
Delft Center for Systems and Control

Embedding machine learning
into passivity theory: a port-
Hamiltonian approach

O.R. Sprangers

M
as
te
ro

fS
cie

nc
e
Th

es
is





Embedding machine learning into
passivity theory: a port-Hamiltonian

approach

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

O.R. Sprangers

May 7, 2012

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Cover picture edited, original: https://cs.byu.edu/neural_networks_and_machine_learning

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Embedding machine learning into passivity theory: a port-Hamiltonian

approach
by

O.R. Sprangers
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: May 7, 2012

Supervisor(s):
Dr. G.A. Delgado Lopes

Prof.dr. R. Babuška

Reader(s):
Dr.ing. D. Jeltsema

Prof.dr.ir. J.M.A. Scherpen

Ir. I. Grondman





Abstract

Passivity-based control (PBC) is a control methodology that achieves its control ob-
jective by rendering a system passive with respect to a desired storage function. A key
feature of PBC is that it exploits structural properties of the system. In this thesis,
the PBC of systems endowed with a special structure, called port-Hamiltonian (PH)
systems, has been investigated. The geometric structure of PH systems allows refor-
mulating the PBC problem in terms of solving a generally complex partial differential
equation (PDE).
Reinforcement learning (RL), on the other hand, is a learning control method that can
solve complex nonlinear (stochastic) control problems without the need for a process
model or explicitly solving a set of equations. In RL the controller receives an immediate
numerical reward as a function of the process state and possibly control action. The
goal is to find an optimal control policy that maximizes the cumulative long-term
rewards, which corresponds to maximizing a value function. In this thesis, actor-critic
techniques have been used, which are a class of RL methods in which a separate actor
(the control law) and critic (a ‘memory’) function are learned. A disadvantage of RL
is that without having a process model it can be slow at learning and computationally
expensive.
In this thesis, the goal was to design a theoretical framework using PBC techniques
subject to control saturation, in which knowledge about the PH system can be in-
corporated and in which (optimal) control policies can be learned using actor-critic
reinforcement learning. Therefore, Standard Actor-Critic (S-AC) RL has been com-
bined with Energy-Balancing Passivity-Based Control (EB-PBC). This combination,
called Energy-Balancing Actor-Critic (EBAC), showed its effectiveness in the pendu-
lum swing-up problem, which was used as a benchmark test. The advantages of the
EBAC method from a PBC perspective are that no PDE has to be explicitly solved,
control saturation can be incorporated, the geometric structure of the PH system is
preserved, local stability can be numerically demonstrated using passivity theory and
the learned controllers can be interpreted in terms of energy shaping strategies. From
a RL perspective, the learning is speeded up because model knowledge is available.
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Chapter 1

Introduction

In recent years there has been a shift from approaching control design problems from a
signal-processing point of view to a design methodology in which information about (the
structure of) the system is exploited. A popular methodology to do so, first proposed in
[39], is called Passivity-Based Control (PBC), which exploits the property of passivity
to achieve the control objective by rendering the closed-loop system passive with respect
to a desired storage function and by injecting damping. The interested reader is referred
to [38, 36, 41, 53] for variations on PBC and to [49, 12, 11] for examples of applications
in robotics of PBC. In this thesis, the control of dynamical systems endowed with a
particular structure, called port-Hamiltonian (PH) systems, will be investigated. It will
be shown that these PH models have a very natural and intuitive way of representing
a PBC problem.

On the other hand, today’s expanding field of robotics is dealing with challenges such as
unstructured or unknown environments and interaction with these environments (such
as humans). Moreover, robots need to handle more complex tasks that cannot always
be predefined, such that some sort of adaptation or learning control is required. A
well-known and currently popular technique is called Reinforcement Learning (RL), a
machine learning technique that has a close similarity with how humans and animals
learn and which has been used in many applications in robotics to this date, examples
can be found in [50, 47, 35, 7, 24]. For more information about RL, the reader is referred
to [50, 4, 10, 19, 25]. In this thesis, RL will be used as adaptive/learning method to
combine the advantages of PBC and the PH framework with.

There are advantages to both fields in control:

• PBC techniques, especially of the form Control by Interconnection (more on that
in chapter 2), used in combination with the PH system, have a very natural and
intuitive way of representing a control design problem in terms of shaping the
energy the dynamical system exchanges with its environment.

Master of Science Thesis O.R. Sprangers



2 Introduction

• Certain properties, such as (cyclo-)passivity, can be guaranteed by PBC tech-
niques, which make them suitable for use in environments where multiple dynam-
ical systems interact with each other.

• Reinforcement learning techniques are useful to obtain control policies when no
or unstructured information about the environment and/or the to-be controlled
(nonlinear) dynamical system is available.

However, there are also disadvantages:

• Deriving control laws in PBC for PH systems requires solving a Partial Differen-
tial Equation (PDE) for which it is hard to find nontrivial closed-loop solutions
such that the PDE has to be calculated numerically, which is computationally
expensive.

• Most of the PBC methods for PH systems in literature do not consider input
saturation, which makes these methods less applicable to real-life environments
where actuators commonly have a limited operating range.

• Enhancing the speed of learning and ensuring quality of control policies can be
difficult in reinforcement learning, especially when dealing with high dimensional
systems, where computer speeds can be a limiting factor and in practice conver-
gence to a (local) optimum is not always guaranteed.

The problem is that as of today, there does not exist a method combining the advantages
while relaxing/eliminating the disadvantages of both techniques.

1-1 Research Goals and Objectives

The general research goal of this thesis is to design a methodology that combines the
major advantages of the two control paradigms mentioned above: incorporating knowl-
edge about the system or its structure from the port-Hamiltonian framework, and
learning (optimal) control policies via reinforcement learning.

The general goal is split into several objectives:

• The first objective of this thesis is to design a theoretical framework (methodology)
using PBC techniques subject to control saturation that incorporates knowledge
about a (possibly nonlinear) port-Hamiltonian system and that is able to learn
(optimal) control policies (or closed-loop energy landscapes) via reinforcement
learning. In this thesis, Actor-Critic (AC) RL will be used. To the author’s best
knowledge, no such method has yet been developed.

• The second objective is to test and verify the developed methodology using sim-
ulations and a real-life set-up. Therefore, the problem of swinging up an inverted

O.R. Sprangers Master of Science Thesis



1-2 Outline of Thesis 3

pendulum is studied, both in simulations and in experiments using a physical
set-up. This is a low-dimensional but highly nonlinear control problem commonly
used as a benchmark test in RL [20] but it has also been studied in PBC [2]. The
developed methodology will be evaluated based on a set of criteria including the
speed of learning (i.e. convergence speed), quality of the found policy (i.e. stabil-
ity properties, robustness to parameter variations) and the set of stabilizable PH
systems to which the developed methodology can be applied.

• The third objective is to compare the developed framework with current methods
of choice, both in the field of PBC as well as in RL. More about the current
methods of choice for both these fields can be found in Chapters 2-3.

1-2 Outline of Thesis

To make this thesis self-contained, a theoretical introduction to the two major control
fields considered in this thesis is given in Chapters 2-3. Then, in Chapter 4, the
developed method, called Energy-Balancing Actor-Critic (EBAC), is introduced in the
form of a paper that will be submitted to Automatica1. After that, in Chapter 5 an
extensive review of simulations and experiments using the proposed method is given
to gain further insights and understand the behaviour of the EBAC method. Finally,
based on the results of these last two chapters, conclusions and recommendations will
be given in Chapter 6.

1Automatica is a journal of the International Federation of Automatic Control (IFAC), c© 2012 Elsevier.
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Chapter 2

Port-Hamiltonian Systems

In this chapter, the port-Hamiltonian (PH) framework is introduced as well as meth-
ods to control port-Hamiltonian systems. The port-Hamiltonian framework allows to
describe a physical system in terms of its energy exchange and of ports modeling the
interaction between the basic elements of the system and its environment. As such,
it allows for a broader class of dynamical systems to which PBC can be applied to.
First, necessary definitions, the general framework and some important properties are
given. Then, methods to control the port-Hamiltonian system are discussed after which
a choice for a particular control type for this thesis is made.

2-1 Dissipative and Passive Systems

In this section, the most important definitions that will come back throughout the
thesis are stated. Given the time-invariant state space system:

Σ :
{
ẋ = f(x, u) , u ∈ U
y = h(x, u) , y ∈ Y (2-1)

where U ∈ Rm and Y ∈ Rp, respectively, and X ∈ Rn the state space manifold
containing the local coordinates x = (x1, x2, . . . , xn).

Definition 2-1.1 (Dissipative systems). A state space system Σ is said to be dissipative
with respect to a supply rate s defined as:

s : U × Y → R where R+ = [0,∞) (2-2)

if there exists a function S : X → R+, called the storage function, such that for all
x0 ∈ X , all t1 ≥ t0 and all input functions u:

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0
s(u(t), y(t))dt (2-3)

Master of Science Thesis O.R. Sprangers



6 Port-Hamiltonian Systems

The expression (2-3) states that the stored energy S(x(t1)) is at most equal to the
stored energy S(x(t0)) at time t0 plus the total supplied energy (given by the integral
in (2-3)) during the interval [t0, t1]. Thus, internal creation of energy is not possible,
only internal dissipation. [53, 59]
Using the notion of dissipative systems it is possible to define a passive system.

Definition 2-1.2 (Passive systems [53]). A state space system Σ with U = Y = Rm
is called passive if it is dissipative with respect to the supply rate s(u, y) = uTy. Σ is
strictly input passive if there exists δ > 0 such that Σ is dissipative with respect to
s(u, y) = uTy − δ‖u‖2. Σ is strictly output passive if there exists ε > 0 such that Σ is
dissipative with respect to s(u, y) = uTy − ε‖y‖2. Σ is conservative if it is lossless with
respect to s(u, y) = uTy.

2-2 Port-Hamiltonian Systems

The general framework of PH systems was introduced in [33] and was formalized in
[54, 53]. A review of the application of PH systems to PBC can be found in [44, 43,
53, 42]. The general input-state-output port-Hamiltonian system reads:

Σ :


ẋ = [J(x)−R(x)] ∂H(x)

∂x
+ g(x)u

y = gT (x)∂H(x)
∂x

(2-4)

where x ∈ Rn is the state vector, u ∈ Rm, m ≤ n is the control input, J(x), R(x) :
Rn 7→ Rn×n with J(x) = −J(x)T and R(x) = R(x)T ≥ 0 are the interconnection and
damping matrix, respectively, H(x) : Rn 7→ R the Hamiltonian which is the stored
energy in the system, u, y ∈ Rm are conjugated variables whose product has units of
power and g(x) : Rn 7→ Rn×m is the input matrix assumed to be full rank. For the
remainder of this thesis, denote the matrix F (x) : Rn 7→ Rn×n,

F (x) := J(x)−R(x) (2-5)

which satisfies F (x) + F T (x) = −2R(x) ≤ 0. The system (2-4) satisfies the power-
balance equation:

Ḣ(x) = ∂TH(x)
∂x

ẋ (2-6)

= ∂TH(x)
∂x

(
[J(x)−R(x)] ∂H(x)

∂x
+ g(x)u

)
(2-7)

= −∂
TH(x)
∂x

R
∂H(x)
∂x

+ uTy (2-8)

≤ uTy

which is referred to as the cyclo-passivity inequality [41] if the Hamiltonian is not
bounded from below nor is it positive-definite and the passivity inequality if it is
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2-2 Port-Hamiltonian Systems 7

bounded from below and positive-semidefinite. Intuitively, cyclo-passivity means that
the system cannot create energy over closed paths in the state space. Hence, every
passive system is cyclo-passive.
There are some key advantages of working with PH systems for PBC: first, the choice
of storage function becomes more natural and second, these models allow for a clear
distinction between the structural elements in the system, such as the interconnection,
the storage elements and dissipation elements. Also, a large class of dynamical sys-
tems can be written in PH form, which makes it a suitable representation of complex
dynamical systems.
An important dynamical property of PH systems is the existence of dynamical invari-
ants independent of the Hamiltonian H(x) of the system, called Casimir functions
[53, 32]. For dynamical invariants the following set of partial differential equations is
considered:

∂TC(x)
∂x

J(x) = 0, x ∈ X (2-9)

in the unknown function C : X → R. If (2-9) has a solution C, then the time derivative
along the PH system satisfies:

dC

dt
= ∂TC(x)

∂x
J(x)∂H(x)

∂x
+ ∂TC(x)

∂x
g(x)u

= ∂TC(x)
∂x

g(x)u (2-10)

For the input u = 0 or for arbitrary inputs if also ∂TC(x)
∂x

g(x) = 0 the function C(x)
remains constant along the trajectories of the PH system. A function C(x) satisfying
(2-9) is called a Casimir function. For PH systems with dissipation, functions C : X →
R satisfying the set of equations:

∂TC(x)
∂x

[J(x)−R(x)] = 0, x ∈ X (2-11)

are considered, which can be shown is equal to:

∂TC(x)
∂x

J(x) = 0

∂TC(x)
∂x

R(x) = 0
(2-12)

A C(x) satisfying (2-11) is a Casimir function for both geometric structures defined by
J(x) and R(x).
An important consequence of the existence of Casimir functions is that if C1(x), C2(x),
. . . , Cr(x) are Casimir functions, then not only dH(x)

dt
= 0 for u = 0, but also:

d

dt
(H +Ha(C1, C2, . . . , Cr))(x(t)) = 0 (2-13)

for any function Ha(x) : Rr → R. This means that even though H(x) is not positive
definite at an equilibrium x∗, the function H(x) + Ha(C1, C2, . . . , Cr)(x) is possibly
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8 Port-Hamiltonian Systems

positive definite at the equilibrium point by appropriately choosing Ha(x) and thus
may serve as a candidate Lyapunov function for stability analysis. This method is
called the Energy-Casimir method and it has various applications in the control of
port-Hamiltonian systems.

2-3 Passivity-Based Control of Port-Hamiltonian Systems

The general goal in PBC of PH systems is to reach the control objective by rendering
the closed-loop system passive with respect to a desired storage function. One of the key
features of PH systems is that by using a power-conserving interconnection between
two PH systems, the resulting system is also a PH system. This approach suggests
energy-transfer or energy-balancing strategies, where energy is transferred from one
part of the (total) system to the other. This leads to a different approach for control
problems by thinking in terms of shaping the behaviour of the system at the interaction
port by, for example, addition of a controller that is also in the form of a PH system.
The control of PH systems can be divided into 4 types: Control by Damping Injection
(CbDI), Control by Interconnection (CbI), Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) and Standard Passivity-Based Control (SPBC);
each subsequent control type applicable to a larger set of stabilizable PH plants than
the previous. The difference between each type is which target closed-loop system is
desired. In this thesis, CbDI, Energy-Balancing Passivity-Based Control (EB-PBC)
(which is a form of CbI) and IDA-PBC will be used to achieve the research objective,
the reasons for which will be explained further on. First, the SPBC problem is explained
such that later on, other PBC types can be viewed as a special case of SPBC.

2-3-1 Standard Passivity-Based Control

If the open-loop PH system satisfies the power-balance equation (2-8) then the control
action u = β(x) + v is said to solve the Standard Passivity-Based Control (SPBC)
problem [42, 41] if the closed-loop system satisfies the desired power-balance equation:

Ḣd(x) = vT z − dd(x) (2-14)

with Hd : Rn → R+ the desired energy function, dd(x) : Rn → R+ the desired damping
and z ∈ Rm a new passive output. An added energy function is defined as:

Ha(x) := Hd(x)−H(x) (2-15)

Now, a state feedback is said to be energy-balancing if the added energy Ha(x) is equal
to the energy supplied to the system by the environment,

Ḣa = −β(x)Ty (2-16)

which implies that the desired energy function Hd(x) in that case is the difference
between the stored and supplied energy.
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2-3 Passivity-Based Control of Port-Hamiltonian Systems 9

The PH system (2-4) in closed-loop with u = β(x) + v satisfies (2-14) iff

∂THd(x)
∂x

(
[J(x)−R(x)]∂H(x)

∂x
+ g(x)β(x)

)
= −dd(x) (2-17)

z(x) = gT (x)∂Hd(x)
∂x

(2-18)

for some function dd(x).

2-3-2 Control by Damping Injection

In CbDI closed-loop asymptotic stability1 is achieved by injecting damping on the
passive output y via:

u = −K(x)y (2-19)
with K(x) > 0, K ∈ Rm a damping matrix on the passive output such that the open-
loop to closed-loop target dynamics can be characterized as follows:

ẋ = [J(x)−R(x)]∂H(x)
∂x

+ g(x)u

⇓

ẋ = [J(x)−Rd(x)]∂H(x)
∂x

(2-20)

with Rd(x) = R(x) + g(x)K(x)gT (x) the desired damping matrix for the closed-loop
system. However, the result of stabilization by damping injection is only applicable if
the desired equilibrium is a minimum of the storage function or Hamiltonian H(x).

2-3-3 Control by Interconnection

In light of the results of CbDI, an extra degree of freedom in the controller design can
be created by shaping the closed-loop Hamiltonian, and there are several approaches
to do so [42]. Motivated by the fact that interconnections of PH systems again yield
PH systems, a controller is defined as the PH system:

ΣC :


ζ̇ = [JC(ζ)−RC(ζ)]∂HC(ζ)

∂ζ
+ gC(ζ)uC , x ∈ XC, uC ∈ Rm

yC = gTC(ζ)∂HC(ζ)
∂ζ

, yC ∈ Rm
(2-21)

with JC(ζ) = −JT (ζ), RC(ζ) = RT
C(ζ) ≥ 0 and HC(ζ) the controller Hamiltonian. With

the power-conserving interconnection:

ΣI :
{[

u
uC

]
=
[

0 −Im
Im 0

] [
y
yC

]
+
[
v
vC

]
(2-22)

1It should be noted that the system should also be zero-state detectable.
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10 Port-Hamiltonian Systems

with v, vC external inputs, the following closed-loop system is obtained:[
ẋ
ζ̇

]
=
[
J(x)−R(x) −g(x)gTC(ζ)
gC(ζ)gT (x) JC(ζ)−RC(ζ)

] [
∂H(x)
∂x

∂HC(ζ)
∂ζ

]
+
[
g(x) 0

0 gC(ζ)

] [
v
vC

]
[
y
yC

]
=
[
g(x) 0

0 gC(ζ)

] [
∂H(x)
∂x

∂HC(ζ)
∂ζ

] (2-23)

which is still a port-Hamiltonian system with HamiltonianH(x)+HC(ζ). By employing
the Energy-Casimir method, energy-based Lyapunov functions of the following form are
searched for:

L(x, ζ) = H(x) +HC(ζ) + C(x, ζ) (2-24)

Now, the idea, established in [44], is to look for Casimir functions of the form:

C(x, ζ) = G(x)− ζ + κ (2-25)

with κ a level constant. Equation (2-25) implies looking for solutions of the set of
PDE’s (2-11):

[
∂TG(x)
∂x

−Im
] [J(x)−R(x) −g(x)gTC(ζ)

gC(ζ)gT (x) JC(ζ)−RC(ζ)

]
= 0 (2-26)

Now, (2-25) satisfies (2-26) if the following set of equalities is satisfied [44]:

∂TG(x)
∂x

J(x)∂G(x)
∂x

= JC(ζ) (2-27)

R(x)∂G(x)
∂x

= 0 (2-28)

RC(ζ) = 0 (2-29)
∂TG(x)
∂x

J(x) = gC(ζ)gT (x) (2-30)

In this case, the closed-loop dynamics are reduced to the set:

Ω = {(x, ζ)|ζ = G(x) + κ} (2-31)

which means that the closed-loop dynamics are restricted to a subspace of the extended
state space2 (x, ζ). Combining now the first equation of (2-21) with (2-28)-(2-29) results
in the x-dynamics (with v, vC = 0):

ẋ = [J(x)−R(x)]
(
∂H(x)
∂x

+ ∂G(x)
∂x

∂HC(ζ)
∂ζ

)
(2-32)

= [J(x)−R(x)]∂Hs(x)
∂x

(2-33)

2It should be noted that this result applies to systems in which all the controller state variables ζ are related
to the system state variables x. Otherwise, a more generalized result holds. (which is quite similar)
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2-3 Passivity-Based Control of Port-Hamiltonian Systems 11

with Hs(x) = H(x) + HC(G(x) + κ) the shaped Hamiltonian of the system. Equation
(2-33) has a clear interpretation in terms of Energy-Balancing Passivity-Based Control3:

dHs(x)
dt

= dH(x)
dt

+ dHC(x)
dt

= dH(x)
dt

− uTy (2-34)

which means that the shaped Hamiltonian Hs(x) is equal to the difference between
the (original) plant Hamiltonian H(x) and the supplied energy by the control system
(2-21). Furthermore, the shaped Hamiltonian is given by:

Hs(x) = H(x) +HC(G(x) + κ) (2-35)

which means that the described method generates Casimir functions by appropriately
choosing HC(x). In [41], the following controller4 Hamiltonian system is chosen:

ΣC :


ζ̇ = uC

yC = ∂HC(ζ)
∂ζ

(2-36)

and using the power-preserving interconnection (2-22) with vC = 0 the set of equalities
that need to be satisfied for the existence of Casimir functions (2-26) reduce to:

∂TG(x)
∂x

[J(x)−R(x)] = gT (x) (2-37)

∂TG(x)
∂x

g(x) = 0 (2-38)

Then, (2-24) is such that L̇(x, ζ) ≤ vTy, which implies cyclo-passivity. This form (i.e.
choosing (2-36) as controller PH system) of Control by Interconnection will be abbrevi-
ated with CbI. It has been shown in [41] that CbI can be extended to increase the set of
stabilizable plants and that common types of Passivity-Based Control for PH systems,
such as EB-PBC [42, 41], Power-Shaping Passivity-Based Control (PS-PBC) [37, 16, 15]
and Basic Interconnection and Damping Assignment Passivity-Based Control [40] are
forms of CbI.

u y
+
-

Σ

Σ
c

u
c

y
c +

+ v
c

v

Figure 2-1: Control by Interconnection of a port-Hamiltonian system Σ by interconnection with
a controller Hamiltonian system ΣC.

