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Abstract

In the field of software engineering, the speed of compila-
tion plays a crucial role in enhancing development produc-
tivity. This thesis investigates the impact of optimising
the memory layout of Abstract Syntax Trees (ASTs) on
the performance of the type checking and code generation
phases in the compilation process of strictly-typed proce-
dural programming languages. Existing compilers often
employ a traditional Object-Oriented (OO) approach to
AST construction, leading to inefficiencies such as high
memory overhead and suboptimal cache usage. We ap-
plied Data-Oriented Design (DOD) principles to restruc-
ture ASTs, aiming to enhance data locality and reduce
memory access times.

The study investigates various AST memory layouts,
including a transition from a naive OO model to a Struct-
of-Arrays (SoA) model. We evaluated the effect of these
memory layouts on compiler performance using a set of
benchmarks based on real-world code. We executed the
benchmarks on diverse hardware platforms, measuring key
performance metrics such as type checking time, code gen-
eration time, and cache miss rates.

The results demonstrate that adopting an SoA model
for ASTs significantly reduces the duration of the type
checking and code generation phases, with improvements
varying across different hardware architectures. We pro-
vide empirical evidence supporting the application of
DOD principles and specifically SoA to ASTs for perfor-
mance improvements. By highlighting and addressing the
performance bottlenecks associated with traditional AST
layouts, we contribute to the broader goal of advancing
compiler design and optimisation.

1 Introduction

A compiler operates through multiple phases that work to-
gether to transform source code into executable programs
[1]. In the scope of this research, we consider a simplified
phase model for a compiler designed for a strictly-typed
programming language:

1. Parsing: In this first phase, the compiler creates
an Abstract Syntax Tree (AST) from source code,
capturing its semantic structure.

2. Type-checking: In this subsequent phase, the
compiler determines the type of each syntactic el-
ement using the AST. It also verifies correctness
based on the programmer-provided type declara-
tions, and enriches the AST with additional type
information to support the final phase.

3. Code-generation: In this final phase, the compiler
produces platform-dependent executable code from
the enriched AST.

Optimising the AST memory layout is imperative for
achieving efficient compilation, given the central role of the
AST data structure in the compilation process. A notable
practical advance in this area includes the memory layout
restructuring of the AST in the Zig compiler, which led to
a performance improvement of over 30% during the type
checking and IR generation phases [2]. Andrew Kelley, the
author of the Zig compiler, drew inspiration from Richard
Fabian’s Data-Oriented Design book [3] and applied these
principles to the AST layout in the Zig compiler. Despite
these practical achievements, scientific research in the field
of AST memory layout optimisation remains very limited,
resulting in a knowledge gap where compiler architects
often rely on trial-and-error to determine effective ways to
store AST data.

We aim to highlight the significance of optimising AST
memory layouts and provide guidance to compiler archi-
tects in designing memory-efficient ASTs. By exploring
various AST memory layout alternatives and their influ-
ences on compilation speed, this study will offer quanti-
tative, empirical, and reproducible insights for future ad-
vancements in the field.

Our primary research question is: How does the
application of Data-Oriented Design principles on
Abstract Syntax Trees affect the speed of the type
checking and code generation phases for compila-
tion of procedural programming languages?

2 Background

In modern computers, a significant discrepancy exists be-
tween the access times of the CPU data cache and main
memory. Consequently, minimising fetches from main
memory is crucial, as these can cause severe stalls in the
CPU’s fetch-decode-execute cycle. [4]

High information density within cache lines during ex-
ecution is essential to ensure that each fetch operation
maximises the data used by the program [5]. In the scope
of this research, we define information density as the per-
centage of bytes in cache lines that are actually used by
an operation performed on that data. A higher informa-
tion density generally ensures superior performance, since
it minimises memory access operations. In Data-Oriented
Design (DOD), the programmer is mindful of the layout
of data, and how it is accessed and transformed by opera-
tions. The goal is to enhance information density, ensuring
optimal pipelining of multi-data operations. [3]

A naive AST might be implemented using an idiomatic
Object-Oriented approach, where each node of the tree is
dynamically allocated and stores all data related to the
syntactic element, along with pointers to its children [6].
This approach contrasts sharply with DOD principles be-
cause of the following reasons:

• Dynamic allocation of individual nodes results in
memory overhead due to the memory allocation al-
gorithm [7], decreasing information density. Exam-
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ples of such overheads are heap block headers, inter-
block padding, and heap fragmentation [8] [9].

