter:

Oi = Oin − b

Y
Xl ∆Tl (5.15)

where ∆Tl is the contact time of the water in the biologically active layer. The
height of this layer is not known, but it is expected that it will only slowly change
in time. The biological activity rate, yield and present biomass per volume of the
filter can be replaced by biological activity b̃l:

b̃i =
b

Y

Xi

V
(5.16)
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The effluent concentration of the filter is now only given by the influent oxygen
concentration, the biological activity and the flow through the filter:

Ol = Oin − b̃l

1

Fl

(5.17)

This result is verified in the pilot plant of Weesperkarspel at different stages of
clogging of the filters. During four weeks a pilot plant filter is operated at con-
stant flow of 2 m3/h. After each week a variation experiment was started: the
flow through the filter is varied between 0.5 and 3 m3/h. In figure 5.10, the mea-
sured oxygen concentration and reciprocal flow are plotted (markers) and a linear
dependency is found. The oxygen concentration change does not occur instanta-
neously, since the water has to flow completely through the filter to the effluent
oxygen measurement. The delay between flow change and oxygen change was
for low flows more than an hour.
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Figure 5.10: Effluent oxygen concentration versus reciprocal flow relation for a
filter in the pilot-scale plant of Weesperkarspel during four weeks of operation.

Using the hydraulic equation (5.10), the oxygen concentration in the South
stream in steady state is given by:

O =
∑

l=1..n

fl

(

Oin − b̃l

1

flFtot

)

= Oin − 1

Ftot

∑

l=1..n

b̃l (5.18)

During backwashing, the oxygen concentration in the mixed effluent changes (see
figure 5.8 (bottom)). In the first stage of the backwash procedure the influent slide
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is closed, but an unknown water flow flows out of the filter. In the period after
that only water from the bottom part of all filters passes the oxygen measurement.
During backwashing, fewer filters are in operation, and the flow to each filter
increases. The effect on the oxygen concentration is measured after the hydraulic
retention time between top layer and measurement device. From equation (5.18)
yields the following steady-state oxygen concentration of the mixed effluent Om,
during backwashing of the mth filter:

Om = Oin − 1

Ftot

∑

l=1..n;l 6=m

b̃l (5.19)

From equations (5.18) and (5.19) the biological activity of the mth filter can be
estimated:

ˆ̃
bm = Ftot (Om − O) (5.20)

The estimated oxygen consumption in the lth filter is now given by:

∆̂Ol = O − Oin =
ˆ̃
bl

1

f̂l Ftot

(5.21)

5.4.2 Results

Hydraulic loading
The hydraulic loading of the filters is estimated using data from the full-scale
plant for the period June 2007 - February 2008. The estimated hydraulic loading
for filter number 18 is shown in figure 5.11. The changes in time are caused by the
inaccuracy flow estimation based on pressure drop. The flow over each remaining
activated carbon filter is determined by the controller of the supernatant water
level. These controllers do not function properly and tend to oscillate as soon as
influent flow variations occur. These oscillations give an inaccurate estimate of
the hydraulic loading at each backwash moment, but if the average value is taken
over a longer time period, an average hydraulic loading is found as shown in
figure 5.12.

The difference in hydraulic loading between filters 13 and 26 is in accordance
with previous research (Ross 2006). For this treatment plant, the differences can
only be resolved by adjusting the overflow weirs of the filters. The difference
between average estimated loading (dotted line) and the expected average of
100%/14, is about 5%.

The results could be improved by making adjustments to the basic automa-
tion of the plant. There are two major improvements possible. The control of the
effluent valve must be changed from level control to flow control over the filter
bed. Since flow measurements are not available, the head loss measurements can
be used as virtual sensors. The second improvement would be the automatic cal-
ibration of the head loss measurements. At the moment that the effluent valve is
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Figure 5.11: Estimated hydraulic loading of filter 18 during the year.
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Figure 5.12: Average estimated hydraulic loading. The dotted line is the expected
average value of 100%/14, the dashed line is the estimated average value

closed and just before the actual backwashing is started, the head loss measure-
ment should be zero. This moment can be used to determine the offset of the head
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loss measurement. The current sample rate for data acquisition is not high enough
to determine this value (see figure 5.8).

Biological activity
The biological activity of the filters is estimated using data from the full-scale plant
for the period June 2007 - February 2008. The estimated biological activity as a
function of temperature are given in figure 5.13. For low temperatures the activity
is low (as expected), but above approximately 12 ◦C the activity increases. The
variation in biological activity increases also significantly with increasing temper-
ature. The oxygen concentration measurement has also a reduced accuracy at the
low oxygen effluent concentrations in summer.
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Figure 5.13: Biological activity per filter as a function of temperature.

The estimated oxygen consumption in each filter is given in figure 5.14. The
oxygen consumption of 1 mg/l in winter is in accordance with operator experi-
ence. The oxygen consumption in summer, however, is higher than the saturation
concentration of oxygen in water. Laboratory measurement of the influent water
of the filters show that the water is saturated with oxygen (> 9 mg/l) and visual
inspection of the water show the formation of small air bubbles. It is assumed
that due to the ozonation treatment step, the water is probably super-saturated
with oxygen. The water is transported between the ozone step and the BACF step
under pressure, due to the water level in the filters. The super saturated oxygen
is dissolved in the water during the BACF step and available for the biological
process.

The increase of oxygen removal of filter 15 and 23 in September is due to the
regeneration of these filters. The removal of oxygen is in these cases not caused
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Figure 5.14: Estimated oxygen consumption (∆̂Ol) from all filters

by biological activity, but by adsorption of the oxygen to the regenerated carbon.

Using this model-based monitoring scheme for the BAC filtration treatment
step, the loading of the filters can be optimised and disruptions in biological ac-
tivity can be identified easily.

5.5 pH Monitoring at the Integral Treatment Plant

To monitor the integral treatment plant, with respect to the pH, a grey-box model
is used. The considered model describes the effect of chemical dosing and reac-
tions through the so called M and P-alkalinity, related to the pH. The M-and P
alkalinity can be measured semi-online using a titration device, but are normally
only determined in the laboratory. However, the pH is measured online at multi-
ple treatment steps in the plant. The goal of this monitoring scheme is to validate
the pH measurements online, using an estimate of the M and P alkalinity, based
on flow and dosage measurements.

5.5.1 Model Description

The advantage of using the M-alkalinity and P-alkalinity is that they have a linear
relationship with respect to dosing of chemicals, in contrast to the pH. It is, there-
fore, possible to model of M and P alkalinity throughout the plant with a grey-box
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model. In figure 5.15 a snapshot is taken, with respect to M and P throughout the
Weesperkarspel treatment plant of Waternet. The bold line describes the M and P
changes in the different treatment steps. Starting with lake water as source water,
the dosage of acid causes a drop of M en P alkalinity equal to the amount of dosed
acid, as can be deduced from the definition of M and P in equation 4.29. The
process of CO2 exchange with air raises P, depending on the reaction rate of this
process. The dosage of caustic soda at the softening treatment step increases both
M and P equally, but the process of CO2−

3 crystallisation lowers the M-alkalinity
twice as much as the P alkalinity. After the acid dosage after softening, the CO2

formation in BAC filtration and the caustic soda dosage after BAC filtration, the
treated water has the given M en P alkalinity.
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Figure 5.15: Dependency of pH on M-alkalinity and P-alkalinity for the Weesper-
karspel treatment plant at 15◦C and a snapshot of the changes in M-alkalinity and
P-alkalinity at the different treatment steps.

The pH which corresponds to the M and P alkalinity is plotted in figure 5.15
as thin lines, with corresponding pH values. The relation between pH, M and
P alkalinity is known as the carbonic equilibrium and depends mainly on water
temperature and slightly on ionic strength. A detailed explanation of this relation
is given in section 4.3.1.

To determine the dynamic grey-box model of the complete treatment plant,
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each treatment step is divided into n sections with a total volume V (V1..Vn),
as shown in figure 5.16. The dosage takes always place at the beginning of the
treatment step before the first volume, possibly changing the M-alkalinity and P-
alkalinity of the previous treatment step ([MP ]prev) instantaneously. To model
generic processes taking place in the treatment step, also a so called reactant is
modelled. The dosage and reactant differs for each treatment step, but the model
structure is the same for all treatment steps. In the consecutive compartments
the reactions of M , P and reactant r take place, changing the M-alkalinity and
P-alkalinity based on a given reaction rate. The final alkalinities ([MP ]n) are the
input to the next treatment step.

Figure 5.16: Model structure for each treatment step.

Each treatment step is now modelled with the general model k = 1..n:

dMk

dt
=

F

Vk

(Mk−1 − Mk) − RM (Mk, Pk, rk, T emperature)

dPk

dt
=

F

Vk

(Pk−1 − Pk) − RP (Mk, Pk, rk, T emperature)

drk

dt
=

F

Vk

(rk−1 − rk) − Rr(Mk, Pk, rk, T emperature)

M0 = Mprev + fM (rin)

P0 = Pprev + fP (rin) (5.22)

where F is the flow, V is the water volume in the corresponding treatment step, r
is the reactant in the water, RM , RP and Rr describe the reactions in the treatment
step and depend on the temperature. The functions fM and fP are the instanta-
neous changes in M and P due to the dosage of chemicals and Mprev and Pprev

are the M and P alkalinities from the previous treatment step.

To model the pH in Weesperkarspel, also a part of the pre-treatment in Loen-
derveen is considered. In Loenderveen the water from the lake is taken as source
water for the acid dosage and rapid sand filtration. After transportation to Weesper-
karspel, the water is split into two main streams: North and South. Each stream
has the same treatment steps: ozonation, pellet softening with caustic soda and
bypass, acid dosage, biological activated carbon filtration and caustic soda dosage.
Finally the streams are combined in slow sand filtration and storage. The treat-
ment steps are given in figure 5.17.



84 Chapter 5 Model-Based Monitoring of Drinking-Water Treatment

Figure 5.17: Modelled treatment steps in Loenderveen-Weesperkarspel in the in-
tegral pH model.

The water from the lake is not measured online, but laboratory measurements
show that on average the pH is 8.2±0.1 and the M-alkalinity is 3.75±1 mmol/l.
These concentrations vary slightly during the year. The temperature, however,
varies during the year between 3 ◦C and 25 ◦C. The variations in pH and bicar-
bonate are neglected. Figure 5.18 shows the actual laboratory data.
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Figure 5.18: Laboratory values of pH and M-alkalinity between 2000 and 2005,
and the approximated values used in the grey-box model.

The complete model of the treatment steps of Loenderveen and Weesperkarspel
is defined according to equation (5.22). The parameters for each treatment step are
given in table 5.2, where the reaction rates are assumed to be the same for the north
and south stream. The reactions in M and P differ for each treatment step. After
the first acid dosage, which lowers M and P, CO2 is exchanged with the air with
a reaction rate of k12P . The reactions in the rapid sand filtration, transportation
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and ozonation are neglected. In the softening treatment step, the caustic soda is
dosed (increasing M and P), after which M and P are lowered by crystallisation
of calcium carbonate. The amount of dosage used for crystallisation (k10) is com-
bined with the crystallisation rate (k5r) The acid dosage lowers M and P. In the
biological activated carbon filtration CO2 is formed, depending on the actual bi-
ological activity (k6) and yield (k11). The caustic soda dosage after BAC filtration
raises M-alkalinity and P-alkalinity. The reactions in the slow sand filtration and
the storage are neglected.

Table 5.2: Treatment steps and model parameters
Treatment step fM fP RM RP Rr Reactant (r)

5. Acid Dosage −rin −rin 0 k12P 0 Acid
6. Rapid Sand Filtration 0 0 0 0 0 Neglected
7. Transport 0 0 0 0 0 -
8. Ozonation 0 0 0 0 0 Neglected
9. Softening rin rin 2k10k5r k10k5r k5r Caustic soda
10 Acid Dosage −rin −rin 0 0 0 Acid
11. BAC Filtration 0 0 0 k11k6r k6r Biol.Activity
12. Caustic Dosage rin rin 0 0 0 Caustic soda
13. Slow Sand Filtration 0 0 0 0 0 -
14. Storage 0 0 0 0 0 -

5.5.2 Simulation Results

To show the application, the model is fed with the flow and dosage measurements
from the full-scale plant for a period of 8 days (May-June 2007). The flow mea-
surements used in the model are the measured total flow at the transportation,
through the softening reactors and the bypasses and through the south stream of
the BAC filtration. The dosages of acid and caustic soda are measured directly.
The reaction rates are chosen constant for this period. The initial state of all sec-
tions is taken equal to the M-alkalinity and P-alkalinity of the Lake.

The simulation results are now compared to the measured pH. The pH is
measured every minute after the acid dosage, the transportation, the second acid
dosage (North and South stream), the caustic soda dosage (North and South stream)
and the slow sand filtration. The simulation results are shown in figure 5.19. In
each graph estimated and measured pH (dashed) are shown for the six pH mea-
surement locations.

After simulation start-up, the simulated and measured pH after transporta-
tion show a good match, in contrast to the measured pH directly after the first
acid dosage. The difference in simulated and measured pH can be a measure-
ment error or a modelling error. The assumption that the rapid sand filtration and
transportation do not change the M-alkalinity and P-alkalinity is then incorrect.
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Figure 5.19: Simulated and actual (dashed) pH measurements using constant re-
action coefficients and the measured flows and dosages for the treatment plant of
Loenderveen-Weesperkarspel.

After the second acid dosage (after softening), the pH is predicted fairly well, es-
pecially the variation on 31st of May, where a switching in the reactors took place.
The difference in pH between measured and modelled pH in the South stream
BAC filtration is unexpected. The measured pH is almost constant, while the sim-
ulated pH shows significant variations. These variations can also be observed in
the pH of the North stream, where they are predicted relatively well by the model.
The simulated pH after the slow sand filtration (where the two streams are mixed
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again) shows also more variation than the measured pH.