3See also Section 2-3-3.
4This is actually (nonlinear) integral control [23].
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12 Port-Hamiltonian Systems

Energy-Balancing Passivity-Based Control

The existence of Casimir functions can be relaxed using control as a state-modulated
(SM) source [42, 45, 41]. The nonlinear integral controller of (2-36) is again considered
as the controller ΣC which the system will be interconnected with. Furthermore, the
unitary feedback is now replaced by a static state dependent feedback u = α(x) such
that:

ΣSM
I :

{[
u
uC

]
=
[

0 −α(x)
αT (x) 0

] [
y
yC

]
+
[
v
0

]
(2-39)

The closed-loop system with the new feedback interconnection and the controller ΣC
yields: [

ẋ
ζ̇

]
=
[
J(x)−R(x) −g(x)α(x)
αT (x)gT (x) 0

] [
∂H(x)
∂x

∂HC(ζ)
∂ζ

]
+
[
g(x)

0

]
v (2-40)

such that the set of equalities that need to be satisfied for the existence of Casimir
functions (2-26) reduce to:

∂TG(x)
∂x

[J(x)−R(x)] = αT (x)gT (x) (2-41)

∂TG(x)
∂x

g(x) = 0 (2-42)

In [41], α(x) : Rn → Rm×m is defined as:

α(x) = −(gT (x)g(x))−1gT (x)[J(x)−R(x)]T ∂G(x)
∂x

(2-43)

such that (2-41)-(2-42) reduce to:

g⊥(x)[J(x)−R(x)]T ∂G(x)
∂x

= 0 (2-44)

∂TG(x)
∂x

g(x) = 0 (2-45)

with g⊥(x) the full-rank left annihilator of g(x), i.e. g⊥(x)g(x) = 0. With this choice
the cyclo-passivity inequality (2-8) with storage function (2-24) is satisfied. This form
of CbI is also called Energy-Balancing Passivity-Based Control (EB-PBC). Usually,
EB-PBC is derived from a SPBC point of view. If, in (2-17),

dd(x) = d = −∂
TH(x)
∂x

[J(x)−R(x)]∂H(x)
∂x

(2-46)

the control law:

α(x) = −(gT (x)g(x))−1gT (x)[J(x)−R(x)]∂Ha(x)
∂x

(2-47)
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2-3 Passivity-Based Control of Port-Hamiltonian Systems 13

solves the SPBC problem with Ha(x) a solution of:

g⊥(x)[J(x)−R(x)]∂Ha(x)
∂x

= 0 (2-48)

gT (x)∂Ha(x)
∂x

= 0 (2-49)

and the controller is energy-balancing as in (2-16)5. Hence, EB-PBC is equivalent to
the state-modulated CbI for ∂G(x)

∂x
= ∂Ha(x)

∂x
(compare (2-48)-(2-49) with (2-44)-(2-45)).

The target dynamics obtained in EB-PBC are:

ẋ = [J(x)−R(x)]∂H(x)
∂x

+ g(x)u

⇓

ẋ = [J(x)−R(x)]∂Hd(x)
∂x

(2-50)

Usually, damping is then injected according to (2-19) to asymptotically stabilize the
closed-loop system at the desired equilibrium. It is now possible to constitute the main
reasons for choosing EB-PBC as one of the Passivity-Based Control (PBC) control
techniques for this thesis.

• In EB-PBC, the resulting control law (2-47) can be interpreted in terms of energy-
balancing, which means that the added energy is equal to the energy supplied to
the system by the environment. Hence, in the closed-loop system the energy is
shaped, which means that by applying EB-PBC, it is possible to generate a closed-
loop energy landscape. The advantage is that this type of control has a physical
interpretation, e.g. in mechanical systems the change in energy will be the power
(force times velocity) supplied to the system.

• From a CbI perspective, the controller can be viewed and formulated in terms
of interconnecting subsystems in PH form with a controller PH system. The
advantage is that it is possible to interpret the control in terms of ‘building blocks’
of PH systems interconnected in a power-preserving way with each other yielding
another PH system. This modular approach allows breaking down complex control
problems by interconnecting simpler subsystems.

Dissipation Obstacle

A disadvantage of EB-PBC however, is that it suffers from the dissipation obstacle.
From equation (2-28) it is also possible to write:

R(x)∂HC(G(x))
∂x

= 0 (2-51)

5The proof can be constructed by filling in (2-47) in the general to-be solved PDE (2-17).
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u y
+
-

Σ

Σ
C

u
C

y
C

α(x)α(x)

v

Figure 2-2: Control by state-modulated interconnection such that the existence of Casimir
functions is relaxed.

which means that Casimir functions satisfying (2-28) are independent of those coor-
dinates affected by damping in the system. In other words, HC(x) can only depend
on those coordinates where there is no natural damping and thus energy can only be
shaped for those coordinates. This is known as the dissipation obstacle [42]. In me-
chanical systems, this is not an issue because damping is associated with velocities and
generally, the control objective is to regulate the position (i.e. shape the potential en-
ergy), which causes the power to be driven to zero (and thus extracting a finite amount
of energy of the controller). However, in for example RLC circuits it is possible that
the power, which is the product of current and voltage, is nonzero in the equilibrium.
In that case, an infinite amount of energy from the controller is necessary, which means
that there is infinite dissipation. Hence, the dissipation obstacle decreases the set of
stabilizable plants when applying EB-PBC6.

2-3-4 Interconnection and Damping Assignment Passivity-Based Control

To overcome the dissipation obstacle and increase the set of stabilizable plants var-
ious techniques have been proposed, such as Power-Shaping Passivity-Based Con-
trol (PS-PBC) and Interconnection and Damping Assignment Passivity-Based Control
(IDA-PBC). In these techniques, the target dynamics are of the form

ẋ = F (x)∂H(x)
∂x

+ g(x)u

⇓

ẋ = Fd(x)∂Hd(x)
∂x

(2-52)

with Fd(x) = [Jd(x) − Rd(x)] containing the desired interconnection and damping
matrices satisfying

Fd(x) + Fd(x)T ≤ 0 (2-53)
Thus, not only the energy is shaped, but also the interconnection and damping matrices
are changed. In this thesis, IDA-PBC7 [45] is considered, which is the most general form

6Equations (2-45) and (2-49) imply that the dissipation obstacle is present in EB-PBC.
7The definition of IDA-PBC provided here is not exactly the definition by [45], because Ortega et al.

consider a broader class of systems with control also acting on the interconnection structure (i.e. J(x, u)) and
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2-3 Passivity-Based Control of Port-Hamiltonian Systems 15

of PBC techniques that change the interconnection and damping matrices. Define the
desired interconnection and damping matrices Jd(x) = −JTd (x) and Rd(x) = RT

d (x) ≥
0. Now, assume that functions β(x), Ja(x), Ra(x) and a vector function D(x) can be
found such that:

[J(x) + Ja(x)− (R(x) +Ra(x))]D(x) = −[Ja(x)−Ra(x)]∂H(x)
∂x

+ g(x)β(x) (2-54)

and satisfying the following properties:

1. Structure preservation:

Jd(x) := J(x) + Ja(x) = −[J(x) + Ja(x)]T (2-55)
Rd(x) := R(x) +Ra(x) = [R(x) +Ra(x)]T ≥ 0 (2-56)

2. Integrability: D(x) is the gradient of a scalar function:

∂D(x)
∂x

=
[
∂D(x)
∂x

]T
(2-57)

3. Equilibrium assignment: D(x) at x∗ satisfies:

D(x∗) = −∂H(x∗)
∂x

(2-58)

4. Lyapunov stability: The Jacobian of D(x) at x∗ satisfies the bound:

∂D(x)
∂x∗

> −∂
2H(x∗)
∂x2 (2-59)

Then, the closed-loop system u = β(x) is a PH system with:

Hd(x) := H(x) +Ha(x) (2-60)
∂Ha(x)
∂x

= D(x) (2-61)

and x∗ will be a locally stable equilibrium of the closed-loop system (via LaSalle’s
invariance principle asymptotic stability can be proven). It can be concluded that
the solvability of the IDA-PBC problem comes down to solving (2-54), which can
equivalently be rewritten as:

g⊥(x)
(

[Jd(x)−Rd(x)]∂Ha(x)
∂x

)
= −g⊥(x)

(
[Ja(x)−Ra(x)]∂H(x)

∂x

)
(2-62)

with g⊥(x) the left annihilator of g(x), i.e. g⊥(x)g(x) = 0. Equation (2-62) is called the
matching equation of IDA-PBC [36]. To solve (2-62), there are three different methods
[36]:
constant source inputs (g(x, u)). This leads to almost the same results, but for the sake of consistency here
IDA-PBC is explained with respect to the PH system given in (2-4).
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16 Port-Hamiltonian Systems

1. Non-parameterized IDA-PBC [45]: fix Jd(x) and Rd(x) and compute Hd(x).
Then, the control law can be explicitly computed:

β(x) =[gT (x)g(x)]−1gT (x)
{

[Jd(x) +Rd(x)]∂Hd(x)
∂x

− [J(x) +R(x)]∂H(x)
∂x

}
(2-63)

2. Algebraic IDA-PBC: fix the desired Hamiltonian Hd(x) and compute Rd(x), Jd(x)
and g⊥(x).

3. Parameterized IDA-PBC: Take advantage of the structure of the PDE (2-62),
such as in [40, 45, 1, 17].

IDA-PBC solves the SPBC problem if, in (2-14),

dd(x) = −∂
THd(x)
∂x

Fd(x)∂Hd(x)
∂x

(2-64)

and the control law β(x) as in (2-63). It is now possible to constitute the main reasons
for choosing IDA-PBC as one of the PBC control techniques for this thesis.

• IDA-PBC does not suffer from the dissipation obstacle, and hence allows for a
larger set of plants to be stabilized.

• IDA-PBC has complete freedom in choosing Fd(x) (the only constraint is (2-53)),
which makes it more general than e.g. PS-PBC, where Fd(x) is the result of
solving a particular PDE [41].

• It has been widely applied to mechanical and electromechanical systems, and
several extensions have been made to even further increase its applicability [1, 31,
34, 9].

2-4 Control Saturation

Control saturation is a very important aspect of control design, since most physical
applications have limited actuators, such that not every calculated control action can
be sent to the system. Therefore, it is important to incorporate control saturation.
However, there has been little account of incorporating control saturation in PBC
for PH systems. Escobar et al. [13] incorporate control saturation in PBC in an
Euler-Lagrange setting, which had been previously studied by Loria et al. in [30]. A
more extensive discussion on saturation for Euler-Lagrange systems in PBC is given in
[38]. However, these methods do not incorporate any form of adaptation or learning.
Furthermore, the later developed PH system is a framework that can be applied to a
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broader class of systems than those described in [13, 30, 38]. In this thesis, the following
general saturation function will be considered:

usat(x) = ς(u(x)) (2-65)

with ς : Rm 7→ S, S ⊂ Rm a saturation function such that:

ς(u(x)) ∈ S ∀u (2-66)

Examples of functions ς are the hyperbolic tangent function (tanh) and the arctangent
function (arctan).

2-5 Conclusion

The PH framework is an intuitive way of representing dynamical systems in terms of
energy exchange and ports modeling the interaction between the basic elements of a
system. PBC of PH systems is based on stabilization by passivation, and the two PBC
techniques that will be used in this thesis are EB-PBC and IDA-PBC. EB-PBC is
useful because of its physical interpretation, in terms of energy shaping and in terms of
Control by Interconnection. It suffers from the dissipation obstacle however, which is
why IDA-PBC is also considered as a more general form of PBC. Control saturation is
generally not incorporated in PBC for PH systems. Only for Euler-Lagrange systems,
which are a subclass of systems of the form (2-4), research has been done on control
design incorporating control saturation. However, this research often does not include
a form of adaptivity or learning.
Finally, EB-PBC and IDA-PBC can be summarized by their open-loop to closed-loop
target dynamics (2-50) resp. (2-52) and the PDE that has to be solved:

• EB-PBC: Solve (2-48)-(2-49):[
g⊥(x)F (x)
gT (x)

]
∂Ha(x)
∂x

= 0 (2-67)

• IDA-PBC: Solve (2-62):

g⊥(x)Fd(x)∂Ha(x)
∂x

= −g⊥(x)(Fd(x)− F (x))∂H(x)
∂x

(2-68)

Hence, the challenge in this thesis is to be able to find a solution to these Partial
Differential Equations (PDE’s) using learning techniques while control saturation is
present without explicitly having to solve a PDE, which is generally difficult. Therefore,
Reinforcement Learning will be used, which is the topic of the next chapter.
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Chapter 3

Reinforcement Learning

In this chapter, the RL problem is explained and Actor-Critic (AC) methods are intro-
duced. This class of Reinforcement Learning (RL) methods will be used to learn the
PBC control laws without having to explicitly solve a PDE.

3-1 Introduction

In the reinforcement learning problem [50], the goal is that an agent learns and takes
actions (i.e. control strategy) in some state so as to maximize some numerical reward,
while interacting with the environment. The agent adapts its behaviour based on the
reward it receives from the environment. The rewards received due to interaction with
the environment are stored in a value function that determines for the agent how ‘good’
it is to be in a given state. The actions to be taken by the agent are based on a function
called the policy.

3-2 The Reinforcement Learning Framework

The general framework will be described in discrete-time, because most RL methods
deal with discrete-time1. The following ingredients constitute an RL-problem [50, 4]:

• Agent: The agent is the learning controller and decision maker in the RL-
framework. The key idea is that the agent learns the optimal mapping from
states to actions via the policy.

1For continuous-time RL the interested reader is referred to [10] for an extensive introduction to the topic
and for recent work in this field the reader is referred to [56, 6, 52].

Master of Science Thesis O.R. Sprangers



20 Reinforcement Learning

• Environment: Everything outside the agent. If the state of the environment has
a one-to-one relation with the observed state by the agent, it is called fully observ-
able. Otherwise, it is called partially observable. The state of the environment
gives rise to the reward the agent receives.

• States: A state xk ∈ X is the output of the environment as observed by the
agent in time instant k. Based on the observation of the state, the agent takes an
action.

• Actions: An action uk ∈ U(xk) that the agent takes with U(xk) the set of actions
corresponding to the state xk.

• Reward: The reward is the numerical return on how good or how bad the action
taken in a particular state is as returned by the environment.

• Policy: The policy is the optimal mapping from states to actions (xk 7→ uk) that
the agent tries to find.

3-2-1 Markov Decision Process

In RL, the environment is described by the mapping xk+1 = f(xk, uk), which means that
the environment depends on the previous state and action. In general, the environment
at time instant k+1 depends on everything that has happened prior to this time instant.
Therefore, the probability distribution of the mapping xk, uk → (xk+1, rk+1), that is,
the probability of ending in state xk+1 and receiving reward rk+1 while undertaking
action uk in state xk is defined as:

P{xk+1, rk+1|xk, uk, rk, xk−1, uk−1, . . . , r1, x0, u0} (3-1)

which is a general state-action transition model of the environment. Ideally however,
the state signal is such that it contains a compact summary of all past sensations, yet
it does retain all the relevant past information. If the state signal retains all relevant
information, it is said to satisfy the Markov property [50]. In this case, the probability
distribution reads:

P{xk+1, rk+1|xk, uk} (3-2)
An RL problem that satisfies this property is called a Markov Decision Process (MDP).
In an MDP, one-step dynamics of the environment are sufficient to predict the next
state and immediate reward. For any state x, action u, the state transition probability
function to a next state x′ is given as:

Puxx′ = P{xk+1 = x′|xk = x uk = u} (3-3)

and the expected value of the next reward is given by:

Ru
xx′ = E{rk+1|xk = x, uk = u, xk+1 = x′} (3-4)

These two functions completely specify the most important dynamics of a finite MDP.
When dealing with continuous state spaces, it is only possible to define a probability
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that a region of the state space is reached [19]. Then, the probability of reaching a
state xk+1 in the region Xk+1 ⊆ X from a state xk by applying action uk is given as:

Puxx′ = P{xk+1 ∈ Xk+1|xk, uk} =
∫
Xk+1

f(xk, uk, x′)dx′ (3-5)

with f the state transition probability function. In practice, it is not always possible for
the agent to completely observe the environment due to, for example, sensor limitations
or the specific RL problem the agent is dealing with. In this case, the environment may
still have the Markov property but since the agent only observes part of it, it is called
a Partially Observable Markov Decision Process (POMDP).

3-2-2 Reward Functions

The goal of RL is that the agent tries to maximize an expected cumulative or total
reward described as some function of immediate rewards expected while following policy
π:

J(π) = E{Rk|π} = E{f(. . . , rk−1, rk, rk+1, . . . )|π} (3-6)
In most cases, two reward settings f are considered [51], the discounted sum and average
reward. In this thesis, the discounted sum reward setting is considered, which means
the reward at time instant k is given as a discounted sum of future rewards:

Rk =
N∑
n=0

γnrk+n+1 (3-7)

with γ the discount rate. If γ = 1 the reward is just a sum of all immediate rewards
following the actions that lead to the goal. Furthermore, if N is finite, the task is called
episodic. When it is not episodic, N = ∞ and γ is chosen 0 ≤ γ < 1 such that the
sum remains bounded and future rewards are discounted. Using a discounted reward,
the expected cumulative reward as a function of the policy π can be given as the cost
function2:

J(π) = E

{
N∑
n=0

γnrk+n+1|x0, π

}
(3-8)

3-2-3 Value Functions

To maximize the total expected reward, the agent makes use of value functions, which
define for each state or state-action pair how good it is to be in that state following
policy π. This means that the value function for the discounted reward function for
state xk = x is defined as:

V π(x) = Eπ{Rk|xk = x} = E

{ ∞∑
k=0

γkrk+n+1|xk = x

}
(3-9)

2Also as a normalized expected return [46], but since this will not be used it has been left out.
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where Eπ denotes the expected reward in a state xk = x when the agent follows policy
π. Similarly, a state-action value function for state xk = x and action uk = u can be
defined as:

Qπ(x, u) = Eπ{Rk|xk = x, uk = u} = E

{ ∞∑
k=0

γkrk+n+1|xk = x, uk = u

}
(3-10)

which defines the expected return starting from state xk = x, applying action uk = u
and following policy π. Similarly, for the average reward setting, the value functions
are given by [19]:

V π(x) = E

{ ∞∑
k=0

rk+n+1 − J(π)|xk = x

}
(3-11)

Qπ(x, u) = E

{ ∞∑
k=0

γkrk+n+1 − J(π)|xk = x, uk = u

}
(3-12)

Now, the optimal policy π∗ is given as the policy that maximizes the value functions:

V ∗(x) = max
π

V π(x) (3-13)
Q∗(x, u) = max

π
Qπ(x, u) (3-14)

with V ∗(x), Q∗(x, u) the optimal state value function and state-action value function,
respectively. In classical RL methods, either one of these two is used. Thus, the
reinforcement learning problem can be viewed as learning a policy that maximizes
either of these two functions.

