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Abstract

The thesis focuses on optimising the mortgage acceptance process at Achmea Bank, based on im-
proved probability of default (PD) modelling. The objective is to improve the existing Advanced
Internal Ratings-Based (A-IRB) model, initially designed for calculating capital requirement,
and better tailor it to the credit acceptance mechanism. This research identifies areas where
adjustments are necessary, including feature selection optimisation, the use of a more suitable
target variable, and the exploration of multivariate isotonic regression as a non-parametric model
for better estimating the nonlinear interactions among features and the target variable.

Earlier on, the thesis introduces an adapted dataset to mimic the setting of a mortgage
acceptance process. This is where only the first observation of each facility in the dataset
is used, unlike the original A-IRB model, which worked with more than one observation per
facility. Missing values are appropriately addressed, and outliers are addressed through capping
and flooring techniques to ensure data quality.

The research employs logistic regression to model the probability of default, with a focus
on the feature selection process. Comparison among different models with target defaulting in
12 months and 24 months reveals that changing the target variable and improving the feature
selection process results in better model performance.

The second focus of this thesis is isotonic multivariate regression, giving greater flexibility
by fitting a nonlinear relationship between the risk drivers and target but with the constraint of
monotonicity. The minimum Redundancy Maximum Relevance (mRMR) algorithm is used for
the selection of features to reduce computational time, which has much less computational time
than traditional methods.

Comparison across models reveals that the isotonic regression model, with greater recall and
more accurate default detection, has a higher false-positive rate. Logistic regression with a 24-
month target, on the other hand, strikes a better trade-off between precision and recall, leading
to fewer false alarms and a lower number of flagged cases.

Overall, the thesis demonstrates that logistic regression and isotonic regression models both
provide valuable information to Achmea Bank’s mortgage acceptance. While logistic regression
with a 24-month goal is an appropriate balance between recall and precision, isotonic regression
can provide recall-improvement potential at the cost of precision. Subsequent studies should
focus on reducing false positives within the isotonic regression model, exploring reject infer-
ence procedures to adjust for potential sample bias, and examining other forms of classification
procedures that can more effectively handle class imbalance.
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1 | Introduction

Financial institutions play a crucial role in the contemporary economy by providing financial
capital to their customers. Banks normally get most of their revenues from mortgages [15].
Financial institutions’ greatest challenge is the possibility that counterparties do not perform in
time. Banks should maintain liquid assets to cover such losses. Defaults occurring too frequently
can result in substantial financial losses and even bankruptcy.

For example, the large investment bank Lehman Brothers filed for bankruptcy during the
2008 subprime mortgage crisis [1]. The immediate cause of this crisis was the housing bubble in
the US. In the early 2000s, interest rates were kept low to stimulate economic growth, making
borrowing more affordable. As expected, this resulted in rapid growth in the housing market
and a rapid increase in housing prices. As housing prices rise rapidly, lenders are increasingly
offering more and more risky loans to borrowers with poor credit. In 2006, house prices reached
their peak, and the prices started to decrease. When this happens, many borrowers default on
their loans, resulting in a wave of foreclosures and substantial losses for financial institutions.

Credit risk arises when an institution lends money to a counterparty. For Achmea Bank,
this occurs when clients are unable to pay their mortgage payments, potentially resulting in
a loss for the bank. Since the subprime mortgage crisis of 2008, credit risk modelling has
gained increasing importance [21]. To prevent similar events, the Basel Committee on Banking
Supervision (BCBS), the primary global standard setter for banking regulation, strengthened
the framework that defines minimum capital requirements for banks to cover potential future
losses.

1.1 Basel Committee on Banking Supervision (BCBS)

Under Basel regulations, banks are required to maintain a certain amount of capital as a buffer
against unexpected losses. The required capital is expressed as a percentage of the bank’s risk-
weighted assets (RWA), namely 8% [3]. The riskier the asset, the higher the weight assigned.
Basel II [2] introduced two approaches for calculating the RWA: the standardised approach and
the internal rating-based (IRB) approach. The standardised approach assigns fixed risk weights
to assets as provided by regulators, while the IRB approach allows banks to use internal models
to estimate risk parameters, such as the probability of default (PD), loss-given-default (LGD),
and exposure at default (EAD). A higher accuracy of these models will lead to a lower risk for
banks, providing a clear incentive for research in this area.

1.2 A-IRB model

Achmea Bank uses the Advanced Internal Ratings-Based (A-IRB) approach, which offers greater
flexibility in modelling credit risk but requires more stringent regulatory oversight. Under the A-
IRB framework, Achmea estimates key risk parameters-namely, the probability of default (PD),
loss given default (LGD), and exposure at default (EAD)-using its internal data. This enables a
more accurate and risk-sensitive calculation of capital requirements.



2 1.3. EXTENDING THE A-IRB MODEL FOR CREDIT APPROVAL

The capital requirement per unit of exposure is similar to the unexpected loss per unit of
exposure and is denoted as K. The total Risk-Weighted Assets (RWA) are then calculated as:

RWA =
1

0.08
·K · EAD, (1.1)

Where the factor 1
0.08 is a scaling constant that reflects the regulatory minimum capital

requirement of 8%. The capital requirement per unit of exposure, denoted by K, is a function
that incorporates the PD and the LGD, as described in Article 31.5 [3]. If the PD and LGD are
high, then K will also be high, leading to a higher RWA. This implies that the bank must hold
a larger amount of capital to cover potential unexpected losses.

This approach enhances risk sensitivity by reflecting the actual characteristics of the bank’s
exposures, which can lead to potentially lower capital requirements for low-risk assets.

1.3 Extending the A-IRB Model for Credit Approval

The primary use of the A-IRB model is to model the capital requirements. However, BCBS stated
in Article 36.60 [3] that in order to grant permission for the use of the A-IRB approach, banks
need to demonstrate that internal ratings used in the calculation of their own capital requirements
and associated systems and processes play an essential role in the risk management process and
in the credit approval process. Therefore, Achmea has established the acceptance framework,
which uses PD to support the decision-making on whether an applicant should be accepted or
rejected. Every applicant is given a credit score representing the probability of default. Based on
this rating, an applicant will be flagged. If an applicant is flagged, the applicant will be reviewed
manually.

The exact accuracy of the A-IRB model within the acceptance framework is currently un-
known. However, according to the mortgage desk, the model appears to underperform in practice.
A significant number of facilities are being flagged by the model, yet manual reviews often reveal
no underlying issues. Furthermore, while the observed probability of default in recent years is
approximately 0.05%, the proportion of flagged facilities exceeds 2%. This mismatch between
the proportion of defaults and the proportion of flags has led experts at Achmea to conclude
that the model’s predictive performance can be improved.

The aim of this thesis is to identify potential improvements to the existing A-IRB model
when applied to the mortgage acceptance process. The A-IRB model was originally developed
for calculating capital requirements, and as such, its design and training phase did not take the
mortgage acceptance context into account. To evaluate how well the model functions in this new
context, we will begin by assessing the dataset.

The feature set used for A-IRB modelling includes a wide range of attributes that cover data
only obtainable after issuing a mortgage. For instance, mortgage payment behaviour features
are included in the model. Although these sorts of features yield good predictive power for risk
modelling, they are based on post-acceptance data and therefore will not be available during
actual acceptance. This creates a mismatch: the model can learn to rely on variables that are
not present at use time, rendering it less practical for the acceptance process.

In addition, credit risk modellers dispute the completeness of the dataset in the current
acceptance framework and agree that feature selection is where the highest value addition lies.
The current approach is very time-consuming, so much so that it is difficult to test different
feature combinations effectively. To address this, we look at leveraging the mRMR (Minimum
Redundancy - Maximum Relevance) algorithm, which attempts to reduce computation time
without influencing the model’s performance [26].

Next, we examine the target variable used in the A-IRB model, which is currently defined
as default within one year. This target is a common industry standard and is recommended by
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experts in credit risk management for capital calculation purposes [4]. However, it is unclear
whether this definition is also appropriate for the acceptance process.

Furthermore, to improve the acceptance model, multivariate isotonic regression is introduced.
Multivariate isotonic regression is a non-parametric method that models non-linear relationships
between multiple independent variables and the target variable while preserving monotonicity.
Unlike traditional models that rely on specific functional forms, isotonic regression offers greater
flexibility and is particularly well-suited for financial applications, where variables such as income,
credit score, and loan size are expected to have monotonic relationships with the probability of
default. Compared to other non-parametric techniques, isotonic regression has the advantage of
preventing overfitting due to its monotonicity constraint and does not require tuning parameters,
making it both robust and easy to implement.

Finally, another key issue in the current framework is the absence of a reliable evaluation
metric. Without an appropriate way to assess model performance, it is difficult to determine
whether the current A-IRB-based acceptance model is optimal for its intended purpose.

1.4 Research objective and Contribution

Achmea’s A-IRB model has been in production for several years, and its performance in the
context of capital requirement calculations has been thoroughly analysed and validated. However,
similar analysis and validation are lacking in the credit acceptance framework. This thesis
contributes to the analysis and development of a more effective credit acceptance process for
Achmea Bank.

In recent years, numerous studies have explored the use of advanced machine learning tech-
niques such as random forests, gradient boosting, and neural networks to model the probability
of default (PD). These models often demonstrate strong predictive performance. However, due to
strict regulatory requirements in the financial sector, particularly those related to explainability
and interpretability, such models are typically not permitted in production environments despite
their performance. Therefore, a key contribution of this thesis is the development of an inter-
pretable model that aligns with regulatory expectations: multivariate isotonic regression.

