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ABSTRACT

The objectives of the present investigation were the determination of the
characteristic parameters of morpho loqt ca l processes in alluvia1 channe1s.
Special attention was directed toward the aggradation process due to tota1-
sedtmenu-Loed augmentation and degradation due to either sediment-discharge
diminution or base-level 10wering.

Linear and nonlinear parabolic formulations based on va1idated
mathematical expressions of the equations governing one-dimensional f10ws over
movable beds were developed. The classical linear, parabolic model was
revisited as well. Analytica1 solutions for the characteristic parameters of

aggradation and degradation processes in alluvial channels of semi-infinite
and finite length subjected to both time d~pendent and time independent

boundary conditions were obtained. The analytical solutions developed can be
used in conjunction with a1most any of the sediment-transport-rate and
friction-factor predictors avai1able.

The validity and 1imitations of the 1inear and non1inear parabo1ic models
and thei r correspondi ng solutions were assessed by means of compari son with
f1ume data. The ranges of application for both linear and non1inear models
were established. As a resu1t of its more rigorous formu1ation, the non1inear
parabo1ic model, which constitutes the principal contribution of this study,
was found to be particu1ar1y useful and accurate for a wide range of practical
app1ications. The good prediction capabi1ities of the nonlinear model can be
enhanced through the use of available laboratory and/or field data, which
enable an easy and effective calibration of the model. Easy-to-fo1low
application, calibration, and extrapolation procedures are outlined.

Experiments on the evolution of the bed forms during aggradation due to a
sudden increase in total sediment discharge were performed. Analyses of the

experimental data led to a better understanding of the phenomena involved, to
an explanation of the experimental findings of the present and similar
investigations, and to justification of some of the main assumptions
introduced in the development of mathematical models for unsteady nonuniform
flows over deformable beds.
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I. INTRODUCTION

A. Introductory Remarks

Hydraulic engineers are often confronted with the problem of predicting,
with some degree of reliability, certain aspects of alluvial-river flow, such
as rate of sediment load, stage-discharge relationship, stable channel
geometry, rate of channel deformation, etc. This is a difficult task because
of the complex interactions among the many variables that control flow in
alluvial rivers. Among these variables are water and sèdfment discharges,

geometrical properties of the channel including bed configuration, valley
slope, and sediment and water properties.

The study of steady, uniform flows has attracted the attent ion of
investi gators for many decades. Though there exists an immense amount of
theoretical, experimental and field information that enables engineers to
perform, with some degree of accuracy, hydraulic calculations regarding the
control and design of alluvial streams subject to steady, uniform flows, the
understanding and formulation are far from completion.

The water and sediment discharges of natura 1 streams which have evolved
over geologic times are in equilibrium and produce no objectionable scour or
deposition. However, various factors, both man-made and natural, can
contribute to disturb the delicate balance among the many variables involved,
and in turn lead to aggradation or degradation along river reaches. In fact,

rivers in equilibrium constitute the exception rather than the rule. Most of
them are subject to some kind of control or disturbance that gives rise to
nonequilibrium flow conditions.

Aggradati on of a specifi c river reach occurs when the sediment enteri ng
the reach is 1arger than the carryi ng capacity of the stream. Consequently,
part of the sediment must be deposited, and this results in the rise of the
bed level. Degradation of a river stretch occurs when the sediment discharge
entering the stretch is lower than the sediment discharge transported

downstream of the reach; the extra sediment required to satisfy the stream's
carrying capacity is obtained from erosion of the bed and banks, with
attendant reduction of the bed level and widening of the stream.
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If the state of the art regarding equilibrium flows leaves a great deal
to be desired, the panorama is by no means encouraging for the more prevalent
case of nonequ il i bri urn (unsteady and nonuni form) fl ows. The mathemat i ca 1
and/or empirical "tools" available to the hydraulic engineers to forecast the
rates, durations, and extents of channel adjustments are far from being
satisfactory. Improved estimates of these parameters, as well as a better
insight into the dynamic behavior of alluvial streams undergoing morphological
processes, are urgently needed in river-management planning.

B. Objectives and Scope

Although numerical models are being employed increasingly to analyze
morphological processes in alluvial channels, to be useful and reliable, such
models require, among other items, enormous amounts of accurate field and
experimental data (Nakato and Vadnal 1981), which tn many cases is not readily
avai lable, even in developed countries. It appears th at the analytical line
of research in this field has not been advanced significantly during the last
several years. The already existing linear analytical models have not been
substant i a lly improved nor have thei r merits and defi ci enci es been cl early
explained. The recent findings in the sediment-transport field and
mathemat i ca1 techni ques have not been i ncorporated i nto thi s important and
valuable branch of river-modelling. To the best of this writerls knowledge,
no attempt to explore the potentials of nonlinear analytical models to analyze
morphological processes has been reported.

The purpose of this dissertation is the determination of the
characteristic parameters of aggradation processes due to augmentation of the
sediment load, and degradation initiated by a diminution in sediment discharge
or a lowering of the base level. These morphological processes are among the
most frequent and important ones in river-engineering.

A composite approach, involving both ma~hematical modeling and laboratory
experiments, was adopted. Major attention was given to the development of
improved linear and nonlinear analytical models based on validated
mathematical expressions of the constituent phenomena. Laboratory experiments
were di rected towards a better understandi ng of the mechani cs of sediment
transport in alluvial channels under nonequilibrium conditions. Particular
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emphasis was placed on the study of the modification of the bed configuration
with increase in the sediment supply.

In accordance with these objectives, the work done in the past is briefly
reviewed in Chapter II. The theoretical basis and the derivation of the
linear and nonlinear parabolic models are presented in Chapter III. Chapter
IV deals with the application of the linear parabolic models to morphological
processes in alluvial channels of semi-infinite length. The mathematical
description of nonequilibrium processes in alluvial streams of finite length
by means of the linear models is undertaken in Chapter V. The application of
the nonlinear model to aggradation and degradation processes is discussed in
Chapter VI. The apparatus and procedures used in conducting the experiments,

and the experimental results are descri bed in Chapter VII. The present study
and its major conclusions are summarized in Chapter VIII.
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11. REVIEW OF PREVIOUS WORK

A. General
Hydraulic engineers and geologists since the origin* of their professions

have been concerned with ri ver dynami cs; however, they have ápproached the

subject wi th rather different objecti ves. The engi neer IS mai n concern is
knowl edge of ri ver response to natura 1 and man-i nduced di sturbances. The
geomorphologistls interest is in understanding of earth-surface history
documented by river changes through geologie times. Although the interchange
of information among engineers and geologists has been significant (Gilbert
1917; Davis 1909; Shulits 1934; Culling 1960), their efforts, due to the

*Thi s note i s i ntended to poi nt out a few relevant mi 1e-stones in the
deve 1opment of sedi ment-transport mechani cs and ri ver hydrau 1i es, The
first discoveries in the art of river hydraulics and river control
apparently developed in China some 6000 years ago. The first flood­
control project was undertaken during the supremacy of the Tang dynasty
(2357-2258 B.C.). It consisted in the construction of series of
impounding levees along the Yellow River (Shu-Tien 1937). The first dam
is assumed to have been constructed on the Ni1e ri ver by King Menes
(4000 B.C.). The earliest written statements about erosion and sediment
transportation have been attributed to Hippocrates (400 B.C.), who wrote
about the separation of sediment into size fractions based on different
settling velocities and gave a description of the apparatus used to
demonstrate the basic principles involved (Krumbine 1932). Several
authors (Graf 1971; Rouse and Ince 1980) considered Domenico Guglielmini
(1655-1710) the "f ather of the science of river hydr au l t cs" and the
author of the first book "Del l a natura dei f tumt " on sediment transport
phenomena. However, it appears that a Chinese official named Chi-Hsun
Pan (1520-1595) in-charge of the flow-control on the Yellow River
published in 1590 a collection of reports under the title "Review of
River Proteet ion" (Wong 1939). In fact, Pan published papers and
reports which were edited in four Chinese volumes. His IIGuiding
Principles and Recommendationsll show a considerable understanding of the
basic sediment transport mechanisms. In 1750 Paul Frisi reported
hydraul i c mode1 studi es, concern i ng the advantages and drawbacks from
the navigation viewpoint, of dividing the Rhine river into several
channels. His statement regarding the lIabsurdity of formulating
mathematical theories, when hydraulics was really a branch of physics
rather than mathematicsll (Rouse and Ince 1980) is noteworthy because it
illustrates the emphasis given to experimental methods during the 18th
century.
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difference inti me-sca 1e of the morpho1ogi ca 1 phenomena in which they are
interested in, have remained somewhat isolated up to the present time. The
useful concepts of graded and poised streams formerly introduced by geologists
(Macki n 1948; Matthes 1941) have been adapted and extended by hydraul i c
engineers to analyze qualitatively many problems of stream morphology (Lane
1955; Kuiper 1965). Lane's analysis included an impressive list of examples
of aggradation and degradation in natural streams. However, the most
outstanding feature of his contribution is the lucid explanation of the causes
leading to such processes by means of his balance analogy as illustrated in
figure 2.1. Lane visualized water and sediment discharges in one pan and
slope and sediment size in the other.· lts equilibrium is self explanatory and
qualitatively consistent, as was shown experimentally by Rathbun and Guy
(1967).

During the last part of the present century, the necess ity to approach
morphological processes from a quantitative viewpoint has become apparent.
Accordi ngly, engi neers have devi sed fi el d studi es and 1aboratory experiments
i ntended to provi de quant i tati ve est imates of the cha racteri sti cparameters
involved in some specific morphological problems. Data collected in field
studies and laboratory experiments are the main constituent of the so-called
empirical methods of estimation. The increasing understanding of the basic
mechanisms of sediment transport has resulted in substantial improvements in
the formulation of better mathematical models of such processes. Such models
are solved either analytically or numerically.

A review of the technical literature related to nonequilibrium flows,
with special attention to aggradation and degradation processes in alluvial
channels, is presented in the subsequent sections.

B. Aggradation
1. Examples of aggradation. Aggradation of a river reach can occur due to
various causes, including:

(a) augmentation of sediment discharge
(b) diminution in water discharge
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Figure 2.1 Lanels Balance Analogy for Morphological Processes
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(c) *raise of base level.

A selected list of examples of aggradation processes is presented as follows:

Aggradation due to augmentation of the sediment discharge conveyed to the
stream by a tributary constitutes a classical example. The sediment deposits
downstream from the confluence form some sort of a submerged dam or bar which
creates a pool upstream of the tri butary confl uence. Thi s was the case at
Pepin Lake which was formed in the Upper Mississippi River by the enormous
sand load supplies by the Chippewa River. Matthes (1941) reported the
formati on of a 6000 m long 1ake upstream of the confl uence of the Feather
River with its tributary, the Yuba River. The sediment transported by the
Feather River originated another temporary dam and its corresponding lake in
the Sacramento River, i nto which the Feather River di scharged. Farther down
the Sacramento River at the city of Sacramento, California, the water stage
was raised 3 m by the deposits.

A rise of about 6 m of the Yuba River bed in North California, U.S.A.,
over a period of 100 years due to sediment overloading caused by gravel wasted
in the hydraulic mining of gold was reported by Gilbert (1917). Large volumes
of waste materials from lead mining, in the southern part of the Driftless
Area in Wisconsin and 111inois, which added considerably to the sediment loads
of certain tributaries caused an average filling of about 0.25 m in 30 years
on the Galena River (Adams 1944). A similar problem affected the Serendah
River in Malaya, where the river bed rose 6 m over a period of 11 years due to
the addition of sediment produced by the hydraulic mining of tin (Lane
1955) •

The catast ropnt c aggradat i on of the Upper Ganga Cana1 in 1970, due to a
series of landslides in the Alaknanda Valley is another striking example of
aggradation (Garde and Ranga Raju 1973). Another impressive case is the Mu
KwaRiver in Formosa; the river bed rose 12 m in 3 years due to landslides. A
two-story hydroelectric powerhouse along the side of the river was completely

*Base level is the limiting level or elevation below which streams cannot
erode. Lakes, for example, for the period of their existenance, control the
level of streams entering them and thus form local or temporary base levels
for such streams. The ultimate base level is closely related to sea level.
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buried. Aggradation due to recent continuous 1ands1ides in the Gua1pa Va1ley

along the Paute River in Ecuador has been detrimental to the construction of
the Cola de San Pablo Dam as wel1 as to the performance of the ski-jump energy
dissipator (Jarami1lo et al. 1979).

The sediment and water contributed by the 32,392 square kilometers of the
Midd1e Rio Grande Valley produced the bed aggradation of 0.3 m in 5 years in
the lower 24 kilometers of the river. The f100dway between the 1evees in the
upper 214 mi1es of the va1ley was aggraded 0.3 m in 12 years during the period
1936-1941 (Jones 1948). Surveys of the Kickapoo River in Wisconsin showed a
channe1 aggradation of 0.3 m in 20 years (Happ 1948). Recent measurements in
the Upper Mississippi River indicated the amount of sediment deposited has
ranged from 0.1 to 0.6 m in the 11 year period since 1964, with an average
aggradation of 0.3 to 0.025 m per year. Depths of sediment deposited since
1957 up to 1975 ranged up to 0.8 m (McHenry et al. 1976).

As a resu1t of the channe1ization of the East and West Prairie Rivers in
A1berta, Canada, an aggradation of as much as 3 m occurred in 1972. The
ori gi na 1 excavated channe 1 has been fi 11ed. Channe 1 depth decreased by 36%
and its width increased by 10% (Parker and Andres 1976).

Si gni fi cant ri ses in the bed 1eve 1 of the Ri0 Grande and Arkansas Ri ver
in U.S.A. due to the withdrawal of relatively clear water were observed by
Lane (1955). Due to diversion of a part of the Mississippi water discharge
into the Atchafalaya channel in 1882, silting (aggradation) of the Mississippi
River bed, downstream of the point of diversion (Sa1isbury 1937).

The upstream propagation of a wave of deposition due to rise in bed level
was detected through bed profil e modifi cat i ons brought about wi thi n a few
years by erection of Debris Barrier #1 on the Yuba River (Gilbert 1917). The
formation of fortuitous local obstacles, such as a driftwood jam together with
abnorma1 sand 10ads, was thought to be the cause of complete channel
occlusions observed in some small tributaries of the Little Ta11ahachie in a
few places in the South Carolina Piedmont and in small valleys of the Upper
Mississippi Basin and other scattered 10ca1ities (Happ 1945, 1948).

2. Experimental and ana1ytical studies on aggradation. One of the ear1y
experiments concerni n9 aggradat i on processes due to sediment augmentat i on at
the upstream end of a 1aboratory f1 urne were reported by Bhamidi paty and Shen
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(1971). The aggradi ng upstream reach was characteri zed by nonuniform flow
conditions, where the bed slope increased and the water dep th decreased with
time. The downstream reach rema i ned pract i ca lly unaffected by the process

until the aggrading front reached there. The slope of the front in all tests

was found to remain constant, and nearly equal to the submerged angle of

repose of the bed material. Bhamidipaty and Shen proposed a logarithmic

relationship between the bed level and time, and suggested some simple
procedures to compute the bed slope, the water depth, and the 1ength of the

channe1 affected by degradation at the end of the process.

Adachi and Nakato (1969) showed that under the assumpt i ons of quasi­
steady and quasi-uniform flow the evolution of the river bed due to top-set­

bed (aggradation in a si1ted reservoir) may be represented by a linear

parabo1ic model. A method for evaluating the difussion coefficient in their

analytical solution from available field data was also suggested.

Soni, Garde and Ranja Raju (1980) adopted de Vries' (1973) parabolic

model and its corresponding solution to study the aggradation process in an

a1luvial channe1 due to sediment augmentation at a constant rate at the
upstream end of a 1aboratory fl urne. Genera lly poor agreement between the
ana lyt i ca 1 results and the experimenta 1 data was found and was attri buted to
the several simplifications contained in the model. After a disputable
discussion about the reasons for the actual diffusion coefficient being
smaller than the theoretical one, the authors proceeded to modify empirically
the value of the diffusion coefficient which turned out to be a function of
the relative overloading. Jain (1981) pointed out an error in the boundary
condition applied by Soni et al (1980). He derived a more appropriate
boundary condition and obtained an analytical solution which fit better with
the experimental results. Mehta, Garde and Ranga Raju (1981, 1982) presented
the same solution as given by Jain (1981) and compared it with the
experimental data obtained by Soni et al (1980) and their own data which
covered a fairly wide range of flow and overloading conditions. In order to
improve the agreement between the ana lyti ca1 sol uti ons and the experi menta 1
data they again modified the values of the diffusion coefficient. The
modified value of the diffusion coefficient was smaller or larger than the
theoretica1 value, depending on the magnitude of the relative overloading.
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Soni (1981), on the basis of his experimental data, theoretical and
dimensional analyses, and existing analytical models developed an empirical

method that allows the determination of the time dependent bed profile of a
channel undergoing aggradation due to sediment augmentation.

