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RESEARCH PAPER

Development of Dutch occupancy and heating profiles for building simulation

O. Guerra-Santin and S. Silvester

Faculty of Industrial Design Engineering, Delft University of Technology, NL-2628 CE Delft, The Netherlands

ABSTRACT
Building simulations are often used to predict energy demand and to determine the financial
feasibility of the low-carbon projects. However, recent research has documented large
differences between actual and predicted energy consumption. In retrofit projects, this
difference creates uncertainty about the payback periods and, as a consequence, owners are
reluctant to invest in energy-efficient technologies. The differences between the actual and the
expected energy consumption are caused by inexact input data on the thermal properties of the
building envelope and by the use of standard occupancy data. Integrating occupancy patterns
of diversity and variability in behaviour into building simulation can potentially foresee and
account for the impact of behaviour in building performance. The presented research develops
and applies occupancy heating profiles for building simulation tools in order create more
accurate predictions of energy demand and energy performance. Statistical analyses were used
to define the relationship between seven most common household types and occupancy
patterns in the Netherlands. The developed household profiles aim at providing energy
modellers with reliable, detailed and ready-to-use occupancy data for building simulation. This
household-specific occupancy information can be used in projects that are highly sensitive to
the uncertainty related to return of investments.

KEYWORDS
energy demand; heating;
occupancy profiles; occupant
behaviour; performance
simulation; personas; retrofit;
simulation tools

Introduction

The building stock in the Netherlands consists of 7.5
million dwellings (CBS, 2014). Dwellings of the post-
war period account for approximately one-third of the
residential stock (Itard & Meijer, 2008); a large number
of these properties are in need of renovation. Housing
associations are important stakeholders in this context.
There are approximately 400 housing associations in
the Netherlands that manage 2.4 million residential
properties, constituting 34% of the total housing stock
(Aedes, 2013). Dutch housing associations have the
ambition of achieving an energy rating of C for 80% of
their properties and an average rating B by 2020
(Aedes, 2013), while currently the average rating for
the post-war building according to AgentschapNL
(2011) is D–E (approximately 350–400 kWh/m2/year
primary energy), resulting in an expected energy con-
sumption of approximately 20 000 kWh/dwelling/year.
Therefore, the energy retrofit of post-war buildings offers
great potential for carbon reductions. However, there is a
lack of fast, affordable and robust processes for large-
scale building renovation. This problem is magnified in

multi-family rented buildings in which the incentives
for saving energy and increasing indoor comfort are
split between owners and tenants, therefore increasing
the risk of a large gap between the predicted and actual
energy consumption.

This study focuses on a retrofit approach that is cur-
rently under development by a consortium of academic
and industry partners in the Netherlands. It addresses
the challenges of retrofitting the existing building stock
and is sponsored by the European Union Climate-KIC’s
flagship Building Technology Accelerator (BTA) project
and the Dutch TKI/Energy programme. To support the
transformation of the built environment, the BTA aims
to stimulate the large-scale dissemination and accelera-
tion of new low-carbon technologies into the market.

This paper focuses on the challenge related to the
effect of building operation and occupants’ behaviour
on the energy expectations of renovation projects, thus
tackling the so-called prebound effect (Sunikka-Blank
& Galvin, 2012). The prebound effect refers to a gap
between the expected and the actual energy consumption
caused by households using less energy than expected
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before the renovation due to the lack of consideration of
actual behaviour of buildings’ occupants. This effect has
implications for the economic viability of energy retrofit
programmes (Sunikka-Blank & Galvin, 2012). For
example, the payback periods for low-carbon technol-
ogies would be longer than calculated. The goal of this
research is the development of occupancy and heating
profiles that can be applied to building simulation tools
to predict more accurately and to fine-tune the energy
performance of the building.

The objective of this study is to define more accurate
occupancy profiles per household type that can lead to
more accurate predictions of energy demand. More cer-
tainty on the occupancy behaviour before a retrofit could
potentially help to reduce the financial risks associated
with the prebound effect. The rebound effect is not
tackled in this phase of the project, since measures to
reduce it should be implemented in the post-renovation
phase of the process. The rebound effect is thus outside
the scope of this paper.

Influence of occupant behaviour in building
simulation

Energy simulation tools can be used during the design
phase to predict energy demand and help designers
choose and size different fabrics (for the external envel-
ope) and mechanical systems (Azar & Menassa, 2012).
However, recent research has widely documented the
differences between the actual and the predicted energy
consumption (Virote & Neves-Silva, 2012), which are
thought to be caused by faults in the building envelope
or commissioning of the systems, occupants’ behaviour
being different than assumed, and the interaction
between occupants and building technology. According
to Yu, Fung, Haghighat, Yoshino, & Morofsky (2011),
energy consumption is determined by climate, building
characteristics, occupants’ behaviour, socio-economic
factors and indoor environmental quality. While the
impact of climate, building characteristics and indoor
environmental quality requirements can be readily inves-
tigated and tested in current building simulation soft-
ware, the impact of user-related characteristic and
occupant behaviour are still not fully incorporated into
simulation tools.

It is important to understand both the existing behav-
iour and the drivers causing the behaviour (Wei, Jones, &
de Wilde, 2014). Researchers have found significant
relationships between occupancy characteristics and
socio-economical factors (Guerra-Santin & Itard,
2010). Employment, house ownership, income and edu-
cational level have been found to have an effect on energy
consumption. However, some factors depend greatly on

the country of study. For example, McLoughlin, Duffy,
and Conlon (2012) used household social class as an
indicator of income and found that higher professionals
(high and intermediate managers and professionals)
consume more electricity per household per year than
middle and lower social classes (supervisory positions,
skilled, semi-skilled and unskilled workers, the unem-
ployed) in the UK; while Guerra Santin, Itard, and
Visscher (2009) found no relationship between income
and energy consumption in the Netherlands.

Therefore, occupancy profiles and occupant behav-
iour not only differ per household type but also can
vary between regions. Regional responsive data can
help to achieve better predictions (Al-Mumin, Khattab,
& Sridhar, 2003). According to Kane, Firth, & Lomas
(2015), understanding heating patterns in British homes
is crucial for energy policy formulation, the design of
new controls and heating systems, and for accurate
stock modelling. Therefore, the development of occu-
pancy profiles for the specific region of study is necessary.

Integrating occupancy patterns diversity and variabil-
ity in behaviour into building simulation can potentially
foresee and overcome the impact of behaviour in build-
ing performance (Stokes et al. cited in Richardson,
Thomson, & Infield, 2008; Lee & Malkawi, 2014). Occu-
pancy is considered to have a great influence in occu-
pants’ heating and ventilation behaviour, as well as on
electricity consumption patterns (D’Oca & Hong,
2015). Therefore, determination of occupancy profiles
and heating and ventilation patterns that more accu-
rately reproduce building operation are considered
crucial in the area of building simulation (Johansson,
Bagge, & Lindstrii, 2011; Virote & Neves-Silva, 2012).

In this context, occupancy behaviour refers to how the
building would be operated (heating, air-conditioning,
ventilation systems), what would be the occupancy
level (number of people present at a determined time),
and what would be the internal heat gains related to
the presence and use of lighting and appliances (Hopfe
& Hensen, 2011; Ryan and Sanquist, 2014).