Univariate isotonic regression has a long-standing history in statistical modelling and has
been widely applied in calibration tasks, including in the field of credit risk. For example, it
has been used to adjust model outputs so that predicted risk scores correspond more closely to
observed default rates [25]. However, despite the monotonic relation between variables such as
income and credit rating, to our knowledge, multivariate isotonic regression has not yet been
applied to directly model the probability of default in credit scoring in the existing literature.

In summary, the objective of this thesis is to enhance the mortgage acceptance model by im-
proving feature selection, identifying a more suitable target variable, and exploring the potential
of multivariate isotonic regression.

The research is guided by the following sub-questions:

1. What modifications should be made to the dataset before applying the model? (Section
2.2)

2. What is the most appropriate target variable for the acceptance model?

3. How should one choose the optimal feature set? (Section 3.2 and 4.4)

4. What evaluation metric should be used to assess model performance? (Section 3.5)

5. How does multivariate isotonic regression perform compared to logistic regression? (Section
4.6.2)



2 | Data and Preprocessing

Before introducing the model, this chapter provides key definitions and background information
that will be used throughout the project, along with an explanation of the available dataset.
Section 2.1 defines important concepts such as mortgage, facility, and default and section 2.2
presents the available data sources.

2.1 Definitions

This section provides an overview of some definitions used in this report related to credit risk
modelling.

2.1.1 Mortgage

A mortgage is a type of loan used to purchase (or maintain) property, usually a house. The
borrower agrees to repay the lender over a certain period of time, which can range from 10 to 30
years (or even more). The property itself serves as collateral, meaning the lender has the right
to sell the house if the borrower does not make their payments.

In order to apply for a mortgage, a borrower must ensure that they meet several requirements,
for example, a minimum credit score. In the application process, the lender will ask the borrower
to provide evidence such as bank statements, proof of current employment and income. If
the application is approved, the lender will offer the borrower a loan up to a certain amount,
depending on the borrower’s income, at a particular interest rate. The ratio between the loan
amount and the value of the underlying property is called the Loan-to-Value (LTV).

Mortgages are available in various types, for example, mortgages for self-employed profes-
sionals. The various types are also called product.

2.1.2 Facility

A facility is a credit obligation arising from a contract between an obligor (individual or joint)
and, in our case, Achmea Bank or one of its partners. The facility must be economically owned by
Achmea Bank, backed by the same collateral. From every facility, Achmea has monthly records
about its characteristics. Every record of a facility is called an observation. One facility can
have multiple observations, but every observation corresponds to only one facility.

2.1.3 Default

The definition of default has been omitted from this publicly available version of the document.

2.2 Available data

This research utilizes the Historical Model Dataset (HMDS) from Achmea Bank, covering a
period of 9 years, from confidential to confidential . The HMDS contains more than 600,000
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yearly observations. Table 2.1 provides an overview of the number of observations, number of
defaults, and the observed default rate (ODR) in December of each year.

Table 2.1: Overview of the number of observations, number of defaults, and observed default
rate (ODR) for each year in the period from confidential to confidential in the Historical Model
Dataset (HMDS) from Achmea Bank.

[REDACTED]

The unique facilities in the HDMS is randomly split into a training and test set based on
the 80-20 rule. To assess whether the training and test sets are representative, we compare their
characteristics. The various characteristics are presented in Table 2.2. The Loan-to-Value (LTV)
is calculated by dividing the loan amount by the appraised value of the property. For instance,
if the appraised value is e400,000 and the desired loan is e300,000, the LTV is calculated as
e300,000
e400,000 = 0.75. A lower LTV suggests a less risky facility. The Central Credit Registration Office
(in Dutch, "Bureau Krediet Registratie" (BKR)) keeps records of private parties that have taken
out a loan and based on the number of loans recorded and payment behaviour, parties receives
a score. This score ranges from A to L, with A being the best, and the values being monotonic.
The median values for both sets are identical, with other values showing slight differences. The
training set has a higher percentage of clients who are or have been in arrears, but a lower default
rate and LTV.

Table 2.2: Statistics of the training and test datasets.

[REDACTED]

The dataset contains various risk drivers and the target variable, which can be grouped into
three main categories. First, it includes obligor characteristics such as BKR registration, payment
arrears, income, and marital status. Second, it provides information on loan characteristics,
including the proposition type, outstanding amount, remaining interest period, and the presence
of a bridge loan. Finally, the dataset includes collateral characteristics such as the region, loan-
to-value (LTV) ratio, and the type of collateral. The target variable is defined as a binary
indicator representing whether a default occurs within one year. Formally, it is defined as:
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yi =

{
1, if observation i will default within one year,
0, otherwise.

2.2.1 Missing data and outliers

The section is subject to a non-disclosure agreement and have been omitted from this publicly
available version.

2.3 Datasets

Dataset A refers to the dataset used by Achmea, while dataset B is the modified dataset.
Specific details about both datasets have been omitted from this publicly available version.

In the following chapters, we will train both the logistic regression model (Chapter 3) and the
multivariate isotonic regression model (Chapter 4) using dataset B. The performance of these
models will be compared to each other, as well as to the current model trained on dataset A.



3 | Modelling the probability of default
using logistic regression

Accurately estimating the probability of default (PD) is a fundamental aspect of credit risk mod-
elling, as it directly informs lending decisions. One commonly used approach for PD modelling
is logistic regression - a parametric technique that estimates the likelihood of default based on a
set of identified risk drivers.

This chapter explores the application of logistic regression in modelling the probability of de-
fault. We begin by introducing the logistic regression model and its role in credit risk assessment
(Section 3.1). Subsequently, we present the feature selection process (Section 3.2). Finally, we
evaluate the model’s performance and interpret the results to assess its predictive accuracy and
practical relevance in estimating default risk.

3.1 Logistic Regression

Suppose we are given a training set consisting of independent observations (Xi, yi)
n
i=1 with Xi ∈

Rp and yi ∈ {0, 1}.
Then the logistic regression model postulates:

p(Xi;β) = P(yi = 1 | Xi) =
eβ

TXi

1 + eβTXi
, for i = 1, . . . , n,

where β ∈ Rp is the vector of coefficients associated with the p features.
Logistic regression models are usually fit by maximum likelihood using the conditional like-

lihood of yi = 1 given Xi. The likelihood function for logistic regression can be written as:

ℓ(β) =
n∏

i=1

[
p(Xi;β)

yi(1− p(Xi;β))
1−yi

]
,

The log-likelihood is the natural logarithm of the likelihood:

log(ℓ(β)) =

n∑
i=1

[yi log(p(Xi;β)) + (1− yi) log(1− p(Xi;β))] .

To find the maximum likelihood estimator β̂, we solve the following equation:

∇βℓ(β) =

n∑
i=1

(yi − p(Xi;β))Xi (3.1)

Equation (3.1) can be solved using the Newton-Raphson algorithm (see [16], p. 120).
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3.2 Feature Selection

In the previous section, we showed the mathematical framework for logistic regression, where
the goal is to model the probability of a binary outcome as a function of the predictors, using a
logistic function. The coefficients of the logistic regression model are typically estimated using
maximum likelihood estimation (MLE), which requires selecting appropriate features that can
effectively explain the variability in the outcome variable. However, in practice, the choice of
features can significantly impact the model’s performance. When dealing with a large number
of predictors, some of them may be irrelevant or highly correlated with others, which can lead
to overfitting. Therefore, before fitting the logistic regression model, it is important to carefully
select the most relevant features.

Especially, in credit risk assessment, feature selection is an important task due to the large
number of features. When datasets contain numerous redundant variables, the computational
cost of training models increases significantly. For example, consider a dataset with p features.
Given this set of features, we can choose to use all, some, or even none of them to enter into
the model. If the goal is to find the best predictive model using these p features, then the total
number of unique subsets equals 2p, where we include the possibility of having an empty set.
The number of possible models increases exponentially with the number of features. Therefore,
it is not computationally feasible to obtain the best predictive model by analysing all possible
subsets of features. Furthermore, reducing the number of features not only simplifies the model
but also enhances its interpretability. The accuracy and reliability of these models also rely on
this process. Indeed, recent studies on credit risk modelling shows the importance of feature
selection, in particular in improving the model’s performance [18].

Feature selection has been studied across various financial domains with several approaches
to identify the most relevant features for the PD models. The available data to estimate the PD
can be divided in three categories:

• Borrower risk characteristics: characteristics related to individual clients such as age, oc-
cupation and debt-to-income ratio.

• Transaction risk characteristics: characteristics about the loan. For example, the loan
purpose, the house type and the loan-to-value ratio.

• Aggregate risk characteristics: characteristics which are the same for multiple clients. Ex-
amples are macroeconomic variables as house price indices, unemployment rates and GDP
growth rates.

Depending on the purpose of the loan, the focus can vary between borrower risk characteristics
and aggregate risk characteristics. Variables as interest rate, current income and loan-to-value
ratio are often highlighted as crucial in PD models [7], [19] [24]. However, studies also show that
macro-economic characteristics have a significant impact on the PD models [23]. For example, a
rise in the unemployment rate means that more people lose their primary income, affecting their
ability to make the payments.

The literature on PD models for mortgages in the Netherlands is very limited. First, Medema
[20] published a paper about the validation of a PD model, focussing on the effects of risk
drivers. Using data from 2000-2003, the probability of default within a year is modelled using
a logit model. The model includes the following risk drivers: loan-to-value (loan-to-value ratio),
loan-to-income (loan-to-income ratio), duration (maturity), type of mortgage and a due payment
indicator. The model shows that the expired duration has a negative relation with the probability
of default, meaning that the closer to the maturity date, the lower the PD. The other variables
have a positive relation with the target variable.