Soni (1981a), after some simplifying assumptions, obtained an analytical
solution for the sediment load in aggradation processes. To obtain a better
fit between the analytical results and the indirectly measured sediment
discharge, he proposed another modification to the theoretical value of the
diffusion coefficient.

C. Degradation

1. Examples of degradation. Degradation of a river reach can occur due to
the following causes:

(a) diminution of the sediment discharge
(b) augmentation in water discharge
(c) lowering of base level

A few typical examples of degradation processes are summarized below.

Cases of degradation below dams, where most or all of the sediment
discharge is retained in the reservoir, have been reported frequently in
technical publications (Lane 1934, 1947, 1955; Todd and Eliassen 1940; Shulits
1934; Stanley 1947, 1951; Pick 1951; Malhotra 1951; Livesey 1963; Joglekar and
Wadekar 1951; Hathaway 1948). Degradation was the cause for the failure of a
major dam in India and for the complete reconstruction of Fort Summer Dam on
the Pecos River in New Mexico (Lane 1955). A 2.5-m lowering in the bed
elevation of the Missouri River in 10 years was observed downstream from
Gavins Point Dam, South Dakota (Sayre and Kennedy 1978). Bed degradation of

up to 10 m over a period of 32 years occurred in the Ratmau Torrent downstream
of a level-crossing with the Upper Ganga canal at Dhanauri, India (Vittal and
Mittal 1980). Bed material removal at a striking rate of 12,000 cubic meters
in one year caused by the increase in flow discharge was observed in Five Mile
Creek, Wyoming. The materi al eroded from the stream bed and banks provoked
the rapid silting of the downstream reservoir (Lane 1955).
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Due to the diversion of a part of the Mississippi River water discharge
into the Atchafalaya channel in 1882, the lowering of the bed slope of the
Atchafalaya channel was observed (Salisbury 1937).

A man-made change which accompanies a lowering in base level is the local
shortening of a stream by the elimination of meander loops; the general trend
of the upvalley effects is indicated by changes in the profile of the
Mississippi River brought about by a series of artificial cutoffs and other
channel improvements between 1929 and 1939 (Mackin 1948). At Arkansas City,
at the head of the cutoffs, the river level was lowered about 4 m. The effect
was noted in 1939 at a gauge 65 km upstream, where there was a lowering of 1 m
in flood stage. The river has certainly not yet adjusted itself to the new
conditions; the chief significance of the recorded bed profile changes to date
is the sensitivity of the stream to "lowering the base level ", and the
extremely rapid headward progression of the first effects of that lowering
(Ferguson 1939; Mackin 1948). Another case of base-level lowering occurs when
a reservoir which is usually held at a constant level is drawn down. The
Salton Sea in California was at one time filled to an elevation of 12 m above
sea level and the Whitewater River adjusted its bed to this level. The Salton
Sea was cut off from the ocean and lowered by evaporation to 75 m below sea
level, and the Whitewater River is slowly adjusting itself to this new base
1eve 1 (Soderegger 1935).

2. Experimental and analytical studies on degradation. It seems that the
first significant experimental work on degradation due to sediment diminution
was conducted by Harrison (1950). He stated that the bed degrades as a unit
and that the final bed profile is parallel to the initial one if non-moving
particles are evenly distributed along the bed. Newton (1951) concluded from
his experiments with uniform sand that the rate and pattern of degradation are
dependent on bed and flow conditions and the rate of sediment transport at the
initial equilibrium condition. The stream-bed elevation and slope at a given
location were found to decrease asymptotically with time. Ismail and Wahby
(1964) reported that, as the degradation progresses, the value of the bed
shear stress approaches to that of Shields for a representative grain size
equivalent to approximately the mean diameter of the original
They also stated that the total roughness of the bed at the end
is due to the grain roughness only. Al-Khafif (1965)

bed materi al.
of the process
based on his
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experimental results concluded that the Einstein bed-load function and
friction factor due to bar resistance (Einstein 1950,1952) for equilibrium
channels can be applied to degrading channels with uniform bed material.
Several investigators (Gessler 1965; Lane and Carlson 1953) found that the

armor coat is one grain thick and composed of all grain sizes contained in the

original bed material. Garde and Hassan (1967) showed that the

characteristics of the armor coat at the end of the degradation process depend
primarily on the initial standard deviation of the bed material. Little and

Meyer (1970) conducted experiments aimed at the quantitative determination of

the effect of sediment gradation on channel armoring. They reported simple
relations that allow the calculation of the final mean geometric diameter and
geometric standard deviation as functions of the initial values of these

parameters and the shear velocity. An important finding of the study was that

sediments with geometric standard deviations less than 1.30 did not show any
armoring. This conclusion was supported by Blaisdell (1977) based on his
field observations. Bhamidipaty and Shen (1971) concluded from the analysis

of Newton's data (Newton 1951) and their own experimental data that the bed

elevation in a degrading channel decreases exponentially with time. The bed

profile was found to depend primarily on the tni t ia l and final bed slopes,
initial and critical shear stresses, as well as on the sediment and water
characteristics. The bed forms at the end of the process were found to depend
on the sediment size. For materials coarser than 0.6 mmthe final bed slope
and water depth could be determined by using Shields' diagram. The friction
factor due to form resistance diminishes with time for sand coarser than 0.6
mm and increases for finer sands. The friction factor diagram developed by
Shen (1962) for equilibrium flows was found adequate for degrading channels.
Experiments concerni ng degradat i on of a11uvi al channe 1sin response to base­
level lowering have been reported primarily by geologists (Brush and Wolman
1960; Pickup 1975; Holland and Pickup 1976; Begin et al. 1980, 1981). The
results of some of these studies show that in homogeneous alluvial sediments,
the ultimate result of the base-level lowering by a certain amount is a
degradation all along the channel by the same amount. The main impact of
erosion is felt in the early stages of the processes, and mainly near the
mouth. The rate of degradation at any location along the channel reaches a
peak and then slowly decreases with time, and the peak rate is attenuated with
distance from the outlet. Because of the tendency for a stream to rapidly
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reduce the slope of any steep reaeh, the 'knickpoint' (the location of the bed
slope discontinuity) migrates upstream only a short distance before it becomes
too faint to recognize. At a given flow the rate of migration of the
knickpoint depends on the sediment size, and the difference in bed elevations

between the upstream and downstream reaches.

The two earliest empirical methods for estimating degradation processes
below dams were developed by the U.S. Bureau of Reclamation (USBR 1963). The
first method considers the case of uniform bed material, while the second
accounts for armori ng caused by nonuniformity in the sediment size. The
method for uniform sediment is based first on the computati on of the stab1e
channel slope and the volume of the expected degradation, and then the

determination of the bed profile which is approximated by a three-slope curve
to fit the above computed volume. The method for nonuniform sediments is
based on the computation of the critical bottom velocity for initiation of
sediment motion, the tractive force, and a characteristic sediment size that
accounts for the armoring process. It is assumed that the armor coat is three
grains thick (d50) or 0.15 m, whichever is smaller and the sediment transport
equations due to Meyer-Peter and Muller andjor Schoklitsch are valt d, An
updated version of the previous methods is available in a more recent
publication (USBR 1977). Aksoy (1970, 1971) proposed a method based on flume
experiments and theoretical and dimensional analyses. lts major result is the
exponential decrease with time of the bed elevation. Russian investigators
(Rzhanitzin et al. 1971) have also devoted considerable efforts to study of
river-bed degradation below dams under variety of conditions that included
straight or curved rivers, and uniform and nonuniform bed material. However,
their main concern was the prediction of the final or equilibrium river-slope
rather than the evolution of the process with time. Based in his extensive
set of flume experiments Ilo and Narasimhan (1976) established a power-law
re1ationshi p between the increases in bed 1eve1 and in water depth with the
longitudinal distance from the dam. Equations enabling the calculation of the

entire bed and water surface profiles, as well as of the armor coat grain size

at any time and location were also provided.

Although Newton (1951) reported the availability of an analytical
procedure to compute aggradation and degradation processes on alluvial rivers
developed by Straub, Einstein and Lane, the first analytical model tor
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degradation was published by Culling, a geologist, in 1960 (Cu1ling 1960).
Based on the similitude between the flow of sediment in rivers and the heat
flow in solids, he derived intuitively the linear heat-conduction equation as
the governing equation for various degradation processes. Culling obtained
solutions for several boundary and initial condi t tons , but they could not be
used for quantitative estimations because he did not obtain any relationship
among the diffusion coefficient and flow and sediment parameters.
Nevertheless, it is interesting to point out that Culling stated the need of

assuming that the flow of sediment is proportional to the bed slope and the
unlikelihood that such assumption would hold true either in valley slopes or
flowing streams.

Ashida and Michiue (1971) obtained the parabolic model (linear heat­
conduction equation), assuming quasi-steady and quasi-uniform flow and
combining the sediment continuity equation with the sediment transport
equation due to Sato, Kikkawa and Ashida (1958). In spite of an error in the
expression for the diffusion coefficient due to an early linearization of the
governing equation (de Vries 1971) and some inconsistency in the boundary
condition used with the simplifications introduced, their analytical solution
for degradation processes below dams was reported to be in fairly good
agreement with their experimental results. It should be pointed out that
Ashida and Michiue's solution is restricted to those cases in which the entire

sediment load is retained at the dam and the sediment discharge in channels is
proportional to the third power of the shear velocity.

De Vries (1959, 1965, 1969, 1971, 1973) in his pioneering work showed in
a rather general fashion that under the assumption of quasi-steady and quasi­
uniform flow, and some other suitable simplifications, the set of basic
equations reduced to the linear parabolic heat-conduction equation. He
attempted to solve the prob 1em of degradat ion below dams and the case of
degradation due to lowering of the base-level. However, due to inadequate

establishment of the boundary conditions his solutions are of limited
practical value. A somewhat similar comment applies to the analytical
solutions presented by Vittal and Mittal (1980), for the case of degradation
be1ow dams, and by Begin, Meyer and Schumm (1980, 1981) for the case of
degradation due to base-level lowering.
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D. Numerical Models

With the improvement in high speed electronic computers and numerical
methods for solving partial differential equations, a substantial part of the
research efforts concerni ng nonequi 1ibriurn f1ows has been concentrated on
numerical modelling. As aresult there exist a wide variety of numerical
models. A brief summary of the pertinent literature is given as follows.

Tinney (1962) presented an analysis of the process of degradation, which
consisted in the combination of the sediment continuity equation, Duboys'
sediment-transport equation, and Manning's resistance relation. He obtained a
differential equation for the rate of degradation which was solved by a step­
by-step procedure. In his pioneering work on long-term morphological

processes, de Vries (1965, 1969) showed that for low Froude numbers, the five
basic governing equations for morphological processes could be reduced to two:
the backwater curve and sediment-conti nuity equati ons. Both equati ons were
initially solved by using the method of characteristics and later by means of
a finite-difference method (pseudo-viscosity) that automatically takes care of
the shock fitting. The method was initially applied to a bed-aggradation
process induced by the withdrawal of clèar water. Tsuchiya and Tshizaki
(1969) manipulated the sediment continuity equation and the sediment-transport

relation of Sato, Kikkawa and Ashida (1958) and assumed that the bed slope
equals the energy slope. They obtained a linear parabolic equation which was
solved by means of an explicit numerical scheme. Good agreement between the
numeri cal results and measured field data was reported.

Chang (1969) and Chang and Richards (1971), by assuming quasi-steady flow
conditions and neglecting the change in bed slope within a short time
interval, reduced the number of basic equations to two (backwater and
sediment-continuity) and solved them by the method of characteristics with an
explicit rectangular grid scheme. A simple explicit numerical model was
presented by Gessler (1971). He used the sediment-continuity equation

together with Meyer-Peter and Muller (1948) bed-load equation to solve
problems of aggradation due to sediment overloading and degradation below
dams. In spite of the simplicity of the model, the need of special care in
the determination of the time interval deserves mention. Simons and Komura
(1967) and Komura (1971) obtained a differential equation for the rate of
river-bed degradation based on a combination of sediment-continuity equation
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and one of the several possible sediment-discharge equations. Armoring due to
nonuniformity of the bed material was included in the analysis. Sequential
numeri cal integration of the differential equation provide a means for
predicting time-dependent degradation processes below dams. A numerical

procedure to compute the final equilibrium profile of the river bed was also
described.

Miloradov and Muskatirovic (1971) and Miloradov and Radojkovic (1975)
developed a model for unsteady, nonuniform flow in alluvial rivers with

complex cross-sections and meanders. The model has capability to account for

lateral inflows. The backwater curve and sediment continuity equations were
solved by an implicit finite difference scheme. Some of the assumptons
included in the model (e.g., horizontal water level, neglect of transverse
flow in momentum equation and same propagation speed in the main channel and
flood plane) were reported as cause of disagreement with field data.

Cunge and Pedreau (1973) solved the backwater and the sediment continuity
equations coupled with Meyer-Peter and Muller sediment-transport equation by
resorting to an implicit numerical scheme. The model was used to study the
bed evolution of a hypothetical river reach subject to aggradation due to
overloading. lts usage is recommended for long-term bed evolutions if
discharge versus time variations are slow. Chen et al. (1975) developed a
one-dimensional numeri cal model that solves the continuity and momentum
equation for water and the sediment-continuity equation by means of a linear
implicit scheme. Manningis or Chezy's resistance relation, and the modified
Einstein formulation (Colby and Hembree 1955), to estimate the suspended-load
and bed-load di scharges based on measured sediment-transport data are al so
included in the analysis. The model was found to be accurate for gradually
varied unsteady subcritical flows with irregular shape of the channel cross­
section.

Mahmood(1975) and Mahmoodand Ponce (1976) reported a mathematical model
for the study of sedimentation transients in straight alluvial channels with
subcritical flow. Bed and suspended load were s.eparately accounted for in the
computations. The model couples the water momentumequation and the sediment­
continuïty equation and solves them by means of a linear implicit scheme.
Cunge and Simons (1975) developed an implicit numerical scheme which accounts
for varying roughness. The usual single-valued Manning-like relationships
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between the energy slope and the flow variables was replaced by two equations,
one for dunes and ripples and the remaining for flat bed, obtained from the

Engel und-Hansen (1967) approach. The coi nci dence of computed resul ts and
available laboratory flume data was found encouraging. Hwang (1975) presented

a numerical procedure to compute degradation processes below dams which is

basically equal to the one developed by Komura (1971).

Stantchev et al. (1975) used an uncoupled explicit scheme to solve the
backwater curve and sediment continuity equations. Sediment concentrations

required for the computations were obtained from curves based on actual

records. Brown and Li (1979) developed a known-discharge, uncoupled water and
sediment routing model that uses an analytical Newton-Raphson solution to the

backwater curve equation and an explicit finite difference scheme for the

sediment-continuity equation. The model can handle lateral sediment inputs

due to tributaries. The computer time required for the model was reported to
be minimal, and it was recommended for modelling large systems for long

periods. Puls et al. (1977) built a two-dimensional mathematical model that

solves the common hydrodynamic equations and two additional turbulence

equations resorting in an implicit finite-difference scheme. The shear and
transport velocity were computed from the vel ocit i es near the bottom. An

additional sediment-transport equation was used to determine the local

sediment transport rate and the bed deformation. Bouvard et al. (1977)

extended Cunge and Simons (1975) model and incorporated a varying friction

factor given by either Engelund-Hansen or Einstein approach. The possibility

of modelling natural alluvial rivers where the flow velocity is not a single­

valued function of the energy slope, water depth, and sediment size is the

relevant feature of this contribution. Henriques (1977) formulated a
numerical mode which may be considered similar to the Bouvard et al. (1977)

model.

Thomas and Prasuhn (1977) presented a model (HEC-6) which solves

iteratively the energy equation and allows the use of constant or water depth

dependent fri ct i on factor. The sediment-transport capacity is computed by

using one of the five options available. The model accounts for armoring
effects and uses Gessler's (1971) armor stability procedure. The channel bed·

deformation is determined through the application of the sediment-continuity
equation. The model was verified by reconstituting hydraulic model and field
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data under both armoring and non-armoring conditions. Chang and Hill (1977)
and Chang (1982) advanced a one-dimensional model whose main feature is its
capability to predict changes in river width on the principle of minimum total
stream power.