3-2-4 Policy

As said before, the policy is the optimal mapping from state to actions that the agent
tries to find. A deterministic policy is denoted by πk(x), whereas a policy that defines
a probability distribution over states and actions is denoted by Πk(x, u). A stochastic
policy is a mapping from state-action pairs to probabilities that the action will be
chosen in that state. In most RL methods, the policy is deterministic. In the last
section, the optimal policy was given as the policy that maximizes either one of the
value functions. If during learning the agent assigns to each state or state-action pair
a policy that maximizes the value functions, it is called a greedy policy.

3-2-5 Exploration-Exploitation Dilemma

If a complete model of the environment is known, the agent can always take greedy
actions, thus following the greedy-policy. However, since in most applications no com-
plete model of the environment is known, the agent should not always select its actions
greedily. Instead, the agent should sometimes choose to select an arbitrary or random
action in order to visit some other part of the state space in which possibly better
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solutions can be found. On the other hand, if the agent always chooses its actions
randomly, it will never learn. Therefore, a mix between greedy actions (experience)
and random actions (exploration) has to be made. This constitutes the exploration-
exploitation dilemma. Methods to balance the exploration-exploitation problem are,
for example, the ε-greedy method (i.e. selecting a greedy action with probability ε and
an exploratory action with probability 1− ε) and the Boltzmann-Gibbs method [4].

3-3 Solution Methods

Currently, a convenient way to classify solution methods for the reinforcement learning
problem is into critic-only, actor-only and Actor-Critic (AC) [25, 19] methods. The
latter two are a subdivision of policy gradient based reinforcement learning techniques.
In this thesis, an AC method is used, since these methods combine advantages of actor-
only and critic-only and they were developed to deal with continuous state and action
spaces, which make them more suitable for applications in robotics. In the next section,
the different solution methods are briefly discussed with a focus on AC methods.

3-3-1 Critic-only

In critic-only RL methods, the idea is to find the optimal value function first and then
derive the optimal policy from this value function. A short overview is given below.

• The solution techniques that incorporate full knowledge of the environment are
called Dynamic Programming (DP) methods [50, 4]. In these methods, Bellman
optimality equations are solved using policy iteration and value iteration. The
interested reader is referred to [50, 4] for an elaborate explanation of these tech-
niques.

• If no perfect model knowledge is available, most critic-only methods use Temporal
Difference (TD) learning [50], for which an elementary 1-step update rule for the
value function can be given as:

V (sk)← V (sk) + αk [rk+1 + γV (sk+1)− V (sk)]︸ ︷︷ ︸
TD error δk

(3-15)

with αk > 0 the learning rate (which can be a constant) and δk the Temporal
Difference (TD)-error. Well-known critic-only methods that use TD learning are
Q-learning [50] and SARSA [50], and more recently QV -learning [57] and related
QV algorithms, for which the interested reader is referred to [58].

3-3-2 Actor-only

In actor-only methods, an optimal policy is searched for immediately (as opposed to
critic-only, where first an optimal value function is searched for to compute the optimal
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Figure 3-1: A general structure of actor-critic methods. After an action, the action is evaluated
using the critic and the TD-error is used to update the actor. Figure adopted from [50].

policy with), which means that the algorithm searches in the policy space (and hence
the search space should be restricted). Typically, a class of policies is parameterized
by some parameter vector ϑ [19]. In this way, prior knowledge about the task can
be incorporated but the drawback is that if no information on the task is available a
priori, the class of policies is difficult to define. Examples of actor-only algorithms are
Williams’s REINFORCE [60] and also evolutionary algorithms have been applied to
search for policies directly [21].

Basic Policy Gradient Methods

Basic policy gradient methods are actor-only methods in which the policy is parame-
terized and a search over the policy space is done directly using a gradient. Suppose
the differentiable parameterized policy πϑ is given with ϑ the parameter vector, then
the gradient of the cost function ∇J(π) (3-8) can be immediately given

∂J

∂π

∂π

∂ϑ
= ∂J

∂ϑ
(3-16)

The gradient of J(π(ϑ)) can be estimated by simulation and the update law for the
parameter vector ϑ can be easily computed using a gradient ascent learning rule:

ϑk+1 = ϑk + α
∂J

∂ϑ
(3-17)

with α > 0 small enough such that J(π(ϑk+1)) ≥ J(π(ϑk)).

3-3-3 Actor-Critic Methods

The term actor-critic originates from [5] and a first study on these methods was given
in [25]. In actor-critic methods, the policy (actor: selects the actions) and value func-
tion (critic: criticizes the actions taken by the actor) are improved separately. This
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property makes AC methods very useful in continuous state and action tasks, where
the policy and value function can be separately approximated. Also, it allows for an
easy incorporation of model knowledge by suitably defining an actor parameterization,
so as to speed up learning.
A general overview of an actor-critic method is given in Figure 3-1. Recent work in
the field of AC methods focuses on approximating the cost function gradient (3-16).
An important contribution has been the work on the Policy Gradient Theorem [51, 25]
and the development of Natural Actor-Critic (NAC) algorithms [46, 22]. The interested
reader is referred to [19] for an overview of current work in AC methods. In this thesis,
the Standard Actor-Critic (S-AC) from [20], which will be explained below, is used as
a basis AC method to combine with PBC techniques.

Standard Actor-Critic Define the approximated policy:

π̂ : Rn 7→ Rm (3-18)

and the approximated value function:

V̂ : Rn 7→ R (3-19)

Denote the parameterization of the actor by:

ϑ ∈ Rp (3-20)

and of the critic by:
θ ∈ Rq (3-21)

Then, a basis function approximation linear in its parameters for the actor can be
defined as:

π̂(x, ϑ) = ϑTφa(x) (3-22)
with φa(x) ∈ Rp the actor’s basis functions and for the critic as:

V̂ (x, θ) = θTφc(x) (3-23)

with φc(x) ∈ Rq the critic’s basis functions. Next, the update equations for the actor
and the critic can be defined.

• Critic The update equations for the critic (value function) are governed by a TD
error (3-15), which consists of the error in the approximation of the critic and the
immediate reward received by the environment:

δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk) (3-24)

and the update for the parameter vector θ is based on a gradient ascent learning
rule [4, 19]:

θk+1 = θk + αcδk+1∇θV̂ (xk, θk) (3-25)
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with αc ∈ (0, 1] the learning rate of the critic. Eligibility traces are then used to
update the value function not only for the previous state, but also for past states
according to some decaying schedule. The eligibility trace defined as ek(x) ∈ R+

is updated at each time step by a factor γλ, with λ the trace-decay parameter
[50, 4] and γ still the discount factor. In the S-AC method, replacing traces is
used, which updates ek(x) in the following manner for the current state xk:

ek(x) =
{
γλek−1 if x 6= xk

1 if x = xk
(3-26)

such that the parameter vector update (3-25) becomes

ek+1 = γλek(x) +∇θV̂ (xk, θk) (3-27)
θk+1 = θk + αcδk+1ek+1 (3-28)

• Actor The action selection is based on an exploration-exploitation balance achieved
by perturbing the action uk with a zero-mean exploration term ∆uk:

uk = π̂(xk, ϑk) + ∆uk (3-29)

such that the update rule for the actor becomes

ϑk+1 = ϑk + αa δk+1∆uk∇ϑπ̂(xk, ϑk)︸ ︷︷ ︸
∇ϑJ(xk)

(3-30)

with αa ∈ (0, 1] the learning rate of the actor and ∇ϑJ(xk) is the gradient of cost
function (3-16), which is heuristically estimated [18].

The basic idea of the S-AC method can thus be viewed as that an action is taken and
the TD-error is computed by the critic. If this error is positive (negative) the policy is
updated towards (away from) the perturbation ∆uk. An overview of the algorithm is
given in Algorithm 3.1.

3-4 Conclusion

RL is a learning control method that can solve complex nonlinear (stochastic) control
problems without the need for a process model or explicitly solving a set of equations.
A disadvantage of RL methods is that without having model knowledge, learning can
be slow and computationally expensive. In particular, AC methods provide an intuitive
way of representing a control policy and value function such that these functions can be
approximated using standard function approximators. This is convenient when working
with continuous state and action spaces, such as in complex robotic systems. The S-AC
method is an easy and intuitive AC method in which the policy gradient can be easily
derived from the actor parameterization. This property is useful when combining PBC
techniques with AC methods. Hence, the combination of the S-AC method with a PBC
technique, EB-PBC, will be the topic of the next chapter.
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Algorithm 3.1 Standard Actor-Critic
Input: λ, γ, αa, αc.
1: e0(x) = 0 ∀x
2: Initialize x0, θ0, ϑ0
3: k ← 1
4: loop
5: Execute: Draw action uk ∼ π̂(xk, ϑk), observe next state xk+1 and reward rk+1 =
ρ(xk, uk)

6: Critic Update:
7: δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk)
8: ek+1 = γλek +∇θV̂ (xk, θk)
9: θk+1 = θk + αcδk+1ek+1(x)
10: Actor update:
11: ϑk+1 = ϑk + αaδk+1∆uk∇ϑπ̂(xk, ϑk)
12: end loop
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Chapter 4

Paper

In Chapter 2 all the relevant information on PBC and PH systems was introduced, whereas in Chap-
ter 3 an introduction to AC RL was given. Hence, all the ingredients to combine a PBC technique
with AC RL are present, thus the main result of this thesis can be introduced, which is the topic of
this chapter and has the form of a paper.

Energy-balancing passivity-based control through re-
inforcement learning1

Abstract— Passivity-based control for port-Hamiltonian systems provides an intuitive
way of achieving stabilization by rendering a system passive with respect to a desired
storage function. However, in most instances the control law has to be calculated by
solving a complex partial differential equation (PDE). This paper considers energy-
balancing passivity-based control (EB-PBC), which is a form of PBC in which the
closed-loop energy is equal to the difference between the stored and supplied energies.
We propose a method to parameterize EB-PBC such that the PDE that has to be
solved is split into two terms: a fixed term that satisfies a matching condition following
from the EB-PBC framework and a term that can be parameterized, such that control
saturation can be incorporated. The parameters of the control law are then found
using actor-critic reinforcement learning, enabling learning near-optimal control policies
satisfying a desired closed-loop energy landscape. The advantages are that no PDE has
to be solved, near-optimal controllers can be generated using energy shaping techniques
and the solutions learned can be interpreted in terms of energy shaping and damping
injection, which makes it possible to numerically assess stability using passivity theory.
From the reinforcement learning perspective, our proposal allows for the class of port-
Hamiltonian systems to be incorporated in the actor-critic framework, speeding up the
learning thanks to the resulting parameterization of the policy. The method has been

1To be submitted to Automatica.
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successfully applied to the pendulum swing-up problem in simulations and real-life
experiments.

4-1 Introduction

Passivity-based control (PBC) [39] is a methodology that achieves the control objective
by rendering a system passive with respect to a desired storage function [41]. Different
forms of PBC have been successfully applied to design robust controllers [53] for me-
chanical systems and electrical circuits [41]-[42]. A key feature of PBC is that it exploits
structural properties of the system. In this paper, we are interested in the passivity-
based control of systems endowed with a special structure, called port-Hamiltonian
(PH) systems. PH systems have been widely used in PBC applications [49, 12]. Their
geometric structure allows reformulating a PBC problem in terms of solving a set of
partial differential equations (PDE’s). Much research in the literature concerns solving
or simplifying such generally complex PDE’s [41].

Passivity-based control of port Hamiltonian systems strongly relies on models. Other
control techniques have been developed when no models are known. One such example
is reinforcement learning (RL) [50]. RL is a semi-supervised learning control method
that can solve optimal (stochastic) control problems for nonlinear systems, without
the need for a process model or for explicitly solving complex equations. In RL the
controller receives an immediate numerical reward as a function of the process state and
possibly control action. The goal is to find an optimal control policy that maximizes
the cumulative long-term rewards, which corresponds to maximizing a value function
[50]. In this paper, we use actor-critic techniques [25], which are a class of RL methods
in which a separate actor and critic are learned. The critic approximates the value
function and the actor the policy (control law). Actor-critic reinforcement learning is
suitable for problems with continuous state and action spaces. A general disadvantage
of RL is that the progress of learning can be very slow and non-monotonic. However,
by incorporating (partial) model knowledge, learning can be sped up [20].

In this paper we address three important issues: First, we propose a learning control
structure within the PH framework that avoids solving complex PDE’s while retaining
important properties of the PBC. To this end, first a parameterization of a particular
type of PBC, called energy-balancing passivity-based control (EB-PBC), is proposed
such that the PDE arising in EB-PBC can be split in a non-assignable part satisfying
a matching condition following from the EB-PBC framework and an assignable part
that can be parameterized. Then, by applying actor-critic reinforcement learning the
parameterized part can be learned, such that the PDE does not have to be explicitly
solved. Second, we incorporate control input saturation. To the authors’ best knowl-
edge, there has been little account of either incorporating control saturation in PBC for
PH systems [13, 2] or facilitating learning for PH systems [14]. Third, from a learning
point of view, we present a systematic way of incorporating a priori knowledge into a
RL problem. Thus, this work combines the advantages of both aforementioned control
techniques, PBC and RL, and mitigates some of their respective disadvantages. The
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approach proposed in this paper yields, after learning, an input-saturated controller
that can be interpreted in terms of energy shaping control strategies.
The theoretical background on PH systems and actor-critic reinforcement learning is
described in Section 4-2 and Section 4-3, respectively. In Section 4-4, our proposal for
a parameterization of input-saturated EB-PBC control, compatible with actor-critic
reinforcement learning, is introduced. Section 4-6 provides simulation and experimental
results for the problem of swinging up an input-saturated inverted pendulum. Section 4-
7 relates our results to the literature and Section 4-8 concludes the paper.

4-2 Port-Hamiltonian Systems

Port-Hamiltonian (PH) systems are a natural way of representing a physical system in
terms of its energy exchange and of ports modeling the interaction between the basic
elements of the system and its environment [42]. The general framework of PH systems
was introduced in [33] and was formalized in [54, 53]. In this paper, we consider the
input-state-output representation of the PH system which is of the form2:

Σ :
{
ẋ = [J(x)−R(x)]∇xH(x) + g(x)u
y = gT (x)∇xH(x)

(4-1)

where x ∈ Rn is the state vector, u ∈ Rm, m ≤ n is the control input, J,R : Rn → Rn×n
with J(x) = −J(x)T and R(x) = R(x)T ≥ 0 are the interconnection and damping
matrix, respectively, H : Rn → R the Hamiltonian which is the stored energy in the
system, u, y ∈ Rm are conjugated variables whose product has the unit of power and
g : Rn → Rn×m is the input matrix assumed to be full rank. For the remainder of this
paper, we denote

F (x) := J(x)−R(x) (4-2)
This matrix satisfies F (x) + F T (x) = −2R(x) ≤ 0. System (4-1) satisfies the power-
balance equation [41]:

Ḣ(x) = (∇xH(x))T ẋ
= − (∇xH(x))T R(x)∇xH(x) + uTy (4-3)

Since R(x) ≥ 0, we obtain:
Ḣ(x) ≤ uTy (4-4)

which is called the passivity inequality, if H(x) is positive semi-definite, and cyclo-
passivity inequality, if H(x) is not positive semi-definite nor bounded from below [41].
Hence, systems satisfying (4-4) are called (cyclo-)passive systems.
The goal is to obtain the target closed-loop system:

Σcl : ẋ = [J(x)−Rd(x)]∇xHd(x) (4-5)
2We use the notation ∇x := ∂/∂x. Furthermore, all (gradient) vectors are column vectors.
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through energy shaping using EB-PBC and damping injection, such that Hd(x) is the
desired closed-loop energy which has a minimum at the desired equilibrium x∗ and
satisfies:

Ḣd(x) = − (∇xHd(x))T Rd(x)∇xHd(x) (4-6)
which implies (cyclo-)passivity according to (4-3)-(4-4) if the desired damping Rd(x) ≥
0. Hence, the control objective is achieved by rendering the closed-loop system passive
with respect to the desired storage function Hd(x).

4-2-1 Energy Shaping

Define the added energy function:

Ha(x) := Hd(x)−H(x) (4-7)

A state-feedback law ues(x) is said to satisfy the energy-balancing property if it satisfies:

Ḣa(x) = −uTes(x)y (4-8)

If (4-8) holds, the desired energyHd(x) is the difference between the stored and supplied
energy. Assuming g(x) ∈ Rn×m, m < n, rank {g(x)} = m, the control law:

ues(x) = g†(x)F (x)∇xHa(x) (4-9)

with g†(x) = (gT (x)g(x))−1gT (x) solves the EB-PBC problem with Ha(x) a solution of
the following set of PDE’s [41]:[

g⊥(x)F T (x)
gT (x)

]
∇xHa(x) = 0 (4-10)

with g⊥(x) ∈ R(n−m)×n the full rank left-annihilator of g(x), i.e. g⊥(x)g(x) = 0.

4-2-2 Damping Injection

Damping is injected by feeding back the (new) passive output gT (x)∇xHd(x),

udi(x) = −K(x)gT (x)∇xHd(x) (4-11)

with K(x) ∈ Rm×m, K(x) = KT (x) ≥ 0 such that:

Rd(x) = R(x) + g(x)K(x)gT (x) (4-12)

Hence, the full control law consists of an energy shaping part and a damping injection
part:

u(x) = ues(x) + udi(x)
= g†(x)F (x)∇xHa(x)
−K(x)gT (x)∇xHd(x) (4-13)
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4-2-3 Control Saturation

In this paper, control saturation is incorporated in (4-13) by setting:

usat(x) = ς(u(x)) (4-14)

with ς : Rm → S, S ⊂ Rm, a saturation function such that:

ς(u(x)) ∈ S ∀u (4-15)

Hence, the target dynamics will not be exactly equal to (4-5) but:

ẋ =
{

[J(x)−Rd(x)]∇xHd(x) if usat(x) = u(x)
[J(x)−R(x)]∇xH(x) + g(x)usat(x) otherwise (4-16)

We will show in Section 4-6-3 that it is possible to numerically assess stability based on
passivity for the regions where (4-5) holds. Before presenting our main result, we first
introduce the second control paradigm used in this paper: actor-critic reinforcement
learning.