In addition to the paper of Medema, Kroot [18] analyses the impact of the financial crisis
on the probability of default covering the period from 2001 until 2012. The study develops
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a statistical model including both internal and external risk factors. External risk factors are
influenced by market conditions and are not directly linked to client characteristics.

The details of the feature selection process have been omitted from this publicly available
version.

3.3 Model Performance

The model’s performance is evaluated using the GINI index. Further details on the performance
is omitted from this publicly available version.

GINI Index

Let us now introduce the notation and procedure used to define and compute the GINI coefficient,
a measure of discriminatory power commonly used in binary classification tasks, particularly in
credit risk modelling.

Let n ∈ N denote the total number of observations, and let

y = (y1, . . . , yn) ∈ {0, 1}n and ŷ = (ŷ1, . . . , ŷn) ∈ Rn

be the binary outcome vector (e.g., default indicators) and the corresponding predicted probabil-
ities, respectively. We assume that the observations are sorted in descending order of predicted
values, so that

ŷ1 ≥ ŷ2 ≥ · · · ≥ ŷn.

For each index i ∈ {1, . . . , n}, we define the cumulative proportion of the population as

Ci :=
i

n
,

and the cumulative proportion of true positives as

Ti :=

∑i
j=1 yj∑n
j=1 yj

.

We define C0 := 0 and T0 := 0. The points (Ci, Ti) forms the Lorenz curve as i goes from 0
to n. To approximate the area under this curve, we apply the trapezoidal rule:

AUC :=

n∑
i=1

Ti + Ti−1

2
(Ci − Ci−1).

The GINI coefficient is then defined by:

GINI = 2 ·AUC− 1.

The training set achieves a GINI of 65.8%, while the test set yields only 30.9%. This signif-
icant difference indicates overfitting, implying that the model is overly tailored to the training
data. Such a situation may occur when the training set does not include enough examples of
defaults or when the model is too complex.

3.4 Comparison across models

Table 4.5 presents a comparison of the risk drivers used in the three models. For convenience,
we define the models as follows:
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• Model LRA,12: Logistic regression model trained on dataset A (see Section 2.3), with the
target variable being default within 12 months.

• Model LRB,12: Logistic regression model trained on dataset B (see Section 2.3), with the
target variable being default within 12 months.

• Model LRB,24: Logistic regression model trained on dataset B, with the target variable
being default within 24 months.

Table 3.1: List of risk drivers in final model. The first column represents the model trained
using logistic regression on Dataset A, with the target variable being default within 12 months.
The second and third columns are both trained on Dataset B. In the second column, the target
variable is set to default within 12 months, while the third column uses default within 24 months
as the target variable.

[REDACTED]

In Table 3.2, the GINI scores of the different models are evaluated on the training and
test sets. The GINI score of model LRA,12 for the training and test sets is 64.7% and 19.2%,
respectively. It is important to note that the model is trained on the training set of dataset A,
and its performance is evaluated on the test set of dataset B. This is due to the fact that dataset
B only contains the first observation, which mimics the data available during acceptance. The
second model LRB,12 has a GINI of 65.8% and 30.9%, respectively. And the third model has a
GINI of 62.3% and 55.8%, respectively. Based on these GINI scores, LRB,24 performs the best
in terms of generalisation to the test set.

Table 3.2: Model Performance in terms of GINI on Different Datasets.

Model Training Test
LRA,12 64.7% 19.2%
LRB,12 65.8% 30.9%
LRB,24 62.3% 55.8%

3.5 Acceptance Framework

The outcome of the model provides the probability of default for each facility. This probability
is then used to determine whether an applicant should be flagged during the acceptance process.
Flagging implies that the client requires a manual review.

Initially, the performance of the model was assessed using the GINI score to evaluate its
predictive capabilities. However, within the acceptance framework, a more granular approach
is necessary. The focus shifts towards analysing the false default (FD), false healthy (FH), true
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default (TD), and true healthy (TH) cases. To gain deeper insights into these classifications, the
following accuracy metrics are considered:

• Precision: The proportion of true detected defaults, given by:

Precision =
TD

FD + TD
(3.2)

• Recall: The proportion of actual defaults that are correctly identified, given by:

Recall =
TD

TD + FH
(3.3)

• Accuracy Rate: The proportion of correctly predicted outcomes, given by:

ACC =
TD + TH

TD + TH + FD + FH
(3.4)

• F1 Score: The proportion of correctly predicted outcomes, given by:

F1 score = 2× Precision× Recall
Precision + Recall

(3.5)

3.5.1 Threshold Optimisation and Model Evaluation via F1 Score

The threshold for whether an applicant should be flagged will be chosen by optimising the F1
score. The F1 score is the harmonic mean of precision and recall, and is particularly useful in
situations where there is an imbalance between the classes. By maximising the F1 score, we
aim to find a threshold that balances the trade-off between false positives and false negatives,
ensuring that we identify as many relevant applicants as possible (high recall) while minimising
incorrect flags (high precision). The optimal threshold is determined using predictions on the
training data and then applied to the test data to evaluate final model performance. The optimal
threshold values for models LRB,12 and LRB,24 are 0.096 and 0.227, respectively, corresponding
to F1 scores of 0.069 and 0.160 (see Appendix A.5).

Table 3.3 summarises the key classification metrics: Accuracy, Recall, Precision, and F1 Score
for three logistic regression models (see Appendix A.6 for the corresponding confusion matrices).
Model LRA,12 achieves the highest accuracy (0.9870) and recall (0.1429), though its precision
(0.0769) remains relatively low, resulting in a F1 score of 0.100. Model LRB,12 results the lowest
recall (0.0714) and precision (0.0333), yielding the weakest F1 score (0.045) among the three.
Meanwhile, Model LRB,24 demonstrates more balanced performance, with a recall of 0.1034 and
the highest precision (0.1154), with an F1 score of 0.109. Overall, while LRA,12 shows strength
in capturing positive cases, LRB,24 offers improved precision and slightly better F1 performance.

Table 3.3: The accuracy, recall, precision and F1 score for all three models.

Model Accuracy Recall Precision F1 Score
Model LRA,12 0.9870 0.1429 0.0769 0.100
Model LRB,12 0.9848 0.0714 0.0333 0.045
Model LRB,24 0.9823 0.1034 0.1154 0.109

In practice, the flagged facilities must be manually reviewed by the acceptance team, who
face a high workload. Therefore, we also analyse the false alarm rate (FAR), which is defined as:

FAR =
FD

FD + TH
(3.6)



12 3.6. CONCLUSION

The FAR for models LRA,12, LRB,12 and LRB,24 is equal to 0.87%, 1.06% and 0.84%, re-
spectively. Lastly, the distribution of predicted default probabilities is compared between actual
defaults and non-defaults. The predicted probabilities from model LRB,12 are visualized in Fig-
ure 3.1 (and for model LRA,12 and model LRB,24 see Appendix A.7). The plot shows that both
defaults and non-defaults are concentrated around a predicted probability of approximately 0.01.
As a result, lowering the threshold would increase the detection rate (recall), but it would also
substantially raise the false positive rate (see Figure 3.2). This illustrates the natural trade-off
between sensitivity and specificity in the model’s predictions.

[REDACTED]

Figure 3.1: Distribution of the predicted probability of default. The top panel shows the distri-
bution of predicted probabilities that do not default within one year, with the most predictions
concentrated near 0. The bottom panel shows the distribution of defaulted loans, with a broader
spread of predicted probabilities.

Figure 3.2: Detection and false alarm rates as a function of the classification threshold.

3.5.2 Further Analysis for Credit Policy

The details of this section have been omitted from this publicly available version.

3.6 Conclusion

In this chapter, we explored the application of logistic regression for predicting the probability
of default. Through feature selection, we identified the key risk drivers.

The performance of model LRB,12 revealed signs of overfitting, as indicated by a substantial
gap between the GINI scores on the training set (65.8%) and the test set (30.9%). Despite this,
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LRB,12 demonstrated improved default probability estimation compared to the current model
LRA,12, based on GINI score. However, overfitting remains a concern. The last model, LRB,24,
trained to predict defaults over a 24-month horizon instead of 12 months, yielded a lower GINI
score on the training set, but outperformed the other models on the test set, indicating better
generalisation. In terms of classification performance, model LRA,12 achieved the highest recall,
while LRB,24 achieved better precision and the lowest false alarm rate.

In the next chapter, we introduce isotonic regression for modelling default probabilities. Un-
like logistic regression, isotonic regression makes no parametric assumptions about the relation-
ship between predictors and outcomes, offering greater flexibility to capture complex patterns in
the data.



4 | Multivariate Isotonic Regression

Isotonic regression is a non-parametric regression technique that provides greater flexibility com-
pared to parametric methods such as linear regression. For simplicity, multivariate isotonic
regression will be referred to as isotonic regression in the following discussion, as we are mod-
elling the probability of default with multiple features. One of its key advantages is the relaxation
of restrictive assumptions. While linear regression assumes a strict linear relationship between
variables, isotonic regression only requires that the relationship between X and Y be mono-
tonic. This makes it particularly useful in applications where the data is expected to follow a
non-decreasing or non-increasing trend, such as credit risk modelling.

