
Urban MAV

A visual odometry
dataset

Q. Booster
for neural network purposes





Urban MAV
A visual odometry dataset

by

Q. Booster
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Wednesday April 14, 2021 at 9:30 AM.

Student number: 4358023
Project duration: June 17, 2020 – April 14, 2021
Thesis committee: Prof. Dr. G. C. H. E. de Croon, TU Delft, supervisor

Ass. Prof. Dr. A. Sharpanskykh, TU Delft
Ir. C. de Wagter, TU Delft

This thesis is confidential and cannot be made public until April 14, 2021.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface
Within this document the reader will find a report on the master thesis that serves as the conclusion of
my years of studying at the Aerospace Engineering faculty of Delft University of Technology. During
the years spend on the bachelor and master an interest in programming was born. The subject of this
thesis, the implementation of neural networks in visual odometry, served to me as an instrument to
broaden this interest with knowledge towards machine learning and artificial intelligence.

Never during the entire studies did I expect to perform under such unlikely circumstances as a world
wide pandemic, which affected both my internship as well as this thesis. It was the cause of many
online meetings and much more hours of working from home.

Because of this, I found great support with my roommates, with whom the many secluded hours be
came more enjoyable. The mayor burden of support however laid on the shoulders of my girlfriend,
without whom this thesis would have been considerably more cumbersome. I wish for them all a pros
perous time ahead, may it be during their studies or the joblife that awaits them.

Support of a more technical form came frommy supervisor Guido de Croon. Even though the restricted
contact limited the ability of social interaction, the benefit of asking questions was still at hand. This
role was also fulfilled by Yingfu Xu, to whom I want to extent these words of thanks.

Finally, I would like to wish the reader an enjoyable and knowledge amending time. Thank you for your
interest in this work.

Q. Booster
Delft, March 2021

iii





Contents

List of Figures vii

List of Tables ix

Nomenclature xi

1 Introduction 1

2 Thesis Paper 3

A Literature Review 23
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2 Existing VO Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.2.1 Monocular and Binocular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2.2 Geometric VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2.3 Visual Inertial Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2.4 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.3 Extant Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.4 Datasets Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.4.1 Physical Data Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.4.2 UAV Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.4.3 Jumping the Realitygap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.5 Deep Neural Networks Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.6 Preliminary Tests and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.6.1 Selection of the Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.6.2 Validation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.6.3 Possible Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B Discussion 37

Bibliography 39

C Code Overview 45

v





List of Figures

A.1 Over and underfitting demonstration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 DeepVIO pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Unsupervised depth and pose estimation pipeline. . . . . . . . . . . . . . . . . . . . . . 28
A.4 Recording platform of the KITTI database. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.5 An optical flow comparison of conventional datasets conducted for UZHFPV. . . . . . . 31
A.6 Translational output of concatenated input. . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.7 Rotational output of concatenated input. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii





List of Tables

A.1 Overview of distinct Neural Networks and their characteristics. . . . . . . . . . . . . . . 29
A.2 Overview of select datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.3 Overview of stateoftheart drone simulators . . . . . . . . . . . . . . . . . . . . . . . . 32

ix





Nomenclature
ADR Autonomous drone races.

CNN Convolutional neural network.

IMU Inertial measurement units.

LSTM Long shortterm memory.

MAV Micro air vehicles.

NN Neural networks.

RNN Recurrent neural networks.

SLAM Simultaneous Localisation and Mapping.

VIO Visual inertial odometry.

VO Visual odometry.

xi





1
Introduction

The most common used classification of drones is Micro air vehicles (MAV), with quadrotors being the
most conventional MAV [1]. Its relatively small size and rotary wings provide high maneuverability,
including vertical takeoff and hovering, making them useful in confined and hard to reach spaces. An
other benefit of the MAV in comparison to other drone classifications is its relatively smaller production
costs [1]. Because of these features they play an increasing role within our society by aiding in human
tasks, by applying them in for example site inspection, agriculture and rescue missions [2–4]. However,
its agility comes at a cost which takes the form of high power consumption [5]. Making improving MAV
designs a challenge.

To put these challenges to the test Autonomous Drone Races take place. During these events
MAVs must traverse a parkour of waypoints. As the name of these types of races indicates the drones
must do this autonomously [6]. All calculations and decisions are done using onboard computers. In
combination with the above mentioned power consumption constraint this results in outstanding efforts
in improving the onboard technology and software by the participating teams [7].

A component of these onboard calculations is the relative position, also referred to as pose estima
tion [8]. When done using information extracted from cameras this method is called Visual odometry
(VO) [9]. These VO algorithms may extract geometric features of image pairs and compare these in
order to determine the relative position changes. However, these methods are highly dependent on
thresholds set by the user. Additionally, the VO algorithm can be trained using Neural networks (NN),
a computing system created to learn various tasks [10]. The system is based on the biological neu
ral network and as such consists out of neurons. These neurons can form a layer. Each connection
between a neuron and the input of such a layer has a weight. The weights are adjusted by the loss
function in order to learn the task at hand. In general, multiple layers are adopted in sequel, creating a
deep neural network [11].

An example of such a deep neural network based visual odometry method is the SfmLearner [12].
Whose architecture consists out of seven convolutional layers and an additional output layer, which
results in three rotational and three translational values. Due to its simplicity its architecture provides
a solid foundation for this experimental research. However, where the SfmLearner couples the pose
estimation to a depth estimating neural network to create a unsupervised method, this research will
leave out the depth estimations and thus enhance the architecture for supervised network purposes
[12]. The rationale behind this springs from the intention of the research, being to further fuel the ad
vancements in neural network based monocular visual odometry methods.

Provided by chapter 2 is the article that contains this thesis research. After testing the above de
scribed neural network on a variety of highend datasets an additional challenge is brought to light, as
overfitting becomes a regular occurring phenomenon. Resulting in the need for and creation of a new
stateoftheart dataset. As these results are described in a paper format, it can be read as a stand
alone report. However, an initial literature study was conducted that laid the foundation of this research.
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2 1. Introduction

As this is not described within the paper, Appendix A specifies the required background information on
the available literature as well as the initial interpretations of this research. After which Appendix B
concludes with a final discussion. Additionally, some relevant components of the codes used to train
the neural networks and create the dataset can be found in Appendix C.



2
Thesis Paper

The following chapter presents the master thesis results on neural network based visual odometry. As
to conform to the required format, it has been written in article style. It can therefore be read as a
selfcontained document.

First off, it will provide some introduction on the topic. After which the equipment that is used to
train the neural network is established. As images are often distorted, the pinhole camera calibration
method is described, which enables a image to seem more similar to real life scenarios. Hereafter,
a description on the importance of overfitting is provided and the used calculations of accuracy are
specified. From this point on some stateoftheart datasets are introduced. Results of whom on a
neural network are then elaborated upon. It is then that the necessity for a modernized dataset with
decoupled motions is established. The method of creating such a dataset is described after which the
article is concluded.

3



The UrbanMAV Dataset for Learning-based
Visual Ego-Motion Estimation

Q. Booster
Delft University of Technology

Abstract - Visual odometry is an important component of most vision-based autonomous flight
systems. Current visual odometry algorithms which are based on feature detection and tracking
suffer when the robot performs quick rotations or in general moves fast through its environment.
Neural-network-based visual odometry (VO) forms a promise to better cope with such fast motions.
However, current datasets seem unsuited for training the neural networks for such tasks. Mostly,
the variation in different types of motions in these datasets is quite low. Moreover, different motion
directions always occur in an entangled manner. Hence, a new dataset is created specifically for
training neural-network-based VO. Furthermore, a method of training a neural network with various
outputs is created with promising results in balancing the learning process, even if variations in
motion are limited.
keywords - Visual Odometry, Micro Air Vehicles, Neural Networks, Dataset

1 Introduction

The modest size and high maneuverability of micro
air vehicles (MAVs), makes them suitable for helping hu-
mans in tasks such as site inspection, agriculture and
rescue missions [1–3]. However, limited on-board space,
weight and power impose a challenge on the advance-
ments MAV designs [4]. Outstanding efforts towards
solving these complications have been shown by teams
participating in autonomous drone races [5].

An area of advancements is the estimation of the
flight path of the drone. This can be done by means
of estimations of relative poses between image frames of
on-board cameras. This methodology is referred to as
visual odometry (VO). Feature based methods unfortu-
nately are restricted by the required threshold values [6–
8]. Neural networks can be trained in order to function
as such VO methods [9–11].

An automobile based neural network for visual odom-
etry is SfmLearner [12]. Its simple architecture lends it-
self well for further research. The original KITTI dataset
as well as two drone-based datasets UZH-FPV and Eu-
RoC are used to train a supervised version of the Sfm-
Learner [13–15]. Upon examination of the resulting
learning curves, great discrepancies are found between
the various outputs of the neural network. The neural
network tends to focus on learning the outputs that tend
to reach higher values, as intrinsically these have higher
error margins. Which takes away from the learning pro-
cess of the other outputs. To balance this a contem-
porary method is invented, which provides a smoother
learning curve during training and enables multiple out-

puts to be trained in conjunction in a more stable man-
ner.

On top of the out of balance training, overfitting
seems to be a regular occurring phenomenon. It is con-
cluded that the existing drone focused datasets are not
large enough to support neural network based visual
odometry. In order to fill this gap, this paper intro-
duces a dataset, which holds a larger amount of image
pairs. It is hypothesised that improved results can be
attained if the movements in the six degrees of freedom
of a drone are decoupled when recorded for the dataset.
It is believed that this decoupled motion will provide
a stronger basis for the neural network to learn to the
recognise the separate motions. This data is created us-
ing a simulated environment from UnrealCV [16]. Using
Python packages enabling communication with the sim-
ulation, the creation of carefully selected decoupled data
was enabled.

2 Methodology
The following section provides some background in-

formation on the training process. First-off, required
camera calibration for real-life images is provided. After
which several technical details on the computer setup is
given. Lastly, over-fitting and general ways to overcome
this are introduced, as-well-as a method of calculating
the accuracy of the neural network.

2.1 Pinhole camera calibration
Although modern cameras are easily capable of cap-

turing moments in the everyday life, they do so with a
distortion due to lens parameters. Since every camera



Figure 1: Axis systems required for pinhole camera
model [17].

is different, intrinsically their distortions differ as well.
These discrepancies in comparison with how the world
is represented can be described by the pinhole camera
model. In order to map the distortions two axis systems
are required

1. Camera axis system

2. Image axis system

as depicted in Figure 1. The relation between these two
axis systems is described by the camera matrix in Equa-
tion 1. Where f is the distance between a point on the
xy-plane in the image axis system and the camera axis
system and cx and cy describe the difference of origin
between the two systems [17]. fx 0 cx 0

0 fy cy 0
0 0 1 0

 (1)

Radial distortion due to the lens is not yet described
by the above method. In order to encompass these dis-
tortions a polynomial based method can be used, whose
coefficients are referred to as distortion coefficients [18].

The OpenCV python library makes use of both these
methods in order to describe the distortions on images
[19]. The effect of undistorting images using this method
is depicted in Figure 2. Although curved element in the
image have been rendered out, making the image more
comparable with the real world conditions. However, a
striking disadvantage is the loss of the outer pixels of the
image.

Figure 2: Effect of the distortion modelling by OpenCV.

2.2 Technical specifications
Training and testing of the neural networks can be

done using a variety of soft- and hardware. For the lat-
ter, a Hewlett-Packard ZBook Studio G5 was available,
equipped with a CUDA enabled NVIDIA Quadro P1000,
a mid-tier graphics card [20]. By leveraging the avail-
able GPU with CUDA improved training speeds can be
achieved, due to parallel computations, in comparison
to the available CPU (Intel Core i7-8750H). By employ-
ing the Pytorch library development time can be kept
to a minimum due to its ease of use. Additionally Py-
torch can leverage the improved speed of graphics card
by enabling CUDA [21].

2.3 Over-fitting and accuracy calculation
When working with neural networks, a pitfall can be

overfitting. At first sight the results of a neural network
may seem to correspond very well to the ground truth.
However, the neural network may only be capable of
showing such results on the data it has trained on. As
a result of the lack of generalization, the network then
can show bad performance when working with data that
is new to it, which is very common in practical usage.
One such scenario of overfitting is the result of training
on parameters with low extensibility to other scenarios,
such as different locations, routes or speeds. As a result
the neural network is unable to learn useful algorithmic
parameters and instead, almost like mnemonic, learns to
couple certain image pairs with the corresponding loca-
tion.

In order to overcome overfitting complications it is
essential to get a hold of enough data [22]. Too small
quantities can result in a network that is unprepared
for data external of the training dataset. It is therefore
fundamental to be aware of different methods that can
provide improved training datasets.

First off, an indisputable method would be to create
more data in a similar fashion as the methods described
above [22]. Advantage being the ability to focus on the
qualities that other datasets are lacking gives it much
potential to improve the resultant neural network. How-
ever, this would require time and the essential equipment
and is therefore best kept for scenarios where results can
not be improved in other ways.

Instead the existing data can be adjusted in order
to enlarge the dataset. This can be done by deforming
the images [22]. In doing so caution must be taken into
processing the data in a sensible manner. For exam-
ple, the available KITTI dataset would not make sense
if the input images were to be recycled up-side-down.
Horizontally mirroring the data however can double the
available data. It must be taken into account that the
labels are adjusted accordingly, to correspond to the de-
formed image pair. Another example of such data ad-



justments with a lower risk of serving the neural network
improper data would be to randomly adjust brightness
of the images so that the network becomes less prone to
situational factors.

One way a neural network may improperly learn the
required patterns is by over-feeding it with the same
type of data. An example for the neural network trained
on KITTI-only data would be a long straight road with
constant speeds which may lead to the neural network
overfitting on the specific translational output. For this
reason the Pytorch library possesses a shuffle function.
This function is applied for all the networks trained in
this work and will shuffle the whole dataset like a deck
of cards to overcome some of the possible training er-
rors. The shuffle entirely random and will take place
before every epoch, so that no recurrence of patterns in
the dataset takes place. However, this only holds for
the training dataset. Those who are used for the accu-
racy computations, introduced in the following section,
do not undergo this shuffle in order to depict a more
real-life situation.

In order to value this data and keep track of the per-
formance of the neural network it is important to test
the accuracy of the neural network throughout train-
ing. By splitting of a part of the database and not using
this for training purposes the opportunity to validate the
network is created. By classifying the output for both
validation and training data the performance can be es-
timated. This can be valued using an accuracy measure
or by looking at the loss values.