• The arbitrary ordering of the dynamically allocated
nodes can lead to a higher number of memory
fetches, because access patterns are not guaranteed.
It can also result in an elevated level of cache misses
compared to traversing the AST via pointers to chil-
dren, since dereferencing is frequent. [10]

• Some data in an AST node is redundant in specific
compilation phases. Additionally, some data is only
necessary in edge cases and cold execution paths.
Both of these conditions attribute to sub-optimal
information density.

• Nodes may contain fields of different sizes, necessi-
tating padding between fields to maintain alignment,
further decreasing information density [9].

To address these issues, the Zig compiler developers
transitioned their AST implementation from a naive id-
iomatic Object-Oriented tree (see Figure 1) to a Data-
Oriented Struct-of-Arrays (SoA) model (see Figure 2).
This change significantly improved information density
and cache efficiency of their AST traversal.

Figure 1: Naive Object-Oriented AST. (Simplified). The ex-
pression that is represented by this AST is:
((foo * 123) + bar).

Figure 2: The same AST as in Figure 1, implemented using
a Data-Oriented Struct-of-Arrays model. (Simplified).

Using a Struct-of-Arrays model effectively addresses
padding and memory overhead issues associated with
memory allocation, as the arrays are stored in contigu-
ous memory blocks. Additionally, it reduces inefficiencies
caused by imbalances between frequently accessed ("hot")

and infrequently accessed ("cold") struct fields [5]. By ac-
cessing cold fields only on demand, they are kept sepa-
rate from hot data, thereby improving overall information
density. By placing all data within single arrays, the SoA
model introduces a well-defined data ordering, counter-
ing the arbitrary nature of dynamic memory allocation.
However, to further enhance performance, optimising the
order of data within these arrays to reflect access patterns
can yield additional performance gains. [3]

In this research, we introduce and implement such an
SoA model for ASTs. In our model, each AST node has its
own index. The tags array stores the types of each AST
node, the tokens array stores line and column references to
the source code of each AST node, and the node_data ar-
ray stores fixed-sized data which is interpreted differently
depending on the type of AST node. The extra_data ar-
ray stores extra node data on demand, if the node_data
object itself is not big enough. (E.g. an AST node for a
function call may need to store a large number of argu-
ments).

3 Methodology

To conduct a quantitative analysis and address the re-
search question, we utilised a benchmarking approach, in-
volving different compiler implementations with various
Abstract Syntax Tree (AST) layouts. With this approach,
we measured the impact of AST layout modifications on
the performance of the type-checking and code generation
phases during compilation.

Our methodology comprises the following steps:

1. Selection of benchmark input: We collected
sample C programs from open-source repositories.
C is a procedural, compiled, systems-level program-
ming language, allowing for a consistent and repre-
sentative dataset of code for the research. The full
dataset can be found in Section 3.1.

2. Transpilation to Tea language: The C programs
were run through the C preprocessor [11]. Then,
they were converted to Tea language1 code using a
transpiler application2 we specifically developed for
this research. We chose the Tea language as the
target language for the following reasons:

• Tea reveals similarity to C as a procedural lan-
guage with direct memory access. This simi-
larity facilitates a relatively lossless transpila-
tion process, as most C language constructs are
supported in Tea. Consequently, Tea serves as
an effective proxy language for benchmarking
real-world C code.