Isotonic functions can be used as an underlying assumption in both regression and classifica-
tion problems. First, consider a nonparametric regression problem of the form: f∗ : [0, 1]d → R,
where d ≥ 1. Let (xi, yi)

n
i=1 represent a set of independent observations, with xi ∈ Rd and

yi ∈ R. Assume that the relationship between the input and output variables is described by the
model

yi = f∗(xi) + εi, where εi ∼ N (0, σ2), i = 1, . . . , n, (4.1)

where σ2 ≥ 0 is unknown, and f∗ can be estimated using the isotonic least squares estimator
defined in equation (4.2).

The isotonic regression estimator is the least squares estimator over Fd
EM , the class of entirely

monotone functions on [0, 1]d:

f̂EM ∈ argmin
f∈Fd

EM

1

n

n∑
i=1

(yi − f(xi))
2. (4.2)

In this chapter, we are interested in the performance of multivariate isotonic regression in
predicting the probability of default. To this end, we first provide some definitions and properties
related to monotonicity in Section 4.1. Then, Section 4.2 describes how the isotonic regression
estimator can be found by solving a non-negative least squares problem. We are also interested
in the risk behaviour of the estimator f̂EM, which is studied under the standard fixed design
squared error loss function. In Section 4.3, we prove that the risk of estimator f̂EM is bounded
by n−2/3.

Before applying isotonic regression, preprocessing steps are necessary, for example, to improve
computational efficiency. Given the size of the dataset used in this study, selecting an optimal
subset of features is essential. To achieve this, we use the Minimum Redundancy Maximum
Relevance (MRMR) algorithm, which is described in Section 4.4. The application and evaluation
of isotonic regression are presented in Section 4.5. Finally, in Section 4.6, we compare the
performance of the different methods.

4.1 Entire Monotonicity

Before defining monotone and entirely monotone functions, we first introduce the concept of
domination, which will be used in their definitions. Let a = (a1, . . . , ad) and b = (b1, . . . , bd) be
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two points in [0, 1]d. We say that a dominates b if, in every dimension, aj is greater than or
equal to bj . This is denoted as:

a ⪰ b ⇐⇒ aj ≥ bj , ∀j ∈ {1, 2, . . . , d}.

Then, we can define the monotone function.

Definition 4.1 (Monotone Function). A function f : [0, 1]d → R is called monotone if for any
a,b ∈ [0, 1]d such that a ⪰ b, it holds that:

f(a) ≥ f(b).

In the univariate case (d = 1), the class of monotone functions, F1
M , coincides with the class

of entirely monotone functions, F1
EM . For the bivariate case (d = 2), the class F2

EM consists of
all monotone functions that also satisfy the following condition:

f(b1, b2)− f(a1, b2)− f(b1, a2) + f(a1, a2) ≥ 0,

for every 0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1. This condition can be generalised for d > 2 by
introducing the quasi-volume.

Definition 4.2 (Quasi-volume). Let f : [0, 1]d → R and let a,b ∈ [0, 1]d satisfy a ⪯ b (i.e.
ai ≤ bi for every i = 1, . . . , d). The quasi-volume of f over the rectangle [a,b] is

∆
(
f ; [a,b]

)
:=

J1∑
j1=0

. . .

Jd∑
jd=0

(−1) j1+···+jd f
(
b1+j1(a1−b1), . . . , bd+jd(ad−bd)

)
, Ji := I{ai ̸= bi}.

Remark 4.1. The quasi-volume operator is a linear operator: for all α, β ∈ R and functions
f, g : [0, 1]d → R,

∆
(
αf + βg; [a,b]

)
= α∆

(
f ; [a,b]

)
+ β∆

(
g; [a,b]

)
.

Definition 4.3 (Entirely Monotone Function). A function f : [0, 1]d → R is called entirely
monotone if every quasi-volume ∆(f ; [a,b]) is non-negative:

∆(f ; [a,b]) ≥ 0, for every a ̸= b ∈ [0, 1]d with a ⪯ b. (4.3)

Now that we have defined both the set of monotone functions and the set of entirely monotone
functions, we establish the relationship between the two sets using the following lemma.

Lemma 4.1. For d ≥ 2, we have Fd
EM ⊊ Fd

M.

Proof. Let a,b ∈ [0, 1]d and f ∈ Fd
EM. By the definition of entirely monotone functions, for

a ⪯ b, we have:
∆(f ; [a,b]) ≥ 0, for all a ̸= b.

Taking a and b such that ai = bi for all i ̸= k and ak ̸= bk, we note that for all i ̸= k,

bi + ji(ai − bi) = bi.

Since only ak ̸= bk, the summation over all ji for i ̸= k becomes trivial, reducing the quasi-
volume expression to a one-dimensional sum over jk:

∆(f ; [a,b]) =
1∑

jk=0

(−1)jkf(b1, . . . , bk−1, bk + jk(ak − bk), bk+1, . . . , bd) (4.4)

= f(b1, . . . , bk, . . . , bd)− f(b1, . . . , ak, . . . , bd) ≥ 0. (4.5)
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Then, for all k ∈ {1, . . . , d}, we have

f(b1, . . . , bk, . . . , bd) ≥ f(b1, . . . , ak, . . . , bd).

For a ⪯ b, we can apply the equation repeatedly to obtain:

f(b1, . . . , bd) ≥ f(b1, . . . , ad) ≥ · · · ≥ f(b1, a2, . . . , ad) ≥ f(a1, a2, . . . , ad).

Thus, we conclude that f ∈ Fd
M.

To show that the two sets are not equal, consider the function f : [0, 1]d → R defined by:

f(u) :=


0 if max{u1, u2} < 1

2 ,

3 if min{u1, u2} ≥ 1
2 ,

2 otherwise.

Note that f is constant in all components except the first two. It is clear that f ∈ Fd
M . However,

for
a =

(
1

4
,
1

4
, 0, . . . , 0

)
, b =

(
3

4
,
3

4
, 0, . . . , 0

)
,

we compute:
∆(f ; [a,b]) = 3− 2− 2 + 0 = −1 < 0.

Since ∆(f ; [a,b]) < 0, we conclude that f /∈ Fd
EM, proving the strict inclusion.

To conclude, we have defined monotone and entirely monotone functions and highlighted the
difference between them. In the following section, we will show how to compute the estimator.

4.2 Solving LSE problem using NNLS

The estimator (4.2) can be computed by solving a non-negative least squares (NNLS) problem.
Given a suitable design matrix A, the goal of the NNLS problem is to find

β̂EM ∈ argmin
β∈Rp:βj≥0,∀j≥2

∥y −Aβ∥22, (4.6)

where y is the n× 1 vector consisting of the output variables y1, . . . , yn from equation (4.1).
In this project, we consider the special setting where the observations x1, . . . ,xn form an

equally spaced lattice design. That is, given the positive integers n1, . . . , nd with n = n1 · · ·nd,
x1, . . . ,xn form an enumeration of the points in

Ln1,...,nd
:=

{(
i1
n1

, . . . ,
id
nd

)
: 0 ≤ ij ≤ nj − 1, j = 1, . . . , d

}
. (4.7)

We construct a suitable design matrix A, where the (i, j)-th entry of A is given by:

A(i, j) = I[xj ,1](xi) = I{xj ⪯ xi}.

Therefore, in the lattice design, the NNLS problem in equation 4.6 can also be written as

β̂EM = argmin
β∈Rp:βj≥0, ∀ j≥2

n∑
i=1

yi −
n∑

j=1

I
{
xj ⪯ xi

}
βj

2

In the lattice design, the matrix A has dimensions n×n, where n is the number of observations
x1, . . . ,xn. Each column of A corresponds to a vector xj , which shows whether each observation
xi satisfies the inequality xj ⪯ xi. An example of the design matrix A is given in Appendix A.2.

The following theorem shows that the design matrix A is square and invertible in the lattice
design.
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Theorem 4.1. Let x1, . . . ,xn ∈ [0, 1]d be the distinct points of a lattice design, relabeled so that

x1 ⪯ x2 ⪯ · · · ⪯ xn.

Define the n× n matrix A by

Aij = I{xj ⪯ xi}, i, j = 1, . . . , n.

Then A is invertible.

Proof. Under the given ordering, if j > i then xj ̸⪯ xi, so

Aij = I{xj ⪯ xi} = 0.

Moreover, for each i,
Aii = I{xi ⪯ xi} = 1.

Hence A is lower-triangular matrix with all diagonal entries equal to 1. It follows that

det(A) =
n∏

i=1

Aii = 1,

and therefore A is invertible.

Solution of the optimisation problem

The solution β̂EM of the NNLS problem in equation (4.6) is not necessarily unique but the
projection Aβ̂EM of the observation y onto the closed convex cone is unique. This paragraph
shows how to obtain a solution given any β̂EM .

Proposition 4.1. Let x1, . . . ,xn ∈ [0, 1]d be the points of a lattice design, and define

Aij = I{xj ⪯ xi}, i, j = 1, . . . , n.

Then
{Aβ : βj ≥ 0,∀j ≥ 2} =

{
(f(x1), . . . , f(xn)) : f ∈ Fd

EM

}
.

Proof. (i) ⊆: Take βj ≥ 0 and define

f(z) =

n∑
j=1

βj I{xj ⪯ z}, z ∈ [0, 1]d.

Then for each design point,

f(xi) =

n∑
j=1

βj I{xj ⪯ xi} = (Aβ)i.

By linearity of quasi-volume, we have

∆
(
f ; [a,b]

)
=

n∑
j=1

βj ∆
(
I{xj ⪯ ·}; [a,b]

)
=

n∑
j=1

βj I{a ≺ xj ⪯ b} ≥ 0.