3 Accuracy calculation
A conceivable way of describing the accuracy of an

estimation of a neural network is dividing the estimation
error by the true value, leading to Equation 2. Where
η is the methods accuracy, α is the true value and β is
the estimated value. With the error being equal to the
true value minus the estimated value.

η =


100% · (1 − ∥(∥α∥−∥β∥)∥

∥α∥ ) ∥α∥ > ∥β∥
100% · (1 − ∥(∥β∥−∥α∥)∥

∥α∥ ) ∥α∥ < ∥β∥
100% ∥α∥ = ∥β∥
0% ∥η∥ > 100%

(2)

However, problems with this equation arise once the
sign of true value and estimated value differ, as this
causes high accuracy values to drop below zero which
may be less intuitive. To overcome this problem all ac-
curacies belonging to estimations with incorrect signs
are set to zero, no matter their correctness if signs were
truthful.

In order for these plots to be made every epoch two
tests are done. One serves as a analysis of the training,
a single sequence which has also been used for training is
analysed by the neural network without shuffle and with
a batch size of one, similar to a real life situation. From
the output the relevant training accuracy is calculated
via the method described above. However, overfitting is
invisible in this data and so a distorted image is created
of the result. In order to bring the result into perspective
the second test makes use of a sequence which has been
left out of the training data. Again without a shuffle and
with a batch size of one, the test accuracy is calculated.
These are the recurrent values that are found in most of
the figures.

4 Datasets
The following section introduces the various datasets

that are used throughout this research.
4.1 KITTI

KITTI is frequently used when developing odometry
methods for robotics. It consists of various databases,
recordings from cameras attached to a Volkswagen sta-
tion wagon, each with its own purposes. It can for exam-
ple be used for object or road detection and tracking. A
database for visual odometry has been made available,
where IMU and GPS data provide accurate positional
information throughout eleven available sequences [13].

As the objective of this report is the relative pose esti-
mation between images, all unrelated information can be
discarded. What is left are the images captured by the
camera rig, mounted on top of the roof of the car, along-
side the Velodyne Laserscanner, whose translational in-
formation is also utilized. Finally, IMU provides the
rotational information [13].

Figure 3 shows a depiction of the locations and axis
systems of the above mentioned data capturing instru-
mentation. The Velodyne Laserscanner and GPS/IMU
appliances share their axis directional conventions but
do not share their positioning. The left and right video
cameras have their own axis conventions, spawning from
the camera models discussed in subsection 2.1. All trans-
lational and rotational information during each sequence
is provided with respect to the left video cameras axis
system. Considering this alignment and the interest in
monocular vision, it goes without saying that the im-
ages of the left camera are preferred over the, therefore
excluded, images of the right side camera.

All information is conveyed with respect to the po-
sition of the first frame in the sequence. However, the
camera axis system moves along with the car, so all rel-
ative pose information is desirably with respect to the
camera at the frame in question. To solve this Equa-
tion 3 gives the translational matrix between a global
and body frame. This world frame is portrayed by the



Figure 3: Recording platform of the KITTI database
[13].

Figure 4: Conventional axis system 1.

first camera axis stance and the body frame is the cam-
era position of the first image in the evaluated image
pair. However, the camera axis system is first converted
to the conventions indicated by Figure 4, with the roll
angle ϕ around the x-axis pointing forward, pitch an-
gle s θ around the y-axis pointing right and ψ yaw an-
gle around the z-axis pointing to the lower side of the
recording platform, following the right hand rule.

4.2 UZH-FPV
When training a visual odometry for micro air vehi-

cles the movements of automobiles are incomparable due
to their smaller use of pitch and roll motions. Further-
more, drones are capable of making more agile manoeu-
vres. Therefore, if a neural network based visual odom-
etry method is supposed to deliver results on a drone,
it is best practice to train this network using data that
is captured using a drone rather than cars. One such
database is the UZH FPV. More specifically it is labeled
as a racing drone database [14].

The images for this dataset are recorded with a snap-
dragon stereo camera and the mDAVIS event camera.
Considering the desired practicality on a wide variety
of drones the latter data is omitted from this research.
Furthermore, the snapdragon has both a horizontal and
downward angled setting. As the former configuration
can likewise be adopted for obstacle recognition, this is
preferred over the downward facing camera [10].

For odometry method evaluation and supervised neu-

Figure 5: UZH-FPV database equipment axis systems
[14]. The x, y and z axis are indicated in red, green and
blue respectively.

ral network training it is essential to have labeled data.
The ground truth values for this data are obtained with
the help of a laser tracker, locking on a prism on top
of the drone. The corresponding rotational values are
recovered using an on-board IMU. The equipment axis
systems are illustrated in Figure 5, where it can be seen
that not all coordinate frames correspond in their direc-
tional labeling. In order to convert the IMU data into
the left camera axis system Equation 4 is applied.
4.3 EuRoC

Another drone based dataset is EuRoC, created pur-
posefully for visual odometry methods and three dimen-
sional reconstruction of terrain [15], the latter functional-
ity not being of use for this research. As with UZH-FPV,
images were recorded with a stereo camera, ground-truth
locations are determined via a laser-prism combination
and IMU measures the angular rate.

The EuRoC ground truth data is provided in a sim-
ilar fashion as the UZH-FPV dataset in subsection 4.2.
For this reason the same methodology for data opera-
tion can be applied, with corresponding adjusted matrix
values, as found in Equation 5.

Figure 6: Axis system indication for the EuRoC
database recording platform [15].



Rb
G =

 cos(ψ) cos(θ) sin(ψ) cos(θ) − sin(θ)
cos(ψ) sin(ϕ) sin(θ) − cos(ϕ) sin(ψ) sin(ϕ) sin(ψ) sin(θ) + cos(ϕ) cos(ψ) cos(θ) sin(ϕ)
cos(ϕ) cos(ψ) sin(θ) + sin(ϕ) sin(ψ) cos(ϕ) sin(ψ) sin(θ) − cos(ψ) sin(ϕ) cos(ϕ) cos(θ)

 (3)

5 Testing results
5.1 Results on KITTI

Due to the simple architecture of the SfmLearner
neural network, see Table 1, it is forms a starting point
for this research. Although the goal of this research is to
construct a visual odometry method for micro air vehi-
cles, the SfmLearner originally was trained on the KITTI
database. For this reason it was decide that initial tests
should be conducted using the KITTI database as well.
However, in order to do so the networks parameters re-
quired adjustment, due to its unsupervised nature. A
summary of the parameters of this enhanced version are
found in Table 2.

With these parameters initial tests were conducted.
Unfortunately these were unsuccessful in reaching sim-
ilar results as the unsupervised SfmLearner. Although
translational estimations on the trained data were able
to reach accuracies of over 90%, these same calculations
were only 75% accurate on validation data. For the sake
of consistency two tests were conducted.

1. Training on all sequences except for sequence 00,
testing on sequence 00, training accuracy given by
sequence 03

2. Training on all sequences except for sequence 05,
testing on sequence 05, training accuracy given by
sequence 00

Both yielded similar results, former can be found in
Figure 21 in section 7 and the latter being depicted in
Figure 7. Over-fitting is mainly visible for the transla-
tional values. Considering that the x-axis is the only
axis for automobile data to have substantial transla-
tional value, its overfitting is of great significance and
could have implications on the method when applied to
drone data. It is for this reason that the results on the y
and z axis were of smaller relevance during the following
process. Similarly, only the yaw angle plays a significant
role for automobile data, while drones may use pitch and
roll in a more noteworthy fashion. The discrepancy be-
tween the angular and translational accuracy as well as
the neural network overfitting led to an exploration for

result improving adjustments, sticking with the KITTI
database. Due to the validation and training accuracy
of similar values, although low at around 20 to 30 %, for
the roll and pitch angles it is believed that adjustments
may lead to less overfitting.

However, considering that the original implemen-
tation of the SfmLearner converged to a higher accu-
racy with less overfitting it seemed appropriate to test
whether the by SfmLearner applied sequences yield sim-
ilar results. This concerns sequences 00 through 08 as
training data, with both sequence 09 as well as sequence
10 as validation data. When applying this training and
validation method it results in Figure 8, where it can
be seen that yet again it results in limited accuracies
and overfitting patterns, as well as discrepancies between
translational and rotational outputs. It is for this rea-
son that it is believed that using the priorly discussed
sequences, is justified in the search for the improvement
of the learning pattern.
5.2 Splitting the loss

By having a single array as output, and feeding this
to a single mean squared error loss function, a skewed
gradient may be a consequence. This could be a reason
for the different patterns between the translational and
rotational values found in Figure 8. To overcome this
problem a new training method was found.

Instead of using a single mean squared error loss cri-
terion for the whole array, where the largest value will
have the largest influence. The forward motion is most
prominent, so learning this translation well results in low
loss values. The other motion axes and rotations matter
less for the loss value, and thus it is hypothesizes that
they are less well learned because of this fact. And thus
it is expected to be more efficient when each degree of
freedom is similarly trained by equalizing the training
gradients. For this reason the array was split into six
separate variables, each corresponding to one of the de-
grees of freedom. Each one of these six variables can
be calculated using a separate mean squared error loss
function conveying the total loss given by Equation 6.

The next step is to stabilise the learning process by
awarding each output value the same influence on the

Timu
cam,UZH =


−0.02822879 −0.99960149 0.00001218 0.02172388
0.01440125 −0.00041887 −0.99989621 −0.00006605
0.99949774 −0.02822568 0.01440734 −0.00048818

0. 0. 0. 1.

 (4)



Timu
cam,UZH =


0.0148655429818 −0.999880929698 0.00414029679422 −0.0216401454975
0.999557249008 0.0149672133247 0.025715529948 −0.064676986768

−0.0257744366974 0.00375618835797 0.999660727178 0.00981073058949
0. 0. 0. 1.

 (5)

Figure 7: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences 00-04
and 06-10, validated on sequence 05, of the KITTI database.

gradient. This was established by appointing weights,
indicated by ω· in Equation 6.

The theory is build around the fact that the neu-

ral network is trained using various batches each with
their own values for the six degrees of freedom. There-
fore, each new batch requires different weights in order

Figure 8: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences 00 to
08, validated on sequence 09 and 10, of the KITTI database.



Table 1: SfmLearner Architecture

Layer Input Output Kernel Padding Stride
One 16 32 7 3 2
Two 32 64 5 2 2
Three 64 128 3 1 2
Four 138 256 3 1 2
Five 256 256 3 1 2
Six 256 256 3 1 2
Seven 256 256 3 1 2
Out 256 6 1 - -

Table 2: Supervised enhancement parameters for the
SfmLearner

Parameter Characteristic
Loss criterion Mean squared error
Optimizer Adam (0.9,0.999)
Layers See Table 1
Activation function ReLU
Batchnormilisation Not in place

to be trained most optimally. Where it is most opti-
mal to distribute the error values over all six degrees
of freedom. These weights can be set according to the
batch they belong to, by leveraging the known label val-
ues. Various variations for such a weight formula can
be applied. The minimum or maximum value in the
batch’s label for each degree of freedom can for exam-
ple be a factor in the determination of weight values.
Here the minimum value would impose a logical advan-
tage, as a division by the minimum value per variable
would increase the effect of lower outputs (angles) over
those with higher values (forward motion). However, it
must be taken into account that a negative weight would
destabilise the learning curve and so taking the absolute
value may be a requirement for labels and outputs that
can take a negative sign.

To confirm the possibility for success of splitting the
outputs an initial test was conducted. In this test set up
the translational outputs are omitted. To achieve this
the output layer in Table 1 has an output size of three,
which are then fed to the loss function as an array to-
gether with the respective rotational labels. The emerg-
ing accuracies are found in Figure 9. Unlike beforehand,
a learning curve is displayed by the training accuracies
for all angles. However, an overfitting pattern is shown
with the validation accuracy converging to around 30%
for each rotation.

This would suggest the possibility of improving the
overall result for the rotational outputs. Considering the
increasing accuracy for training data, up to 70%, was in-
visible in previously conducted training sessions for all

Figure 9: Results for a rotational output only supervised
version of the SfmLearner. Trained on sequences 00-
04 and 06-10, validated on sequence 05, of the KITTI
database.

rotations it would seem that the loss value of the trans-
lational output overshadows those of rotational values.
Thus the hypothesis proposed in this section seems to
have been proven and the pursuit of splitting the out-
put should eventually provide a more balanced result
between rotational and translational output.

5.3 Results on UZH FPV
When adopting the above described methodology to

the UZH FPV dataset it results in the learning process
found in Figure 10. The neural network is trained on all
forward facing sequences, both indoors as well as out-
door, except for the validation data which is the indoors
sequence number five. The accuracy on the training data
is determined using the indoor sequence nine. Hereby, it
is specifically chosen to have indoor sequences for both
the validation and training accuracy for a fair compari-
son, as textures in both scenarios may vary.

For all six degrees of freedom an overfitting effect is
found. However, in comparison to the KITTI database
the learning procedure is more balanced between the var-
ious translational and rotational outputs. The worst ac-
curacies belong to the rotational outputs, with roll and
pitch in particular.

Further research with previously described methods
did not develop in a decrease of these overfitting results.
Reason for this is estimated to be the sparsity of data.
It is believed that neural networks require more data in
order to be better suited for scenarios outside the scope
of the data that it is trained on.



Ltotal(x, y, z, p, q, r) = ωx · LMSE(x) + ωy · LMSE(y) + ωz · LMSE(z)
+ωp · LMSE(p) + ωq · LMSE(q) + ωr · LMSE(r)

(6)

Figure 10: Results on a supervised version of the SfmLearner. Trained on sequences forward sequences, of the
UZH-FPV database, except for indoor5, on which it is validated.

5.4 Results on EuRoC
EuRoC is a database that contains more data than

the UZH-FPV database and thus may be less prone to
the aforementioned overfitting problems. To put this
hypothesis to the test the neural network was subjected
to the EuRoC database, except for the machine hall 3
sequence which functioned as validation data. The se-
quence labeled as machine hall 5 was then used to de-
termine the accuracy on the training data.

Results of this test are depicted in Figure 11. In
comparison to previous results on the other databases,
less overfitting occurs as can be seen from the decreased
distance between the training and testing accuracy line.
However, the accuracies of the angle estimations do not
properly advance. Instead they stay relatively the same,
and the yaw accuracy even shows a decreasing trend. It
is for this reason that the training was stopped prema-
turely. However, conclusions can still be drawn. For
instance, the decrease in overfitting could point to the
effective use of a larger dataset. The worsening learning
curve of the angles could be the aftermath of a decreased
activity in the angular velocities in comparison to the
UZH-FPV dataset.