Several models have integrated the influence of occu-
pants’ behaviour into building simulation programmes,
however only focusing on a limited set of parameters,
for example a simplified and schematic representation
of the operation of heating controls or windows (Azar
& Menassa, 2012; Lee & Malkawi, 2014; Wei et al.,
2014; Yu et al., 2011). In addition, current simulation
tools, for both energy performance certification or
design, lack an approach to evaluate the impact of occu-
pants’ characteristics (Martinaitis, Zavadskas, & Motu-
ziene, 2015).

A number of building simulation studies have focused
on understanding the effect of occupants’ behaviour on
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specific designs or low-carbon technologies. For
example, occupancy profiles can be defined with a
specific purpose such as improving the design of build-
ings (Flores Larsen, Filippin, Beascochea, & Lesino,
2008), improving the efficiency of ventilation systems
(Johansson et al., 2011), or determining the influence
of specific internal or external building conditions
(Ampatzi & Knight, 2012).

However, there is no standard method to assign the
heating set-point for building simulation. Occupancy pat-
terns are defined from standards or estimates (Wei et al.,
2014). For example, The American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE)
Standard 90.1. 2004 provides standardized occupancy
factors for different building types which can be used to
design when occupancy schedules are unknown.

In current simulation tools, occupancy level and
intensity of use of appliances and lighting are considered
for the calculation of internal heat gains; while building
operation is included as a ‘standard’ or ‘average’ fixed
schedule for the thermostat-setting and window oper-
ation (Lee & Malkawi, 2014; Wei et al., 2014). Heating
and ventilation patterns that reflect the diversity of occu-
pancy profiles followed by different households could
produce more realistic and reliable predictions (Kane
et al., 2015).

Several studies have focused on the development and
use of occupancy profiles. These determine occupancy
input based on surveys or datasets. For example, Santos
Silva and Ghisi (2014) analysed uncertainties in building
simulation through a probabilistic approach. Uncertain-
ties of the user behaviour and physical parameters were
obtained through a literature review and field survey.
Martinaitis et al. (2015) performed an analysis on the
effect of domestic occupancy profiles on the performance
of energy-efficient houses and assessed the applicability
of default simulation software occupancy profiles. The
daily occupancy patterns were created according to the
Harmonized European Time Use Survey.

In general, the methods used in current studies to
determine occupancy and occupancy behaviour profiles
can be classified as statistical analysis such as regression,
logistic regression, cluster analysis (Guerra Santin et al.,
2009), engineering methods such as load profiles
(Capasso, Grattieri, Lamedica, & Prudenzi, 1994;
McLoughlin et al., 2012; Wilden & Wackelgard, 2010;
Yao and Steemers, 2005), and machine-learning algor-
ithms, for example neural networks, Markov chains,
data-mining, genetic algorithms and agent-based models
(Davis & Nutter, 2010; Duarte, van denWymelenberg, &
Rieger, 2013; D’Oca & Hong, 2015; Jovanovic, Sreteno-
vic, & Zivkovic, 2015; Mahdavi & Tahmasebi, 2015; Vir-
ote & Neves-Silva, 2012).

Conventional statistical analysis has been used and
reported extensively in this area of research. The main
purpose of these studies has been to identify relation-
ships between different factors affecting energy con-
sumption. For example, regression analysis has been
used to identify factors influencing energy use and
their relative importance. For a complete review on
these studies, see Guerra Santin et al. (2009).

Engineering models use information such as appli-
ance power ratings and end-use characteristics to build
a bottom-up description of electricity consumption pat-
terns (McLoughlin et al., 2012). In engineering models,
appliance, lighting and electricity load profiles are gener-
ated using either metered data or a combination of time-
use data, appliance ownership and power information
about the appliances. McLoughlin et al. (2012) give
some examples in their review (see also Capasso et al.,
1994; Wilden & Wackelgard, 2010; Yao and Steemers,
2005).

Machine-learning algorithms have beenmore recently
used in the area of building simulation to develop occu-
pancy profiles. Occupancy profiles can be classified into
deterministic models and stochastic models. In determi-
nistic schedules, a standard day profile is usually the same
for all weekdays and both weekend days. For these
models, data-mining can be used to obtain information
on user–building interaction. Depending on the available
data, this method assumes no change in occupancy sche-
dules throughout the year (Duarte et al., 2013). Other
studies have focused on the development of stochastic
occupancy profiles with data from monitoring cam-
paigns. Diversity profiles, generated by these models, rep-
resent typical probability profiles and are derived from
long-termmonitored data. The probabilistic models gen-
erate random non-repeating daily profiles of occupancy
for a long-term (annual) building performance simu-
lation (Mahdavi & Tahmasebi, 2015). These models can
be used to randomly generate multiple building occu-
pancy patterns to evaluate the uncertainties related to
occupant behaviour. For these models, diverse
machine-learning algorithms are used such as Markov
chains or artificial neural networks (Davis & Nutter,
2010; Jovanovic et al., 2015; Virote & Neves-Silva,
2012). Prediction models aim to generate artificial occu-
pancy patterns that are similar to the actual (measured)
patterns. Thus, the limitations of studies using monitor-
ing data is that the mined or predicted occupancy profiles
are circumstantial to the given dataset (D’Oca & Hong,
2015; Virote & Neves-Silva, 2012).

In building-simulation studies, the method used to
define occupancy depends on the purpose of the study
and the availability of the data. The following sections
describe the approach taken in this study.
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Methods and data

As there are large differences in energy consumption
between households, it is very important to get clear
insights into the relationship between type of occupancy
and energy use. For example, in the context of this
research, these insights will help to assess the feasibility
of the ‘zero-on-the-meter’ (in Dutch: nul-op-de-meter)
target in the retrofit of apartment complexes, to evaluate
the effectiveness of technological measures, and to
reduce the risks of unexpected energy bills. In the Neth-
erlands, zero-on-the-meter is defined as a building
(usually renovated social residential buildings) in
which the yearly building-related and user-related
energy consumption in MJ equals the generated energy
in the building and surrounding area (RVO, 2015).

This study consists of the definition of household types
and corresponding occupancy patterns. The process to
define household types and occupancy patterns can be
seen in Figure 1. As a first step, household types are
defined as the most representative household typologies
on a national sample in terms of demographics. As a
second step, occupancy patterns are defined with explora-
tory factor analysis. Occupancy profiles are defined, in the
context of this study, as a set of building operation pat-
terns, for example heating patterns, ventilation patters
and presence at home. As a third step, analysis of variance
(ANOVA) tests are used to determine household profiles
as the specific occupancy patterns followed by a deter-
mined household type. Household profiles are deter-
mined based on the relationship between household
types and occupancy patterns. The main goal of the

household profiles is to characterize the intensity on the
use of the building, installations and appliances.

The occupancy patterns linked to the household
types will be used to calculate the expected energy con-
sumption through building simulation. A different
combination of household profiles can be used to
determine worst- and best-case occupancy scenarios,
as well as average scenarios. The occupancy scenarios
can be examined to determine whether the energy tar-
gets are reached in all instances. The results can be
compared with the results from a common approach
to calculate energy consumption (i.e. using an ‘average’
household). These results would indicate how realistic
are the energy targets of a determined project. These
steps are, however, outside the scope of this paper.
The definitions of household types, occupancy patterns
and household profiles are presented in the following
sections.

