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ABSTRACT Novel personalized and affordable approaches are needed in order to provide efficient
therapeutic interventions for people with autism spectrum disorder. In this paper, we introduce a new
category of socially assistive robots, i.e., socially assistive drones (SADs) for therapeutic interactions with
humans. SADs autonomously perform and engage humans in dance movement therapy (DMT), which has
proven to be highly effective for people with autism spectrum disorder when it is personalized and adapted
carefully. The main focus of this paper is on developing adaptive, personalized, and interactive control
approaches based on fuzzy logic, which efficiently deals with nonlinear dynamics and directly introduces
the expert (linguistic) knowledge into the control system. The developed approaches are implemented via
a small quadcopter in real-life interactions with 10 participants. The results of the case study prove the
excellent performance of the SAD in adapting and personalizing its decisions with respect to each user and
thus keeping them engaged in the proposed DMT plans.

INDEX TERMS Adaptivity and personalization, autism spectrum disorder, dance movement therapy, fuzzy
logic, socially assistive robots.

I. INTRODUCTION
Autism Spectrum Disorder (ASD) refers to complex neuro-
developmental impairments that result in difficulties in social
interactions and verbal and non-verbal communication. The
prevalence of ASD is around 2.7% in boys and 0.67% in
girls. Almost all people with ASD exhibit some level of
language impairment, with a large percentage being non-
verbal [1]. Moreover, 80%-90% of people with ASD are
affected by an impaired development of motor skills1 [2].
Studies show that the severity of motor skill impairments
in ASD corresponds to the severity of social and commu-

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .
1Motor skills include abilities learned by humans that can result in prede-

termined movement outcomes with maximum certainties.

nication impairments (see, e.g., [3]–[7]). Although currently
ASD cannot be cured, people with ASD can improve their
quality of life via early, long-term therapeutic interventions.
For instance, personalized DanceMovement Therapy (DMT)
has proven to significantly improve the motor skills of people
with ASD, especially those who are non-verbal and may not
benefit from other therapeutic interventions [8], [9]. DMT
includes mirroring (i.e., matching, reflecting, or echoing)
the movements of the therapist by the client (for improving
empathetic expressions) and encouraging the client to initiate
more spontaneous movements that should be mirrored by the
therapist (for improving the connection with and exploration
of the environment).

The main challenges in providing DMT for people with
ASD include (1) the need for personalizing the DMT plans
based on the stage of ASD and specific needs of every
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FIGURE 1. Different SARs used for ASD therapy in literature (from left to
right: Paro [10], Nao [11], and Charlie [12]).

person, (2) making the intervention available, with any
desired frequency, and engaging in long terms, and (3) keep-
ing the corresponding costs low, so that DMT is affordable
for more people. Therefore, it is essential to find alternative
approaches for providing affordable personalized DMT.
Socially Assistive Robots (SARs) provide aid or support

for humans (e.g., in rehabilitation, education, mobility, etc.),
while maintaining social interactions with them. It has been
shown that therapeutic interventions for ASD via SARs can
significantly improve the impact and therapeutic outcome of
these interventions (see, e.g., [13]–[18]). Correspondingly,
various SARs have been developed or adapted for use in
therapy sessions for ASD (see Figure 1). In order to achieve
desired therapeutic performance and outcome via SARs,
these robots should possess the following key characteristics:

1) Desirable appearance: Although humanoid robots
are highly accepted by humans, they may hinder the
effectiveness of therapeutic interactions for people
with ASD, since they tend to experience discomfort
around humans (or robots that resemble humans) and
thus avoid interacting with them [1]. In general, the
less complex and expressive the appearance of a robot,
the more desirable it is for therapeutic applications
for ASD.

2) Autonomy: Autonomy in decision making is required
for SARs in order to continue performing indepen-
dently without constant supervision of therapists or
caregivers. This also allows therapists or caregivers to
focus on therapeutic aspects that are not necessarily
addressed by the SAR or to participate in several par-
allel therapy sessions.

3) Adaptivity: For effective interactions, SARs should
adapt their behaviour and decisions according to the
environmental and behavioral changes of humans.
Adaptivity of SARs positively affects their acceptance
by humans, and encourages humans to interact with
them in longer terms [19].

4) User-friendliness: Therapists, clinicians, and care-
givers should be able to operate or re-program SARs
easily and without need for in-depth technical knowl-
edge. More specifically, the user interface of a SAR
should be simple and intuitive in providing the desired
commands and for entering or accessing data of therapy
sessions.

5) Responsiveness: Since people with ASD may exhibit
unpredictable patterns of behavior and interaction or
may withdraw from the interactions [20], SARs should
be responsive to the immediate changes a therapist or
caregiver provides during a therapy session. Note that
while adaptivity is related to the autonomous perfor-
mance of SARs, responsiveness is related to the robot’s
performance with regards to the external control inputs
it receives.

Considering these five characteristics, drones are highly
suitable candidates for assisting in therapeutic interventions
for ASD. However, drones have never been used in sys-
tematic therapeutic interventions for ASD, or generally as
SARs. High mobility, manoeuvrability, three degrees of free-
dom suited for performing DMT, and their simple, appeal-
ing appearance make drones promising candidates for ASD
therapy.2 Therefore, in this paper we introduce a new con-
cept, socially assistive drones or briefly SADs, and we
develop the first SAD used for performing personalized
DMT in live interactions with humans. Autonomy, adaptiv-
ity, user-friendliness, and responsiveness of SADs should
mainly be provided by the approaches that steer SADs. More
specifically, adaptivity and autonomy can be provided by
proper development of the SAD’s control system, while user-
friendliness and responsiveness are linked to both the control
system and the user interface. The main focus of this paper
is on the development of the control system of a SAD, where
adaptive fuzzy-logic-based approaches are considered.

Fuzzy-logic-based (FL) controllers were first introduced
by Mamdani [23] (based on the concept of fuzzy sets [24])
and were later on extended by Takagi and Sugeno [25].
FL controllers make decisions using a fuzzy inference sys-
tem and according to a rule base that consists of rules for-
mulated as if-then statements that include linguistic terms.
The input and output of an FL controller are fuzzy values.
Therefore, a fuzzifier and a defuzzifier are used to trans-
form the crisp values into fuzzy ones and vice versa, since
sensors and actuators of the controlled system usually per-
form according to crisp values. FL controllers are usually
model-free, which makes them suitable when no model of
the controlled system is available. Moreover, FL controllers
perform based on approaches that are very close to decision
making of humans. When building up the rule base of an FL
controller, human expert knowledge (expressed via linguistic
terms) can directly be incorporated within the controller.
In Takagi-Sugeno-Kang (TSK) FL controllers [25], although
the antecedent of the rules include fuzzy sets, their conse-
quent directly produces crisp values based on an affine com-
bination of the inputs. In this paper, TSK-based FL controllers
are used for developing the controllers of the SAD, since
the TSK approach is computationally efficient, is easy to be
tuned, and can easily be made adaptive.

2The drone summer camps for children with ASD have shown that drones
are very appealing to these children (see, e.g., [21], [22])
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II. MAIN CONTRIBUTIONS & STRUCTURE OF THE PAPER
In this paper, we introduce a socially assistive drone (SAD)
that autonomously designs and performs personalized DMT
plans in live interactions with humans. In particular, the main
contributions include:

1) developing an image-processing-based data analysis
module with a fault-tolerant algorithm for online pro-
cessing of the human’s motions

2) developing a generalized adaptive fuzzy-logic-based
control system that autonomously steers the SAD to
personalize its decisions

3) implementing the proposed approaches to a Parrot
Bebop 2 quadcopter

Analysis and assessment of the performance of the resulting
SAD via real-life experiments with volunteer human par-
ticipants, show that the developed SAD possesses auton-
omy, adaptivity, user-friendliness, and responsiveness, which
together with its simple, appealing appearance make it suited
for DMT for ASD.

The rest of the paper is organized as it follows: Section III
details the proposed approaches for real-time human-SAD
interactions via DMT. In particular, the proposed approaches
developed for data analysis and adaptive, personalized con-
trol of the SAD are discussed. Section IV explains the case
study with the developed SAD. In Section V the results
of the experiments are represented and discussed. Finally,
Section VI concludes the paper and gives topics for future
research.

III. PROPOSED RESEARCH METHODOLOGIES
In this section, we explain data analysis and control
approaches developed for the SAD, which together build
up the decision making module that steers the SAD to
autonomously perform personalized DMT plans in live inter-
active sessions with humans.

A. HUMAN-SAD INTERACTIONS
In order to autonomously perform systematic DMT plans and
to maintain the interactions with humans in long terms, the
SAD needs to accomplish the following tasks successfully:

1) gathering and processing relevant data from humans
and generating reliable, comprehensive information

2) analyzing the generated information according to the
purposes and criteria of the interactions

3) injecting the results of the assessments into the SAD’s
control system, which steers the SAD according to the
aim of interactions

Figure 2 illustrates the three steps indicated above. In the next
sections, we provide details on these steps.

B. DATA CAPTURING VIA SAD’s CAMERA
The proposed SAD is a quadcopter equipped with a cam-
era that records live video footage during DMT sessions.
We assume that at most one human at a time is present in
the frame of view of the SAD. A fixed time interval, called
the wait time, is considered, during which the SAD remains

FIGURE 2. Schematic view of the human-SAD interaction procedures.

FIGURE 3. Output of ANN 1: Values in pixels corresponding to the user’s
face-box, including the coordinates of the top left corner (xfb, yfb), width
wfb, and height hfb.

in the same position and records all the relevant positions
of the user (details are given in Sections III-B1 and III-B2).
In order to identify the presence of a user within the recorded
video footage and to analyze and evaluate the movements of
the user, two artificial neural networks (ANNs) and a motion
processing algorithm are developed, which together form the
image processing unit (IPU) that should process the captured
images in real time. Next we discuss the details of the two
ANNs in the data analysis module.