A two-dimensional model which combines the finite-difference and finite­
element techniques to simulate morphological processes in alluvial channels
composed by fine uniform sediments has been developed by Ariathurai (1974).
Simons et al. (1980) developed a numer t cal model for simulating watershed
sediment yield and subsequent aggradationj degradation in a river system. The
model accounts separately for bed and suspended sediment loads by making use
of the Meyer-Peter and Mu11er equat i on and Einstei n formu1a for bed- and
suspended-load discharges, respectively. A model for rapidly changing flows
which is intended to predict river stage, bed elevation and sediment discharge
over the course of a flood is being developed by Brownlie (1981). The model
accounts for varying friction factor and retains all the time derivatives
included in the basic governing equations.



19

111. LINEAR AND NONLINEAR PARABOLIC MODELS
FOR MORPHOLOGICAL PROCESSES

The classic parabolic model as well as an alternate parabolic model for
morphological processes in alluvial rivers, referred to as Z-model and G­

model, respectively, are derived in detail in this Chapter. The application

of these models to several important nonequilibrium processes in rivers is
undertaken in subsequent chapters.

A. Theoretical Basis

The basic one-dimensional equations that govern the flow over a
deformable river bed undergoing a nonequilibrium process are:
Momentum equation for water

aU aU aH az
9 Sf 0rr+ UäX+ g - + 9 - + =ax ax

Continuity equation for water

!!:!+ U !!:!+ H~ = 0at ax ax

(3.1)

(3.2)

Continuity equation for sediment

~ + 1 ac
at (l-;QäX=O (3.3)

Sediment transport relation

G = G(U,H,d,g,w,Sf' v, •••) (3.4)

Resistance relation

f = f(U,H,G,d,v, •••) (3.5)
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in which: d = mean sediment diameter; f = Darcy-Weisbach friction factor; G =
sediment discharge per unit width; 9 = gravitational acceleration; H = mean
water depth; Sf = energy slope; t = time; U = mean flow velocity; w = sediment
fall velocity; x = longitudinal coordinate measured along the channel bed; z =
bed elevation with respect to an arbitrary horizontal reference level; À =
porosity of the bed sediment; v = kinematic viscosity of water.

1. Assumptions. The main assumptions introduced in the derivation of
equations (3.1) through (3.5) are:

1. The alluvial channel is sufficiently straight and uniform so that
the flow characteristics may be adequately represented by a one-

dimensional model.
2. The flow velocity is uniform over the entire cross-section.
3. Hydrostatic pressure distribution prevails at any point in the

channel.
4. The water surface slope is smalle
5. The density of sediment-laden water is constant over the entire

cross section.
6. The sediment size distribution is rather uniform so that no bed-

armoring will take place.

2. Basic considerations. Equations (3.4) and (3.5) are empirical
relations based on laboratory and field measurements under steady, uniform
flow conditions.· Their use in nonequilibrium flows at first appears
unwarranted; nevertheless, the insight gained in the process of modelling far
outweighs the inability of the equations to properly account for all the
physical details. An interesting feature in (3.5) is the dependance of the
Darcy-Weisbach friction factor f on the sediment discharge G. lilt is believed
that thi s refl ects far more accurate ly the way streams operate. That is,
streams adjust their bed roughness (and thereby their friction factor) to
produce the flow depth-velocity combination for a given water discharge that
brings the sediment transport capacity of the stream into conformity with the
sediment discharge being imposed on the reach of the stream" (Karim, 1981).
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B. The Classical Parabolic Model (Z-Model)

de Vries (1965) showed that the celerity of propagation of bed
disturbances is considerably smaller than the celerities of the water surface

disturbances if the Froude number is not too close to unity. This

mathematically implies that the local acceleration term (~~) and the time

derivative of the water depth (~~) in (3.1) and (3.2) can be neglected in
comparison to the other terms. Elimination of the convective acceleration
term (U~) between (3.1) and (3.2) yieldsax

2 a H a z
(1 - Fr ) äX + äX + Sf ::: 0 (3.6)

where
1/2Fr ::: U/(gH) (3.7)

Earlier investigators neglected the terms corresponding to the convective
acceleration (U ~~) and the spatial variation of the water depth (~~ ) at the
beginning of the derivation of the governing equation for the parabolic
model. In order to evaluate the effect of disregarding these two terms in the
analytical solution, they are not dropped in the beginning. In the present
study it is assumed that for small changes in sediment discharge, the first
term in (3.6) can be linearized, which implies Fr ::: Fro ::: Uo/(gHo)I/2.
Furthermore, by recalling that by definition, Sf::: fU3/(8gq), and that for
constant water discharge q, and constant water and sediment properties (3.4)
and (3.5) can be written as

G :::G(U,f) (3.8)
and

f ::: f(U) (3.9)

The spatial derivative of (3.6) gives

2 2
(1 _ F 2) .L.!i+U+_l_ (3fU2 + U3 df) dU::: 0

r 0 ax2 ax2 8gq dU dx (3.10)

After introduction of (3.8) and (3.10), the sediment continuity relation,
(3.3), becomes

az
dt

(3.11)
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where

U ()G
äUK = ---~-""'O-d""'f-

Sf( l-À)(3 + T dIT)

Equation (3.11) can be further simplified by assuming that the second term
inside the brackets is negligible and linearizing the coefficient K. The

(3.12)

result is

2a z K a z - 0rr : 0;7- (3.13)

where

u~au .
Ko = [ U df Jo = value of K for unlform flow

Sf(l-À) (3 + f dU)

The effects of neglecting the third term in (3.11) and of the linearization of
K on the analytical solution will be analyzed later in this study.

(3.14)

For the case of a plane initial bed profile it is advantageous to define
a new dependent variable Z, as

Z = z - zb (3.15)

where zb = zb(x) is the vertical coordinate measured from a horizontal
reference level up to the initial bed profile, and Z is the vertical
coordinate measured from the initial bed profile. With the above
transformation the governing equation becomes

(3.16)

Equation (3.13) or (3.16) constitute the linear Z-model which was initially
proposed, in a heuristic manner, by Culling (1960).
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C. The Alternate Paraboli c Model (G-Mode 1)

As shown in the preceeding section, in all the previous analytical
treatments dealing with morphological processes the set of basic governing
equations (3.1) through (3.5), after some suitable simplifications, is reduced
to a single linear partial differential equation (3.13) or (3.16). From
previous and forthcoming discussions it will become evident that further
deve 1opments are needed inorder to enab 1e a reliab1e determi nation of the
characteristic parameters of morphological processes by analytical means. In

an attempt to overcome some of the limitations of the classical linear

parabolic model, an alternate parabolic model (the G-model) is developed in
the remainder of this chapter.

For a constant water discharge q and constant water and sediment
properties (v,d,w), (3.4) and (3.5), without lack of rigor, can be expressed
as

(3.17)
and

f = f(Sf) (3.18)

The spatial derivative of (3.3) yields

Cl S 1 Cl 2G
rr - (I-À) ~ = 0 (3.19)

After substitution of the friction factor relation (3.18) into. the sediment
transport equation (3.17), the time derivative of the latter gives

G a Sfh = F(G) at (3.20)
where

dG
F(G) = d'S

f
(3.21)

The time derivative of the momentum equation, (3.1), yields

as _ aSf + 2. a2u + ~ ~ ~ + ~ ~ + rr
at - at 9 at2 9 a x at 9 a xa t a xa t

(3.22)

Combining (3.19), (3.20) and (3.22) one obtains
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(3.23)

Considering that for all practical applications, ~ ~~ is the dominant term
in (3.23), and recalling that for studying bed or sediment transients the

which implies a U aH 0IT:: IT =_ ,water flow can be considered quasi-steady,

equation (3.23) can be simplified to give

where

(3.24)

(3.25)

Introducing a dimensionless sediment transport parameter G* defined as

G* = (G - G )/AGo 0
(3.26)

where Go is the total sediment discharge
and AGo is the change (constant) in sediment
the sediment continuity equation (3.3) become

a G* - a 2G* 0K-2- =ar - ax

for uniform flow conditions
discharge at x = 0, (3.24) and

(3.27)

and

AGO '" G*II + a 0at (I-À) äX= (3.28)

The nonlinear sediment-diffusion equation (3.27) is the alternate nonlinear
p*rabolic model which, in concert with the sediment continuity relation,
(3.28), can be used for predicting bed transients in alluvial channels.

The linear version of the model derived above is

and

(3.29)

(3.30)

where
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F(GO)
Ko = (I-À) = value of K for the initial uniform flow

(3.31)

It is easy to prove that for a plane initial bed profile

(3.32)

where Ko is given by (3.14). A list of expressions for Ko for several
sediment-transport and friction-factor relations is given in Appendix I. When
dealing with a time-dependent change in sediment discharge at x = 0
(i.e., ~G = ~G(t)), it is preferable to define a new sediment parameter G1 as

G1 = G - Go (3.33)

Use of the transformation (3.33) in the linearized sediment-diffusion equation
and the sediment-continuity equation reduces them to

aG1 K
a2G'

0 (3.34)ät - o~=
and

az 1 aG1 0 (3.35)at + (I-À) äX =

The strategy to solve any one-dimensional morphological process will
consist in solving, firstly, the sediment diffusion (transport) equation
(3.27) or (3.29) or (3.34) for the appropriate initial and boundary conditions
and, subsequently, use this information to integrate the sediment continuity
equation to obtain the time dependent bed profiles.
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IV. LINEARPARABOLICMODELFORMORPHOLOGICALPROCESSES
IN CHANNELSOF SEMI-INFINITE LENGTH

This chapter presents the application of the linear models, introduced in
Chapter III, to quantitatively estimate the relevant parameters of
nonequilibrium processes of primary importance in river-engineering. The
nonequilibrium processes of aggradation due to sediment augmentation and
degradation due to sediment diminution in alluvial channels of semi-infinite
length is introduced in the first section. The degradation process due to a
lowering in the base level of a semi-infinite long channel is given in the
later part of this chapter.

A. Aggradation due to Sediment Augmentation and Degradation
due to Sediment Diminution

Consider a wide rectangular alluvial channel of semi-infinite length,
subject to a constant discharge per unit width q, with the mean flow velocity
Uo and the mean flow depth Ho' as is shown in figure 4.1. The equilibrium
sediment-transport rate under the initial uniform flow condition is Go. Let
the sediment load at the upstream end of the channe 1 (x = 0) be vari ed
by _G(t) so that the total sediment-transport rate at x = 0 becomes Go
+ ~G(t). As aresult the equilibrium between the water and sediment
discharges is disturbed. If ~G(t) is positive, the bed slope must increase to
transport the additional imposed sediment load which is deposited on the bed
causing it to aggrade. On the contrary, for a negative value of ~G(t), the
bed will degrade and the bed slope will decrease.

1. Analytical solution by linear G-model. From the statement of the
problem it becomes evident that the initial and boundary conditions can be
formulated in a rather simple and accurate manner in terms of the sediment­
transport rate. Hence, the use of the linear parabolic model constituted by
(3.34) and (3.35) is the better alternative in the present case. The initial
condition applicable to the nonequilibrium processes under consideration is
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G1(x,0) = 0, for x ~ ° (4.1)

The boundary conditions for the case in which the imposed sediment discharge
at x = ° differs by l1G(t) from the equil ibrium sediment discharge (Go) are
simply

G1(0,t) = l1G(t), for t > ° (4.2)
and

lim G1(x,t) = °
x+oo

(4.3)

The sediment-diffusion equation (3.34) and its corresponding initial and
boundary conditions (4.1), (4.2), and (4.3), respectively, constitute a
classical boundary-value problem in heat conduction in solids with constant
properties (Carslaw and Jaeger, 1978). lts general solution is

2 00 2 2
G1(x,t) = -= J l1G(t - x 2) exp (-r; ) dl;

-lrr n 2Ké
(4.4)

where
xn =---

2/ITo
Although the entire research on the subject has been restricted, so far,

to the case in which the variation in tota 1 sediment load at x = ° is a
constant, it is evident that (4.4) enables the solution for several other

(4.5)

interesting cases in which the variation in sediment load is a function of
time. Analytical solutions for two cases are given in the following.

Case 1

l1G(t) = l1G = constanto (4.6)

For illustrative purposes, and due to its importance in practical
applications, this case will be solved in detail.

Placing (4.6) into the general solution (4.4), gives

G1(x,t)
211 G CD

= __ 0 J exp (-r; 2) dl;
l:; n

(4.7)
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which can be rewritten

G(x,t) = Go +L\Goerfc(n) = Go +L\Go erfc (_x_) (4.8)
21 Kot

Once the solution to the sediment-diffusion equation (3.34) has been obtained,
the bed profile is obtained from the sediment-continuity equation (3.35).
Substitution of ~~I from equation (4.7) into (3.35), and subsequent

integration with respect to time yields

2L\G K t 1/2 2
z = 0 [( 0 ) (x ) x f ( x )] + C(x) (4 9)Ko(1-À} -n- exp -4Kot -"2erc 21ï<f •

o
The constant of integration C(x) is evaluated from the known initial bed

profile, that is

(4.10)

hence, the final expression for the time-dependent bed profile becomes

2L\Go Kot 1/2 l x x
z = Ko(l-À) [(-n-) exp (- 4K t) -"2 erfc ( _)] + zb(x) (4.11)

o 21Kto
Though (4.11) provides a general solution which is valid for any arbitrary
initial bed profile zb(x), its applicability to initial curved bed profiles
requires the fulfillment of the condition

G(x,O) = Go = G(Sf(x,O), f(x,O)) (4.12)

as well as the estimation of a suitable value for either the bed slope or the
friction factor in the evaluation of the coefficient Ko.

For the case of a plane initial bed profile, substitution of the

transformation defined by (3.15) into (4.11) yields

2L\Go K t 1/2 _x2 x
(

x )] (4.13)
Z(x,t) [(7) exp (-) - - erfc

= K (I-À) 4K t 2
0 0 21Kt

0

The bed elevation at x = 0, for any time t, is given by

-- ---
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(4.14)

which may be expressed in dimensionless form as

(4.15)

The dimensionless or normalized bed profile can be written

(4.16)

where n is given by (4.5): A characteristic length L for the morphological
processes under consideration can be obtained by assuming, as is usual in
phenomena of asymptotic nature, that the process ends where Z/Zo = 0.01.. By
doing so, (4.16) yields

L = 3.20 (K t)I/2o (4.17)

The bed slope at any section and time can be obtained from (4.13) and (3.15)
and is given by

(4.18)

where So is the initial constant bed slope.

The curvature of the bed profile is

2 8GO 2
C =4 = - exp (û)

ax Ko(l-À) 17f1Çf ot

This last equation leads to the following general conclusions:

(4.19)

1. At any given time t, the curvature is maximum at x = 0 (i .e., the
place at which the increase or withdrawal of sediment is being
imposed) and decreases asymptotically as x grows. This implies that
the error introduced in the solution due to the quasi-uniform flow
assumption will be larger as x tends to zero and will become smaller
as x increases.
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3.

As time progresses, the bed-profile curvature lessens so that better

agreement between theoretical and experimental values should be

expected at relative1y large times t.
The bed-profile concavity depends on the magnitude of t.G and on theo
nature of the process (aggradation or degradation). It will be
concave downward for degradation processes, where t.G is negative.o
On the contrary, a bed profi 1e concave upward shoul d be expected in
aggradation processes, where ~G is positive.o

4. By equating to zero the time derivative of (4.19) it can be shown
that the rate of change of curvature is a maximum at x(max) =
(2Kot)1/2.

2.

Case 2

m/2t.G(t) = C to (4.20)

where m is any positive integer. The solution for this case is (Carslaw and

Jaeger 1978)

G1(x,t) = Cor(~ +1) (4t)m/2 r" erfc ( x )
2IlÇt

(4.21)

or

G(x,t) m m/2 .m= Go + Co r(2+ 1) (4t) 1 erfc (n) (4.22)

and

Co r (~ + 1) (m+1)/2 .m+1 x
z (x, t) = --=-,_.."..-=--- (4t) 1 erfc ( _) + Zb(x)

K~/2(1-À) 2fKot

where r is the gamma function and imerfc x is the repeated integral of the

(4.23)

error function defined as

with

co

imerfc x = J im-1 erfc u du , m = 1,2, ••••
x

(4.24)
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iOerfc :::::erfc x (4.25)

The analytical solution for bed profiles corresponding to the case of a
time-dependent variation in total sediment discharge at x :::::0
(i.e., ~G :::::Cotm/2; m:::::-1, 0, 1, 2, 3,•••) and plane initial bed is shown in
figure 4.2. It is interesting to point out that the bed slope at any location
x increases as the exponent m grows. Hence, both the aggradat ion and the
degradation lengths decrease as the exponent m increases. Consistent with the
above observations, (4.23) indicates that the bed elevation at x :::::0 increases
in an aggradation process and diminishes during a degradation process with
t (m+1)/2•

It seems useful and timely to point out the main features of the
analytical solution presented above:

a) A general and unified treatment has been given to both aggradation
and degradation processes in alluvial streams.

b) The analytical solution is valid for constant as well as for time
dependent variations in total sediment discharge (at x :::::0).

c) the derivation has been kept sufficiently general as to enable its
usage in conjunction with almost any of the sediment-transport and
friction-factor relations available.