• The Tea compiler program is notably less com-
plex than traditional C compilers, comprising

1https://github.com/iannisdezwart/tea
2https://github.com/iannisdezwart/c-to-tea-transpiler
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a compact codebase of just 7.6k lines. This
compact size ensured we could complete the re-
search in a timely manner, as it enabled easier
modifications and implementation of AST lay-
out optimisations. Additionally, the simplic-
ity of the codebase made alternative memory
layout implementations more readable, aiding
compiler architects in understanding the code
impact of specific implementations. This un-
derstanding helps them evaluate the feasibility
of adopting similar layout modifications in com-
pilers they are working on.

3. Designing alternative AST layouts: We de-
signed and implemented various AST layouts based
on DOD principles to optimise memory accesses
and data efficiency. The layout alternatives are ex-
plained in detail in Section 3.2.

4. Performance evaluation: We compiled the Tea
code on a set of benchmarking machines. (See Sec-
tion 3.3). We selected various machines to account
for variations in instruction set architecture, CPU,
memory timings, and other OS and hardware-level
optimisations that could influence performance out-
comes.

5. Data collection and analysis: We gathered vari-
ous performance metrics (as detailed in Section 3.4)
during the benchmarking process. We subsequently
analysed the collected data to identify and estab-
lish relationships between different AST layouts and
their impact on performance. All data was system-
atically collected using a data repository3 we specif-
ically designed for this research, and subsequently
visualised in generated graphs.

6. Formulation of recommendations: Following
the analysis, we drew conclusions regarding the effec-
tiveness of the different AST layouts on compilation
performance. These insights provide a foundation
for offering recommendations to compiler architects,
guiding them towards the optimal implementation
of ASTs in their projects.

3.1 Benchmark dataset

The complete benchmark dataset4, consisting of Tea pro-
grams, is presented in Table 1. These programs were gen-
erated by transpiling the corresponding C code.

3.2 AST layout alternatives
We implemented and benchmarked the following AST lay-
out implementations, each building upon the implementa-
tion preceding it in the list:

3https://github.com/iannisdezwart/rp-data
4https://github.com/iannisdezwart/c-to-tea-transpiler/

tree/main/transpiled_code

Program Source code size
chibicc_parse.tea 126 kB
chibicc_combined.tea 229 kB
gzip.tea 150 kB
zlib.tea 221 kB

Table 1: Transpiled Tea programs that were benchmarked,
and their sizes.

• No optimisations (original Tea compiler)5:
The original Tea compiler features a naive Object-
Oriented AST structure consisting of 24 nodes
(Listed in Appendix A) for different language con-
structs.

• Compact tokens6: During the tokenisation phase
of the original Tea compiler, tokens are gener-
ated with token value fields that are only rele-
vant during parsing and become unnecessary dur-
ing the subsequent type checking and code gen-
eration phases. This optimisation introduces a
CompactToken, which is used during the type check-
ing and code-generation phases. This CompactToken
excludes the aforementioned token value fields, leav-
ing only the line and column numbers. This results
in a size reduction of the base ASTNode struct from
128 to 88 bytes.

• Class IDs7: In the original Tea compiler, class
names are stored as strings and accessed through
string keys. To reduce memory usage, this optimisa-
tion introduces a mapping between class names and
their IDs, eliminating the need for storing them as
strings. This optimisation reduced the base ASTNode
further to 72 bytes.

• Compact types8: In the original Tea compiler,
built-in types and user-defined class types were han-
dled separately, requiring distinct fields in the Type
struct. This optimisation introduces IDs for all
built-in types and introduces a dynamic ID creation
scheme for user-defined types. Additionally, we ex-
tracted a cold dynamically allocated array contain-
ing pointer depth information from the Type struct
and stored into an external unified memory pool.
With this optimisation, the size of the Type struct
was reduced from 48 bytes to just 16 bytes, thereby
reducing the ASTNode struct further to a mere 40
bytes.