1) ANN 1: FACE DETECTION
The first ANN, called ANN 1, allows the SAD to identify the
face of a human within the captured images by sketching a
rectangle (called the face-box) that delimits the user’s face
(see Figure 3). The output of ANN 1 includes the following
values in pixels: (1) coordinates (xfb, yfb) of the upper left
corner of the face-box, (2) the width, wfb, of the face-box,
and (3) the height, hfb, of the face-box. In Figure 3 the largest
rectangle shows the SAD’s frame of view and xb and yb refer
to the SAD’s body frame (i.e., axes attached to the drone’s
body).

2) ANN 2: BODY/JOINT DETECTION
The second ANN, called ANN 2 (developed by Openpose
Python [26], [27]), is responsible for identifying the joint
positions of a detected user. Overall, a total of 18 joint posi-
tions (see Figure 4) can be identified, where the output of
ANN 2 includes the coordinates of these joint in pixels.
Remark 1: In addition to the coordinates and values gen-

erated by ANN 1 and ANN 2, the observation time associated
with each of these values is stored on a remote computer.
This information will later on be used by the SAD to estimate
the speed of the user’s movements, for both assessment of
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FIGURE 4. Output of ANN 2: Coordinates in pixels of the 18 joints of the
user’s body.

the interactions and determining the speed and frequency of
various DMT plans that will be proposed by the SAD.

C. DATA ANALYSIS MODULE
The outputs of the ANNs are injected as input into the motion
processing algorithm of the SAD, which uses these inputs to
(1) estimate the current position of the user, (2) evaluate the
level of engagement and performance of the user according to
the DMT plan, and (3) capture the movements of the user that
the SAD is expected to mirror. Next, we explain the motion
processing algorithm in detail.

1) MOTION PROCESSING ALGORITHM
The information regarding the ith measurement captured by
the SAD is skimmed to contain: (1) capture time ti in s,
(2) horizontal coordinate xti of the relevant data in pixels, and
(3) vertical coordinate yti of the relevant data in pixels. For the
sake of simplicity of the notations we use rti =

(
xti , yti

)
. The

identified motions are registered in five categories: motion
to the left, to the right, upwards, downwards, and pause,
considering every two consecutive coordinates rti and rti+1 :

1) In case the coordinates (almost) overlap, i.e., ||rti −
rti+1 || < τm, with τm a motion threshold, then the cor-
responding motion belongs to the category ‘‘pause’’.

2) In case the distance between the two consecutive coor-
dinates is larger than or equal to the motion threshold,
i.e., ||rti−rti+1 || ≥ τm, a motion is detected. Themotion
is horizontal when |yti − yti+1 | < γ |xti − xti+1 |, and
is vertical when |xti − xti+1 | < γ |yti − yti+1 |, with
0 < γ < 1 a ratio that can be identified per person.3

3) To specify the heading of the motion the sign of xti −
xti+1 and yti−yti+1 are considered for, respectively, hor-
izontal and vertical motions. A positive sign indicates

3In reality, it is very unlikely for a user to move consistently in exactly
either a horizontal or a vertical direction. For instance, a user who aims to
move horizontally may still make some small vertical movements inadver-
tently. The ratio γ has been considered in analysis of the user’s motions to
determine whether or not these secondary motions should be considered by
the SAD.

a motion to the right or downwards, while a negative
sign indicates a motion to the left or upwards.

Finally, based on the coordinates and registered time instants,
a speed (in pixels/s) is associated to every identified motion
category.
Fault tolerance for motion processing algorithm:
The motion processing algorithm should possess an

acceptable level of fault tolerance, in order to cope with (1)
missing data, i.e., when the user and/or the relevant joints
are not identified by the IPU; (2) erroneous data, i.e., when
the position of the user and/or the corresponding joints have
been captured, but involve (non-negligible) errors. A missing
coordinate may occur due to an IPU failure or because the
user leaves the SAD’s frame of view. In case the number of
consecutivemissing coordinates is small, it is unlikely that the
user has left and returned to the SAD’s frame of view. Thus it
is assumed that an IPU failure has occurred. Otherwise, it is
assumed that the user has left the SAD’s frame of view.
Missing coordinates due to IPU failure: The first time

instant that corresponds to a missing coordinate is called
the time of failure and is denoted by tf. The most recent
and the first next time instants with respect to tf when a
reliable measurement has been captured are specified by tbf
and taf , respectively. The coordinates corresponding to time
instants rtbf

and rtaf are represented by rtbf
and rtaf . In case the

coordinates rtbf
and rtaf imply the same category of motion

as the most recent time interval
[
tbf −1t, t

b
f

]
(with 1t the

fixed time step for capturing a measurement by the IPU),
and the speed for moving from coordinate rtbf

to coordinate

rtaf within time interval
[
tbf , t

a
f

]
compared to the speed of

the captured movement within time interval
[
tbf −1t, t

b
f

]
indicates a uniform motion (see Figure 5), then the motion
processing algorithm ignores the missing intermediate points
(as they are assumed to be positioned uniformly between rtbf
and rtaf ).

If based on the coordinates rtbf −1t
and rtbf

, and rtbf
and rtaf

the direction of the motion has remained the same within
time intervals

[
tbf −1t, t

b
f

]
and

[
tbf , t

a
f

]
, while the speed of

the movement has changed (see Figure 6), then n interme-
diate coordinates, with n = (taf − tbf )/1t − 1, between the
coordinates rtbf

and rtaf are specified by the motion processing
algorithm, such that the magnitude of the speed correspond-
ing to these intermediate time intervals evolves according to
a fixed rate, and the SAD’s position for time step taf reaches
the position captured for this time step by the IPU. More
specifically, the rate of changes of the speed is given by:

1v =
2
(
|rtaf − rtbf

| − (n+ 1)|rtbf
− rtbf −1t

|
)

(n+ 1)(n+ 2)1t
(1)

When according to the motion processing algorithm, the
direction of the motion has changed between tbf and taf (see
Figure 7), the intersection of the piece of line that connects the
points corresponding to rtbf −1t

and rtbf
with the piece of line

that connects the points corresponding to rtaf and rtaf+1t will
be considered as the point where the direction of the motion
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FIGURE 5. Missing data: Uniform motion during the time interval when
data has not been captured.

FIGURE 6. Missing data: Motion in the same direction as before with a
varying speed during the time interval when data has not been captured.

has changed. In case based on the most recent and most pos-
terior time intervals with respect to the time interval [tbf , t

a
f ],

the speed of the motion has also changed the path determined
by the motion processing algorithm from time instant tbf to
time instant taf will be divided into n intermediate coordinates,
such that the magnitude of the speed corresponding to these
intermediate time intervals evolves according to a fixed rate
(see (1)).
Missing coordinates due to the user leaving the SAD’s

frame of view: When it is assumed that the user has left
the SAD’s frame of view, the last registered coordinates(
xLuser, y

L
user
)
of the user is considered and the distances dLi

of this position with respect to the eight border points bi of
the SAD’s frame of view with i ∈ {1, . . . , 8} are computed
(see Figures 8 and 9).

In case there is no later coordinates registered for the user
(see Figure 8), the algorithm fills in the missing coordinates
by the coordinates of the border point that is the closest to the

FIGURE 7. Missing data: Direction of motion has changed during the time
interval when data has not been captured.

point
(
xLuser, y

L
user
)
. However, when there is a new registered

position
(
xRuser, y

R
user
)
for the user (see Figure 9), the motion

processing algorithm considers the distances dRi of this posi-
tion with respect to the eight border points as well as the

distances dO,Rj and dO,Lk between the positions corresponding

to
(
xO,j,kuser , y

O,j,k
user

)
are computed, where j, k ∈ {1, . . . , 8}.

Note that
(
xO,j,kuser , y

O,j,k
user

)
corresponds to the intersection point

of the lines that pass through the point
(
xLuser, y

L
user
)
and the

border point bj, and point
(
xRuser, y

R
user
)
and the border point

bk . Finally, the coordinates of the two border points bj and bk ,
for which dLj + d

O,L
j + dRk + d

O,R
k is the smallest are used to

fill in the missing registrations (e.g., in Figure 9 bj = b2 and
bk = b4).
Erroneous data: Erroneous data is identified by abnormal

deviations from a specific motion pattern. Mathematically
speaking, an error corresponds to a registered position r̃t that
satisfies both of the following conditions:

min
{
||r̃t − rt−1t ||, ||r̃t − rt+1t ||

}
> τm (2)

max
{
||r̃t − rt−1t ||, ||r̃t − rt+1t ||

}
> C̃||rt+1t − rt−1t || (3)

Where C̃ > 1 is called the anomaly coefficient. First,
a motion across the three consecutive registered positions
rt−1t , r̃t , and rt+1t should be detected (see condition (2)).
Condition (3) defines a limit on the deviation from a given
motion pattern for every registered position. Erroneous data at
time instant t is identified whenever the distance between the
associated registered position r̃t , and either of the previous,
i.e., rt−1t , or following, i.e., rt+1t , registered positions is too
large.
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FIGURE 8. Missing data due to the user leaving the SAD’s frame of view:
A case where no new position has been registered for the user later on.

FIGURE 9. Missing data due to the user leaving the SAD’s frame of view:
A case where the user has left and later on returned to the SAD’s frame of
view.

Figure 10 shows two examples with absence and presence
of erroneous data. In this figure, satisfaction of condition (2)
means that d23 (which is assumed to be smaller than d12) is
larger than τm, meaning that rt2 falls outside of the illustrated
circular areas of radius τm. The left-hand side plot shows a
case where condition (3) (supposing that C̃ = 2) does not
hold for the registered position rt2 , i.e., d12 (which is supposed
to be larger than d23) is not larger than 2d13. Therefore, there
is no erroneous data detected for time instant t2. However,
in the right-hand side plot, d12, is larger than 2d13, which
according to (3) implies erroneous data for rt2 .