4-3 Actor-Critic Reinforcement Learning

In reinforcement learning, the system to be controlled (called the ‘environment’ in the
RL literature) is modeled as a Markov decision process (MDP). In a deterministic
setting this MDP is defined by the tuple M(X,U, f, ρ), where X is the state space, U
the action space and f : X × U → X the state transition function that describes the
process to be controlled that returns the state xk+1 after applying action uk in state
xk. The vector xk is obtained by applying a zero-order hold discretization xk = x(kTs)
with Ts the sampling time. The reward function is defined by ρ : X × U → R and
returns a scalar reward rk+1 = ρ(xk+1, uk) after each transition. The goal of RL is to
find an optimal control policy π : X → U by maximizing an expected cumulative or
total reward described as some function of the immediate rewards expected. In this
paper, we consider a discounted sum of rewards. The value function V π : X → R,

V π(x) =
∞∑
i=0

γirπk+i+1

=
∞∑
i=0

γiρ(xk+i+1, π(xk+i)), x = xk (4-17)

approximates this discounted sum during learning while following policy π where γ ∈
[0, 1) is the discount factor.
When dealing with large and/or continuous state and action spaces it is necessary to
approximate the value function and policy. Actor-critic (AC) algorithms [5, 25] learn
a separate actor (policy π) and critic (value function V π). The critic approximates
and updates (improves) the value function. Then, the actor’s parameters are updated
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in the direction of that improvement. The actor and critic are usually defined by a
differentiable parameterization such that gradient ascent can be used to update the
parameters. This is beneficial when dealing with continuous action spaces [51].
In this paper, the temporal-difference based Standard Actor-Critic (S-AC) algorithm
from [20] is used. Define the approximated policy π̂ : Rn → Rm and the approximated
value function as V̂ : Rn → R. Denote the parameterization of the actor by ϑ ∈ Rp
and of the critic by θ ∈ Rq. The temporal difference [50]:

δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk) (4-18)

is used to update the critic parameters using the following gradient ascent update rule:

θk+1 = θk + αcδk+1∇θV̂ (xk, θk) (4-19)

in which αc > 0 is the learning rate. Eligibility traces ek ∈ Rq [50] can be used
to speed up learning by including reward information about previously visited states.
The update for the critic parameters becomes:

ek+1 = γλek +∇θV̂ (xk, θk) (4-20)
θk+1 = θk + αcδk+1ek+1 (4-21)

with λ ∈ [0, 1) the trace-decay rate. The policy approximation can be updated in a
similar fashion, as described below.
RL needs exploration in order to visit new, unseen parts of the state-action space so
as to possibly find better policies. This is achieved by perturbing the policy with a
zero-mean random exploration term ∆uk. The overall control action now becomes:

uk = π̂(xk, ϑk) + ∆uk (4-22)

The policy update is such that the policy parameters are updated towards (away from)
∆uk if the temporal difference (4-18) is positive (negative). This leads to the following
policy update rule:

ϑk+1 = ϑk + αaδk+1∆uk∇ϑπ̂(xk, ϑk) (4-23)
with αa > 0 the actor learning rate.

4-4 Energy-Balancing Actor-Critic

In this section we present our main results. Our approach is that we will use the
PDE (4-10) and split it into an assignable, parameterizable part and an unassignable
part that satisfies a matching condition. In this way, it is possible to parameterize the
desired closed-loop HamiltonianHd(x) and simultaneously satisfy (4-10). After that, we
parameterize the damping matrix K(x). The two parameterized variables - the desired
closed-loop energy Hd(x) and damping K(x) - are then suitable for Actor-Critic RL by
defining two actors for these variables.
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First, we reformulate the PDE (4-10) in terms of the desired closed-loop energy Hd(x)
by applying (4-7): [

g⊥(x)F T (x)
gT (x)

]
︸ ︷︷ ︸

A(x)

(∇xHd(x)−∇xH(x)) = 0 (4-24)

and we denote the kernel of A(x) as:

ker(A(x)) = {N(x) ∈ Rn×b : A(x)N(x) = 0} (4-25)

such that (4-24) reduces to:

∇xHd(x)−∇xH(x) = N(x)a (4-26)

with a ∈ Rb. Suppose that (an example is given further on) the state vector x can be
split:

x =
[
w
z

]
(4-27)

where z ∈ Rc and w ∈ Rd, c+ d = n corresponding to the zero and non-zero elements
of N(x) such that: [

∇wHd(x)
∇zHd(x)

]
−
[
∇wH(x)
∇zH(x)

]
=
[
Nw(x)

0

]
a (4-28)

We assume that the matrix Nw(x) is rank d, which is always true for mechanical
systems (see section 4-5). It is clear that ∇zHd(x) = ∇zH(x), which we call the
matching condition, and hence∇zHd(x) cannot be chosen freely. Thus, only the desired
closed-loop energy gradient vector ∇wHd(x) is free for assignment for which we use a
differentiable basis function approximation linear in its parameters:

∇wĤd(x, ξ) =
(
ξT
∂φH(w)
∂w

)T
+ ∂H̄d(x)

∂w
(4-29)

with ξ ∈ Re a parameter vector and ∂φH(w)
∂w

the gradient of a basis function φH(w) ∈ Re,
with e chosen sufficiently large to represent the assignable desired closed-loop energy.
The term ∂H̄d(x)

∂w
is the gradient of the unassignable part H̄d(x) of the approximated

desired closed-loop energy (we show in section 4-5 that for mechanical systems the
term H̄d(x) can be the system’s kinetic energy). The approximated desired closed-loop
energy consists of the sum of the unassignable part and an assignable parameterized
part:

Ĥd(x, ξ) = H̄d(x) + ξTφH(w) + C (4-30)

with C chosen to render Ĥd(x, ξ) non-negative. The elements of the desired damping
matrix K(x) of (4-13), denoted K̂(x,Ψ), can be parameterized in a similar way:

[K̂(x,Ψ)]ij =
f∑
l=1

[Ψ]ijl[φK(x)]l (4-31)
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with Ψ ∈ Rm×m×f and
[Ψ]ijl = [Ψ]jil (4-32)

a parameter vector such that K̂(x,Ψ) = K̂T (x,Ψ), (i, j) = 1, . . . ,m and φK(x) ∈ Rf
basis functions. We purposefully do not impose K̂(x,Ψ) ≥ 0 to allow the injection
of energy in the system via the damping term. Although this breaches the passivity
criterion of (4-4) we shall see that local stability can still be numerically demonstrated
using passivity analysis in Section 4-6-3.

The control law (4-13) now becomes:

u(x, ξ,Ψ) = g†(x)F (x)
[
∇wĤd(x, ξ)−∇wH(x)

0

]
− K̂(x,Ψ)gT (x)∇xĤd(x, ξ)

= g†(x)F (x)
(ξT ∂φH(w)

∂w

)T
+ ∂H̄d(x)

∂w
−∇wH(x)

0


− K̂(x,Ψ)gT (x))

(ξT ∂φH(w)
∂w

)T
+ ∂H̄d(x)

∂w

∇zH(x)

 (4-33)

Now, we are ready to introduce the update equations for the parameter vectors ξ, [Ψ]ij.
Denote by ξk, [Ψk]ij the value of the parameters at the discrete time step k. The policy
π̂ of the actor-critic reinforcement learning algorithm is chosen equal to the control law
parameterized by (4-33):

π̂(xk, ξk,Ψk) := u(xk, ξk,Ψk) (4-34)

Taking the saturation into account, the control action with exploration (4-22) becomes:

uk = ς (π̂(xk, ξk, ψk) + ∆uk) (4-35)

The exploration term to be used in the actor update (4-23) must be adjusted to respect
the saturation:

∆ūk = uk − π̂(xk, ξk, ψk) (4-36)

Furthermore, we obtain the following gradients of the saturated policy:

∇ξς(π̂) = ∇π̂ς(π̂)∇ξπ̂ (4-37)
∇[Ψ]ij ς(π̂) = ∇π̂ς(π̂)∇[Ψ]ij π̂ (4-38)

Although not explicitly indicated in the previous equations, the (lack of) differen-
tiability of the saturation function ς has to be considered for the problem at hand.
Finally, the actor parameters ξk, [Ψk]ij are updated according to (4-23), respecting the
saturated policy gradients. For the parameters of the desired Hamiltonian we obtain:

ξk+1 = ξk + αa,ξδk+1∆ūk∇ξς (π̂(xk, ξk,Ψk)) (4-39)
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Algorithm 4.1 Energy-Balancing Actor-Critic
Input: System (4-1), λ, γ, αa for each actor, αc.
1: e0(x) = 0 ∀x
2: Initialize x0, θ0, ξ0, Ψ0
3: k ← 1
4: loop
5: Execute:
6: Draw ∆uk ∼ N (0, σ2), calculate action uk = ς (π̂(xk, ξk, ψk) + ∆uk), ∆ūk =
uk − π̂(xk, ξk, ψk)

7: Observe next state xk+1 and calculate reward rk+1 = ρ(xk+1, uk)
8: Critic:
9: Temporal difference: δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk)

10: Eligibility trace: ek+1 = γλek +∇θV̂ (xk, θk)
11: Critic update: θk+1 = θk + αcδk+1ek+1
12: Actors:
13: Actor 1 (Ĥd(x, ξ)): ξk + αa,ξδk+1∆ūk∇ξς (π̂(xk, ξk,Ψk))
14: Actor 2 (K̂(x,Ψ)):
15: for i, j = 1, . . . ,m do
16: [Ψk+1]ij = [Ψk]ij + αa,[Ψ]ijδk+1∆ūk∇[Ψk]ij ς (π̂(xk, ξk,Ψk))
17: end for
18: end loop

and for the parameters of the desired damping we have:

[Ψk+1]ij = [Ψk]ij+
αa,[Ψ]ijδk+1∆ūk∇[Ψk]ij ς (π̂(xk, ξk,Ψk)) (4-40)

where (i, j) = 1, . . . ,m, while observing (4-32).
Algorithm 4.1 gives the entire Energy-Balancing Actor-Critic algorithm.

4-5 Mechanical Systems

To illustrate the method, consider a fully actuated mechanical system of the form:

Σm :



[
q̇
ṗ

]
=
[

0 I
−I −R̄

] [
∇qH(q, p)
∇pH(q, p)

]
+
[

0
G

]
u

y =
[
0 G

] [∇qH(q, p)
∇pH(q, p)

] (4-41)

with q ∈ Rn̄, p ∈ Rn̄ (n̄ = n
2 , n even) the generalized positions and momenta, respec-

tively, G = I and R̄ ∈ Rn̄×n̄ the damping matrix. The system admits (4-1) with R̄ > 0
and the Hamiltonian:

H(q, p) = 1
2p

TM−1(q)p+ P (q) (4-42)
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with M(q) = MT (q) > 0 the inertia matrix and P (q) the potential energy. For the
system (4-41) it holds that rank {g(x)} = n̄ and the state vector can be split into part
w = [q1, q2, . . . , qn̄]T and part z = [p1, p2, . . . , pn̄]T . Since g(x) = [0 I]T its annihilator
can be written as g⊥(x) = [ḡ(x) 0], for an arbitrary matrix ḡ(x). Equation (4-24) can
then be written as: [

0 −ḡ(x)
0 I

]
(∇xHd(x)−∇xH(x)) = 0 (4-43)

resulting in the following expression where Nq(x) is of rank n̄:[
∇qHd(x)
∇pHd(x)

]
−
[
∇qH(x)
∇pH(x)

]
=
[
Nq(x)

0

]
a (4-44)

This means that only the potential energy can be shaped, which is widely known in
EB-PBC for mechanical systems. The approximated desired closed-loop energy (4-30)
reads:

Ĥd(x, ξ) = 1
2p

TM−1(q)p+ ξTφH(q)

= H̄d(x) + ξTφH(w) (4-45)

where the unassignable part H̄d(x) represents the kinetic energy part of the system
Hamiltonian (4-42) and ξTφH(w) the assignable desired potential energy.
Control law (4-33) becomes:

u(x, ξ,Ψ) = g†(x)F (x)
(ξT ∂φH(q)

∂q

)T
+ ∂H̄d(x)

∂q
−∇qH(x)

0


− K̂(x,Ψ)gT (x))

(ξT ∂φH(q)
∂q

)T
∇pH(x)

 (4-46)

and the actor updates can be defined for each parameter according to (4-39)–(4-40). For
underactuated mechanical systems, i.e. G = [0 I]T , the split state vector z is enlarged
with those q-coordinates that cannot be actuated directly because these coordinates
correspond to the zero elements of N(x), (i.e. the matrix Nq(x) is no longer rank n̄).

4-6 Example: Pendulum Swing-up

To validate our method, the problem of swinging up an inverted pendulum subject to
control saturation is studied in simulation and using the actual physical setup depicted
in Fig. 4-1.
The pendulum swing-up is a low-dimensional, but highly nonlinear control problem
commonly used as a benchmark in the RL literature [20] and it has also been studied
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q

lp

Mp

u

Figure 4-1: Inverted pendulum setup.

in PBC [2]. The equations of motion admit (4-41) and read:

Σp :



[
q̇
ṗ

]
=
[

0 1
−1 −R̄(q̇)

] [
∇qH(q, p)
∇pH(q, p)

]
+
[

0
Kp
Rp

]
u

y =
[
0 Kp

Rp

] [∇qH(q, p)
∇pH(q, p)

] (4-47)

with q the angle of the pendulum and p the angular momentum, thus we denote the
full measurable state x = [q, p]T . The damping term is:

R̄(q̇) = bp +
K2

p

Rp
+ σp

|q̇|
(4-48)

for which it holds that R̄(q̇) > 0, ∀q̇. Furthermore, we denote the Hamiltonian:

H(q, p) = p2

2Jp
+ P (q) (4-49)

with:
P (q) = Mpgplp(1 + cos q) (4-50)

The model parameters are given in Table 4-1.

Applying (4-28) yields: [
∇qHd(x)
∇pHd(x)

]
−
[
∇qH(x)
∇pH(x)

]
=
[
−1
0

]
a (4-51)
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Table 4-1: Inverted pendulum model parameters

Model parameters Symbol Value Units
Pendulum inertia Jp 1.90 · 10−4 kgm2

Pendulum mass Mp 5.2 · 10−2 kg
Gravity gp 9.81 m/s2
Pendulum length lp 4.20 · 10−2 m
Dynamic friction bp 2.48 · 10−6 Nms
Static friction σp 1.0 · 10−3 N
Torque constant Kp 5.60 · 10−2 Nm/A
Rotor resistance Rp 9.92 Ω

Hence, only the potential energy can be shaped such that the desired Hamiltonian
(4-30) reads:

Ĥd(x, ξ) = H̄d(p) + ξTφH(q)

= p2

2Jp
+ P̂d(q, ξ) (4-52)

with:
P̂d(q, ξ) = ξTφH(q) (4-53)

the desired potential energy. Furthermore, as there is only one input, K̂(x,Ψ) becomes
a scalar:

K̂(x, ψ) = ψTφK(x) (4-54)
Thus, control law (4-33) becomes:

u(x, ξ, ψ) = g†(x)F (x)
(ξT ∂φH(q)

∂q

)T
−∇qH(x)

0


− ψTφK(x)gT (x))

(ξT ∂φH(q)
∂q

)T
∇zH(x)

 (4-55)

or:

u(x, ξ, ψ) =
(
Kp

Rp

)−1
− ξT ∂φH(q)

∂q
−

− ∂P (q)
∂q

− R̄(q̇)q̇
− ψTφK(x)Kp

Rp
q̇ (4-56)

which we define as the policy π̂(x, ξ, ψ). Hence, we have two actor updates:

ξk+1 = ξk + αa,ξδk+1∆ūk∇ξς (π̂(xk, ξk, ψk)) (4-57)
ψk+1 = ψk + αa,ψδk+1∆ūk∇ψς (π̂(xk, ξk, ψk)) (4-58)

for the desired potential energy P̂d(q, ξ) and the desired damping K̂(x, ψ), respectively.
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4-6-1 Function Approximation

To approximate the critic and the two actors, function approximators are necessary.
In this paper we use the Fourier basis [26] because of its ease of use, the possibility to
incorporate information about the symmetry in the system and the ability to ascertain
properties useful for stability analysis of this specific problem. We define a multivariate
Nth-order3 Fourier basis for n dimensions as:

φ(x̄) =
(N+1)n∑
i=1

cos(πcTi x̄) (4-59)

with ci ∈ Zn, which means that all possible N + 1 integer values, or frequencies, are
combined in a vector in Zn to create a matrix c ∈ Zn×(N+1)n containing all possible
frequency combinations. For example,

c1 = [0 0]T , c2 = [1 0]T , . . . , c(3+1)2 = [4 4]T (4-60)

for a 3rd-order Fourier basis in 2 dimensions. The state x is scaled according to:

x̄i = xi − xi,min

xi,max − xi,min
(x̄i,max − x̄i,min) + x̄i,min (4-61)

for i = 1, . . . , n with (x̄i,min, x̄i,max) = (−1, 1). Projecting the state variables onto this
symmetrical range has several advantages. First, this means that the policy will be
periodic with period T = 2, such that it wraps around (i.e., modulo 2π) and prevents
discontinuities at the boundary values of the angle (x = [π±ε, p], ε very small). Second,
learning will be faster because updating the value function and policy for some x also
applies to the sign-opposite value of x. Third, ˙̂

Pd(0, ξ) = 0 by the choice of parameteri-
zation, which is beneficial for stability analysis. Although the momentum will now also
be periodic in the value function and policy, this is not a problem because the value
function and policy approximation are restricted to a domain and the momentum itself
is also restricted to the same domain using saturation.
We adopt the adjusted learning rate from [26] such that:

αai,ξ = αab,ξ

‖ci‖2
, αai,ψ = αab,ψ

‖ci‖2
(4-62)

for i = 1, . . . , (N + 1)n with αab,ξ, αab,ψ the base learning rate for the two actors
(Table 4-2) and αa1,ξ = αab,ξ, αa1,ψ = αab,ψ to avoid division by zero for c1 = [0 0]T .
Equation (4-62) implies that parameters corresponding to basis functions with higher
(lower) frequencies are learned slower (faster).

4-6-2 Simulation

The task is to learn to swing up and stabilize the pendulum from the initial position
pointing down x0 = [π, 0]T to the desired equilibrium position at the top x∗ = [0, 0]T .

3‘Order’ refers to the order of approximation; ‘dimensions’ to the number of states in the system.
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Since the control action is saturated, the system is not able to swing up the pendulum
directly, but rather it must swing back and forth to build up momentum to eventually
reach the equilibrium.
The reward function ρ is defined such that it has its maximum in the desired unstable
equilibrium and penalizes other states via:

ρ(x, u) = Qr (cos(q)− 1)−Rrp
2 (4-63)

with:
Qr = 25 , Rr = 0.1

J2
p

(4-64)

This reward function is consistent with the mapping S1 → R for the angle and proved
to improve performance over a purely quadratic reward, such as the one used in e.g. [20].
For the critic, we define the basis function approximation as:

V̂ (x, θ) = θTφc(x) (4-65)

with φc(x) a 3rd-order Fourier basis resulting in 16 learnable parameters θ in the domain
[qmin, qmax]× [pmin, pmax] = [−π, π]× [−8πJp, 8πJp].

Actor 1 (P̂d(q, ξ)) is parameterized using a 3rd-order Fourier basis in the range [−π, π]
resulting in 4 learnable parameters. Actor 2 (K̂(x, ψ)) is also parameterized using a
3rd-order Fourier basis for the full state space, in the same domain as the critic. Explo-
ration is done at every time step by randomly perturbing the action with a normally
distributed zero-mean white noise with standard deviation σ = 1, i.e.:

∆u ∼ N (0, 1) (4-66)

We incorporate saturation by defining the saturation function (4-14) as:

ς(uk) =
{
uk if |uk| ≤ umax
sgn(uk)umax otherwise (4-67)

Recall that the saturation must be taken into account in the policy gradients by apply-
ing (4-37)-(4-38). The parameters were all initialized with zero vectors of appropriate
dimensions, i.e. (θ0, ξ0, ψ0) = 0.
The algorithm was first run with the system simulated in Matlab for 200 trials of three
seconds each (with a near-optimal policy, the pendulum needs approximately one second
to swing up). Each trial begins in the initial position x0. This simulation was repeated
50 times to get an estimate of the average, minimum, maximum and confidence regions
for the learning curve. The simulation parameters are given in Table 4-2.
Fig. 4-2 shows the average learning curve obtained after 50 simulations. The algo-
rithm shows good convergence and on average needs about 2 minutes (40 trials) to
reach a near-optimal policy. The initial drop in performance is caused by the zero-
initialization of the value function (critic), which is too optimistic compared to the
true value function. Therefore, the controller explores a large part of the state space
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Table 4-2: Simulation parameters

Simulation parameters Symbol Value Units
Number of trials − 200 -
Trial duration Tt 3 s
Sample time Ts 0.03 s
Decay rate γ 0.97 -
Eligibility trace decay λ 0.65 -
Exploration variance σ2 1 -
Max control input umax 3 V
Learning rate of critic αc 0.05 -
Learning rate of P̂d(q, ξ) αab,ξ 1× 10−10 -
Learning rate of K̂(x, ψ) αab,ψ 0.2 -
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Figure 4-2: Results for the EBAC method for 50 learning simulations.

and receives a lot of negative rewards before it learns the true value of the states. A
simulation using the policy learned in a typical experiment is given in Fig. 4-3a. As can
be seen, the pendulum swings back once to build up momentum to eventually get to
the equilibrium. The desired Hamiltonian Ĥd(x, ξ) (4-52), acquired through learning,
is given in Fig. 4-3b. There are three minima, of which one corresponds to the desired
equilibrium. The other two equilibria are undesirable wells that come from the shaped
potential energy P̂d(q, ξ) (Fig. 4-4a). These minima are the result of the algorithm
trying to swing up the pendulum in a single swing, which is not possible due to the
saturation. Hence, a swing-up strategy is necessary to avoid staying in these wells.
The number of these undesirable wells is a function of the control saturation and it
is independent of the number of basis functions chosen to approximate P̂d(q, ξ). The
learned damping K̂(x, ψ) (Fig. 4-4b) is positive (white) towards the equilibrium thus
extracting energy from the system, while it is negative (gray) in the region of the initial
state. The latter corresponds to pumping energy into the system, which is necessary to
build up momentum for the swing-up and to escape the undesirable wells of P̂d(q, ξ).
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Figure 4-3: Simulation results for the angle q (a, top), momentum p (a, bottom) and the desired
closed-loop Hamiltonian Hd(x, ξ, ψ) (b) including the simulated trajectory (black dots) using the
policy learned.