• Struct-of-Arrays9: This optimisation replaces the
original Tea compiler’s Object-Oriented AST struc-

5https://github.com/iannisdezwart/tea/tree/main
6https://github.com/iannisdezwart/tea/tree/compact-token
7https://github.com/iannisdezwart/tea/tree/class-ids
8https://github.com/iannisdezwart/tea/tree/compact-types
9https://github.com/iannisdezwart/tea/tree/

struct-of-arrays
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ture with a Struct-of-Arrays model. The new AST
implementation utilises several arrays, including:

– tags: Maps each AST node to a 1-byte enum
value, indicating the node type.

– node_data: Maps each AST node with an 8-
byte union data structure, interpreted differ-
ently based on the node’s type.

– tokens: Maps each AST node to an 8-byte
structure containing its line and column num-
bers. This cold array is only used for error re-
porting.

– extra_data: A memory pool containing addi-
tional information for specific nodes beyond the
8 bytes in node_data, referenced from entries
in node_data.

– types: Maps each AST node to a 12-byte type
information structure, constructed during the
type-checking phase, and utilised during the
code-generation phase.

3.3 Benchmark machines
The full list of benchmark machines is shown in Table 2.

Processor ISA Platform Compiler
Apple M2 Pro
12-core ARM MacOS

14.4.1 Clang 18.1.5

ARM
Cortex-X1 ARM Android

14 Clang 18.1.7

Intel Xeon
E5-2630 x86 Ubuntu

20.04 GCC 9.3.0

AMD Ryzen
7-7745HX x86 Ubuntu

24.04 GCC 13.2.0

Intel Core
i7-8650U x86 Ubuntu

24.04 GCC 14.1.1

Intel Core
i7-10750H x86 Fedora

40 GCC 11.4.0

Table 2: Machines the benchmark was run on.

3.4 Performance metrics
We used the following tools to collect performance metrics
for analysis:

• Hardware clock: We used the C++ std::chrono
library [12] to measure high resolution time deltas
within the Tea compiler. We measured the following
time performance results:

– Type check time (mean & standard de-
viation): Samples of duration of the the type-
check phase.

– Code gen time (mean & standard devia-
tion): Samples of the duration of the code-gen
phase.

• Linux pidstat [13]: A command-line utility used
for monitoring Linux kernel tasks. pidstat was used
to collect memory usage results.

• Valgrind [14]: A Linux programming tool for mem-
ory debugging and profiling. Valgrind was used to
collect the following cache efficiency data:

– IR references: instruction reads.

– IR1 miss rate: instruction read level 1 cache
misses.

– D references: references to memory.

– D1 miss rate: data level 1 cache misses.

– LLd miss rate: last level data cache misses.

4 Results

We produced results across three main categories:

• Time performance results: Each machine in the
benchmarking set compiled the dataset of transpiled
C code using every optimisation candidate, facili-
tated by a dedicated benchmarking script10. De-
tailed results are presented in Section 4.1.

• Memory usage results: We measured memory
consumption by different AST layouts for each op-
timisation candidate. Memory usage was measured
using a benchmarking script11, which recorded mea-
surements before the parsing phase and after the
type-checking phase using pidstat. The difference
of the measurements was taken as the total AST
size. Detailed results are presented in Section 4.2.

• Cache efficiency results: We evaluated cache util-
isation efficiency for each optimisation candidate us-
ing a benchmarking script12 that runs Valgrind for
detailed analysis. Detailed results are presented in
Section 4.3

4.1 Time performance results

4.1.1 Type-checking phase

We measured the mean duration of the type-checking
phase across all AST optimisation candidates. We then
compared the results to the baseline duration without any
optimisations.

10https://github.com/iannisdezwart/tea/blob/main/bench.sh
11https://github.com/iannisdezwart/tea/blob/main/

bench-mem.sh
12https://github.com/iannisdezwart/tea/blob/main/

bench-cache.sh
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Figure 3 presents the mean speedup across all plat-
forms and programs in the benchmark set for each opti-
misation candidate, including the standard deviation. Fig-
ure 4 presents the same results as Figure 3, grouping them
by the different machines in the benchmark set. Figure 5
presents the same results as Figure 3, grouping them by
the different programs run in the benchmark set.