2. Analytical solution by linear Z-model. In order to assess the
similarities and differences between the G- and Z-models, the solution to the
morphological problem formulated above by the Z-model is presented in the
fo11owing.

The governing equation is

(3.13)

The initial condition applicable to the nonequilibrium processes under
consideration is
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(4.26)

The downstream boundary condition is

z{x,t) = limit zb{x)
X+<x>

(4.27)

The upstream boundary condition at x = 0 which is known in terms of G {see
(4.2» is, however, not readily evident as a function of the dependent

variable, z , In fact this boundary condition has been subject of controversy
among earlier investigators (de Vries 1973; Ashida and Michiue 1971; Soni et
al. 1980; Mehta et al. 1981; Jain 1981). The derivation of the upstream
boundary condition in terms of z is given below.

Equating the values of ~~ from (3.13) and the sediment-continuity
equation (3.3) and integrating the resulting equation yields

(4.28)

The constant of integration is determined from the condition

Equation (4.28) is the modi fied sediment-transport equation that replaces
(3.4) as a result of the simplifications introduced in the analysis. From the
fact that for t > 0, G{O,t) = Go + 6G(t), (4.28) gives

~ (O t) élZb ~a x ' = äX - Ko{1-:'D (4.29)

which is the boundary condition required to solve (3.13).

It is apparent that the solution of (3.13) subject to (4.26), (4.27) and
(4.29) requires the specification of the initial bed profile zb{x). Hence, no
general solutipn {as the one obtained by means of the G-model, namely, (4.23»
can be obtained. Moreover, the analytical solution, depending on the
particular initial bed profile, may become complex. It is interesting to note
that for the initial curved bed profiles, the general explicit solution
obtained from the G-parabolic model and the ad-hoc solution provided by the Z-
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model are different. The reason for this difference is the different

assumptions upon which the models are based.

Due to its practical applications, the solution for a plane initial bed
is of particular interest and is presented below.

On introducing the new independent variable Z, defined by (3.15), the
governing equation and the initial and boundary conditions are transformed to

2az K a Z = °rr : 0;7 (3.16)

Z(x,O) = ° (4.30)

lim Z(x,t) = °
x+oo

(4.31)

and

g (0 t) =-~
3X' "Çr1-iT (4.32)

The governing equation (3.16) with the initial and boundary conditions (4.30),
(4.31) and (4.32) constitute a classical boundary-value problem in heat
conduction in solids (Carslaw and Jaeger 1978). lts general solution is

00 2 ( 2)
Z(x,t) = _x_ J öG(t _ x ) exp -ll dll

K ·l; x/2/~t 4K 2 2o 0 oll II

$olutions for two choices of the variation in total sediment
discharge-öG(t) at x = 0, obtained by integrating (4.33) by parts are written

down in the following.

(4.33)

Case 1

öG(t) = öG = constanto (4.34)

Z(x,t)
266 K t 2o 0 )1/2 (-x) x f ( x )]= _ ........~ [( -:;- exp ïl"lT""-rot- "" er cKo(I-X) 11 '+I',~l. Co 21Çt

(4.35)
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Case 2

~G(t) = C tm/2o (4.36)

where m is an integer greater or equal to -1 (i.e., m ~ -1)

Co r (~+ 1)
Z() c (4t) (m+I)/2 l·m+l erfc ( x )x, t = _'1~72"----

Ko (I-À) 2VKot
(4.37),

It is evident that for this condition (plane initial bed profile) both the G­
and the Z-model give identical solutions. This sterns from the fact that in
such a case, the assumptions contained in both linear parabolic models are the
same, namely, the flow is considered to be quasi-steady and quasi-uniform.

This special feature of the models proved to be useful in the solution of

other morphological processes which are discussed in the next chapter.

B. Degradation Due to Base-Level Lowering

The degradat ion of alluvial channe 1sin response to base-l eve1 1oweri ng
has attracted the attention of geologists for many years. The initiation and
development of gullies due to a lowering in base-level is of primary
importance to agricu1tura 1 interests and to conservat ionists because of its

undesirable effects. Some of the practical examples of degradation processes
initiated by a lowering in base level which may be relevant to hydraulic
engineers are:

a) Rapid drawdown of a reservoi r located at the downstream end of the
alluvial river.

b) Meander loop cutoff.
c) Road-cut at the toe of a slope.
d) Enlargement of the channel cross section.

Nevertheless, it apears that hydraulic engineers have devoted little attention
to this interesting type of morphological process.

Holland and Pickup (1976) reported laboratory flume experiments
simulating the rapid drawdown of a reservoir located downstream. The
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diminution in reservoir level was such that it created critical flow
conditions at the downstream end of the alluvial channel throughout the
process. Begin et al. (1980, 1981) performed similar experiments; however,
during their tests the downstream critical flow condition was attained only
during the initial stages of the morphological process. Begin and coworkers
developed a linear parabolic model (Z-model), valid for the case in which the

sediment-transport rate is proportional to the third power of the mean flow
velocity, and obtained an analytical solution. The downstream boundary

condition they used, namely, the bed elevation at the downstream end decreases
instantaneously by an amount equal to the diminution in reservoir level and
rema ins unchanged throughout the process, is neither supported by Ho11and and
Pickup's experiments nor by physical reasoning. The poor agreement between

the analytical and experimental results, which forced the authors to
empirically modify the diffusion coefficient, may be to some extent explained
by the inappropriate statement of the downstream boundary condition.

The purpose of this section is to obtain an analytical solution for a
degradation process due to base-level lowering by using a more appropriate

downstream boundary condition.

1. Statement of the Problem. Consider, as in the previous case, a wide,
semi-infinite-long, alluvial channel subject to an initial steady uniform
flow. The degradation process initiated by a lowering of base level, as a
result of a rapid drawdown of a reservoir located at the downstream end of the

river (x = 0) is depicted in figure 4.3.

The assumptions introduced in the analysis are:

(i) The process can be adequately described by the linear models
derived previously.

(ii) The bed material can stand on steep slopes.
(iii) At time t = 0, the water level at the downstream end is lowered

enough to create a cri'tical flow condition at x = o.
(iv) The downstream pool or channel disposes the entire sediment load

that is transported from the upstream channel.

(v) The degradation process is eventually limited by the thickness (ZL)
of the alluvial stratum, as shown in figure 4.3.
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(vi) The initial bed is plane.

2. Schematization of the problem. In spite of the simplifications cited
above, the present problem is still too complex and a further schematization

is required to solve it.

The process is divided in two phases. Within the first phase, the bed
level throughout the channel decreases gradually until the bed level at x = 0

at t = T reaches the new imposed bed level ZL (i.e., the rock outcrop).
Ouri ng the second phase of the process the bed 1eve 1 at the downstream end
remains constant at ZL and the rest of the stream degrades.

3. First phase. From the fact that the initial and boundary conditions
required to solve the problem are easier to formulate in terms of the sediment
transport rate, the G-parabolic model (3.29) should be used during this
initial part. The initial and boundary conditions may be written

G*(x,O) = 0 (4.38)

G*(0, t) = 1 (4.39)

and
limit G*(x,t) = 0
x-oo

(4.40)

where G* is defined as in (3.26) and

~G = G - Go c 0
(4.41)

in which Ge is the sediment discharge at critical-flow conditions. The
solution to the governing equation (3.29) under the initial and boundary
conditions prescribed by (4.38), (4.39) and (4.40) is

~G K t 2
Z(x,t) = K (~-À) [( __0__)1/2 exp (- 4~ t) - 1erfc ( x )]

o 1T 0 2IiÇt
(4.13)

Note that (4.13) through (4.19) are val i d for thi s phase. The end of thi s
initial phase occurs at time T, when Z(O,T) = ZL; hence, from (4.14) one

obtains
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(4.42)

Z(x,O)

4. Second phase. The Z-model is more suitable for the second phase,
because the initial and boundary conditions are known in terms or Z. The
initial condition in terms of Z at the end of the first phase is given by
(4.13) on substituting t = T, that is

2.6Go K T /2 2
= Ko{I-À) [(~)1 exp (-~) _ ~ erfc (x )]

lT 0 2/rT
o

(4.43)

The boundary condition is

Z(O,t) = ZL for t > ° (4.44)

The introduction of a new dependent variable Z as

Z(x,t) = Z(x,t) - ZL (4.45)

transforms the initial problem to the simpler one given below. Governing
equation

Initial condition:

2
a7 K a 7 = °rr : 0;7 (4.46)

Z(x,O) = Z(x,O) - ZL = F(x) (4.47)

Boundary condition

Z(O,t) = ° for t > ° (4.48)

The solution to (4.46) subject to (4.47) and (4.48) is (Carslaw and Jaeger
1978)

(4.49)
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The analytical integration of (4.49) is given in appendix II. The final

resul t reads

Z(x,t}
ZL

= 1 - erf (_x_) + /1 + i exp [_ x2 ]
{"'Çf 4KoT( 1 + {-}

erf [x ]

JKot(l + f}
(4.50)

00 2(n+1}
} H (y)

2n+1

{TI 2 1t 4 x 2 1 x
- (1 - - arctg I-=rT) + - ( ) I [2(n+1}]! (

2IlÇT 'fT (TI 2/IÇT n=O 2I1Çf

where H2n+1 is a special polynomial whose coefficients are given by

those corresponding to the Hermite polynomial of order 2n+1, and the

argument y follows the rule

= _r;;.._:(t,.;..;.nL.,_)_
2(1+~)n'

in which r(n) is the gamma function of n.

ny n > 0 (4.51)

From the analytical solution as well as from physical
considerations, it becomes apparent that the final equilibrium condition
wi 11 be asymptot i ca lly att at ned when the bed s 1ope equa 1s the ori gi na 1
bed slope So. A useful time scale (T*) for the process under study can
be obtained by considering that the end of the process will be reached

when the slope at x = 0, fulfills the condition

S(O,t} = 1.01 So (4.52)

After manipulating (4.50), (4.51) and (4.52) the analytical time scale

for the process becomes

(4.53)

The above example illustrates the application of both linear G- and
Z-models to the same morphological process.



42

V. lINEAR PARABOlIC MODElS FOR MORPHOlOGICAl
PROCESSES IN AllUVIAl CHANNElS OF FINITE lENGTH

The analytical solution for the processes of aggradation resulting from
sediment augmentation and degradation due to sediment curtailment in alluvial
channels of finite length is presented in this chapter.

A. Statement of the Problem

Consider a wide rectangular alluvial channel of finite length l, subject
to a constant discharge per unit width q,- with mean flow velocity Uo and mean

flow depth Ho' as shown in figure 5.1. The equilibrium sediment-transport
rate under the uniform-flow condition is Go and the bed slope is So. let the
sediment discharge at the upstream end of the channel (x = 0) be varied
by ~G, so that the total sediment-transport rate at x = ° becomes Go + ~G. As
aresult, the equilibrium between the water and sediment discharges is
disturbed. If ~G is positive, the bed slope must increase to transport the
additional imposed load which is deposited on the bed causing it to aggrade.
On the contrary, for a negative value of ~G, the bed will degrade and the bed

slope will decrease. At the downstream end of the channel (x = l), the bed
elevation remains unchanged due to the presence of a rock outerop or control
structure. The process of aggradati on (or degradati on) will continue until
the entire channel bed attains a new equilibrium slope for which the balance
between the water discharge and the new sediment load is re-established.

B. Model Selection

The choice between the Z- and G-models depend on the initial and boundary
conditions. The initial condition is known in terms of both Zand G; that is

Z{x,O) = ° ° < x < l (5.1)
or

G1{x,0) = ° 0 < x < l (5.1a)
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The upstream and downstream boundary conditions are known in terms of G' and
Z, respectively. They read

G'(O,t) =6G (5.2)
and

Z(L,t) = 0 (5.2a)

The transformation of the downstream boundary condition (5.2a) in terms
of G is not apparent. The upstream boundary condition (5.2) is transformed in
terms of Z using (4.28) and (3.15) to

g (0 t) =
Cl x ' (5.3)

From the above discussion it becomes obvious that the Z-model is the proper
selection for studying the morphological processes under consideration.

C. Ana1ytica1 Solution tor a Constant Variation
in Tota1 Sediment Discharge

The solution tor the case in which 6G = 6G iso
6GoL x) 8 Cl> (_1)n+1

Z(x, t) = K (I-À) {( 1- I -"2 L 2
o n n=O (2n+l)

(5.4)
exp [- (2n41)2 n2t*2] sin [(~)(1 - f)n]}

where

t* = fft/Lo (5.5)

The bed elevation Zo' at x = 0 is given by

(5.6)
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The variation of the sediment-transport rate with distance and time can
be obtained on substituting for aZ/ax from (5.4) into the sediment-continuity

equation (4.28) as

G* = 1
4 00 (_I)n

+ - 2. (2n + 1) exp [- -------]
'Irn=O

exp ['Ir(~n+l)(1 - -[)]
(5.7)

The new equilibrium condition is attained when the change in the bed

elevation at x=O equals ~G L/[K (I-À)]. The time required to change the bedo 0
elevation at x = 0 to 99 percent of its final value is obtained from (5.6) as

(5.8)

The time required to attain the new equilibrium condition is independent
of ~Go and is the same for aggradation and degradation.

1. Discussion of results. The normalized bed profiles, Z/Zo' ((5.4) and
(5.6) as functions of x/L for several values of the dimensionless time t* are
presented in figure 5.2. It is interesting to note that the aggrading (or
degrading) front for values of t* less than about 0.312 does not reach the
downstream end of the channel. This suggests that for small values of t*, the

channel can be treated as semi-infinite in length. The solution for the semi­
infinite reach presented in Chapter IV suggests introduction of a new

dimensionless length scale,

x x
n = 2IiCf = 2t*L

o
The normalized bed profiles plotted against n for several values of t* are
shown in figure 5.3. The bed profi 1es for t*· 1ess than about 0.312 coa 1esce

(5.9)

into a single curve which coincides with the semi-infinite reach solution.

The vari ati on of the dimensi onless sediment transport with x/L and nare
shown, respectively, in figures 5.4 and 5.5. As time increases, the sediment­
transport rate along the channel tends to attain the imposed sediment

discharge. The curves corresponding to t* less than about 0.274 coalesce into
a single curve which coincides with the solution for the semi-infinite reach
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presented in Chapter IV. The limiting value of t* equal to 0.312 for l/lo and
0.274 for G* were obtained from the solutions for the semi-infinite reach
assuming the end of the process where l/lo or G* is 0.01.

D. Solution for a Time Dependent Variation in
Total Sediment Discharge

The solution for this process is obtained by using Duhamel's theorem,
which as applied to the present problem may be stated as follows: If v =
F(x,t) represents the slope of an alluvial channel subjected to a sudden
change in sediment discharge at x = 0 which would yield a change in bed slope
(at x = 0) equal to unity, then the solution of the problem where the change
in sediment discharge produces a change in bed slope at x = 0 of 4>(t), is
given by

t
v =J 4>(u) ~t F(x,t-u) du

o

On recalling the definition of bed slope (i.e., S = - ~), using equations
(4.29), (5.4) and applying the Duhamel's theorem, one obtains

(5.10)

x t

~

2 00

l(x,t) = J J d x 8 Ld tI)x (1 - I) - 2"v=L u=O 0 'Ir n=O (5.11)
(_I}n exp [- (2n+l}2 2 . (2n+l) x

du dv(2n+l)2 4L2
'Ir Ko(t-u)] s in [ 2 'Ir (1- I)])}

which may be written

l(x,t) = L{LÀ) J AG(t-u) Ï (_I)n exp [- (2n21)2 'Ir
2 Kot]

o n=O 4L (5.12)
. (2n+l) x

sm [~'Ir (1 - L)] du

For

(5.13)

where: m = -1, 0, 1, 2, 3, ••• , the integration by parts of (5.12) leads to the
following solution (Carslaw and Jaeger 1978).
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(5.14)

E. Comparison of Ana1ytica1 Resu1ts with Experimenta1 Data

The va1idity of any mathematica1 model can on1y be assessed by comparison

with experimenta1 evidence. In the present study the ana1ytical solution is
compared with f1ume experimenta1 data by Soni et al. (1980) and Mehta et al.