A disadvantage is that control law (4-56), with the suggested basis functions, is always
zero for the set Ω = {x | x = (0 + jπ, 0), j = 1, 2, . . . } which implies that it is zero not
only at the desired equilibrium, but also at the initial state x0. During learning this
is not a problem because there is constant exploration, but after learning the system
should not be initialized in exactly x0 otherwise it will stay in this set. It can be over-
come by initializing with a small perturbation ε around x0. In real-life systems it will
also be less a problem because there is generally noise present on the sensors.

4-6-3 Stability of the Learned Controller

Since control saturation is present, the target dynamics satisfy (4-16). Hence, to con-
clude local stability of x∗ based on (4-6), we calculate ˙̂

Hd(x, ξ) for the unsaturated case
(Fig. 4-5a)4 and the saturated case ( ˙̂

Hd,sat(x, ξ)) and compute the sign of the difference
(Fig. 4-5b). By looking at Fig. 4-5b, it appears that ∃δ ⊂ Rn : |x − x∗| < δ such that
˙̂
Hd,sat(x, ξ) = ˙̂

Hd(x, ξ). It can be seen from Fig. 4-5b that such a δ exists, i.e., a small
gray region around the equilibrium x∗ exists. Hence, we can use ˙̂

Hd(x, ξ) around x∗

and assess stability using (4-6).

From Fig. 4-3b it follows that Ĥd(x, ξ) > 0 for all states in Fig. 4-3b. From Fig. 4-4a

4Fig. 4-5a is sign-opposite to Fig. 4-4b, which is logical, because the negative (positive) regions of K̂(x, ψ)
correspond to negative (positive) damping which corresponds to a positive (negative) value of ˙̂

Hd(x, ξ) based
on (4-6).
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(a) P̂d(q, ξ) (b) sgn
(
K̂(x, ψ))

)
Figure 4-4: Desired potential energy (a) and desired damping (b) (gray: negative; white: posi-
tive) for a typical learning experiment. The black dots indicate the value of the respective quantity
for the simulation of Fig. 4-3a.

(a) sgn
(

˙̂
Hd(x, ψ)

)
(b) ˙̂

Hd,diff(x, ψ)

Figure 4-5: Signum of ˙̂
Hd(x, ψ) (a) indicating positive (white) and negative (gray) regions

and (b) ˙̂
Hd,diff(x, ψ) = sgn

( ˙̂
Hd(x, ψ)− ˙̂

Hd,sat(x, ψ)
)

indicating regions where ˙̂
Hd(x, ψ) =

˙̂
Hd,sat(x, ψ) (gray) and ˙̂

Hd(x, ψ) 6= ˙̂
Hd,sat(x, ψ) (white). Black dots indicate the simulated

trajectory.

we infer that locally,
arg min P̂d(q, ξ) = x∗ (4-68)

˙̂
Pd(x∗, ξ) = 0 (4-69)
¨̂
Pd(x∗, ξ) > 0 (4-70)Master of Science Thesis O.R. Sprangers
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the latter two of which naturally result from the basis function definition. Furthermore,
from Fig. 4-4b it can be seen that around x∗, K̂(x, ψ) > 0. Hence, in a region δ around
x∗,

Ĥd(x, ξ) > 0 (4-71)
˙̂
Hd(x, ξ) ≤ 0 (4-72)
˙̂
Hd(x∗, ξ) = 0 (4-73)

which implies local asymptotic stability of x∗. Extensive simulations show that similar
behaviour is always achieved.

4-6-4 Real-time Experiments

Using the physical setup shown in Fig. 4-1, 20 learning experiments were run using
identical settings as in the simulations. The result is given in Fig. 4-6. The algorithm
shows slightly slower convergence - about 3 minutes of learning (60 trials) to reach a
near-optimal policy instead of 40 - and a less consistent average when compared to
Fig. 4-2. This can be attributed to a combination of model mismatch and the symmet-
rical basis functions (through which it is not possible to incorporate non-symmetrical
friction that is present in the real system). Overall though, the performance can be con-
sidered good when compared to the simulation results. Also, the same performance dip
is present which can again be attributed to the optimistic value function initialization.
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Figure 4-6: Results for the EBAC method for 20 learning experiments with the real physical
system.

4-7 Final Remarks and Future Directions

In [41], the equivalence between EB-PBC and Control-by-Interconnection (CbI) using
a state-modulated source is established. This means that EB-PBC can be viewed as an
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interconnection of the PH system (4-1) with a controller Hamiltonian (HC(ζ)) system
of the form:

ΣC :


ζ̇ = uC

yC = ∂HC(ζ)
∂ζ

(4-74)

and the state-modulated (SM) interconnection:

ΣSM
I :

{[
u
uC

]
=
[

0 −a(x)
aT (x) 0

] [
y
yC

]
(4-75)

with a(x) equal to (4-9) subject to (4-10). Damping K(x) is then injected by feeding
back the passive output y. In our method, a(x) = u(x, ξ, ψ) and K(x) = K̂(x, ψ).
Hence, our method can also be interpreted in terms of CbI of PH systems. In [2], a
family of smooth controllers for swinging up a pendulum is proposed. However, the
method by Åstrom et al. does not facilitate learning and is not generally applicable to
systems of the form (4-1). The iterative learning control scheme in [14] does facilitate
learning for systems of the form (4-1), but it does not incorporate control saturation.
Also, the learning itself is based on a desired output, whereas our learning method is
based on a numerical reward which can be received from the environment. Escobar et
al. [13] use energy shaping and damping injection to formulate PBC type controllers
subject to input saturation. However, their method does not facilitate learning and our
method uses the PH framework, which allows for a broader class of dynamical systems
to which the method can be applied. Finally, EB-PBC is possibly too limited, for
example in underactuated systems, hence our future research will focus on extending
the approach proposed here to IDA-PBC [36] to include changing the interconnection
matrix J(x) of (4-1).

4-8 Conclusions

In this paper, we have presented a method to systematically parameterize EB-PBC
control laws subject to control saturation such that the PDE’s arising can be split into
an unassignable part verifying a matching condition and an assignable, parameterized
part. The parameters are then found by making use of actor-critic reinforcement learn-
ing. In this way, we are able to learn a closed-loop energy landscape for a PH system of
the form (4-1). The advantages are that no PDE has to be solved, optimal controllers
can be generated using energy-based control techniques and the solutions acquired by
means of reinforcement learning can be interpreted in terms of energy shaping and
damping injection, which makes it possible to numerically assess stability using pas-
sivity theory. By making use of the model knowledge the actor-critic method is able
to quickly learn near-optimal policies. A drawback is that for multiple input systems,
generating many actor updates for the desired damping matrix can be computationally
expensive.
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Chapter 5

Energy-Balancing Actor-Critic

In addition to Chapter 4, this chapter comprises additional results of the Energy-
Balancing Actor-Critic (EBAC) method. First, the results for the single Degree Of
Freedom (DOF) pendulum from Chapter 4 are further investigated. After that, the
original equations of motion for the pendulum are used in simulations to study the
effect of changing important functions and parameters present in the EBAC method.

5-1 Inverted Pendulum - Simulation

In addition to the results presented in Chapter 4, this section provides background
information and further investigation on the pendulum to get a better understanding
of the EBAC method. Tests were done using different reward and saturation functions,
model parameters and initial values. First, explanatory results on Chapter 4 are given.

5-1-1 Paper

In this section, additional information on the results presented in Chapter 4 is given.

Policy and Value Function

A typical1 policy and value function for the simulation under investigation in Chapter 4
is given in Figure 5-1. The policy is as expected and in line with results from e.g. [20].
The value function however, shows peaks at undesired positions at the top and bottom.
This can be attributed to the pumping-damping term K̂(x, ψ). If this term learns too
fast, the system assigns high values to states close to the equilibrium but with high
velocity. In other words, the system is swinging up, keeps rotating and assigns large

1For references to the data and Matlab R© files used for each figure the reader is referred to Appendix A.
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Figure 5-1: A typical policy and value function for the simulation results of Chapter 4. As can
be seen, there are some states that have been assigned a high value while this should not happen.

values to the states close to the equilibrium it then visits. It is possible to eliminate these
peaks by decreasing the learning rates of the critic αc and of the pumping-damping term
αa,ψ such that a better value function can be learned. However, this would decrease
learning speed and since the policy is very good it is not necessary to do so.

Learning Phases

In Figure 5-2, which is a zoomed-in version of Figure 4-2, different learning phases can
be identified.

Phase 1 In the first phase (light red) the algorithm tries to swing up the pendulum.

Phase 2 In the second phase (light green) the algorithm has achieved a successful swing-up
but after that, it increases the pumping of energy (i.e. decrease K̂(x, ψ)), causing
the pendulum to spin around very fast which causes the algorithm to receive a lot
of negative rewards.

Phase 3 In the third phase (light brown) the algorithm is injecting damping, thus increas-
ing the pumping-damping term K̂(x, ψ) in the relevant area around the equilib-
rium.

Phase 4 In the final phase (light blue) the algorithm has converged to a near optimal
solution and swings up and stabilizes the pendulum.

These phases will be referenced to in the subsequent part of this chapter.
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Figure 5-2: The learning phases the algorithm passes through while learning: trying to swing up
(light red), a swing-up and rotating (light green), injecting damping (light brown), convergence
to optimal solution (light blue).

Control Action

In Chapter 4, a simulation with the learned control policy was performed in order
to show that the learned policy indeed swings up and stabilizes the pendulum after
learning. For this simulation, the control action is displayed in Figure 5-3.

• The top graph shows the position q, from which it can be seen that the pendulum
is stabilized at the top in approximately one second.

• The middle graph displays the separate contributions of the learned potential
energy term ues and the learned damping term udi of the control input (recall
(4-13)). At the beginning (T = 0s until T ≈ 0.2s) both terms calculate a control
action that pulls the pendulum to a side. Then, it can be seen that the energy
shaping term calculates a control action to keep it there, which is in line with
Figure 4-4a. Hence, it ‘falls’ into an undesirable well of P̂d(x, ξ). However, the
damping term udi now applies a larger control action in the opposite direction,
corresponding to the pumping of energy into the system. This is line with Figure 4-
4b, which means that the system is now in a gray region of Figure 4-4b. After
about 0.7s the damping term has pumped enough energy into the system and the
undesirable wells of P̂d(x, ξ) have been left. The energy shaping term now ‘takes
over’, and stabilizes the pendulum at its local minimum, which is the desired
equilibrium x∗. The latter is in line with Figure 4-4a, which means that the
pendulum ‘falls’ to its desired equilibrium point.

• The total control action, which is the sum of the energy shaping and damping
injection part, is displayed in the bottom graph of Figure 5-3, which can be seen
as the graphical representation of the aforementioned explanation. In this graph,
two events need further explanation:

– There is a sudden ‘dip’ in control action after approximately 0.6s. This is
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Figure 5-3: Control action for the simulation results of Chapter 4 using a learned policy. As
can be seen, the pendulum is stabilized at the desired equilibrium position x∗ (top graph). In the
middle graph, the evolution of the two control actions is shown: the learned energy shaping term
ues (red solid) and the damping injection term udi (blue solid) along with the saturation bounds
of the control action umin, umax (black dashed-dotted). The bottom graph shows the sum of udi
and ues (black dashed) and the saturated control action (black solid) that is finally sent to the
pendulum system.
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caused by the fact that both the control terms do not work together perfectly.
This means that after 0.6s, the damping term has injected enough energy
into the system to facilitate the swing-up, thus that control part already
declines. However, the energy shaping term is still ‘pulling’ the pendulum
into an undesirable well of P̂d(x, ξ), hence causing the sudden decline in
overall control action. Since the velocity is high enough, this is not a problem.
After this, the velocity is high enough to overcome the opposite undesirable
well of P̂d(x, ξ), and finally the pendulum ‘falls’ into the desired well after
approximately 0.8s where it is attracted to by the energy term ues.

– The control action never exactly becomes zero, which is caused by the energy
shaping term ues (middle graph). It is unclear why this happens, because
there seems to be no steady-state error by looking at the position (top graph
of Figure 5-3) and by definition, the position feedback at the top is zero.
Also, in the experiments using the physical set-up, this phenomenon does
not occur.

The nice result of Figure 5-3 is that the cooperation of the energy shaping and damping
term can be illustrated, which further enlarges the understanding of what happens in
the EBAC method and provides an intuitive explanation of Figures 4-4a–4-4b.

Passivity

In Chapter 4, local asymptotic stability was demonstrated by analyzing (4-6) locally.
In this section, it will be mathematically shown why it is not possible to conclude
passivity for the entire state space using (4-6). Therefore, recall (4-3), which for the
desired Hamiltonian reads:

˙̂
Hd(x, ξ) = ∂T Ĥd(x, ξ)

∂x
ẋ (5-1)

= ∂T Ĥd(x, ξ)
∂x

(
F
∂H(x)
∂x

+ gu(x, ξ, ψ)
)

(5-2)

Now, the unsaturated control law (4-56) can be inserted in (5-2), by using:
ς(u(x, ξ, ψ)) ≤ u(x, ξ, ψ) ∀x (5-3)

from which it can be inferred that if passivity can be proven for the unsaturated control
action it also means that the system is passive with respect to the saturated control
action (because the saturated control action is always smaller, hence inserting less
energy into the system). Thus, inserting (4-56):

˙̂
Hd(x, ξ) = ∂T Ĥd(x, ξ)

∂x

(
F
∂H(x)
∂x

+ g

(
g†
(
F

(
∂Ĥd(x, ξ)

∂x
− ∂H(x)

∂x

))

−K̂(x, ψ)gT ∂Ĥd(x, ξ)
∂x

))
(5-4)

= ∂T Ĥd(x, ξ)
∂x

(
F
∂Ĥd(x, ξ)

∂x
− gK̂(x, ψ)gT ∂Ĥd(x, ξ)

∂x

)
(5-5)
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Now, using the fact that J(x) = −JT (x),

˙̂
Hd(x, ξ) = −∂

T Ĥd(x, ξ)
∂x


Rd︷ ︸︸ ︷

R(x)︸ ︷︷ ︸
≥0

+gK̂(x, ψ)gT

 ∂Ĥd(x, ξ)
∂x

(5-6)

≤ −∂
T Ĥd(x, ξ)
∂x

gK̂(x, ψ)gT ∂Ĥd(x, ξ)
∂x

(5-7)

However, since K̂(x, ψ) � 0 ∀x, no conclusion can be made about passivity using a
straight-forward analysis of the desired Hamiltonian. This is logical, since the pumping
of energy, corresponding to a negative damping K̂d(x, ψ), is needed to overcome the
undesirable wells of P̂d(x, ξ). For future research, it might be interesting to study
the change of Ĥd(x, ξ) along a set of trajectories by initializing at different x0, or
investigating the (possible) invariance of the sets of gray points in Figure 4-4b, where
K̂(x, ψ) ≤ 0 , such that - if possible - it can be proven that every point in such a set
will converge in finite time to the set of white points, where K̂(x, ψ) ≥ 0. In that case,
global (asymptotic) stability for the system could be mathematically proven. Finally,
it is worth investigating the passivity during learning. This means that it would be
possible to guarantee dissipation during the learning progress, such that a form of
safety can be guaranteed.

5-1-2 Equations of Motion Original Model

For most of the simulation results, the following equations of motion of the inverted
pendulum were used as opposed to the system (4-47):

Σpend :



[
q̇
ṗ

]
=
 0 1
−1 −

(
bp + K2

p
Rp

) [∇qH(q, p)
∇pH(q, p)

]
+
[

0
Kp
Rp

]
u

y =
[
0 Kp

Rp

] [∇qH(q, p)
∇pH(q, p)

] (5-8)

with the Hamiltonian:

H(q, p) = p2

2Jp
+Mpgplp(1 + cos q)︸ ︷︷ ︸

P (q)

(5-9)

with q the position of the pendulum and p the momentum, thus the full measurable
state can be denoted as x = [q, p]. The model parameters are given in Table 5-1. The
difference between (4-47) and (5-8) is the absence of dry friction in the latter, which
was later added (See Section 5-2-2) to obtain a better model and was hence used in
the paper. Also, there is a slight difference in parameter values that is the result of an
identification of parameter values for system (4-47).
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Table 5-1: Inverted pendulum model parameters (original).

Model parameters Symbol Value Units
Pendulum inertia Jp 1.91 · 10−4 kgm2

Pendulum mass Mp 5.50 · 10−2 kg
Gravity gp 9.81 m/s2
Pendulum length lp 4.20 · 10−2 m
Dynamic friction bp 3 · 10−6 Nms
Torque constant Kp 5.36 · 10−2 Nm/A
Rotor resistance Rp 9.50 Ω

5-1-3 Reward Function

In this section, the effect of changing the reward function is investigated. For the
inverted pendulum, it is possible to define many reward functions that yield good
results such as a quadratic reward [20], a cosine reward, Gaussian rewards, etc. Because
the quadratic reward has been well studied [20] for the inverted pendulum while the
cosine reward provides an intuitive way of penalizing the angle q, the following reward
functions are considered:

rA : rk+1(xk, uk) = −xTkQrxk − uTkPrruk (5-10)
rB : rk+1(xk, uk) = −xTkQrxk (5-11)
rC : rk+1(xk, uk) = Wr (cos(qk)− 1) (5-12)
rD : rk+1(xk, uk) = Wr (cos(qk)− 1)− p2

kQr(2,2) (5-13)
rE : rk+1(xk, uk) = Wr (cos(qk)− 1)− p2

kQr(2,2) − uTkPruk (5-14)

where:
Qr =

[
5 0
0 0.1

J2
p

]
, Pr = 1 , Wr = 25 (5-15)

The scaling (5-15) was applied to be able to use the same learning rates in all reward
types, which is because the reward contributes in an important way to the (size of the)
temporal difference (4-18). The simulation parameters were the same as in Chapter 4
and are given in Table 4-2. The simulation results are given in Figure 5-4. The following
observations can be made:

• It can be noticed from Figure 5-4c that simulations using reward rC, (5-12), do not
converge to the optimal policy, corresponding to an average cumulative reward
of approximately −1200. Instead, convergence to a policy corresponding to an
average cumulative reward of ≈ −2500 can be seen, which corresponds to the
motion of swinging up the pendulum and then keep rotating about (hence it stays
in Phase 3 but never learns to inject enough damping). This is logical, because
there is no penalty on the momentum in rC and if the system keeps rotating fast
enough it receives the maximum reward each time it passes the desired equilibrium

Master of Science Thesis O.R. Sprangers



56 Energy-Balancing Actor-Critic

0 2 4 6 8 10

−6000

−5000

−4000

−3000

−2000

−1000

0

Time [min]

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

 

 

95% confidence region for the mean
Mean
Max and min bounds

(a) rA
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(b) rB
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(c) rC
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(d) rD
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(e) rE

Figure 5-4: Results for the EBAC method for 50 learning simulations for 5 different reward types.
As can be seen, rD shows the best performance in terms of learning speed and consistency.
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Figure 5-5: Difference between instantaneous position reward from rB (blue dashed) and rD (red
solid) with p = 0. The larger steepness of the cosine (red solid) explains the better performance
of rD.

position at the top. Hence, it is very hard using this reward type for the algorithm
to learn that it is better to swing up and stay at the desired equilibrium.