Figure 3: Relative average speedup obtained in type-checking
phase by applying different optimisations. Logarithmic y-axis.

Figure 4: Relative average speedup obtained in type-checking
phase by applying different optimisations, grouped by machine.
Logarithmic y-axis.

Figure 5: Relative average speedup obtained in type-checking
phase by applying different optimisations, grouped by program.
Logarithmic y-axis.

4.1.2 Code-generation phase

We measured the mean duration of the code-generation
phase across all AST optimisation candidates. We then
compared the results were to the baseline duration without
any optimisations.

Figure 6 presents the mean speedup across all plat-
forms and programs in the benchmark set for each opti-
misation candidate, including the standard deviation. Fig-
ure 7 presents the same results as Figure 6, grouping them
by the different machines in the benchmark set. Figure 8
presents the same results as Figure 6, grouping them by
the different programs run in the benchmark set.

Figure 6: Relative average speedup obtained in code-
generation phase by applying different optimisations. Loga-
rithmic y-axis.
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Figure 7: Relative average speedup obtained in code-
generation phase by applying different optimisations, grouped
by machine. Logarithmic y-axis.

Figure 8: Relative average speedup obtained in code-
generation phase by applying different optimisations, grouped
by program. Logarithmic y-axis.

4.2 Memory usage results
Figure 9 presents the average size of the AST by pro-
gram, including the information generated during the
type-checking phase.

Figure 9: Average AST size including type information for
each optimisation, grouped by program.

4.3 Cache efficiency results
Figure 10 presents the cache miss rates by program for
each optimisation candidate. The data was gathered using
Valgrind.

Figure 10: Cache miss rates for each optimisation, grouped
by program.

5 Analysis and Discussion

5.1 Type-checking phase performance im-
provements

The struct-of-arrays optimisation significantly en-
hanced performance during the type-checking phase.
Across all platforms, the SoA optimisation yielded an av-
erage speedup of 5.6x compared to the original Tea com-
piler. The performance benefits varied between 3.5x and
7.1x depending on the specific machine, and between 3.1x
and 6.9x depending on the test program.

The compact-type optimisation also showed notable
improvements, with an average speedup of 1.8x. The re-
duction from a 48-byte to a 16-byte Type struct minimised
memory writes, and the unified array for pointer depths
eliminated many dynamic allocations. This enhanced the
performance substantially.
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In contrast, the class-ids and compact-token opti-
misations provided more modest performance gains, aver-
aging 1.06x and 1.18x speedups, respectively.

5.2 Code-generation phase performance
improvements

During the code-generation phase, the struct-of-arrays
optimisation continued to demonstrate significant perfor-
mance gains, averaging a 2.6x speedup. Across differ-
ent machines, this improvement ranged between 2.3x and
3.1x, while across the programs, it ranged between 2.4x
and 2.8x.

Conversely, the other optimisations showed minimal
performance gains, with some combination even per-
forming slightly worse than the baseline. compact-type
achieved a modest 1.14x speedup on average.

5.3 Overall performance improvements
From the results, it is evident that the type-checking phase
responded more favourably to AST restructurings com-
pared to the code-generation phase. This disparity can be
attributed to the nature of inputs and outputs for both
phases:

• Type-checking phase:

– Input: parsed AST (controlled by experiment)
– Output: type information (controlled by exper-

iment)

• Code-generation phase

– Input: parsed AST & type information (con-
trolled by experiment)

– Output: Tea bytecode (not controlled by ex-
periment)

The optimisations we applied only controlled the data lay-
out of ASTs and types. While our optimisations affected
both memory reads and writes in the type-checking phase,
they only affected memory reads in the code-generation
phase. Despite this limitation, the struct-of-arrays op-
timisation still yielded a promising 2.6x speedup, indicat-
ing substantial potential for performance improvements
in code generation through AST memory layout optimi-
sation.