(1981) for the case of aggradation; and by Newton (1951) for the degradation

case. In all of the above cited investigations, the variation in tota1

sediment transport rate was kept constant (i .e., ti G = ti G ).o
In the preceeding paragraphs it has been shown that the ana1ytica1

solutions for bed profile and sediment transport rates in an a1luvia1 channe1
of finite 1ength for sma11 times t* is, for all practical purposes, identica1

to that in a semi-infinite channe1. Most of the availab1e laboratory data
from experimenta 1 fl umes of fi nite 1ength correspond to the ear1y stages,

before the bed wave reached the downstream end; hence, the comparative study

wi 11 app1y equa11y to both cases. The experimenta1 data are, therefore,
compared with the ana1ytical solution for a semi-infinite channe1 subject to a

constant variation in tota1 sediment 10ad.

The bed profile data of Soni et al. (1980) and Mehta et al. (1981) for
the process of aggradat i on due to sediment over1 oadi ng at constant rates is

compared with the ana1ytica1 solution (i.e., (4.16)) in figure 5.6. The
comparison between the ana1ytica1 result and the f1ume data of Newton (1951)
for the process of degradation is presented in figure 5.7. Equation (4.8) for

G is compared with the data of Soni (1981) in figure 5.8. The dimensionless
bed e1evation at x=O, as given by (4.15) is compared with the data for
aggradation and degradation in figure 5.9. The experimenta1 data, except that

of Newton, were availab1e in terms of n. For Newton's data, it was assumed

that the sediment transport rate G is proportional to Ub, and the value of Ko
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was computed from (3.14). The value of the exponent b was determined to be
4.4 from the data.

The analytical solution overestimates the relative depth, Z/Zo' for all

values of ~Go/Go in the case of degradation (figure 5.7) and for only smaller

values of ~GofGo in the case of aggradation (figure 5.6). The agreement
between the analytical results and the experimental data seems better
as ~G /G increases to about 4. The analytical solution underestimates theo 0
relative depth for higher values of sediment overloading. It is believed that
such behavior arises from the two simplifications introduced in the analytical
model; the neglect of the last term in (3.11) and the linearization of (3.12)
to (3.14). The spatial-derivative terms in (3.11) are of the same signs; the
error introduced by neglecting the first terms may be interpreted as
overestimation of the coefficient Ko. Due to the linearization of K, its
va 1ue is underestimated for aggradat i on and overestimated for degradat i on.
The two corrections are additive for degradation and the analytical solution
overpredicts
for t:;GofGo =

process and

for all values of t:;G /G ,as is shown in figure 5.7,o 0
-1. The two errors are of opposite nature for aggradation
happens to annu1 each other as t:; Go/Go of about 4 for the data

presented in figure 5.6.
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VI. NONLINEAR PARABOLIC MODEL FOR MORPHOLOGICAL PROCESSES
IN A SEMI-INFINITE ALLUVIAL CHANNEL

The purpose of the present chapter is to solve the non1inear parabo1ic
model introduced in Chapter 3 by the method of weighted residuals.

A. Ana1ytica1 Solution

The non1inear parabol ic model under

sediment-diffusion (transport) equation,

aG* - a2G* 0K-2- =ät -
ax

consideration consists of the

(3.27)

and the sediment-continuity equation,

az + llGo aG*_
at (1-À)äX-0 (3.28)

By using the coordinate transformation defined by (3.15), (3.28) becomes

az llGo aG* _rr+ (I-À) äX- 0 (6.1)

which is the version of the sediment-continuity re1ation utilized in the
following. The initia1 and boundary conditions needed to solve (3.27) and
(6.1) are:

G*(x ,0) = 0 (6.2)

G*(O,t) = 1 (6.3)
and

Z(x,O) = 0 (6.4)

As stated before, the procedure fo110wed invo1ved solving, first, (3.27)
for the corresponding initia1 and boundary conditions (6.2) and (6.3); and
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subsequent use this solution to obtain the solution of (6.1) subject to
(6.4). The solution to the nonlinear sediment transport equation (3.27) will
be obtained by means of the method of weighted residuals (Ames, 1965), which

is briefly outlined in the next section.

1. The method of weighted residuals. The method of weighted residuals,
in its several versions, has been widely used for the solution of ordinary and
linear partial differential equations by mathematicians like Galerkin (1915),

Landhal (1953), Crandall (1958), and Collatz (1960), among others. Several
engineers have also applied this method in connection with elasticity and
structure stability and deformation problems (NASA 1962; Budiansky and Roth

1962; Mushtari and Galimov 1957), gas dynamics (Jain 1962; Frederiksen 1957),
heat transfer (Goodman 1964; Smith 1956), viscous flow and boundary layer
problems (von Karman 1921; Polhausen 1921; Tani 1954; Schetz 1963 and many
others). Yamada (1947) and Fujita (1951) applied this method to the solution
of a nonlinear diffusion problem. There is no indication of the utilization
of the method of weighted residuals to solve sediment transport processes.

This study constitutes the first attempt in this direction.

The method of weighted residuals comprises various techniques that can be
applied when the nonlinearities appear in either the governing equation, the
boundary conditions, or both. The details of these techniques can become
rather involved and lengthy; therefore, only a broad outline will be given in

the following.

In general terms, all the techniques transform a continuous problem
(partial differential equation) into an approximately equivalent lumped
parameter' system whose form is obtained by the solution of a set or ordinary

differential equations.

Consider the governing equation (3.27) described by the nonlinear

operator L(G*)

L( G*) = 0 (3.27)

An approximate solution, G~, when substituted into the left-hand side of

(3.27) will result in a residual En'



59

L(G*) = En n (6.5)

In order to find a solution which makes En small in some well defined sense,
(6.5) is multiplied by a weighting factor Wj, and averaged over the entire
space domain. Setting the average to zero gives

JW.L(G*) dx = 0J n j = 1,2,•••,n (6.6)

The required solution will be made to satisfy (6.6) instead of (3.27). The

form of G* will be taken in such a way as to satisfy the boundary conditionsn
and to contain unknown parameters Cj• By choosing n different weighting
factors, there will result precisely the same number of equations as unknowns.

For different selections of the forms of the weighting factor the method
is known by different names. When Wj = L\(x-xj), where L\ is the Dirac delta

function, the method is called collocation. If G* is a linear function of the
* n

paramet~rs Cj, and Wj = aGn/acj, the method is named Galerkin's methode When
Wj = xJ, it is called the method of moments. This study will be primarily
concerned with the app 1ication of the method of moments for solving the
nonlinear parabolic partial differential equation (3.27), which, together with
(6.1), constitute the mathematical representation of the morphological
processes under consideration.

The analytical solutions presented in the previous chapters suggest the
introduction of the penetration distance t(t) such that for x ) t(t) the

system is unaffected; i.e., the alluvial channel is at the initial equilibrium
condition; hence,

G*(x,t) = 0 for x ~ t(t) (6.7)
and

Z(x,t) = 0 for x ) t(t) (6.8)

apply. It is interesting to point out that the above definition of the
penetration distance parallels the concept of boundary layer thickness used in
boundary-layer analyses.

A polynomial of nth degree is selected as an approximate solution, that
is
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n .
+Cxn = L Ci(t)x1 (6.9)

n i=0

There are n+1 constants Co' Cl' C2,••••, Cn which must be determinend. Three
of the n+1 constants can be obtained from the boundary conditions at x = 0 and

x = 1(t), namely

G*(O,t) = 1 (6.3)

G*(i, t) = 0 (6.7)

and
a G*-(i t) = 0ax '

(6.10)

The 1ast two boundary conditions indicate that the process terminates at x
= 1(t). The remaining constants can be obtained by imposing additional
boundary conditions. In the present case it is assumed that the remaining n-2

spatial derivatives of G* at x = 1(t) are zero. That is

iG*L (i,t) = 0
1ax

i = 2,3,4,••••, n-1 (6.11)

By substituting (6.3), (6.7), (6.10) and (6.11) into (6.9) the following

general expressions for Cn(t) and G* are obtained:

(6.12)

and

nG* = (1- X/i) (6.13)

The penetration length i(t) is the only unknown parameter in (6.13);

therefore, only one weighting factor is required to determine it. For the

sake of generality a weighting factor of the form

mW = x (6.14)
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is used. By performing the required substitutions and integrating from x = 0

to x = t(t), the following version of (6.6) is obtained:

t (t) a G* _ a 2G*
J [ar - K -:-r] xm dx = 0
o ax

(6.15)

By using the Leibnitz·s rule (6.15) becomes

~ l(t) t(t) _ m ~2G*
o J G* xm d J K 0 dIT x= x-:-rx

o 0 a x
(6.16)

In order to proceed with the solution and obtain an explicit expression for
the penetration length l(t), it is necessary to specify the coefficient

K, which requires the adoption of the appropriate sediment-transport and
friction-factor relations «3.4) and (3.5)). To keep the analysis as general
and clear as possible, and in order to enable comparison of the analytical
solution with existing experimental information, the following relations are
adopted:

bG = aU (6.17)

and

f = fo = constant (6.18)

where a and bare constants that depend on the sediment and uniform flow

characteristics, and fo is the value of the Darcy-Weisbach friction factor for
the initial uniform flow condition. The last two equations together with
(3.21) and (3.25) yield

b G öG 1-3/b
K=3(1~À)S (l+rG*)

o 0
(6.19)

5ubstitution of (6.13) and (6.19) into (6.16) gives

~ 1(t) b Go n(n-1) 1(t ) öGo x n (1- 3/ b)
_0 J (1- x/z )" xm dx = ~

2 J [1 + Go (1 - r) ]
at 0 3(1-À )50 t 0 (6.20)

(1 - :)n-2 xm dx
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Usage of the binomial series expansion and subsequent integration lead to

[n-2 (n_2)!(_1)n-2-j ~Go 2n-2 (2n_2)!(_1)2n-2-j
j~O j! (n-2-j)!(n+m-1-j) + a 1Ç""" j~O j! (2n-2-j)!(2n+m-1-j) +

a(a-1) ~Go 23n-2 (3n_2)!(_1)3n-2-j a(a-1)(a-2) (~GO)3
2! (Go) j~O j!(3n-2-j)!(3n+m-1-j) + 3! Go

4n-2 (4n-2)! ~_1)4n-2-j
j~O j!(4n-2-j)! 4n+m-1-j) + ••••••] (6.21)

where
a = 1-3/b (6.22)

Equatiion (6.21) is an ordinary differential equation, whose solution is

t (t) = (K*t)1/2 (6.23)

where

3(1-À) So j~O n n-j)!(n+m+l-j)

n-2 (n_2)!(_1~n-2-j bGo 2n-2(2n_2)!(_1)2n-2-j
[ j~O j! (n-2-j)! n+m-1-j) + a Go j~O j!(2n-2-j)!(2n+m-1-j) +

(6.24)

...]}
By making use of the symmetry properties of the coefficients of the binomial

series, K* can be rewritten as

2b G n(n-1)(n+m+1)(n+m) ••(n+1)
K* _ 0 {1 +

- 3(1-À)So (m+1) (n+m-l)(n+m-2)•••(n-l)

~ Go 1 a (a-1) ~Go 2
a (~) (2n+m-1){2n+m-2)•••(2n-l) + ~ (1Ç""")

bG 3
1 + a(a-1)(a-2) 0

(3n+m-1)(3n+m-2)•••(3n-1) 3! (~)

1 +}
(4n+m-I)(4n+m-2)•••(4n-l) ••••

(6.25)
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Equations (6.13), (6.23) and (6.25) provide a solution to the nonlinear

parabolic equation (3.27) under the conditions imposed by (6.2) and (6.3)
(i.e., initial and boundary conditions). Introducing the above solution into

the sediment continuity equation (6.1) and subsequent integration with respect
to time give

n-3 (I)I( I)n-I-j n-I-j[ L n- . - x
j=O j!(n-I-j)![I-(n_j)/2](K*t)[(n-JJ/2-Ij -

x 2t 1/2
(n-I) P" z n t + 1/2 + C]

K*

(6.26)

The constant of integration is evaluated from the definition of the
penetration length t(t), which requires l(t(t),t) = O. The final result is

2l.G n -o t
l(x, t) = (I-À) I K* {1

(n-I)! (_I)n-I-j
j ! (n-I-j)! (2-n+j)

2 n-3__x_ + (n-I) _x_ z n ~ + L
IN 2 IN- K*t j=O

n-I-j
[x . __x_]}
(K*t) (n-I-J )/2 IK*t

(6.27)

which provides the time dependent bed profile for nonequilibrium processes.
The depth of aggradation or degradation at x = 0 is

(6.28)

The dimensionless bed profile can be expressed

i x1 - _- +
IN

(n-I) x x2 n-3 (n_I)!(_I)n-I-j
2 Ik*t z n K*t + j~O {j!(n-I-j)!(2-n+j)

n-I-j
[ x _ 2_]}
(K*t)(n-I-j)/2 lK*t"

(6.29)

-=

which completes the solution to morphological processes of aggradation due to
augmentation of the sediment load and degradation due to curtailment of the
sediment discharge.

Wieghardt (1948), Walz (1948) and Tani (1954) in studies on compressible
and incompressible laminar and turbulent boundary layers introduced another
possible way of applying the method of moments, which consists in using the



64

dependent variable (6*) instead of the independent variable (x) as a weighting
function. The advantage that this method presents over the one developed
above is that the differential equation (3.27) is weighted most where the
sediment-transport-rate change with respect to the initialor equilibrium
sediment transport rate is the greatest. Thereby, regions with larger changes
in sediment load are considered to be more important than regions with a

relatively small variation in sediment transport rate.

By defining W = G*m, (6.6) becomes

t (t) "\G* "\2G*f [_0 __ K _0 _]G*m dx = 0
o at ax2

(6.30)

Substituting (6.13) and (6.19) into (6.30) one obtains

t(t) bnG (n-1) t(t)
2.._ f (1 _~)n ( 1+m) dx = 0 f
at 0 t 3 ( I-À) S t 2 0

6G 1-3jb 0
[1 + G 0 (1 - Î)n] (1 _ :)n(1+m)-2dX

o

(6.31)

Use of the binomial series expansion and subsequent integration lead to

d n(1+m) [n(1+m)]!(_1)n(1+m)-j _ bn(n-1)Go n(1+m)-2
dt {t j~O j![n(1+m}-j]![n(1+m)+1-j]t - 3(l-À)tSo { j~O

[nf1+m)-2]!(-1)n(l+m}-2-j 6Go n(I+m)-2
j! n(1+m)-2-j]![n(1+m)-1-j] + Go j=O

[n(2+m)_2]!(_ltn(2+m)-2-j a(a-l) óGo 2 n(3+m)-2
j ![n(2+m)-2-jJ! n(2+m}-1-j] + 2! (Go) j~O

n(3+m)-2-j 6G 3 n(4+m)-2
[nf3+m)-2]!(-1~ a(a-1)(a-2) (0) \'
j! n(3+m)-2-j]:(n(3+m)-I-j] + 3! -ç- j~O

[n{4+m)_2]!(_1)n(4+m)-2-j
j![n(4+m)-2-jJ![n(4+m)-1-j] + •••••} (6.32)

where, as before

a = 1 - 3jb (6.22)
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Equation (6.32) is an ordinary differential equation whose solution is as

t(t) = (R*t)1/2 (6.33)

where:

2bn(n-1) Go
"K* - {----~:;-:--,-------__r:r_:__,.__..---}

- n(l+m) [n{l+m)]!(_l)n(l+m)-j
3(1-À) So j~O j![n(l+m)-j]![n(l+m)+l-j]

n(1+m)-2 [n(l+m)_2]!(_1)n(l+m)-2-j 6Go n(2+m)-2
{ j~O j![n(1+m)-2-j]![n(1+m)-1-j] + a(GO) j~O

[nf2+m)-2]!(-1~n(2+m)-2-j
j! n(2+m)-2-j]:[n(2+m)-1-j] + •••} (6.34)

By using the symmetry properties of the binomial series coefficients, (6.34)
can be rewritten

- 2bGon(n-1)[n(1+m)+1] 1 6G 1
K* { } { + a (_0)= 3 S0 ( I-À) -n"7"'::( l'--+-m)'---=-1 Go ....[-n(r.::2'--+m-)'-_-:-1~]

a (a-1) (6Go)2 1 a (a-1)(a _2) (6Go)3 1 +
+ 2! Go [n(3+m)-1] + 3! Go [n(4+m)-1]

(6.35)...}
Equations (6.13), (6.33) and (6.35) constitute another solution to the
nonlinear parabolic sediment transport (diffusion) equation (3.27) subject to
the initial and boundary conditions given by (6.2) and (6.3), respectively.