The simulations are also performed for a periodduring which a couple of bio-
logical activated filters are being regenerated. After regeneration, a filter has lost
its biological content, and does not produce any CO2. In figure 5.20 the simulated
and measured pH are shown after the softening treatment step, showing a good
match between model and measurement. However, after the BAC filtration treat-
ment step the pH values after the south stream differ significantly. At the 30th of
April (Filter 18) and the 4th of May (filter 16) the filters were filled with regen-
erated carbon. At this stage biological activity in the south stream reduced, and
the pH control lowered the caustic soda dosage. Since the model uses the same
biological activity, it predicts a lower pH.
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Figure 5.20: Simulated and actual (dashed) pH measurements using constant re-
action coefficients and the measured flows for the BAC filtration stage, during
filter regeneration.

The results show that this model is suitable for describing pH variations, based
on measured flows and dosages. This model can be used in a model-based mon-
itoring scheme in order to identify changes in process conditions (changing reac-
tion constants) and malfunction of pH measurements.
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5.6 Conclusions

The amount of data generated at a drinking-water treatment plant is large. Be-
sides on-line measurements, which give values every second, semi-online mea-
surements and laboratory measurements are available. With the development
of new measurement devices and increased automation of treatment plants, this
amount of data increases in the next decades. However, if these data are evaluated
as individual values, they are not useful for process performance improvement.
Moreover, erroneous measurements can jeopardise treatment objectives. To over-
come this problem it is necessary to combine measurement data and mathematical
models to generate process information instead of process data.

The mathematical models that can be used vary from white-box models to
grey-box models. If white-box models are available, the modelling effort for the
application in a new treatment plant is minimal. The white-box model can then
be used to determine measurement accuracy directly, without model calibration.
The use of a particle filter with a white-box model is an effective method to esti-
mate the process state and derive, again using the model, process parameters and
water-quality parameters, which are difficult to measure.

Applying grey-box models makes it possible to acquire more information from
the plant data, even without knowing the exact processes that are taking place.
Moreover, less modelling effort is required before the model can be applied to real
process data. However, the models are partly data-driven and the application is
more plant-specific than using a white-box model. The pitfall for grey-box mod-
els is limited information density in the measurement data, since drinking-water
treatment plants are preferably operated at constant conditions. This limited in-
formation density is also the reason for disregarding black, purely data-driven,
models. However, (small) changes of the process operation occur. These changes
can be used to estimate process parameters online using grey-box models.

The information gathered with model-based monitoring can be used for high-
level process monitoring, measurement validation and possible online control for
treatment step optimisation. The quality of the monitor depends on accuracy of
the model and the measurements. In the example of the activated carbon filtration
treatment step, it was possible to estimate the hydraulic loading and the biological
activity in each individual filter using a limited number of measurements. The
quality of the hydraulic loading estimate is, however, limited, due to variations in
the flow caused by the basic control of the effluent valve. Instead of extending the
model with fast varying flows, the basic control should be improved to optimise
process performance.

Besides information gathering of the actual process, a mismatch between pro-
cess and model can be detected. If there are no measurement errors, this mismatch
is caused by a misunderstanding of the process and thus modelling errors. This
observation can then be used to improve the model and increase understanding of
the process. The integral model of pH in the Weesperkarspel treatment plant has
shown that coupling all pH measurements in the treatment plant has increased
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process understanding. In the first model setup CO2 exchange with air after the
first acid dosage was not incorporated in the model. With this model it was not
possible to match simulated and measured pH values. Extending the model with
CO2 exchange gave satisfactory results.
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Chapter 6

Model-Based Optimisation of

the Pellet-Softening Treatment

Step

The model of the pellet-softening process is used to determine oper-
ational constraints on pellet size at the bottom of the reactor and

water flow through the reactor. The model-based constraints are com-
pared to operational data of the Weesperkarspel full-scale treatment plant
of Waternet. Within these constraints, optimising the pellet size in the re-
actor has significant influence on performance of the reactor with respect
to operational costs. Using the model of the softening treatment step (in-
cluding bypass) it is shown that the operational costs can be reduced. It
is concluded that the current operation of the softening process violates
the calculated constraints with consequences for effluent quality, dosage
costs and corrective maintenance.
Parts of this chapter have previously been published in van Schagen et al.
(2008a), van Schagen et al. (2008b) and van Schagen et al. (2008c).

6.1 Introduction

In the last years, numerous models for the drinking-water treatment processes
have been developed (chapter 4, White-Box Model: Pellet Softening; Rietveld
(2005); van der Helm (2007)). These models can now be used to optimise the
treatment processes under various circumstances.

Model-based optimisation follows the five steps of the design methodology of
chapter 3, Control-Design Methodology for Drinking-Water Treatment Processes.
The optimisation goals are given in the objectives of the process and are limited
by the operational constraints. To maintain the optimal process condition, the
necessary measurements and measurement positions are also to be determined,
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taking the known disturbances into account. The operational constraints are im-
posed by physical restrictions, or undesired process behaviour. In the case of un-
desired process behaviour these operational constraints can be determined using
the white-box model. The optimum operation point has to be found within the
operational constraints as shown in figure 6.1.

Figure 6.1: Operational constraints and optimisation function within these con-
straints

Analysis of the operation of the softening reactors at Weesperkarspel shows
that the current process operation gives large variations in the fluidised bed com-
position. The discharged pellets vary in size and size distribution, with the con-
sequence that small material is trapped in the bottom part of the reactor, which
can cause clogging. In addition, seeding material is frequently found in pellet
discharge, resulting in unnecessary loss of seeding material (Rietveld et al. 2006).
These undesired process conditions in the pellet reactor are probably caused by
violating operational constraints.

The temperature variation during the year and the limited variation options of
the fluidised bed composition in the pellet reactor, make it necessary to determine
the optimal pellet size and bypass flow during the year. By using a model-based
optimisation scheme the pellet size and bypass flow are determined, which min-
imise the yearly operational costs. The results of this optimisation are used by the
model-based control described in chapter 7, Model-Based Control of the Pellet-
Softening Treatment Step.
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6.2 Operational Constraints on the Fluidised Bed

In order to improve the operation of the fluidised bed, it is necessary to model the
hydraulics of the fluidised bed. The model must be able to predict the fluidised
bed porosity, bed height and the pressure gradient as a function of the size of
the pellets, water temperature and water flow. Using this model it is possible
to maintain minimum fluidisation of the bed and to improve segregation of the
pellets in the bed.

With the fluidisation models given in chapter 4 the operational constraints on
the pellet size and water flow are determined as a function of temperature. These
constraints are compared to operational data from the Weesperkarspel full-scale
treatment plant of Waternet.

6.2.1 Modelling the Constraints

The calibrated Richardson-Zaki model (section 4.2.2) is used to determine the op-
erating window for the pellet size and water flow velocity in the reactor as a func-
tion of temperature. Two operational constraints on the pellet size in the bottom
of the reactor are taken into account.

The first constraint is necessary to prevent garnet or small pellets to be dis-
charged from the bottom of the reactor. The driving force for the segregation of
small and large particles in a fluidised bed is the pressure gradient at a given flow
velocity v. The pressure gradient is depending on pellet density, water density
and porosity as given in equation (4.1):

∆P

∆L
= (ρp − ρw)(1 − p)g

The particles, which cause a larger pressure gradient, tend to settle at the bottom
of the reactor. If the pressure gradients for two particles are close to each other,
these particles will mix (Rasul 2003).

Because garnet sand is used as the seeding material and this has a higher den-
sity than the crystallisation material, layer inversion can occur. In figure 6.2, an
example is shown based on the Richardson-Zaki model with garnet sand with a
diameter of 0.25 mm and calcium carbonate as crystallised material. The lines
show the pressure gradient as a function of flow velocity for different pellet di-
ameters (and therefore different densities). For flow velocity around 75 m/h the
grains with a diameter of 0.25 mm and the pellets with a diameter of 0.7 mm have
a similar pressure gradient and consequently the pellets will mix. To prevent mix-
ing and assure that the larger pellets are below the garnet seeding material the
water flow velocity must be higher than 75 m/h or the pellet diameter must be
larger than 0.7 mm.

In general the bottom layer is stable, when the pressure drop over the lowest
part of the bed is larger than the pressure gradient of small pellets and grains. The
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Figure 6.2: Example of pressure gradient

pellet diameter in the bottom of the reactor must, therefore, be large enough to
assure this minimum pressure gradient.

The second constraint is given by the minimum porosity for the bed to segre-
gate and prevent clogging of the reactor. The pellet diameter in the bottom of the
reactor must, therefore, be small enough.

There is a direct relation between water flow velocity and segregation of parti-
cles (Escudié et al. 2006b). The speed of segregation however, is determined by the
driving force (the pressure gradient difference between the particles) and freedom
of movement of the particles in the fluidised bed.

Mixing of the fluidised bed due to flow variations occurs and it is therefore
necessary that segregation is optimised by assuring sufficient freedom of move-
ment. A low porosity causes small particles to be trapped in the lower part of the
reactor. It is assumed here that the minimum porosity is found if the spherical
pellets fit exactly in a cube, as shown in figure 6.3. The porosity is then given by
(Vcube − Vsphere)/Vcube, which gives the following minimum porosity:

pmin =
d3 − π

6 d3

d3
= 1 − π

6
≈ 0.48 (6.1)

The value for the minimum porosity will be verified using data from the full-scale
plant, by comparing the uniformity coefficient with the theoretical porosity. The
uniformity coefficient is defined as the largest diameter of de smallest 60% of the
pellets divided by the largest diameter of the smallest 10% of the pellets. It is
assumed that a lower uniformity coefficient corresponds to a better segregation.
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Figure 6.3: Minimum porosity: spherical pellets fit exactly in a cube.

6.2.2 Results Weesperkarspel

To verify the minimum porosity constraint, the uniformity coefficients of all sieve
analyses with an average diameter larger than 0.8 mm were determined. The min-
imum pellet diameter of 0.8 mm was used to eliminate the influence of the lower
operational constraint. Based on the actual temperature and water flow at the
sample moment, the theoretical porosity was calculated, based on the calibrated
Richardson-Zaki model. In figure 6.4, the average uniformity is plotted against the
calculated porosity. The numbers of sieve analyses with porosity in an interval are
shown at different intervals. As can be seen in the figure, the uniformity improves
as soon as the porosity is larger than 0.48, the theoretical minimum porosity given
in equation (6.1).
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The operational constraints for the approximated Ergun (equation 4.6) and the
calibrated Richardson-Zaki model are plotted in figure 6.5 for the temperature of
5 ◦C and in figure 6.6 for the temperature of 22 ◦C. For each model, two curves
are plotted. The lower lines represent the first constraint of minimum pellet size,
due to the minimum pressure gradient. The upper lines are the maximum pellet
size, due to the minimum porosity constraint. The dots and crosses in the figures
show measurement data from the full-scale Weesperkarspel treatment plant at
Waternet. The historical data were collected between 1996 and 2005. In this period
2074 sieve analyses were performed, from which 251 at 5 ◦C and 271 at 22 ◦C. For
each data point, the average diameter of a sieve analysis is plotted against the flow
through the reactor at the time of the analysis. The sieve analyses, which have a
pure garnet mass percentage larger than four percent are marked with a cross. A
garnet sand fraction of four percent corresponds to the mass of garnet in a pellet
of 0.85mm, the aimed diameter. When the mass percentage of garnet is higher
than four percent, more than 50 percent of the garnet sand is not used as seeding
material, but is discharged.
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Figure 6.5: Operational constraints for T=5◦C (winter)

At Waternet, current operation rules aim to decrease the maximum pellet size
in winter (pellet diameter of approximately 0.85 mm) in order to increase the spe-
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cific surface area of the fluidised bed. In summer the opposite happena (pellet
diameter > 1 mm). In summer and winter the water flow velocity can be varied
between 50 and 90 m/h.

40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
ia

m
et

er
 [m

m
]

Flow velocity [m/h]

Approx. Ergun
Calibrated Richardson−Zaki              
mass garnet<4% (n=220)
mass garnet>4% (n=31)

Figure 6.6: Operational constraints for T=22◦C (summer)

As can be observed from figures 6.5 and 6.6, current control of reactors does not
result in the desired pellet sizes. During the winter period, pellets sizes of up to
1.6 mm are found, which is above the aimed diameter of 0.85 mm. In summer, the
deviation from the desired pellet size is smaller, but there is still a large variation
in pellet diameter. As expected, the unused garnet sand discharge is large near
the lower operational constraint of the pellet size.

The operation of the pellet reactor can be improved by maintaining the pellet
diameter within the operational constraints. The desired diameter can be con-
trolled directly using the pressure drop over the bottom part of the reactor. The
results are shown in figure 3.4.
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6.3 Minimum Operational Cost

The aim is to find the pellet size and bypass ratio which minimise the total cost
over the year. The cost for chemicals (base and acid) and seeding material can be
easily calculated. The costs for the plant maintenance and operator corrections
are more difficult to quantify. It is, however, assumed that the maintenance and
corrections are minimal when optimal dosing is applied.

The optimal pellet size is used in the model-base bed control and the optimal
bypass flow will be used in the model-based lane control (chapter 7).

6.3.1 Model Operational Cost

The model of the softening process step (chapter 4) is used to analyse the influence
of the different control strategies. The process, as schematised in figure 6.7, is
modelled in Stimela (van der Helm and Rietveld 2002). Stimela is a toolbox in
Matlab/Simulinkr for the simulation of treatment processes. Different control
strategies are simulated using the same influent water quality parameters which
take the year variation into account. The simulation is performed over a period
of two years, where the total cost in the last year is evaluated, to discard initial
start-up conditions. The total cost is divided by the flow of treated water:

Jm3 =
1

Fw

(Fs · Cs + Fa · Ca + vg · Cg) (6.2)

where Cs is the cost per volume base, Ca is the cost per volume acid and Cg the
cost per kilogram seeding material. The flow Fw is the total flow of treated water
(reactor + bypass). The base flow Fs keeps the total hardness at the desired value
and the acid flow Fa keeps the saturation index at the desired value. The garnet
sand charge vg and the pellet discharge vp keep the fluidised bed in the desired
state. The cost of pellet discharge is zero and is therefore not incorporated in
equation (6.2).