• Using rA and rB (Figures 5-4a–5-4b) the system sometimes does not converge
to the optimal policy. This is caused by the relatively fast learning rates, and
setting these values lower would probably eliminate those ‘non-convergent’ trials.
However, since learning would then be slower and other reward types do not suffer
from this problem, this is deemed not necessary.

• Reward rD and rE show very fast and good convergence. The addition of penaliz-
ing the control action in rE has a negative effect on learning in Phase 3, because
it can be seen that the increase in reward in Phase 3 in Figure 5-4e is less fast
than with rD (Figure 5-4d), which shows a faster increase in reward in that phase.
This can be explained by the fact that penalizing the control actions causes the
algorithm to learn not to increase the control action too much (of course), which
has the effect that learning becomes slower.

• The difference between rB and rD is only in either quadratically penalizing the
position (rB) or by using a cosine (rD). The instantaneous position reward for
all q for both reward types is given in Figure 5-5. When compared for a single
position, the reward is always smaller (more negative) for rD and rD generally
increases faster (i.e. the red solid graph is steeper upwards for most q). This
explains why rD shows slightly better performance than rB, because if the graph
is steeper, each update in the direction of a reward closer to the equilibrium is
larger than if it is less steep, as in rB.

• The simulation parameters were identical for all reward types, but optimal for
reward rD. However, the only way to eliminate the non-converging simulations in
rA and rB is to decrease the learning rates; hence the average learning speed will
become even less than it is now. Also, because there are only a few (i.e. 5 for rA
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and 2 for rB) non-convergent simulations, the effect of these simulations on the
average learning speed is not substantial. Therefore, eliminating these simulations
still would not yield a better learning curve in terms of speed for those types than
for rD or rE.

• Reward rD performs the best in terms of consistency in the sense that there is
the least deviation from the average, which means that most simulations show
behaviour close to the average.

Based on this simulation experiment it can be concluded that reward rD is the best
choice, hence this simulation and Figure 5-4d will be used as a reference in subsequent
sections. It can also be concluded that the algorithm performs quite well in terms of
speed of learning with all the reward types, although some simulations do not converge
to the optimal solution, which can be solved by choosing lower learning rates.

5-1-4 Control Saturation

An important novelty of the EBAC method is to incorporate control saturation in
PBC for PH systems, which was previously done only for Euler-Lagrange systems in
e.g. [13, 30], in which there was no form of adaptation or learning present. In this
section, different saturation functions are used in simulations as well as a different
bound on the input, in order to investigate the influence of control saturation in the
EBAC method.

Saturation Function

In Chapter 4, the saturation function (4-67) was used:

ς(uk) =
{
uk if |uk| ≤ umax
sgn(uk)umax otherwise (5-16)

In this section the effect of changing the saturation is studied, which is relevant because
the derivative of the saturation function is incorporated in the policy gradient and hence
has an important effect on learning (recall (4-37)). Because the saturation function
(5-16) has derivative:

∂ς(uk)
∂uk

=
{

1 if ς(uk) = uk
0 otherwise (5-17)

which indicates a non-smooth transition from saturated to non-saturated inputs, it is
interesting to study the effect of saturation functions that have a smooth derivative to
see whether this has a positive effect on learning. Specifically, arctangent and hyperbolic
tangent saturation were used. Arctangent (using subscript ‘a’) saturation can be given
by:

ςa(uk) = 2umax

π
sa arctan (sauk) (5-18)

∂ςa(uk)
∂uk

= 2umax

π

sa

s2
au

2
k + 1 (5-19)
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Figure 5-6: Different saturation types considered: plain (red solid), arctangent (blue dashed),
hyperbolic tangent (black dashed-dotted). Every input u is saturated between the bounds (−3, 3).
Arctangent and hyperbolic tangent show smooth behaviour in the transition between u and usat.

with sa the skewness of the arctangent function. The hyperbolic tangent (using sub-
script ‘t’) saturation reads:

ςt(uk) = umaxst tanh (stuk) (5-20)
∂ςt(uk)
∂uk

= umaxst − umaxst tanh2 (stuk) (5-21)

with st the skewness of the hyperbolic tangent function. For simulation, the following
values were chosen:

sa = 1 (5-22)
st = 0.5 (5-23)

and umax and all other simulation parameters as in Table 4-2. The reward type was
rD. The saturation functions are given in Figure 5-5 from which the smooth behaviour
of the arctangent and hyperbolic tangent saturation can be seen. The results for 50
simulations are given in Figures 5-7a–5-7b.

• Arctangent saturation shows slower convergence speed than using plain saturation
(compare with Figure 5-4d) which is logical because the saturation is ‘harder’,
which means that it can be seen from Figure 5-6 that the full control action of 3V
is not reached in the displayed interval and the increase is small for larger u. This
is reflected in the learned policies for arctangent saturation; due to the fact that
a policy gradient is in practice always available ((5-19) = 0 only if uk → ∞) but
the control uk should be very large for (5-18) to return the full actuation umax,
the algorithm learns a bang-bang policy for this type of saturation.

• The hyperbolic tangent shows much better results and converges to a good policy
faster than using arctangent saturation, as can be seen in Figure 5-7b. The
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(a) arctan saturation simulation results.
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(b) tanh saturation simulation results.

Figure 5-7: Results for the EBAC method for 50 learning simulations for the arctangent (a) and
hyperbolic tangent (b) saturation.

behaviour is more similar to that of Figure 5-4d and perhaps using this saturation
learning is even faster.

• Both types of saturation show that there are some non-convergent trials, which
can only be prevented by decreasing learning rates, thus the performance will be
worse if it is required that all simulations converge to the optimal policy.

It can be concluded that none of the smooth saturation functions yield significantly
better performance than when using the saturation function (5-16). For future work,
it is interesting to study another saturation function, called smoothing minimum/max-
imum [3], because in this type of saturation, linear behaviour in the area of normal
operation is achieved but, unlike the non-smooth behaviour of (5-16), a smooth tran-
sition is obtained between the area of normal operation and the area of saturation.

Input Bounds

Apart from changing the saturation function, it is also worth investigating the effect
of changing the input bounds (umin, umax), because in practice, it is possible that an
actuator has a narrower bound on the input than expected. If this is not known, e.g.
the algorithm applies a certain saturated voltage but this is internally saturated again
to a stricter bound due to component limitations or unknown hardware limitations,
the algorithm might not be able to find a good policy. Therefore, 50 simulations were
done using an input bound of (umin,umax) of (−2, 2)V using the simulation settings from
Table 4-2 except for the number of trials, which was increased to 300. This is because
the optimal policy will now consist of two swings back and forth, which takes more time
during the trial and hence it is expected that it will also take more time to learn this
policy. The results are given in Figure 5-8a. The (near) optimal policy is now obtained
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(a) Results for the EBAC method for 50
learning simulation using a narrower input
saturation bound.
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(b) Results for the EBAC method for 1 learn-
ing simulation using a narrower input satura-
tion bound.

Figure 5-8: Results for the EBAC method for 50 learning simulations using a narrower input
saturation bound. Although the speed of learning seems to have declined significantly (a), this
in mainly caused by the large deflections from the near optimal policy that sometimes occur, as
can be seen from (b).

for an average cumulative reward of r = −1700. Although it appears from Figure 5-8a
that most of the trials do not converge to the near optimal policy, this is actually not
happening. This can be seen by looking at the progress of a single, representative trial
in Figure 5-8b, from which it becomes clear that learning speeds are comparable to
the simulations with the previously used input bounds, but after convergence there
are some trials in which there is a sudden drop in performance. It turns out that all
simulations experience this behaviour, such that the overall average of the simulations
is much lower while each separate trial converges to the near optimal solution quickly.
Hence, it can be concluded that using a narrower input bound, learning is still fast
in the sense that still only 3 minutes of learning (60 trials) are necessary to reach a
near optimal policy. After convergence, there are a number of trials in which there
is a sudden drop in performance. These deflections from the near optimal policy are
probably the effect of too high learning rates for this simulation, but these rates were
intentionally held constant to study only the influence of the input bounds on learning
speed and convergence.

5-1-5 Sensitivity

Since the EBAC method relies on incorporating a model in the learning algorithm,
it is worth investigating the sensitivity to uncertain model parameters. Therefore,
simulations were done using perturbed parameters in the policy (4-56) and the original
parameters from Table 5-1 for simulating the pendulum dynamics. For simulations,
the parameters from Table 4-2 were used once again with reward type rD. The results
are given in Figures 5-9a–5-9c where the average is given for 50 learning simulations of
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each perturbed parameter. The simulations are compared with the average cumulative
reward of Figure 5-4d.

• Mass: the mass Mp was changed with ±20%, the simulation results of which are
given in Figure 5-9a. Decreasing the mass (red solid) by 20% has an interest-
ing effect: the algorithm is then able to swing up the mass immediately to the
equilibrium position and hence it converges to that solution with a correspond-
ing higher average cumulative reward. Decreasing by 20% (blue dashed) shows
a significant impact on performance compared to the reference average cumula-
tive reward. The algorithm needs to pump more energy into the system so as to
swing up the increased mass. Because the initialization of the actors and critic
remain the same as well as the learning rates, it takes more time to ‘build up’
the pumping-damping term K̂(x, ψ). Also, because the maximum allowed voltage
remains constant, more maximum voltage actions will be necessary. These actions
are difficult to learn, because (4-37) forces that there is no update of policy pa-
rameters if the policy exceeds the maximum allowed voltage - which will happen
more frequently if it is increasingly necessary to approach that bound.

• Inertia: The inertia Jp was also changed with ±20%, the simulation results of
which are given in Figure 5-9b. Decreasing Jp by 20% (red solid) has no significant
impact on performance. Increasing Jp by 20% (blue dashed) shows convergence
to a policy corresponding to a lower average cumulative reward. This can be
attributed to the fact that the reward rD is dependent on Jp, as well as the bounds
on the state space. However, it is not clear why this effect does not happen in the
same manner when decreasing the inertia.

• Damping: The damping bp was also changed with ±20%, the simulation results
of which are given in Figure 5-9c. Both increasing (blue dashed) and decreasing
(red solid) the damping shows no significant impact on performance.

5-1-6 Initialization of Value Function

To prevent the initial drop in performance of Phase 2 (Figure 5-2) the value func-
tion V̂ (x, θ) can be more realistically initialized. Two examples of this were tested in
simulation, the first with the worst possible initialization,

V0(x) = 1
1− γ min

x,u
r(x, u) (5-24)

in which r(x, u) is (5-13). The worst possible reward is then calculated by inserting
x =

[
π 8π · Jp

]
(the bounds on the state space for the function approximator) such

that the worst (using subscript ‘w’) possible value function initialization yields:

V0,w(x) = −3.772 · 103 ∀x (5-25)

The second initialization was done using the minimum of the value function derived
by inspecting the minima of several learned value functions (as in Figure 5-1). For the

O.R. Sprangers Master of Science Thesis



5-1 Inverted Pendulum - Simulation 63

0 2 4 6 8 10
−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Time [min]

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

(a) Mass Mp increased with 20% (blue
dashed), decreased with 20% (red solid) and
reference (black dashed-dotted).
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(b) Inertia Jp increased with 20% (blue
dashed), decreased with 20% (red solid) and
reference (black dashed-dotted).
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(c) Damping bp increased with 20% (blue
dashed), decreased with 20% (red solid) and
reference (black dashed-dotted).

Figure 5-9: Results for the EBAC method for 50 learning simulations with perturbed parameters.
Only increasing or decreasing the mass shows a significant impact on performance.
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Figure 5-10: Value function initialization realistically (red solid, V0,r = −1000), worst possible
(blue dashed, V0,w = −3.772 · 103) and reference (black dashed-dotted, V0 = 0). Realistic
initialization eliminates the initial drop in performance and speeds up the algorithm.

simulation done with reward rD, this minimum on average is approximately −1000.
Hence, in the second initialization the value function is realistically (using subscript
‘r’) initialized with:

V0,r(x) = −1000 ∀x (5-26)

The simulation parameters are as in Table 4-2 with reward rD. The result for an
average of 50 simulations with V0,w and the average of 50 simulations with V0,r is
given in Figure 5-10 along with the reference average of Figure 5-4d. As can be seen,
initializing the algorithm with the worst possible reward makes it impossible to learn
in the given time frame. Initializing realistically with V0,r indeed eliminates the initial
drop in performance and hence even further speeds up the algorithm. The difference
between when convergence is reached when compared to the reference is approximately
5 trials, corresponding to 30 seconds of learning. Hence, initializing the value function
with a proper value improves performance, but this can only be done by trial and error
which makes it hard to estimate a good value to initialize with.

5-1-7 Cost Function Gradient

For the update of the two actors, a heuristic estimate of the cost function gradient
∇ϑJ(xk) is used from the S-AC algorithm (See (3-30)). In [20], a model-based cost
function gradient estimate is used when a model is available2. Because in EBAC there
is a model available, it is possible that using this cost function gradient estimate yields
better performance than using the heuristic estimate. Therefore, a simulation was done

2In the Model Learning Actor-Critic (MLAC) method [20].
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(a) Model cost function gradient simulation
results.
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(b) Comparison of average of (a) with average
of heuristic cost function gradient estimate.

Figure 5-11: Results for the EBAC method for 50 learning simulations with model-based cost
function gradient estimate (a) and comparison with reference average of Figure 5-4d using the
heuristic cost function gradient estimate. As can be seen, the heuristic cost function gradient
estimate performs better.

with the following cost function gradient estimates:

∇ξJ(xk) ≈ ∇xVθ(xk)T∇uf(xk, uk)∇π̂ς(π̂(x, ξ, ψ))∇ξπ̂(xk, ξ, ψ)

= θT
[
∂φc(x)
∂q

∂φc(x)
∂q

]T
g∇π̂ς(π̂(x, ξ, ψ))∇ξπ̂(xk, ξ, ψ) (5-27)

∇ψJ(xk) ≈ ∇xVθ(xk)T∇uf(xk, uk)∇ψπ̂(xk, ξ, ψ)

= θT
[
∂φc(x)
∂q

∂φc(x)
∂q

]T
g∇π̂ς(π̂(x, ξ, ψ))∇ψπ̂(xk, ξ, ψ) (5-28)

with ∇uf(xk, uk) the partial derivative to u of the PH system (4-47), yielding the input
matrix g, and ∇π̂ς(π̂(x, ξ, ψ)) the partial derivative of the saturation function (5-17).
An advantage of (5-27)-(5-28) is that no exploration is necessary. However, since the
actors are initialized with zeros, exploration is at least necessary at the first update of
the parameters because otherwise the parameters will not change. Also, without explo-
ration it is possible that not enough parts of the state space are visited, as Grondman
et al. point out in [20]. The simulation parameters are as in Table 4-2 with reward
rD. The results are given in Figure 5-11a. Clearly the algorithm shows slower learn-
ing behaviour using the model based cost function gradient estimate (red solid) when
compared to the reference (black dashed-dotted) of Figure 5-11b. To investigate the
reason for this, the size of the cost function gradient is investigated for one simulation
using the model cost function gradient estimate (5-27)-(5-28) and using the heuristic
cost function gradient estimate (4-23) as a reference . Therefore, the 2-norm of the cost
function gradient estimate for each visited state for a single trial is calculated via:

bes = ‖∇ξJ(x(j))(i)‖2 (5-29)
bdi = ‖∇ψJ(x(j))(k)‖2 (5-30)
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where i = 1, . . . , 4 (see Section 4-6-2) for the energy shaping parameter vector, k =
1, . . . , 16 for the damping injection parameter vector and j = 1, . . . , 100 for each visited
state per trial such that bes ∈ Rc×4 and bdi ∈ Rc×16, c = 200. Then, if we calculate b
for each trial and sum the norms, it is possible to study the evolution of the size of the
cost function gradient for each trial,

Bh,es =
4∑
i=1

[bh,es]c,i (5-31)

Bh,di =
16∑
i=1

[bh,di]c,i (5-32)

Bm,es =
4∑
i=1

[bm,es]c,i (5-33)

Bm,di =
16∑
i=1

[bm,di]c,i (5-34)

where B denotes the vector of sums of norms of cost function gradient estimates and
the subscript h,m denotes the heuristic cost function gradient estimate and model cost
function gradient estimate, respectively.

Figure 5-12 displays the result of (5-31)-(5-34). In both Figure 5-12a and in Figure 5-
12b it can be seen that the size of the heuristic cost function gradient estimate vector B
is much larger than that of the model cost function gradient estimate. This can explain
the faster learning behaviour using the heuristic cost function estimate: each update
is larger, which means that it can be expected that the algorithm learns faster. On
the other hand, updating with large gradients could also result in converging to non-
optimal solutions or no convergence at all. The reason that this does not happen is
that it turns out that the heuristic cost function gradient estimate is often zero caused
by saturation (recall (4-37) and (5-17)). However, when the gradient is not zero, the
updates are very large and - apparently - in the correct direction. The model policy
cost function gradient estimate however is smaller and thus does not update very fast
to a policy that gets saturated. Hence, there are more updates but these updates are
also smaller. Also, note that both gradients show convergence: they both decrease in
size over time. It is beyond the scope of this thesis to examine the policy gradients
any further, but in future research it is recommended to investigate the evolution and
direction of a cost function gradient estimate, since this greatly determines learning
speed. In this simulation example, it turns out that the heuristic cost function gradient
estimate is better due to its nature of high values that are less used as a result of
saturation, compared to a model cost function gradient estimate where the values are
more frequently used but are of less size. Also, this simulation of course depends on
the initialization of the actors and critic, which also determines the size of the cost
function gradient estimate. Finally, it is recommended that in future research other
types of cost function gradients are investigated, such as the Natural gradient [47].
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Figure 5-12: Results for the EBAC method for 1 learning simulation consisting of 200 trials using
the heuristic cost function gradient estimate and the model cost function gradient estimate. As
can be seen, the size of the heuristic cost function gradient estimate (red solid, both graphs) is
larger than the size of the model cost function gradient estimate (blue dashed, both graphs) both
for the energy shaping actor gradient (a) as for the damping injection actor gradient (b).
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(a) Non-symmetrical Fourier Basis simulation
results.
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(b) Average of (a) compared to reference av-
erage.

Figure 5-13: Results for the EBAC method for 50 learning simulations using a non-symmetrical
Fourier Basis (a) and comparison (b) with reference average of Figure 5-4d. Performance has
degraded significantly.

5-1-8 Basis Functions

In Section 4-6-1, the state x was scaled according to (4-61). In this section, the effect
of projecting the variables onto a non-symmetrical range,

(x̄i,min, x̄i,max) = (0, 1) (5-35)
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in (4-61), is investigated. Then, it is possible to draw conclusions about the effect
of incorporating model knowledge by using the ‘symmetrical’ range as in Section 4-
6-1. Thus, 50 simulations were done using the non-symmetrical Fourier Basis with
simulation settings all equal to those in Table 4-2 except for the learning rate αab,ψ,
which was chosen:

αab,ψ = 0.1 (5-36)

Furthermore, more functions are now necessary to represent the actor and critic. Thus,
actor 1 (P̂d(q, ξ)) is parameterized using a 4rd-order Fourier basis in the range [−π π]
resulting in 5 learnable parameters, and actor 2 (K̂(x, ψ)) is parameterized using a
4rd-order Fourier basis for the full state space in the same domain as for the critic
resulting in 25 learnable parameters. The critic was identically parameterized as actor
2. The results for 50 learning simulations are given in Figure 5-13. As can be seen,
learning is considerably slower than in the reference of Figure 5-4d, of which the average
is displayed in Figure 5-13b. Hence, it appears that the symmetrical projection of
the state x is the main cause of fast learning in the EBAC method - or at least the
combination of the symmetrical projection of the Fourier Basis with the parameterized
EB-PBC control law. Thus, it can be concluded that it is important to incorporate
model knowledge in the basis functions - if possible. Also, tests were done using Radial
Basis Functions (RBF)3 but that did not deliver good results. This can be attributed
to the fact that it is important to select basis functions that have a well-behaving
derivative, considering parameterization (4-29). For example, in the Fourier Basis, the
derivative of the cosine function basis is a sine, which is naturally a good choice for the
gradient of the desired potential energy in the inverted pendulum set-up. Radial Basis
Functions do not show this nice behaviour (i.e. the gradient is much smaller which
causes a need to initialize the actors at a non-zero value to facilitate fast learning)
which makes them less suitable. For future research, it is recommended to try other
types of basis functions, where it can be expected that a Polynomial Basis [26], which
has a well-behaving derivative for a gradient of potential energy, will show good results.