Performance on the EuRoC dataset was then im-
proved by using the splitted loss methodology which was
previously constructed for the KITTI database, resulting
in Figure 12. Here, the weight calculation in Equation 7
was adopted. Furthermore, the SfmLearner makes use

of a 0.01 multiplication for the final output layer for each
degree of freedom. However, as each output may not be
in a similar range these were adjusted according to the
output resulting in the array of 0.0001 and 0.01 rota-
tion and translation respectively. This further increased
the balance between the learning processes of the six out-
puts. As a result the decreasing yaw angle now improved,
although only to 25%. Furthermore, the learning process
is more balanced between the various outputs, resulting
in a slightly delayed and volatile learning curve for the
translational outputs. Unfortunately, these results still
show overfitting.

Given the consistent overfitting of SfMLearner on the
training data, it is hypothesized that, to achieve a neu-
ral network based visual odometry method that is ap-
plicable outside the scope of the training data, a new
state-of-the-art dataset has to be created. This would
need to contain at least an equal amount of data as that
of the EuRoC database, as well as similar limits to the
movement speeds as the UZH-FPV dataset.

6 The UrbanMAV Dataset
Considering that the existing datasets may be too

small a new dataset was established. By operating a
simulator and adopting points of improvements gathered
from the previously described methodologies a state-of-
the-art visual odometry focused dataset was created.

The limits of the translational and rotational mo-



Degree of freedom Minimum Maximum
∆X
∆s [m/s] -25.00 25.00
∆Y
∆s [m/s] -12.00 12.00
∆Z
∆s [m/s] -9.50 9.50
P [deg] -45 45
Q [deg] -45 45
R [deg] -180 180

∆P
∆s [deg/s] -375 375
∆Q
∆s [deg/s] -375 375
∆R
∆s [deg/s] -375 375

Table 3: Flight envelope of the UrbanMAV Dataset

tion were greatly derived from the UZH-FPV dataset,
as this is considered to contain aggressive sequences. Af-
ter close analysis the limits were established to be those
in Table 3. Single valued sequence makes use of a pre-
determined velocity and or angle. Initial positions as well
as relative poses were randomly chosen using a uniform
distribution.

Data is gathered using the Urban model environment
of UnrealCV [16]. Commands can be given to this vir-
tual world via a python client. These commands include
setting the location of the camera, applying its angles as
well as extracting images. As these frames are derived
from a simulated camera, the methodology of camera
calibration in subsection 2.1 is not required. By cal-
culating relative poses, and from that the global posi-
tioning, within the scope of the above described limits
the ground truth can be pre-determined, and the corre-
sponding frames can be found accordingly.

With an eye on building viable data various sequence

types are created. Most notably are those with a single
degree of freedom. Where both EuRoC and UZH-FPV
contain only sequences that adhere to all degrees of free-
dom in conjunction, the UrbanMAV dataset possesses
data with isolated motions, so only one degree of freedom
was active at a time. Multiple sequences for the transla-
tional movements exist, with varying velocities depend-
ing on the axis that is excited. With these sequences it
is anticipated that independent outputs can be trained
more conveniently, as previous sections demonstrated
the adversity with which this is currently implemented.
However, as means to avert overfitting, additional data
sequences with various degrees of freedom are created as
well.

These random sequences are constructed not as true
flights, as with EuRoC and UZH-FPV, but as random
image pairs throughout the viable locations in the simu-
lated environment. Per image pair a random location is
established, after which a relative pose for the camera is
obtained from within the above described scope of limits.
Using the pre-established global positioning, in particu-
lar the Euler angles, Equation 3 is applied to transfer the
relative pose into the global frame with which the second
camera position can be found. Using these two camera
positions the frames that accompany the relative pose
can be constructed and so a dataset with image pairs on
random locations with random (relative) poses is built
up. Due to its arbitrary values, it is expected that learn-
ing may be less prone to overfitting.

Due to the ease of creation of both random data with
multiple degrees of freedom, as well as semi-random sin-
gle degree of freedom data, a dataset of considerable size
was created. All the sequences were created within the

Figure 11: Results on a supervised version of the SfmLearner. Trained on sequences forward sequences, of the EuRoC
database, except for machinehall3, on which it is validated.



Figure 12: Results on a supervised version of the SfmLearner. Trained on sequences forward sequences, of the EuRoC
database, except for machinehall3, on which it is validated.

Figure 13: Distribution of the translational velocities for
the EuRoC, UZH and Urban MAV datasets.

green area indicated by Figure 17.
The distribution of the translational values of the Eu-

Roc and UZH are depicted by Figure 13. From these
pie charts it is clear that the EuRoC dataset does not
excite the translational values much. The UZH data
reaches translational values of around 23 m/s. However,
these are only found sporadically within the data. Even-
though they push the limits of the dataset, in essence
it only has a minimal effect on the training of a net-
work due to the overshadowing lower values. However,
as these higher values do occur within the data they
drive the accuracy of the network down. When look-
ing at Figure 13 the pie-chart indicates the distribution
of the UrbanMAV data. Although the limits are not
dramatically higher than that of the UZH-FPV dataset,
the upper boundaries are more frequently visited, thus
delivering a more sensible arrangement of values.

Again it holds for both EuRoC and UZH-FPV that
the distribution of angular velocities make for relatively
low speeds throughout the datasets. This is illustrated
by Figure 14. However, as showcased, the angular veloc-

Figure 14: Distribution of the rotational rates for the
EuRoC, UZH and Urban MAV datasets.

ities of the Urban MAV dataset reaches the outskirts of
the constraints in a close to uniform distribution, hope-
fully making the data more suitable for neural network
based visual odometry methods.

However, as stated earlier not only the distribution
of data but also the amount of data plays a vital role in
determining whether a dataset is suited for neural net-
works, as smaller datasets are more prone to overfitting.
Figure 16 showcases the differences in proportion of the
state-of-the-art databases. It is important to take note
of the unit of this graphical representation. As it states
the number of images pairs are depicted, which differs
from the total amount of images that a dataset may hold.
Most importantly, the randomized data within the Ur-
ban MAV dataset is created solely per pair, and thus the
total amount of images within these sequences is twice
as large as is depicted within Figure 16.

An example of an image that is extracted from the
Urban environment with the means of building one of
the straight forward motions is found in Figure 18. The
size of these images is 640 by 480. Notably, the road



Figure 15: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences the
randomsequences 2 - 25, validated on random sequence 1, of the Urban MAV database.

is simulated to be covered with water using a reflective
effect. Furthermore, leaves are on the ground giving the
road more texture. These leaves also occasionally fall
from the trees scattered around the map. As these trees,
green dots on the map in Figure 18, sometimes are close
or overlap the roads and therefore the pathways of the
drone, these falling leaves are occasionally recorded. Al-
though not beneficial for the determination of relative
poses, it is believed that these will not cause much harm
and are therefore left in the dataset. Instead, it is be-
lieved that in real-life situations similar occlusions may
occur and thus the trained neural network would be less
prone to false estimations in such scenarios. However,
the dataset is unlike the real world as it misses motion
blur at greater speeds and is only recorded within a sin-
gle environment. In this aspect improvement can still be
found.

In order to verify the applicability of this dataset a
couple of tests were run. During these tests it became
apparent that the new dataset indeed is capable of be-
ing trained on by the neural network. Moreover, the
learning curve is more equally distributed between the
six degrees of freedom. As a result splitting the loss
methodology was not required and thus not used. This
can be a huge advantage over the existing datasets as
this means that weight functions will not require tweak-
ing towards the dataset. Unfortunately, again training
results in overfitting, where the accuracy training val-
ues reach 60% while validation accuracy only 40%, as
seen in Figure 15. Due to the ease and smoothness of
training it is believed that great results can be achieved
using this dataset. An example of this is depicted in
Figure 19, where it can be seen that the neural network

Figure 16: Representation of the amount of viable image
pairs within the UZH-FPV, EuRoC and Urban MAV
datasets.



Figure 17: Map of the Urban model environment of Un-
realCV [16]. Green indicates the area in which is flown
for the creation of the UrbanMAV dataset.

Figure 18: Example of an image frame extracted from
the Urban model environment of UnrealCV for the Ur-
banMAV dataset [16].

is already capable of converging to the correct range of
values. Additionally, higher accuracies can be achieved
by decreasing the learning rate step wise. The addi-
tion of the decoupled motions has not proven itself in
improving these results. It is believed that a new ex-
tensive research into applying this data could shed light
into this. Nonetheless, the resulting development in the
smoothness of the learning process are promising and it
is thus believed that this dataset will contribute to the
development of neural network based visual odometry.

7 Conclusion
A neural-network-based visual odometry method was

studied during which it was found that the state-of-the-
art method SfMLearner over-fits when being trained on
existing driving and flying datasets. Moreover, its out-
puts mainly converge for translational motions. Multi-
ple solution avenues have been investigated. First off, an
updated variation on learning a neural network in a su-

pervised manner with multiple outputs was established.
Weighing motion axes inversely to their occurrence in the
dataset resulted in an improved balance of the learning
curves of the outputs. Furthermore, it was established
that existing datasets do not hold a sufficient amount of
data in order to train supervised neural networks to rea-
sonable accuracies. This was established from a variety
of result enhancing methods. Hence, a new dataset was
created that that contains fast motions, has both mixed
motions and motions isolated per axis, and contains an
amount of data exceeding what has been produced be-
fore. To accomplish this the UrbanMAV dataset was
produced using simulated frames. Preliminary tests with
this dataset have resulted in smoother, more equal learn-
ing curves for the different degrees of motion. For this
the methodology of weighted losses was not required,
which is a great improvement over the other datasets.
However, it is believed that a decrease of overfitting and
improvement of accuracies is still possible. Currently,
decoupled motions have not yet shown this capability.
Thus for future researches it is prescribed that this state-
of-the-art dataset as well as the weighted multiple out-
put method are used to improve upon the architectures
of neural network based visual odometry.
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Appendix A - Results on KITTI
The following pages serve to deliver additional

information and graphs on top of that which is depicted
in section 5. These sections dive into the usage of
dropout and are a showcase of a part of the additional
exploration that went into the above described research.
Note that this only encompasses a narrow part of the
additional work that went into this research.

To prevent or reduce overfitting the method of
dropout can be applied. This procedure relies on drop-
ping out a part of the connections between layers in order
prevent the neural network from learning false patterns,
due to stationary conditions, which may cause higher ac-
curacies on training data compared to validation data.
If these dropouts were to occur on the same positions
this would lead to stationary conditions, in the form of a

smaller architecture, on which overfitting could still ap-
ply. Instead, these dropouts occur on randomly selected
locations [23].

Dropout of 0.25 means that 0.25 of the connections
between the assigned layers are blocked. In the case of
this experiment half of these connections are dropped
out, which can be managed using functions of the Py-
torch library [21]. The training and validation accuracies
of the neural network subjected to 0.5 dropout are found
in Figure 20. When comparing this to Figure 7 it can be
seen that the dropout has an effect on the neural network
that is three fold.

1. Forward motion, x-axis translation, still reaches
similar accuracy values again while overfitting.
However, the training accuracy starts at a lower
value and takes a longer period of time in order to
reach the preciseness.

2. A notable change is the elimination of overfitting
patterns for the translation of the y and z-axis. Ad-
ditionally and more importantly the same holds for
the yaw angle. Unfortunately this is paired with
a relatively low roughly equal to the limit of the
validation accuracy established without dropout.

3. The accuracy of pitch and roll vary more fre-
quently, although the training and validation ac-
curacy still follow the same pattern. Also, the ac-
curacy of pitch and roll overall is lower.

The first effect can be seen as an indication that high
accuracies are still achievable even though half of the
connections are severed randomly. Secondly, the removal
of the overfitting effect can be seen as a positive and
promising result. The third and final effect, although less
impactful, shows the instability of the learning process
due to the dropout. Which is highly likely the cause of
the increased duration mentioned by the first effect.

From the current result two possible methods of im-
provement were established. Foremost an increase in
layers can potentially establish an increase in accuracy.
This may then help to acquire fewer errors in the yaw
validation. However, considering that an increase in net-
work architecture would lead to an increase in memory
size requirement it is coherent with the research goal to
look into other potential alterations in the learning pro-
cess that may improve results.

Another area where changes can be made is the loss
function. Currently the network has three translational
and three rotational outputs in a single array. This array
is then fed to Pytorch’s mean squared error loss func-
tion, as described by subsection 5.1. However, the above
described results show a disparity between the learning
patterns of the six outputs. For this reason a trial was



Figure 20: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences 00-04
and 06-10, validated on sequence 05, of the KITTI database. With a dropout of 0.5.

conducted to severe the outputs into different variables,
each with their own (mean squared error) loss function.

With the results of the dropout described above and
the estimation that addition of layers may improve re-
sults a new architecture was set-up. Two additional con-
volutional layers were added with similar characteristics
as layers six and seven in Table 1. The resulting accu-
racies are depicted by Figure 24.

Due to time constraints the training of this method
was shortened in comparison to the test conducted pre-
viously, at 125 epochs in comparison to 175. Nonethe-
less the resultant accuracies are a clear depiction of the
achieved outcome. Little to no difference is found be-
tween the patterns and accuracies taken on by the accu-
racies in Figure 24 when compared to Figure 20. Which
is a clear indicator that this is not causing improvements
and the factor that limits the current outcome may be
found in the learning process or other characteristics of
the neural network rather than the quantity of layers.

Again, a large difference in pattern is found between
the accuracies of the translational and rotational predic-
tions. For that reason the second improvement option
opted when using a dropout, focusing on the adoption
of another loss function method was adopted.

In order to test the capabilities of this method the
above neural network was trained with a half drop out.
Its results are depicted in Figure 22. Again, the yaw
angle shows a increasing accuracy pattern. It shows an
increase of validation accuracy over the results in Fig-
ure 9. However, this comes at the cost of not having
the learning curve for the pitch and roll angles. Thus
it shows the possibility to improve results by splitting
the outputs. However, this will most probably require

extensive regard to the balancing method.
Another case with drop out value 0.25 was tested

resulting in Figure 23. Not only does this show an im-
proved final accuracy for the validation of yaw, at 40%.
It also shows a learning curve for the pitch and roll out-
puts. However, the start of this learning curve is delayed
till the point where the yaw angle estimation is almost
done with improving. This again clearly indicates the
overshadowing of certain outputs over the training of
others.