To verify whether the model is suitable to predict optimisation modifications,
the current operational strategy of the Weesperkarspel treatment plant is simu-
lated with the model.

In the evaluation of new control strategies, the pellet diameter and the by-
pass ratio are kept constant and the flow through the reactor is varied to maintain
minimum porosity. Since the fluidisation of pellets is temperature dependent, the
same pellet diameter demands a higher reactor flow at high temperatures than at
low temperatures. The amount of treated water per reactor with bypass therefore
varies for the different pellet sizes and bypass ratios and during the simulation pe-
riod (summer-winter). In this manner the operational constraints on the fluidised
bed are always met.

The sensitivity of the total cost with respect to pellet size and bypass ratio (BP )
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Figure 6.7: Fluidised bed reactor with bypass.

is evaluated. The bypass ratio is given by:

BP =
Fbypass

Freactor + Fbypass

(6.3)

In the final process optimisation, temperature-dependent pellet size and by-
pass ratio are sought by means of nonlinear optimisation to minimise the total
chemical cost. To reduce the number of optimisation parameters, a linear relation
between the temperature of the raw water and the pellet size and bypass ratio is
assumed. This optimisation is performed by running the two year simulation re-
peatedly using the lsqnonlin function in the optimisation toolbox (version 2.2) of
Matlab r.

6.3.2 Model Verification

In the current practice, the pellet discharge and garnet sand dosage are controlled
in such a way that the average pellet diameter is about 1.2 mm and the pressure
drop of the total bed is 17 kPa. The effective diameter varies among the different
reactors, but this variation is uncontrolled and on average the pellet diameter is
constant. The yearly average bypass ratio is about 5 percent. The flow velocity
through each reactor is kept constant at about 65 m/h. The saturation index of the
treated water is in general about 0.4.

The actual and simulated cost of the chemicals for the softening process step
at this treatment plant are given in table 6.1. The variations during the year are
shown in figure 6.8. The cost of caustic soda and acid dosage is slightly higher
than the actual cost from the full-scale plant. The cost of garnet sand is in practice
about twice as high as the simulated result. Explanation for this difference can
be found in the manual removal of fluidised bed in the reactor for maintenance
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Table 6.1: Dosing costs of the pellet-softening treatment step at the Weesper-
karspel treatment plant in euro/1000m3

Total Caustic soda Acid Garnet sand
Actual 14.3 10.0 3.1 1.2
Simulated current control 14.7 10.2 3.9 0.6
Simulated dp=0.95, BP=33 9.42 7.80 0.46 1.16
Simulated dp,opt, BPopt 9.41 7.78 0.43 1.20

reasons, which causes garnet sand loss. A second cause is that the average pellet
diameter is 1.2 mm, but the current control of this pellet diameter is inaccurate and
there is a large variation in pellet size in the process. Occasionally small pellets
(<0.8 mm) will be discharged and the operational constraints are violated, causing
an extra discharge of garnet.
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Figure 6.8: Simulation with current control strategy.

The results from the simulation show that for the Weesperkarspel treatment
plant, the dosing costs can be estimated using the validated white-box model of
pellet-softening treatment step.

6.3.3 Results Weesperkarspel

In all new control strategies, the caustic soda dosage controls the total hardness
of the treated water (reactor plus bypass) and keeps it at a constant value of 1.5
mmol/l. The acid dosage keeps the saturation index of the treated water at a
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constant value of 0.3. Garnet sand dosage keeps the fluidised bed at the maximum
height of 4.5 meter for maximum crystallisation surface and the pellet discharge
controls the pellet size (which differs from the current practice, in which the total
pressure drop is controlled).
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Figure 6.9: Simulated yearly average cost depending on pellet size and bypass
ratio.

In figure 6.9 the results are plotted for the simulation with constant pellet size
and constant bypass ratio during the year. The costs plotted are the average costs
for the entire year. It can be seen that there is an optimal pellet size, which min-
imises total operational cost. Small deviations from this optimal pellet diameter
do not change the total cost, but a discharged pellet diameter of 1.2 mm gives a
10% higher cost than the optimal diameter. The influence of the bypass ratio on the
total cost is small for small pellets, but becomes larger as the desired pellet diam-
eter becomes larger. This can be explained by the fact that for larger pellet sizes
the reactor functions suboptimally and the water from the reactor has a higher
super-saturation, resulting in a large difference between water quality from the
reactor and the bypass. If the bypass increases, the required dosage levels in the
reactor rise. At a certain point (about 30% bypass), the effectiveness of the reactor
decreases and increasing bypass ratio will increase the operational cost.

The simulated costs are significantly smaller than the current operational costs
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of 14.3 euro/1000m3. The most important difference from the current operation is
that the bed height is kept at the maximum height of 4.5 meters and the pressure
drop over the height of the bed is not controlled. As can be seen in figure 6.9,
the cost for a diameter of 1.2 mm, with hardly any bypass, is 10.6 euro/1000m3 in
total.

For the process optimisation, a temperature dependent setpoint for pellet size
and bypass and reactor flow is used. The pellet size and the bypass ratio which
minimises the chemical costs of the entire year are given by:

dp,opt =
0.1

30
· T + 0.9

BPopt =
5

30
· T + 28 (6.4)

where the optimal pellet size dp,opt is given in mm and the bypass-ratio BPopt in
percentage bypass flow of the total flow. The variation of pellet size and bypass
ratio during the year are relatively small.

The resulting costs during the year are on average 9.4 euro/1000m3, as shown
in table 6.1 and figure 6.10. This is the same as for the situation with a constant
pellet size of 0.95 mm and a bypass of 33% (figure 6.9).
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Figure 6.10: Simulation with optimal pellet size and bypass.

The flow through the reactor varies significantly to maintain minimum poros-
ity at the bottom of the reactor, but the bypass factor is almost temperature in-
dependent. The total optimal flow of treated water for one reactor and bypass
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is therefore temperature dependent. Since the total water production of the full-
scale plant is practically constant during the year, it is not possible to comply with
the optimal trajectory for the bypass ratio. This will reduce optimality, but the
sensitivity to lowering the bypass ratio at the optimal pellet size is relatively small
(see figure 6.9 at 0.9 mm - 1 mm).

In the case of the Weesperkarpel treatment plant, with an average production
of 2800 m3/h this will lead to 8 reactors in operation at 0 ◦C and 6 reactors in
operation at 30 ◦C. The optimal bypass ratio is kept at its maximum, since a large
ratio can increase the costs significantly (see figure 6.9). The resulting bypass ratios
for different temperatures are given in figure 6.11. At 0 ◦C eight reactors are in
operation. As temperature increases, the flow through the reactor must increase,
to keep the bed fluidised. To produce the same quantity of water, the bypass ratio
is decreased. If temperature rises to 6 ◦C, a reactor is switch off to approach the
optimal bypass ratio. The same action is taken at about 17 ◦C.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

B
yp

as
s 

[%
]

Temperature [°C]

Figure 6.11: Optimal (dashed) and applied bypass ratio at different temperatures
for the Weesperkarspel treatment plant

6.4 Conclusions

Mathematical process models can be used to offline determine optimal process
conditions. The basic or model-based controllers can then be tuned to achieve
these process conditions. The white-box model of the pellet-softening reactor
(chapter 4, White-Box Model: Pellet Softening) is successfully used to determine
the optimal process conditions of the pellet softening treatment step.
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Since it is not possible to directly measure the porosity and segregation of the
fluidised bed, the model is necessary to determine operational constraints for the
pellet size in the bottom of the reactor. These constraints are given by minimum
porosity in the bed and segregation of small pellets and seeding material. The
operational constraints indicate a minimum and maximum acceptable pellet size
in the bottom of the reactor and are water flow and temperature dependent.

The operational constraints are sensitive to model approach as shown in fig-
ure 6.5 and 6.6. Relatively small model modifications cause significant change
in constraints. An accurate model is therefore essential for determining valid
constraints. Historical data show that the operation leads to undesirable bed be-
haviour most of the time, which can explain existing troubles in the fluidised bed
reactor, such as high seeding material usage and clogging.

If the operational constraints for the fluidised bed are met, the water flow ve-
locity and chemical dosage can be optimised to achieve the optimal crystallisation
reaction in the reactor. Since the rate of change of pellet size is limited, tempera-
ture variations must be taken into account when optimising the water flow veloc-
ity through the reactor.

If the optimal pellet size and bypass ratio is maintained for the Weesperkarspel
treatment plant, the dosing cost for the softening treatment step can be reduced
by 35%. The optimal setpoints for discharged pellet size, reactor flow and by-
pass flow are implemented in the basic control of the full-scale Weesperkarspel
treatment plant in November 2007. The reduction of the operational cost are 15 %
(section 3.3.3). A further cost reduction will be realised as soon as the model-based
control is implemented.



Chapter 7

Model-Based Control of the

Pellet-Softening Treatment

Step

The control of a drinking-water treatment plant aims to produce the
correct quantity of water, with a constant quality. Achieving con-

stant water quality is not an obvious task, since the online water-quality
measurements and possible control actions are limited. Applying model-
based control improves disturbance rejection and online process opti-
misation. For the softening process step, the integral control scheme is
shown with multiple controllers for different time scales and process de-
tail. The three major model-based controllers of lane control, fluidised
bed control and dosing control are shown in detail and verified using
simulation experiments. The dosing control is tested in the pilot plant
of Weesperkarspel. It shows that in the case of accurate state estimation,
quick changes in setpoint can be tracked.
Parts of this chapter have previously been published in van Schagen et al.
(2005), van Schagen et al. (2006), and van Schagen et al. (2008c).

7.1 Introduction

In the last decades, most drinking-water treatment plants have been automated.
During these first automation realisations, the goal was to operate the treatment
plant in the same way as the operators did before. Therefore the control configura-
tions consisted of a heuristic control strategy, based on historical operator knowl-
edge. The controls are designed for the static situation, including extra safety
margins to take operator response into account. This was a logical and practical
solution. However, this heuristic solution does not optimise the operation of a
treatment plant.

105
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The heuristic control is based on static local control objectives, without taking
the current state of the treatment plant into account. Therefore it is necessary
to adopt a new control strategy, which can take into account quality-related and
economic criteria and optimise the overall performance of the plant, based on the
current state of the processes.

Since the treatment steps are coupled, local changes affect other treatment
steps and therefore local optimisations should be considered in a global context
(chapter 2, Drinking-Water Treatment Process Analysis). It is necessary that oper-
ational actions do not introduce new disturbances to other processes. This must
be considered in all levels of control, from basic valve controllers to plant-wide
quantity control. At the same time, the control should consider the actual state of
the process and optimise plant operations (chapter 3, Control-Design Methodol-
ogy for Drinking-Water Treatment Processes).

The information density in the online measured data is limited and multiple
measurements have to be used to obtain a good view of the actual treatment per-
formance (chapter 5, Model-Based Monitoring of Drinking-Water Treatment). By
using white-box or grey-box models, the process knowledge is no longer stored
as historical heuristic rules of thumb or static local control objectives. The local
control objectives evolve from applying the new criteria to the existing models in
the case of changes to the process, such as boundary conditions, influent prop-
erties and desired treated water quality (chapter 6, Model-Based Optimisation of
the Pellet-Softening Treatment Step).

In this chapter, the new model-based control configuration is shown for the
pellet-softening treatment step, consisting of a number of pellet reactors and a by-
pass (An extensive description of the process is given in section A.1). The model-
based control configuration is elaborated in the first section. For three levels of
control, (bed control, lane control and dosage control) the model-based control
scheme is elaborated in the consecutive sections. The control schemes are vali-
dated in simulation experiments. The dosage control is finally validated in the
pilot plant of Weesperkarspel.

7.2 Control Configuration

The aim of the control of the softening process is to achieve a desired calcium
concentration and, at the same time, minimise the use of dosage material (caustic
soda, seeding grains and acid). The available control inputs are the water flow
through the bypass and for each reactor the water flow through the reactor, the
grain supply rate, the pellet discharge rate, the caustic soda dosage and the acid
dosage.

To control the complete treatment step, a modular control setup is chosen.
In this way, the controller complexity is minimised, maximising operator under-
standing of the control structure. Due to the diverse time constants in the process,
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these controllers are implemented on different platforms, with appropriate perfor-
mance for the controllers. Figure 7.1 shows the control modules that are related to
the softening process step. On the vertical axis represents the typical time constant
of the controller and the horizontal axis shows the process level of the controller.

Figure 7.1: Control setup for the pellet-softening treatment step. Modular con-
trollers for different time constants and control levels.

The Strategic Quantity Control determines the amount of water, which has to be
produced at the treatment plant. This is based on yearly consumption patterns,
available resources at this plant and, in a multiple plants setup, the other treatment
plants. The amount of water to be treated, is then passed to the Model-Based
Quantity controller and the Model-Based Lane Optimisation.

The Model-Based Quantity Control determines the actual production rate of the
entire plant, based on expected daily consumption pattern and the available wa-
ter in the storage tanks. Restrictions in production rate, due to short-term main-
tenance, are taken into account and fluctuations of production rate are minimised
(DHV 2009).

The Model-Based Lane Optimisation determines the ideal pellet size, bypass ra-
tio and the optimal number of reactors in operation, based on the expected pro-
duction rate from the Stategic Quantity Control and the expected temperature
variations. Changing bed configurations is a long term optimisation, due to the
retention time of seeding material in the reactor of approximately 100 days. An
extensive description of this optimisation scheme can be found in chapter 6.

The Model-Based Bed Control achieves the optimal bed composition as found
with the Model-Based Lane Optimisation by determining the required pellet dis-
charge and seeding material rates. It uses the estimation of the current bed com-
position, determined by the Model-Based Monitor. This can be the model-based
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monitor of the complete reactor as shown in chapter 5, or a simplified model-
based monitor, as is shown in section 7.4.