5-1-9 Comparison with Standard Actor-Critic

In this section, a comparison with the Standard Actor-Critic method from [20], given
in Algorithm 3.1, is made such that it is possible to put the performance of EBAC in
line with currently available and well-known methods. To compare the EBAC method
with the S-AC method, we define a 6th-order Fourier Basis for both the actor (3-22) and
the critic (3-23) resulting in 49 learnable parameters for the policy and value function,
respectively. The state-variables are projected onto:

(x̄i,min, x̄i,max) = (0, 1) (5-37)

using (4-61), such that an arbitrary nonlinear function can be approximated by the
Fourier Basis and no model knowledge is incorporated. The simulation parameters are
given in Table 5-2 and the reward rD (5-13) is used. Saturation is incorporated using

3For an explanation, see e.g. [18].
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Table 5-2: Simulation parameters for Standard Actor-Critic

Simulation parameters Symbol Value Units
Trials − 200 -
Time per trial Tt 3 s
Sample time Ts 0.03 s
Decay rate γ 0.97 -
Eligibility trace λ 0.65 -
Exploration variance σ2 1 -
Max torque umax 3 V
Learning rate critic αc 0.005 -
Learning rate actor αa 0.0001 -
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(a) S-AC 50 simulations.

0 2 4 6 8 10
−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Time [min]

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

(b) Average of (a) compared to reference
EBAC average.

Figure 5-14: Results for the S-AC method for 50 learning simulations using the normal Fourier
Basis (a) and comparison (b) of average (red solid) to reference average (black dashed-dotted)
using the symmetrical Fourier Basis of Figure 5-4d. As can be seen, the EBAC method outperforms
S-AC by converging to a good policy faster, i.e. 50 trials instead of 100 trials.
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(a) Results for the EBAC method for 20
learning experiments.
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(b) Average of (a) compared to reference sim-
ulation average.

Figure 5-15: Results for 20 learning experiments on the DCSC set-up (a) and comparison (b)
of average (red solid) to reference average (black dashed-dotted) of Figure 5-4d. Learning is
considerably slower than in simulation, on average at least 80 trials (4 minutes of learning) are
necessary to obtain a good policy.

(4-67) and all parameter vectors were initialized with zeros of appropriate size. Each
simulation that consists of 200 trials of 3 seconds of learning was repeated 50 times.
The results are given in Figure 5-14. It can be seen that the S-AC method learns
considerably slower, compared to the reference using the EBAC method of Figure 5-4d
of which the average is compared to S-AC in Figure 5-14b. However, it must be noted
that tests showed that it is possible to get initial learning speeds equivalent to those
obtained when using the EBAC method, but this resulted in slow overall convergence
and policies that were of less quality. Finally, it can be seen that the performance of
S-AC is in line with the results from [18] where Local Linear Regression (LLR) is used
as a basis, although the Fourier Basis used here only needs 49 parameters both for the
actor and critic.

5-2 Inverted Pendulum - Experiments

To verify the developed method on a real set-up, the DCSC pendulum was used, of
which a picture is depicted in Figure 4-1. The equations admit (5-8) and the model
parameters are as in Table 4-1. Of course, these model parameters are now only used
for calculating the control action via policy (4-56).

5-2-1 Comparison with Simulation

To compare the real-life experiments with the data obtained from simulation, the pa-
rameters from Table 4-2 were used to perform 20 learning experiments using the EBAC
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method on the DCSC set-up. The results are given in Figure 5-15a. It can be seen
that learning is considerably slower than in the reference simulation of Figure 5-4d, of
which the average is compared to the average obtained in experiments in Figure 5-15b.
This has the following reasons:

• Model mismatch. In the physical set-up, dry friction is present and this is not
present in the model. This decreases learning speed, which can be seen by looking
at the update for the desired damping K̂(x, ψ), (4-58):

ψk+1 = ψk + αa,ψδk+1∆uk∇ψπ̂(xk, ξ, ψ) (5-38)
= ψk + αa,ψδk+1∆uk∇π̂ς(π̂(x, ξ, ψ))∇ψπ̂(x, ξ, ψ) (5-39)
= ψk + αa,ψδk+1∆uk∇π̂ς(π̂(x, ξ, ψ))∇xφK(x)g∇xĤd(x, ξ) (5-40)
= ψk + αa,ψδk+1∆uk∇π̂ς(π̂(x, ξ, ψ))∇xφK(x)q̇ (5-41)

Hence, the update of ψ depends on the velocity q̇. In the beginning of learning,
the system will have to ‘build up’ velocity as fast as possible in order to facilitate
fast learning of this parameter (given the zero initialization of the parameters). If
dry friction is present, there is much less overshoot in the beginning (this will be
seen later on in a step response). Hence, the update is smaller and the system has
trouble learning the pumping-damping term K̂(x, ψ) and, with too high learning
rate αa,ξ, will converge to the undesirable wells of P̂d(q, ξ). It is possible to increase
the learning rate αa,ψ and decrease the learning rate αa,ξ, but that is not without
consequences. First of all, further increasing αa,ψ will result in fast learning of
pumping energy (i.e. fast decrease in K̂(x, ψ)), but slow (or none at all) learning of
injecting damping (increase of K̂(x, ψ)). In other words, the system will remain in
Phase 3 of learning. Decreasing αa,ξ creates more time for the pumping-damping
term to learn the swing-up, but then the risk is that the position control, which
is based on ξ, becomes very bad (i.e. too low gain). This means that at the top,
perturbing the equilibrium slightly will result in an offset and none or extremely
slow position feedback. Hence, there is a careful balance between learning the
swing-up fast enough to escape the undesirable wells of P̂d(q, ξ) and having a
good position feedback at the top.

• Parameter mismatch. The parameters used in the control law are probably not
exactly equal to the true parameters of the system. However, earlier simulations
showed the robustness of the method to parameter variations. Hence, unless
the parameters deviate from those in Table 4-1 by an extremely large amount
(e.g. � 20%), slower learning performance is not likely the result of parameter
mismatch.

• Momentum estimation. In the experiment, the momentum is calculated using a
simple Euler backward difference method:

pk ≈
(qk − qk−1)Jp

Ts
(5-42)

which can be replaced by a better method, for example an observer.

These three issues will be addressed in the next sections.
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5-2-2 Identified Model

As said in the previous section, dry friction is probably one of the reasons causing a
decrease in learning speed. Thus, it is interesting to study the effects of dry friction by
incorporating it in the PH model (4-47). To do so, a simple Coulomb friction term is
considered:

Ff = σp sgn(q̇) (5-43)

with σp the coefficient of friction. Equation (5-43) indicates positive (negative) dry
friction for positive (negative) velocities. It is possible to rewrite (5-43) as:

Ff = σp
q̇

|q̇|
(5-44)

where in simulation, the pseudo-inverse is applied to the denominator of (5-44) such
that division by zero is avoided for q̇ = 0. This equation can then be directly inserted in
the PH system (4-47) by adding it to the damping term, such that the new PH model
for the pendulum reads:

Σpend :



[
q̇
ṗ

]
=

 0 1
−1 −

(
bp + K2

p
Rp

)
+ σp∣∣∣ pJp

∣∣∣
 [∇qH(q, p)
∇pH(q, p)

]
+
[

0
Kp
Rp

]
u

y =
[
0 Kp

Rp

] [∇qH(q, p)
∇pH(q, p)

] (5-45)

with Hamiltonian still (4-49). Compare (5-8)-(5-45) and note how the damping term
has changed with the addition of the dry friction term. Since the size of σp is unknown,
an identification can be done using the physical set-up. By studying the model (4-47),
all the relevant parameters can be replaced by a vector of parameters:

µ =
[
Mplpgp Jp bp Kp Rp σp

]T
(5-46)

=
[
µ1 µ2 µ3 µ4 µ5 µ6

]T
(5-47)

such that the PH system of the pendulum reads:

Σpend :



[
q̇
ṗ

]
=

 0 1
−1 −µ3 + µ2

4
µ5

+ µ6∣∣∣ pµ2

∣∣∣
 [∇qH(q, p)
∇pH(q, p)

]
+
[

0
µ4
µ5

]
u

y =
[
0 µ4

µ5

] [∇qH(q, p)
∇pH(q, p)

] (5-48)

with Hamiltonian:
H(q, p) = p2

2µ2
+ µ1(1 + cos q)︸ ︷︷ ︸

P (q)

(5-49)
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An identification is then performed by applying a multisinusoidal input4 using 10 sinu-
soids between the bounds (−3, 3)V to both the model and the physical set-up. The first
5 input values (from T = 0 until T = 0.15s) are set to zero to prevent errors caused by
initializing the physical set-up. Then, the parameters µ of the model can be fitted to
match the multisine response data of the physical set-up by performing a minimization
of the scalar quadratic error eµ:

eµ = (q − qref)T (q − qref) (5-50)

where q denotes the angle response trajectory data for the model and qref denotes the
angle reference response trajectory data obtained from the physical system when the
same input is applied. The momentum is intentionally left out of the error (5-50).
This is because identification tests show that the velocity estimation using the Euler
difference does not a produce a good model, while if the velocity estimation is left out
of the identification, the identified model approximates the physical set-up better both
in terms of position and momentum. The minimization of (5-50) is performed using
the Nelder-Mead algorithm [29] with the following initial conditions5:

µ0 =
[
Mplpgp Jp bp Kp Rp 0

]T
(5-51)

with the value of the known parameters as in Table 4-1. After minimization, the
following estimate of the model parameters is obtained:

µ̂ =
[
0.0223 1.9379 · 10−4 3.0882 · 10−6 0.0546 9.3762 6.2884 · 10−4

]T
(5-52)

A summary of the identification results is given in Table 5-3. A graph of the multisine
identification and a validation using a step-response for a simulation with the initial val-
ues µ0, for the response of the physical system and for a simulation with the identified
parameters µ̂ is given in Figure 5-166. It can be seen from Figure 5-16 that the identified
model (blue dashed) is a better representation of the physical set-up (red solid) than
the original model (black dashed-dotted), although there is still a small steady-state
offset present. What immediately becomes apparent from Table 5-3 is that the original
model parameters do not deviate from the identified parameters significantly (in the
range of 5%), apart from the dynamic friction term bp, which is probably now lower
at the cost of the dry friction term. Hence, it can be concluded that the dominating
difference between the simulated model response and physical setup response is indeed
caused by the dry friction. Thus, incorporating this dry friction results in a better
model, as is illustrated in Figure 5-16. Therefore, this model was used for Chapter 47.
For future research, it would be interesting to incorporate friction by building a friction

4A figure of this input is given in Appendix B.
5The assumption made here is that the identified (optimal) parameters will be in the range or close to the

original parameters (apart from the dry friction term σp).
6It should be noted that for the error minimization, the trajectory data is wrapped to 2π to avoid wrapping

problems, hence the initial position is π instead of zero in Figure 5-16.
7It should be noted that, since the parameters Mp, lp and gp cannot be identified separately, the identified

parameter µ̂1 is used to recalculate the identified mass where the assumption is made that the length of the
pendulum and gravity remain constant. This explains the difference in value of Mp in Table 4-1 compared to
the value in Table 5-1, while lp and gp remain constant in both these tables.
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Table 5-3: Pendulum parameter identification results

Parameter Model Identified % deviation
µ1 0.0227 0.0214 −5.7%
µ2 1.9100 · 10−4 1.8970 · 10−4 0.68%
µ3 3 · 10−6 2.4795 · 10−6 −17.4%
µ4 0.0536 0.0560 4.5%
µ5 9.5 9.9233 −4.46%
µ6 − 0.0010 −

observer and incorporate that in the PH framework, as has been done in [48] (dynamic
friction compensation in the IDA-PBC framework), [8] (friction compensation for un-
deractuated mechanical systems admitting (4-41)) and [27] (incorporating the LuGre
friction model in the PH framework).
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(a) Multisine identification
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(b) Step response validation

Figure 5-16: Identification results of pendulum parameters µ. As can be seen, the identified
model (blue dashed) fits the step-response trajectory from the physical system (red solid) better
than the initial model parameters (black dashed-dotted). There is a slight steady-state offset in
the step response still present (b, top).

5-2-3 Model Momentum Estimation

Instead of using the Euler difference momentum estimation of (5-42), the identified
model can be used to estimate the momentum. Hence, the update for the state in the
physical set-up becomes:

xk+1 =
[
qk+1
p̂k+1

]
(5-53)
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where qk+1 denotes the measured new state after applying input uk to state xk and
p̂k+1 denotes the simulated momentum obtained by simulating the model (5-45) with
uk and xk such that the predicted x̂k+1 is obtained. Of course, there is a steady-state
error introduced by the identified model, as can be seen in Figure 5-16b. To avoid
this error, for small differences between state xk+1 and xk the Euler-method is used to
approximate the momentum. The difference in momentum estimation for a single trial
for the method using the model and the Euler method is given in Figure 5-17. The trial
is taken from the beginning of learning, where the algorithm has learned the swing-up
but is rotating fast after that (Phase 2). In Figure 5-17a, the difference between the
predicted momentum and the Euler momentum method is displayed. In this trial, it can
be seen that the predicted model momentum (blue dashed) is more conservative (i.e.
the momenta are generally lower) than when using the Euler method (black dashed-
dotted). As can be seen in Figure 5-17b, the predicted next state x̂k+1 for the same trial
is a very good estimate of the measured state. Therefore, this momentum estimate will
be used for the remaining experiments. Of course, a well-tuned nonlinear observer will
probably show even better results, which is a recommendation for future research, e.g.
Venkatraman et al. [55] provide a mathematical way of building a nonlinear observer
in PH form for systems satisfying (4-41).
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(a) Momentum p: Euler and predicted.
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(b) Position q: measured and predicted.

Figure 5-17: Comparison of Euler velocity estimation and model momentum estimation. In
(a), the momentum calculated using the Euler method (black dashed-dotted) versus the model
momentum estimation (blue dashed) is displayed. In (b), the predicted simulated output x̂k+1
(blue dashed) is compared to the measured output xk+1 (red solid) for the same trial, to illustrate
accurateness of the identified model.

5-2-4 Simulation with Identified Model

To study the effects of incorporating dry friction in the model, the identified parameters
and changing the momentum estimation, two simulations (50 learning simulations) were
done using the parameters from Table 4-2 with reward rD, such that the simulations
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(a) Results for the EBAC method using
model parameters for learning and identified
parameters for simulation.
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(b) Average of (a) compared to reference sim-
ulation average.
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(c) Results for the EBAC method using iden-
tified parameters for learning and for simula-
tion.
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(d) Average of (c) compared to reference sim-
ulation average.

Figure 5-18: Results for the EBAC method for 50 learning simulations using identified parameters
only for learning (a), using identified parameters both for learning and simulation (c) and the
average of (a) and (c) compared in (b), (d) to the reference average of Figure 5-4d.

can be once again compared to the reference simulations and the effect of the identified
model can be investigated.

• The first simulation uses the original model in the policy (4-56), while it uses the
identified model for simulating the pendulum dynamics. The results are given in
Figure 5-18a. As can be seen, the algorithm shows slower convergence when com-
paring the average cumulative reward (red solid) to the reference average (black
dashed-dotted) which is displayed in Figure 5-18b. Also, it converges rapidly to
a policy corresponding to a lower average cumulative reward, and needs more
time to find the optimal policy. This can probably be attributed to the mismatch
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between using the identified model for simulation and the original model in the
policy (4-56).

• The second simulation8 uses the identified model both in the policy (4-56) and
for simulation. The results are given in Figure 5-18c. As can be seen in Figure 5-
18d, the algorithm shows almost identical behaviour and convergence speed when
compared to the reference average of Figure 5-4d, which can be seen in Figure 5-
18d. Because the simulated pendulum dynamics now incorporate dry friction,
learning is slightly slower in Phase 3 due to the decreased speed that enters (4-58)
caused by dry friction. However, generally the performance is still quite good,
with only 3 minutes of learning (60 trials) necessary to converge to an optimal
policy. Also, this simulation shows slightly faster convergence than the simulation
in Figure 5-18a. This can probably be attributed to the model mismatch that is
present in the latter simulation, which causes some trials to converge very slowly,
thus decreasing the overall average learning rate in comparison to the average
learning rate of Figure 5-18c.

5-2-5 Experiments with Identified Model

Apart from simulations with the identified model, two experiments (20 learning exper-
iments) were done using the parameters from Table 4-2 with reward rD.

• The first experiment uses the original model in the policy (4-56), but instead of
the Euler difference for the momentum estimation, the simulated model momen-
tum from Section 5-2-3 is used on the physical set-up. Thus, the only difference
between this experiment and the experiment of Figure 5-15a is the momentum
estimation, which is done using the identified model. Hence, this experiment
completely resembles the simulation of Figure 5-18a. The results are given in
Figure 5-19a. As can be seen, the algorithm converges quickly and on average
after approximately 60 trials a near-optimal policy is obtained. A few conclusions
can be made. First, the momentum estimation using the Euler difference method
results in poor performance when compared to using the model momentum es-
timation, given the difference between Figure 5-15a and Figure 5-19a. Clearly,
learning speed has increased significantly as well as average performance. Also,
the algorithm converges to a better policy, given the higher average cumulative
reward. Second, comparing the average of Figure 5-19a with the average of the
simulation of Figure 5-18a, it can be seen that the experimental results now more
closely resemble the simulation results. Hence, it can be concluded that using the
model for the velocity estimation delivers a better momentum estimator than the
Euler difference method.

• The second experiment9 uses the identified model in the policy (4-56) and the
model momentum estimator on the physical set-up. Hence, this experiment com-

8Note that this is the simulation displayed in Chapter 4, hence Figure 5-18c is equivalent to Figure 4-2.
9Note that this is the experiment displayed in Chapter 4, hence Figure 5-19c is equivalent to Figure 4-6.
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(a) Results for the EBAC method for 20 ex-
periments using model parameters for learn-
ing.
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(b) Average of (a) compared to reference sim-
ulation average.
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(c) Results for the EBAC method for 20
experiments using identified parameters for
learning.
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(d) Average of (c) compared to reference sim-
ulation average.

Figure 5-19: Results for the EBAC method for 20 learning experiments using model parameters
for learning (a) and using identified parameters for learning (c). The average of (a) and (c) is
compared in (b) and (d) to their respective reference averages of Figure 5-18a and Figure 5-18c.

pletely resembles the simulation of Figure 5-18c. The results are given in Fig-
ure 5-19c. Learning speed is good, on average approximately 60 trials (3 minutes
of learning) are necessary to reach a near-optimal policy. Comparing the simu-
lations and experiments, Figure 5-19d, the experimental results indicate slower
convergence (approximately 60 trials compared to 50 trials to reach near-optimal
policy). The difference between experiment and simulation, also present in Fig-
ure 5-19b, can be attributed to errors in the model momentum estimator. Prob-
ably, a well-tuned observer would yield better results, which, as said before, is a
recommendation for future research.
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5-2-6 Initialization of Value Function with Identified Model

In the same way as for the simulation results, the initial drop in performance of the
experiments can be eliminated by setting the value function V0 to the minima of −1000
once again, i.e.

V0,r(x) = −1000 ∀x (5-54)
Thus, 20 experiments were done on the physical set-up using both the model momen-
tum estimation and the identified model for learning with the realistic value function
initialization. The results are given in Figure 5-20a and a comparison with the average
cumulative reward obtained without using value function initialization, Figure 5-19c,
is given in Figure 5-20b. In simulations (see Section 5-1-6) the realistic initialization
showed a significant performance increase in terms of speed of learning. However, this
is not present in the experiments. Only the performance dip is now removed, as can
be seen in Figure 5-20b. The following reasons can be given for the result. First, the
performance dip was already very small, i.e. only one or two trials delivered the very
negative reward, as can be seen from the black dashed-dotted line in Figure 5-20b.
Second, as was seen in the previous simulations, the dominating factor for speed of
learning is mainly the momentum with which the control policy is being calculated
and the momentum that is obtained from the experiment/simulation. Since in this
experiment, the momentum is left unchanged, there is no significant change in perfor-
mance. Hence, these two reasons combined are the main cause that initializing the
value function realistically when applying the EBAC method on the physical set-up
does not yield much better performance than without this initialization. For future
research, it is recommended to also try different initializations of the actors, because
the initialization has effects on the cost function gradient estimate and thus on the
speed of learning.