With the purpose of balancing the learning curves
between the various outputs, a test was conducted using
weight values of one divided by the absolute value of the
minimal value of the batch of the respective output. This
weight calculation is described by Equation 7, where ∗ is
used to indicated any of the six output variables. Note
that this intrinsically means that the lower variables get
a relatively higher weight value. Which may be required
as the differences between the labels and outputs also is
intrinsically lower.

w∗ = 1
min(∥labels[∗]∥)

(7)

The results of this test are depicted in Figure 25.
Where it can be seen that the desired learning curve for
each variable is only available for the translation in the
x-axis. This could partly be due to improper balanced
weight calculations. Thus the above described equation
would have to be adjusted. Furthermore, it is apparent
that the overfitting effect on the translational value of
the x-axis is far less than during previous tests. However,
it reaches far lower accuracies. The divergence of the
training and validation learning curves is relatively low



after follow a similar trail, with for example the peaks on
epoch 23 and 43. Nonetheless, the lacking of a learning
curve in the rotational data forms a deprivation. Beside
creating more balanced weight calculations, it is esti-
mated that the datasets for drones suffer less from the

Figure 22: Results for a rotational output only on super-
vised version of the SfmLearner, with a dropout value of
0.5. Trained on sequences 00-04 and 06-10, validated on
sequence 05, of the KITTI database.

Figure 23: Results for a rotational output only on super-
vised version of the SfmLearner, with a dropout value of
0.25. Trained on sequences 00-04 and 06-10, validated
on sequence 05, of the KITTI database.

Figure 21: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences 01-10,
validated on sequence 00, of the KITTI database.



disparity between outputs, due to their higher usage of
the y and z-axis translations as well as the pitch and roll
rotations.



Figure 24: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences 00-04
and 06-10, validated on sequence 05. With a dropout of 0.5, of the KITTI database. And two additional convolutional
layers.

Figure 25: Translational and rotational results on supervised version of the SfmLearner. Trained on sequences 00-04
and 06-10, validated on sequence 05, of the KITTI database. Containing two training moments. First is the regular
model, second uses a split output and respective weight of ∥min(label[·])∥ and a dropout of 0.5.





A
Literature Review

This chapter contains the content of the preliminary thesis report. It has been written and graded for
the course AE4020. Previously written in article style, it has been converged to the thesis format.

Abstract  Drones are continuously becoming more developed and are deployed to aid in chal
lenging tasks. Autonomous drone races endeavor to expand the capabilities of micro air ve
hicles. This extensive literature study delves into the effectiveness of various visual odometry
methods, revealing the competence of neural networks. From the literature studied, it becomes
evident that appropriate datasets are essential when training these networks, especially when
competing in highly dynamic autonomous drone races. Which raises the questions (1) do effi
cacious input sequences exist and in turn (2) is it possible to further improve upon the extant
datasets. Both questions being answered through additional literature examinations. With this
information the ground work is laid for a future thesis research, including a preliminary analysis
of neural networks.

keywords  Autonomous Drone Racing, Visual Odometry, Convolutional Neural Networks

A.1. Introduction
The challenge of MAV is to make them entirely autonomous and able to handle unknown or chang
ing environments, using fast and dynamic movements provided by onboard sensing and calculation.
These MAV can then prove useful in e.g. site inspection, agriculture and rescue missions [2–4]. Au
tonomous drone races (ADR) pose as a passageway that may advance these fast and dynamic MAV
under various circumstances. These advancements are achieved by constantly requiring improved
pose (relative positioning) estimations and control systems under constraint computational power. In
ADRs a course is set out using gates, of which the locations may not be known beforehand, which
must be traversed as quick and far as possible. The MAVs are generally lightweight at around 0,5 kg,
but Li et al. (2020) proved it can be decreased to 72 g [13]. This calls for efficient coding of position
determination methods, as small hardware with low CPU capacity is on board. VO, pose estimation by
means of cameras, has shown great potential towards solving this problem [14, 15].

This paper is the result of an extensive literature study on VO methods, summarized by section A.2.
With the advantages and drawbacks of readily available systems in mind, it hopes to achieve an an
swer to the question whether egomotion estimation using deep neural networks has further potential.
And in turn develop increased results during drone races. Considering that training datasets play a
fundamental role for the appropriate implementation of neural networks, section A.3 gives an overview
of available input datasets for machine learning methods. Furthermore, the conception of contempo
rary datasets, particularly through simulator footage, is discussed in section A.4. An evaluation on
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these informative chapters is given by section A.5, deducing the aptitude and potential improvements
of neural networks for VO purposes. This aptitude is then displayed in section A.6, containing a base
line research including the preliminary modification process and results, laying the foundation for an
anticipated thesis. To conclude, section A.7 summarizes this report and sheds light on other possible
future researches.

A.2. Existing VO Methods
The following section will illustrate the current stateoftheart VO methods. This knowledge will aid in
establishing possible improvements and the position of future research.

A.2.1. Monocular and Binocular
The introduction by Wang et al. (2018) discusses a category divider for VO methods, dependant on
the amount of cameras; monocular and binocular (stereo) [16]. They state that monocular VO struc
tures prove to be cheaper and lighter, due to requiring fewer components. Monocular VO makes use
of a single camera while stereo methods use two cameras, resulting in a higher accuracy for stereo
approaches. According to Persson et al. (2015) this superiority in precision is due to the inherently
easier problem for stereo VO. From which it can be deduced that monocular VO systems are generally
more sophisticated by itself as they have to deal with larger problems [17]. Furthermore, stereo VO
converges to monocular VO results as the distance between the cameras decreases relatively to the
depth at which they measure [16]. Both methods are able to estimate trajectories close to that of the
ground truth [18–20].

Due to the greater amount of hardware required for stereo solutions, less room for other onboard
hardware such as batteries and CPU (central processing unit) is available, possibly limiting perfor
mance. It is for this reason that monocular solutions, although having a more arduous problem state
ment, are favored. It is believed that the intrinsic additional effort will lead to more substantial develop
ments. However, analysis on literature containing stereo approaches are nevertheless encompassed
in the following subsections, as they may likewise provide beneficial information for monocular tech
niques.

A.2.2. Geometric VO
Currently most high performing VO methods are based on geometric constraints, according to Wang
et al. (2017) [11]. A number of these methods were examined by Poddar et al. (2018), who showed
they can be separated into different groups [21]. The feature based geometric approach brings to light
geometric features such as salient points, edges and blobs from images in order to derive position esti
mations by matching these features with previously attained frames. Secondly, appearance based VO
relies on improving the photometric error, thus matching entire frames. By using the entire image, as
opposed to a select few features, decreased aliasing errors for comparable appearing features can be
achieved. These appearance based methods can again be branched into two main categories; optical
flow based and region based matching.

Often the computer vision method by Geiger et al. (2011) is referred to as VISO2M [22]. It makes
use of a blob and corner detectors for tracking. With this it introduces a sparse feature matcher in order
to construct 3D maps. Its results are compared to the method by Kitt et al (2010), showing a reduction
in computational time with approximately equivalent accuracy [19].

Roberts et al. (2008) mapped optical flow, the interframe motion, in order to derive a velocity vector
[23]. Due to the large vector describing the sparse optical flow, making it hard to generalize, and the
varying dimensionality due to the Harris corner detection, KNearestNeighbours (KNN) methods were
required [24]. The KNN method selects a fixed amount of best input features. The platform which was
used to record the data is described as carlike, as it can only yaw and translate forward. Furthermore,
it moves at a maximum velocity of 1.5 m/s, which is relatively slow in comparison to MAVs [25, 26].
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These geometric methods greatly rely on the detection and tracking of features. This dependency
gives rise to the disadvantage of false correlations, due to erroneous thresholds [27]. Therefore, these
geometric VO methods are only basal solutions that do not offer enough potential of advancement in
the desired field.

A.2.3. Visual Inertial Odometry
In order to improve results of VO methods Inertial measurement units (IMU) can be applied, resulting in
Visual inertial odometry (VIO). Kalman filters and sliding window estimators play a key role in merging
the visual and inertial data.

A benchmark research by Delmerico and Scaramuzza (2018) evaluates several of these methods
[28]. One of these is the Extended Kalman Filter (EKF) for nonlinear problem statements regarding
vision aided inertial navigation is introduced by Mourikis and Roumeliotis (2007) [29]. The method used
is also referred to as MultiState Constraint Kalman Filter (MSCKF). Sun et al. (2018) enhanced this
method to a Stereo MSCKF [26]. Who then proved that SMSCKF is able to withstand high velocities,
aggressive movements and combinations of indoor and outdoor flights. However, at high speeds the
method is proven to be outperformed by VINS Mono in RMSE value [30]. This does come at the cost
of a higher CPU load for VINS Mono. For the creation of the dataset, Sun et al. (2018) made us of the
Intel NUC6i7KYK. This computer kit weighs around 1.5 kg, which is more than three times the weight of
the entire Parrot Bebop 1 used in the IROS 2017 ADRs, with higher CPU powers as result [7]. Thereby,
similar calculations may not be possible in ADR situations.

The previously mentioned VINS Mono provides a sliding window nonlinear optimization for tightly
coupled monocular VIO [30]. CameraIMU calibration and IMU bias adjustment are also provided,
using DBoW2 as loopclosure detection algorithm [31].

The integration of IMU data improve accuracy, by directly measuring linear acceleration vectors
conceived from nongravitational external forces. Furthermore, the additional available data helps in
low textured and high speed scenarios such as ADRs [32]. However, VIO methods also have draw
backs e.g. the additional computational power usage, which leaves less computational power for other
onboard calculations [33]. Under critical conditions that are introduced during ADRs, this computa
tional power can become a highly limiting factor.

A.2.4. SLAM
Another improvement for VO methods is Simultaneous Localisation and Mapping (SLAM), which cul
tivates a pose graph out of the data that is gathered. Its main function is to reduce errors of other
methods by adjusting pose estimations for drift [34].

A highlight in the progress of SLAM approaches is the ORBSLAM method [35]. Its name is derived
from the usage of ORBfeatures, which are binary descriptors, making it less susceptible to noise [36].
By using identical ORBfeatures for tracking, mapping and the closing of loops ORBSLAM achieves a
respectable efficiency. Loop closing is the act of recognizing landmarks and routes, which is an essen
tial last step for SLAM methods in order to mitigate drift errors. Unfortunately, the method has difficulty
with recognizing paths when traversing in opposite directions, resulting in unclosed loops [35].

SLAM is more often than not conducted in the frontend of the algorithms, forcing backend codes
to heavily rely on the accuracy of the SLAM system. Sünderhauf and Protzel (2012) proposed to over
come this problem by formulating the code so that the backend is able to access and adjust the pose
graph [37]. They also exploit the sparsity innate to SLAM problems to apply nonlinear optimization,
resulting in a relatively quicker solution for extensive SLAM problems, as opposed to filterbased sys
tems such as EKFSLAM and FastSLAM [38].
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Although, SLAM proves useful due to cost effective and energy efficient equipment by using the
onboard computer, it does hold various disadvantages. First of the partial reliance on planar grounds,
similarly to the INAOE team during the IROS 2017 ADR, introduces complications in nonplanar re
gions [7]. Secondly the SLAM algorithms can be computationally intensive resulting in low speeds as
to safeguard the drone from crashing [7, 39]. Both may play a crucial role in ADRs and similar scenar
ios. A lack of potential for the ADR scenarios is therefore adjudge for SLAM methods.

A.2.5. Neural Networks
Pose estimation can be conducted by machine learning algorithms named neural networks. These
networks are inspired by the human brain in an attempt to adhere to similar levels of skills. In the case
of MAVs these skills would be best weight against those of professional pilots. This subsection hopes
to introduce the currently existing VO neural networks, varying from standalone architectures to those
who integrated the above described methods of IMU.

A multitude of network architectures are benchmarked by Sanket et al. (2020) [40]. The networks
included are VanillaNet, ResNet, ShuffleNet, MobileNet and SqueezeNet [41–45]. It concludes that for
small networks SqueezeNet is most optimal while for larger networks ResNet is the best choice with
respect to accuracy, parameters and number of operations. However, the SqueezeNet was designed
in a broad nonsystematic process and therefore can still be improved upon [45].

Several methods exist that make use of optical flow (OF), the incremental differences between
frames. Muller and Savakis (2017) proposed Flowdometry, a deep Convolutional neural network (CNN)
based on such optical flow values [46]. The images containing these changes are the input of a CNN,
whose output is theMAVs pose. The architecture is highly based on the FlowNetS network [47]. Results
on the KITTI training dataset are compared to VISO2M, SVR VO and PCNN VO, which shows an im
proved translational error over VISO2M and SVR VO, but a relatively poor rotational error [22, 48–50].
Overall, PCNN VO proofs to have the lowest inaccuracy in this comparison with 8.96 % translational
and 0.0235 deg/m rotational errors.

Besides PCNN VO Constante et al. (2015) propose the CNN1b VO and CNN4b VO architectures
[50]. CNN1b VO is a conventional CNN that is fed an eighttimes downsampled optical flow image.
The CNN4b VO instead divides the frame into quadrants, which each get downsampled fourtimes
to be fed to four sets of CNN filters, similar to those of CNN1b VO. The final layer then uses all infor
mation from the four sets to provide a final single output. PCNN VO merges CNN1b and CNN4b for
both allinclusive as well as region specific information. From the comparison made by Constante et
al. (2015) it holds that PCCN VO performs best, which can autonomously find the imperative visual
cues as well as selecting the best estimator.

Although the results of Muller and Savakis (2017) and Constante et al. (2015) look promising, these
methods would require a supplementary step [46, 50]. A separate neural network or algorithm would
have to extract the OF from image sequences, while such methods could also directly extract poses
[51]. The hardware of most micro air vehicles is likely still able to withstand the additional computations
required, however fewer computations may leave room for other algorithms.

Optionally, some methods make use of Recurrent neural networks (RNN), which helps to stabilize
the sequential output, by transferring information on previous frames into the pose computation of the
current frame. As Wang et al. (2017) show with their DeepVO method [11]. However, Wang et al.
(2017) also uncover a problem when the velocities of the validation data are higher than those during
training. When validating the system experiences large drift errors. Therefore, DeepVO is not con
sidered as a standin method for geometric VO methods [11]. Other approaches may also implement
various RNN. The most commonly seen RNN is Long shortterm memory (LSTM) [52]. LSTM’s main
focus is to keep error values constant by memorizing past values, so that errors do not flare up nor die
out, thus overcoming fitting problems illustrated in Figure A.11.
1Overfitting and underfitting, Educative, https://www.educative.io/edpresso/overfittingandunderfitting,
(21 September 2020)

https://www.educative.io/edpresso/overfitting-and-underfitting
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Figure A.1: Over and underfitting demonstration.