The Model-Based Monitor estimates the accuracy of the measurement devices
and determines the actual state of the softening process. This monitor is used
to verify the measurements that are used by the other controllers. In the case
of unexpected differences between measurement and model outcome, operators
are notified to take appropriate action. If measurement accuracy is sufficient, the
model can be used to estimate unmeasured quality parameters using online mea-
surements and historical laboratory results. Finally the actual state of the process
can be estimated, such as the diameters of the pellets in the softening reactor at dif-
ferent heights. An extensive description of this monitoring scheme can be found
in chapter 5.

The Model-Based Lane Control determines the current flow and quality setpoints
for each lane. It uses the estimated bed composition from the Model-Based Mon-
itor and the actual production rate from the Model-Based Quantity Control. This
controller is introduced, since the fluidised bed has limited control possibilities
and it is expected that the actual bed composition is different for each reactor.
The Model-Based Bed Control strives for the optimal bed composition, while the
Model-Based Lane Control adapts to the current bed composition. The Model-
Based Lane Control is elaborated in detail in section 7.3.

The Model-Based Dosing Control determines the actual dosing of caustic soda
in the reactor to achieve the desired calcium concentration after the reactor, while
respecting the constraints of the reactor. The objective of this controller is to fol-
low the setpoint for the Model-Based Lane Control smoothly. The Model-Based
Dosing control is shown in detail in section 7.5.

The Pellet Discharge, Seeding Dosage, Dosing Control and Flow Control follow
the setpoints from the model-based controllers, by adjusting the physical devices
such as valves and pumps. These local controllers are implemented in the process
automation system of the plant.

7.3 Model-Based Lane Control

The problem of optimal control of parallel lanes is addresses and a novel scheme
for the control of the pellet-softening process step is proposed. It relies on the
model-based computation of optimal flow distribution over several parallel pel-
let reactors. Although the pellet-softening process was designed already in the
eighties of the last century (Graveland et al. 1983) and there have been a number
of publications on model description and process kinetics (Harms and Robinson
1992; Tai and Hsu 2001), there is no known reference on using this knowledge to
develop a model-based control scheme.

The model-based lane control takes the difference in the fluidised bed compo-
sition of the different reactors into account. The pellet bed composition changes
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slowly, since the average retention time of seeding material is 100 days. Based
on an hourly evaluation the performance of the entire treatment step can be im-
proved, adapting the dosing of each reactor most suitable for the existing pellet
bed.

The process lane for the pellet-softening treatment step is defined as a reactor
with a bypass. The flow through the pellet reactor is kept constant, to minimise
disturbances in the fluidised bed (chapter 3). However, if constraints (maximal
bed height, minimal porosity) are violated, the controller adjusts the reactor flow
setpoints and determines appropriate dosage setpoints.

In general, to optimise the flow distribution over Nl process lanes, a cost func-
tion J is introduced. It is a function of the flow through the lane (Fw,l) and the
parameters that describe the state of the lane (θl):

J =

Nl
∑

l=1

Jl(Fw,l, θl) (7.1)

under the constraint that the total flow equals the production rate of treatment
plant Fw,t

Fw,t =

Nl
∑

l=1

Fw,l (7.2)

In addition, each process lane has constraints on the flow:

Fw,l,min < Fw,l < Fw,l,max (7.3)

The structure of the lane cost function Jl should be chosen such that the result-
ing optimisation problem can be effectively solved online. The parameters θl can
be directly related to process parameters, but they can also be determined using
historical process data.

7.3.1 Cost Function for a Softening Lane

To determine the cost function of a softening process lane, the white-box model
from chapter 4, White-Box Model: Pellet Softening, is used. A softening lane
consisting of one reactor and one (virtual) bypass is considered. For a matrix
of dosage flows and reactor flows, the effluent calcium concentration of the re-
actor [Ca2+]r is determined by numerical simulation. The bed composition of
the reactor is fixed and measured a priori by sieve analyses or estimated using a
model-based monitoring scheme (chapter 5). The lane flow (Fw,l = Fw,r + FBP )
is then calculated to achieve the desired calcium concentration of the process lane
[Ca2+]set:

Fw,l =
[Ca2+]in − [Ca2+]r

[Ca2+]in − [Ca2+]set

Fw,r (7.4)
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A typical resulting dependency is shown in figure 7.2. The curves are the levels
of constant lane flow Fw,l, showing that the same water quantity, with the same
calcium concentration [Ca2+]set, can be achieved with different reactor flows. The
left vertical dashed line is the minimum flow due to the minimal fluidisation re-
quirement and the right vertical dashed line is the maximum reactor flow due to
the maximal bed height.
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Figure 7.2: Lane flow needed for a constant calcium concentration given the reac-
tor flow and NaOH dosage.

To derive a cost function for a softening lane, the Theoretical Calcium Carbon-
ate Crystallisation Potential (TCCP) is used. This is the amount of calcium (in
mmol/l) which should crystallise to obtain a saturation index of zero (equation
4.31). The operational costs of the softening process step can be related to this
value. A high TCCP is due to high NaOH dosage and causes extra calcium car-
bonate crystallisation in the next process step. To prevent crystallisation a high
TCCP must be compensated by acid dosage.

Typical TCCP curves depending on reactor flow are given in figure 7.3. The
curves correspond to the lane flows in figure 7.2. At a given reactor flow, the
TCCP is a function of lane flow. The cost function based on the TCCP load is
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therefore given by:

Jl = Tl(Fw,l)Fw,l (7.5)

The function Tl is determined from TCCP curves and is in general different for
each lane, since the bed composition of each lane is different.

100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Reactor flow [m3/h]

T
C

C
P

 [m
m

ol
/l]

400
400 450

500

650

700

750

950

1000

Figure 7.3: Calculated TCCP values for different lane and reactor flows

7.3.2 Results for the Weesperkarspel Treatment Plant

The bed composition of each reactor can be estimated using sieve analysis of the
pellets in the reactor, or using a model-based monitor. To merely determine the
effect of the lane control, in this case, the bed composition based on a sieve anal-
ysis is used. For each reactor of the eight reactors, the calculated TCCP values at
different flows through the lane are determined, using the validated bed compo-
sitions (see the results in table 4.6). The calculated TCCP values are the markers
in figure 7.4. Using a linear fit for the dependency between the lane flow and the
TCCP, the general cost function (7.5) for the lane is given by:

Jl = (alFw,l + bl)Fw,l (7.6)
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where al and bl are fitted on calculated data for each lane. The graph shows that
there are differences in lane performance between the different softening lanes.
Reactor 2 and 8 have relatively high TCCP values, while reactor 7 has a better bed
composition and has a low TCCP for all lane flows.
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Figure 7.4: Calculated TCCP values for different lane flows and constant reactor
flow.

The minimum of the total cost function (equations (7.1) and (7.6)) is now found
using quadratic programming techniques (Gill et al. 1981) for each desired flow
for the softening process step. It is chosen that the difference in lane flow for
each lane is maximally 100 m3/h from the average flow through all lanes. The
resulting flows through the lanes are given in figure 7.5. The graph represents the
ideal distribution between the lanes during the considered period of 15-20 October
2005, if the total production flow Fw,t varies between 3200 and 4800 m3/h.

As expected, the lanes with low TCCP operate at higher production rates than
the lanes with higher TCCP for a given production flow. As a result, all reactors
function at different calcium concentrations (and equal flow). The final concentra-
tion is equal to the desired value.

To determine the improvement in performance thanks to the optimal distribu-
tion of water over the lanes, the total estimated cost of the process step with opti-
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Figure 7.5: Optimal distribution of total flow over the lanes at different production
flows compared to equal flow in each lane (dashed line).

mal distribution is compared to operating all lanes at the same flow (the dashed
line in figure 7.5):

JReduction(Fw,t) =

l=8
∑

l=1

Jl(Fw,l,opt) − Jl(Fw,t/8)

Jl(Fw,l,opt)
∗ 100 (7.7)

The reduction in the TCCP load of the softening process step is up to 6% in this
example (figure 7.6).

7.4 Model-Based Bed Control

The aim of the fluidised bed control is to maximise the bed height and keep the
pellet size at the optimal value found by the Model-Based Lane Optimisation
(chapter 6). A model-based control approach is chosen for the control of the flu-
idised bed. The temperature variation can be significant and the expansion of the
fluidised bed has a strongly nonlinear relation with the temperature (especially
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Figure 7.6: Cost reduction due to Model-Based Lane Control using bed composi-
tion information for the considered period of 15-20 October 2005

seeding material and small pellets). The height of the bed has to be predicted ac-
curately over a long period in advanced (pellet retention time is approximately
100 days) and, therefore, it is not possible to use an approximate linearised model.

The state of the fluidised bed cannot be measured directly online and must
therefore be estimated. A particle filter is used for the estimation of the process
state, since measurements are relatively inaccurate and the process is nonlinear.
Besides the measurements of the fluidised bed, the particle filter uses the control
signals of the Model-Based Dosing Control (section 7.5) to improve the estimation.
To control the fluidised bed (pellet diameter and bed height), nonlinear model
predictive control is used, with a varying setpoint for pellet diameter, based on
annual cost optimisation.

7.4.1 Controller Configuration

The total control loop for the Model-Based fluidised bed controller is shown in
figure 7.7. Based on the given measurements, a particle filter estimates the state
of the fluidised bed (pellet diameters over height). The nonlinear MPC controller
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determines the seeding material dosage and pellet discharge, to maintain the op-
timal pellet diameter and maximum bed height under changing temperature and
corresponding reactor flow.

Figure 7.7: Control loop of the model-based bed controller.

For the particle filter (Ristic et al. 2004), the white-box model of the fluidised
bed is used (chapter 4), extended with an error model. By omitting the dynamics
of the concentrations in the water and applying a sampling interval of one day,
the calculation time of the particle filter is reduced.

The model of the reactor and input uncertainty can be written as:

xk+1 = f(xk,uk,vk) (7.8)

yk = h(xk,uk,wk) (7.9)

where xk is the state vector of the model describing the accumulated mass of
calcium carbonate mc and seeding material mg in the reactor, uk is the input vector
consisting of the influent quality parameters and current control actions of the
local controllers, vk is the modelling error in the state update and wk is the error
in the output function.

The result of the particle filter is the estimate of the current state vector x̂k. A
detailed explanation of the Particle Filter algorithm is given in Appendix B.

Finally, nonlinear model predictive control (NLMPC) is used to determine the
pellet discharge and seeding material dosage to acquire the desired operational
condition of the fluidised bed as found in the process optimisation at all times.
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The prediction horizon of the controller is chosen to be 100 days, in which the
typical dynamics of the fluidised bed are captured. The model has a sample time
of 1 day. To restrict the degrees of freedom in the optimisation, the control horizon
is divided into 5 periods: K = {[1], [2, .., 7], [8, .., 21], [22, .., 42], [43, .., 100]} days.
During these periods the manipulated variables are kept constant. To achieve the
desired pellet size and bed height at the end of each period, the controller then
minimises the following objective function:

J =
∑

kǫKlast

Wd(d̂p,k − dp,set,k)2 +
∑

kǫKlast

(L̂k − Lset)
2 (7.10)

where Klast is the set of the last days in the intervals in K, d̂p,k is the estimated
pellet size, dp,set,k is the setpoint for the pellet size at day k, L̂k is the estimated bed
height and Lset is the bed height setpoint. The controller is tuned using the Wd

parameter, which determines the weighting of the pellet size and bed height. The
constraint for the controller is given by the maximum bed height during the total
prediction period of 100 days. The objective function captures intermediate points
of the 100 day period, to correctly handle the change of temperature during the
year. This approach makes it possible to simplify the optimisation and incorporate
the long-term effects of short term control actions.

To estimate future process behaviour, the NLMPC uses the state estimate found
with the particle filter as described above and the expected annual temperature
trend (figure 3.1) together with the nonlinear discretised model. The future load-
ing (water flow through the reactor and caustic soda dosage) of the reactor is esti-
mated, assuming a constant production of the treatment plant.

The first control action is implemented for the next day. At the end of the day
the particle filter estimation and NLMPC calculation are repeated.

The particle filter and the NLMPC are programmed in Matlabr, where the
NLMPC uses the optimisation toolbox (lsqnonlin) of Matlabr to minimise the
given cost function.

7.4.2 Simulation Results

The state estimation and control are simulated with the configuration of the Weesper-
karspel treatment plant for two scenarios. In the first simulation scenario, the
water temperature is equal to the trend temperature (figure 3.1) and is therefore
correctly predicted in the nonlinear MPC controller. In the second simulation sce-
nario, the simulated temperature differs from the trend temperature and predic-
tion errors will occur. In both simulations, the reactor is simulated from a start-up
situation with only seeding material and, therefore, a low bed height.

For the first simulation experiment (with the exact temperature prediction) the
estimate of the pellet diameter from the particle filter is compared to the pellet
diameter from the simulated model. In figure 7.8, each point represents a single
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day in the simulation period. As can be seen, the estimated diameter is always
within 4% from the simulated pellet size.
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Figure 7.8: Comparison of estimated and simulated pellet size.

The resulting size of discharged pellets and the fluidised bed height are shown
in figure 7.9. In the top half of the figure, the setpoint for the pellet size and
the simulated pellet discharged pellet diameter are shown. After a brief start-up
period, the discharged pellets are on average kept at the desired pellet size. In the
bottom part of the graph, the maximal bed height and the simulated bed height
are shown.

In the second simulation experiment, the temperature has an additional vari-
ation of 2 ◦C in a 12 day period. During 6 days, the temperature is higher than
expected and the next 6 days the temperature is lower than expected. The nonlin-
ear MPC controller uses the trend temperature of figure 3.1 as expected temper-
ature. The results are shown in figure 7.10. The setpoint for the pellet diameter
follows the trend temperature, as given in equation (6.4). The pellet size has a
larger variation than in the previous simulation and is not kept exactly on the de-
sired pellet size. Due to the incorrect temperature prediction in the MPC model,
the bed height increases more than expected, which can only be corrected by extra
pellet discharge. This extra discharge then causes a decrease in pellet size.
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Figure 7.9: Result of the MPC control with correct temperature estimate.
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Figure 7.10: Result of the MPC control with temperature deviations.
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7.5 Model-Based Dosing Control

The control of water flow and base dosage in the softening reactor is not straight-
forward. The retention time in the reactor is at least five minutes and response to
control actions can only be detected after this time, since water quality can only
be measured in the effluent of the reactor. The measurement of the total hardness
(the main controlled variable), is a semi-online measurement and has a delay of at
least ten minutes. The online pH measurement is inaccurate and has a tendency
to drift. Changes in flow and dosing must be gentle, to prevent introduction of
process disturbances and fast-changing water quality parameters, which cannot
be compensated in consecutive treatment steps. Since the water production rate
is predicted, setpoint changes can be predicted as well. Ideally the control should
take these predicted changes into account. Finally, the constraints of the reactor,
such as maximal height and maximal dosing must never be violated.