Whenever erroneous data is identified, the corresponding
registered position should be corrected. Suppose that we have
either of the following cases:

|xt+1t − xt−1t | < 2τm (4)

|yt+1t − yt−1t | < 2τm (5)

Then the registered position that is prone to error is ignored
and the SAD considers rt−1t and rt+1t as two consecutive
registered positions. In case (4) does not hold, while the
following condition holds (see the sub-area in between the
dashed vertical lines in the right-hand side plot in Figure 10):

min
{
xt−1t , xt+1t

}
+ τm < x̃t <

max
{
xt−1t , xt+1t

}
− τm, (6)

only the y-coordinate of r̃t should be corrected, i.e.:

xt = x̃t and yt = 0.5
(
yt−1t + yt+1t

)
(7)

If (5) does not hold, while the following condition holds (see
the sub-area in between the dashed horizontal lines in the
right-hand side plot in Figure 10):

min
{
yt−1t , yt+1t

}
+ τm < ỹt <

max
{
yt−1t , yt+1t

}
− τm, (8)

only the x-coordinate of r̃t is corrected. We have:

xt = 0.5
(
xt−1t + xt+1t

)
and yt = ỹt (9)

D. SAD’s CONTROL SYSTEM: DMT GAME MODES
The main goal of the SAD is to sustain effective interactions
according to systematic DMT plans with a user in long terms.
Therefore we have considered a number of therapeutic sce-
narios, called ‘‘game modes’’. The proposed game modes fall
within one of the following two categories:

1) Passive game modes: These game modes mainly aim at
promoting empathetic illustrations in the user. Hence,
the SAD mirrors the movements of the user and takes
a passive role in the DMT interactions.

2) Active game modes: These game modes mainly aim at
enhancing the connection of the user with their environ-
ment, thus the user is expected to follow themovements
that are initiated by the SAD, which takes an active role
in the DMT interactions.

In passive game modes, during a given wait time the SAD
captures the motions of the user, which it mirrors afterwards.
In active gamemodes, the SADfirst performs a specific DMT
movement and then captures and assesses the reactions or
responses of the user within the given wait time.

Overall, four game modes are proposed, which will be
discussed in the next sections. A modular control system is
developed for the SAD, where this control system includes
one controller per gamemode.Moreover, a standby controller
is included in order to adjust the initial states of the SAD at
the beginning of every gamemode and to regulate these states
in transitions between every two game modes.
Remark 2: In order to control the SAD, in our case studies

(see Section IV) the PyParrot [28] interface for Python is
used. With this library, in order to control the speed of the
drone (i.e., the displacement and the time the drone needs
to implement the displacement), five control variables are
considered: duration of the displacement (in [s]), vertical
speed of the drone (in m/s), roll, pitch, and yaw displacements
of the drone (in deg), all given as a percentage ranging in
[−100, 100] of their maximum allowed values, with the signs
determining the direction of the corresponding displacement
(see Figure 11 for the definition of the roll, pitch, and yaw
angles, noting that the axes have been defined such that at the
initial state (i.e., at θ = 0, ψ = 0, φ = 0) they are aligned
with xb and yb axes defined earlier for the SAD’s frame of
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FIGURE 10. No erroneous data for rt2
(left-hand side picture). Erroneous data detected for rt2

(right-hand side picture).

FIGURE 11. Reference inertial frame for the SAD with the pitch θ , yaw ψ ,
and roll φ angles being defined as the angular displacements around the
x , y , and z axis, respectively.

view (the same as the SAD’s body frame)). Consequently,
the controllers that will be developed to steer the motions of
the SAD in the x and z directions will generate, respectively,
the corresponding roll and pitch angles as a percentage of
their maximum allowed values, where the tilting should be
executed for a given time to create the desired linear dis-
placement with the desired speed. Appendix A represents the
dynamics of a quadcopter and formulates the relationships
between its linear and angular displacements.

1) STANDBY CONTROLLER
The standby controller acts as a support module in initializing
and sustaining the DMT game modes. The standby controller
meets four main objectives:

1) Finding the user in the environment
2) Positioning the user in the center of the SAD’s frame

of view
3) Maintaining an appropriate, safe distance between the

SAD and the user according to a proper distance esti-
mator algorithm

4) Sustaining the altitude of the SAD, such that it fits the
corresponding game mode

Finding the user: In case neither of the two ANNs detects
a user, the standby controller steers the SAD to tilt according
to a high yaw angle within a given time (in case information

is available, towards the position that the user has lastly been
identified). Then the SAD analyzes the captured images and
continues the entire procedure until the user is detected.
Centering the user in the SAD’s frame of view: After

detecting the user, the standby controller positions the user
in the center of the SAD’s frame of view according to a TSK-
based FL controller with the following rules:

R1 : If xuser is left, then υstandbySAD = a1xuser − b1

R2 : If xuser is right, then υstandbySAD = a2xuser − b2

R3 : If xuser is center, then υstandbySAD = a3xuser − b3 (10)

Where xuser is the user’s detected position in pixels, the terms
‘‘left’’, ‘‘right’’, and ‘‘center’’ (referring to the horizontal
position of the user’s chest or face-box w.r.t. the center of
the SAD’s frame of view) are mathematically represented by
fuzzy sets, the output υstandbySAD of the standby controller is a
percentage of the maximum yaw angle of the SAD, which
will be executed within a given fixed time (see Figure 12),
and a1, b1, a2, b2, a3, b3 are parameters that will be identified
per user. Figure 13 shows one example of the membership
functions for the fuzzy sets ‘‘left’’, ‘‘center’’, and ‘‘right’’,
where the user is considered to be in the center of the SAD’s
frame of view, whenever the following condition is satisfied:

1− 10−2 · τc
2

ximage ≤ xuser ≤
1+ 10−2 · τc

2
ximage (11)

with ximage the maximum number of pixels in the horizontal
direction of the captured images and τc a specific threshold
that is generally personalized per user.
Maintaining an appropriate distance with the user: Sus-

taining effective interactions with the user for long periods of
time is essential for the SAD to achieve satisfactory therapeu-
tic outcomes via DMT. In order to achieve this goal, an ade-
quate distance to the user must be maintained at all times.
On the one hand, the SAD should avoid getting too close to
the user, since a too small distance raises safety concerns and
might intimidate the user, thus negatively impacting the ther-
apeutic interactions. On the other hand, if the distance of the
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FIGURE 12. The standby controller steers the SAD to turn according to a
yaw angle in order to center the user’s image in its frame of view.

SAD to the user is too large, the user’s attention to the SAD
and thus the user’s engagement may be lost. Consequently,
the control system of the SAD should constantly receive the
detected relative distance of the SAD and the user and adjust
it whenever needed. In case the SAD is not equipped with
any sensor that directly measures the longitudinal or lateral
distances of the SAD to the user, the distance should be
estimated based on the values that are gathered and analyzed
by the IPU.
In order to check whether the relative distance of the SAD

and the user is too small, the values provided by ANN 1 are
used because the face-box can properly be detected when the
user and the SAD are close enough to each other, while for
a too close distance ANN 2 fails to detect the entire body
of the user. Based on the width wfb and height hfb of the
latest face-box (see Figure 3), the area Afb of the face-box in
squared pixels is computed and is divided by the total image
area Aimage in squared pixels to determine the face-box ratio.
Whenever the magnitude of the face-box ratio is large, the
SAD is considered to be too close to the user and thus their
distance should be increased according to the following fuzzy
rule:

R4 : If
Afb

Aimage
is large, then π standby

SAD = a4Afb + b4 (12)

Where the term ‘‘large’’ is mathematically represented by a
fuzzy set and its corresponding fuzzy membership function,
π
standby
SAD is the SAD’s pitch displacement as a percentage of

its maximum allowed value, and parameters a4 and b4 will
be identified per user. Figure 14 shows a fuzzy membership
function for the term ‘‘large’’, where the threshold τd,1 is
identified per user based on the distance they find safe.

To assess whether the SAD is too far from the user, the
values provided by ANN 2 are used, since in larger distances
the estimates provided by ANN 1 are unreliable. Out of the
18 joints illustrated in Figure 4, the coordinates of joints 1,
8, and 11 corresponding to the chest and the right and left
edges of the user’s waistline are considered (see Figure 4).
Note that joint 1 is the reference joint, i.e., all other joints
are detected w.r.t. joint 1. Therefore, whenever information

FIGURE 13. Membership functions corresponding to fuzzy sets ‘‘left’’,
‘‘center’’, and ‘‘right’’ used by the standby controller to position the user
in the SAD’s frame of view.

FIGURE 14. Membership function corresponding to fuzzy set ‘‘large’’ used
by the standby controller to estimate the distance of the user with
respect to the SAD.

from ANN 2 is available, it certainly includes data regard-
ing joint 1. Moreover, while the legs and arms of a user
(i.e., joints 2-13 in figure 4)maymove out of the SAD’s frame
of view, the chances are high that the data regarding joints
8 and 11 is available whenever the user is not too close to
the SAD. Finally, the joints corresponding to the user’s face
(i.e., joints 0 and 14-17) are more prone to being swayed and
thus less reliable.

Once the coordinates for joints 1, 8, and 11 are known, the
vertical distance δ1,11 between joints 1 and 11, and the vertical
distance δ1,8 between joints 1 and 8 (see Figure 4) are divided
by the overall vertical length yimage of the image to generate
the upper body ratios. The closer the user to the SAD, the
larger the values of the upper body ratios. More specifically,
whenever the maximum of the two values estimated for the
upper body ratio is small, the distance of the SAD and the user
is too large and should be reduced according to the following
rule:

R5 : If max
{
δ1,8

yimage
,
δ1,11

yimage

}
is small,

then π standby
SAD = a5max{δ1,8, δ1,11} + b5 (13)

Where the term ‘‘small’’ is mathematically represented by a
fuzzy set and its corresponding fuzzy membership function
and parameters a5 and b5 will be identified per user. Figure 15
shows one example for representing the term ‘‘small’’ by
a fuzzy membership function, where the threshold τd,2 is
identified based on the relative distance between the SAD and
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FIGURE 15. Membership function corresponding to fuzzy set ‘‘small’’
used by the standby controller to estimate the distance of the user with
respect to the SAD.