5-3 Conclusion

In this chapter, extra background and insights in the EBAC method have been given
in order to further illustrate the method. First, the results from Chapter 4 were further
discussed which leads to the following conclusions:

• A typical policy and value function have been presented for the simulation used
in Chapter 4 which are in line with literature [20, 18].

• The control action during simulation with a learned policy was investigated, which
showed the effects of the energy shaping and damping injection term, thus giving
a better insight in the EBAC method.

• Passivity cannot be proven due to the nature of the damping term K̂d(x, ξ). For
future research the energy change along trajectories can be investigated as well
as the invariance of the sets of points where K̂d(x, ξ) ≤ 0 . Also, it is interesting
to study the passivity during learning, such that dissipation can be guaranteed
during learning, thus increasing safety.
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(a) Results for the EBACmethod for 20 learn-
ing experiments with value function initializa-
tion (realistic).
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(b) Average of (a) compared to reference sim-
ulation average.

Figure 5-20: Value function initialization realistically (red solid, V0,r = −1000) and reference of
Figure 5-19c (black dashed-dotted, V0 = 0). Realistic initialization eliminates the initial drop in
performance.

Furthermore, numerous simulations were done to study the effects of changing impor-
tant functions and parameters present in the EBAC method using the original model
of the inverted pendulum. The following conclusions can be made:

• The cosine plus quadratic speed reward function (5-13) has been shown to be the
best reward function of the five reward functions that were under consideration in
the inverted pendulum simulation. This provides an interesting insight, since often
[20, 18] reward type A (5-10) is used. Further study on the reward functions is
recommended, because although these five reward functions are all closely related,
it was shown for these five examples that learning performance is heavily affected
when choosing for a particular type.

• The EBAC method can handle saturation functions that have a smooth and non-
smooth derivative, where the standard saturation function with a non-smooth
derivative (4-67) showed the best performance.

• The EBAC method is able to handle parameter uncertainty well in the sense that
it is still possible to learn optimal policies in the presence of parameter uncertainty
although the learning speed sometimes decreases, e.g. when the mass is increased
by 20%. However, this can probably be overcome by choosing higher learning rates
such that the damping term K̂(x, ψ) builds up quicker, such that more energy is
pumped into the system at a faster rate.

• To speed up learning, it is convenient to initialize the value function realistically,
which will prevent the performance dip commonly present in all the simulations
and experiments. However, this has to be done on a trial-and-error basis which can
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be difficult. The effect of better performance by value function initialization was
not present in an experiment on the physical set-up, which can be attributed to
the momentum estimation as the dominant factor for improving speed of learning.
For future research, it might be interesting to see whether the actor can also be
initialized based on EB-PBC perspectives, for example in the pendulum system,
by initializing the desired potential energy with e.g. the negative of the system
potential energy.

• The cost function gradient estimate used in the EBAC method outperforms a
model-based method from [20], which is mainly caused by the difference in size of
the gradient. However, this is only one type of cost function gradient and a lot of
research has been done on these gradients [19] such that it is recommended to try
to incorporate different gradient types in the EBAC method. Also, initialization
of the actors can affect the result of this as well, which further emphasizes the
importance of future study on initialization of the actors.

• The main cause of the increased learning speed in the EBAC method is the sym-
metrical basis function definition of Section 4-6-1. Therefore, in future research,
effects of the function approximator should be further investigated, such as in
[18], to get a better understanding of which type of function approximator is best
suited for a specific control problem to which the EBAC method is applied and to
what extent model knowledge can be incorporated in the function approximator.

• The Standard Actor-Critic (S-AC) method is outperformed by the EBAC method
in terms of speed of learning, which is logical since the latter is a model-based
method.

• Experiments on the real set-up confirm the results obtained from simulations,
although the original model had to be adjusted to match the physical set-up and
the momentum approximation had to be replaced. On average, a maximum of
60 trials, corresponding to 3 minutes of learning, is required in experiments to
converge to a near-optimal policy. Simulations with similar settings show a better
learning performance, on average a maximum of 50 trials is necessary to reach
a near-optimal policy. The difference between simulations and experiments are
caused by the presence of a speed estimator in the latter that introduces errors.
This can be overcome by using a nonlinear observer, which is recommended for
future work.
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Chapter 6

Conclusions and Recommendations

In this thesis, Energy-Balancing Passivity-Based Control (EB-PBC) for port-Hamiltonian
(PH) systems was combined with Actor-Critic (AC) Reinforcement Learning (RL). This
chapter summarizes the findings of this thesis and lists the most important recommen-
dations for future research.

6-1 Summary and Conclusions

The general goal of this thesis was to design a methodology that combines the major ad-
vantages of RL and PBC for PH systems. Therefore, Energy-Balancing Passivity-Based
Control (EB-PBC) (Chapter 2) was combined with the Standard Actor-Critic (S-AC)
algorithm (Chapter 3) to yield the Energy-Balancing Actor-Critic (EBAC) (Chapter 4).
In the EBAC method, the Partial Differential Equation (PDE) arising from EB-PBC is
parameterized such that it is split in two parts: a part satisfying a matching condition
and a part that can be arbitrarily assigned. The assignable part is then parameterized
such that it is suitable for AC RL. Finally, damping is injected by learning parameters
of the desired damping matrix. The results for the EBAC method were verified both
in simulations and experiments on the inverted pendulum set-up, which showed its ef-
fectiveness. The most important conclusions from simulations and experiments on the
inverted-pendulum set-up with the EBAC method are given below.

• The EBAC method can learn near-optimal controllers that can be interpreted in
terms of energy shaping and damping injection techniques by endowing the closed-
loop with a prescribed PH structure. The advantage is that the learned controller
has a physical interpretation in terms of energy exchange. Local stability can be
numerically demonstrated by using passivity theory. Unfortunately, the author
was not able to provide a conclusive proof of passivity for the closed-loop system,
only local stability could be numerically assessed by studying the simulation and
experimental results.
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• There is no need in the EBAC method to explicitly solve a generally complex
Partial Differential Equation (PDE). This last issue is commonly encountered in
PBC for PH systems, which was demonstrated in Chapter 2.

• Control saturation can be incorporated in the EBAC method, however in the in-
verted pendulum example, control saturation requires a pumping-damping regime
for swinging up the pendulum, which means that passivity for the entire state
space of the system using the learned desired Hamiltonian cannot be proven in
the classical way of Definition 2-1.1.

• The most important contribution to the enhanced speed of learning of EBAC
over the model-free S-AC method is incorporating model knowledge by symmet-
rically defining the basis functions (Section 5-1-8). This is an important aspect
however, since this definition ensures that the policy is well-behaved from a PBC
perspective. This means that by parameterizing in a certain manner, properties
of functions can be guaranteed, at least locally around an equilibrium point. For
the inverted pendulum, it was shown that the desired potential energy naturally
locally satisfies certain Lyapunov-stability properties by using this parameteriza-
tion. This is beneficial in (numerical) stability analysis.

• The EBAC method is robust in the sense that it can handle model uncertainty
well, as extensive simulations with varying parameters have shown. Also, perfor-
mance is barely affected by changing the type of saturation.

6-2 Open Issues and Recommendations

• The Fourier Basis is naturally a suitable basis for the inverted pendulum problem,
such that few parameters can be used to learn good policies. It is recommended
to study the effect of the approximator on the performance of the EBAC method,
since it is required that the basis functions satisfy a number of properties. First,
it has to have a continuous, preferably smooth derivative, because this derivative
will be used to approximate the gradient of the desired Hamiltonian. Second,
the gradient of the basis should be able to represent the gradient of an energy
function, hence e.g. a Polynomial Basis would be a good choice.

• The effect of initialization should be further studied, as simulation showed that
the learning speed in the EBAC method could be further increased by initializing
the value function with a realistic value. Experiments however did not confirm
this behaviour, although the performance drop in the beginning of learning was
removed. For future research, it is interesting to study the effect of incorporating
model knowledge in the initialization of the actors and critic, so as to speed up
learning even more. This can be done by initializing the actors based on PBC
perspectives.

• EB-PBC is possibly too limited, for example, it is less applicable in underactu-
ated systems. Hence, in future research a more general PBC method has to be
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chosen in order to be able to deal with e.g. systems with underactuation. The
IDA-PBC method is a well-studied control type that would be a good choice for
this. For example, algebraic IDA-PBC could be exploited, in which the desired
Hamiltonian is fixed and Rd(x), Jd(x) and g⊥(x) can be computed. A proposal
for parameterization can be given as:

Ĥd(x, ϑ) = νTφ(x) (6-1)

with φ(x) basis functions and ν a parameter vector such that the desired Hamil-
tonian is completely parameterized. Then, to satisfy (2-68), the interconnection
matrix Fd(x) can be computed using the approximated Ĥd(x, ν). When comput-
ing Fd(x) the only property that has to be satisfied, apart from the PDE (2-68),
is (2-53). There are some key advantages and disadvantages of this approach:

– As mentioned in Section 2-3-4, IDA-PBC is applicable to a larger set of PH
plants than EB-PBC, because the interconnection and damping matrix is
now also free for assignment. Hence, the freedom of choosing Fd(x) based on
the parameterized desired Hamiltonian enlarges the set of stabilizable plants
to which the method can be applied.

– The desired Hamiltonian can be completely parameterized and if it is param-
eterized as in (6-1), only one actor is necessary to update the gradient, which
means that the desired damping is also included in this actor update.

– The energy-balancing property will be generally lost, which means that the
solutions found can no longer be intuitively interpreted as in the EBAC
method, which is based on EB-PBC. This includes the loss of the intu-
itive CbI methods, because as Ortega et al. [41] point out, there is no CbI
version of IDA-PBC yet.

Also, in [28] a proposal for parameterization of IDA-PBC is done such that the
parameterized IDA-PBC control law renders the closed-loop system (asymptoti-
cally) stable and that it behaves like a linear sample system. For future research,
a similar parameterization as in [28] could be investigated in which the parame-
ters are learned via RL. Finally, a lot of research has been done on IDA-PBC for
mechanical systems [40, 17, 1]. In this special case, Fd(x) can be suitably param-
eterized such that the structure of the Hamiltonian of the mechanical system is
preserved and solutions can be interpreted in terms of energy-balancing strategies.
This is also left as a recommendation for further study, to combine these methods
with a form of RL.

• In this thesis, the EBAC method was only applied to the inverted pendulum
set-up. It is recommended for future research to apply the method to a more
complex real-life system such as, for example, a robotic manipulator, in which the
PH framework can be beneficial when modeling the interaction between various
dynamical (sub)systems. In [12, 49] various methods using a port-Hamiltonian
approach to the control of interaction are proposed. Using these methods in
combination with a complex real-life set-up would be an interesting application
of the EBAC method.
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6-3 Final Words

As the title suggests, in this thesis machine learning has been embedded into passiv-
ity theory using the port-Hamiltonian framework. Specifically, an Actor-Critic Rein-
forcement Learning method has been combined with Energy-Balancing Passivity-Based
Control to yield the Energy-Balancing Actor-Critic method. The EBAC method in-
deed incorporates advantages of the two methods, while relaxing their disadvantages,
which was the general goal of this thesis. Simulations and experiments showed the
effectiveness of the proposed method. However, no conclusive stability theorem could
be derived based on passivity, which is left open for future research. Also, the appli-
cation of the EBAC method to more complex systems, such as robotic manipulators,
will further provide insights in the combination of energy-based control and RL. To
conclude, in this thesis another step has been taken to bring two fields in control - PBC
and RL - closer together, with the hope of someday being able to safely implement
learning controllers in interactive environments.

O.R. Sprangers Master of Science Thesis



Appendix A

List of Simulations and Experiments

In this appendix an overview is given of which Matlab1 files have been used to generate
each figure in this thesis, along with the path on the supplied DVD of the relevant m-
file, such that each figure in this thesis can be reproduced if necessary. For all the
simulations and experiments, 2 types of filenames were used:

• eval_{}: File used to evaluate the simulation or experiment.

• compare_{}: File used to compare the simulation or experiment with a relevant
reference simulation or experiment.

Each path in Tables A-1–A-2 is relative to the home directory

Matlab/

of the DVD supplied with this thesis. For more information, please look in the directory
to see which data files were used by each m-file.

A-1 Simulations

(see next page)

1Matlab is a registered trademark of The Mathworks Inc., Natick, Massachusetts. In this thesis, version
7.13.0.564 (R2011b), 32bit, was used.
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Table A-1: Simulation figure data and associated Matlab files.

Figure no. Directory m-file
4-2, 4-3a, 4-3b,
4-4a, 4-4b, 4-5a,
4-5b, 4-6

paper/ eval_paper

5-1, 5-2, 5-3 simulations/ebac/invpend/identification/identifiedboth eval_identifiedboth
5-4a simulations/ebac/invpend/reward/R_A/ eval_R_A
5-4b simulations/ebac/invpend/reward/R_B/ eval_R_B
5-4c simulations/ebac/invpend/reward/R_C/ eval_R_C
5-4d simulations/ebac/invpend/reward/R_D/ eval_R_D
5-4e simulations/ebac/invpend/reward/R_E/ eval_R_E
5-5 simulations/ebac/invpend/reward/ compare_reward
5-6 simulations/ebac/invpend/saturation/ compare_saturation
5-7a simulations/ebac/invpend/saturation/atan/ eval_atan
5-7b simulations/ebac/invpend/saturation/tanh/ eval_tanh
5-8a simulations/ebac/invpend/sensitivity/lessvoltage/ eval_lessvoltage
5-8b simulations/ebac/invpend/sensitivity/lessvoltage/lessvoltage_1/ eval_lessvoltage
5-9a simulations/ebac/invpend/sensitivity/ eval_mass
5-9b simulations/ebac/invpend/sensitivity/ eval_inertia
5-9c simulations/ebac/invpend/sensitivity/ eval_damping
5-10 simulations/ebac/invpend/initialization/ compare_initialization
5-11a simulations/ebac/invpend/polgrad/modelpolgrad/ eval_modelpolgrad
5-11b, 5-12a, 5-12b simulations/ebac/invpend/polgrad/ compare_polgrad
5-13a simulations/ebac/invpend/basis/four_normal/ eval_ebac_four_normal
5-13b simulations/ebac/invpend/basis/ compare_basis
5-14a simulations/sac/invpend/basis/four_normal/ eval_sac_four_normal
5-14b simulations/sac/invpend/basis/ compare_sac_ebac
5-18a simulations/ebac/invpend/identification/identified/ eval_identified
5-18b, 5-18d simulations/ebac/invpend/identification/identified/ compare_identified
5-18c simulations/ebac/invpend/identification/identifiedboth/ eval_identifiedboth
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A-2 Experiments

Table A-2: Experiment figure data and associated Matlab files.

Figure no. Directory m-file
5-15a experiments/ebac/exp1_normal/ eval_exp1
5-15b experiments/ebac/exp1_normal/ compare_sim_exp
5-16a, 5-16b, B-1 experiments/identification/ eval_identification
5-17a, 5-17b experiments/ebac/exp2_ModelMomentum compare_momentum
5-19a experiments/ebac/exp2_ModelMomentum eval_exp2
5-19b experiments/ebac/exp2_ModelMomentum compare_identified
5-19c experiments/ebac/exp3_MMandIdentified eval_exp3
5-19d experiments/ebac/exp3_MMandIdentified compare_identifiedboth
5-20a experiments/ebac/exp4_MMIandV0 eval_exp4
5-20b experiments/ebac/exp4_MMIandV0 compare_V0andMMI
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Appendix B

Identification Input

The multisinusoidal input used for identification of the inverted pendulum set-up is
given in Figure B-1.
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Figure B-1: Multisine input used for identification.
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Glossary

List of Acronyms

AC Actor-Critic

B-IDA Basic Interconnection and Damping Assignment Passivity-Based Control

CbDI Control by Damping Injection

CbI Control by Interconnection

DCSC Delft Center for Systems and Control

DOF Degree Of Freedom

DP Dynamic Programming

EB-PBC Energy-Balancing Passivity-Based Control

EBAC Energy-Balancing Actor-Critic

IDA-PBC Interconnection and Damping Assignment Passivity-Based Control

IFAC International Federation of Automatic Control

LLR Local Linear Regression

MDP Markov Decision Process

MLAC Model Learning Actor-Critic

MSc Master of Science

NAC Natural Actor-Critic

POMDP Partially Observable Markov Decision Process

PBC Passivity-Based Control
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100 Glossary

PDE Partial Differential Equation

PH port-Hamiltonian

PS-PBC Power-Shaping Passivity-Based Control

RBF Radial Basis Functions

RL Reinforcement Learning

S-AC Standard Actor-Critic

SPBC Standard Passivity-Based Control

TD Temporal Difference

List of Symbols

General
t Continuous time instant
x Continuous state of system Σ
y Continuous output of system Σ
Σ State space system
R Set of real numbers
Z Set of integer numbers
â Approximation or prediction of a variable or function a

Passivity-Based Control
dd Desired closed-loop damping
f Continuous function describing system dynamics of Σ
g Input matrix
h Continuous function describing output of system Σ
s Supply rate function
u Continuous control input vector
v Closed-loop input vector
z Closed-loop output vector
C Casimir function
D Vector function
F Interconnection and damping matrix
H Hamiltonian
J Interconnection matrix
K Passive output damping matrix
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L Lyapunov function
R Damping matrix
S Storage function
U Continuous set of control inputs for system Σ
Y Continuous set of outputs for system Σ
X State space manifold
α Static state dependent feedback
β Continuous state feedback
δ Arbitrary positive number
ε Arbitrary positive number
κ Level constant
ς Control saturation function
ζ Controller PH system continuous state variables
Ω Set

Reinforcement Learning
e Eligibility trace
k Discrete time instant
r Reward function
uk Discrete time control input
xk Discrete time state
E Expectation
J Cost function that has to be maximized in RL
V State value function
P State-action probability distribution
Q State-action value function
P State-action transition probability distribution in an MDP
R Expected value of next reward
U Discrete time set of control actions
X Discrete time set of states
α Learning rate
δ Temporal difference
γ Discount factor
ε Greedy action selection probability
θ Critic parameter vector
ϑ Actor parameter vector
λ Eligibility trace decay parameter
π Deterministic policy
φ Basis function
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∆u Exploratory action
Π Probabilistic policy

Energy-Balancing Actor-Critic
a Arbitrary vector
b{es,di} 2-norm of cost function gradient
eµ Scalar quadratic error in the prediction of pendulum model parameters µ
i, j, l Indices used in (multiple) element operations
q Generalized position vector
q Position trajectory data
p Generalized momentum vector
w Vector containing states that correspond to non-zero elements of N
z Vector containing states that correspond to zero elements of N
A Matrix containing matching conditions
B{es,di} Sum of 2-norm of cost function gradient
Ff Coulomb friction force
G Input matrix in mechanical systems
I Identity matrix
M Inertia matrix
N Null space of matrix A
P Potential energy
Qr Reward state penalty matrix
Rr Reward control action penalty
S Saturation function subset of Rm
s{t,a} Saturation function skewness
Tt Time per trial
Ts Sample time
µ Pendulum model parameter vector
ν IDA-PBC desired Hamiltonian parameter vector
ξ Parameter vector for energy shaping
σ2 Exploration variance
ψ Parameter vector for damping injection
Ψ Parameter matrix for damping injection
{Par}p Pendulum model parameter {Par}
N Normal distribution

Important Mathematical Operators
∂f
∂x

or ∇xf Partial derivative of a function f to x
df
dt

or ḟ Time derivative of a function f
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DT Transposed of a matrix D
D⊥ Left annihilator of a matrix D, i.e. D⊥D = 0
D† Pseudo-inverse of a matrix D, i.e. D†D = I

‖ · ‖2 Two-norm of an input (·)
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