DeepVIO is a recent work that combines the previously discussed optical flow and IMU data to pro
vide full trajectory estimates. It explores selfsupervised CNNFlow for monocular VIO [53]. Training is
conducted using stereo images from which the 3D optical flow and 6DOF pose form the constraints for
the supervised 2D optical flow network. This network includes a LSTM approach for IMU data prein
tegration in order to increase the pose estimation accuracy. Fully Connected (FC) Fusion networks
then fuse the information together as can be seen in Figure A.2. Although the application of 3D optical
flow requires disadvantageous additional computations, the pioneering selfsupervised learning shows
great results when practiced with the KITTI and EuRoC datasets. On the KITTI database it shows vast
improvements over ORBSLAMM and VINS [30, 35]. However, at some sequences VIOLearner is
superior with regard to translational or rotational errors [54]. Furthermore, using the EuRoC datasets
the DeepVIO is outperformed by ORBSLAM and VINS. Nevertheless, considering DeepVIO results
surpasses DeepVO on the EuRoC data, this method shows that beneficial IMU data effects also hold
for neural network based methods [11].

Some methods Loquercio et al. (2019) deploy a CNN to traverse static and dynamic closedloop
drone racing tracks [55]. Its training on purely simulated environments is what makes this method
distinct. By creating a variety of gates, illuminations and environments, referred to as domain ran
domization, the system becomes inherently more robust for changes when being deployed. Another
characteristic of the method by Loquercio et al. (2019) is the determination of required waypoint co
ordinates in the UAVs bodyframe. This rids the system of drift and enables dynamic courses. These
waypoints are determined based on the visual position of the artificial gates, ensuring that knowledge
of the global path is not required. The system is tested both in simulation as well as in reallife with
both static and dynamic gates. The simulation test is performed against the VIO by Loianno et al.
(2016), which seems to be a mismatch considering it has a downwards facing camera and its focus is
on high speed and aggressive flight rather than traversing a course [56]. The reallife tests are con
ducted against two pilots with intermediate and professional experience respectively. In respect to the
simulated test it is evident that lower speeds (3 m/s) are achieved by the system in reallife. In compar
ison the pilots are able to traverse the course with twice the velocity. Nonetheless, the algorithm has a
higher chance of successfully completing the course and on that account is an indicator of the abilities
CNN holds in conjunction with synthetic data.

Both a pose CNN, as well as a depth CNN, are utilized by Zhou et al. (2017) [12]. The method
differentiates from others by applying an unsupervised learning approach, meaning that the input data
is unlabelled and thus no ground truth is required when training. By synthesizing new frames the data
from the pose CNN and depth CNN can be trained. However, as the future data is synthesized, pre
dictions may go wrong causing errors in especially the rotational vectors. Also, unsupervised methods
require more data and training time in comparison to supervised methods. Consider Sandaruwans
master thesis in which a similar pose network is implemented using the EuRoC database with ground
truth as labels. While the unsupervised method requires 150,000 iterations the supervised method con
verges after around 50 iterations [12, 57]. In the discussion of Sandaruwans thesis report he informs
the reader about the fact that, as EuRoC consistently holds rotational or translational movements, it
is hard to isolate certain movements. It is discussed that by doing so in future researches, a further
understanding of VO based neural networks can be achieved, and consequently improved results may
be obtained.



28 A. Literature Review

Similarly, an unsupervised method by Wang et al. (2019) is introduced which resorts to a depth
estimation network, whose output is the input of the pose estimation network [58]. This network is visu
alised in Figure A.3, from which it can be concluded that the network does not only hold convolutional
layers but also LSTM layers, a type of RNN. However, LSTM requires more memory in comparison to
other RNN [59]. Which not only causes a longer training time but also may pose a memory shortage
threat when used on small scale computers such as on a drone.

Another memory based neural network is introduced by Xue et al. (2019). They developed an
initial RNN, using convolutional LSTM, as tracking architecture. After which memorynetworks and
refiningnetworks provide additional adaptive potential [60]. The convolutional LSTM (ConvLSTM) al
lows for improved spatial formulation as a result of which the recollection of knowledge is expanded.
The memorynetwork is the result of an adaptive selection strategy, after which the selected data is
stored for an extended period of time versus LSTM, creating similar effects as SLAM systems. This
memory is afterwards used in the refining phase, to successfully achieve increased accuracy in com
parison numerous stateoftheart neural network VO methods. However, these results were achieved
on a NVIDIA 1080Ti GPU, being a CUDAbased gaming GPU these do not represent the possible out
comes for drone computers [61]. Instead it is likely that the entire architecture, including the tremendous
amount of memory, would put to much of a strain on the onboard processing power. This can possibly
lead to unfavourable scenarios during competitions.

Instead of having a single six channel output for translation and rotation vectors, UnDeepVO splits
up the layers prior to the output layer [62]. By doing so it creates two parallel stacks of fullyconnected
layers, each with corresponding three output channels. This decoupled architecture allows distinct
weights to be developed, for rotational and translational vector determination, with improved perfor
mance as a result. Furthermore, learning of the UnDeepVO network is done unsupervised gaining the
advantage of ground truth independence. Thus, unlabelled datasets can be used making for easier
acquiring of training sequences. As previously discussed unsupervised methods require a more ex
tensive training in comparison to supervised neural networks. While training is conducted on stereo
image pairs, the final architecture is capable of determining position and depth values from two monoc
ular consecutive frames.

Multifarious neural networks exist that are able to establish the pose values of drones, as depicted
in Table A.1. An advantage of these methods is the availability due to low hardware requirements.
CNN can be conducted with both monocular and stereo camera setups and do not necessarily require
inertial measurement units, although these methods do exist. However, momentary correlations can
be overlooked by neural networks. The inclusion of LSTM layers, or other recurrent architectures, may
solve this problem, but in turn make for an increase in memory usage [58]. Furthermore, the accuracy
of a neural network is the result of an extensive training. Protracted unsupervised training may be con
ducted, but is less than ideal for extensive research on various architectures under a time constraint.

Figure A.2: DeepVIO pipeline [53].
Figure A.3: Unsupervised depth and pose estimation pipeline
[58].
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Neural Network Optical Flow IMU RNN / LSTM Training data Training method
Flowdometry [46] √ KITTI Supervised
PCNN VO [50] √ KITTI Unsupervised
DeepVO [11] √ KITTI Supervised
DeepVIO [53] √ √ √ KITTI & EuRoC Selfsupervised
PoseNet [12] KITTI Selfsupervised

Table A.1: Overview of distinct Neural Networks and their characteristics.

Instead supervised learning can be implemented, which in turn requires appropriate datasets. Incorrect
training undoubtedly leads to results of poor quality. It is for this reason that section A.3 further dives
into existing datasets for VO purposes.

A.3. Extant Training Datasets
When learning neural networks are applied, proper datasets are a requirement. This section dives into
the currently existing datasets that may be used for the training of neural networks for visual odometry
purposes.

The TUM monoVO database is introduced by Engel et al. (2016) [18]. It holds 50 sequences span
ning 105 minutes, whose frames have been recorded with two different cameras. It must be noted that
some of the sequences have fisheye like effects. Another disadvantage of this dataset is that it has
no ground truth. Instead it begins and stops at the same location, which can be used to check for drift
to a limited degree. This may not be sufficient for some method verification.

Dataset UAV123 is created by Mueller et al. (2016) and holds over 110,000 frames for UAV based
tracking algorithms [63]. It improves upon existing tracking datasets by having a highlydynamic low
altitude flight and annotations. The data is gathered using two different drones and using a synthetic
images. In all three cases ground truth annotations are available, however these are the ground truths
of the tracked object thus not improving the usability for the challenge at hand. Furthermore, in most
cases the monocular camera is angled downward which obstructs the use of drones with a front facing
camera.

GomezOjeda andGonzalezJimenez (2016) conduct an initial experiment using the Tsukuba dataset
[20, 64]. Which is a computer generated stereo graphics dataset containing 1800 image pairs, with re
spective ground truth data, for learningbased approaches. However, this data is created for disparity
recognition purposes and as such has a total of 256 levels of disparity. And thus is invalid for the train
ing of visual odometry methods.

Another dataset used by GomezOjeda and GonzalezJimenez (2016) is KITTI, which is collected
using a car, see Figure A.4. In total KITTI contains six hours of highresolution stereo data [48]. How
ever, in case of monocular VO method training the data of the left camera can be extracted. Rela
tive position information between frames is given for these images, which is recorded by an onboard
GPS/IMU system. A benchmark by Geiger et al. (2012), analysed various visual odometry methods
using KITTI [65]. This benchmark shows that stereo approaches are able to decrease translational
errors to around 5%, for monocular approaches this seems to be 10%. However, it must be noted that
only a single monocular VO method, VISO2M, was investigated. Furthermore, a comparison made to
the monocular odometry method UnDeepVo proves inferior results for VISO2M, making the result less
reliable [22, 62]. A drawback of the KITTI database is that automobile movements do not correspond
to those of drones. KITTI is unlikely of emulating yaxis and agile rotational movements, while racing
drones undergo high velocity 6 DOF motions.

Burri et al. (2016) offer a dataset named EuRoC MAV (2016) [66]. Similarly it holds both stereo
images as well as the respective ground truth data. According to Sun et al. (2018) it has highly dynamic
rotations and lighting changes [26]. Drawback to this data is the low top speed of 2.3 m/s.
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Figure A.4: Recording platform of the KITTI database [48].

A comparable dataset called UZHFPV was introduced by Delmerico et al. (2019), which is espe
cially developed for racing drones [15]. In total 27 sequences are available, spanning a 10 km flight
path. Flights were conducted both inside and outdoors, with maximum velocities of 12.8 m/s and 23.4
m/s respectively. Furthermore, these flights were recorded with a downward and frontfacing camera.
As is evident from Table A.2 primarily the frontfacing is of interest as this can also be used to detect
obstacles. Besides these images, ground truth (GT) has been made available. It must be noted that
these images are delivered in greyscale. Both forward facing data is available as well as under a 45
degree angle in stereo and mono configuration. Unfortunately, the flight paths are mostly forward, thus
making the learning of rotational motions less likely.

In turn Sun et al. (2018) made available a database with higher speeds to test the boundaries of
the established filterbased stereo VIO algorithm. To prove the robustness a top velocity of 17.5 m/s is
achieved [26]. This database sets itself apart from others as it has a transition from outdoors to inside.
Downside of the database is that no ground truth is available. Making it only valid for evaluations or
unsupervised learning. Furthermore, the latter runs into the problem of not having enough data avail
able, considering that only 700 m of flight are recorded.

Antonini et al. (2018) produced an agile dataset, named Blackbird, in order to allow perception
evaluation during aggressive flights [67]. All flight movements are performed by a reallife drone while
the respective visuals are created using the FlightGoggles simulator [25]. It covers a total of 860.8
m over 10 hours of flight time, with a maximum speed of 7 m/s. The Blackbird dataset contains five
different environments. A disadvantage of the method with which the Blackbird dataset is recorded is
that a 100% accurate ground truth value can not be guaranteed, potentially causing errors in training
scenarios.

In order to train neural networks some researchers, such as Kaufmann et al. (2018), collect their
own datasets [68]. The method from Kaumann et al. (2018) learns from global trajectories that pass
through a set of gates, from which it is assumed that their positions are a known factor. In reality
however, the final algorithm should be able to handle nonrigid environments. It was observed that by
training on multiple rigid environments, with different trajectories, the system can operate accordingly.
Likewise, advanced training sets can be created in order to test contemporary neural networks.

Evidently several datasets, see Table A.2, are in existence that provide image sequences for visual
odometry systems. Although some are specifically made for MAV purposes, many of the available
datasets are inept at the highly dynamic scenarios that characterize automatic drone races. In most
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Dataset Max speed [m/s] Recording platform Camera Length [m] Ground truth
Kitti [48] 25 Automobile Stereo 39200 √

EuRoC [66] 2.3 MAV Stereo 834.7 √
UZHFPV [15] 12.8/23.4𝑖 MAV Stereo 3988.3𝑖𝑖 √𝑖𝑖𝑖
Blackbird [67] 7 MAV Virtually stereo 860.8 √𝑖𝑣

Table A.2: Overview of select datasets. 𝑖Indoor/Outdoor. 𝑖𝑖Front facing only. 𝑖𝑖𝑖Not available for all sequences. 𝑖𝑣Accuracy is
not guaranteed.

cases due to discrepant velocities and rotations, resulting from e.g. dissimilar recording platforms.
Lastly, no database contains exclusively rotational or translational data, which may greatly improve the
accuracy of said vector determinations.

A.4. Datasets Production
To overcome drawbacks of the aforementioned methods new databases can potentially be created to
build upon the strong points with regards to specific VO algorithms. This section dives into the world of
database creation by using reallife recording and by employing simulators. Furthermore, the reality
gap dilemma that is innate to synthetic data is discussed, among innovations holding the aptitude of
solving this complication.

A.4.1. Physical Data Formation
As with the training datasets considered in section A.3 careful precautions must be taken when creating
an improved dataset for research purposes. The definition of aggressive flight are discussed for the
UZHFPV dataset [15]. Their interpretation on swiftness and difficulty of the flown track is the altitude
dependent optical flow. With this logic lowaltitude lowspeed flights bear the same difficulty level as
highaltitude highspeed flight. The collation in Figure A.5 shows the optical flow of several conven
tional datasets. It becomes evident that KITTI and EuRoC have a maximum optical flow of 700 px/s,
while UZHFPV reaches a flow of 1000 px/s. MVSEC likewise reaches flows of around 8001000 px/s,
however merely with a small number of sequences [69].

A.4.2. UAV Simulators
Instead of creating datasets through reallife recordings one may decide to prefer synthetic simulated
data. As this requires fewer physical resources and more care can be taken into the creation of the
data itself. Contemporary approaches of drone simulation are discussed by Mairaj et al. (2019) [70].
One of the research oriented MAV simulators they discuss is RotorS from ETH Zurich, a UAV simulator

Figure A.5: An optical flow comparison of conventional datasets conducted for UZHFPV [15].
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based in the Gazebo environment [71, 72]. The main focus of this simulator is debugging rather than
the creation of databases. RotorS also holds collision avoidance and path planning scenarios but no
drone race capabilities. Furthermore, the visual output qualities are at a bare minimum according to
Du Montcel et al. (2019), which may negatively influence the results of the training data [73]. Multiple
similar performance driven simulators are discussed by Mairaj et al. (2019) that do not fulfil the demand
of this research [70].