FIGURE 16. Membership functions corresponding to fuzzy sets ‘‘low’’,
‘‘default’’, and ‘‘high’’ for assessing the SAD’s altitude.

the user, for which the IPU can still perform satisfactorily,
while the user remains attentive to the SAD.
Sustaining the SAD’s altitude: When the SAD’s altitude

is too high or too low, two issues may occur: (1) The user
may not accurately capture all the movements and the corre-
sponding coordinates of the SAD, which negatively impacts
the human-SAD interactions. (2) The IPU may fail to capture
the movements and the corresponding coordinates of the user
correctly, which negatively impacts the analysis and decision
making of the SAD. Most quadcopters are equipped with
an altitude measurement sensor. For the SAD, these mea-
surements are used in two cases during the DMT sessions:
(1) After the SAD accomplishes a game mode and intends to
transition to a new game mode. (2) After the SAD is done
executing a vertical movement.

In order to regularly sustain a proper altitude for the
SAD, three fuzzy sets corresponding to the concepts ‘‘short’’,
‘‘default’’, and ‘‘high’’ are defined. Figure 16 shows one
example, where thresholds τl and τh and the default altitude
hdefSAD of the SAD specify the corresponding membership
functions. Generally speaking, the user’s height huser is con-
sidered to identify the thresholds τh and τl. More specifically,
τh = αhhuser and τl = αlhuser with all the altitudes given
in cm and αh > 1 and 0 < αl < 1 parameters that
will be identified per user. The default altitude hdefSAD of the
SAD is determined corresponding to the user’s shoulder level
(see Figure 17). The ratio of the body of a user of height
huser above their shoulder is almost 0.15huser. Therefore,
we consider hdefSAD = 0.85huser.

FIGURE 17. Standard ratios of the user’s body above the shoulders
(almost 0.15 of the user’s height) used to adjust the default altitude of
the SAD.

To maintain the SAD’s altitude, the standby controller
implements the following fuzzy rules:

R6 : If hSAD is low,

then ζ standbySAD = a6hSAD + b6
R7 : If hSAD is default,

then ζ standbySAD = a7hSAD + b7
R8 : If hSAD is high,

then ζ standbySAD = a8hSAD + b8 (14)

Where ζ standbySAD is the speed of the SAD in the y direction as a
percentage of its maximum value and parameters a6, b6, a7,
b7, a8, b8 will be identified per user.

2) PASSIVE GAME MODE 1: MIRROR THE USER
In passive game modes the SADmainly responds, via mirror-
ing, to the user’s movements, where the main goal of the SAD
is to accurately replicate all relevant motions of the user that
have been captured during the wait time, including vertical
and horizontal motions, and their combinations. In passive
gamemode 1, the SADmirrors the motions of the user’s chest
position (see Figure 18). In order to start the interactions,
the SAD emits a speech signal (via the speakers of a remote
computer) to invite the user to move.

After analyzing the motions captured within the wait time
and deducing the time interval (in s) corresponding to the
movement and the average horizontal and vertical speeds (in
pixels/s), these quantities are given to the controller. Three
quantities are output from the controller: (1) the mimicking
time (in s), (2) the roll displacement (in deg) of the SAD,
such that it results in a desired horizontal displacement, and
(3) the vertical speed (in m/s) of the SAD such that within
the given mimicking time the desired vertical displacement
is obtained. The mimicking time of the SAD is the time asso-
ciated to the identified motion category. For the horizontal
movements of the SAD, the following fuzzy rules are used to
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FIGURE 18. Passive game mode 1: The standby controller has originally centered the user’s face-box in the SAD’s frame
of view); the user moves to the left from the perspective of the SAD (left-hand side picture), and the SAD mimics the
same motion (right-hand side picture).

determine the percentage ρGM1
SAD of the maximum roll angle of

the SAD, which should be executed by the SAD for the given
mimicking time:

R9 : If ẋchestuser is small,

then ρGM1
SAD = a9ẋchestuser + b9

R10 : If ẋchestuser is medium,

then ρGM1
SAD = a10ẋchestuser + b10

R11 : If ẋchestuser is large,

then ρGM1
SAD = a11ẋchestuser + b11 (15)

with ẋchestuser the average horizontal speed of the user’s chest
in pixels/s. The terms ‘‘small’’, ‘‘medium’’, and ‘‘large’’ are
mathematically represented by fuzzy sets and their corre-
sponding fuzzymembership functions, and the parameters a9,
b9, a10, b10, a11, and b11 will be identified per user.

The range of the vertical displacements of the SAD, in
practice, are small in game mode 1 since the human’s chest
cannot move large distances in the vertical direction. There-
fore, the controller reduces to a proportional control policy
that determines a percentage ζGM1

SAD of the maximum allowed
vertical speed of the SAD:

ζGM1
SAD = KGM1ẏchestuser (16)

with ẏchestuser representing the average vertical speed of the
user’s chest in pixels/s and KGM1 a tuning parameter.

3) PASSIVE GAME MODE 2: MIRROR THE USER’s HAND
In passive game mode 2, the SAD mirrors the movements
of the user’s hands (see Figure 19). The SAD encourages the
user by emitting the speech ‘‘waiting for your hand motion!’’.
During the wait time the SAD captures and analyzes all the
movements of the user’s hands. There are two main differ-
ences in passive game mode 2 compared to passive game
mode 1:

1) The positions rti that are recorded and analyzed by
the IPU correspond to the wrist positions provided by
ANN2 (see joints 4 and 7 in Figure 4). The controller
corresponding to gamemode 2 first decides which hand

to follow by estimating the total distance (in pixels)
that is travelled by each wrist during the wait time. The
hand that has been more active (i.e., with a larger total
travelled distance) is selected.

2) Compared to the chest point, capturing the wrist posi-
tions ismore prone to failures or errors for the IPU since
the movements of the hands may correspond to fre-
quencies that are sometimes higher than the real-time
frequency of capturing data by the IPU. Therefore,
missing or erroneous datamay occurmore often and the
fault tolerance algorithm (see Section III-C1)maymore
frequently be called by the controller in game mode 2.

The TSK-based FL controller corresponding to gamemode
2 performs according to the following rule base for the hori-
zontal movements of the SAD:

R12 : If ẋwristuser is small,

then ρGM2
SAD = a12ẋwristuser + b12

R13 : If ẋwristuser is medium,

then ρGM2
SAD = a13ẋwristuser + b13

R14 : If ẋwristuser is large,

then ρGM2
SAD = a14ẋwristuser + b14 (17)

with ẋwristuser the average horizontal speed of the user’s (more
active) wrist in pixels/s, and ρGM2

SAD the percentage of the max-
imum roll displacement of the SAD that results in the desired
horizontal movement. The terms ‘‘small’’, ‘‘medium’’, and
‘‘large’’ will mathematically be represented by fuzzy sets
and their corresponding fuzzy membership functions, and the
parameters a12, b12, a13, b13, a14, and b14 will be identified
per user.

For the vertical displacements of the SAD, a proportional
control policy provides a percentage ζGM2

SAD of the maximum
allowed vertical speed of the SAD to steer it according to
game mode 2:

ζGM2
SAD = KGM2ẏwristuser (18)

Where ẏwristuser is the average vertical speed of the user’s wrist
in pixels/s for the active hand.
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FIGURE 19. Passive game mode 2: The user initiates a diagonal motion with the left hand (left-hand side picture) and the
SAD mimics (a scaled version of) the diagonal motion of the user’s hand (right-hand side picture).

Remark 3: In game mode 1, the parameters of the corre-
sponding TSK-based FL controllers are tuned such that the
SAD mimics the movements of the user’s body accurately
(i.e., with scale 1). In game mode 2, however, the parameters
of the corresponding TSK-based FL controllers are tuned
such that the resulting movements of the SAD are scaled with
a factor larger than 1 compared to themovements of the user’s
hand. This is mainly to stress the movements of the user in
game mode 2 for a more engaging interaction.

4) ACTIVE GAME MODE 3: MIMIC THE SAD WITH BODY
MOTIONS
Game modes 3 and 4 are active, meaning that the SAD
interacts with the user by initiating movements that the user
shouldmimic. To start, the SAD emits a speech signal ‘‘follow
me with your body’’ for game mode 3 and ‘‘follow me with
your hand’’ for game mode 4 (via the speakers of a remote
computer). The amplitude of the SAD’s movements in active
game modes should be personalized per user. After executing
a movement, the SAD pauses according to the wait time
to give the user the chance to follow the SAD’s movement
(see Figure 20). Afterwards, using the motion processing
algorithm, the SAD analyzes and assesses the user’s data
that is captured via the IPU, and attributes a performance
score to the analyzed movement of the user, where this score
implies how well the motion of the SAD has been mimicked
by the user. In order to further stimulate the interactions
with the user, the controllers corresponding to active game
modes respond to higher performance scores with larger
displacement amplitudes. Gradually, the frequency, category,
duration, direction, and speed of the SAD’s movements are
adapted according to the responses received from the user and
the performance scores attributed (see Section III-E).
While the first movement suggested by the SAD may

be selected randomly, for the consecutive movements the
input to the TSK-based FL controller of active game mode 3
is the horizontal distance 1xuser in pixels between the
last registered position xuser of the user and the center of
the SAD’s frame of view. The output ρGM3

SAD of the corre-
sponding FL controller is a percentage of the maximum

FIGURE 20. Active game mode 3: While the user is mimicking the SAD,
the SAD captures the user’s movements via its IPU and assesses the
user’s performance.

allowed roll displacement of the SAD based on the following
rule base:

R15 : If 1xuser is negligible,

then ρGM3
SAD = a151xuser + b15

R16 : If 1xuser is significant,

then ρGM3
SAD = a161xuser + b16 (19)

Where the terms ‘‘negligible’’ and ‘‘significant’’ will math-
ematically be represented by fuzzy sets and their corre-
sponding membership functions and parameters a15, b15, a16,
and b16 will be identified according to the preferences and
responses of every user.