This investigation, on the effect of occupancy and
behaviour profiles diversity, aims to be integrated into
renovation processes. Therefore, the method to deter-
mine the expected building performance accounting
for household variation should be predefined, readily
usable and representative for the region of study (the
Netherlands).

It is anticipated that housing associations would be
able to determine in advance the household’s typology
in the building to be renovated based on their client port-
folio and, thus, deterministic occupancy profiles per
household are preferred to stochastic and predictive
models. Deterministic models would be also more easily
and readily applied to building simulation tools.

Figure 1. Household type, reference users, user profiles and occupancy patterns.

BUILDING RESEARCH & INFORMATION 399

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
] 

at
 0

3:
04

 2
5 

Se
pt

em
be

r 
20

17
 



The use of survey self-reported data is in this case pre-
ferable to monitored data because of the complexities of
collecting data in buildings to be renovated; however, the
authors acknowledge the fact that self-reporting data are
not exempt from errors. Furthermore, the use of survey
data with a large number of cases is preferable to moni-
toring data based on a limited number of dwellings, as
the aim is to investigate the impact of different house-
holds representing the variability within the country.

Since simulation tools only focus on building-related
energy demand, the profiles discussed here are only
related to space heating and ventilation. Occupancy
(the presence of people at home), lighting and appliances
use are defined only to calculate internal heat gains.

To develop country representative occupancy and
heating patterns, a nationwide dataset is used. Statistical
analyses were used to determine the most common types
of households in the Netherlands. The Woononderzoek
Nederland (WoON) dataset 2012 (see www.
rijksoverheid.nl) was used to carry out this analysis. It
is based on a nationwide survey carried out by the
Dutch Ministry of the Interior and Kingdom Relations
(BZK). The WoON dataset 2012 is the third survey car-
ried out; the first and second surveys were carried out in
2006 and 2009 respectively. (The WoON dataset 2015 is
not yet available.) The goal of the survey is to determine
how Dutch people live and want to live. The dataset
includes information regarding household composition,
housing needs, energy consumption and building oper-
ation. The advantage of using this dataset is that it has
been previously used for behavioural research (Guerra
Santin, 2010; Jeeninga, Uyterlimde, & Uitzinger, 2001)
since the dataset is openly available to researchers. In
addition, the survey was carried out several times, and
so the type of data collection and data coding has
improved at every iteration.

The dataset consists of the compilation of 4800 dwell-
ing audits and over 69 000 household questionnaires,
which are also linked to external data (Tigchelaar and
Leidelmeijer, 2013). The building audits aim to gather
data on building characteristics, while the household
questionnaire collects data regarding occupants’ behav-
iour and household characteristics, among others. The
WoON dataset (version 2006) has previously proved
useful in the study of occupant behaviour in residential
buildings (Guerra-Santin & Itard, 2010).

Results

This section presents the results of the statistical analyses
to define the household types, occupancy patterns and
household profiles.

Household types

The WoON dataset was used to determine households
types in relation to their size, composition, age, and the
absence or presence of seniors and children, which are
important variables on energy consumption (Guerra-
Santin & Itard, 2010). Eleven types of households were
identified in the sample. Four groups were too small in
the sample and therefore were not further studied.
Table 1 shows the descriptive statistics of the groups.

ANOVA tests were conducted to investigate the
relation of these types of households with electricity,
gas and water consumption, as an indicator of domestic
hot water (see Table 2 for descriptive statistics). The
results showed that gas consumption (F(6,16 080) =
659.1, p < 0.001 Welch statistic), electricity consumption
(F(6,16 059) = 3054.8, p < 0.001 Welch statistic) and
water consumption (F(6,15 546) = 73059.5, p < 0.001
Welch statistic) are statistical significantly different for
the seven types of households. Post-hoc Tukey compari-
sons were used to ascertain differences between specific
household on energy and water use.

For gas consumption, post-hoc comparisons showed
that there are statistically significant differences between
all groups except between ‘one senior’ and ‘two seniors’,
‘two seniors’ and ‘nuclear family’, and ‘two seniors’ and
‘three adults’. For electricity consumption, post-hoc
comparisons showed that there are statistically signifi-
cant differences between all groups. For water consump-
tion, post-hoc comparisons showed that there are
statistically significant differences between all groups
except between the groups ‘two adults’ and ‘two seniors’.

Table 1. Descriptive statistics of households types in the
Woononderzoek Nederland (WoON) dataset survey.

Household type
Frequency in the

sample
% in the
sample

1 senior (> 65 years old) 6667 9.6

1 adult (18–64 years old) 11 598 16.7

2 adults (partners or not) 13 910 20.1

2 adults, at least 1 senior 8266 11.9

3–4 adults 9925 14.3

5 or more adultsa 2458 3.5

3 or more adults, at least one
seniora

471 0.7

1 adult and one or more children 2211 3.1

2 adults and 1–3 children 13 034 18.8

2 adults with more than 4
childrena

764 1.1

3 or more people, children and a
seniora

38 0.1

Total 69 339 100

Note: aEliminated households.
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Figure 2 shows that one-person households use the
least amount of gas followed by single-parent house-
holds, while larger households and those with two
seniors use more gas. Figure 3 shows that for electricity
the important factors are household size and the pres-
ence of children. For water consumption, the main deter-
mining factor is household size.

Occupancy patterns

This section defines the occupancy patterns that Dutch
households are more likely to follow.

Occupancy patterns are defined as the use of the heat-
ing system, opening windows, preferences for tempera-
ture settings and presence at home. To define the
occupancy patterns for heating, it is assumed that house-
holds with similar composition will have the same occu-
pants’ behaviour regardless of other socio-economical
variables. This assumption allows an investigation of
regional household profiles. In addition, research has
shown larger effects of socio-economical variables on
electricity use than on energy for space heating.

Exploratory factor analysis is a technique used to
reduce the number of variables, and it can help to

determine related behaviours. The variables used refer
to self-reported heating-related behaviour at home,
namely: presence at home, thermostat setting, use of
radiators and ventilation while heating (Table 3).

Factor analysis describes the variability among vari-
ables in terms of factors. The behaviour factors resulting
from the analysis (groups of related variables) were
further analysed in relation to the intensity of behaviour
they represent and their relation to the previously deter-
mined household types. According to Field (2005), a fac-
tor can be described in terms of the variables measured
and the relative importance of these variables to that
factor.

Eighteen variables were used in the analysis. They
were first examined to determine whether factor analysis
was a suitable method, examining the correlation
between them. All variables correlated at least .3 with
other variables, thus suggesting reasonable factorability.
The initial Eigen values showed that the first factor
explained 20.1% of the variance, the second 17.3%, the
third 10.1%, the fourth 7.7%, the fifth 6.6% and the
sixth 6.2%. Factors 7–18 could each explain less than
5%. After examining the Eigen values in each of the
resulting factors, and analysing the scree plot, the

Table 2. Mean and standard deviation (SD) for gas, electricity and water consumption per household type.