7.5.1 Controller Configuration

A model-based multivariable controller is used to meet all requirements. A linear
Model Predictive Controller (linear MPC) is used, since in this case calculation
time is limited and valid solutions must be guaranteed. The information density
in the process is insufficient to use a data-based model. The controller model is
therefore obtained through numerical lineralisation of the nonlinear model de-
scribed in chapter 4. The nonlinear model is linearised using the current bed com-
position found by the Model-Based Lane Control for the given reactor, and the
current influent water quality parameters, water flow and caustic soda dosage.

The control objectives are to follow the current and future setpoints of the
Model-Based Lane Control under smooth variation of the manipulated inputs,
as formulated in the following cost function:

J =

N
∑

j=Nm

‖y(k + j|k) − ry(k + j)‖2
P

+
N

∑

j=1

‖∆u(k + j|k)‖2
Q∆u

+

N
∑

j=1

‖u(k + j|k) − ru(k + j)‖2
Qu

(7.11)

where N and Nm are the prediction horizon and the minimum costing horizon,
and ru and ry are the references for the inputs and the outputs. In this way the
control can use the setpoint predictions from the Model-Based Lane Control, due
to predicted production rate changes.

The inputs are the caustic soda dosage and the water flow through the reactor.
The outputs are the fluidised bed height in the reactor and the following water
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quality parameters in the effluent of the reactor: calcium concentration, pH, M-
alkalinity and conductivity.

To meet the physical constraints in the process the linear MPC takes these con-
straints into account:

umin < uk < umax

ymin < yk < ymax (7.12)

To introduce extra integration action in the MPC controller, the model is modified
to an IIO model. The new state vector consists of the previous output and the
difference of the sate vector of the linearised model. The state update equation is
now given by:

[

yk

xk+1 − xk

]

=

[

I C

0 A

] [

yk−1

xk − xk−1

]

+

[

D
B

]

(uk − uk−1) (7.13)

with the corresponding output function:

yk =
[

I C
]

[

yk−1

xk − xk−1

]

+ D (uk − uk−1) (7.14)

where A, B, C and D are the system matrices of the linearised model.

To compensate for plant-model mismatch an observer is used, to estimate the
offset in ŷk. The state update in the MPC controller is therefore given by:

[

ŷk

x̂k+1 − x̂k

]

=

[

I C

0 A

] [

ŷk−1

x̂k − x̂k−1

]

+

[

D
B

]

(uk − uk−1) +

[

L

0

]

(yk−m − ŷk−m) (7.15)

where yk−m is the measurement result of m samples ago, due to the measurement
delay.

A detailed explanation of the linear MPC algorithm is given in Appendix C.

7.5.2 Simulation Results

To evaluate the performance of the controller, simulations were performed for the
full-scale plant for the same period as the lane control in section 7.3. The sample
time for the controller was chosen to be 1 minute. The setpoint for reactor flow
and calcium concentration were taken from the lane controller. The simulation is
started with a lane flow of 400 m3/h, increasing the lane flow to 570 m3/h, due
to a production rate change after 1 hour. The reactor flow is kept constant and the
bypass flow is increased. As a result from this flow change, the calcium concentra-
tion has to change from 50 to 35 mg/l. This is a regular change in calcium setpoint
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to produce constant water quality in the mixed effluent of reactor and bypass:

[Ca2+]l =
[Ca2+]inFBP + [Ca2+]rFw,r

Fw,l

(7.16)

Finally, if all lanes are operated at maximum capacity, the lane controller can in-
crease the reactor flow for all reactors that are not yet limited by fluidised bed
height. Therefore, in the simulation, the reactor flow is increased to 450 m3/h (the
maximum flow for this reactor, as can be seen in figure 7.2). The lane flow in this
case is 640 m3/h.

The operating point for the linearised model is the steady-state of the dissolved
components in the nonlinear model with current estimated bed composition and
the current influent flow and dosage. The states, which describe the bed composi-
tion (mg and mc) are kept constant during numerical linearisation. The weighting
matrices in equation 7.11 are diagonal, and the non-zero diagonal elements are
given by: given by:

P (Ca2+) = 0.1

Qu(Fw) = 1

Q∆u(Fw) = 1 (7.17)

Q∆u(Fs) = 0.1

The non-zero weights in P and Qu penalise the deviation of the calcium concen-
tration and water flow from their reference values. Change in the manipulated
variables are penalised to achieve a smooth transition between operation points.
In addition, level constraints are defined for all outputs and inputs, based on their
physical ranges. To make the simulation more realistic, noise was added to the
simulated outputs. For the measurements of calcium and M-alkalinity the mea-
surement noise was set at 2%, for bed height, pH and conductivity 1%.

The observer gain was chosen to be diagonal and the same for all measure-
ments.

L = diag ([0.2 0.2 0.2 0.2 0.2]) (7.18)

The simulation results using the nonlinear process model are shown in fig-
ures 7.11 and 7.12. In figure 7.11 the dashed-dot line is the setpoint for the calcium
concentration, changing from 50 to 35 mg/l, due to a lane flow increase. The solid
line is the simulated process values without measurement noise, while the dots
are the actual measurement values available for the MPC controller. For calcium,
M-alkalinity and conductivity, these measurements are only taken every 10 min-
utes, with a 10 minute delay. In the graph the measurements are therefore shifted
by 10 minutes. The pH measurement and bed height measurements are online
measurements and available every minute. The dashed line is output estimation
ŷ)k of the MPC controller. In figure 7.12 the dashed-dot line is the setpoint for the
reactor flow from the lane controller and the solid lines are the actual setpoints
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from the MPC controller.
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Figure 7.11: Simulation results outputs. dashed-dot: Reference, dashed: Estimate,
solid: Process, dots: Measurements
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Figure 7.12: Simulation results control inputs. dashed-dot: Reference, solid:
MPC.

It can be observed, that the tracking of the reference signal is appropriate, in-
cluding the desired smooth transition. The calcium concentration and the flow
change starts before the actual setpoint change, as expected, to get a smooth tran-
sition close to the desired setpoint. Another interesting observation is that the wa-
ter flow through the reactor and the caustic soda dosage are not strictly linked (as
opposed to the current heuristic strategy). A flow reference change shows a rapid
flow response, but a relatively slow dosage response, which results in a negligible
change of the calcium concentration. Finally it can be seen that the MPC controller
prevents a flow increase to the setpoint of 450 m3/h, due to the limitation in bed
height.

7.5.3 Pilot plant Results

The MPC controller is also implemented on the pilot plant of Weesperkarspel. The
setpoints for the calcium concentration and reactor flow follow a similar pattern
as in the full-scale reactor simulation. In this experiment the weighting matrices
in equation 7.11 are diagonal, and the non-zero diagonal elements are given by:

P (Ca2+) = 3

Qu(Fw) = 1

Q∆u(Fw) = 0.01 (7.19)

Q∆u(Fs) = 0.01
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Figure 7.13: Pilot plant experiment results outputs. dashed-dot: Reference,
dashed: Estimate, dots: Measurements



7.6 Conclusions 125

The matrices are selected to focus on setpoint achievement and less on smooth
transition. The non linear model is the model from the validation experiment
C (see table 4.1). The bed composition in this experiment is determined using
the pressure drop measurement with different flows in the reactor. In the pilot-
scale plant the pH measurement is not available as online measurement, and is
determined semi-online during the M-alkalinity titration. The results from the
pilot plant experiments are shown in figures 7.13 and 7.14.
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Figure 7.14: Pilot plant experiment results control inputs. dashed-dot: Reference,
solid: MPC.

The MPC controller in the pilot plant is performing as expected. The rela-
tively small weighting matrix for control variations in equation 7.20 cause more
variation in the caustic soda dosage and flow than for the full-scale simulation
experiment.

7.6 Conclusions

The performance of the softening process step can be improved by applying a
model-based control scheme. The control configuration is split in separate con-
trollers for different control levels and time constants. The main disturbance of
the softening process is the variation the raw water temperature, but the optimal
pellet diameter and maximal bed height can achieved using a prediction of the
temperature variation during the year. However, the fluidised beds do not al-
ways have the optimal composition. The differences in bed composition result in
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different performance per reactor. Using these differences in a model-based con-
trol scheme can improve the performance of the entire treatment step. To achieve
smooth but quick responses to changing setpoints, a linear MPC is shown to be
an effective controller.

The results show that there is a possibility to improve softening operation,
by adapting to the current state of the fluidised bed, with more than 6%. This
improvement is limited by the desired limited difference in lane flow between
lanes. The saving can be even more, if it is decided to switch off a reactor with
high TCCP values. However, changing the bed composition in the reactor and
therefore the performance of the reactor is not possible, if the reactor is switched
off.

Controlling the pellet diameter, while maximising the fluidised bed height is
possible when the temperature variations are predicted correctly. An unexpected
decrease of the temperature will increase the bed height up to 1% per 1◦C, which
can only be corrected by discharging pellets. If temperature prediction is not pos-
sible, extra safety margins must be taken to avoid washing out of seeding material.

A linear MPC controller shows a smooth transition between sudden changes
of setpoints, while using a limited number of online and semi-online measure-
ments. The controller is shown to function appropriately in the pilot-scale plant
of Weesperkarspel.



Chapter 8

Conclusions and

Recommendations

T
o shift the operation of drinking water treatment plants from experi-
ence driven to knowledge based, a model-based approach is shown

to be effective. Models are successfully used in plant analysis and basic
control design, resulting in the successful implementation of new basic
control for the softening reactors at the Weesperkarspel plant. Model-
based monitoring schemes abstract relevant information from the large
amount of data and the schemes estimate the current state of the pro-
cesses. Model-based control uses the monitored process state to dynami-
cally optimise the treatment without introducing new disturbances in the
treatment plant. Model-based optimisation gives the process technolo-
gist the possibility to improve treatment operation without disrupting
the full-scale plant. To improve the performance of model-based control,
future research should focus on achieving robust measurements of pro-
cess parameters to effectively determine the process state. Furthermore,
a good interface to the operators has to be developed to integrate model-
based control in the day-to-day operation of a treatment plant.

8.1 Model-Based Control of Drinking-Water Treatment

Plants

A model-based approach is necessary to operate the treatment plant at its opti-
mum. Small changes in raw water quality and control actions can have large in-
fluences on the long-term process performance. Furthermore, the full-scale treat-
ment plants are operated at constant production rates and the information den-
sity in measurement data is low and it is not possible to deduce process relations
only from full-scale process data. Moreover, despite the long residence times in
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the individual treatment steps, variations in water quality are propagated to the
consecutive process steps. Using a model which takes the residence time into ac-
count, these variations can be related to each other and can be treated as predicted
disturbances in consecutive treatment steps.

To achieve a control scheme, which takes the typical process characteristics
of the drinking water processes into account, a design procedure consisting of
five steps is proposed. Using this design methodology the controller configura-
tion is determined that is appropriate for a drinking water treatment plant. The
methodology focuses on plant wide optimisation and disturbance minimisation
and gives a sound basis for stable operation of the treatment plant. During a sta-
ble process condition, it is possible to monitor the slowly varying process states.
For the pellet-softening treatment step and the activated carbon treatment step,
this thesis proposes new basic control schemes that reduce process disturbances.

The reliability of online measurements is increased significantly if process mod-
els are used for measurement validation. By applying a grey-box model, it is
shown that the pH values in the Weesperkarspel treatment are all predicted using
only water flow and dosage flow measurements. Using this approach it is possible
to identify malfunctioning pH measurements or changes in process performance.

Unmeasured process conditions are deducible from the available measure-
ments using process models. For the biological activated filtration process it is
shown that the hydraulic load of an individual filter can be determined based on
variation of head loss in the other filters. At the Weesperkarspel treatment plant,
the hydraulic load of an individual filter is not measured directly, but based on
this model-based monitoring scheme it is proven that hydraulic load on one of
the filters was 10 % less than the other filters.

The process performance is resolved based on available measurements. Using
a single measurement of water quality and a grey-box model of a bank of filters,
the performance of each individual filter is determined. In the case of Weesper-
karspel it is shown that the expected differences in biological activity between a
generated filer and a biological activated filter can be detected. This performance
qualification would be even better if the basic control scheme of the individual
filters would be improved.

Using a model-based control scheme the control decisions are based on the
actual knowledge of the treatment plant, expressed in a model of the treatment
processes. The operation of the treatment plants, therefore, shifts toward an ob-
jectively determined optimum at all times.

8.2 Model-Based Control of the Pellet-Softening Treat-

ment Step

By using model-based control in the pellet softening treatment step, the costs of
chemical usage are reduced by 35 % compared to the current practice. This result



8.2 Model-Based Control of the Pellet-Softening Treatment Step 129

is achieved by maximising the fluidised bed height, optimising discharged pellet
size and choosing the optimal ratio between reactor flow and bypass flow. To
realise these savings a state estimate of the fluidised bed is used in combination
with a prediction of the temperature variation during the year. The fluidised bed
composition can thus be predicted and optimised for the next 100 days, which is
the approximate residence time of the pellets in the reactor.