A proportional control policy, similar to the previous game
modes, may also be considered to steer the vertical move-
ments of the SAD, i.e.:

ζGM3
SAD = KGM31yuser (20)

Where ζGM3
SAD is a percentage of themaximumvertical speed of

the SAD and 1yuser is the vertical distance between the last
registered position of the user and the center of the SAD’s
frame of view.
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5) ACTIVE GAME MODE 4: MIMIC THE SAD WITH HAND
MOTIONS
In active game mode 4, the SAD expects the user to follow
its movements by their hand. The TSK-based FL controller
corresponding to game mode 4 for generating the horizontal
movements of the SAD consists of the following rule base:

R17 : If 1xhand is negligible,

then ρGM4
SAD = a171xhand + b17

R18 : If 1xhand is significant,

then ρGM4
SAD = a181xhand + b18 (21)

Where the terms ‘‘negligible’’ and ‘‘significant’’ are repre-
sented by fuzzy sets and their corresponding membership
functions, ρGM4

SAD is a percentage of the maximum allowed roll
displacement of the SAD such that it results in the desired
horizontal displacement, a17, b17, a18, and b18 are parameters
that will be identified per user, and 1xhand is the horizontal
distance between the wrist of the user and the center of the
SAD’s frame of view. Whenever data regarding both hands
of the user is available, the hand that is closer to the center of
the SAD’s frame of view is considered.

For the vertical movements of the SAD, the following
proportional control policy is used:

ζGM4
SAD = min

{
KGM4

·
1

1yhand
, ζmax

SAD

}
(22)

Where ζGM4
SAD is a percentage of themaximumvertical speed of

the SAD, ζmax
SAD further limits the maximum vertical displace-

ments of the SAD during active gamemode 4 (since hands are
expected to mirror more abrupt sequences of motions of the
SAD, the scale of these motions should be scaled down), and
1yhand is the vertical distance between the user’s hand and the
center of the drone’s frame of view. Note that a larger value
for 1yhand corresponds to a worse performance for the user,
and in response to that the SADmakes a smaller displacement
according to (22).

E. SAD’s ADAPTIVITY AND PERSONALIZATION
Adaptivity and personalization are essential characteristics
required for the SAD’s control system. Adaptivity refers to
updating the parameters that identify DMT plans (e.g., the
wait time of the SAD) or parameters of the controllers of
the SAD according to the conditions of users and the DMT
sessions. Personalization refers to tuning such parameters or
selecting the order, frequency, and duration of various game
modes in a user-specific way. While personalization parame-
ters may remain constant for that user after being identified,
parameters that are adaptive may vary more frequently. The
designer can specify whether a tuning parameter is within
one of these two categories. Note that some of the adaptive
parameters may be a function of personalization parameters
(e.g., while the SAD’s wait time is an adaptive parameter that
may vary in the course of DMT sessions, its upper or lower
values depend on the preference of every user).

Different adaptivity modules are developed for passive and
active game modes based on two main metrics: (1) user’s per-
formance, which implies how well the user has accomplished
a particular task (i.e., initiating or mirroring) corresponding
to a specific game mode, (2) user’s engagement, which is
based on whether or not a user is attempting to interact with
the SAD. While a high performance implies a high level
of engagement, the opposite is not necessarily true. On the
one hand, the adaptivity policies that are developed lead the
controller to act more leniently towards a user who exhibits a
low performance but a high engagement. On the other hand,
for a high performance (which also implies a high engage-
ment), the adaptivity approaches make the game modes more
challenging for the user.

1) ADAPTIVITY FOR PASSIVE GAME MODES
Within a trial in passive game modes the SAD (1) pauses
according to the wait time for the user to move and simul-
taneously captures data from the user, (2) processes the cap-
tured movements, and (3) mimics the analyzed movements.
An episode is the total number of trials in one continuous
game mode. Both the performance and level of engagement
of the user in passive game modes are quantified according
to the number of inactive trials, i.e., trials with no significant
(based on a threshold, e.g., a multiple of τm) motions. Good
performance and engagement are associated with low num-
bers of inactive trials.

Passive game modes involve two adaptive parameters: the
wait time tw per trial and the number Ntrial of trials per
episode. These parameters are updated at the end of each
episode. The wait time is adjusted according to the episodic
average pause time t̄ep, which is the average time since the
user finishes a movement that the SAD should mimic until

the end of the current wait time. A limiting interval
[
t̄ lep, t̄

u
ep

]
is considered per user for t̄ep. The wait time is updated
according to the following relationships:

tw ← max
{
tw − (t̄ep − t̄uep), t

l
w
}
when t̄ep > t̄uep (23)

tw ← min
{
tw + (t̄ lep − t̄ep), t

u
w
}

when t̄ep < t̄ lep (24)

Where t lw and tuw are the lower and upper values for the wait
time, with t̄ lep, t̄

u
ep, t

l
w, and t

u
w user-specific parameters.

The numberNtrial of trials per episode is updated according
to the number of inactive trials. Whenever this number is
equal to or larger than a threshold, Ntrial is reduced 1 unit.
Otherwise, the user is considered to be fully engaged in the
game mode and Ntrial is increased by 1. In order to prevent
many repetitions or avoidance of a game mode (which rein-
force users to remain inside their comfort zone), user-specific
lower N l

trial and upper values N u
trial for Ntrial are considered.

2) ADAPTIVITY FOR ACTIVE GAME MODES
A main goal of the adaptive module in active game modes is
to ensure that, on the one hand, the motions performed by the
SAD challenge the user and result in an increased engagement
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level and, on the other, these motions are always feasible for
the user to mimic and do not endanger the user or damage
the SAD. For an active game mode, within a trial the SAD
(1) initiates a motion, (2) pauses according to the wait time
for the user to follow the motion and simultaneously captures
data from the user, and (3) Evaluates the performance and
engagement of the user according to the captured data. The
total number of trials in one continuous game mode is called
an episode.

At the end of every episode, the adaptive parameters may
be updated based on the episodic average performance p̄ep
(i.e., the mean value of the performance scores correspond-
ing to all the trials in that episode) and episodic average
engagement ēep of the user. In active game modes, a good
performance for the user is identified whenever the user’s
final position during the wait time is close enough (based
on the threshold τc given in (11)) to the center of the SAD’s
frame of view. Additionally, whenever the performance score
is high, the engagement level is also high. Otherwise, the
engagement level receives a low score, unless - despite a
poor performance score - the user exhibits noticeable activity
or large movements (i.e., displacements with an amplitude
larger than a multiple of τm).
Remark 4: Whenever the episodic average engagement

ēep is larger than a specific value the adaptivity procedure
is triggered. Otherwise, the personalization module (will be
detailed in Section III-F) may decide to completely skip that
game mode.

For active game modes, the parameters that specify the
membership functions corresponding to the terms ‘‘neg-
ligible’’ and ‘‘significant’’ in (19) and (21) are adaptive.
For Gaussian membership functions, the standard deviations
σneg and σsig will be updated according to the following
relationships:

σneg ← max
{
σneg −1σ, σ

l} (25)

σsig ← min
{
σsig +1σ, σ

u} (26)

with σ l and σ u lower and upper values for the standard
deviations that may be personalized per user. In general, when
the average episodic performance p̄ep is high, the adaptive
module makes the game mode more challenging for the user
by providing a more strict definition for the terms ‘‘negligi-
ble’’ and ‘‘significant’’, which is realized by decreasing σneg
and increasing σsig. Considering ασ and βσ as parameters
that should be identified based on real-life DMT interactions,
we define:

1σ = ασ p̄ep + βσ (27)

The parameters a15-a18 and b15-b18 in (19) and (21) are
also adaptive parameters that will be updated according to
the following relationships for i = 15, 16, 17, 18:

ai ← min
{
max

{
λaai, ali

}
, aui

}
λa = αap̄ep + βa, where |αa| < 1, |βa| < 1 (28)

bi ← min
{
max

{
λbbi, bli

}
, bui

}
λb = αbp̄ep + βb, where |αb| < 1, |βb| < 1 (29)

Note that the upper and lower values aui , b
u
i , a

l
i, b

l
i are

determined such that unsafe movements of the SAD are
prevented. Moreover, the personalization parameters αa, βa,
αb, βb are determined such that in the upcoming trials the cor-
responding controller provides larger movement amplitudes
for higher average episodic performances, and vice versa.
For vertical movements the parameters KGM3 and KGM4 in
(20) and (22) are considered as adaptive. For i = 3, 4 we
have:

KGMi
← min

{
max

{
λGMiKGMi,KGMi,l},KGMi,u

}
λGMi = αGMip̄ep + βGMi (30)

with KGMi,u, KGMi,l, αGMi, and βGMi personalization param-
eters.

Similarly to passive game modes, in active game modes
the wait time tw is adaptive. In active game modes, however,
adaptation of tw is according to the user’s episodic average
performance, i.e.:

tw← min
{
max

{
tw + αwp̄ep + βw, t lw

}
, tuw

}
(31)

with αw, βw, t lw, and t
u
w personalization parameters.

Finally, the parameter τc is adaptive and will be updated
according to the following equation:

τc← min
{
max

{
τc − αcp̄ep + βc, τ lc

}
, τ uc

}
(32)

Where αc, βc > 0 and αc > βc. Based on (32), when a user
exhibits a high average episodic performance p̄ep, τc varies
such that the control system of the SAD becomes more strict
in scoring the user’s performance.

F. PERSONALIZATION VIA MASTER CONTROLLER
The personalization module of the SAD is executed via a
master controller (see Figure 21). At the end of every episode,
the master controller decides which game mode to be exe-
cuted next (a game mode may be selected several times con-
secutively). Therefore, a non-zero weight wi (i = 1, 2, 3, 4)
is assigned to each game mode i such that

∑4
i=1 wi = 1.

The weight wi corresponds to the chance of game mode i
for being selected by the master controller. At the end of
every episode, these weights may be updated such that a
game mode that has proven to be highly engaging for the user
receives a higher weight. The following relationship is used
to update the values of the weights for i ∈ {1, . . . , 4} and
j ∈ {1, . . . , 4}/{i}:

wi ← min
{
max

{
wi + (−1)`1w,wmin}, 1} (33)

wj ← min
{
max

{
wj − (−1)`

1w
3
,wmin}, 1} (34)
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FIGURE 21. Master controller personalizes the DMT plans.