Household type Number of cases in the sample

Gas (m3/year) Electricity (kWh/year) Water (m3/year)

Mean SD Mean SD Mean SD

1 senior 6667 1521.0 908.2 2162.2 1143.7 61.8 10.1

1 adult 11 598 1310.3 790.2 2341.3 1397.4 62.4 9.3

2 adults 13 086 1682.6 858.0 3479.4 1609.9 101.6 11.0

2 seniors 8252 1876.8 987.1 3358.3 1503.8 101.8 10.7

Single parent 2211 1572.5 749.6 3193.9 1528.3 116.3 25.8

3 adults 3903 1914.6 856.7 4681.2 1816.4 147.8 18.0

Nuclear family 13 034 1859.5 831.8 4309.1 1708.6 157.2 16.4

Total 58 751 1668.6 887.4 3341.4 1752.3 105.3 38.5

Figure 2. Gas consumption per household type in the Dutch
building stock (m3/year).

Figure 3. Electricity consumption per household type in the
Dutch building stock (kWh/year).
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solution that included six factors and explained 68% of
the variance was preferred. The factor loading matrix
(contribution of each variable to the solution) and com-
munalities (common variance shared with other vari-
ables) are shown in Table 4.

Scores were created for each factor based on the mean
of the variables that have their primary loadings on each
factor. The composite scores were named after the vari-
ables contributing to each factor. The factors represent
the occupancy behaviour, these are: Presence at home,
Day temperature, Setback temperature, Radiators in bed-
rooms, Ventilation while heating and Radiators in service
rooms (Table 5).

In order to maintain a large number of cases for
further analysis, missing values were replaced with the
mean (Table 3). However, since this method could sup-
press the true value of the standard deviation (SD),
pairwise analysis was also executed to make sure that
replacing the missing values with the mean did not
affect the results. The results of both analysis were
very similar and, thus, the results of the first analysis
are used.

Household profiles

The household profiles are the specific occupancy pat-
terns followed by a determined household type. To

determine the household profiles, analysis of variance
(ANOVA) tests were carried out between the factor
scores (occupancy patterns) and the household types
(for statistics, see Table 6). All behavioural factors were
statistically significant different between household
groups, except for factor 5, Ventilation while heating
(Table 6, column 1). Previous studies have also failed
to find statistical correlation between ventilation habits
and household types (Guerra-Santin & Itard, 2010)
suggesting too little variability on ventilation patterns
between Dutch households. The second, third and fourth
columns of Table 6 show the household types scoring
lower, average or higher on each factor, representing
the intensity of the behaviour per household type. This
clustering was made in accordance to the ANOVA
post-hoc Tukey tests. This information was used to
identify the intensity of the use of the building and build-
ing systems (e.g. thermostats setting, use of radiators,
ventilation, presence).

Figure 4 summarizes graphically the results from the
ANOVA tests, showing the factor scores (columns) for
each of the household types (colours). It shows that
seniors (singles and couples) and nuclear families tend
to be more time at home, while adults (especially single
adults) spend less time at home. The thermostat setting
in seniors households seems to be the highest, while
adults tend to set their thermostat lower. Single adults

Table 3. Behavioural variables used for factor analysis.

Type of variable and values Mean SD
Number of cases in the

analysis
Number of missing

casesa

Days at home, 06:00–09:00 Continuous – number of days per week 4.89 1.5170 4490 2021

Days at home, 09:00–12:00 2.95 1.319 4490 2021

Days at home, 12:00–15:00 2.87 1.334 4490 2021

Days at home, 15:00–18:00 3.48 1.445 4490 2021

Days at home, 18:00–23:00 5.04 1.266 4490 2021

Days at home, 23:00–06:00 5.66 1.190 4490 2021

Temperature, 06:00–09:00 Continuous – C° 17.66 2.309 4490 432

Temperature, 09:00–15:00 18.95 1.927 4490 382

Temperature, 15:00–18:00 19.40 1.710 4490 373

Temperature, 18:00–23:00 20.12 1.427 4490 347

Temperature, 23:00–06:00 16.06 1.927 4490 491

Temperature with nobody
at home

16.57 2.231 4490 456

Kitchen heating Categorical – frequency (1 = Always; 2 = Sometimes; 3 =
Seldom or Never)

1.47 .561 4490 2335

Bathroom heating 1.64 .842 4490 159

Main bedroom heating 2.59 .758 4490 154

Other bedroom heating 2.57 .706 4490 454

Natural ventilation in other
rooms

Categorical – frequency (1 = Always; 2 = Regularly; 3 =
Sometimes; 4 = Seldom or Never)

3.19 .910 4490 694

Natural ventilation in the
living room

3.33 .824 4490 694

Note: aFor each variable, missing values are replaced with the variable mean.

402 O. GUERRA-SANTIN AND S. SILVESTER

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
] 

at
 0

3:
04

 2
5 

Se
pt

em
be

r 
20

17
 



seem to have the lowest thermostat setback; while
nuclear families and single seniors have the highest ther-
mostat setbacks. Households with children seem to heat
the bedrooms more frequently, while households with
two seniors, three adults and nuclear families tend to
heat service rooms such as the kitchen and bathroom
more frequently. Ventilation preferences seem to be
similar in all household types, only the single-parent

households seem to differ from other households, venti-
lating more frequently while the heating is on.

Definition of occupancy patterns for building
simulation

To develop the occupancy patterns, this study is based on
the dynamic building simulation programme Bink

Table 4. Factor loadings and communalities based on a principal components analysis for 18 variables of occupant behaviour (N =
4490).

Components

Communalities1 2 3 4 5 6

Days at home, 06:00–09:00 .787 .579

Days at home, 09:00–12:00 .776 .586

Days at home, 12:00–15:00 .772 .638

Days at home, 15:00–18:00 .764 .602

Days at home, 18:00–23:00 .760 .610

Days at home, 23:00–06:00 .740 .642

Temperature, 6:00–09:00 .892 .585

Temperature, 9:00–15:00 .862 .801

Temperature, 15:00–18:00 .707 .840

Temperature, 18:00–23:00 .851 .550

Temperature, 23:00–06:00 .775 .757

Temperature with nobody at home .728 .659

Main bedroom heating .897 .709

Other bedrooms heating .890 .611

Natural ventilation in other rooms while heating .852 .808

Natural ventilation in the living room while heating .842 .812

Kitchen heating .839 .716

Bathroom heating .744 .728

Notes: Rotation method: Varimax with Kaiser normalization.
Factor loadings < .4 are suppressed.
The Kaiser–Meyer–Olkin measure of sampling adequacy was .742, above the recommended value of .6, The diagonals of the anti-image correlation matrix were
all above .5, supporting the inclusion of each item in the factor analysis. Finally, the communalities were all above .3, further confirming that each item shared
some common variance with other items. Given these overall indicators, factor analysis was conducted with all 18 variables.