The proposed basic control is implemented in the full-scale plant of Weesper-
karspel and it is shown, that 15 % cost reduction is achieved. The basic controller
determines reactor flow, dosage flow, bypass, pellet discharge and garnet sand
charge. The control is designed using the proposed design methodology and fo-
cuses on reducing the disturbances in the fluidised bed. The fluidised bed is only
controlled indirectly by pellet discharge and garnet sand dosage. The measure-
ment of the pressure drop in the bottom part of the reactor is introduced to deter-
mine the pellet size in the bottom of the reactor, an important process parameter
for the performance of the process.

These improvements in control are achieved using the white-box model for
the pellet softening process. The part of the model describing the fluidisation
behaviour of the fluidised bed is modified with respect to previous research (Ri-
etveld 2005). Based on experimental data it is concluded that the current model
is up to 5 times more accurate than the previous model based on the approxima-
tion of the fluidisation equations of Ergun. The part of the model describing the
crystallisation of calcium carbonate is extended to a two steps crystallisation pro-
cess description. Using this modification a constant crystallisation constant can be
used equal to the crystallisation constant found in literature for an ideally mixed
tank. The crystallisation diffusion constant found in this research is independent
of process conditions.

The white-box model is validated in a pilot-scale plant and two full-scale plants.
The validation shows that the model is describing the essential behaviour of the
pellet softening process and that calibration of the model for a specific location
is not necessary. The differences found between plant data and model prediction
were all caused by undesired process condition such as clogging of nozzles and
incomplete fluidisation. Differences between model and reality are thus caused
by undesired reality and not by an incomplete model description.

Based on the model, accurate operational constraints for reactor flow and pel-
let size are determined. Historical data show that at the treatment plant of Weesper-
karspel these constraints were violated in the last decades. Due to violating the
minimum pellet size constraint the garnet sand usage at Weesperkarspel was
about 30 % higher than necessary. In some periods 50 % of the garnet sand was
discharged, without any calcium carbonate attached. Violating the upper bound
on pellet size hindered the segregation of the fluidised bed, causing small material
to be trapped in the bottom part of the reactor, increasing the uniformity constant
of discharged pellets.

The white-box model is used with laboratory measurements and inaccurate
on-line measurements to accurately and continuously estimate the state of the in-
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dividual softening reactors. It is shown that the pH measurement in the effluent of
the reactor is unsuitable to monitor the performance of the reactor. The variations
in water quality are not reflected in variations of the pH measurement. Using the
model-based monitor the variations in performance are observed. The state esti-
mation gives an insight in the reactor for the operators and is used as a starting
point for model based control.

Taking the process characteristics of the pellet softening treatment step into
account the model-based control scheme of the process step is split in five parts.

At treatment step level there are two modules: The model-based lane optimi-
sation and the model-based lane control. The model-based lane optimisation is
merely used to determine the ideal pellet size, bypass ratio and the optimal num-
ber of reactors in operation based on a long term optimisation horizon of 100 days.
It is shown that for the Weesperkarspel case, pellet size variation during the year
has limited effect on process optimisation and a constant pellet size during the
year is sufficient. The model-based lane control makes use of the actual differ-
ences in performance between the softening reactors. Since the bed composition
only changes gradually, the actual bed compositions may vary. In short term con-
trol these differences may be taken advantages of. In Weesperkarspel this leads to
a 7% percent cost reduction.

At reactor level the model-based control scheme consists of three parts. The
first part is the model-based bed control, which is necessary to control the flu-
idised bed. Due to the residence time of approximately 100 days of the pellet
in the bed, disturbances to the process within the next 100 days must be taken
into account. For a surface water treatment plant the temperature is an important
process disturbance. It is shown that, if temperature prediction is accurate, the flu-
idised is maximised, maintaining optimal pellet size. If the temperature prediction
is omitted, the maximal fluidised bed or optimal pellet size cannot be achieved.
The second part is the model-based state estimation, to determine the actual bed
composition in the softening reactor. This cannot be measured automatically and
manual measurements of pellet size at different heights in the reactor are a time
consuming job. The third part is the model-based dosing control, which adjusts
caustic soda dosage quickly despite infrequent and delayed total hardness mea-
surements. The controller, tested in the pilot plant of Weesperkarspel, shows a
smooth transition between a sudden change of set-points, caused by changing the
number of reactors in operation.

8.3 Recommendations

The pellet softening treatment step is studied in detail in this work, but the same
approach can be applied to other treatment steps. Especially the biological fil-
tration steps, with slow build-up of clogging and biological material, caused by
quick variation in water flow and backwash activity, resemble the process charac-
teristics of a pellet reactor. The current process knowledge is used in this thesis
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to determine the actual biological activity. The next step in the model-based ap-
proach is to model development of biological activity, based on flow, backwash
activity and biological load. If that is achieved, model-based control can be intro-
duced to actively operate the filters at their optimum.

In general, the limiting factor in achieving the main treatment objective, that
is, to obtain excellent water quality at all times, is the availability of suitable mea-
surements for control. The current development of sensors focuses on detecting
water quality abnormalities. These measurements, however, cannot be used to
understand the reason of these abnormalities. To guarantee excellent water qual-
ity, the process conditions should be guaranteed to be optimal. By putting more
focus on measurements which can be used to determine the actual state of the
process, process performance can be improved.

A good operator interface is needed for wide-spread acceptance of model-
based control in the day-to-day operations. The operators and technologists must
be able to judge if the control scheme is achieving valid control actions and must
be able to understand the principle of control. The design of a user interface is
crucial. Since the users do not have a control engineering background, the process
models should be presented to operators in a readily understandable way, with-
out requiring research expertise. Similarly, control decisions must be presented in
a logical, accessible manner.

And finally I would recommend the water production companies to start im-
plementing model-based control schemes for water quality monitoring and con-
trol. This thesis has shown that using the current available models this can im-
prove the performance of the pellet softening treatment step significantly. The
process automation should therefore be enhanced with t model-based control.
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Appendix A

Process Descriptions

A.1 Pellet Softening

In the Netherlands, softening of drinking water in treatment plants is mainly car-
ried out with fluidised pellet reactors. The pellet reactor consists of a cylindrical
vessel that is partly filled with seeding material (figure A.1). The diameter of the
seeding grain is small, between 0.2 and 0.4 mm and consequently the crystalli-
sation surface is large. The water is pumped through the reactor in an upward
direction at high velocities, maintaining the seeding material in a fluidised con-
dition. In the bottom of the reactor, chemicals are dosed (caustic soda, soda ash
or lime). Calcium carbonate then becomes super-saturated and crystallises on the
seeding material, resulting in the formation of pellets. At regular intervals, pellets
at the bottom of the reactor are removed. These pellets can be re-used in industry
(van Dijk and Wilms 1991).

Softening in a reactor is normally deeper than the required levels. Therefore,
part of the water can be bypassed and mixed with the effluent of the reactors. In
general, several identical parallel reactors are installed to increase the reliability of
the system and the flexibility in operation. Reactors can be switched on and off in
case of flow changes, maintaining water velocities between 60 and 100 m/h.

The mixture of the effluent of the reactors and the bypass water must be chem-
ically stable to avoid crystallisation in the filters after the softening step.

At Weesperkarspel caustic soda (NaOH) is dosed for softening. The seeding
material is garnet sand. The dosing of caustic soda in the pellet reactor is adjusted
to realise the mixed effluent hardness of 1.5 mmol/l. Before this research project
started, the pellet removal was based on the hydraulic resistance of the fluidised
bed (head loss) and the goal was to keep the hydraulic resistance constant. The
garnet sand dosage was a manually set percentage of the mass of discharged pel-
lets. The pH, flow, water temperature and hydraulic resistance were measured
every minute, while hardness, calcium, bicarbonate, super saturation, pellet di-
ameter and bed height were measured at longer intervals (Rietveld 2005).
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Figure A.1: Fluidised bed reactor for water softening.

The characteristics of the softening process at Weespekarspel are given in ta-
ble A.1.

Table A.1: Characteristics of softening reactors at Weesperkarspel.
Number of reactors 8 -
Surface area of reactor 5.3 m2

Maximum bed height 5 m
Typical water velocity 60-100 m/h
Grain size of seeding material 0.25 10−3 m
Density of the seeding material 4114 kg/m3

Past Control Approach
This is the description of the past control approach, as it was before this research
took place. The current control approach (since November 2007) can be found in
chapter 3. In the past control approach is given in figure A.2.

The eight parallel reactors were operated at constant and equal setpoints. De-
pending on the temperature, operators manually change the bypass ratio. There
are four controllers that regulate the softening process (figure A.2).

• The bypass controller is responsible for maintaining the manually set bypass
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Figure A.2: Control scheme at Weesperkarspel.

ratio.

• The flow distribution controller distributes the total flow equally over the
reactors.

• The caustic soda controller regulates the NaOH dose to achieve the desired
hardness of the mixed effluent of 1.5 mmol/l. The setpoint the NaOH dose
is calculated by using an empirical formula based on the bypass ratio, the
water flow, the effluent pH and a manual correction.

• The pellet discharge controller in an on-off controller that keeps the total
pressure drop over the reactor between 16.5 and 17.2 kPa in order to limit
the bed height (which is not directly measured).

In summer, this operation practice results in a higher bypass ratio and higher
NaOH dosages. In winter, hardly any bypass will be applied and the NaOH
dosages are lower. To be able to keep the saturation index at acceptable levels,
the maximum pellet size is decreased in winter in order to increase the crystalliza-
tion surface. In summer the opposite happens.

If the growth of calcium carbonate causes a pressure drop exceeding 16.9 kPa,
valves are automatically opened at the bottom of the reactor to release pellets. The
pellets are transported with water to a storage silo. The total number of removed
pellets is replaced by new garnet seeding grains. The amount of garnet added in
relation to the amount of discharged pellets is defined by the replacement factor.
This factor includes the loss of garnet sand during operation.

To determine the overall bypass ratio, the optimal total hardness (TH) of the
effluent of the reactors is considered. The optimal TH is derived from specific
TCCP-TH curves (see figure A.3). TCCPis the theoretical calcium carbonate crys-
tallisation potential. TCCP is a measure for the super-saturation of calcium car-
bonate in the water. A minimal super-saturation in the effluent resulting in mini-
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mal super-saturation of the mixed effluent (of effluent of the reactors and the by-
pass water) is assumed. Extensive pilot plant research is carried out to determine
the effluent hardness against the TCCP under various conditions, varying water
temperature, fixed and expanded bed height and pellet size. From the graphs the
optimal TH of the reactor effluent can be derived and as a result the bypass ratio.

Figure A.3: TCCP-TH curves for: T = 10 (C), T = 15 (C) and T = 20 (C).

A.2 Biologically Activated Carbon Filtration

Pre-oxidation prior to granular activated carbon (GAC) filtration enhances bio-
logical activity resulting in biological activated carbon (BAC) filtration. Biodegra-
dation in BAC filters removes part of the biodegradable dissolved organic matter
(BDOC) resulting in a decrease in the DOC concentration and in a reduction of
DOC loading on the carbon. The reduced DOC loading results in less competi-
tion: more adsorption sites remain available for adsorption of micro pollutants.
BAC filter run times for both DOC and micro pollutants are longer than GAC fil-
ter run times. In this point of view biodegradation in BAC should be maximized.
However, too much increase of biodegradability by pre-oxidation may result in
incomplete removal of BDOC and biofilm formation in the distribution system.
Also excessive biomass production might contribute to unacceptable high back-
wash rates (van der Aa et al. 2006).

The biological activated carbon filters at Weesperkarspel are divided into two
parallel streams: North stream and South stream. The North stream consists of
existing rapid sand filters transformed into BAC filters (filter numbers 1 through
12). The South stream was newly built to operate as BAC filters (filter numbers
13 through 26). The division of flow between the two streams is controlled by
a flow control valve. In the control loop, the flow to the South stream is kept
constant. It is targeted that all filters receive the same amount of flow. During
normal operation always one out of 26 filters is out of operation. In table A.2 the
characteristics of the Weesperkarspel filters are given.

The filters are backwashed with water and air in regular time periods. The
operator determines the time between backwash events, based on actual and ex-
pected clogging of the filters. The time between the backwashing varies between
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Table A.2: Characteristics of BAC filters at Weesperkarspel.
Surface area Bed height Supernatant velocity

[m2] [m] water height [m] [m/h]
BAC 1-12 48.00 2.08 0.7-0.9 3.1
BAC 13-26 30.87 3.24 1.3-1.46 4.8

winter and summer, due to the change in algae concentration of the raw water
and the biological activity of the filter.

Every 18 months the filters are being regenerated. The filter content is then
transported to a generation site, and using intense heat the contaminants in the
carbon pores are removed. After regeneration the GAC is transported back to the
treatment plant and reused as filter material. Since it is regenerated, the biomass
is removed from the filter pores. Depending on water temperature it takes up to
2 months for the biological activity to grow back on the carbon (van der Aa et al.
2006).
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Appendix B

Particle Filter

Kalman filters represent the distribution of random variables by their mean and
covariance. However, for arbitrary distributions or nonlinear processes, this rep-
resentation is not sufficient for a reliable estimation and there is no general method
to compute the resulting distribution analytically. Therefore, these methods may
become unstable for highly nonlinear processes. This is why the particle filters
approximate the distributions by samples, which can be easily computed with,
rather than by a compact parametric form.

The basic idea behind this technique is to represent probability densities by
a set of samples. In this way, a wide range of probability densities can be rep-
resented, allowing the handling of nonlinear, non-Gaussian dynamic systems.
However, this representation comes with a high computational cost, which may
render the filter unusable for online or real-time estimation.

The particle filter uses the non linear model:

xk+1 = f(xk,uk, ǫk,wq,k) (B.1)

yk = h(xk,uk, ǫk,wq,k) (B.2)

together with a Gaussian distribution to determine the probability density func-
tions (PDF) for the state transition function and the measurement function, re-
spectively:

p(xk|xk−1), p(yk|xk) (B.3)

The objective is to recursively construct the posterior PDF p(xk|yk) of the state,
given the measured output yk and assuming conditional independence of the
measurement sequence, given the states. The particle filter works in two stages:

1. The prediction stage uses the state-transition model B.1 to predict the state
PDF one step ahead. The PDF obtained is called the prior.
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2. The update stage uses the latest measurement to correct the prior via the
Bayes rule. The PDF obtained after the update is called the posterior PDF.