Where ` = 0 for ēep above a given threshold, and 1 otherwise.
Moreover, 1w is a design parameter and wmin is a minimum
value for the weight of each game mode, where wmin > 0 in
order to prevent a specific game mode to be completely
excluded from the DMT plans.
In addition to updating and storing the weights correspond-

ing to various game modes, the master controller stores and
makes use of the personal information of a user (e.g., their
height) that affect the SAD’s decisions. Moreover, the master
controller stores a brief report from every DMT session per
user, including their average episodic performance values,
the number of inactive trials, the profiles for the weights of
various gamemodes, and the level of engagement of the users
for each game mode.

Figure 22 recaps the main steps of the human-SAD inter-
action in a simplified flowchart.

IV. CASE STUDY
Next we introduce the setup and the main facilities that have
been used in the experiments.

A. DRONE USED AS SAD
A Parrot Bebop 2 drone (see Figure 23) was used as the
SAD in all the experiments. Parrot Bebop 2 is a small quad-
copter that weighs 500 g and is equipped with a 2700 mAh
battery, which enables the drone to fly non-stop for almost
10 min. Two spare fully charged batteries with the same
capacity were available to enable continuous DMT ses-
sions of around 30 min per user. Parrot Bebop 2 has a
14 MP camera (which records 1080 p video at 30 fps) and
a WiFi network that allows the drone to connect to remote
computers or tablets. The small size, high battery power,
safe propellers, high-quality camera, and simple appealing
appearance of Parrot Bebop 2, make it suitable as SAD
for DMT.

FIGURE 22. Flowchart summarizing the human-SAD interaction steps.

FIGURE 23. Top view of a Parrot Bebop 2 drone.

B. EXPERIMENTAL SETUP
All DMT sessions were simulated with one person at a time
as the user in the Cyber Zoo4 at the Delft University of
Technology, where a 10 × 10 m2 synthetic turf surrounded
by safety nets is available. Twelve high-tech cameras are
installed at the Cyber Zoo and record the interactions of the
user and the SAD.

The computations corresponding to the online data anal-
ysis and decision making by the SAD were performed on
a remote computer that was connected to the SAD via its
WiFi network. In addition to saving battery power for a longer
performance of the SAD, running the computations off-board
allows for more real-time computational power, and for using
a high-level, interpreted programming language (e.g., Python,
Olympe library [29], Pyparrot library [30], and Pyfuzzylite
library [31]).

C. PARTICIPANTS
In total, 10 participants took part in the experiments. Each
experiment was analyzed according to three time intervals
of 8-12 min (overall 24-36 min), which covered various

4https://tudelftroboticsinstitute.nl/labs/cyber-zoo

VOLUME 10, 2022 15759



T. Ascensão, A. Jamshidnejad: Autonomous Socially Assistive Drones Performing Personalized Dance Movement Therapy

TABLE 1. Parameters used in the case study to develop the IPU and the controllers of the SAD.

FIGURE 24. Frequency of capturing pictures by the SAD’s camera (left-hand side plot) and real-time IPU
performance including both ANN 1 and ANN 2 (right-hand side plot).

environmental and personal changes and allowed both the
personalization and adaptation modules to be assessed prop-
erly. The age and height of participants varied between
21-24 years and 155-185 cm. Before the experiments, par-
ticipants were informed about the nature of the four game
modes, adaptability of the SAD’s behaviour with respect to
their preferences, and that they were not obliged to continue
interacting with the SAD. Before running the experiments,
the four game modes were executed for the participants in
order to familiarize them with the game modes, and if any
interactions occurred at this stage, the SAD already used the
corresponding information to execute adaptation and person-
alization.

D. PARAMETERS
The main parameters used to develop the IPU and the con-
trollers of the SAD are given in Table 1.
In order to assess and score the performance of the user in

active game modes 3 and 4, three performance scores, 0, 0.5,
and 1 were used. Users received a score 1 whenever their final
position was centred (based on the threshold τc) in the frame
of view of the SAD. A score 0.5 was given to users whenever
theymoved in the correct direction, although the last captured
position after the wait time was not perfectly centered. In case
neither of the above cases occurred, users received a score 0.

E. IMPLEMENTING THE IPU
In order to train the ANNs (see Section III-B), data collected
from movies on YouTube and the COCO dataset [32] were
used. Since the motion processing algorithm and the SAD’s
controller receive the output of the IPU as their input, the
real-time performance of the IPU based on the frequency of
image processing (defined as the inverse of the time elapsed
to analyze two consecutive images) was evaluated.

The left-hand side plot in Figure 24 illustrates the fre-
quency of the SAD’s camera (i.e., the reciprocal of the time
required by the camera to capture two consecutive images)
for 100 sample images, which shows an average frequency
of almost 38 Hz. By incorporating ANN 1 and ANN 2 in
the IPU, the average frequency of the image processing
(see the right-hand side plot in Figure 24) becomes almost
2 Hz (more specifically, the image processing frequency is
between 1.5 Hz and 2 Hz). Therefore, the real-time perfor-
mance of the SAD’s controller corresponds to frequencies
between 1.5 Hz and 2 Hz (i.e., there is 0.5 s to 0.7 s between
two IPU estimations).

F. IMPLEMENTING THE MOTION PROCESSING
ALGORITHM
See Table 1 for the values of the parameters used in the
motion processing algorithm explained in Section III-C1.
Whenever at least three consecutive registers of the IPU
contained invalid information (which, assuming an average
image processing frequency of 2 Hz implies that the user
has not been detected for at least 1.5 s), the fault tolerance
algorithm was activated.

G. IMPLEMENTING THE STANDBY CONTROLLER
See Table 1 for the parameters used in implementing the
standby controller. In order to detect and position a user, the
standby controller allowed the SAD to follow a yaw rate equal
to 50% of the maximum allowed yaw rate.

In order to center the user in the SAD’s frame of view,
the membership functions illustrated in Figure 25 were used
for ‘‘left’’, ‘‘center’’, and ‘‘right’’ in (10). These membership
functions are Gaussian, which are mathematically identified
by their mean and standard deviation, and are preferred
over alternative options due to their smoothness and concise
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FIGURE 25. Membership functions for the terms ‘‘left’’, ‘‘center’’, and
‘‘right’’ used by the standby controller to center the user’s image in the
SAD’s frame of view.

FIGURE 26. Standby controller centering the user’s image in the SAD’s
frame of view: Input-output mapping.

mathematical notations (i.e., the number of parameters that
should be tuned is reduced), which improve the adaptabil-
ity and computational efficiency of the SAD’s controller in
real time. The mean and standard deviation of the Gaussian
membership functions were initially (i.e., before the adaptiv-
ity module adjusts these parameters) selected such that the
corresponding functions are equally spaced in the horizontal
range of the image and cover all possible input values for xuser
(see Figure 25).

The parameters a1-a3 and b1-b3 in (10) were tuned to a1 =
0.140 1/pixels, a2 = 0.105 1/pixels, a3 = 0.140 1/pixels,
b1 = 30, b2 = 45, b3 = 90. Figure 26 shows the resulting
input-output mapping corresponding to (10) for all possible
input values (see the solid blue curve). The dash-double-
dotted orange, dashed red, and dash-dotted green curves
in Figure 26 are properly tuned outputs corresponding to,
respectively, rules R1, R2, and R3 in (10). Note that whenever
the input variable xuser reaches its minimum or maximum
values, the output of the standby controller is equal to, respec-
tively, −30% and 30% of the maximum yaw rate, resulting
in the least overshoot when the SAD attempts to center the

user’s image. Moreover, when xuser is close to the center, the
variations in the output of the standby controller provide a
trade-off between a smooth motion and a reasonable speed
(not less than 10% of the maximum yaw rate).

In order to maintain an appropriate distance between the
SAD and the user, the parameters τd,1 and τd,2 (see Table 1)
were selected such that the distance of the user and the
SAD remains between 0.5 m (which was considered safe
and convenient according to the majority of the participants)
and 3 m (suited for capturing high-quality pictures). Note
that due to the nature of the experiments (i.e., the fact that
most participants had limited possibilities to move in the z
direction), in most cases (12) and (13) were not triggered, or
whenever they were triggered, the SAD managed to sustain
the desired distance by simply executing the maximum pitch
tilt for 1 s. Therefore, a4, b4, a5, and b5 were not tuned in our
experiments.

For sustaining the SAD’s altitude, the values given in
Table 1 for αl and αh were used to estimate the thresholds τh
and τl. Since the variations in the vertical movement by the
participants were limited, instead of considering (14), after
estimating the difference 1hSAD between the latest altitude
hSAD registered by the SAD’s sensors and the default altitude
hdefSAD, the standby controller executed the maximum vertical
speed for 1hSAD seconds to position the SAD according to
the default altitude.

H. IMPLEMENTING THE FL CONTROLLER OF PASSIVE
GAME MODE 1
The fuzzy membership functions used for the terms ‘‘small’’,
‘‘medium’’, and ‘‘large’’ are illustrated in Figure 27. The
maximum horizontal speed of the user’s chest, 100 pixels/s,
was determined based on several experiments with the par-
ticipants. The mean values (0, 50, and 100 pixels/s) of the
Gaussian membership functions were selected such that
the resulting membership functions are equally spaced across
the domain of the horizontal speed of the user’s chest. More-
over, the standard deviation of the Gaussian membership
functions were set to 20 pixels/s, since this value allows
any realization within the speed domain to correspond to a
substantially high membership degree with regard to at least
one of the membership functions. Moreover, the tuned values
of the parameters in (15) include a9 = −0.08 s/pixels, a10 =
−0.16 s/pixels, a11 = −0.08 s/pixels, b9 = 0, b10 = −4, and
b11 = 0.
The resulting TSK-based FL controller for passive game

mode 1 yields the input-output mapping illustrated in
Figure 28. In general, whenever the speed of the user’s chest
has more significant membership degrees corresponding to
the sets ‘‘small’’ and ‘‘big’’ (see Figure 27) the output (see
the solid blue curve in Figure 28) of the FL controller mainly
approximates the behavior of a proportional controller with
the gain 0.08 s/pixels (see the dash-dotted green curve in
Figure 28), which guarantees safe speed values for the SAD.
The rate of changes of the output of the controller (see the
solid blue curve) is in general slightly smaller than that of
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FIGURE 27. Fuzzy membership functions for the terms ‘‘small’’, ‘‘medium’’,
and ‘‘large’’ used by the FL controller in passive game mode 1.