5.4 Discrepancies between machines and
optimisations

The performance impact of different AST layout optimi-
sations varied significantly across the different machines.
Key observations include:

• Type-checking phase:
Across different optimisations in the type-checking
phase, the AMD Ryzen 7-7745HX demonstrated the

highest average speedup, while the Apple M2 Pro
12-core showed the least benefit. This disparity
can be attributed, in part, to differences in mem-
ory latency characteristics between these processors.
AMD Ryzen CPUs typically exhibit higher mem-
ory latency compared to other CPUs with simi-
lar performance benchmarks13. Conversely, Apple-
made CPUs are known for lower memory latency14,
which can enhance performance in scenarios with
high cache misses. We would expect a machine with
higher memory latency to perform worse at the base-
line benchmark, thereby inflating the apparent op-
timisation effectiveness in the lower cache miss sce-
narios of the optimisations. Therefore, higher mem-
ory latency of the AMD Ryzen 7-7745HX machine
aligns well with the higher observed speedup during
type-checking.

Additionally, the less significant performance in-
crease on the Apple M2 Pro 12-core machine could
be explained by its modern data memory-dependent
prefetcher, which speculatively prefetches memory
addresses to improve the latency of referencing op-
erations [15]. These factors may collectively con-
tribute to why the performance difference between
no optimisations and the struct-of-arrays opti-
misation is comparatively smaller on the Apple M2
Pro 12-core than on other machines.

• Code-generation phase In the code-generation
phase, the Intel Xeon E5-2630 v4 and ARM Cortex-
X1 machines presented the most significant bene-
fits from the struct-of-arrays optimisation, while
other machines showed relatively similar speedups
across different optimisations. The reasons for this
specific performance variation require further inves-
tigation.

5.5 Discrepancies between programs and
optimisations

The gzip.tea program showed the least benefit from the
optimisations in terms of time performance across both
compilation phases. Specifically, it achieved speedups of
3.1x in the type-checking phase and 2.4x in the code-
generation phase with the struct-of-arrays (SoA) op-
timisation compared to the baseline (see Figures 5 and
8). In contrast, the zlib.tea program demonstrated the
most significant improvements, with speedups of 6.9x and
2.8x in the type-checking and code-generation phases, re-
spectively.

This disparity can be partially attributed to the com-
position of the gzip.tea code, which contains a lower pro-
portion of function definition code compared to other pro-

13https://cpu.userbenchmark.com/Compare/
AMD-Ryzen-7-7745HX-vs-Intel-Core-i7-10750H/
m2100010vsm1053158

14https://news.ycombinator.com/item?id=25420290
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grams in the benchmarking dataset. Function definition
code demands more intensive operations during both the
type-checking and code-generation phases, thus benefiting
more from AST layout optimisations.

Additionally, examining the AST memory size im-
provements (see Figure 9), gzip.tea showed only a 6x
reduction in AST memory footprint when comparing no
optimisations to the SoA approach. In contrast, zlib.tea
demonstrated a reduction of over 12x. Furthermore, the
cache miss rate reduction for gzip.tea was only 1.9x,
whereas zlib.tea experienced a 3.2x reduction. These
results suggest that the effectiveness of the SoA imple-
mentation varied significantly between the two programs,
with zlib.tea benefiting more substantially from the op-
timisations.

5.6 Development challenges in applying
optimisations

Transitioning from a traditional OO model to a DOD-
based SoA model required extensive refactoring of the
AST-utilising code. The implementation of the SoA op-
timisation required a modification of 5.6k lines of code15,
whereas the implementations for the other optimisations
only required several hundreds of lines of code to be mod-
ified. Additionally, the transition to SoA introduced ad-
ditional complexity in terms of code maintenance and de-
bugging. The complexity is largely due to the need for
precise management of memory and access patterns to
maintain the performance benefits. Despite the develop-
ment effort, the resulting speed improvements were very
substantial.