Therefore, f ∈ Fd
EM,

(ii) ⊇: Conversely, if f ∈ Fd
EM, then

f(xi) =
n∑

j=1

I{xj ⪯ xi}βj , i = 1, . . . , n,

has the unique solution β = A−1(f(x1), . . . , f(xn)). Entire monotonicity of f implies ∆(I{xj ⪯
·}; [. . . ]) ≥ 0, which gives βj ≥ 0.
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Combining Proposition 4.1 with the fact that β̂EM minimizes ∥y − Aβ∥2 over β ≥ 0, we
conclude (

f̂EM (x1), . . . , f̂EM (xn)
)
= A β̂EM ,

and hence the fitted entirely monotone function has the following form

f̂EM (z) =
n∑

j=1

(β̂EM )j I{xj ⪯ z}, z ∈ [0, 1]d.

4.3 Risk results

In this section, we study risk behaviour under the standard squared loss function. The risk of
an estimator f̂ is given by:

R(f̂ , f∗) := E
[
L(f̂ , f∗)

]
,

where the loss function L(f, f∗) is:

L(f̂ , f∗) :=
1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2
.

The following theorem proves that the risk of the estimator f̂EM is bounded in the setting
where the observations x1, . . . ,xn form an equally spaced lattice design. Since our goal is to
predict probabilities, we additionally assume that the true regression function satisfies

f∗(x), f̂EM (x) ∈ [0, 1] for all x ∈ [0, 1]d.

Theorem 4.2. Let f∗ ∈ Fd
EM and f̂EM , f∗ ∈ [0, 1] . For the lattice design (4.7), the estimator

f̂EM satisfies
R(f̂EM, f∗) ≤ Cdn

−2/3{log(2 +
√
n)

2d−1
3 + log(e

√
n))

2d−1
2 }. (4.8)

where Cd is a constant that depends only on the dimension d.

4.3.1 Proof sketch

The proof of the main result (Theorem 4.2) is quite complex, so this section gives a brief sketch
and explanation of the proof. The proof of Theorem 4.2 answers the question: How far is our
estimator from the true value?

First, we put all fitted values f̂EM(xi) into θ̂ and true values f∗(xi) into θ∗. Note that
θ̂ := ΠK(y) is the projection of the noisy data y = θ∗ + ξ onto the closed convex cone

D := {(f(x1), . . . , f(xn)) : f ∈ Fd
EM}.

Then, we analyse the risk

R(f̂EM, f∗) = E
1

n
∥θ̂ − θ∗∥2,

where θ∗ is the vector of true function values.
In Theorem 4.3 (which is proven in Section 4.3.3) we have stated that if you can find a radius

t∗, so that the expected maximum of all Gaussian inner products within that radius is at most
t2∗/2, then the expected risk is of order t2∗. In order to apply the theorem, we want to find a
bound for

E

[
sup

θ∈K:∥θ−θ∗∥≤t∗

⟨ξ,θ − θ∗⟩

]
.
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To apply this result, we define the function

G(t) := E sup
θ∈Dn1,...,nd

∩B2(θ∗,t)
⟨ξ,θ − θ∗⟩,

and derive an upper bound on G(t) using chaining, entropy integrals and covering numbers.
A key step is to show that G(t) ≤ t2/2 for all t ≥ tm, where t1 is an function of n, log n,

and the dimension d. This allows us to conclude that t∗ can be taken as tm, and thus the risk is
bounded by Ct2m/n for a universal constant C.

4.3.2 Proof of Theorem 4.2

Let
θ̂ :=

(
f̂EM(x1), . . . , f̂EM(xn)

)
, and θ∗ :=

(
f∗(x1), . . . , f

∗(xn)
)
,

and note that
R(f̂EM, f∗) = E

1

n
∥θ̂ − θ∗∥2,

where ∥ · ∥ denotes the usual Euclidean norm in Rn.
Observe that

θ̂ = Aβ̂EM

is the projection of the data vector y onto the closed convex cone

Dn1,...,nd
:= {Aβ : βj ≥ 0, ∀j ≥ 2} = {(f(x1), . . . , f(xn)) : f ∈ Fd

EM}.

Note that, under the lattice design (4.7), the set Dn1,...,nd
is completely determined by the

values of n1, . . . , nd. We can therefore apply Theorem 4.3 (proved in Section 4.3.3) to bound the
risk E∥θ̂ − θ∗∥2/n.

Theorem 4.3. Let K be a closed convex set in Rn and let

θ̂ := argmin
θ∈K
∥y − θ∥2,

where y ∼ Nn(θ
∗, In) for some θ∗ ∈ K (the well-specified case). Then there exists a universal

positive constant C such that
E∥θ̂ − θ∗∥2 ≤ Cmax(t2∗, 1)

for every t∗ > 0 which satisfies

E

[
sup

θ∈K:∥θ−θ∗∥≤t∗

⟨ξ,θ − θ∗⟩

]
≤ t2∗

2
,

where ξ ∼ Nn(0, In).

To apply this theorem, we need to find a t∗ such that

G(t) := E sup
θ∈Dn1,...,nd

∩B2(θ∗,t)
⟨ξ,θ − θ∗⟩ ≤ t2∗

2
, (4.9)

where ξ ∼ Nn(0, In) and
B2(θ∗, t) := {θ : ∥θ − θ∗∥ < t}

denotes the Euclidean ball of radius t centered at θ∗.
We use the following chaining result, which bounds G(t) in terms of covering numbers. The

covering number N(ϵ,Dn1,...,nd
∩ B2(θ∗, t)) is the minimal number of Euclidean balls of radius ϵ

needed to cover the set Dn1,...,nd
∩ B2(θ∗, t).
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Theorem 4.4 ([9], Theorem 3.2). For every θ∗ ∈ Dn1,...,nd
and t > 0,

E

[
sup

θ∈Dn1,...,nd
∩B2(θ∗,t)

⟨ϵ,θ − θ∗⟩

]
≤ σ inf

0≤δ≤t

{
12

∫ t

δ

√
logN(ϵ,Dn1,...,nd

∩ B2(θ∗, t)) dϵ+ 4δ
√
n

}
.

Setting δ = 0, we get

G(t) ≤ 12σ

∫ t

0

√
logN(ϵ,Dn1,...,nd

∩ B2(θ∗, t)) dϵ. (4.10)

To bound the covering numbers, we invoke Lemma 4.2. To apply it, we first establish an
interval that contains θ. We assumed that θ∗ ∈ [0, 1] and since ∥θ − θ∗∥ < t, we have

θ ∈ [a, b] := [−t, 1 + t].

Lemma 4.2 ([14], Lemma 8.4). For a < b, we have

logNϵ(ϵ,Dn1,...,nd
∩ [a, b]n) ≤ Cd

(b− a)
√
n

ϵ

(
log

(b− a)
√
n

ϵ

)d− 1
2

I{ϵ ≤ (b− a)
√
n}.

Combining this lemma with (4.10) gives

G(t) ≤ 12σ

∫ t

0

√
logN(ϵ,Dn1,...,nd

∩ [a, b]n) dϵ (4.11)

≤ Cd

∫ t

0

√
(b− a)

√
n

ϵ

(
log

(b− a)
√
n

ϵ

)d− 1
2

I{ϵ ≤ (b− a)
√
n} dϵ (4.12)

≤ Cd

∫ t

0

√
B

ϵ

(
log

B

ϵ

)d− 1
2

dϵ, (4.13)

where B = (b− a)
√
n = (1 + 2t)

√
n. The following lemma helps bound this integral.

Lemma 4.3 ([14], Lemma 8.5). For every d ≥ 1, there exists a positive constant Cd such that
for every s ∈ (0, B],

∫ s

0

√
B

ϵ

(
log

B

ϵ

)d− 1
2

dϵ ≤ Cd

√
sB

(
log

eB

s

) 2d−1
4

.

Applying Lemma 4.3 to (4.13) with s := t, we get

G(t) ≤ Cd

√
t

√
(1 + 2t)

√
n

(
log

e(1 + 2t)
√
n

t

) 2d−1
4

,

We split into two cases:
Case 1: 2t ≤ 1.
In this case B ≤ 2

√
n and I{2t ≤ 1} ≤ I{t ≤

√
n}, so

G(t) ≤ Cd

√
t n1/4

(
log

e
√
n

t

)(2d−1)/4
I{t ≤

√
n}

= Cd

√
t n1/4

(
log+

e
√
n

t

)(2d−1)/4
.

Case 2: 2t ≥ 1.
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Here B ≤ 3t
√
n and I{2t ≥ 1} ≤ 1, so

G(t) ≤ Cd t n
1/4

(
log(e

√
n)
)(2d−1)/4

.

Hence for all t > 0,

G(t) ≤ Cd

√
t n1/4

(
log+

e
√
n

t

)(2d−1)/4

︸ ︷︷ ︸
G1(t)

+ Cd t n
1/4

(
log(e

√
n)
)(2d−1)/4

︸ ︷︷ ︸
G2(t)

.

Define

t1 := max{1, (4Cd)
2/3}(

√
n)1/3

[
max{1, log+(e(

√
n)2/3)}

] 2d−1
6

.

Since t1 ≥ (
√
n)1/3, for all t ≥ t1,

G1(t)

t2
= Cd

n1/4

t3/2

(
log+

e
√
n

t

) 2d−1
4

≤ Cd
n1/4

t
3/2
1

(
log+(e(

√
n)2/3)

) 2d−1
4

≤ 1

4
.

Similarly, define
t2 := 4Cd(

√
n)1/3(log(e

√
n))

2d−1
4 .