FIGURE 28. TSK-based FL controller steering the SAD to implement
passive game mode 1: Input-output mapping for horizontal body
movements of participants.

the dash-dotted green curve. This is to undermine the effect
of unintentional movements of the user’s body observed in
real-life experiments. Additionally, whenever the speed of the
user’s chest has higher membership degrees corresponding to
the set ‘‘medium’’ (see the dashed orange curve in Figure 27),
the output of the FL controller resembles the behavior of a
proportional controller with a slope of 0.16 s/pixels (see the
dashed orange curve in Figure 28).

For the proportional controller given by (16), themaximum
vertical speed of the user’s chest based on the experiments
was 100 pixels/s, which correspond to a maximum value of
50% for ζGM1

SAD . The value of KGM1 was tuned to 0.5 s/pixels.

I. IMPLEMENTING THE FL CONTROLLER OF PASSIVE
GAME MODE 2
The membership functions in (17) for the terms ‘‘small’’,
‘‘medium’’, and ‘‘large’’ were defined via the same fuzzy
membership functions given in Figure 27. Since the horizon-
tal displacements of the user’s chest were more significant
than those associated with the user’s hands, the controller
corresponding to game mode 2 was tuned such that the SAD

FIGURE 29. TSK-based FL controller steering the SAD to implement
passive game mode 2: Input-output mapping for horizontal hand
movements of participants.

FIGURE 30. Membership functions for the terms ‘‘negligible’’ and
‘‘significant’’ in active game modes.

mimicked a scaled version of the motions of the user’s hands.
This way the SAD stimulated a more engaging and entertain-
ing interaction with the user. Consequently, the parameters of
the controller given by (17) were tuned to a12 = 0.2 s/pixels,
a13 = 0.4 s/pixels, a14 = 0.2 s/pixels, b12 = 0, b13 = −10,
b14 = 0.
The resulting TSK-based FL controller for passive game

mode 2 yields the input-output mapping shown in Figure 29.
Comparing Figures 28 and 29, the roll displacements gener-
ated by the controller corresponding to passive game mode 2
are larger than those corresponding to the controller of pas-
sive game mode 1, which is due to the scaling factor in
mimicking the motions of the user’s hands. For the propor-
tional controller given by (18), the gain KGM2 was tuned to
0.5 s/pixels.

J. IMPLEMENTING THE FL CONTROLLER OF ACTIVE GAME
MODE 3
The Gaussian fuzzy membership functions for the terms
‘‘negligible’’ and ‘‘significant’’ in (19) with standard devi-
ations of 150 pixels are illustrated in Figure 30. Compared to
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FIGURE 31. TSK-based FL controller steering the SAD to implement active
game mode 3: Input-output mapping for horizontal movements of
the SAD.

passive game modes where the user initiates the movements,
in active game modes extra effort is needed to assure that
the user remains engaged and follows the DMT plans. There-
fore, the standard deviations of the membership functions for
‘‘negligible’’ and ‘‘significant’’ were adaptive. For instance,
when users constantly experienced difficulty in position-
ing themselves in the center (according to the membership
function defined for ‘‘negligible’’) of the SAD’s frame of
view and hence, receives low performance scores, the criteria
for accepting 1xuser as negligible became more lenient via
increasing the standard deviation of the corresponding mem-
bership function and by decreasing the standard deviation of
the membership function for ‘‘significant’’. The correspond-
ing adaptive algorithm is further discussed in Section III-E.
The tuned values for the consequent parameters of (19)
include a15 = −0.029 and a16 = −0.117 (both in 1/pixels)
and b15 = 30 and b16 = 55. These values guarantee that
the distance travelled by the SAD in active game mode 3 is
always safe and feasible (i.e., not larger than 3 m, which
corresponds to a roll displacement percentage of 30%) and
never becomes too small for the user to follow (i.e., not
less than 0.5 m, which corresponds to a roll displacement
percentage of 3%).

The input-output mapping of the resulting TSK-based
FL controller is represented in Figure 31. For 1xuser ≤
150 pixels, the membership function corresponding to ‘‘neg-
ligible’’ (see the corresponding output in Figure 31 rep-
resented by the dashed orange curve) plays the major
role in the output of the controller. For 1xuser ≥

250 pixels, however, the membership function correspond-
ing to ‘‘significant’’ is dominant (see the correspond-
ing output represented by the dash-dotted green curve
in Figure 31). Moreover, whenever 1xuser is roughly cen-
tered, the output of the controller does not deviate signifi-
cantly from 30% of the maximum roll displacement, which
guarantees safety. This is reflected in the relatively smaller
slope of the dashed orange curve in Figure 31. However,

FIGURE 32. TSK-based FL controller steering the SAD to implement active
game mode 4: Input-output mapping for horizontal movements
of the SAD.

FIGURE 33. Proportional controller steering the SAD to implement active
game mode 4: Input-output mapping for vertical movements
of the SAD.

whenever 1xuser becomes more significant (which implies a
worse performances for the user), the output of the controller
varies more abruptly (see the solid blue curve in Figure 31)
towards the minimum role displacement of 3% of the maxi-
mum roll rate.

K. IMPLEMENTING THE FL CONTROLLER OF ACTIVE
GAME MODE 4
For active game mode 4, the same membership functions for
the terms ‘‘negligible’’ and ‘‘significant’’ as those for game
mode 3 were used (see Figure 30). Due to the larger vertical
mobility of the hands compared to the chest, the proportional
controller given by (22) was considered and tuned such that
a17 = −0.012 1/pixels, a18 = −0.047 1/pixels, b17 = 15,
b18 = 25, KGM4

= 4.5 pixels, and ζmax
SAD = 25%.

The resulting TSK-based FL controller for the horizon-
tal movements of the SAD yields the input-output map-
ping given in Figure 32. Moreover, Figure 33 represents
the input-output mapping of the proportional controller that
steers the vertical movements of the SAD for active game
mode 4.
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L. IMPLEMENTING THE ADAPTIVITY AND
PERSONALIZATION MODULES
The values of the parameters for the adaptivity and person-
alization modules (see Sections III-E and III-F) are given in
Table 2. The default values for the adaptivity and personal-
ization parameters are given in Table 3.

V. RESULTS AND DISCUSSION
Tables 4-6 represent the results for the three time intervals
considered per experiment (see Section IV-C) for the 10 par-
ticipants, including the maximum, minimum, average value,
and average change (in percentage) with respect to the default
values of the personalization and adaptive parameters for the
four game modes after being tuned.

Regarding the weights, the average change with respect
to the default values was as high as about 60% (for passive
game mode 1). Generally speaking, the rate of changes in
the weights during the first time interval (i.e., almost the first
10 min of interactions) is less than the rate of changes in the
subsequent time intervals. This is in line with the fact that
participants gradually became more familiar and comfortable
with the SAD and the setup of the experiments, and thus
engaged more actively in the DMT plans resulting in a more
significant personalization of the DMT plans. Moreover, the
fact that higher variations in the weights are observed for
passive game modes (i.e., when users are expected to initiate
the movements) is because users felt more at ease after the
first experiment and investigated more adventurous move-
ments, implying that personalization was expected to become
more significant by adjusting the weights in the subsequent
time intervals. According to these results, the highest values
of the tuned weights correspond to passive game mode 1.
This matches the fact that all participants of these exper-
iments were young and healthy people who found game
mode 1 - which, in addition to demanding an active and
initiative role from participants, requires the most physical
activity amongst all the four game modes - the most joyful
and engaging game mode.

Note that based on the results (see particularly the min-
imum values of the tuned weights in Tables 4 and 5s) the
personalization algorithm sometimes converged too fast to
the game modes preferred by users and thus gave other game
modes little chance to engage the user (e.g., Table 5, shows
that within almost 20 min of interaction, there is at least
one participant per game mode for whom the weight of that
game mode has reached its minimum). More specifically, for
80% of the participants the weight corresponding to at least
one game mode has reached less than 0.1 and for 60% of
them the weight has already reached the minimum value of
0.05 within the first 20 min. Thus, in order to avoid a prema-
ture convergence of the personalization algorithm and to give
all game modes enough time to engage users, adjustments
in the weight tuning algorithm are recommended by, e.g.,
reducing 1w in (33) and (34).

For the adaptivity module, we first consider the results for
passive gamemodes 1 and 2. FromTables 4-6 the wait time tw

FIGURE 34. Variations generated by the adaptivity module in the
membership functions ‘‘negligible’’ and ‘‘significant’’ corresponding to
active game mode 3.

FIGURE 35. Variations generated by the adaptivity module in the
membership functions ‘‘negligible’’ and ‘‘significant’’ corresponding to
active game mode 4.

has evolved continuously during the experiments. Given the
high diversity of the tuned values corresponding to different
participants in different experiments, tw has successfully been
adapted for each user in the course of different conditions.
Furthermore, passive game mode 1 corresponds to higher
values of tw compared to passive game mode 2, which is
because whole body movements are slower and hence need a
larger wait time than hand movements. For the number Ntrial
of trials within one episode, considering the high engagement
of the participants in the two passive game modes, we expect
Ntrial to increase. The results shown in Tables 4-6 confirm
this, where by the end of the third time interval Ntrial has
reached an average value of 3.8 for passive game mode 1
(where for 80% of the participants,Ntrial has reached its upper
bound, i.e., 4) and an average value of 4.8 for passive game
mode 2 (where for 90% of the participants, Ntrial has reached
its upper bound, i.e., 5).