Particle filters represent the PDF by N random samples (particles) xi
k with

their associated weights wi
k, normalised so that

∑N

i=1 wi
k = 1. At time instant

k, the prior PDF p(xk−1|yk−1) is represented by N samples xi
k−1 and the corre-

sponding weights wi
k−1. To approximate the posterior p(xk|yk), new samples xi

k

and weights wi
k are generated. Samples xi

k are drawn from a (chosen) importance
density function and the weights are updated, using the current available measure-
ments yk

w̃i
k = wi

k−1p(yk|xi
k) (B.4)

and normalised

wi
k =

w̃i
k

∑N

j=1 w̃j
k

(B.5)

The posterior PDF is represented by the set of weighted samples, conventionally
denoted by:

p(xk|yk) ≈
N

∑

i=1

wi
kδ(xk − xi

k) (B.6)

The particle filter algorithm is summarised in algorithm 1.

Algorithm 1 Particle filter

Input: p(xk|xk−1), p(yk|xk), p(x0), N , NT

Initialize:
for i = 1, 2, . . . , N do

Draw a new particle: xi
1 ∼ p(x0)

Assign weight: wi
1 = 1

N

end for
At every time step k = 2, 3, . . .
for i = 1, 2, . . . , N do

Draw a particle from importance distribution:
xi

k ∼ p(xi
k|xi

k−1)
Use the measured (if available) yk to update the weight:
w̃i

k = wi
k−1p(yk|xi

k)
end for
Normalize weights: wi

k =
w̃i

k
∑

N
j=1

w̃
j

k

if 1
∑

N
i=1

(wi
k
)2

< NT then

Resample using Algorithm 2.
end if

A common problem of the particle filter is the particle degeneracy: after sev-
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eral iterations, all but one particle will have negligible weights. Therefore, par-
ticles must be resampled. A standard measure of the degeneracy is the effective
sample size:

Neff =
1

N
∑

i=1

(wi
k)2

(B.7)

If Neff drops below a specified threshold NT ∈ [1, N ] particles are resampled by
using algorithm 2.

Algorithm 2 Resampling

Input: {(xi, wi)}N
i=1

Output: {(xi
new, wi

new)}N
i=1

for i = 1, 2, . . . , N do
Compute cumulative sum of weights: wi

c =
∑i

j=1 wj
k

end for
Draw u1 from U(0, 1

N
)

for i = 1, 2, . . . , N do
Find x+i, the first sample for which wi

c ≥ ui.
Replace particle i: xi

new = x+i, wi
new = w+i

ui+1 = ui + 1
N

end for

The state estimate is computed as the weighted mean of the particles:

x̂k =
N

∑

i=1

wi
kx

i
k (B.8)
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Appendix C

Linear Model Predictive

Control

C.1 Principle

Model predictive control is an online model-based optimal control technique based
on the receding horizon principle. An online optimisation algorithm (normally a
linear or quadratic programming algorithm) is applied to compute a series of con-
trol actions that minimizes a pre-defined cost function or ’performance index’,
subject to certain constraints. Applying the receding horizon principle means that
only the first control sample is implemented and the horizon is shifted one time-
step. Then the optimisation starts all over again. Figure C.1 shows the principle
of receding horizons graphically: r(k), y(k) and u(k) are the reference, output
and control (or manipulated) signals, Nm is the ’Minimum cost horizon’, Nc is the
’Control horizon’ and N the ’Prediction horizon’.

At time instant k the system output is predicted from time step k until k + N
as a function of the control actions. Then the performance index is minimized
resulting in an optimal control trajectory {u(k|k), ..., u(k + Nc − 1|k)}.The outputs
from k until k +Nm − 1 are left out of the optimisation (to ignore minimum-phase
and dead-time behaviour of the system) and the control actions are not allowed
to change after time step k + Nc − 1.

Many different varieties of model predictive control configurations exist. The
one chosen to implement for the pellet reactor controller is the so called ’Standard
Predictive Control’ (SPC) configuration (van den Boom and Backx 2001). The ad-
vantage of this configuration is its flexibility and its state-space formulation.

C.2 Controller Configuration

The internal model
Since the control objective contains a minimisation requirement of the change in
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Figure C.1: The principle of linear model predictive control

control inputs, an increment-input-output (IIO) model is used to serve as the basis
of the controller.

When we linearise and discretise the pellet-softening model we can formulate
a state-space input-output (IO) representation;

x(k + 1) = Ax(k) + B1e(k) + B2w(k) + B3u(k)
y(k) = C1x(k) + D11e(k) + D12w(k)

where x(k) is the state, e(k) is the error due to sensor noise and model-process
mismatch, w(k) is the measured external signal and u(k) are the control inputs.
The matrices A,B2,B3,C1 and D12 follow directly from the linearisation of the
model. B1 and D11 can be used to design a state observer that compensates for
model-process mismatch.

When we define a new incremental state that also keeps track of the previous
output

xi(k) =

[

y(k − 1)

x(k) − x(k − 1)

]
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we can derive the new system matrices

Ai =

[

I C1

0 A

]

B1i =

[

D11

B1

]

B2i =

[

D12

B2

]

B3i =

[

D13

B3

]

C1i =
[

I C1

]

and incremental external signals

ei(k) = e(k) − e(k − 1)
wi(k) = w(k) − w(k − 1)
ui(k) = u(k) − u(k − 1)

to obtain the IIO representation of the original model;

x(k + 1) = Aixi(k) + B1iei(k) + B2iwi(k) + B3iui(k)
y(k) = C1ixi(k) + D11ei(k) + D12wi(k)

(C.1)

An advantage of this formulation of the model is that no steady state error oc-
curs. This is due to the integrators that are introduced in the model that integrate
the output increments to keep track of the actual output signals. For the sake of
brevity, the i subscripts are omitted in the remainder of this section, assuming all
state-space formulations are IIO descriptions.

Prediction
For the optimisation we need an N -step ahead prediction of the system outputs.
From Equation (C.1) we can derive a series of future states when we assume that
the error is known only for time k and is zero-mean white noise (ZMWN). Succes-
sive substitution gives:

x̂(k + 1|k) = Ax(k) + B1e(k) + B2w(k) + B3u(k)

x̂(k + 2|k) = Ax̂(k + 1|k) + B2ŵ(k + 1|k) + B3û(k + 1|k)

x̂(k + 2|k) = A2x(k) + AB1e(k) + AB2w(k) + AB3u(k)

+B2ŵ(k + 1|k) + B3û(k + 1|k)

...

x̂(k + j|k) = Ajx(k) + Ai−1B1e(k) +

j
∑

i=1

Ai−1B2ŵ(k + j − 1|k)

+

j
∑

i=1

Ai−1B3û(k + j − 1|k)

Now we introduce z(k) which is the signal we want to predict for our objective
function. It is formulated like:

z(k) = C2x(k) + D21e(k) + D22w(k) + D23u(k) (C.2)

We want to predict the signal z(k) over the prediction horizon N , so we define
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three signal vectors, z̃(k), w̃(k) and ũ(k), which are the predictions of the objective
signals, of the external signals and of the control signals respectively. They are
defined by:

z̃(k) =









ẑ(k|k)
ẑ(k + 1|k)

...
ẑ(k + N − 1|k)









w̃(k) =









ŵ(k|k)
ŵ(k + 1|k)

...
ŵ(k + N − 1|k)









ũ(k) =









û(k|k)
û(k + 1|k)

...
û(k + N − 1|k)









Using the above equations we derive the predictions of z(k) as:

z̃(k) = C̃2x(k) + D̃21e(k) + D̃22w̃(k) + D̃23ũ(k) (C.3)

where

C̃2 =















C2

C2A
C2A

2

...
C2A

N−1















D̃22 =

















D22 0 · · · 0 0
C2B2 D22 · · · 0 0

C2AB2 C2B2
. . .

...
...

...
...

. . .
...

...
C2A

N−2B2 . . . . . . C2B2 D22

















D̃21 =















D21

C2B1

C2AB1

...
C2A

N−2B1















D̃23 =

















D23 0 · · · 0 0
C2B3 D23 · · · 0 0

C2AB3 C2B3
. . .

...
...

...
...

. . .
...

...
C2A

N−2B3 . . . . . . C2B3 D23

















Objective function
Now that we have an expression for the predictions of the signal z(k) we will use
the weighted norm of this signal to express our objective function:

J(u, k) =

N−1
∑

j=0

ẑT (k + j|k)Γ(j, j)ẑ(k + j|k) (C.4)

with Γ(j) > 0 a diagonal selection matrix that can be used to activate and deacti-
vate signal values at certain time instants.

Every system variable that can be expressed in state-space form can now be
used as an objective function for the model predictive controller.

Constraints
One of the main advantages of model predictive control is the possibility to incor-
porate limitations of the process directly in the controller by putting constraints
on the input, state and/or output signals. Two types of constraints can be distin-
guished:
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• Equality constraints
When we want to force signals to a certain value, we use equality con-
straints. The form used in SPC formulation is:

φ̃(k) = C̃3x(k) + D̃31e(k) + D̃32w̃(k) + D̃33ũ(k) = 0

• Inequality constraints

Upper and lower bounds on the predicted signals can be incorporated using
inequality constraints. The SPC formulation used in this thesis is

ψ̃(k) = C̃4x(k) + D̃41e(k) + D̃42w̃(k) + D̃43ũ(k) ≤ Ψ̃(k)

C.3 Solving the Optimisation Problem

Using the framework from Section C.2 the model predictive control optimisation
problem can be solved. Two types of solutions will be discussed here; the un-
constrained case, which results in an analytical solution and the constrained case,
which leads to a Quadratic Programming (QP) problem.

For unconstrained model predictive control we consider the problem of mini-
mizing the objective function (C.4) without constraints.

Defining the free-run signal

z̃0(k) = C̃2x(k) + D̃21e(k) + D̃22w̃(k)

and the matrix H , vector f(k) and scalar c(k) as:

H = 2D̃T
23ΓD̃23, f(k) = 2D̃T

23Γz̃0(k) and c(k) = z̃T
0 (k)Γz̃0(k)

we can rewrite C.4 using Equation C.3 like

J(u, k) =
1

2
ũT (k)Hũ(k) + fT(k)ũ(k) + c(k)

When we do not take the constraints into account, we can find the minimum
of this objective function by setting its gradient to zero:

∂J

∂ũ
= Hũ(k) + f(k) = 0

For invertible H , the optimal control trajectory ũ(k) is therefore:

ũ(k) = −H−1f(k) (C.5)

= −
(

D̃T
23ΓD̃23

)−1

D̃23Γz̃0(k)

Due to the receding horizon strategy we only implement the first step of ũ(k).
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This results in the control law

u(k) = −Fx(k) + Dee(k) + Dww̃(k)

where

F = Ev

(

D̃T
23ΓD̃23

)−1

D̃T
23ΓC̃2

De = −Ev

(

D̃T
23ΓD̃23

)−1

D̃T
23ΓD̃21

Dw = −Ev

(

D̃T
23ΓD̃23

)−1

D̃T
23ΓD̃22

Ev =
[

I 0 . . . 0
]

(C.6)

If we want to incorporate the constraints we need to solve the quadratic pro-
gramming problem

min
ũ(k)

1

2
ũT (k)Hũ(k) + fT (x)ũ(k) (C.7)

subject to the constraints

φ = 0

ψ ≤ Ψ
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List of Symbols and

Abbreviations

A reactor area m2

α1,α2 Calibration parameters Ergun –

b Biological activity rate 1/s

β1,β2 Calibration parameters Richardson-Zaki –

BAC Biological Activated Carbon

b̃i biological activity of the lth filter mg s l m−3

BP Bypass ratio –

C Crystallisation rate mmol l−1 s−1

Cw1 Drag coefficient Ergun –

Cw2 Drag coefficient Richardson-Zaki –

Ca Cost of acid euro/m3

Cg Cost of seeding material euro/kg

Cs Cost of caustic soda euro/m3

cq measured influent quality parameters mmol/l

d Average diameter m

Df Diffusity coefficient m2/s

dg Diameter of seeding material m

dp Diameter of pellet m

DOC Dissolved Organic Matter

DZH Duinwaterbedrijf Zuid-Holland

F Flow m3/s

f Activity –

FBP Flow through the bypass m3/s
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Fa Flow of acid m3/s

fi Fraction of the total Flow –

Fl Flow through a lane m3/s

Fr Flow through the reactor m3/s

Fs Flow of caustic soda m3/s

∆Fs modelled offset of caustic soda dosage m3/s

Ftot Production Rate Treatment m3/s

Fw Flow of water m3/s

g Gravitational acceleration m/s2

IS Ionic strength mmol/l

Jm3 Cost per cubic meter water euro/m3

K Crystallisation kinetics l m s−1 mmol−1

K1 Equilibrium constant CO2⇆HCO−
3 mmol/l

K2 Equilibrium constant HCO−
3 ⇆CO2−

3 mmol/l

kf Transport rate l m s−1 mmol−1

Ks Solubility product mmol2/l2

kT Reaction rate l m s−1 mmol−1

Kw Equilibrium constant H2O mmol2/l2

kT20 Reaction rate at 20◦C l m s−1 mmol−1

L Bed height m

m Mass kg

M M-alkalinity mmol/l

mc Mass of attached CaCO3 kg

Mc CaCO3 molecular weight g/mmol

mg Mass of seeding material kg

MSE Mean squared error –

n Exponent Richardson-Zaki –

Nl Number of lanes –

NOM Natural Organic Matter

ν Viscosity of water m2/s

O Oxygen concentration in the mixed flow mg/l

Ol Oxygen concentration after the lth filter mg/l

∆P Pressure drop / head loss Pa

p Bed porosity –
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P P-alkalinity mmol/l

∆P20−60 Head loss between 20 and 60 cm in the reactor Pa

PDF Probability denisty function

∆Pl Head loss of the lth filter Pa

∆Pl,m Head loss of the lth filter during Pa

backwash of the mth filter

PROMICIT PROcess Modelling and Intelligent Control of Integral Treatment

rl Resistance factor of the lth filter Pa s/m3

ρa Density of Acid kg/m3

ρc Density of CaCO3 kg/m3

ρg Density of seeding material+C33 kg/m3

ρp Density of pellets kg/m3

ρs Density of caustic soda kg/m3

ρw Density of water kg/m3

Re0 Terminal settling Reynolds number –

Reh Particle Reynolds number –

S Crystallisation surface m2/m3

Sc Smidt number –

Sh Sherwood number –

SI Saturation Index –

T Temperature ◦C

TCCP Theoretical calcium mmol/l

carbonate crystallisation potential

∆T Time Delay s

TH Total Hardness mmol/l

∆Tl Contact time of the lth filter s

ũq modelled influent quality parameters mmol/l

v Water flow velocity m/s

V Volume m3

v0 Terminal settling velocity m/s

vg Seeding material dosage kg/h

vp Pellet discharge rate kg/s

Vp Volume of pellets m3

Wd Tuning weight for the NLMPC –
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WPK Weesperkarspel treatment plant

WTP Water Treatment Plant

∆x Model layer height m

Xl Biomass of the lth filter g/m3

Y Yield –



Summary

T
he drinking water in the Netherlands is of high quality and the production

cost is low. This is the result of extensive research in the past decades to in-

novate and optimise the treatment processes. The processes are monitored and

operated by motivated and skilled operators and process technologists, which

leads to an operator-dependent, subjective, variable and possibly suboptimal op-

eration of the treatment plants. Furthermore, the extensive automation of the

treatment plants reduces the possible operator attention to the individual process

units. The use of mathematical process models might solve these problems. This

thesis focuses on the application of models in model-based monitoring, optimi-

sation and control of drinking-water treatment plants, with the Weesperkarspel

treatment plant of Waternet as a case study.