5.7 Comparison to existing research
The findings align with similar improvements observed in
the Zig compiler, where transitioning to a DOD layout
significantly enhanced performance by over 30% in both
type-checking and code generation phases. Our findings,
showing 5.6x and 2.6x speedups in the type-checking and
code-generation phases, respectively, suggest even greater
potential for performance improvements. However, it is
essential to note that the original Tea compiler was in
an unoptimised non-production-grade state, and efficient
SoA implementation required additional researched opti-
misations to be applied. These reasons may have inflated
the speedup results.

6 Conclusions and Future Work

We investigated the impact of memory layout optimisa-
tions on Abstract Syntax Trees (ASTs) and their influ-
ence on the performance of the type-checking and code-
generation phases in the compilation process. Our pri-

15Obtained from running ‘git diff --stat main Compiler’ in
https://github.com/iannisdezwart/tea/tree/struct-of-arrays

mary research question focused on how applying Data-
Oriented Design (DOD) principles to ASTs affects the
speed of these critical compilation phases.

6.1 Key findings
• We conclusively demonstrated that restructuring

ASTs using DOD principles can significantly en-
hance performance in both type-checking and code-
generation phases of a compiler. Implementing
a Struct-of-Arrays (SoA) model showed the most
promising performance improvements, but the tran-
sition process from an Object-Oriented AST requires
significant code rewriting.

• Performance gains from these optimisations varied
across different platforms and architectures, yet no
instances indicated a significant decline in perfor-
mance. Overall, a consistent upwards trend was
shown across all tested machines.

6.2 Contributions
The findings provide valuable insights and practical guid-
ance for compiler architects aiming to construct or opti-
mise compiler implementations for improved performance.

6.3 Future work
While we have laid the groundwork for AST memory lay-
out optimisations, several opportunities for future research
remain open:

• Exploring advanced layout strategies such as hier-
archical Struct-of-Arrays or hybrid layout models
to potentially achieve further performance improve-
ments.

• Researching dynamic optimisation techniques that
adapt AST layouts based on input or runtime profil-
ing, thereby potentially optimising performance dy-
namically. This avenue is particularly interesting for
JIT compilers.

• Extending the study to include other programming
languages with actual production-grade compilers
to gain comprehensive insights into memory layout
optimisation across different domains and language
classes.

• Validating theoretical benefits by implementing
AST layout optimisation in real-world, widely used
compilers, thereby identifying challenges and verify-
ing performance gains in practical scenarios.

6.4 Recommendations
Based on our findings, the following recommendations are
proposed for compiler architects:
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• Adoption of an SoA layout for ASTs is strongly rec-
ommended to maximise cache utilisation and min-
imise memory access times, resulting in substantial
performance improvements in both type-checking
and code-generation phases.

• Implementing compact data structures in compil-
ers using DOD principles can yield moderate perfor-
mance gains by increasing information density and
reducing memory overhead.

• Utilising memory pools for dynamically allocated
objects can further enhance performance by min-
imising memory allocation overhead.

• Transitioning to DOD-based ASTs requires metic-
ulous planning and significant refactoring efforts.
Compiler architects should carefully evaluate the
feasibility and potential performance benefits be-
fore starting such transitions, ensuring performance
gains justify the development costs.

In conclusion, optimising Abstract Syntax Tree mem-
ory layouts through Data-Oriented Design principles offers
promising compiler performance improvements. With this
study, we provided a foundation for further research and
development in this field.

7 Responsible Research

We adhere to principles of responsible conduct by address-
ing several key considerations.

7.1 Ethical Considerations
All software we used in the benchmark dataset and for the
research is open-source. This ensures that we do not in-
fringe on proprietary software or data. By using publicly
available software and data, our findings can be indepen-
dently verified and reproduced by other researchers.

7.2 Data integrity and management
Benchmark data has been carefully collected and recorded,
with datasets clearly documented to ensure transparency
(See Appendix B). This careful documentation validates
the integrity of the data used in our research.