For active game modes, we first discuss the variations in
the membership functions for ‘‘negligible’’ and ‘‘significant’’
(i.e., variations in σneg and σsig). Figures 34 and 35 illustrate

15764 VOLUME 10, 2022



T. Ascensão, A. Jamshidnejad: Autonomous Socially Assistive Drones Performing Personalized Dance Movement Therapy

the corresponding Gaussian membership functions used ini-
tially (see the dashed curves), as well as the Gaussian mem-
bership functions corresponding to the minimum (see the
dash-dotted curves), maximum (see the dotted curves), and
average (see the solid curves) values of σneg and σsig after
being tuned by the end of the experiments for active game
modes 3 and 4. For active game mode 3, the maximum
values for the standard deviations for ‘‘negligible’’ and ‘‘sig-
nificant’’ are, respectively, 155% and 78% higher than their
default values (i.e., 150). The minimum values of σneg and
σsig for active game mode 3 are, respectively, 93.3% and
77.8% lower than their default values. The average values
of σneg and σsig for active game mode 3 after being tuned
are 119.7 and 201.7. Given the discussions in Section III-E2,
a good performance observed from users corresponds to a
decrease in the standard deviation for the term ‘‘negligible’’
and an increase in the standard deviation for the term ‘‘sig-
nificant’’. Taking into account that the proposed DMT plans
in the experiments were not complicated for the participants
and thus the majority of the participants exhibited a good
performance, we expect to see the described effect in σneg
and σsig, which is confirmed by the average value of the tuned
parameters.

For active game mode 3, similarly to active game mode 2,
the high diversity in the maximum, minimum, and average
values of σneg and σsig after being tuned for various partici-
pants implies that these values have been estimated according
to the variations in the experiments and users. In particular,
for active game mode 4, the minimum values of the tuned
parameters σneg and σsig show, respectively, a 40% and a 93%
decrease with respect to their default values and the maxi-
mum tuned values are 93% and 40% larger than the default
values for, respectively, σneg and σsig. The main difference
compared to active game mode 3, is that the average value
σneg has increased for 22.7%, while the average value of σsig
has decreased for 19.3%, which imply a worse performance
compared to active game mode 3.

Next, we discuss the changes made by the adaptivity mod-
ule to the input-output mappings of the controllers corre-
sponding to active game modes 3 and 4, where the default
mappings and the average mappings after the parameters of
the controllers were tuned are illustrated in Figures 36-38.
On average, for active game mode 3, the adaptivity module
yielded an entirely different input-output mapping, whereas
for active game mode 4 the resulting input-output mapping
showed a similar (but fine-tuned) behavior as the original
input-output mapping. As a result of tuning the parameters
of the controller for active game mode 3, a poor mimicking
receives a higher reward, which corresponds to displace-
ments with a larger amplitude (see the solid orange curve
in Figure 37). The reason is that this game mode was too easy
for nearly all participants, and thus their performance was
almost always perceived as good by the adaptivity module,
resulting in a fast convergence to the thresholds considered
for the tuning parameters. Additionally, Table 6 shows that
9 out of 10 participantsmanaged tominimize the parameter τc

FIGURE 36. Input-output (default and average) mappings for the
horizontal motion controller corresponding to active game mode 3.

FIGURE 37. Input-output (default and average) mappings for the
horizontal motion controller corresponding to active game mode 4.

FIGURE 38. Input-output (default and average) mappings for the vertical
motion controller corresponding to active game mode 4.

to its lowest bound 50 (which is an indication of an excellent
performance by the users).

Active gamemode 4, on the contrary, was not considered to
be overly simplistic for the participants. The values obtained
for τc (see Table 6) at the end of the third time interval
remained close to the default value of 100.Moreover, for none
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of the users the tuned value of τc reached its minimum value
of 50. These results are consistent with the findings regard-
ing the tuned membership functions for ‘‘negligible’’ and
‘‘significant’’ discussed earlier in this section implying that
game mode 4 was relatively more challenging for partici-
pants. Similarly, the distribution of the tuned values of tw for
active game mode 3 (see Table 6) imply that, for the selected
participants, this gamemode was not very challenging, where
the average value of tw was around 5 s, with 80% of the par-
ticipants being able to minimize the value of tw to the lower
bound (i.e., 4 s) for this parameter. For active game mode 4,
however, a much wider range of values were observed for tw.

VI. CONCLUSION AND TOPICS FOR FUTURE WORK
We introduced a socially assistive drone (SAD) that can
autonomously interact with humans via planning and
executing personalized dance movement therapy (DMT).
In particular, we developed an image-processing-based data
analysis module and a control system, which follows adap-
tive and fuzzy-logic-based decision making approaches. The
proposed control system is capable of adapting the SAD’s
decisions according to the changes in the environment and
behavior of users. Moreover, the interactions are planned
by the SAD in a personalized way according to the previ-
ous performance and engagement level of users. The devel-
oped approaches were successfully implemented via a Parrot
Bebop 2 drone in real-life experiments with a sample of
10 random participants. The results of the experiments proved
the ability of the SAD in both adaptation and personalization
of the interactions and in engaging the users in DMT.

Increasing the number and variety of the participants (in
terms of motor skill abilities and age and health condi-
tions, particularly participants with ASD), is one of the next
research steps. In order to avoid restricting the movements
of the users (which is currently sometimes needed in passive
game mode 2), the computational efficiency and frequency
of performance of the IPU should be improved. Moreover,
the IPU should be trained to detect physical barriers such as
walls, which is crucial especially in smaller indoor spaces.
Additionally, the IPU currently works with only one per-
son present in the images. In the future, the IPU should be
improved to deal with identifying more people (e.g., thera-
pists or caregivers) in DMT sessions. Developing a music
analysis module for the SAD in order to analyze music pieces
in real time and decide accordingly about the speed and
frequency of the proposed movements in active game modes
is another topic for future research. Finally, designing and
constructing a custom-made drone for DMT is an interesting
topic for future research.
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APPENDIX A EQUATIONS OF MOTION FOR A
QUADCOPTER
In this appendix, approximate relationships are derived that
explain how a specific roll angle φ or pitch angle θ results
in a, respectively, displacement1x or displacement1z. Note
that the dynamics of a quadcopter is usually derived accord-
ing to two frames: the inertial frame, which is fixed to the
ground, and the body frame, which is attached to the body
of the quadcopter and moves according to the quadcopter’s
orientation. The inertial frame is represented by x, y, and z,
whereas the body frame is represented by xb, yb, and zb (see
Figures 39 and 40). The orientation of the quadcopter’s body
frame around the z axis is the roll angle φ (see Figure 39)
and the orientation of the quadcopter’s body frame around the
x axis is the pitch angle θ (see Figure 40).
The influential forces on the quadcopter for a displace-

ment in the x and z direction are represented in, respectively,
Figures 39 and 40, where vx and vz are the magnitude of the
speed of the quadcopter with respect to the inertial frame in,
respectively, the x and z directions, FD,x and FD,z are the
linear drag forces, which appear in the opposite direction of

FIGURE 39. Force diagram for motion in the x direction.

FIGURE 40. Force diagram for motion in the z direction.
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the quadcopter’s motion, FT,φ and FT,θ are the thrust forces
from the quadcopter’s propellers (perpendicular to the surface
of propellers), andW is the quadcopter’s weight.
According to [33] the linear drag forces FD,x and FD,z are

given by:

FD,x =
1
2
CD,xAxρv2x (35)

FD,z =
1
2
CD,zAzρv2z (36)

Where ρ is the air density, CD,x and CD,z are the drag coef-
ficients in the x and z directions, and Ax and Az represent the
reference areas (cross sections considered perpendicular to
the x axis and z axis, respectively). Based on (35) and (36), the
linear drag force increases when the quadcopter speeds up.
Therefore, it is assumed that an equilibrium state is achieved
in the quadcopter’s direction of motion in a short time after
the quadcopter tilts. Note that in real-life experiments, small
angular displacements are implemented, meaning that the
thrust force in the direction of motion of the quadcopter is
very small. Therefore, a quasi-instantaneous equilibrium is
a good estimation of the reality. After an equilibrium state
is achieved, for the forces that result in a motion in the x
direction (see Figure 39) we have:∑

Fx = 0⇒ FT,φ sin(φ) = FD,x (37)∑
Fy = 0⇒ FT,φ cos(φ) = W ⇔ FT,φ =

W
cos(φ)

(38)

Based on (35), (37), and (38) we have:

W tan(φ) =
CD,xAxρv

eq
x

2

2
⇔ veqx =

√
2W

CD,xAxρ
· tan(φ)

(39)

with veqx the magnitude of the equilibrium speed of the
quadcopter in the x direction. Similarly, for the quadcopter’s
motion in the z direction (see Figure 40), we obtain:

veqz =

√
2W

CD,zAzρ
· tan(θ) (40)

with veqz the magnitude of the equilibrium speed of the quad-
copter in the z direction. These equilibrium speeds can be re-
written as:

veqx = K quad
x

√
tan(φ), and veqz = K quad

z
√
tan(θ ) (41)

Where we have defined the constants K quad
x and K quad

z are
defined by:

K quad
x =

√
2W

CD,xAxρ
, K quad

z =

√
2W

CD,zAzρ
(42)

Since the roll and pitch displacements of the SAD in all situ-
ations in the DMT game modes are relatively small (i.e., they
do not exceed 10 degrees), the small angle approximation
according to the first degree Taylor series expansion can be

used on the tangent function (i.e., tan x ≈ x), yielding the
following expressions for the equilibrium speeds:

veqx = K quad
x

√
tan(φ), veqz = K quad

z
√
tan(θ ) (43)

Consequently, the corresponding linear displacements for a
given angular displacement are formulated by:

1x = veqx troll ⇔ 1x = K quad
x

√
φ · tθ (44)

1z = veqz tφ ⇔ 1z = K quad
z
√
θ · tpitch (45)

Where tθ and tφ are the time the quadcopter is asked to make
the corresponding tilt and move in either the x or z direction.
Equations (44) and (45) explain why by steering the cor-

responding angular displacements of the SAD according to
properly tuned control policies, desired linear movements in
the x and z direction are achieved.
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