Before appropriate optimisation and control methods can be designed and im-

plemented, it is necessary to analyse the drinking-water treatment processes. In

general the treatment processes are robust, but ignoring the typical process be-

haviour can hamper optimal performance. Typical performance inhibitors are:

large difference in time constants of individual sub processes; time delays between

processes; limited possibility for disturbance rejection; limited online measure-

ment possibilities; limited or indirect control possibilities. Mathematical process

models that describe typical process behaviour are crucial for achieving further

improvement in process performance.

The control of a drinking-water treatment plant determines its performance.

To design the appropriate control system, a design methodology of five design

steps is proposed, which takes the treatment process characteristics into account.

For each design step, the necessary actions are defined and illustrated with exam-

159



160 Summary

ples from the Weesperkarspel treatment plant. For the pellet-softening treatment

step the control design is elaborated in more detail. Using this design, a new

control scheme for the pellet-softening treatment step has been proposed and im-

plemented in the full-scale plant. As a result a chemical usage reduction of 15%

is achieved. Corrective actions of operators are no longer necessary, reducing the

maintenance effort for this treatment step.

For model-based control of the pellet-softening treatment step an accurate math-

ematical model of the pellet-softening process is developed, calibrated and vali-

dated. The model consists of two parts. The first part is the fluidisation model

of the pellet bed. Experiments were carried out to investigate the fluidisation

behaviour of calcium carbonate pellets in water. The results of the fluidisation

experiments are compared to two commonly used modelling approaches for flu-

idisation (Ergun and Richardon-Zaki). The second part is the model of the crys-

tallisation process in the reactor. The diffusion of the supersaturated water to the

pellet surface is included in the model. The model is calibrated in a pilot plant

setup. Calibration results are validated in two different full-scale plants. The

model gives satisfactory results in predicting fluidised bed porosity and water

quality parameters such as calcium, pH, conductivity and M-alkalinity. During

validation it was shown that, even under regular process operation, the models

can be used to identify malfunctioning apparatus and identify undesired process

operation.

The different measurements (online and laboratory) can be combined with a

priori process knowledge, using mathematical models, to objectively monitor the

treatment processes and measurement devices. The model-based monitoring is

applied to different levels of plant and model detail. The applications vary from

validating measurement devices to determining plant-wide reaction rates, using

static semi-physical (grey-box) models and detailed dynamic physical (white-box)

models. It is shown that, using these models, it is possible to asses the processes

and measurement devices effectively, even if detailed information of the specific

processes is unknown. In this way, the state of the treatment plant is monitored

continuously and changes in plant performance can be detected appropriately.

The model of the pellet-softening process is used to determine operational

constraints on pellet size at the bottom of the reactor and water flow through
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the reactor. The model-based constraints are compared to operational data of the

Weesperkarspel full-scale treatment plant of Waternet. Within these constraints,

optimising the pellet size in the reactor has significant influence on performance

of the reactor with respect to operational costs. Using the model of the softening

treatment step (including bypass) it is shown that the operational costs can be re-

duced. It is concluded that the current operation of the softening process violates

the calculated constraints with consequences for effluent quality, dosage costs and

corrective maintenance.

For the softening process step, the integral model-based control scheme is

shown with multiple controllers for different time scales and process detail. The

three major model-based controllers of lane control, fluidised bed control and dos-

ing control are shown in detail and verified using simulation experiments. The

dosing control is tested in the pilot plant of Weesperkarspel. It shows that in the

case of accurate state estimation, quick changes in setpoint can be tracked.

To shift the operation of drinking water treatment plants from experience driven

to knowledge based, a model-based approach is shown to be effective. Mod-

els are successfully used in plant analysis and basic control design, resulting in

the successful implementation of new basic control for the softening reactors at

the Weesperkarspel plant. Model-based monitoring schemes abstract relevant in-

formation from the large amount of data and the schemes estimate the current

state of the processes. Model-based control uses the monitored process state to

dynamically optimise the treatment without introducing new disturbances in the

treatment plant. Model-based optimisation gives the process technologist the pos-

sibility to improve treatment operation without disrupting the full-scale plant.

To improve the performance of model-based control, future research should

focus on achieving robust measurements of process parameters to effectively de-

termine the process state. Furthermore, a good interface to the operators has to

be developed to integrate model-based control in the day-to-day operation of a

treatment plant.
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Samenvatting

H
et drinkwater in Nederland is van hoge kwaliteit en de productiekosten

zijn laag. Dit is het resultaat van uitgebreid onderzoek in de afgelopen de-

cennia om de zuiveringsprocessen te innoveren en te optimaliseren. De zuiverings-

processen worden bewaakt en bediend door gemotiveerde en getrainde bedrijfs-

voerders en procestechnologen, hetgeen leidt tot een bedrijfsvoerder-afhankelijke,

subjectieve, variërende en mogelijk suboptimale bedrijfsvoering van de zuivering.

Daarbij beperkt de uitgebreide automatisering van de zuiveringsinstallaties de

mogelijke aandacht van de bedrijfsvoerder voor individuele procesonderdelen.

Het gebruik van wiskundige procesmodellen zou deze problemen kunnen oplos-

sen. In dit proefschrift wordt de toepassing van modellen in modelgebaseerde

bewaking, optimalisatie en besturing van drinkwater zuiveringsinstallaties on-

derzocht met de zuivering Weesperkarspel van Waternet als praktijkvoorbeeld.

Voordat geschikte optimalisatie en besturing methoden ontworpen en geı̈m-

plementeerd kunnen worden, is het noodzakelijk de drinkwaterzuiveringspro-

cessen te analyseren. In het algemeen zijn de zuiveringsprocessen robuust, maar

het negeren van typisch procesgedrag kan optimale prestaties verhinderen. Ty-

pische prestatiebeperkingen zijn: grote verschillen in tijdsconstanten van de indi-

viduele subprocessen; tijd vertraging tussen processen; beperkte mogelijkheden

verstoringen te corrigeren; beperkte meet mogelijkheden; beperkte of indirecte

stuurmogelijkheden. Wiskundige procesmodellen die typisch procesgedrag be-

schrijven, zijn essentieel om de procesprestaties verder te verbeteren.

De besturing van een drinkwaterzuivering bepaalt zijn prestaties. Om een

geschikte besturing te ontwerpen wordt een ontwerpmethode bestaand uit vijf

ontwerpstappen voorgesteld die rekening houdt met de eigenschappen van de
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zuiveringsprocessen. Voor elke ontwerpstap worden de noodzakelijke activiteiten

gedefinieerd en geı̈llustreerd met voorbeelden van de zuivering Weesperkarspel.

Het besturingsontwerp is voor de zuiveringsstap met pelletontharding in groter

detail uitgewerkt. Op basis van dit ontwerp is een een regelschema voor de pel-

letontharding voorgesteld en geı̈mplementeerd in de zuivering. Als resultaat is

een chemicaliënbesparing van 15 % behaald. Correctieve handelingen van de

bedrijfsvoerders zijn niet langer noodzakelijk, waardoor de onderhoudsinspan-

ningen voor deze zuiveringsstap worden verminderd.

Voor de modelgebaseerde besturing van de zuiveringsstap met pelletonthar-

ding is een nauwkeurig wiskundig model ontwikkeld, gekalibreerd en gevalideerd.

Het model bestaat uit twee delen. Het eerste deel is het fluı̈disatiemodel van het

pelletbed. Experimenten zijn uitgevoerd om het fluı̈disatiegedrag van calcium-

carbonaat pellets in water te onderzoeken. De resultaten van de fluı̈disatie- ex-

perimenten zijn vergeleken met twee algemeen gebruikte modelleerbenaderingen

voor fluı̈disatie. (Ergun en Richardson-Zaki). Het tweede deel van het model is

het kristallisatieproces in de reactor. De diffusie van het oververzadigde water

naar het pelletsoppervlak is onderdeel van het model. Het model is gekalibreerd

in een proefinstallatie. Het gekalibreerde model is gevalideerd in twee verschil-

lende zuiveringsinstallaties. Het model geeft bevredigende resultaten bij het voor-

spellen van de bedporositeit and waterkwaliteitsparameters zoals calcium, pH,

geleidbaarheid en M-alkaliniteit. Gedurende de validatie wordt aangetoond, dat

zelfs tijdens reguliere bedrijfsvoering de modellen gebruikt kunnen worden om

niet functionerende apparatuur en ongewenste procesomstandigheden te identi-

ficeren.

De verscheidene metingen (online en laboratorium) kunnen gecombineerd wor-

den met a-priori proceskennis om objectief de zuiveringsprocessen en meetinstru-

menten te bewaken, door gebruik te maken van wiskundige modellen. De model-

gebaseerde bewaking is toegepast op verschillende detailniveaus van zuivering

en model. De toepassingen variëren van het valideren van meetinstrumenten tot

het bepalen van installatiebrede reactieconstanten, door gebruik te maken van

semi-fysische (grey-box) modellen en gedetailleerde fysische (white-box) model-

len. Er wordt aangetoond dat door gebruik te maken van deze modellen het mo-

gelijk is de processen en meetinstrumenten effectief te bewaken, zelfs als gede-
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tailleerde informatie van de specifieke processen ontbreekt. Op deze manier kan

de toestand van de zuivering continu bewaakt worden en veranderingen in de

zuiveringsprestaties gedetecteerd worden.

Het model van het pelletonthardingproces wordt gebruikt om de randvoor-

waarden in bedrijfsvoering te bepalen voor de pelletgrootte op de bodem van de

reactor en het waterdebiet door de reactor. De randvoorwaarden worden verge-

leken met bedrijfsvoeringgegevens van de drinkwaterzuivering Weesperkarspel

van Waternet. Binnen deze randvoorwaarden heeft het optimaliseren van de pel-

letgrootte significante invloed op de prestaties van de reactor wat betreft bedrijfs-

voeringkosten. Op basis van het model van de zuiveringsstap van de ontharding

(inclusief bypass) wordt aangetoond dat de bedrijfsvoeringkosten kunnen wor-

den verlaagd. De conclusie is dat de huidige bedrijfsvoering van het onthardings-

proces de berekende randvoorwaarden schendt met gevolgen voor de effluent

kwaliteit, chemicaliën kosten en onderhoudswerkzaamheden om het proces bij te

sturen.

Voor de zuiveringsstap met ontharding wordt het integrale model gebaseerde

regelschema getoond met meerdere regelaars voor verschillende tijdschaal en mo-

deldetail. De drie belangrijkste regelaars voor de besturing van de straten, de be-

sturing van het gefluı̈diseerde bed en de besturing van de chemicaliën worden in

detail beschreven en de werking wordt geverifieerd met simulatie-experimenten.

De chemicaliën-besturing is getest in de proefinstallatie van Weesperkarspel. Er

wordt aangetoond dat in het geval van een goede toestandschatting, sneller veran-

deringen in het setpoint gevolgd kunnen worden.

Er is aangetoond dat een model-gebaseerde aanpak een effectieve benadering

is om de bedrijfsvoering van een drinkwaterzuivering te verschuiven van erva-

ringsgedreven naar kennisgebaseerd. Modellen zijn succesvol gebruikt tijdens

analyse van de zuivering en ontwerp va de basisbesturing. Dit heeft geleid tot

succesvolle implementatie van een nieuwe basis besturing voor de onthardingsre-

actoren in de zuivering Weesperkarspel. Modelgebaseerde bewaking abstraheert

relevante informatie van de grote hoeveelheid gegevens en schat de huidige toe-

stand van het proces. Modelgebaseerde besturing gebruikt de geschatte toestand

om dynamisch de zuivering te optimaliseren zonder nieuwe verstoringen te intro-

duceren. Modelgebaseerde optimalisatie geeft de procestechnoloog de mogelijk-
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heid de zuiveringsprestaties te verbeteren, zonder verstoringen van de zuivering.

Om de prestaties van modelgebaseerde besturing te verbeteren, zou toekomstig

onderzoek gericht moeten zijn op het ontwikkelen van robuuste metingen van

procesparameters die de toestand van het proces bepalen. Daarnaast moet een

goede gebruikersinterface voor de bedrijfsvoerders ontwikkeld worden om mo-

delgebaseerde besturing in de dagelijkse bedrijfsvoering van een zuivering op te

kunnen nemen.
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