Introducing the above solution into the sediment-continuity equation
(6.1) and subsequent integration with respect to time yields

(6.36)

(n_1)!(_1)n-1-j xn-l-j
{ [ __x_]}
j !(n-l-j) !(2-n+j) rv*t) (n-1-j)/2

\" J"K*t
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which enables the determination of the time dependent bed profiles for
nonequilibrium processes.

The depth of aggradation or degradation at x = o is

(6.37)

The dimensionless bed profile can be expressed

z x1 - __ +

s:
(n-1) x x2

2 _- z n - +
lV:*t K*t

n-3 (n_1)!(_1)n-1-j

j~O 'n (n-1-j)! (2-n+j)
(6.38)

-=

n-1-j[ x __x_ ]}
(-* )(n-1-j )/2 c::
K t JK*t

which completes the solution for the morphological processes considered

herein.

The analytical solutions given in the above equations involve two
parameters, namely mand n, that can be selected with certain degree of
freedom. However, there exist some basic criteria to limit the range or guide
the possible choices, which are based on the accuracy of the solution obtained
in every specifi c case. As far as the exponent nis concerned, it has been
stated previously (Goodman, 1961 and 1964) that the accuracy of a solution
obtained by the method of moments might be i~proved by increasing the order of
the polynomial (i.e., n) used to represent the dependent variable (i.e., the
sediment transport variable G*). However, cases have been reported for which
the accuracy actually worsens using this procedure (Goodman, 1964). In fact,
there is no a pri ori guarantee that i ncreas i ng the order of the polynomi al
will improve the accuracy. For problems in which the governing equation is
linear and contain nonlinearities in the boundary conditions only, Chambre's
(1959) iterative scheme provides a method to improve the accuracy of any
initially chosen trial function (G*). In the present case, due to the
nonlinearity of the governing equation (3.27), Chambre's scheme is of no use;
consequently, to a large extent the accuracy of the solution will depend on
judicious selection of the exponent n. In propagation problems, like the one
considered here, a trial solution must be constructed so that a maximum
information can be extracted with a minimum of computation. The more is known
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about the expected behavior of the solution the better the trial solution
woul d be. A careful study of the expected beha vi or is very important;

therefore, an adequate procedure to limit the range of possible values of the
exponent n must be devised in every particular case.

It can be shown that for b = 3, or for any va 1ue of band f1Go + 0, the
sediment-diffusion equation (3.27) becomes

(6.39)

The exact solution of (6.39) has already been obtained earlier (see (4.8)), as
to give

G* = erfc [x ]

Á~~_~)st
o

(6.40)

Equati on (6.40) provi des the opportunity to carry out a prel imi nary study
aimed towards the determination of the appropriate value or range of values
for the exponent n, Another goal of this study is to inquire into the

adequacy of the weighting functions themselves. The basic idea behind this

study is to solve (6.39), subject to the corresponding initial and boundary
conditions, using various values of the exponent n and fixed weighting

functions, and compare these approximate solutions with the exact one (i.e.,
(6.40).

Some of the results of this sensitivity study are shown in figures 6.1
and 6.2. The approximate solutions of (6.39) for a weighting function equal

to unity (i .e., W = xO = G*O = 1) and several values of nare presented in

figure 6.1. The solutions corresponding to W = x and W = G* and various
values of the exponent nare shown in figure 6.2. A rather interesting

preliminary conclusion (confirmed bel ow) drawn from the above figures concerns
the approprietness of the weighting functions. It is evident that, when the

independent variable x is taken as weighting factor (t ;e,; W = xm), the

accuracy of the solution worsens with increase in the value of m, On the

contrary, the accuracy of the solution improves when the dependent variable G*

is chosen as the weighting function (i.e., W = G*m). Hence , the l at ter ,
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(i.e., W = G*m) appears to be the better weighting function for the present
problem. It is also important to note that solutions based on lower-degree
polynomials, which are convenient for practical purposes, compare rather well
with the exact analytical solution. Moreover, it should be mentioned that a
polynomial of second degree (i.e., n = 2), which requires the determination of

three coefficients Ci(t) (see (6.9)), is the "natural" choice as it satisfies
the definition of the penetration length given by (6.7) and (6.10), and the
boundary condition (6.3). Polynomials of higher degree require the
introduction of additional ("artificial") boundary conditions, with little or
no physical meaning, like those given by (6.11). Consequently, main
consideration will be given to second or slightly higher degree polynomials.

Once the weighting function has been preliminarily selected and the
spectrum of possible values of n has been conveniently narrowed, the
remaining task is the determination of the exponent (or the range of values of
the exponent) m of the chosen weighting function. It is believed, in general,
that as m increases the accuracy of the solution improves; however, in
practice m must be limited because the calculations become tedious. The
assessment of the sensitivity of the solution to variations in m or n can be
performed without excessive effort from the general analytical solution.

Figure 6.3 shows the behavior of the nonlinear solution for n =

2, 6G /G = 1, b = 5, both weighting functions and various values of the
o 0

exponent m. The different behavior of the solution according to the specific
weighting function selected is clear from figure 6.3. It is also evident that
the solution for W = G*m converges rapidly, and that there is not significant
variation in the solution for values of m larger than about 10. The previous
observation is supported by the solution for bed-profiles shown in figure 6.4.

It seems appropriate to point out that most of the earlier studies have
assumed the value of the exponent m as either one (Ames 1965) or zero (Goodman
1964). However, there is no theory to support this argument. In fact, due to

the convergency of the solution with higher values of m, any suitable value of

m should provide a reasonably accurate solution.

The following observations are in order to select definitively the

weighting function W:
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a) From the mathematical viewpoint it is evident from figure 6.1 and 6.2

that for the 1 i near case W = G*m provi des better and more accurate
results than W = xm.

b) For the linear and nonlinear cases W = xm gives higher values and W =

G*m gives either equal or lower values than the exact linear
solution.

c) From figure 5.8 it is clear that, for moderate changes in sediment

discharge, i.e., t.G /G < 1 (the nonlinear model is valid onlyo 0-
for t.G/G < 1), the linear solution overestimates the local sediment0- .

transport .rat.e , Hence, the nonl inear solution with a weighting

function W = G*m should provide better estimates of the actual
sediment transport rates.

The above cons i derat i ons support the choi ce of the dependent va ri ab 1e G* as
the most adequate weighting function (i.e., W = G*m).

In order to select, if possible, the appropriate values of the exponents
mand n two alternatives were available, namely:

1) Solve the governing nonlinear model by means of an "exact" method, finite
differences for i nstance, and compare thi s sol uti on with the ana lyt i ca 1
one for various values of mand n.

2) Compare the analytical solution, for several values of mand n, with the
available experimental data.

The selection of the procedure in this study is based on the following
considerations:

a) The assumption in the model which leads to the simplification of

(3.23) to (3.24) will also affect the results obtained by means of
any "exact" methode

b) Any a lternat i ve method of solution wil 1 involve errors
(discretization, truncation, etc.) which will make such comparison
difficult.
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c) The experimental information is, by all measures, the most valuable
source of information and should be used as extensively as possib1e,
because all or most of the complex mechanisms present in real river­

processes, some of which are either not we11 understood or not
properly formulated up to the present day, are reproduced in the

experiments.

d) The purpose of the research reported herein is to obtain a simple and
adequate ly accurate engineeri ng "too1" for predi c*ing actua 1
morpho 1ogica1 processes , rather than to approach them with
unjustified or excessive mathematical rigor.

e) Conveniently chosen va1ues of mand n, based on the available flume
experiments may hopefu1ly, account for the simplifications contained
in the basic equations and in the nonlinear parabolic model.

In the light of the above discussion, the values of mand n were selected
by comparing the analytical solution with the available experimental data.

B. Comparison of the Nonlinear Parabolic Model

with Experimental Data

The comparat ive study between the analytica1 solution for bed profil es
and flume experimental data collected by Soni et al (1980) for the case of
aggradation due to augmentation of the sediment load, for relative overloading
rates ~G /G ranging between 0.3 and 1, is sunenarlzed in figures 6.5 througho 0
6.8. All of the experimental bed-profile data for aggradation expressed as a
function of the similarity variable x/1R*t is shown in figure 6.9. The

theoretical and experimental dimensionless bed elevations at x = 0 are

compared in figure 6.10. The measured values of Zo are in better agreement

with the computed values of Zo by the nonlinear model than the linear model.
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It is evident that values of m = 10 and n = 2 provide, in general, good
agreement between the analytical and experimental for bed profiles and bed
elevation at x = o. The agreement observed is, i ndeed, better than th at
obtained by means of the linear model.

The comparison between the nonlinear solution and laboratory data
concerning degradation due to sediment diminution obtained by Newton (1951)
for llG /G = -1 is shown in figure 6.11.o 0

It is important to note that in the case of degradation, a va1ue of m
equal to 2 provides better agreement between the analytical and experimenta1
results than a value of m equal 10. However, no definitive conclusion can be
drawn from thi s compari son due to the fact that the water depth and rel ated

flow parameters at the downstream end of the fl urne were not kept constant

(Newton 1951), as required for the applicability of the analytical solution.
Moreover, it should be mentioned that the length of the flume used by Newton

was only 9.20 m, which may be considered somewhat short for accurate
measurements.

c. Application of the Nonlinear Solution to Practical Problems

The fi na 1 pu rpose of any resea rch endea vor is the ut i 1i zat i on of the
analytical, numerical, or experimental results for the solution of actual

engineering problems. The aim of this section is to present the analytical

results in a ready-to-use format, illustrate the calculation procedures, and
suggest some possibilities of using existing experimental or field data to

improve the predictions of nonequilibrium processes in alluvial channels.

The analytical solutions for the dimensionless total sediment transport
rate (G*) and dimensionless bed profiles (Z/Zo) expressed as functions of the

similarity variable x/lR*t, for several values of the exponent n, are shown in
figures 6.12 and 6.13.

It is interesting to note that for prescribed values of the exponents n,m

and b the normalized diffusion coefficient, K*/Ko' is a function of the
relative change in total sediment load, llGo/Go' on1y. Hence, plots similar to

figure 6.14 (which shows the variation of l<*/K with llG /G for n = 2, b = 5
000

and several values of m) can be readily prepared. At this point it should be

mentioned that values of n and m equal to 2 and 10, respectively, have been
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found to provide good agreement between experiments and theory. However, as

mentioned earlier, a value of n equal to 2 appears to be the most appropriate

from the theoretical standpoint.

Depending on the available prototype data; two calculation procedures are

presented as follows.

1. Data for calibration of the model is not available

a) Compute Ko and ~Go/Go from the known uniform flow data.

b) Assume n = 2 and m = 10 and determi ne K* from figure 6.14. If
experience from similar channels is available, improved estimates for n

and m may be used.
c) Determine the time dependent bed profiles from figure 6.13.
d) Compute the time dependent total sediment load by using figure 6.12.

2. Data for calibration of the model is available.
a) Compute Ko and ~Go/Go from the known uniform flow information.
b) Assume n = 2 and m = 10 (use improved estimates if possible) and

determine K* from figure 6.14.
c) Plot the nonequilibrium bed profile data in figure 6.13. If agreement
between the experimental and theoretical bed profiles in dimensional and

nondimens iona1 coordi nates are not satisfactory choose another va1ue of m

and repeat the comparison.
d) Repeat step a) for different values of the exponent n.
e) Select the values of n and m that provide the best agreement between
the field data and the analytical solution, and use the appropriate
figures or equations for predicting future bed profile evolution and local

sediment transport rates.

If nonequilibrium sediment-transport-rate data is available instead of the bed
profile data, the procedure is similar but figure 6.12 should be used insteady

of figure 6.13 in steps c) and dl.

Due to the binomial-series expansion introduced in the mathematical
treatment of the problem, the analytical solution converges for values of the

relative change in sediment load less than unity (i.e., -1 ( ~G /G ( 1).o 0

This means that the solution is applicable to any degradation process and
aggradation processes in which the relative variation in sediment discharge is
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less or equal to 100%. It is believed that this range will cover most of the

practical needs. However, for extreme cases in which the relative variation

in sediment load exceeds 100% (i.e., ~G/Go > 1), a reasonable estimate
of K* can be obtained by extrapolation of the curves in figure 6.14.
Once K* is suitably determined the application of either one of the above
given procedures will provide the solution to the morphological process under
consideration. In order to illustrate the suggested extrapolation procedure,
the measured and computed bed profiles for an aggradation process in
which ~G IG equals 1.80 (Soni et al. 1980) are shown in figure 6.15. Theo 0
values used in the calcuations were; n = 2; m = 10; ~G/Go = 1.80, b = 5 •
From figure 6.14 a value of 6.45 was extrapolated for K*/Ko. The agreement
between the experimental and theoretical bed profiles is encouraging and does
not require any further comment.
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VII. EXPERIMENTAL STUDY

A. Genera 1

As mentioned earl ier, there exists a wealth of studies dealing with bed
form resistance in alluvial channels under uniform flow conditions. However,
hardly any data concerni ng bed confi guration and resistance under
nonequilibrium flows are available.

Shen and Bamidipathi (1969) reported flume 1aboratory experiments on the
variation of roughness during degradation. The analysis of Newton's (1951)
and their own data led them to the conclusion that "the variation of roughness
during degradation is the same as that of the equilibrium flow", and that
depending on the sediment size the part of the total roughness associated to
the bed forms increased for sand finer than 0.6 mm and decreased for sand
coarser than 0.6 mn, Soni et al. (1977), on the basis of application of
Manningis flow resistance equation to measured nonequilibrium bed and water
surface profiles, concluded that the value of Manningis roughness coefficient
in an aggraded reach is generally smaller than the values for uniform flow.
Roughness coefficients reductions of the order of 30% were reported; however,
no systematic variations of the roughness coefficient with sediment injection
rate and other parameters were found. The friction factor predictor developed
for Raju (1970) for uniform flow conditions was found applicable to
nonequilibrium flows, provided that the local friction slope is used instead
of the bed slope.

The development of a reliable friction-factor predictor for nonequilbrium
flows is a formidable task to be undertaken in the years ahead. The

understanding of the complex interrelations among the multiple bed features
and the flow, sediment and water parameters involved will surely require long
and systematic theoretical and experimental efforts. The knowledge and
experience accumulated over the years on steady uniform flows will prove to be
useful in many aspects of the new studies to come.

From the brief overview of the work done in the past, it may be concluded
that there has been no attempt to study in a systematic and quantitative
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fashi on the bed form characteri stics in unsteady, nonuni form f1ows. As the
flow resistance associated to the bed forms is a very interesting subject from
the practical and theoretical viewpoints, a preliminary research program was
planned. The experimental program was intended to study the time evolution of
the bed forms during an aggradat ion process due to a sudden increase in
sediment discharge and to develop the basis of a methodology to be used in
future research in unsteady-nonuniform flows.

B. Experimental Apparatus and Procedures

1. Equipmente The main experimental facility was a recirculating flume

with a glass-walled working section measuring 27.4 m in length, 0.914 m in
width, and 0.45 m in depth. An elevation view of the installation is shown in
figure 7.1. The power to recirculate the water-sediment mixture was provided
by two 7.5-horsepower variable-speed motor-pump units located under the
downstream end of the flume, each discharging into separate 0.30 m spiral weld
return pipes terminating at a transition to the flume inlet. Discharge could
be measured at side-contracted orifices in each return pipee The flurnewas
supported by a central pivot and four synchroni zed motor-dri ven cam jacks so
that the slope was changed without interrupting the operation of the flume.
Flume slope was measured by means of a dial gage and a point gage at the
downstream end of the flume. Steel rails for the instrument carriage, mounted
at the top of the flume walls, provided a reference frame for the elevation

relative to a plane tilted at the flume slope.