Table 5. Factors analysis – variables contributing to each factor score.
Factor and name Variable contributing

Factor 1. Presence home factor score Presence at home, 06:00–09:00
Presence at home, 09:00–12:00
Presence at home, 12:00–15:00
Presence at home, 15:00–18:00
Presence at home, 18:00–23:00
Presence at home, 23:00–06:00

Factor 2. Temperature day factor score Thermostat settings, 09:00–15:00 (°C)
Thermostat settings, 15:00–18:00 (°C)
Thermostat settings, 18:00–23:00 (°C)

Factor 3. Temperature setback factor score Thermostat settings, 06:00–09:00 (°C)
Thermostat settings, 23:00–06:00 (°C)Thermostat settings, when nobody home (°C)

Factor 4. Bedroom radiators factor score Radiators on in the main bedroom
Radiators on in other bedrooms

Factor 5. Ventilation factor score Natural ventilation in the living room while heating
Natural ventilation in other rooms while heating

Factor 6. Other rooms’ radiators factor score Radiators on in the kitchen
Radiators on in the bathroom
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Table 6. Results for the analysis of variance (ANOVA) test: factors analysis scores per household type. Welch statistics are presented.
Factor Lower scores u Higher scores

1. Presence home factor score F(6, 1224.5) = 28.74, p < .001 Single adult
Two adults
(less often)

3 adults
Single parent

Two seniors
Single senior
Nuclear family
(more often)

2. Temperature day factor score F(6, 1211.5) = 49.20, p < .001 Single adult
(lower)

Two adults
3 adults
Nuclear family
Single parent

Two seniors
Single senior
(higher)

3. Temperature setback factor score F(6, 1216.9) = 9.1, p < .001 Single adult
Single parent
Two seniors
Two adults
(lower setting)

n.a. 3 adults
Single senior
Nuclear family
(higher setting)

4. Bedroom radiators factor score F(6, 1223.9) = 5.0, p = .001 Single parent
Nuclear family
(more frequently)

Single adult
Single senior
Two adults
Two seniors

3 adults
(less frequently)

5. Ventilation factor score F(6, 1226.5) = 1.86 n.s. (more) Single senior
Single adult
Nuclear family
3 adults
Two adults
Two seniors

Single parent
(less)

6. Other rooms’ radiators factor score F(6,1232.8) = 24.1, p < .001 Two seniors
3 adults
(more frequently)

Nuclear family
Single senior
Two adults

Single parent
Single adult
(less frequently)

Note: n.a. = Not available; n.s. = not statistically significant.

Figure 4. ANOVA tests: factor scores for each of the household types.
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DYWAG, which has been developed according to NEN-
EN-ISO 15255, 15256, 13792 (see Binksoftware.nl). The
household profiles have been defined in accordance to
the required input values in this software. In the soft-
ware, the authors can define specific heating patterns
per day, week, month or year, as well as the presence
of people, heat gains and artificial lighting and appliances
use in each room.

In the Netherlands, individual rooms are usually
heated by radiators fitted with thermostatic radiator
valves (TRVs), the valves modulate the flow to the radia-
tor in response to the locally sensed temperature,
enabling different rooms to achieve different tempera-
tures (Kane et al., 2015). From previous studies, it is
known that in Dutch houses the radiators are usually
left closed or half open in the least-used rooms
(Guerra-Santin & Itard, 2010). In addition, authors
have found that large amounts of energy are wasted
due to unoccupied space. In order to take into account
the influence of the thermostatic valves in the simulation,
more than one thermostat is defined per household,
reflecting the state of the radiator in a room as open,
semi-open or closed. A similar approach has been fol-
lowed by Monetti, Fabrizio, and Filippi (2015). For
each household profile, up to three thermostat pro-
grammes are defined; each thermostat can be linked to
different rooms depending on the household type and
building layout. For example, a first thermostat set to
22°C can be linked to the living room (or the room
with the thermostat) where the radiators are kept com-
pletely open; a second thermostat set to 16°C can be
linked to the kitchen, bathroom and other rooms
where radiators are left closed; and a third thermostat
set to 19°C can be linked to the bedrooms where the
radiators are kept half open.

The Bink simulation program does not allow the spe-
cification of the natural ventilation patterns per hour;
natural ventilation can be only defined based on outdoor
and indoor temperature. Therefore, the windows will be
simulated to be closed during the winter.

As previously stated, each household profile was
defined based on household type and their relationship

with the occupancy patterns (defined with factor analy-
sis). For each household, the intensity of the behaviour
(e.g. thermostat setting, presence at home) was deter-
mined based on the results of the ANOVA tests carried
out between household type and the occupancy patterns
(shown in Table 6). For example, a household type scor-
ing higher in temperature setting would have a higher
intensity behaviour for thermostat setting (i.e. tempera-
ture setting is higher) than a household with a low
score. The household profiles are defined in terms of
the presence in the dwelling, thermostat setting, thermo-
stat setback, use of radiators and natural ventilation fre-
quency (when the heating is on). The use of appliances
and artificial lighting is based on the presence of occu-
pants in the dwelling. Table 7 shows the resulting house-
hold profiles, which consist of a relative measure for
intensity of behaviour (e.g. seniors use higher set-points
than singles). The actual input values for the simulation
are obtained from descriptive statistics from the same
dataset (Table 8). The input values are defined in the fol-
lowing section and summarized in Table 9.

Presence

The household profiles consist of the schedule for the
presence for a whole week. The presence of the occu-
pants is based on the mean number of days that the occu-
pants reported to be at home. It was assumed that all
households were more often at home at the beginning
of the week and on weekdays than on weekends since
previous research has shown that households have an
irregular schedule at weekends. This assumption has,
however, no implications for the results of the simu-
lation, but it simplifies the input into the software. To
determine the number of people present in a room, the
rooms of the building were categorized as (1) living
area (living room and kitchen), (2) sleeping area (bed-
rooms), and (3) short-presence spaces (corridors, bath-
rooms). The short-presence areas were considered to
be always empty, while the living area was considered
to be occupied during day hours, and sleeping areas
during night hours. In the case of singles and couples

Table 7. Household profiles: intensity of heating behaviours and presence.
Presence Temperature Setback Radiators in the bedroom Ventilation while heating Radiators, others

1 senior More Warm Wasteful Semi-open Higher rate Semi-open

2 seniors More Warm Setback Semi-open Average rate Open

1 adult Less Cool Setback Semi-open Higher rate Closed

2 adults Less Average Setback Semi-open Average rate Semi-open

3 adults Average Average Wasteful Closed Average rate Open

Single parent Average Average Setback Open Lower rate Closed

Nuclear family More Average Wasteful Open Higher rate Semi-open
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Table 8. Descriptive statistics for behavioural variables per household type.
06:00–09:00 09:00–12:00 12:00–15:00 15:00–18:00 18:00–23:00 23:00–06:00

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

How many weekdays is there someone at home between … ?