Unreal Engine is used to augment the Sim4CV simulator, which is specifically build for training and
evaluation of computer vision (CV) algorithms [74, 75]. The simulator holds an interface for Matlab,
C++ and Python. Which can be a high advantage for communication between the simulator and CV
algorithms. However, the main focus of the simulators UAVs dynamics is for tracking algorithm evalu
ation and as a result is not focused on the high speed 6 DOF manoeuvres of racing drones. Making it
inadequately suited for training networks for ADR purposes.

The benchmark by Mueller et al. (2016) produces a simulator which uses the Unreal Engine 4.
The benchmark weights over onehundred different UAV based trackers [63]. Creation of a new high
fidelity simulator enables unbiased testing of the trackers. Due to its userbase the simulator is less
suitable for the creation of datasets for ADRs. This mainly comes from the lack of motion blur, which is
inherent when higher speeds are achieved and depth of field which may play a essential role in pose
determination.

Microsoft’s Aerial Informatics and Robotics (AIR) has developed AirSim [76]. This simulator is es
pecially established for computer vision and deep learning ends, thus off the bat it shows much po
tential. Because of its focus it is equipped with quadcopter models. It supports Micro Air Vehicle Link
(MAVLink), which is a recently developed communication protocol for autonomous vehicles, making for
lifelike databases [77]. Airsim makes use of flight controller firmware PX4, ROSFlight, and Hackflight.
These take roll, pitch and yaw commands from which the required thrust and torques are computed for
the specified quadcopter model. The modular design of AirSim introduces an advantage as elements
can be implemented independently. Furthermore, the AirSim algorithm can be executed in Unreal En
gine using a plugin bases making for high quality lifelike frames [76]. In MidAir a lowaltitude dataset
is created using the AirSim simulator [78]. From this it becomes apparent that AirSim uses RenderTar
gets in order to render images, which invalidates motion blur. This can cause setbacks when trying to
reach high speeds. Simulation framework AirSim Drone Racing Lab builds upon AirSim [79]. It is de
veloped specifically for prototyping and verifying autonomous modules of racing drones, by decreasing
the realitygap with high fidelity. This includes drone gates production, establishment of races including
enforcing rules with penalties and the tracking of race progresses. Furthermore, it builds upon Unreal
Engine’s graphics potential, leading to the addition of the aforementioned lacking motion blur. However,
the dynamic computations are tightly coupled with the rendering engine, hindering simulation activity
speeds.

Preliminary selections for the AlphaPilot Challenge teams were conducted using the FlightGoggles
simulator [6, 25]. Its UAVintheloop dynamics allows for fast and acrobatic flight performance. Flight
Goggles is created with an eye on reinforcement learning methods. A modular construction, which
holds the Unity game engine at the core, enables users to extract required in and outputs through the
FlightGoggles API [81]. Moving elements can be added to turn a rigid environment into a dynamic and
more realistic environment. In addition to this it also enables for adding light chances. Furthermore,

Simulator Rendering Dynamics Sensors Virtual Reality API
RotorS [71] OpenGL Gazebo IMU, RGB, Depth
Sim4CV [75] Unreal Engine PhysX IMU, RGB, Depth, Segmentation
AirSim [76] Unreal Engine PhysX IMU, RGB

FlightGoggles [25] Unity Flexible IMU, RGB, Depth, Segmentation √
Flightmare [80] Unity Flexible IMU, RGB, Depth, Segmentation √ √

Table A.3: Overview of stateoftheart drone simulators
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High Definition Render Pipeline (HDPR) is used enabling for motion blur and depth of field, which can
be vital in high speed pose estimation scenarios. FlightGoggles contains a single track layout within a
abandoned factory environment. This may be disadvantageous when the ADR is not held in a similar
environment, as training in a singular scenario can potentially create ad hoc solutions.

Most quadrotor simulators either excel in accuracy or speed. To overcome this problem Song et al.
(2020) have developed Flightmare, whose function is to lay the tradeoff in the hands of the user by
incorporating a flexible physics engine [80]. A key feature in this is the separation of the physics and
rendering engines. Flightmare contains three different environments being a warehouse, garage and
forest. However, more environments can be acquired via Unity 2. In order to connect with the simulator
an API is made available for Python. Flightmare’s characteristics, along with the previously discussed
simulators, is depicted in Table A.3.

A.4.3. Jumping the Realitygap
A draw back to FlightGoggles, emphasised by SayreMcCor et al. (2018), is the lowered success rate
in reallife in comparison to the simulated data [82]. According to SayreMcCor et al. (2018) reason for
this is the noisier visual data when using a real camera and the extra computational load due to image
obtainment. Nedevschi (2019) addresses a similar perturbation in virtually created datasets [83]. Al
though the paper focuses on semantic segmentation, recognition of items in an image, the issues may
be of concern to deep learning via synthetic frameworks in general. It speaks of a gap between reality
and the virtual world. To close this gap it suggests the use of VirtualReality goggles. Which is derived
from VRGoggles [84]. Their take on the reality gap problem is to convert reallife images during the
deployment phase to the virtual realm used in the learning phase. This would ensure the algorithm
to be familiar with the noise, light and textures found in the incoming data, thus making adaptable to
various environments.

The idea of converging images springs from CycleGAN [85]. CycleGAN introduces an algorithm
that converts images to the works of painters such as Monet and van Gogh, horse images to zebras
and pictures in winter conditions to those belonging to summer. More importantly the 𝐺(𝑋) = 𝑌 con
dition is closely revertible so that if 𝐹(𝑌) = 𝑋 it also holds that 𝐹(𝐺(𝑋)) ≈ 𝑋. Similar consistency may
prove useful when verification of the algorithms is required.

GeneSISRT effectively implements imagetoimage rendering to train an algorithm to operate a
quadcopter over a course of 60 m with reactive obstacle evasion [86]. In operation the algorithm takes
the frames of a monocular camera as input. Training is conducted on data extracted from a simulation.
To establish a higher semblance this synthetic data is translated to have a more realistic essence. This
manifests a improved result for the ROCcurve and logloss over exclusively simulated data and ap
proaches results from pure realworld data. It must be taken into account that due to safety restrictions
the drone does not reach speeds faster than 3.5 m/s. Moreover, it takes wide trajectories and often
stops to avoid collision making for an adverse scenario to ADR.

A more ad hoc solution is the aforementioned AirSim Drone Racing Lab framework. This framework
aspires to further decrease the realitygap of AirSim by improving the dynamical and graphical fidelity
[76, 79].

A.5. Deep Neural Networks Potential
From section A.2 it is evident that a variety of VO methods exist. First of subsection A.2.1 discussed
the possibility of choosing monocular or stereo camera rigs. As it is desirable that the eventual method
is easily adopted by a wide variety of drones, including those with less available resources, it stands
to reason that monocular solutions fit best with the target group. Therefore, forthcoming conducted
computational researches single out the monocular vision odometry methods.

2Unity Asset Store, accessed on 14092020, https://assetstore.unity.com/

https://assetstore.unity.com/
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From here, multiple nonartificial intelligent procedures of pose estimation were examined. Each
showing potential in resource rich environments, but lacking in some way. In general, geometric VO
methods require exact thresholds, making them rather ad hoc solutions, which in the case of this re
search is less desirable. VIO and SLAM methods are designed to further improve accuracy results of
pose estimation methods. As such they require an increased amount of computational power and VIO
approaches need additional hardware space. Both assets are not abundantly available on micro air
vehicles and must thus be approached with care.

Fortunately, neural networks have an aptitude for learning the solution to pose estimation problems,
while requiring few onboard services. Although, IMU systems and SLAM algorithms may still provide
aid, deep neural networks have been shown to be able to estimate relative poses, with only computa
tional power and a monocular camera. It is for this reason that a baseline test for a prospective thesis
research will be setup in section A.6. To further improve the results during the thesis research, de
veloping upon the existing training databases will be considered. To do this, the Flightmare simulator
will be deployed [80]. Flightmare provides a flexible drone focused dynamic system, and high quality
graphics modelling. Making the combination ideal for developing training data for deep neural network
related visual odometry methods. Furthermore, it has the advantage of being able to acquire addi
tional environments, potentially making the trained network less prone to changes when executed. In
order to further improve upon the existing datasets, additional exclusively translational and rotational
sequences can be created [57]. It is important to achieve compatible speeds during ADRs, while main
taining a consistent pose estimation. It is for this reason that velocities from 3.5 km/hr to 12.5 km/hr
need to be acquired in the synthetic dataset. These velocity limits are estimated from the AlphaPilot
teams speeds [25]. In order to test the dynamics against other datasets, the optical flow values can be
benchmarked, as was done for the UZHFPV database [15].

A.6. Preliminary Tests and Results
In order to create a substantial foundation for an ensuing thesis research this section presents the set
up and outcome of a baselinestudy.

A.6.1. Selection of the Baseline model
As a starting point for the VO neural network described in section A.5, an elemental method was tested.
The pose network from Zhou et al. (2017) functions as a guide for this initial research as it holds few
exclusive characteristics as seen in Table A.1 [12]. For this baseline research an adapted version of
PoseNet is applied in Python using Pytorch. The KITTI database is used by this baseline to train the
network [12, 48]. The recording platform, as seen in Figure A.4, contains an IMU and GPS that have
recorded ground truth values for odometry purposes. These ground truths are provided in a projection
matrix format. Originally the pose network from Zhou et al. (2017) is not trained using this ground
truth and instead makes use of synthesized views of future intervals which yields a selfsupervised
network [12]. However,for the baseline research a supervised learning method, using the ground truth,
is implemented. This forms the baseline of the preliminary tests and the start of the research at hand.
Convergence to a solution, capable of achieving same digit and sign solutions, would form a secure
groundwork for a foreseen thesis. While creating the baseline model, the PoseNet structure of Zhou et
al. (2017), implemented using TensorFlow, and an adapted version named PoseNet2 by Sandaruwans,
implemented in Pytporch, were used for the verification of the network [12, 57].

A.6.2. Validation results
Validation of the baseline model was conducted using the KITTI database. The desired sign and digit
requirement were achieved at roughly 80 to 90 % of the estimates during training of this method. It
proved to have an average accuracy of up to 95 % for translational vectors and 40 % for rotational val
ues while training, as can be seen in Figure A.6 and Figure A.7. The values depicted in these figures
are estimated using Equation A.1, where 𝜆 is the measured accuracy and 𝜎𝑜𝑢𝑡 , 𝜎𝑙𝑎𝑏 are the absolute
values of the output and labels respectively. Considering that these formulae do not uphold in case the
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Figure A.6: Translational output of concatenated input. Figure A.7: Rotational output of concatenated input.

sign of the estimations are incorrect the accuracy is set to 0 for these situations. Unfortunately trans
lational values in the X direction seem to deviate from an anticipated pattern. Reason for this could be
overfitting during the first ten epochs, which are conducted using sequence 3. Furthermore, accuracy
values for the rotational vectors will require improvement. Possible solutions to these problem are dis
cussed in the following subsection. Nonetheless, the results from this validation process make a strong
argument for the potency of the neural networks, as equal accuracies in reallife scenarios should be
achievable and improvements are likely 3.

𝜆 = {100 − 100 ⋅ (𝜎𝑜𝑢𝑡 − 𝜎𝑙𝑎𝑏)/𝜎𝑙𝑎𝑏 , if 𝜎𝑜𝑢𝑡 ≥ 𝜎𝑙𝑎𝑏
100 − 100 ⋅ (𝜎𝑙𝑎𝑏 − 𝜎𝑜𝑢𝑡)/𝜎𝑙𝑎𝑏 , if 𝜎𝑙𝑎𝑏 ≥ 𝜎𝑜𝑢𝑡

(A.1)

A.6.3. Possible Future Improvements
When transactions between epochs took place the estimated values deviated to a greater extend from
the ground truth. Reason for this could be the possible sudden changes in vector values between the
end and beginning of a single sequence. Not being able to withstand such changes is an indicator of
over or underfitting. Which in turn may be caused by oversights in the architecture, such as off target
learning rate and weight decay values. The learning rate value determines how swift the network will
learn and therefore also how fast convergence takes place. Mismanaged convergence speeds may be
the cause of fitting errors. To counterbalance swift convergence weight decay values ensure that the
weights are subjected to constant change so that overfitting is less likely.

Some of the current validations took place by repeating single sequences, which may induce bias
to certain weight values and therefore causing the network again to overfit. This bias was already
reduced by switching between sequences while training. It was then established that sequence 1 has
a higher potency of inducing a bias, which may be cause by having a lack of divergent characteristics.
To further improve learning situations, it is advised that during the thesis research the input order is
randomized. It is expected that by doing so the network is less likely to converge to a solution that will
only cover the most frequently and consecutively present values.

3Private communication with TU Delft Ph.D. student Y. Xu, http://mavlab.tudelft.nl/people/

http://mavlab.tudelft.nl/people/
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Another potential solution to the fitting problem may be the application of LSTM layers, whose func
tion is to memorize past situations. It is advised to examine the effects of RNN during the thesis further
[58]. Furthermore, improvements of the accuracy values, especially in regards to the rotational vectors,
may be achieved by splitting translational and rotational computations in the architecture, as is done
by Li et al. (2018) [62].

A.7. Conclusion
Considering that the goal of ADRs is the advancement of MAV usage, monocular vision for pose esti
mation makes for a more widely applicable approach. The cheaper costs, reduced weights and space
in comparison to stereo vision systems ease the accessibility, although intrinsically making for a more
tenacious problem statement [17]. If this predication is overcome the results should be well worth the
effort.

Various suboptimal VO methods were examined. Geometric VO proved to be too dependant on
threshold values. VIO shortcomings showed in weight and energy usage which may be scarce on micro
air vehicles. Despite not sharing these disadvantages, SLAM does require increased computational
capacity which may pose as a liability in critical scenarios inherent to ADR.

From further literature research it was evident that neural networks prove as an useful solution to
the demanding monocular visual odometry problem. Neural networks were shown to provide accurate
pose estimations, either singlehandedly or by collaborating with IMU data and SLAM methods. Fur
thermore, LSTM layers were successfully implemented to increase accuracy values. In comparison to
the existing methods, progress can be achieved by developing new training data with a primary focus
on drone racing.