Then, for t ≥ t2, we have

G2(t)

t2
= Cd

n1/4

t

(
log(e

√
n)
)(2d−1)/4

≤ Cd
n1/4

t2

(
log(e

√
n)
)(2d−1)/4

=
1

4
.

Hence,

G(t) ≤ t2

2
for all t ≥ max{t1, t2}.

By Theorem 4.3, the risk satisfies

R(f̂EM, f∗) = E
1

n
∥θ̂ − θ∗∥2 ≤ t21 + t22

n

≤ 1

n

{
(4Cd)

4/3(
√
n)2/3max{1, log+(e(

√
n)2/3)}

2d−1
3 + (4Cd)

2(
√
n)2/3(log(e

√
n))

2d−1
2

}
≤ Cdn

−2/3 log(2 +
√
n)

2d−1
3 + Cdn

−2/3(log(e
√
n))

2d−1
2 ,

where the last inequality follows because log(2 + x) dominates log+(ex
2/3) for sufficiently large

x. Thus, we have proven that

R(f̂EM, f∗) ≤ Cdn
−2/3(log(2 +

√
n)

2d−1
3 + log(e

√
n))

2d−1
2 ).
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4.3.3 Proof of Theorem 4.3

Theorem 4.3, which we use in the proof of the risk result, is originally proven in Chatterjee’s
paper [8]. In his work, Chatterjee provides a general framework for analysing the least-squares
estimator under convex constraints, allowing the true parameters θ∗ ∈ Rd, including the case
where θ∗ /∈ K.

In the proof of the risk result (Theorem 4.2), we only consider the well-specified assumption
where θ∗ ∈ K. Therefore, we extract a variant of the proof of Chatterjee by only considering
the well-specified setting θ∗ ∈ K. This assumption leads to a simplification: rather than relying
on the Gaussian supremum functional and identifying the projection error as the maximiser of
a concave function (as Chatterjee does in his proof), we can directly use the inequality that
characterises projections onto convex sets. In particular, by taking θ = θ∗ in the inequality

⟨θ̂ − θ∗ − ξ, θ − θ̂⟩ ≤ 0 for all θ ∈ K,

we obtain the bound
∥θ̂ − θ∗∥2 ≤ ⟨ξ, θ̂ − θ∗⟩,

which is one of the main steps in the proof of Theorem 4.3

Proof. Since θ̂ is the projection of y onto the closed convex set K, it satisfies the variational
inequality:

⟨y − θ̂,θ − θ̂⟩ ≤ 0 for all θ ∈ K.

To see this, for any θ ∈ K and λ ∈ [0, 1], define the convex combination

θλ := λθ + (1− λ)θ̂ ∈ K.

By definition of projection,
∥y − θ̂∥2 ≤ ∥y − θλ∥2.

Expanding the right-hand side,

∥y−θλ∥2 = ∥λ(y−θ)+(1−λ)(y− θ̂)∥2 = λ2∥y−θ∥2+(1−λ)2∥y− θ̂∥2+2λ(1−λ)⟨y−θ,y− θ̂⟩.

Rearranging terms,

∥y − θ̂∥2 − (1− λ)2∥y − θ̂∥2 ≤ λ2∥y − θ∥2 + 2λ(1− λ)⟨y − θ,y − θ̂⟩.

Dividing both sides by λ > 0 and letting λ→ 0+ yields

2∥y − θ̂∥2 ≤ 2⟨y − θ,y − θ̂⟩,

or equivalently,
∥y − θ̂∥2 ≤ ⟨y − θ,y − θ̂⟩.

Expanding the right side gives

⟨y − θ,y − θ̂⟩ = ∥y − θ̂∥2 + ⟨θ̂ − θ,y − θ̂⟩,

which leads to
0 ≤ ⟨θ̂ − θ,y − θ̂⟩ = −⟨y − θ̂,θ − θ̂⟩,

and hence
⟨y − θ̂,θ − θ̂⟩ ≤ 0, ∀θ ∈ K.

Substitute y = θ∗ + ξ, where ξ ∼ Nn(0, In), to get

⟨θ∗ + ξ − θ̂,θ − θ̂⟩ ≤ 0, ∀θ ∈ K.



CHAPTER 4. MULTIVARIATE ISOTONIC REGRESSION 23

Taking θ = θ∗ yields
⟨θ̂ − θ∗ − ξ, θ̂ − θ∗⟩ ≤ 0,

which rearranges to
∥θ̂ − θ∗∥2 ≤ ⟨ξ, θ̂ − θ∗⟩.

Now consider any t∗ > 0. Conditioning on the event ∥θ̂ − θ∗∥ ≤ t∗, we have

∥θ̂ − θ∗∥2 ≤ sup
θ∈K:∥θ−θ∗∥≤t∗

⟨ξ,θ − θ∗⟩.

Taking expectations gives

E
[
∥θ̂ − θ∗∥21∥θ̂−θ∗∥≤t∗

]
≤ E sup

θ∈K:∥θ−θ∗∥≤t∗

⟨ξ,θ − θ∗⟩ ≤ t2∗
2
.

Next, consider the complement event ∥θ̂ − θ∗∥ > t∗. Consider the following theorem.

Theorem 4.5 ([6], (Theorem 5.6)). Let X = (X1, . . . , Xn) be a vector of n independent standard
normal random variables, and let f : Rn → R be an L-Lipschitz function with respect to the
Euclidean norm. Then, for every t > 0,

P
{
f(X)− Ef(X) ≥ t

}
≤ exp

(
− t2

2L2

)
.

Let
ΠK(y) := argmin

θ∈K
∥y − θ∥2

be the metric projection onto the closed, convex set K. Convexity implies that

∥ΠK(x)−ΠK(y)∥2 ≤ ∥x− y∥2 for all x,y ∈ Rn.

To verify this, we compare the projections of a fixed point θ∗ ∈ K and an arbitrary vector y:

∥ΠK(θ
∗)−ΠK(y)∥22 =

〈
ΠK(θ

∗)−ΠK(y),ΠK(θ
∗)−ΠK(y)

〉
=

〈
ΠK(θ

∗),ΠK(θ
∗)−ΠK(y)

〉
−
〈
ΠK(y),ΠK(θ

∗)−ΠK(y)
〉

≤
〈
θ∗,ΠK(θ

∗)−ΠK(y)
〉
−
〈
y,ΠK(θ

∗)−ΠK(y)
〉

=
〈
θ∗ − y,ΠK(θ

∗)−ΠK(y)
〉

≤ ∥θ∗ − y∥2 ∥ΠK(θ
∗)−ΠK(y)∥2.

Define the Lipschitz function

f(y) :=
∥∥ΠK(y)− θ∗∥∥

2
.

The Gaussian concentration inequality for Lipschitz functions then yields absolute constants
c, C > 0 such that for all u ≥ 0,

P
(
∥θ̂ − θ∗∥2 > t∗ + u

)
≤ C exp

(
−c u2

)
.

Rewriting with x = t∗ + u gives the tail bound

P
(
∥θ̂ − θ∗∥2 > x

)
≤ C exp

(
−c (x− t∗)

2
)
, x ≥ t∗ ,

so the distance ∥θ̂ − θ∗∥2 is sub-Gaussian around its mean t∗.
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Using this tail bound, estimate

E
[
∥θ̂ − θ∗∥21∥θ̂−θ∗∥>t∗

]
=

∫ ∞

t2∗

P
(
∥θ̂ − θ∗∥2 > t

)
dt =

∫ ∞

t2∗

P
(
∥θ̂ − θ∗∥ >

√
t
)
dt.

Change variables with t = x2, dt = 2xdx, to write∫ ∞

t2∗

P
(
∥θ̂ − θ∗∥ >

√
t
)
dt =

∫ ∞

t∗

2xP
(
∥θ̂ − θ∗∥ > x

)
dx

≤
∫ ∞

t∗

2xC exp
(
−c(x− t∗)

2
)
dx.

Substitute u = x− t∗, so x = u+ t∗, and∫ ∞

t∗

2xe−c(x−t∗)2dx =

∫ ∞

0
2(u+ t∗)e

−cu2
du =

∫ ∞

0
2ue−cu2

du+

∫ ∞

0
2t∗e

−cu2
du.

Both integrals are finite:∫ ∞

0
2ue−cu2

du =
1

c
, and

∫ ∞

0
2t∗e

−cu2
du = t∗

√
π

c
.

Including the constant C, we get∫ ∞

t∗

2xCe−c(x−t∗)2dx ≤ C

(
1

c
+ t∗

√
π

c

)
.

Therefore, there exists a constant C ′ > 0 such that

E
[
∥θ̂ − θ∗∥21∥θ̂−θ∗∥>t∗

]
≤ C ′max(t2∗, 1).

Combining both parts,

E∥θ̂ − θ∗∥2 = E
[
∥θ̂ − θ∗∥21∥θ̂−θ∗∥≤t∗

]
+ E

[
∥θ̂ − θ∗∥21∥θ̂−θ∗∥>t∗

]
≤ Cmax(t2∗, 1),

for some universal constant C > 0. Thus, we have proven

E∥θ̂ − θ∗∥2 ≤ Cmax(t2∗, 1).

4.4 Feature Selection for Multivariate Isotonic Regression

This section discusses the process of selecting risk drivers for the isotonic regression model.
Feature selection is an essential step to prevent overfitting and reduce model complexity. In
the method outlined in Section 4.2, the total number of observations is n =

∏d
j=1 nj , where the

number of features is denoted by d and each feature has nj grid points. Therefore, as the number
of features increases, the matrix becomes larger, leading to higher computational costs.