1 senior 5.3 1.8 3.8 1.7 3.5 1.7 3.6 1.8 4.9 1.7 5.7 1.7

1 adult 4.3 2.3 2.4 1.8 2.2 1.8 2.6 2.0 4.4 1.9 5.4 1.8

2 adults 4.7 2.2 2.8 1.7 2.7 1.8 3.3 1.9 5.0 1.7 5.6 1.7

2 seniors 5.5 1.8 3.9 1.7 3.9 1.7 4.0 1.8 5.1 1.6 5.8 1.7

3 adults 4.9 1.9 2.8 1.6 2.8 1.7 3.6 1.8 5.2 1.6 5.8 1.5

Single parent 5.2 1.8 2.5 1.8 2.4 1.7 3.7 1.9 5.5 1.5 5.8 1.3

Nuclear family 5.2 1.7 3.1 1.5 3.2 1.6 4.2 1.7 5.6 1.3 5.9 1.3

Total 4.9 2.0 2.9 1.8 2.9 1.8 3.5 1.9 5.0 1.7 5.7 1.6

Average temperature weekdays when someone at home between…

1 senior 17.8 2.5 19.8 1.7 20.0 1.6 20.5 1.6 16.4 2.2 17.1 2.5

1 adult 17.0 2.5 18.3 2.3 18.8 2.1 19.7 1.7 15.8 2.1 15.9 2.4

2 adults 17.6 2.3 18.6 2.0 19.1 1.9 20.1 1.2 16.0 1.9 16.4 2.3

2 seniors 17.6 2.4 19.6 1.5 19.8 1.4 20.4 1.5 16.0 2.1 17.0 2.4

3 adults 17.7 2.5 18.7 2.0 19.3 1.6 20.2 1.2 15.9 2.1 16.6 2.4

Single parent 17.7 2.7 18.9 2.5 19.5 2.1 20.1 2.0 15.8 2.1 16.1 2.3

Nuclear family 18.3 2.2 18.8 1.9 19.5 1.5 20.0 1.4 16.2 1.8 16.7 2.1

Total 17.6 2.4 18.9 2.0 19.4 1.8 20.1 1.5 16.1 2.0 16.6 2.3

Table 9. Definition of specific occupancy profiles for building simulation.
1 senior 2 seniors 1 adult 2 adults 3 adults Single parent Nuclear family

Presence
For each time
period (e.g. from
06:00 to 09:00
hours) the mean
number of days
present at home
per household is
used

Mean presence
per household

Mean presence
per household

Mean presence
per household

Mean presence
per household

Mean
presence per
household

Mean
presence per
household

Mean presence
per household

Thermostat setting
Mean temperature
per household

1 SD above the
mean

1 SD above the
mean

1 SD below the
mean

Mean Mean Mean Mean

Setback setting Same as
thermostat
setting

Mean for setback Mean for setback Mean for setback Same as
thermostat
setting

Mean for
setback

Same as
thermostat
setting

Radiators in
bedrooms

Same as the
living room
with a
maximum of
media
temperature in
the living room

Same as the
living room
with a
maximum of
media
temperature in
the living room

Same as the
living room
with a
maximum of
media
temperature in
the living room

Same as the
living room
with a
maximum of
media
temperature in
the living room

Lowest
temperature
in the living
room

Same as the
living room

Same as the
living room

Ventilation Higher rate Average rate Higher rate Average rate Average rate Lower rate Higher rate

Radiators in other
rooms

Same as the
living room
with a
maximum of
media
temperature in
the living room

Same as
thermostat
setting

Lowest
temperature in
the living room

Same as the
living room
with a
maximum of
media
temperature in
the living room

Same as
thermostat
setting

Lowest
temperature
in the living
room

Same as the
living room
with a
maximum of
media
temperature in
the living room
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living in a two- or three-bedroom dwelling, the rest of
the bedrooms were considered to be unoccupied, while
for households with more than two adults, the bedrooms
were considered occupied during day and night. Table 10
shows the occupancy patterns for each household type
for common areas (living room) and bedrooms (0 =
absence, 1 = presence).

Internal heat gains

For internal heat gains, the use of lighting and appli-
ances was defined based on the presence of people.
In instances in which people are present in the
room, the appliances and lighting will be considered
to be in use. Two appliances and lighting use patterns
per household type were generated: a ‘best-case design’
in which the use of natural light is maximized and thus
the artificial lighting demand is determined by the time
of the day and presence (artificial light is not used in
the absence of people or during daytime); and a
‘poor natural light design’ in which artificial light is

determined only by the presence of people (except in
the night-time). The selection of the scenario to be
employed would depend on the renovation require-
ments of the project. Table 10 (background colours)
shows the appliances and lighting profiles for each
household type in the ‘base-case design’ pattern.

Heating (thermostat setting and radiators use)

Two different target temperatures can be defined in a
thermostat: the set-point (or comfort) temperature and
the setback temperature. In smart thermostats, the set-
back can be low enough to allow switching off systems
and so save energy but high enough so that the house
can be heated again in a reasonable amount of time
(Kleiminger, Mattern, & Santini, 2014). However, the
setback temperature in houses with manual or program-
mable thermostats depends on the preferences of
occupants.

As previously stated, three profiles for thermostat set-
ting are defined for each household type: living room

Table 10. Occupancy profiles (number of people indicated by numbers) and artificial lighting profiles (background colour) per
household type.

23:00–06:00 06:00–09:00 09:00–12:00 12:00–15:00 15:00–18:00 18:00–23:00
Bedrooms Living room Living room Living room Living room Living room

1 senior Mon–Wed 1 1 1 1 1 1
Thu 1 1 1 1 1
Fri 1 1 1
Sat–Sun 1

1 adult Mon–Tues 1 1 1 1 1 1
Wed 1 1 1 1
Thu 1 1 1
Fri–Sat 1
Sun

2 adults Mon–Wed 2 2 2 2 2 2
Thu–Fri 2 2 2
Sat–Sun 2

2 seniors Mon–Thu 2 2 2 2 2 2
Fri 2 2 2
Sat 2 2
Sun 2

3 adults Mon–Wed 1/1/1* 1/1/1* 1/1/1* 1/1/1* 1/1/1* 1/1/1*
Thu 1/1/1* 1/1/1* 1/1/1* 1/1/1*
Fri 1/1/1* 1/1/1* 1/1/1*
Sat–Sun 1/1/1*

Single parent Mon–Tues 1/1/1* 3* 3* 3* 3* 3*
Wed 1/1/1* 3* 3* 3* 3*
Thu 1/1/1* 3* 3* 3*
Fri 1/1/1* 3* 3*
Sat–Sun 1/1/1*

Nuclear Mon–Wed 2/1* 3* 3* 3* 3* 3*
Thu 2/1* 3* 3* 3*
Fri 2/1* 3* 3*
Sat 2/1* 3*
Sun 2/1*

Notes: (1/1/1*) one person in each bedroom; (2/1*) two persons in the main bedroom, one in second bedroom; (3*) three or more persons, according to house-
hold type.

Black background = lights and appliances on from 23:00 to 24:00 and from 05:00 to 06:00 hours; grey background = lights and appliances on (during the winter
period).
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thermostat (where the actual thermostat would be
located), radiators in bedrooms thermostat, and radiators
in other rooms thermostat. These three thermostat set-
tings aim at reflecting the use of radiators in different
rooms of the dwelling.