The bed was composed of quartz foundry sand with a median diameter, d50'
of 0.35 mm and a geometric standard deviation, (1 , of 1.42. A plot of the

9
sieve-diameter distribution for the sand is shown in figure 7.2

Sand identical to the one on the bed was used to generate the aggrarlation

process. Dry sand was fed into the flow at a section 6 m from the upstream
end of the flume by means of a mechanically operated sand-feeder. The sand
1eve1 in the hopper of the feeder was kept unchanged to maintain a constant
sediment rate. A motor-dri ven vibrator attached to the bottom of the hopper
facilitated the flow of the sand through a series of small openings located at

the bottom of the hopper.
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Water-surface elevations were measured by means of a point gage mounted
atop the motor-dri ven carriage. Longitudi nal bed profil es were measured with
a Delft bed profile indicator that was mounted on the motor-driven instrument
carriage. The sens ing tip of the probe was 3 mm above the sand bed. The
ane loq output from the bed profile follower was samp1ed and digitized at 50
mi11isecond intervals by the IIHR HP-lOOO Data Acquisition and Control
System. The carriage speed was set so that the 50 mi11isecond interva 1
corresponded to 1 cm intervals elonq the working section of the flume. The
digitized data sets were subsequently plotted and statistically ana1yzed by
means of the HP-1000 Data Processing System.

Samples for determining total sediment transport load were obtained by
withdrawing a representative water-sediment mixture through a vertica1 slot
sampler, consisting of two parallel sheet meta1 plates connected to a hose on
a pump, at the downstream end of the f1ume. This device samp1ed a I-cm wide
verti cal slice extendi ng over the ent; re depth of flow at the centerl inee
Samples were pumped into a 0.65-m3 collecting tank at such a rate that the

mean entrance velocity into the slot equalled the depth-averaged flow velocity
in the f1ume. Makeup water was added during sampling to maintain a constant
volume of water in the f1ume system. Following collection and sufficient time
for the sediment to settle, the water was decanted and the sediment was
carefully flushed into a beaker for subsequent drying and weighing.

2. Experimental procedure. Before starting the experiment, the sand bed
was leveled over the length and width of the flume with the aid of a screed
that was mounted to the instrument carriage. Next, water was added to the
flume to bring the water depth to 0.13 m. The slope was set to the estimated
value for uniform flow, and the flow was started at the desired discharge of
0.0375 m3/sec. From time to time the water surface slope was checked by means

of a point gage mounted to the instrument carriage, and the flurne slope was
adjusted to make it equa1 to the water-surface slope, This procedure of
successive adjustments was continued as the bed configuration came into
equilibrium with the flow conditions. Af ter the water surface slope had
remained equal to the f1ume slope for a period of several hours, and the flow
depths at several points along the flume had been checked to see if the flow
depth was approximately 0.13 m. along the entire length of the f1ume, the flow
was stopped and the bed profile along the center line was measured with the
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Delft-bed profile indicator. The output from the HP-lOOO Data Acquisition and
Control system was plotted on the HP-9872A graphics plotter and reviewed for
stationarity, i.e., any consistently rising or falling trend along the flume
in the bed elevation with respect to the mean bed elevation. If a visual scan
indicated stationarity of the data, and the mean bed slope proved to be
approximately equal to the water surface slope, the initial uniform flow
condition was considered achieved. The bed profile and flow data was then
stored on disk by the computer; otherwise the flow was started again and

continued for a few more hours. Once the uniform flow condition was reached,
the flow was started again and three total-sediment-load samples were
obtained, taking care to add sufficient makeup water to maintain uniform flow

at the proper slope and depth.

After uniform flow conditions were set along the flume, sediment was
supplied at the upstream end at a constant rate, by means of the sand-feeder,
to cause aggradation. During the aggradation process bed and water surface
profiles were measured and recorded for future analysis at either 3- or 6-hour
intervals. Bed profiles corresponding to the initial uniform flow (T = 0) and
various times after the initiation of the aggradation process are shown in
figures 7.3 through 7.5. A summary of the experimental data is presented in

table 7.1

C. Qualitative Observations

As was expected, the excess sediment discharge deposited on the bed and
caused its level to risee The bed slope and flow parameters adjust gradually
to the new imposed sediment discharge. The sediment wave or aggrading front

migrates downstream, as illustrated by figures 7.3 through 7.5, and causes a
bed level increase. The magnitude of the increase in bed elevation at a given

location decreases with time.

In general, it is possible to distinguish two types of waves or
perturbations, a macro-perturbation or aggrading front and micro-perturbations
or bed-forms which travel over the surface of the bed. It was clear that the
speed of propagation of the dunes (micro-perturbations) was large at the
upstream sections and decreased towards downstream. In fact, it was also
possible to observe that the fast-moving dunes merged the slower moving
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Table 7.1

Summary of Experimental Data

-2 3q = 4.42 x 10 m /s.m

Ho = 0.13 m

u = 0.34 miso

S = 7.7 x 10-4o

F = 0.3
ro

d50 = 0.35 mm

À = 0.4

-8 3
G = 1.96 x 10 m /s.mo

t.G jG = 2.4
o 0

Temperature ~ 20 - 22uC
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ones. According to de Vries (1969), the celerity at which a small bed
perturbation propagates is given by

As G, U and Fr decrease towards downstream the celerity of the small bed

perturbations is larger upstream and diminishes towards downstream which

qualitatively agrees with the experimental observations reported above.

D. Bed Profile Analysis

Quantitative measures of the bed-form characteristics during aggradation
were obtained from a statistical analysis of the zero-crossing distances and
amplitudes of the digitized longitudinal bed profiles taken at distinct times
of the process.

A definition sketch for the zero-crossing distances and amplitudes
analysis of a bed profile is shown in figure 7.6. A zero-crossing is defined
as a point where the bed profile crosses the line defining the mean bed level
in a cartesian coordinate system that is tilted at the initial bed slope So.
In figure 7.6 this line is coincident with the x-axis. In general, the mean
bed level was obtained by fitting a polynomial to the raw bed-profile data.
The zero-crossing distance is defined as the longitudinal distance between two
successive zero-crossings. A bed-form length, L, is the sum of two successive
zero-crossing distances. The positive and negative amplitudes, a+ and a-, are
defined as the maximum positive and negative displacements of the bed form
from the mean level between two successive upward (or downward) zero­
crossi ngs. The height, h, of the bed-form is the sum of the magnitudes of a
pair of adjacent positive and negative amplitudes.

From figures 7.3 through 7.5 the existence of two distinct portions of
the bed profiles during an aggradation process is evident: an upstream reach
over which sediment deposition takes place; and a downstream reach which
remains practically unaffected by the process. Consequently, for the
statistical analysis of bed-form characteristics only the upstream reach was
considered. In order to investigate any spatial dependenee of the bed-form
parameters, the upstream reach for larger times (t ~ 54 hours) was divided in
two halves.
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Mean velues , unbiased standard devt at tons , and unbiased skewness
coefficients were computed for h, L, and a\ and a- from each bed profile.

For a set of N discrete values zl' z2' z3, ••• ,zn' in this case representing
any of the above four bed-form characteristics, the mean, ~, is computed by

1 N
~="N l. z ,

j=l J
(7.1)

the unbiased standard deviation, 0, by

o = (7.2)

and the unbiased skewness coefficient, e, by

(7.3)

where m2 and m3 are the second and third central moments defined respectively
by

N 2m2 = l. (z . -~ ) (7.4)
j=l J

and

N 3m = l. (z j - ~) (7.5)3 j=l

The results of the statistical analysis are listed in table 7.2.
Percentage-distribution histograms for h , L, a+ and a-, for the initial
equilibrium bed profile and for the 72-hour bed profile are shown in figures

7.7 and 7.8. No attempt was made to fit them by the proba-bil ity-density

function corresponding to probability laws. They are included to add visual
reinforcement to the result summarized in table 7.2.

The following trends can be seen from the results in table 7.2. The mean

dune length Land the dune flatness L/h increase significantly during
aggradat i on. The mean dune 1ength shows i ncreases up to 49% of the i nit i al
wave 1ength. The mean dune hei ght i n i ts turn does not show any consi stent

and significant change during aggradation. The above mentioned trends are

graphically illustrated by figures 7.9 through 7.11. From the above it can be



Table 7.2

Statistical Measures of Bed-Fonn Characteristics

Run
Time
(hrs)

Bed Fonn Characteristics

Statistical
Measure

dune
height

h

dune
1ength

L

dune
flatness

L/h

posit1ve
amp1itude

a+

negative
amplitude

a-

o Mean (cm) 2.0 37.78 13.89 1.055 0.94

24

36

54-U

54-0

standard deviation 0.945 19.51 0.715 0.7350
skewness 0.395 1.78 0.220 0.7300

Mean (cm) 2.09 34.50
standard deviation 1.35 27.53
skewness -0.32 0.89

Mean (cm) 2.16 31.20
standard deviation 0.63 7.20
skewness 1.02 0.06

Mean (cm) 1.68 40.23
standard deviation 0.96 24.83
skewness 0.35 1.06

Mean (cm) 1.96 37.31
standard deviation 0.91 23.70
skewness -0.66 0.67

16.51 1.30 0.89
1.06 0.64
1.06 0.24

1.06 1.07
0.30 0.61
0.33 -0.47

0.91 0.78
0.76 0.32
0.17 0.57

1.21 0.74
0.69 0.51

-0.59 0.25

14.44

23.95

19.04

o
N



Table 7.2. Continued.

Beo Form Character;st;cs

Run
Time
(hrs)

Statistical
Measure

dune
height

h

dune
length

L

dune
flatness

L/h

positive
amp 1itude

a+

negative
amp1itude

a-

60-U Mean (cm) 1.44 33.07 22.97 0.74 0.79standard deviation 0.75 18.61 0.58 0.52skewness 1.31 1.95 0.87 0.41
60-0 Mean (cm) 1.98 40.89 20.65 0.98 1.00standard deviation 0.83 26.57 0.43 0.65skewness 0.60 1.06 -0.84 0.65
66-U Mean (cm) 1.94 34.47 17.77 1.12 0.82standard deviation 1 16.77 0.76 0.59skewness 0.41 0.41 0.04 0.04
66-0 Mean (cm) 2.470 37.09 15.07 1.35 1.11standard deviation 1.16 26.27 0.73 0.64skewness 1.09 1.08 0.88 0.48
72-U Mean (cm) 1.98 41.44 20.92 1.17 0.81standard deviation 1.02 18.30 0.79 0.64skewness 0.54 0.10 0.45 0.74
72-0 Mean (cm) 1.71 28.66 16.41 0.82 0.95standard deviation 0.89 13.45 0.71 0.55skewness 0.79 0.31 1.34 0.17

......
0w
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Figure 7.9 Initial Bed Configuration

Figure 7.10 Bed Configuration During Aggradation
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Figure 7.11 View of the Aggrading Front



109

concl uded that due to an i ncrease in tota 1 sediment l oad whi ch 1eads to an
increase in flow velocity, bed and energy slope and a diminution in water
depth, that the bed-form resistance diminishes.

Although the scope of the present study and the amount of data available
do not allow quantitative conclusions to be drawn regarding the variation of
the bed-form resistance, it seems useful to sketch a methodology which may be

useful for future investigations. Following Einstein and Barbarossa (1952),
the Darcy-Weisbach friction factor is separated in two parts

f :: fl + fll (7.6)

where fl is due to the roughness of the sand grains, and fll is due to the form

drag associated with the large scale features of the bed forms. Values of the
bed-form fri ct i on factor f " may be determi ned by subtract i ng f I from f, where

f ' is evaluated by means of the Lovera and Kennedy (1969) flat-bed friction­
factor diagram or any other suitable method, and f is the experimental

friction factor. Next, the bed-form friction factor could be r.elated to the
dune geometry and f1ow characteri st i cs , It seems noteworthy that Vanoni and
Hwang (1967) developed a bed-form friction factor predictor applicable to
uniform flows over ripple covered beds, which reads

_1_ :: LH3.3 log -:-2 - 2.3
(~ h

(7.7)

It appears that equations of similar type, which account for the nonuniformity
of the flow and bed patterns, can be developed in order to enable an accurate
estimation of the friction factor in nonequilibrium processes.

Although the experimental data indicates a significant increase in dune
length during aggradation, the effect of this change in dune length on the

variation (diminution) of the bed-form resistance is not yet quantitatively

known. Nevertheless, a rough preliminary estimate can be obtained on assuming

that (7.7) is valid for nonequilibrium flows. From the available data is it
seen that the dune flatness L/h during the experiments increased up to about

50%, while the dune height h remained almost unaffected; as the local flow
depth H decreases along the aggradation reach, the modified relative

roughness, HL/h2, duri ng aggradat i on wi 11 be 1arger than that in the uniform
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flow case (HoLo/ho2). The ratio of the modified relative roughness to that
for the uniform flow for the experiments reported herein ranges betweeen about
1 and 1.5. As the relationship between f" and the modified relative roughness

is of logarithmic type, the relative change in f" during the experiments is
likely to be smaller than 20%. At this point it is convenient to recall that
due to the diminution of the water depth, the grain roughness f ' increases;

hence, the relative variation in friction factor f will be even smaller.

Karim (1981) proposed severa1 sediment-di scharge predictors which are
applicable to dune covered alluvial channels under uniform flow condf t t ons,
Their main feature is the enormous amount of laboratory and field data used in
the multiple regression analysis which led to their formulation, and the fact

that they allow the establishment of a definite relationship between the
sediment discharge and the friction parameters. The predictor considered in

the present discussion is

(7.8)

which may be written

(7.9)

where

s = Y sir
and

C = C(q,d,s,g)

If one assumes that (7.9) is applicable to nonequilibrium flows, it is readily
seen that depending on the relationship between the sediment discharge G and

the flow velocity U, the friction factor f may behave differently with G. For
instance, if as before it is assumed that G = aUb, the friction factor f for
va1ues of b < 5.45, wi11 decrease during an aggradat ion process and increase
during a degradation one, On the contrary, the friction factor f for values
of the exponent b > 5.45, wi1l show an increase during aggradation and a
diminution during degradation. It is evident that the magnitude of the

variation of the friction factor depends on the magnitude of the change in
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sediment load as well as on the value of the exponent b. In order to further
assess the sensitivity of the friction factor to variations in sediment load
during nonequilibrium processes and the validity of the assumptions

customarily introduced in the derivation of mathematical models (e.g.,
constant friction factor), the following discussion appears to be relevant.
In the experiment reported herein the relative overload t.G jG equalled 2.4

o 0
and the maximum reduction of the friction factor was estimated in about 20%.
Furthermore, for the bed material and flow conditions of such experiment Sayre

and Song (1979) empirically determined the following equation for the sediment
transport rate

-3 4G = 1.26 x 10 (U-Uc) 3(m /s.m) (7.10)

Soni et al (1977)
relative variation

They found that the

performed severa 1 aggradat i on experiments in whi ch the

in sediment discharge t.G /G ranged between 0.3 and 4.o 0
friction factor diminished up to about 30%. The equation

that provi ded the best empi ri ca 1 fi t to thei r sediment transport rate data,
measured under uniform flow conditions, was

3(m /s.m) (7.11)

On assuming that (7.9), (7.10) and (7.11) apply locally for nonequilibrium
flows, it is readily found that the maximum diminution of the friction factor
f during aggradation, with respect to the value corresponding to the initial

uniform flow, is 27% in the former case and 34% in the latter one, These
values are in good agreement with the above mentioned values.

These analyses lead to the conclusion that the assumption of a constant
friction factor for moderate changes in total sediment load is a reasonab l e

first approximation. The usage of suitable sediment-transport-rate formulae

valid for uniform flows in nonequilibrium processes mayalso be considered
acceptable under such conditions. The previous conclusions are also supported

by the good agreement between the nonlinear analytical solution, which
contains both assumptions, and the available experimental data. However it
should be pointed out that the models can be used in conjunction with any type

of sediment and friction factor (constant or variable) equations; hence, as

soon as improved knowl edge and formul ati ons regardi ng these two important
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aspects become avai1able, they may easily be incorporated in the mathematical

models and their solutions.
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VIII. SUMMARY AND CONCLUSIONS

A. Summary

Linear and nonlinear parabolic models for nonequilibrium processes in
alluvial rivers, based on validated mathematical expressions of the
constituent phenomena, were developed. Analytical solutions for the
characteristic parameters of relevant aggradation and degradation processes in
alluvial channels of semi-infinite and 'finite length subjected to both, time­

dependent and time-independent boundary conditions were obtained. The
analytical solutions developed allow the use of almost any of the sediment
transport rate and friction factor predictors available.

The validity and limitations of the linear and nonlinear parabolic models
and their corresponding analytical solutions was assessed by means of
comparison with flulme experimental data available. Ranges of application for
both linear and nonlinear models were established. Due to its more rigorous
formulation, the nonlinear parabolic model was found particularly useful and
accurate for a wide range of practical applications. The good prediction
capabilities of the nonlinear model can be improved through the use of
available laboratory andjor field data which will enable the easy and
effective calibration of the model. Easy to follow application, calibration,
and extrapolation procedures were suggested.