Before the approval of the new dataset B, a preliminary feature selection method was applied
to assess the existing modelling approach. This was necessary because the current procedure is
time-consuming, particularly when applied to large datasets. As mentioned in the introduction,
experts have concerns about whether the current set of risk drivers is complete, and whether
additional relevant risk drivers possibly absent in both datasets A and B could improve the
model’s performance within the acceptance framework.
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Evaluating the usefulness of new risk drivers in the current model is a time-intensive task,
especially when working with large datasets. Therefore, there is a need for a more efficient
method to evaluate and refine the set of risk drivers.

Research suggests that combining individually strong features does not always result in op-
timal performance [10, 17]. This is often due to the overlap in information provided by highly
informative features, leading to redundancy. Redundant variables can unnecessarily increase
model complexity without improving predictive performance. To address this issue and reduce
computational time, we propose the use of the mRMR algorithm, introduced by Ding in 2003 [12],
which enhances model performance by selecting features that are not only individually relevant
but also minimally redundant, ensuring a more efficient and interpretable model. Since mRMR
evaluates relevance and redundancy using simple mutual information criteria, it significantly
reduces computational time compared to other search methods [22].

4.4.1 mRMR-algorithm

The mRMR (Minimum Redundancy Maximum Relevance) algorithm selects an optimal subset
of features by balancing two key aspects: relevance and redundancy. Relevance is measured
using mutual information, a metric that quantifies the dependency between each feature and the
target variable. Redundancy, on the other hand, evaluates the overlap of information among the
features. Both relevance and redundancy are defined and calculated using the formulas provided
by [22].

Algorithm 1 outlines the mRMR algorithm.

Algorithm 1 mRMR Algorithm
1: Input: Feature set X = (X1, X2, . . . , Xp), target variable y, and number of features to select

k.
2: Output: Selected subset of features X̂ with |X̂| = p.
3: Initialize X̂← ∅ (empty selected feature set).
4: Step 1: Compute Relevance
5: for each Xj ∈ X do
6: Compute Relevance[Xj ] = I(Xj ;y), the mutual information between Xj and y.
7: end for
8: Step 2: Select the First Feature
9: Select Xbest = argmaxXj∈X Relevance[Xj ].

10: Update X̂← X̂ ∪ {Xbest} and X← X \ {Xbest}.
11: Step 3: Iterative Selection of Features
12: while |X̂| < p do
13: for each Xj ∈ X do
14: Compute Redundancy[Xj ] =

1
|X̂|2

∑
Xk∈X̂ I(Xj ;Xk),

15: Compute mRMR[Xj ] = Relevance[Xj ]− Redundancy[Xj ].
16: end for
17: Select Xbest = argmaxXj∈X mRMR[Xj ].
18: Update X̂← X̂ ∪ {Xbest} and X← X \ {Xbest}.
19: end while
20: Return X̂.

It begins by initializing an empty set X̂ to hold the selected features. Let xij denote the i-th
observation and the j-th feature. First, the relevance of each feature Xj = (x1j , . . . , xnj)

T in X
to the target variable y is computed. The relevance of feature Xj is given by Relevance[Xj ] =
I(Xj ,y), where I(Xj ,y) is the mutual information, defined as:
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I(Xj , y) =
n∑

i=1

n∑
y=1

p(xij , y) log
p(xij , y)

p(xij)p(y)
,

where p denotes the probability function.
At each iteration, for each remaining feature in X, its redundancy with the features already

in X̂ is calculated. This redundancy is computed as the average mutual information between the
feature and each feature in the selected set. The mRMR score for each feature is then determined
by subtracting its redundancy from its relevance. The feature with the highest mRMR score is
chosen and added to X̂, while being removed from X.

The process repeats until the selected subset X̂ contains p features. The list produced by
the mRMR algorithm, shown in Table 4.1, reflects the trade-off between maximising relevance
and minimising redundancy. Features that appear higher on the list contribute both unique and
strong predictive value, while lower-ranked features may still be informative but are less critical,
as their predictive power overlaps with features already selected. The scores reflect the relative
importance of each feature in predicting the target variable.

A higher positive score indicates greater relevance for the prediction task. The most influential
feature in the dataset is BKR, followed by LTV and PRODUCT, all of which provide strong
predictive value.

Table 4.1: Feature Scores Train Data

[REDACTED]

The remaining issue is how to determine the optimal number of features. The optimal feature
set will be selected using the method described in [22]. Start by investigating in the computational
complexity.

Computational Complexity

The number of features directly impacts the computational time of the model, with the most
computationally expensive step being the generation of matrix A. As mentioned earlier, the size
of matrix A is determined by the number of features in the model. For the lattice design, the
matrix A has dimensions n×n, where n = n1 ·n2 · · · · ·nd. The function used to generate matrix
A has a time complexity of O(n2).

The computational time required for different values of n is presented in Table 4.2. As shown,
the computational time grows as n increases, and the relationship follows the expected quadratic
complexity.

For this project, the acceptable computational time is set to be +-180 seconds, which means
n <= 1620. This corresponds to selecting the first four risk drivers. Start with the first four
features. Then, the first feature set denoted by S1 contains one feature and the fourth set S4

contains four features such that S1 ⊆ S2 ⊆ · · · ⊆ S4. Lastly, evaluate the different feature sets
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Table 4.2: Computational Time for Various Values of n

n Computational Time (seconds)
6 0.004
30 0.033
180 1.618
540 17.595
1620 185.113

on the model and choose the one with the highest accuracy. How this can be evaluated will be
described in Section 3.5.

4.5 Probability of Default Modelling with Isotonic Regression

In this section, isotonic regression is applied to model the probability of default. The analysis
begins with two key risk drivers, providing a visualisation of the relationship between input
variables and default risk. Subsequently, additional risk drivers are incrementally introduced to
evaluate their impact on model performance. Finally, an appropriate cut-off point is selected,
and the model is assessed within the context of a mortgage acceptance framework.

4.5.1 Two risk drivers

We begin by analysing the top two risk drivers identified by the mRMR algorithm: Client BKR
Score and LTV Loan to Market Value. The BKR Score is categorised into 5 categories, while
LTV is discretised into 5 almost equally sized bins. For every facility, we have the LTV, the
BKR and the indicator whether the facility is defaulted within 12 months. We subtract this
information from the original dataset. An example of this subset is shown in Table 4.3.

Table 4.3: Sample of Facility Data

Facility LTV BKR

1234 0.92 A
5678 5.15 A

91011 0.97 C
1213 4.09 D
1415 3.12 B

Applying isotonic regression to these risk drivers and solving using the aforementioned meth-
ods yields the following results. In Figure 4.1 we show the actual default rates and the fitted
default rates.

The left heatmap represents the actual default rates across different categories, illustrating
the proportion of defaults in various segments of the dataset. Darker shades indicate a higher
concentration of defaults, highlighting segments with greater risk. The right heatmap shows the
fitted default rates using isotonic regression.

4.5.2 Number of Risk Drivers

Table 4.4 presents the Gini scores for both the training and test data, evaluated across different
sets of variables.

Starting with the base variable, BKR, we observe a Gini score of 0.415 for the training data
and 0.348 for the test data, indicating limited predictive power. Adding LTV increases the Gini
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Figure 4.1: Comparison of Actual and Fitted Default Rates

score for the training data to 0.555, suggesting a significant improvement in the model’s ability to
discriminate between observations. However, the test Gini score of 0.456 remains lower, reflecting
a smaller improvement when tested on unseen data.

The inclusion of the PRODUCT variable results in a slight decrease in the training Gini to
0.532 and a corresponding increase in the test Gini to 0.466. This suggests that while PRODUCT
adds some value to the model, it does not dramatically improve the model’s performance on the
test set.

Finally, adding ACTIVE COUNT further improves the training Gini to 0.560, but the test
Gini decreases to 0.449. The minor change in the test Gini suggests that ACTIVE COUNT
provides some improvement in model discrimination on the training data, but does not offer
substantial gains when generalised to unseen data.

In summary, while adding additional variables improves the training Gini score, the test Gini
score does not show a corresponding increase, suggesting the potential for overfitting. Among
the sets of variables tested, the combination of three variables (BKR, LTV, and PRODUCT)
produces the highest Gini score for the test set and the smallest gap between training and test
scores. As a result, the set of three variables is selected.

Table 4.4: Gini Scores for Training and Test Data by Number of Variables

Variables Train Gini Test Gini
BKR 0.415 0.348
+LTV 0.555 0.456

+PRODUCT 0.532 0.466
+ACTIVE COUNT 0.560 0.449

4.5.3 Cut-off point

The model outputs a default probability for each facility. To convert these probabilities into
flags, we select a decision threshold. To determine the optimal cut-off point, we evaluated various
performance metrics across a range of threshold values on the training set. Table A.3 presents
the performance metrics for the model in different threshold ranges. Performance is evaluated
based on several metrics, including accuracy, precision, recall, F1 score, and false alarm rate,
along with the components of the confusion matrix: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN).

At the lowest threshold range, 1e-04 to 1e-04, the model shows low accuracy of 0.036, indi-
cating that the model is biased toward predicting negative outcomes. This is expected since the
model has not yet been tuned to identify positive cases effectively. As the threshold increases,
the accuracy improves significantly, reaching 0.995 at the highest threshold range, 0.0479 to 0.1,
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where the model predicts mostly negative outcomes and achieves the highest accuracy. However,
this comes with a substantial decrease in recall, showing a trade-off between accuracy and the
ability to capture positive cases.