To determine the input value in the simulation pro-
gramme, descriptive statistics per household were used
(Table 8). The results of the ANOVA post-hoc analysis
determined the descriptive statistic to use as an input.
For the households with middle factor scores (> −0.1
and < 0.1), the thermostat setting was defined as the
mean reported thermostat setting; for households with
factor higher scores (> 0.1), the thermostat setting was
defined as the mean + 1 SD; and for the households
with lower factor scores (< −0.1), the thermostat setting
was defined as the mean – 1 SD.

The input value for the thermostat setting in the living
room thus consists of the statistic defined by the

ANOVA post-hoc test between factor 2 (thermostat set-
ting) and household type. For example, for the nuclear
family, the thermostat setting for Monday at 10:00
hours is the mean value of all households defined as
‘nuclear family’ in the dataset, for the time slot 09:00–
12:00 hours.

The setback temperature was determined with the
ANOVA analysis of the households in relation to fac-
tor 3: thermostat setback. A setback temperature was
considered for hours of occupant absence, and for
the night-time (based on Table 10, presence in the
dwelling). The setback temperature was obtained
using the mean reported value for thermostat setback
for household types reporting a low thermostat set-
back setting, while for households with high setback
thermostat settings the same input used for the ther-
mostat setpoint setting was used (i.e. the thermostat is
always the same). Table 11 shows the three

Table 11. Heating profiles (C°) for thermostat and radiators.
23:00–06:00 06:00–09:00 09:00–12:00 12:00–15:00 15:00–18:00 18:00–23:00

1 senior T1 T2/T3 T1 T2/T3 T1 T2/T3 T1 T2/T3 T1 T2/T3 T1 T2/T3
Mon–Wed 20 20 22 22 23 22 23 22 23 22 24 22
Thu 20 20 22 22 23 22 21 21 23 22 24 22
Fri 20 20 22 22 21 21 21 21 21 21 24 22
Sat–Sun 20 20 21 21 21 21 21 21 21 21 21 21

1 adult T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
Mon–Tues 10 10 12 12 14 14 14 14 14 14 17 14
Wed 10 10 12 12 10 10 10 10 14 14 17 14
Thu 10 10 12 12 10 10 10 10 10 10 17 14
Fri–Sun 10 10 10 10 10 10 10 10 10 10 10 10
*T3–10°C

2 adults T1 T2/T3 T1 T2/T3 T1 T2/T3 T1 T2/T3 T1 T2/T3 T1 T2/T3
Mon–Wed 15 15 17 17 18 18 18 18 19 18 20 18
Thu–Fri 15 15 17 17 16 16 16 16 16 16 20 18
Sat–Sun 15 15 16 16 16 16 16 16 16 16 16 16

2 seniors T1/T3 T2 T1/T3 T2 T1/T3 T2 T1/T3 T2 T1/T3 T2 T1/T3 T2
Mon–Thu 19 19 21 21 22 21 22 21 22 21 23 21
Fri 19 19 21 21 20 20 20 20 20 20 23 21
Sat 19 19 21 21 20 20 20 20 20 20 20 20
Sun 19 19 20 20 20 20 20 20 20 20 20 20

3 adults T1/T3 T2 T1/T3 T2 T1/T3 T2 T1/T3 T2 T1/T3 T2 T1/T3 T2
Mon–Wed 17 16 17 16 18 16 18 16 19 16 20 16
Thu 17 16 17 16 16 16 16 16 19 16 20 16
Fri 17 16 17 16 16 16 16 16 16 16 20 16
Sat–Sun 17 16 16 16 16 16 16 16 16 16 16 16

Single parent T1/T2 T3 T1/T2 T3 T1/T2 T3 T1/T2 T3 T1/T2 T3 T1/T2 T3
Mon–Tues 15 15 17 15 19 15 19 15 19 15 20 15
Wed 15 15 17 15 19 15 16 15 19 15 20 15
Thu 15 15 17 15 16 15 16 15 19 15 20 15
Fri 15 15 17 15 16 15 16 15 16 15 20 15
Sat–Sun 15 15 16 15 16 15 16 15 16 15 16 15

Nuclear T1/T2 T3 T1/T2 T3 T1/T2 T3 T1/T2 T3 T1/T2 T3 T1/T2 T3
Mon–Wed 18 18 18 18 19 18 19 18 19 18 20 18
Thu 18 18 18 18 16 16 16 16 19 18 20 18
Fri 18 18 18 18 16 16 16 16 16 16 20 18
Sat 18 18 16 16 16 16 16 16 16 16 20 18
Sun 18 18 16 16 16 16 16 16 16 16 16 16

Notes: T1 = thermostat 1 (main thermostat, usually in the living room); T2 = thermostat 2 (radiators temperature in bedrooms); T3 = thermostat 3 (radiators
temperature in office, bathroom and kitchen).

Black background = night setback temperature;
grey background = day setback temperature.
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thermostat settings in the living room (T1) for each
household type.

To define the temperature settings in the bedrooms
and in the other rooms, the results from the ANOVA
analysis were used to define households likely to turn
on the radiators in bedrooms and service rooms (factors
4–6). The temperature for radiators open was considered
as equal to the main thermostat settings; the temperature
for radiators closed was equal to the setback setting or (in
case of households with no thermostat setback) the low-
est temperature in the main thermostat schedule. The

temperature for radiators half open was defined as
equal to the average between the highest and the lowest
temperature setting per household type. The heating
profiles for bedrooms and service rooms are shown in
Table 11 (T2 and T3 respectively).

Ventilation profile

Differences in ventilation while heating patterns were
not found to be statistically significant for the different
types of households. Table 12 shows the descriptive stat-
istics for the natural ventilation frequency during the
winter period in the dataset. Nearly 50% of the respon-
dents for each household type reported always using
natural ventilation during the winter. The percentage
of household in each frequency category was very simi-
lar. Thus, for the occupancy profiles developed, it is
assumed that all household profiles have the same venti-
lation behaviour at all times.

Figure 5 shows the complete profile for a ‘single
senior’ household. The profile consists of a profile for
the presence, artificial lighting use and thermostat setting
for the living room (or the place where the thermostat is
located), bedrooms and other rooms. The profiles show
the thermostat settings in degrees Celsius, and the pres-
ence (1) and absence (0) of people and artificial light per
hour and day of the week.

Table 12. Reported natural ventilation during the winter in
Dutch households

Only
mechanical

(%)

Mechanical
ventilation

and daily (%)

Always
ventilation

(%)

10
minutes to
1 hour (%)

1 senior 4 7 52 36

1 adult 6 9 50 35

2 adults 5 10 50 34

2 seniors 6 9 44 40

3 adults 6 11 50 33

Single
parent

3 7 52 38

Nuclear
family

7 10 49 34

All 6 9 49 36

Figure 5. Graphical representation of household profile: 1 Senior household.
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Validation of household profiles

The profiles developed in this study aim at discerning the
differences in behaviour between household types on a
national sample. Although the household profiles are
not completely related to energy consumption due to
the effect of building characteristics, a certain level of
correlation is expected between the profiles and gas con-
sumption. Therefore, in a first attempt to validate the
profiles created, Pearson correlation tests between the
factors (occupancy patterns) and gas consumption
were carried out (Table 13). The results show small but
statistical significant correlations between gas consump-
tion and all factors except Radiators in bedrooms. The
lack of correlation between Radiators in bedrooms and
gas consumption seems to be originated by little variance
on this behaviour within the sample.