Experiments regarding the time evolution of the bed-forms during an
aggradation process due to a sudden increase in total sediment load were

performed. Analysis of the experimental data led to a better understanding
of the phenomena involved to the explanation of the experimental findings of

the present and similar investigations, and to the justification of some of
the main assumptions introduced in the development of mathematical models.

B. Conclusions and Recommendations

The principal conclusions derived from the present theoretical and
experimental investigation may be summarized as follows:
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1. Nonlinear and linear parabolic models based on the fundamental
hydrodynamic equations for two-phase flows constitute a rather simple
and powerful tool for sol ving a variety of morphological processes in
alluvial rivers of relevance to hydraulic engineers and geologists.

2. The parabolic models allow the use of almost any of the current
sediment-transport-rate and friction-factor predictors.

3. Aggradation and degradation processes due to sediment load
augmentation and sediment discharge curtailment, respectively, are
similar to each other and their characteristic parameters are
governed by the same equations.

4. The analytical solutions for the characteristic parameters of
aggradation and degradation processes due to variations in sediment
discharge in alluvial channels of finite length for small times is
identical to that for a semi-infinite channel.

5. Tne analytical solution provided by the classical linear parabolic
model (i.e., Z-model) and those afforded by the alternative linear
model (i.e., G-model) are identical if and only if the initial river
bed is p1ane. Otherwi se, they are different due to the di fferent
assumptions introduced in the development of each model.

6. The deviation of the experimental data from the analytical results
provided by the linear parabolic models is mainly due to the two
simplifications introduced in the models. That is, the flow is
considered quasi-steady and quasi-uniform. The experimental values
agree with the analytical results for moderate values of the relative
sediment overloading (i.e., 2 < G jG < 6). The linear parabolico 0
model should not be used for predicting the characteristic parameters
of degradation processes due to curtailment of the sediment

discharge.
7. Certain degradation processes due to base level lowering can also be

studied by means of the linear parabolic model. However, the range
of application of the model has not been investigated as yet.

8. The non1inear parabo1ic model introduced herein is an accurate and
f1exible tool for predicting one-dimensional nonequilibrium processes
i n all uvi al channe 1s due to a sudden change i n sediment transport
rate at the upstream end of the channe 1. It is app1i cab 1e to both
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degradation and aggradation processes in which the relative variation
in sediment discharge~ G jG ~ ranges between -1 and 1.o 0

9. The agreement between the nonlinear analytical solution and the
available experimental data is good and encouraging.

10. Laboratory andjor field data may be readily used in order to enhance
the prediction capabilities of the nonlinear model by means of a
simple calibration procedure.

l l, Extrapolation of the analytical results for large values of the

relative overloading (i.e.~ G jG > 1) has been found possible ando 0
accurate. However~ more exhaustive research is needed on this regard
before a final conclusion can be made.

12. The mean dune length increases significantly during aggradation~
while the mean dune height remains almost unaffected. Therefore~ the
part of the resistance to fl ow associ ated to bed-form diminishes.
However, the sand grain roughness increases and tends to compensate
the diminution of the bed form resistance.

13. Suitable formulae for sediment transport rate and friction factor
obtained for uniform flow may be considered a good first
approximation for nonequilibrium flows where the variation in
sediment discharge is moderate.

On the basis of the knowledge and experience gained in the present study,
the following recommendations are set forth for future research:

1. It appears useful to perform a set of experiments concerning
degradation processes due to diminution of the sediment discharge,
which will serve to test in a more appropriate manner the accuracy of
the nonlinear parabolic model for this important type of process.

2. An extensive and systematic study of the friction-factor evolution

during nonequilibrium flows may be worthwhile and useful in order to
improve the physical understanding and the mathematical formulation
of this important aspect of the subject. The methodology suggested
in Chapter VII may be helpful to this particular purpose.

3. The usefulness of the sediment transport and friction factor
predictors developed at the IIHR, or similar ones, for nonequilibrium

flows should be assessed in a quantitative fashion.
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4. The possibility of introducing the phenomenon of bed-armoring into
the mathematical formulation of the model deserves particular
attention~ because~ it would notably increase its capabilities.

5. The extension of the nonlinear analytical solution to cases in which
the variation in sediment load is time dependent seems to be
interesting from the theoretical and practical viewpoints.
Experiments concerning this type of nonequilibrium processes will be
useful to test the accuracy and determine the range of application of

the linear solution reported in this study as well as those
pertaining to any propsective nonlinear solution.

6. Stochastic modelling of the bed-profiles may be a useful and original

contribution towards the better understanding of the evolution of the
bed profiles and bed-forms under nonequilibrium flow conditions.
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APPENDIX I
LINEAR AND NONLINEAR DIFFUSION COEFFICIENTS

It is well known (Garde and Ranga Raju, 1977; Yang and Molinas, 1982)
that, when the larger portion of the sediment discharge is transported as bed
load, most of the currently used sediment transport equations can be
classified in the following types:

Type I

bG = aU

Type II

G = a(U - U )bc

Type III
G = a(Q _ Q )b

c

Type IV
G = a(T - T )bc

where a and bare constants that depend on the specific formula
adopted T = shear stress; c = subscript denoting the critical value required
at incipient sediment-motion, which is considered constant and equal to the
value corresponding to the initial equilibrium flow.

There exist a number of friction-factor predictors for alluvial channels
under uniform flow (Einstein-Barbarossa 1952; Alam and Kennedy 1969, Garde and
Raju 1966; Engelund 1967; Lovera and Kennedy 1969, Raudkivi 1967, etc.);
however, for constant discharge, most of them can be expressed as

f = f(U) (1.1)
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Because of its simplicity and due to the fact that there is no friction factor
predictor for nonuniform flows available, a constant friction factor has been

frequently considered a reasonab1e assumption.

Karim (1981) based in a multiple regression analysis of an impressive
amount of experimental and field data derived a friction factor predictor that

can be written under the form

(1.2)

where m,n, and pare constants; e is a constant that depends on the sediment
and flow characteristics (i.e., grain size d, fall velocity w, specific

weight y , kinematic viscosity v, gravitational acceleration g, etc.).s
As (1.1) can be considered a special case of the more general expression

(1.2), for clarity two types of friction factor relations are considered in
the following. First, a constant friction factor and second, a varying

friction factor (as given by (1.2)).

The general expression that enables the determination of the coefficients

Ko and Kis

u2..§.
aUK = --~----:".,.....-,..."......U df

Sf (1-À)( 3+ f arr)

By substituting the sediment transport and friction factor relations presented
above in (1.3) one obtains different relations for the linear and nonlinear

(1.3)

coefficients Ko and K respectively, which are tabulated below.
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Table 1.1

Expressions for the Coefficients K and Ko for Constant Friction Factor

Sediment Transport Eq. K

Type I

Type II b G b Go
3S ( I-À )( I-U JU )o c 0

Type 111

Type IV b G

If b = 3, K = Ko and no 1inearization is required.
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Table 1.2

Expressions for the Coefficients K and Ko for Varying Friction Factor

Sediment Transport Eq. Diffusion Coefficient

Type III

Type I

Type II

G{2b+(n-p)[1-(UC/U)2]}
Type IV K = 2 2

Sf(1-À){(3+n-p)(1-m)[1-(Uc/U) ]+m[2b+(n-p)[1-(Uc/U) )]}

G {2b+(m-p)[1-(U /U)2]}
K - 0 c
o - S (1-À){(3+n-p)(l-m)[1-(U /U )2]+m[2b+(n+p)[1-(U /U )2]]}o coc 0
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APPENDIX !I
DEGRADATION DUE TO BASE LEVEL LOWERING (SECOND PHASE)

The integration of (4.49) solution for. the second phase of the
morphological process (degradation) triggered by a lowering in the base-level
and its corresponding time scale are presented in this appendix.

Z(x,t) =
co 2 2

1 J {exp [- (x-v) J - exp [- (x+v) J} F(v) dv
O 4K t 4K t

Y~Kt 0 0o

(!I.1)

The solution in terms of the original dependent variable Z(x,t), after
substituting (4.47) and (4.45) into equation (11.1), is

2AGo (KoT)1/2 t.G { coJ { _ (K~T)1/2
Z ( x , t) = Ko(I-À) n + 0 11

K (l-À )/~ K to 0

2 2 (K T)l/
2

2 2
[- ~K t - i~-~)J - ~ exp [- ~K T - i~+~) J - ~ erfc ( v )

o 0 0 0 2/K To

2 2
exp [- ~J + ~ erfc ( v ) erfc [- (x+v) J} dv}

o YiÇT 4Kot

Considering that:

(
K T)1/2 co 2

A =- ~ Jo exp [- (x-v) J dv =
11 4Kot

(II.2)

K ITt [erfc ( x ) - 2J
o YlÇt (!I.3)

(
K T)1/2 co 2

B = _0_ J exp [- ~~+~) J dv = KiT[ erfc (:n)
n 0 0

o

(11.4)



~ 2
C = -J *erfc ( v exp [- (x-v)] dv =o Co 2lKI' 4Kot

o

2
- IKot [/Kot exp (- ~Kot)

X2" erfe ( x n +-Q j exp [_ 4vK2T (x-v)~ d ~ r j2IKt \':rrT- 0 0 - 4Kot v - 2 T 0
o

l
exp (- 4K T)

o

o = J ~ erfc (v ) exp
o 2IiÇT

erfc (x-v ) dv
2In

2 0 2
[- (x+v) ] dv = /Kt [/Kot exp (- 4xKt)

4Kot 0 0

x/n-2- erfc + _~o
t2 ~ 2 2 - ~

( x ) J [v (x+v) ] x t JlTT exp - 4K t - 4K t dv + "2 t erfc
2I~t 0 0 0 0

2
x+v exp ( v ) dv- 4K T
21Kot 0

2 ()2 ~K t x2v x-v 0 ]E = J exp [- 41<T - 4K t ] dv - 1+t/T exp [- ____;.,;,.__--o 0 0 4KoT(I+t/T)

[2 _ erfc [ x ]}
2IKot(l+t/T)

~ 2 2
F = J exp [- 4~ T - i~+~) ] dv =

o 0 0

lTK T /
1+~/T exp [- ~;.__--] erfc

4KoT(I+t/T)

[x ]
21 K f (l+f! I )o

the solution can be expressed as

Z(x,t)
2ll Go KoT 1/2 IIGo

= Ko{l-À) (-lT-) + { - 2K/Tt erf
K (I-À )/nrTo 0
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(11.5)

(1I.6)

(11.7)

(1I.8)
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2

( x ) + 2 Ko/t(T+t) exp [4K f(ïXt/f)J erf [ x J -
21"Rt'o 0 + 21 K f (I+fJ I )o

1x ff j [exp (-l )[erf (x-v ) - erf (x+v ) J} dv}
2 T 0 4KoT 2/Kot 21Kot

lntroducing the Tay1ors' series, expansion of erf(u) as given by

(11.9)

2 u3
erf(u) =-= (u - 3 I'

11T • •
2 ~ n u2n+1

= - L (-1) (2n+1)n!fi n=O

where u = a : b = _x_ ± _v_
21lÇf 21lÇf

the last integra1 in (11.9) becomes

g oo 2 00 00

I = -2 f exp (-b t/T)[ L L (_l)n
o n=O j=O

(II.10)

(2n+1) !ajb2n+1-j
(2n+1-j)!j! (2n+1)n! -

00 2n+1
L L (_1)n+j+1 ~':""':;'~""';:"'""T":""--:-,_..,..,Jdb
n=O j=O n.

(I I .1Ia)

as

00

f exp (_b2t/T)b2n+1-j db = r (2n-j+2)/2
o 2(t/T) (2n+J+2)J2

Equations (11.10) (II.11a) and (II.11b) into (11.9) provide the fina1

(II.lIb)

solution, that is

2AGo K T 1/2 l1G
Z(x, t ) = K (I-À) (+) + {- 2K ITt erf ( x ) +

o K0 (I-À )11TKot 0 21 Kot

00

2K It(T+t) exp [- x2 J erf [ x J - 2 K tv1Tt
o 4KoT(1+t/T) 21 Kot (l+t/T) o . T

2n+1 (-1)n(2n+1)!r(2n+2-j)/2 (x )j+1 [1-(-1)j+1J)}
j~O (2n+1)n! (2n+1-j)!j I (tIl) (2n-2-j )12 2IlÇf (II .12)

{ L
n=O
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The time scale T* for the second part of the process is obtained by setting

the bed slope at x : 0 equal to 1.0150, that is

~~ (O,T*) : -1.01 50 or ~~ (O,T*) : - 0.01 50 (11.13)

Taking the spatial derivative of (11.12) and using (11.13) one obtains

(11.14)

which provides the desired analytical time scale.

An improved solution, which converges more rapidly than the previously
presented and provides an explicit expression for the time scale T* can be

obtained as follows. The Taylor's series expansion at the error function can
be done in a slightly different fashion, which is based on f(a+b) : f(a) +

2
bf ' (a) + -h fll(a) + ••••• where

a : v b x·and : __:_._
21ITo

It follows that

2erf (a+b) : erf(a) : __ exp
li
2erf(-a+b) : - erf(a) + __ exp
I;

(_a2) î ~1 n bn+1H (-a)
O n+. nn:

2 Cl) ( -1 )n n+1
(-a) l. (n+1)! b Hn(a)

n:O

Where: Hn is the Hermite polynomial of nth order. Hence,

Cl)

l. 1
n:O [2(n+1)]!

: 2 erf (v ) - ~ exp
2/lÇt In

x 2(n+1) v
(2lK-T) H2n+ 1(211ft)

o 0

2(- -J-r)
o

erf (x-v ) _ erf (x+v )
2I"Kt 21"Kto 0

(11.15)

As

Cl) v2
exp (- lK:T) erf (v ) dv :t 0 21~

2 -
(/iTKI - __/KI arctg JTt)

o In 0 "

(11.16)
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Substituting the last two equations into (11.8) one obtains

2l1G (K T\1/2 l1Go
Z(x,t) = K (l~À) ~) + --n-~ { - 2K/1f erf ( x ) +

o Ko(l-À)/7rKot 2/IÇT

2KIt(T+t) exp [- x2 ] erf [x ] _ {x -~
o 4K t(l+t/T) 21K t(l+t/r) 1T

"IÇT .orr rr:- 00 0 1 1 2
V1TÇT - 2, -7r- arctg "T) + 2x ~ iTT Jo exp [- (lJ'KI + 1frT)v ]

o 0

î 1 (x )2(n+1) H (v) d
n=O [2(n+1)J! 2/l(t 2n+1 21IT v

o 0

Considering that the integral term in (11.17) involves integrals of the type

(II.l7)

00 r (r+21)
J exp [-(1+t/T)a2Jar da = ---...,....-~-=--o 2(1+t/T) (r+1)/2 (11.18)

where:
r ( ) = gamma funct ion

The solution for the second phase of the problem becomes

2l1G (K T)1/2 l1Go
Z{x,t) = K (1~À) 7r0 + {-2K/Tf erf ( x ) +

o Ko{l-À)/7rKot 2/Jçr

2
+2K It{T+t) exp [- x ] erf (x ) +

o 4KoT(l+t/T) 2/Kot(l+t7T)

_(f _rieT _fr _ft 00 1 x 2{n+1)
x ft V7rKoT- 2~-;- arctg,T) + 2x~:;;T n~0[2(n+l)]! ( n) H2n+1{y)

21 0

(II.19)

where: H2n+1(y) is
coefficients of
argument y follows

a special polynomial whose coefficients are given by the
the Hermite polynomial of order 2n+1, and its
the law
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ny = rn . n > 0

2( l+t/T)n'
(11.20)

The dimensionless form of the solution is

~= 1 _ erf (x ~) +/l+tJT exp r- x2 ]
o 2l1Ç'T 4KoT(1+t/T)

[ x ~I "ijt x - 2 •.ff 4 x 2 00

erf '),-rr-T'1·-1+....;....,...t-/T-J- (In - - arctg lT + - ( ) L
ex 1\0 I 2IlÇT l:rr /:rr 2/K~ n=O

1 'T 2(n+1)
~~~ (x ..I) H ()
[2(n+1)]! 2/RI lt 2n+1 y

o
The time scale is obtained, as before, taking the spatial derivative of

(11.21)

(11.21) and using (11.13) as to obtain

(11.22)

This completes the analytical solution of the degradation process due to a
lowering in the base-level.