Where many of these extant methods are trained using the automobile based KITTI datasets, it is
believed that using a drone based dataset will lead to improved results. Existing drone based datasets
however, lack in various fashions, i.e. being too slow or lacking the separation of translational and ro
tational movements. Thus the creation of an improved training set is required. Various simulators are
capable of creating such drone based synthetic data. After an extensive study it became indisputable
that Flightmare is best equipped, due to its flexible dynamics allowing for the simulation of arduous
scenarios [80].

A baseline study proved the underlying competence of PoseNet, an elementary pose estimating
neural network [12]. It is believed that by advancing the current baseline’s architecture, adding char
acteristics from other methods, but more importantly improving training data by simulating drone race
specific sequences highend results may be achieved. This concept forms the basis for a prospective
thesis research, whose preliminary planning can be found in Appendix A.

Auxiliary future researches may look into the ability of odometry using point cloud data instead
of camera frames. An effort is already made by DeepPCO, whose deep parallel neural network is
responsible of achieving positive performances on KITTI sequences [87]. Point clouds are also adopted
by Han et al. (2019) for DeepVIO. Who estimate 3D point clouds, from which 3D geometric labels are
extracted for a supervised network [53]. Furthermore, Flightmare offers the ability of synthesizing point
cloud data for training purposes [80].



B
Discussion

After the extensive literature review found in Appendix A a plan was setup to adopt drone datasets for
a neural network based visual odometry instead of the more frequently used automobile based dataset
named KITTI. As the visual odometry method would be applied to drones it seemed more suitable to
work with a dataset that contains movements that depict those of a drone. Research with the UZH and
EuRoC datasets proved that only minimal results were possible with an unfortunate amount of overfit
ting. Causing the neural network to work well for the data it had trained on but being unable to extent
to validation data.

Nonetheless, a suitable new method was developed that enabled a more elegant way of training
the neural network. By dividing the loss into multiple functions, each assigned to a single output. This
enables a weighted loss function with a weight value tuned to the desired output for a smoothed learn
ing curve. But more importantly, it enables a more appropriately shared distribution of learning initiative
between the various translational and rotational variables. It is believed that this can be a powerful tool
that will aid future researches. As it develops more clarity in the learning process of the neural network
for the user, decreases time due to the simultaneously increasing accuracies and allows for a more
divided desired output values.

Furthermore, it was discovered that the already existing datasets only have limited data. Not only
do they contain a small amount of image pairs. The distribution of values for the translational and rota
tional speeds are highly skewed. Although EuRoC contains a vast amount of data, this data is highly
centered around bare minimum velocities. For the UZHFPV dataset this misrepresentation of values
is less high than EuRoC but still too much to properly train a neural network. In order to overcome this
problem an advanced and equally distributed dataset was created. By creating random image pairs
the distribution of relative poses was entirely under control, and thus shows no bias as with the extant
datasets.

This dataset was created using a simulated urban environment, resulting in the Urban MAV naming
of the dataset. By optimally incorporating various Python functions a process was created that could
create a random dataset within the desired constraints. In total around 25,000 random image pairs
were established, subdivided in 25 sequences. However, it was theorised that additional sequences
with decoupled motions, containing only a single variation of motion, would be able to improve the
learning process. To test this hypothesis an additional 25,000 image pairs per decoupled motion were
created. Making for a dataset containing vastly more usable image pairs in comparison to the already
existing databases. Additionally, these decoupled motion are too created in a controlled randomised
fashion, in order to guarantee the lack of skewness within the data.

Initial testing proved a noticeable improvement over the previously mentioned dataset. Even without
the splitting of the loss methodology a more balanced distribution of the learning curves was apparent.
Reason for this probably stems from the fact that the data itself is more equally distributed in values,
making the loss values less prone to connecting more to one output. Additionally, as larger relative
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pose values are more frequently met the dataset could be adjusted so that changes found in angular
and translational motions are more in line with each other, thus taking away the need of weighting
these loss values. However, the addition of decoupled motions has not yet shown a positive effect.
Most likely this is due to the tremendous amount of zero values within the data, making it harder for
the neural network to take a hold of a proper learning strategy. It is most likely that further investigation
may uncover how to overcome this hurdle, improving the results tremendously.

For future research it would be advised to use the newly created, stateoftheart dataset in order to
dive into the various methods that exist in the improvement of neural network based visual odometry.
It is expected that longshorttermmemory may prove highly potent, and can show its true power in
combination with the decoupled motion sequences. As assigning weights to the various losses is no
longer required in order to train a neural network with the Urban MAV dataset, the splitting of the loss
may not play a vital role within researches based around this dataset. Nonetheless, it is believed
that splitting and assigning weights to losses can improve the training of neural networks with multiple
outputs, both inside as well as outside the scope of visual odometry.
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C
Code Overview

This appendix gives an outline of the most vital codes used within this research. First off, the python
code that was used to train neural networks is presented. After which, the implementation of dataset
creation is displayed. These introduce only the general outline of the code and are combined with
additional lines or functions to serve their final purpose, according to the settings and data used at the
time.
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Neural network training
The following python code was used to train the neural network. Throughout the thesis this code has
been subjected to an uncountable amount of changes. It is for this reason a more generalised, and
through that process decommissioned, version of the program is depicted below.

import winsound
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import accuracycalculation
from PIL import Image
import math as mt
from pandas import DataFrame
import matplotlib.pyplot as plt
from torch.nn.init import xavier_uniform_, zeros_
import torch.nn as nn
import torch.optim as optim
from scipy.spatial.transform import Rotation as R
import numpy as np
import time

tic = time.perf_counter()

dev = torch.device(”cuda”) if torch.cuda.is_available() else torch.device(”cpu”)

#TRAINING PARAMETERS
newmodelnum = 0
num_epochs = 251
learning_rate = 2e4

#TRAINING DATA PARAMETERS
loadnewdata = True
batch_size_val = 25
shuffle_bool = True
mirror_bool = False
values = [] #the list ’values’ indicates the relevant sequences during training
for i in range(2,26):

values.append(’Random/Randommotion’+str(i))

#VALIDATION DATA PARAMETERS
loadvaldata = True
validation_link = [’Random2’] #dataloaderEuRoC_MH1_1_noshuffle_syncGT.pth dataloaderEuRoC_MH3Med_1_noshuffle_syncGT.pth dataloaderEuRoC_V11_1_noshuffle_syncGT
trainvalidation_link = [’Random1’]
batch_size_validation = 1
shuffle_bool_validation = False
mirror_val= False

#Strings for saving and loading the pth files
loadstr1,loadstr2 = ’./backupmodelOWN/UrbanMAV_posenet_’ , ’epochs_allmin10traintest13_MultipleOutput_e4_forwardonly.pth’
savestr1,savestr2 = ’./backupmodelOWN/UrbanMAV_posenet_’ , ’epochs_allmin10traintest13_MultipleOutput_e4_forwardonly.pth’

def Write(validation_accuracy,accuracylist,trainvalidation_accuracy,LossList): #Saving accuracy values
h = open(”UrbanMAVaccuracybackupMultipleOutput.py”,”w”)
h.write(”””

from numpy import nan
validation_accuracy =”””+str(validation_accuracy)+”””
accuracylist = ”””+str(accuracylist)+”””
trainvalidation_accuracy = ”””+str(trainvalidation_accuracy)+”””
lossvalues = ”””+str(LossList)+”””

”””)
h.close()

def CreateTrainloader(batch_size_val=batch_size_val,shuffle_bool=shuffle_bool,values=values,mirror=mirror_bool):
# Function for the creation of dataloaders, ensures relative poses are calculated and image pairs are made.
# Became irrelevant with the Urban MAV
train_data = []
transform_train = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]) #torchvision.transforms.Resize((128,416))
for j in range(len(values)):

print(values[j])
if values[j][:6] == ’Random’:

data_path_gt = ’NieuweDataset/UrbanMAVDataSet/’+values[j]+’/GroundTruths/cameragroundtruth.txt’
table_labs = []
f = open(data_path_gt,”r”)
lines = []
for line in f:

line = line.strip()
line = line.split(” ”)
lines = []
for value in line:

value = float(value.strip())
lines.append(value)

labs = [lines[4],lines[5],lines[6],lines[1],lines[2],lines[3]]
table_labs.append(labs)

f.close()

# Load training data
train_dataset0 = torchvision.datasets.ImageFolder(

root=’NieuweDataset/UrbanMAVDataSet/’+values[j]+’/Images/Storage0/’,
transform=transform_train

)
train_dataset1 = torchvision.datasets.ImageFolder(

root=’NieuweDataset/UrbanMAVDataSet/’+values[j]+’/Images/Storage1/’,
transform=transform_train

)
for ii in range(0,len(train_dataset0)):

train_data.append((np.array(train_dataset0[ii][0][0]),np.array(train_dataset1[ii][0][0]), table_labs[ii]))
else:

data_path_gt = ’NieuweDataset/UrbanMAVDataSet/’+values[j]+’/GroundTruths/cameragroundtruth.txt’
table_labs = []

f = open(data_path_gt,”r”)
lines = []
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for line in f:
line = line.strip()
line = line.split(” ”)
lines = []
for value in line:

value = float(value.strip())
lines.append(value)

labs = [lines[4],lines[5],lines[6],lines[1],lines[2],lines[3]]
table_labs.append(labs)

f.close()
# Load training data
train_dataset = torchvision.datasets.ImageFolder(

root=’NieuweDataset/UrbanMAVDataSet/’+values[j]+’/Images/Storage/’,
transform=transform_train

)
for ii in range(1,len(train_dataset)):

train_data.append((np.array(train_dataset[ii1][0][0]),np.array(train_dataset[ii][0][0]), table_labs[ii]))
trainloader = DataLoader(train_data, batch_size = batch_size_val, shuffle=shuffle_bool, drop_last=True, num_workers=0)
return trainloader

def conv(in_planes, out_planes, kernel_size=3):
return nn.Sequential(

nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, padding=(kernel_size1)//2, stride=2),
nn.BatchNorm2d(out_planes),
nn.ReLU()
#nn.ReLU()#,
#nn.Dropout2d(0.7)

)

class PoseExpNet(nn.Module):
def __init__(self, nb_ref_imgs=1, output_exp=False):

super(PoseExpNet, self).__init__()
self.nb_ref_imgs = nb_ref_imgs
self.output_exp = output_exp

conv_planes = [16, 32, 64, 128, 256, 256, 256]
self.conv1 = conv(1, conv_planes[0], kernel_size=7)
self.conv2 = conv(conv_planes[0], conv_planes[1], kernel_size=5)
self.conv3 = conv(conv_planes[1], conv_planes[2])
self.conv4 = conv(conv_planes[2], conv_planes[3])
self.conv5 = conv(conv_planes[3], conv_planes[4])
self.conv6 = conv(conv_planes[4], conv_planes[5])
self.conv7 = conv(conv_planes[5], conv_planes[6])
#self.conv8 = conv(conv_planes[5], conv_planes[6])
#self.conv9 = conv(conv_planes[5], conv_planes[6])
self.pose_pred = nn.Conv2d(conv_planes[6], 6*self.nb_ref_imgs, kernel_size=1, padding=0)

def init_weights(self):
for m in self.modules():

if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear):
xavier_uniform_(m.weight.data)
if m.bias is not None:

zeros_(m.bias)

def forward(self, inputs):
out_conv1 = self.conv1(inputs)
out_conv2 = self.conv2(out_conv1)
out_conv3 = self.conv3(out_conv2)
out_conv4 = self.conv4(out_conv3)
out_conv5 = self.conv5(out_conv4)
out_conv6 = self.conv6(out_conv5)
out_conv7 = self.conv7(out_conv6)
pose = self.pose_pred(out_conv7)

pose = pose.mean(3).mean(2)
pose = 0.01*pose.view(pose.size(0), self.nb_ref_imgs, 6)

# Load model
model = PoseExpNet()
if newmodelnum != 0:

model.load_state_dict(torch.load(loadstr1+str(newmodelnum)+loadstr2))
model.to(dev)

criterion1 = nn.MSELoss(reduction=’mean’) #Creating the loss criterion
criterion2 = nn.MSELoss(reduction=’mean’)
criterion3 = nn.MSELoss(reduction=’mean’)
criterion4 = nn.MSELoss(reduction=’mean’)
criterion5 = nn.MSELoss(reduction=’mean’)
criterion6 = nn.MSELoss(reduction=’mean’)

optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas = [0.9,0.999]) #Loading the optimizer Adam

print(”start gathering data...”)

validation_accuracy = [[],[],[],[],[],[]]
trainvalidation_accuracy = [[],[],[],[],[],[]]
running_accuracy = [[],[],[],[],[],[]]
value_count = 1

#trainloader = torch.load(’dataloaderEuRoC.pth’) #Additional method of saving data before running for repetitive usage

if loadnewdata:
trainloader = CreateTrainloader()

if loadvaldata:
trainloadervalidation = CreateTrainloader(batch_size_val=batch_size_validation, shuffle_bool = shuffle_bool_validation, values = validation_link, mirror = mirror_val)
trainloadertrainval = CreateTrainloader(batch_size_val=batch_size_validation, shuffle_bool = shuffle_bool_validation, values = trainvalidation_link, mirror = mirror_val)

toc = time.perf_counter()
seconds = str(round((toc  tic)%60))
minutes = str(round((toc  tic)/60%60))
hours = str(round((toc  tic)/60/60))
print(’gathering completed in ’+ hours + ’ : ’ + minutes +’ : ’+ seconds)
print(”start training”)
LossList= []
contflag = True
epoch =0
while epoch <= num_epochs: # loop over the dataset multiple times
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running_loss = 0.0
running_accuracy2 = [[],[],[],[],[],[]]
running_accuracy3 = [[],[],[],[],[],[]]

for i, (input1,input2,labels) in enumerate(trainloader, 0):
inputs = torch.cat((input1,input2),1).unsqueeze(1)
inputs = inputs.to(dev)
optimizer.zero_grad()

labels = torch.transpose(torch.as_tensor([list(labels[0]),list(labels[1]),list(labels[2]),list(labels[3]),list(labels[4]),list(labels[5])]),0,1)
outputs = model(inputs).squeeze()
if np.isnan(outputs[0].detach()[0].cpu().numpy()):

model = PoseExpNet()
model.load_state_dict(torch.load(savestr1+str(newmodelnum+epoch)+savestr2))
model.to(dev)
contflag = False
break

else:
loss1 = criterion1(outputs[:,0], labels.float().to(dev)[:,0])
loss2 = criterion2(outputs[:,1], labels.float().to(dev)[:,1])
loss3 = criterion3(outputs[:,2], labels.float().to(dev)[:,2])
loss4 = criterion4(outputs[:,3], labels.float().to(dev)[:,3])
loss5 = criterion5(outputs[:,4], labels.float().to(dev)[:,4])
loss6 = criterion6(outputs[:,5], labels.float().to(dev)[:,5])

loss = loss1+loss2+loss3+loss4+loss5+loss6

loss.backward()
optimizer.step()