More important than the absolute energy consump-
tion per household is the relative difference in the inten-
sity of behaviours between household types, thus looking
at behaviour and not to the influence of building charac-
teristics (such as dwelling size). Figure 6 shows the
relationship between gas consumption per household
type and the household profiles developed in this
study. It shows that households with more intensive
heating behaviours (i.e. bars towards the right): one
senior, two seniors and a nuclear family show higher
gas consumption than their household size counterparts
(i.e. one adult, two adults, a single parent). The higher
gas consumption of larger households (three adults
and households with children) will be evident in the
results of building simulations, when the number of
spaces heated are considered.

Given that the household profiles in this investigation
are generated using statistical analysis of self-reported
data (i.e. the respondents reported on their own behav-
iour), it would be necessary to validate the results with
data from building monitoring campaigns in terms of
measured behaviours per household type. A companion
paper will deal with the development of household pro-
files based on monitoring data, and their comparison
with the profiles developed in this study.

It is important to add that the development of occu-
pancy and heating profiles in this paper aimed at deter-
mining household-specific profiles, and not with the
intention of predicting occupancy patterns or energy

Table 13. Pearson correlations between occupancy factors and
gas consumption.
Occupancy factors Number of cases Correlation

1. Presence home factor score 4790 .069**

2. Temperature day factor score 4790 .063**

3. Temperature setback factor score 4790 .096**

4. Bedroom radiators factor score 4790 n.s.

5. Ventilation factor score 4790 −.030*

6. Other rooms’ radiators factor score 4790 −.219**
Note: *p < .01; **p < .001.
n.a. = Not significant.

Figure 6. Relationship between household profiles and gas consumption per household type.
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consumption (i.e. stochastic models). The approach fol-
lowed is deterministic and descriptive in nature, and thus
the use of statistical data allows generalizations to be
made to the population of study.

Discussion

Seven household profiles were developed based on stat-
istical analysis with the aim of providing nationwide
occupancy input data for building simulation. The use
of national statistical data allows the results to be gener-
alized. The profiles developed are made up of infor-
mation known to have an effect on energy
consumption, and of information needed for input in
the building simulation program Bink, although similar
information is required in most simulation programs.

The household profiles developed aim to reflect the
lifestyle and preferences of seven representative house-
hold types in the Netherlands, with the objective being
to determine the effect of different household character-
istics during the design phase of buildings. It is impor-
tant to add, however, that these profiles could slightly
change if a specific sector of the population is under con-
sideration, for example in projects directed to social ren-
tal properties, where households with lower incomes are
the target group. Future research should aim at defining
these differences.

The advantage of the household profiles developed in
this study is related to the practicality of using determi-
nistic occupancy data as input in building simulation
programs. The relative simplicity of the method would
allow its use in practice, especially in the design phases
of construction or renovation processes, when fast iter-
ations of calculations are required. Software libraries
can be easily implemented to be employed in different
projects and by different energy modellers.

The main disadvantage of this method is related to the
reliability on self-reported questionnaire survey data.
Previous research has found that self-reported behav-
ioural data are not always accurate. However, the large
sample sizes provided by these methods (which would
be prohibitive in other methods) makes it possible to cre-
ate generalizations for the Dutch population. Further
phases of this study aim to use monitoring datasets to
validate the profiles. Therefore, the limitation of this
study is related to the validation of the developed profiles
with actual occupancy data, which could only be
obtained through numerous and extensive monitoring
campaigns. However, given that the profiles were deter-
mined based on a large dataset and with a random
sampling in the population, they provide a much
improved alternative to ‘standard’ occupancy profiles
based on rules of thumb.

The results shown in this investigation are in line with
trends found in other studies. For example, Kane et al.
(2015) found that heating patterns vary depending on
the age of households and employment status. House-
holds over 60 years old or unable to work turn the heat-
ing on earlier in the year, heat longer each day and heat
to higher temperatures in comparison with younger
households and those in employment. Yohanis, Mondol,
Wright, & Norton (2008) found that households over
65 years old are usually at home during daytime hours;
young householders (less than 40 years) tend to have
active evenings but low daytime consumption; and
middle-age households (50–65 years) usually with chil-
dren at home have higher electricity consumption in
the evenings. This paper goes further by offering com-
plete heating patterns per household type, integrating
presence and heating-related behaviour.

The approach presented in this paper is intended for
implementation (with some adaptations) in other
countries in which datasets as the one employed in this
analysis might not be available. Therefore, to determine
the patterns in a country without statistical information,
or to validate the statistical patterns, building monitoring
campaigns could be used. In addition, more information
is needed regarding ventilation patterns. In the WoON
dataset, around 50% of the households responded to
make use of natural ventilation during the winter; how-
ever, it is unclear whether the users completely open the
windows or only use vents (the latter is a common ven-
tilation practice in the Netherlands). Monitoring data
could provide more information about these patterns.

Conclusions

Energy refurbishment approaches are attractive, not only
from a CO2 mitigation perspective but also from a finan-
cial point of view. For the acceptance by the end user and
the feasibility of the business cases of these refurbish-
ment approaches it is important that uncertainty about
the actual energy consumption is minimized. Will the
energy use be zero in practice? Today the differences in
energy use between the households are huge. It is
unhelpful to speak of an average household in this per-
spective. Therefore, it is important to understand the
relation between occupancy and energy consumption.

In this research, occupancy patterns for energy con-
sumption in the Netherlands were defined. Seven statisti-
cally defined household types were linked to occupancy
patterns (building operation). Factor analysis and ANO-
VAs were used to define the relationship between the
household types and the occupancy patterns.

The results showed that households with seniors and
nuclear families have more energy-intensive heating
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practices than households with single adults or single-
parent households. Households with two adults could
be considered to be close to an average household. The
differences in heating behavioural patterns seem to be
caused by differences in lifestyle between households
(e.g. hours present at home), by comfort preferences
(e.g. senior households keep higher indoor temperatures)
and household composition (e.g. presence of children).
However, the less energy-intensive heating practices of
the single-parent household might indicate that other
household conditions could also be affecting the occu-
pancy patterns for heating.

The use of statistics to determine the occupancy pat-
terns proved useful to define the occupancy of a building
when real information about the occupants is not avail-
able due to the building renovation schedule, a sensitive
processes or when the building is unoccupied. This
method can be applied to any type of building renovation
projects in the Netherlands, or even in new housing pro-
jects. The approach could also be used in other countries
provided that datasets containing information about
household demographics, building characteristics and
occupant behaviour are available.

The household profiles developed in this study aim
at providing energy modellers with reliable, detailed
and ready-to-use occupancy data for building simu-
lation input. Household type-specific occupancy infor-
mation can be used in projects that are highly sensitive
to the uncertainty related to payback periods and
return of investments. By calculating the energy
requirements per household type, the designers can
make sound data-based decisions leading to energy tar-
gets that are true for all users, and not only for an aver-
age household.

The calculation of energy requirements taking into
account the effect of household typology aims at redu-
cing the gap between the expected and actual energy per-
formance of buildings and at tacking and minimizing
the consequences of the prebound effect in renovation
projects.
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