7.3 Reproducibility
To facilitate reproducibility, all tools and code we devel-
oped and used has been made available through public
open-source repositories. The custom transpiler applica-
tion we developed for the research, as well as the various
AST layout optimisations and benchmarking scripts, are
accessible online. The full listing of tools and code is pre-
sented in Appendix C. Although the exact machines used

for benchmarks are privately owned and not publicly ac-
cessible, detailed instructions are provided to enable other
researchers to replicate the experiments on their machines
to verify the results.

7.4 Transparency
We provide a comprehensive description of our research
methodology, including the selection of benchmark inputs,
the design of alternative AST layouts, and the perfor-
mance evaluation process. This ensures that other re-
searchers can understand and scrutinise our research pro-
cess.
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A Original Tea compiler AST

The original Tea compiler consisted of 24 nodes, represented in the list below, in inheritance hierarchy. All nodes
inherit from the base ASTNode object. The full source code of the AST implementation can be found here: https:
//github.com/iannisdezwart/tea/tree/main/Compiler/ASTNodes.

• BreakStatement

• ClassDeclaration

• CodeBlock

• ContinueStatement

• ForStatement

• FunctionDeclaration

• IfStatement

• ReturnStatement

• SysCall

• TypeIdentifierPair

• TypeName

• VariableDeclaration

• WhileStatement

• ReadValue (abstract)

– AssignmentExpression

– BinaryOperation

– CastExpression

– FunctionCall

– LiteralCharExpresssion

– LiteralNumberExpresssion

– LiteralStringExpresssion

– WriteValue (abstract)

∗ IdentifierExpression
∗ MemberExpression
∗ OffsetExpression
∗ UnaryOperation

B Full benchmark data listing

The full benchmark data consists of the following data points:

• Time performance results: 50 data points for each combination of machine, optimisation & program.

– Collected data points:

∗ Type-checking time (microseconds)
∗ Code-generation time (microseconds)
∗ Program
∗ Machine
∗ Optimisation

– Benchmark script: https://github.com/iannisdezwart/tea/blob/main/bench.sh

– Data file: https://github.com/iannisdezwart/rp-data/blob/main/benchmark_data.csv

• Memory usage results: 50 data points for each combination of optimisation & program.

– Collected data points:

∗ Optimisation
∗ Program
∗ VSZ delta parsing phase
∗ RSS delta parsing phase
∗ VSZ delta type-checking phase
∗ RSS delta type-checking phase
∗ VSZ delta code-generation phase
∗ RSS delta code-generation phase

– Benchmark script: https://github.com/iannisdezwart/tea/blob/main/bench-mem.sh

– Data file: https://github.com/iannisdezwart/rp-data/blob/main/memory-results.csv
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• Cache efficiency results: One data point per combination of optimisation & program. (Because Valgrind is
relatively deterministic).

– Collected data points:

∗ Optimisation
∗ Program
∗ I Refs
∗ I1 Misses
∗ D Refs
∗ D1 Misses
∗ LLd Misses
∗ LL Refs
∗ LL Misses

– Benchmark script: https://github.com/iannisdezwart/tea/blob/main/bench-cache.sh

– Data file: https://github.com/iannisdezwart/rp-data/blob/main/cache-results.csv

C Full code listing

We used three GitHub projects in this research:

• Tea compiler: https://github.com/iannisdezwart/tea
The Tea compiler is written in C++, and its lifetime preceded this research project by several years. We created
a branch for each AST layout optimisation, so that each optimisation can be clearly viewed and compared.

• C to Tea transpiler: https://github.com/iannisdezwart/c-to-tea-transpiler
The transpiler was written in Rust. The rationale for that decision was because the lang_c crate seemed to be a
promising C parser with a well-documented high-level API.

• Data repository: https://github.com/iannisdezwart/rp-data
Features a Node.JS Express API and a Postgres database running on Docker to facilitate the result processing.
Uses Plotly.JS for graphing & visualisation. The final data is also stored in CSV format.
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