LossList.append(loss.item())

# Accuracies
for JJ in range(batch_size_val):

acc_outp = [’%.5f’ % elem.cpu() for elem in list(outputs[JJ].detach())]
acc_labs = [’%.5f’ % elem for elem in list(labels[JJ].detach().numpy())]
for j in range(6):

acc2 = accuracycalculation(acc_outp[j],acc_labs[j])
running_accuracy2.append(acc2)

if contflag:
for j in range(6):

running_accuracy[j].append(sum(running_accuracy2[j])/len(running_accuracy2[j]))

PATH = savestr1+str(newmodelnum+epoch+1)+savestr2
torch.save(model.state_dict(), PATH)
epoch += 1

###VALIDATION
model.load_state_dict(torch.load(PATH))
model.eval()
validation_loss = 0.0
validation_accuracy2 = [[],[],[],[],[],[]]
trainvalidation_loss = 0.0
trainvalidation_accuracy2 = [[],[],[],[],[],[]]

for i, (input1,input2,labels) in enumerate(trainloadertrainval, 0): #Maybe used to signify only a limited set of sequences for the training accuracy

inputs = torch.cat((input1,input2),1).unsqueeze(1)
inputs = inputs.to(dev)

labels = torch.transpose(torch.as_tensor([list(labels[0]),list(labels[1]),list(labels[2]),list(labels[3]),list(labels[4]),list(labels[5])]),0,1)
outputs = model(inputs).squeeze()

# Accuracies
for JJ in range(batch_size_val):

acc_outp = [’%.5f’ % elem.cpu() for elem in list(outputs.detach())]
acc_labs = [’%.5f’ % elem for elem in list(labels[0].detach().numpy())]
for j in range(6):

acc2 = accuracycalculation(acc_outp[j],acc_labs[j])
trainvalidation_accuracy2.append(acc2)

for j in range(6):
trainvalidation_accuracy[j].append(sum(trainvalidation_accuracy2[j])/len(trainvalidation_accuracy2[j]))

for i, (input1,input2,labels) in enumerate(trainloadervalidation, 0): #Validation accuracy determination

input1 = input1.sub(torch.mean(input1)).div(torch.std(input1))
input2 = input2.sub(torch.mean(input2)).div(torch.std(input2))

inputs = torch.cat((input1,input2),1).unsqueeze(1)
inputs = inputs.to(dev)

labels = torch.transpose(torch.as_tensor([list(labels[0]),list(labels[1]),list(labels[2]),list(labels[3]),list(labels[4]),list(labels[5])]),0,1)
outputs = model(inputs).squeeze()

# Accuracies
for JJ in range(batch_size_val):

acc_outp = [’%.5f’ % elem.cpu() for elem in list(outputs.detach())]
acc_labs = [’%.5f’ % elem for elem in list(labels[0].detach().numpy())]
for j in range(6):

acc2 = accuracycalculation(acc_outp[j],acc_labs[j])
validation_accuracy2.append(acc2)

for j in range(6):
validation_accuracy[j].append(sum(validation_accuracy2[j])/len(validation_accuracy2[j]))

model.train()
Write(validation_accuracy,running_accuracy,trainvalidation_accuracy,LossList)

contflag = True

print(’Finished Training’)

winsound.MessageBeep(15)
toc = time.perf_counter()
seconds = str(round((toc  tic)%60))
minutes = str(round((toc  tic)/60%60))
hours = str(round((toc  tic)/60/60))
print(’running time ’+ hours + ’ : ’ + minutes +’ : ’+ seconds)
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Database creation
The python code depicted in this section was used to develop the Urban MAV database. As multiple
functions exists that aid the distribution of values over the six available degrees of freedom, only the
function that creates the random database is shown. This should give enough indication on the process
that went into creating this dataset. This function was called with randomly initialisation variables.

import numpy as np
import cv2
from unrealcv import client
import os, sys
import time
import math as mt
from PIL import Image
from navpy import angle2quat
from navpy import quat2dcm
from scipy.spatial.transform import Rotation as R

client.connect()
if not client.isconnected():

print(’not running’)

def flyto(sequencename,x,y,z,p,q,r,seqnumb):
loc = {’x’: x, ’y’:y, ’z’: z};
rot = {’roll’: p, ’pitch’:q, ’yaw’:r};
client.request(’vset /camera/0/location {x} {y} {z}’.format(**loc))
client.request(’vset /camera/0/rotation {pitch} {yaw} {roll}’.format(**rot))
client.request(’vget /camera/0/lit Database/’+sequencename+’/Storage/Images/Image’+str(seqnumb)+’.png’)
img = Image.open(’/UrbanCity/WindowsNoEditor/UrbanCity/Binaries/Win64/Database/’+sequencename+’/Storage/Images/Image’+str(seqnumb)+’.png’).convert(’L’)
img.save(’UrbanMAVDataSet/’+sequencename+’/Images/Storage/Images/Image’+str(seqnumb)+’.png’)
os.remove(’/UrbanCity/WindowsNoEditor/UrbanCity/Binaries/Win64/Database/’+sequencename+’/Storage/Images/Image’+str(seqnumb)+’.png’)

def randomflyto(sequencename,x,y,z,p,q,r,dx,dy,dz,dp,dq,dr,seqnumb):
loc = {’x’: x, ’y’:y, ’z’: z};
rot = {’roll’: p, ’pitch’:q, ’yaw’:r};
client.request(’vset /camera/0/location {x} {y} {z}’.format(**loc))
client.request(’vset /camera/0/rotation {pitch} {yaw} {roll}’.format(**rot))
client.request(’vget /camera/0/lit Database/’+sequencename+’/Storage0/Images/Image’+str(seqnumb)+’.png’)
img = Image.open(’/UrbanCity/WindowsNoEditor/UrbanCity/Binaries/Win64/Database/’+sequencename+’/Storage0/Images/Image’+str(seqnumb)+’.png’).convert(’L’)
img.save(’UrbanMAVDataSet/’+sequencename+’/Images/Storage0/Images/Image’+str(seqnumb)+’.png’)
os.remove(’/UrbanCity/WindowsNoEditor/UrbanCity/Binaries/Win64/Database/’+sequencename+’/Storage0/Images/Image’+str(seqnumb)+’.png’)

loc = {’x’: x+dx, ’y’:y+dy, ’z’: z+dz};
rot = {’roll’: p+dp, ’pitch’:q+dq, ’yaw’:r+dr};
client.request(’vset /camera/0/location {x} {y} {z}’.format(**loc))
client.request(’vset /camera/0/rotation {pitch} {yaw} {roll}’.format(**rot))
client.request(’vget /camera/0/lit Database/’+sequencename+’/Storage1/Images/Image’+str(seqnumb)+’.png’)
img2 = Image.open(’/UrbanCity/WindowsNoEditor/UrbanCity/Binaries/Win64/Database/’+sequencename+’/Storage1/Images/Image’+str(seqnumb)+’.png’).convert(’LA’)
img2.save(’UrbanMAVDataSet/’+sequencename+’/Images/Storage1/Images/Image’+str(seqnumb)+’.png’)
os.remove(’/UrbanCity/WindowsNoEditor/UrbanCity/Binaries/Win64/Database/’+sequencename+’/Storage1/Images/Image’+str(seqnumb)+’.png’)

def fly2(x,y,z,p,q,r):
loc = {’x’: x, ’y’:y, ’z’: z};
rot = {’roll’: p, ’pitch’:q, ’yaw’:r};
client.request(’vset /camera/0/location {x} {y} {z}’.format(**loc))
client.request(’vset /camera/0/rotation {pitch} {yaw} {roll}’.format(**rot))

def writegtcamera(sequencename,deltalist):
h = open(”UrbanMAVDataSet/”+sequencename+”/GroundTruths/cameragroundtruth.txt”,”w”)

for delta in range(len(deltalist[0])):
dx = deltalist[0][delta]
dy = deltalist[1][delta]
dz = deltalist[2][delta]
dp = deltalist[3][delta]
dq = deltalist[4][delta]
dr = deltalist[5][delta]
h.write(str(delta)+” ”+str(dx)+” ”+str(dy)+” ”+str(dz)+” ”+str(dp)+” ”+str(dq)+” ”+str(dr)+”\n”)

h.close()

def writegtglobal(sequencename,globgtlist):
h = open(”UrbanMAVDataSet/”+sequencename+”/GroundTruths/globalgroundtruth.txt”,”w”)

for delta in range(len(globgtlist[0])):
x = globgtlist[0][delta]
y = globgtlist[1][delta]
z = globgtlist[2][delta]
p = globgtlist[3][delta]
q = globgtlist[4][delta]
r = globgtlist[5][delta]
h.write(str(delta)+” ”+str(x)+” ”+str(y)+” ”+str(z)+” ”+str(p)+” ”+str(q)+” ”+str(r)+”\n”)

h.close()

def random(xmin,xmax,ymin,ymax,zmin,zmax,sequencelength,seqcount):
tic = time.perf_counter()
sequencename = ’Randommotion’+str(seqcount)

if os.path.isdir(”UrbanMAVDataSet/”+sequencename+’/GroundTruths’):
print(’directory already exists’)

else:
os.makedirs(”UrbanMAVDataSet/”+sequencename+’/GroundTruths’)

if os.path.isdir(”UrbanMAVDataSet/”+sequencename+’/Images’):
print(’directory already exists’)

else:
os.makedirs(”UrbanMAVDataSet/”+sequencename+’/Images/Storage0/Images’)
os.makedirs(”UrbanMAVDataSet/”+sequencename+’/Images/Storage1/Images’)

FPS = 30
GB = round(sequencelength*33/100000,3)

esttime = round(sequencelength*0.9*2)
seconds = str(mt.floor((esttime)%60))
minutes = str(mt.floor((esttime)/60%60))
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hours = str(mt.floor((esttime)/60/60))
print(’estimated running time ’ + hours + ’ : ’ + minutes +’ : ’+ seconds)
print(’to create around ’ + str(sequencelength) + ’ image pairs’)
print(’folder size estimated at around ’ + str(GB) + ’GB’)

deltalist = [[],[],[],[],[],[]]
globgtlist = [[],[],[],[],[],[]]

pmax = 45
qmax = 45
rmax = 180

dpmax = 335
dqmax = 335
drmax = 335

dxmu = 350
dxsigma = 850
dymax = 950
dzmax = 575
for i in range(sequencelength):

x = round(np.random.randint(xmin,xmax))
y = round(np.random.randint(ymin,ymax))
z = round(np.random.randint(zmin,zmax))

p = round(np.random.randint(pmax,pmax))
q = round(np.random.randint(qmax,qmax))
r = round(np.random.randint(rmax,rmax))

roll,pitch,yaw = p*np.pi/180,q*np.pi/180,r*np.pi/180

rm = np.array([[np.cos(yaw)*np.cos(pitch), np.cos(yaw)*np.sin(roll)*np.sin(pitch)np.cos(roll)*np.sin(yaw), np.cos(roll)*np.cos(yaw)*np.sin(pitch)+np.sin(roll)*np.sin(yaw)],
[np.sin(yaw)*np.cos(pitch), np.sin(roll)*np.sin(yaw)*np.sin(pitch)+np.cos(roll)*np.cos(yaw), np.cos(roll)*np.sin(yaw)*np.sin(pitch)np.cos(yaw)*np.sin(roll)],
[np.sin(pitch), np.cos(pitch)*np.sin(roll), np.cos(roll)*np.cos(pitch)]])

dAngle = np.array([np.random.randint(dpmax,dpmax+1)/FPS,np.random.randint(dqmax,dqmax+1)/FPS,np.random.randint(drmax,drmax+1)/FPS]) #camera frame
dTrans = np.array([(np.random.randint(dxsigma,dxsigma+1)+dxmu)/FPS,np.random.randint(dymax,dymax+1)/FPS,np.random.randint(dzmax,dzmax+1)/FPS]) #camera frame

translation = np.matmul(rm,np.transpose(dTrans)) # to global frame
dx = translation[0]
dy = translation[1]
dz = translation[2]

dp = dAngle[0]
dq = dAngle[1]*np.cos(roll)
dr = dAngle[1]*np.sin(roll) + dAngle[2]

randomflyto(sequencename,x,y,z,p,q,r,dx,dy,dz,dp,dq,dr,i)

#Global Frame, total positioning
x,y,z,p,q,r = x+dx,y+dy,z+dz,p+dp,q+dq,r+dr
gAngle = [p,q,r]
gTrans = [x,y,z]

for ii in range(3):
globgtlist[ii].append(gTrans[ii]/100) #convert to meters
deltalist[ii].append(dTrans[ii]/100) #convert to meters
globgtlist[ii+3].append(gAngle[ii]*np.pi/180) #convert to radians
deltalist[ii+3].append(dAngle[ii]*np.pi/180) #convert to radians

writegtcamera(sequencename,deltalist)
writegtglobal(sequencename,globgtlist)
toc = time.perf_counter()
seconds = str(mt.floor((toc  tic)%60))
minutes = str(mt.floor((toc  tic)/60%60))
hours = str(mt.floor((toc  tic)/60/60))
print(’running time ’+ hours + ’ : ’ + minutes +’ : ’+ seconds)

h = open(”UrbanMAVDataSet/”+sequencename+”/GroundTruths/DataDescription”+sequencename+”.txt”,”w”)
h.write(”””

”””+sequencename+”””:
Random dataset with maximum absolute value for p,q,r = ”””+str(pmax)+”””,”””+str(qmax)+”””,”””+str(rmax)+””” degrees at staring point.
Relative poses are limited to an absolute change of dp,dq,dr = ”””+str(dpmax)+”””,”””+str(dqmax)+”””,”””+str(drmax)+””” [degrees],
and dy,dz = ”””+str(dymax)+”””,”””+str(dzmax)+””” meters per second.
dx is determined using a normal distribution with sigma and mu = ”””+str(dxsigma)+””” and ”””+str(dxmu)+””” respectively.
Data is gathered at ”””+str(FPS)+””” FPS.

”””)
h.close()
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