The default rate is 0.5 per cent, which means that if we set all facilities to non-default,
the model would achieve an accuracy of 99.5% . However, this is not a desirable outcome as
it indicates that the model is simply predicting the most common outcome (non-defaults) and
ignoring potential positives. This would not contribute to the actual goal of the model, which is
to correctly identify true defaults (positive cases).

Therefore, to achieve better model performance, we aim to choose a cut-off point where the
F1 score is optimised. The F1 score is the harmonic mean of precision and recall and provides
a balanced measure between these two metrics. Precision is the proportion of true positive
predictions out of all positive predictions made, and recall is the proportion of true positives
out of all actual positive cases. The F1 score helps balance the trade-off between precision and
recall, especially when both false positives and false negatives carry significant consequences. By
optimising the F1 score, we ensure that the model can effectively identify true positive cases
(defaults) while minimising false alarms and false negatives, which is especially important in
predicting rare events like defaults. Figure 4.2 shows the F1 score of the different thresholds,
with an optimum at thresholds equal to 0.0297.

Figure 4.2: Model F1 Score at Different Threshold Ranges

In summary, while the highest accuracy is reached at a cut-off point of 0.0479, the detection
rate becomes 0, caused by the low default rate of 0.05%. By optimising the F1 score, we ensure
that the model balances precision and recall. The F1 score is optimised for the cut-off point
0.0297. At this point, the accuracy is 99% with a detection rate of 6.5%.

4.5.4 Model Evaluation and Results

The model evaluated on the test set achieved an accuracy of 96.25%, which might seem relatively
high. However, this can be misleading, since the precision of the model is relatively low, with
a value of 2.6%. This suggests that the model does not effectively identifying positive cases
(defaults). Out of all the instances that the model predicted as positive, only a small fraction
were true positives. This indicates a significant issue with false positives, where non-defaults are
incorrectly predicted as defaults.

Similarly, only 17.8% of the true positive cases were correctly identified by the model. This
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low recall further emphasises that the model is biased towards predicting the negative class
(non-defaults).

The F1 score, which balances precision and recall, is 4.6%. This is very low, reflecting the
poor balance between precision and recall. The model is struggling to effectively identify defaults
while maintaining a low rate of false positives.

The false alarm rate is 3.35%, which indicates that 3.35% of the instances predicted as defaults
were actually non-defaults. Although not extremely high, this still suggests that the model is
making a considerable number of false positive predictions.

Confusion Matrix

The confusion matrix provides further insight into the model’s performance:

• True Positives (TP): 5 facilities were correctly identified as defaults.

• True Negatives (TN): 5310 facilities were correctly identified as non-defaults.

• False Positives (FP): 184 facilities were incorrectly predicted as defaults.

• False Negatives (FN): 23 facilities of actual defaults were missed by the model.

Despite a high accuracy, the model’s precision and recall indicate that it is not identifying
defaults effectively. The low precision suggests that the model is predicting too many non-
defaults as defaults, resulting in a high number of false positives. The low recall indicates that
the model is missing a large proportion of actual defaults, which is critical in applications like
risk assessment for car insurance. The F1-score confirms the imbalance between precision and
recall, underscoring the need for model improvements, especially in identifying the minority class
(defaults).

These findings suggest that, while the model may appear to perform well at first glance, it
needs further refinement. A more effective model should aim to improve recall and precision,
potentially by addressing the class imbalance through techniques such as oversampling, under-
sampling, or by using different classification algorithms that are better suited for imbalanced
data.

4.6 Comparative Analysis

In this section, we compare the different feature selection methods and the two models used
throughout this project. We will first compare the performance of Forward Stepwise Regression
and the mRMR algorithm in combination with the Isotonic Regression model. Following that,
we will analyse the performance differences between Logistic Regression and Isotonic Regression.

4.6.1 Forward Stepwise Regression vs mRMR-algorithm

Table 4.5 shows the different feature sets as outcome of the feature selection methods. Features
set 1 and 2 consist of features as an outcome of the mRMR algorithm, with target defaults in
12 and 24 months, respectively. Features set 3 and 4 consist of features as outcomes of forward
stepwise regression, with target defaults in 12 and 24 months, respectively.
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Table 4.5: Feature set 1 and 2 consist of features as outcomes of the mRMR algorithm, with
target defaults in 12 and 24 months, respectively. Features set 3 and 4 consist of features as
outcomes of forward stepwise regression, with target defaults in 12 and 24 months, respectively.

[REDACTED]

To determine which feature set performs best with the isotonic regression model, we compare
the GINI scores of the training and test datasets. The results, shown in Table A.2, reveal that
Feature Set 1 achieves the highest GINI score on the test set, with the smallest difference between
the training and test GINI scores. This indicates the best performance in terms of generalisation,
as it demonstrates a better ability to predict the probability of default on unseen data.

Table 4.6: Gini Scores for Training and Test Data Isotonic Regression

Feature set (number of risk drivers) Train Gini Test Gini
F1 (3) 53.2% 46.6%
F2 (4) 53.9% 44.2%
F3 (4) 53.7% 40.1%
F4 (2) 53.2% 43.9%

4.6.2 Logistic vs Multivariate Isotonic Regression

A comparison of values of the GINI score across the test and training data sets is shown in
Table 4.7. From the table, both models LRA,12 and LRB,12 suffer from overfitting. These
models perform much better on the training set (64.7% and 65.8%, respectively) than the test
set (19.2% and 30.9%, respectively), reflecting that they perform well on the training data but
don’t generalise to new data well.

On the other hand, the two other models, LRB,24 and IRB,12, perform more fairly on the
training data and test set. Model LRB,24 records a comparatively high GINI score of 62.3% for
the training data, and it performs equally as well on the test set with a GINI score of 55.8%.
This shows that LRB,24 generalises very well to new data and still maintains good discriminatory
power. Accordingly, the IRB,12 model also runs more stably, with a GINI of 53.2% on the training
set and 46.6% on the test set.

The results conclude that LRB,24 and IRB,12 are the most stable models to predict defaults.
The performance results of both the logistic regression models and the isotonic regression

model are presented in Table 4.8. The isotonic regression model is denoted as IRB,12. Compared
to the logistic regression models, IRB,12 shows lower accuracy and precision. Specifically, the
isotonic regression model has a accuracy of 0.9625 while, the best-performing logistic regression
model LRA,12 achieves an accuracy of 0.9870. Similarly, the isotonic regression model also has
lower precision, with a value of 0.0265 compared to LRB,24’s precision of 0.1154.

However, the isotonic regression model achieves the highest recall among all models, with
a recall value of 0.1786. This indicates a better ability to correctly identify defaulting facilities
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Table 4.7: Model Performance in terms of GINI on Different Datasets.

Model Training Test
LRA,12 64.7% 19.2%
LRB,12 65.8% 30.9%
LRB,24 62.3% 55.8%
IRB,12 53.2% 46.6%

compared to the logistic regression models, where the recall ranges from 0.0714 to 0.1429. The
higher recall of IRB,12 means that it is less likely to miss an actual default.

Despite its higher recall, the precision of the isotonic regression model remains relatively low,
suggesting a higher amount of false positives, i.e. facilities that were predicted to default but did
not. This trade-off between recall and precision is often encountered when the goal is to capture
as many defaults as possible, even at the expense of generating more false alarms.

The F1 score, which balances precision and recall, remains similar for both the isotonic
regression and logistic regression models, reflecting the trade-off between false positives and false
negatives. In this case, the isotonic regression model has an F1 score of 0.045, which is very close
to that of the worst-performing logistic regression model, LRB,12, with an F1 score of 0.045 as
well. The F1 score of all models is below 0.1, indicating a low performance in terms of balancing
the precision and recall [13].

Table 4.8: The accuracy, recall, precision and F1 score for three logistic regression models and
one isotonic regression model.

Model Accuracy Recall Precision F1 Score Flags
Model LRA,12 0.9870 0.1429 0.0769 0.100 0.94%
Model LRB,12 0.9848 0.0714 0.0333 0.045 1.1%
Model LRB,24 0.9823 0.1034 0.1154 0.109 0.94%
Model IRB,12 0.9625 0.1786 0.0265 0.045 3.4%

Moreover, the Isotonic Regression model (IRB,12) results in the highest number of flagged
facilities, with 189 flags, representing 3.4%. Among the other models, LRB,12 flags 1.1% of the
facilities, while the remaining two models flag 0.94% of the facilities each. In terms of the lowest
number of flags, model LRA,12 and LRB,24 are most desired, where model LRA,12 has a higher
recall, model LRB,24 has a higher precision.
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The objective of this thesis was to:

Enhance the mortgage acceptance model by improving feature selection, identifying
a more suitable target variable, and exploring the potential of multivariate isotonic
regression.

Models were evaluated on dataset B with targets defaulting within 12 months and defaulting
within 24 months. These were compared to the original model trained on dataset A with the
12-month target. Shifting the target from default within 12 months to default within 24 months
improved the model’s generalisation and results in improved accuracy.

Furthermore, we introduced multivariate isotonic regression as an alternative nonparametric
modelling approach. Unlike other nonparametric methods, it does not require tuning parameters
and tends to avoid overfitting due to its monotonicity constraint. Theoretical results show that
under certain conditions, the risk of the multivariate isotonic regression estimator is bounded by
n−2/3, implying that its estimation error decreases relatively quickly as the sample size increases.

This theoretical guarantee helps explain the observed stable performance of multivariate iso-
tonic regression compared to logistic regression, particularly in settings with a 12-month default
target, where monotonic relationships between risk drivers and the outcome are plausible.

The mRMR (Minimum Redundancy Maximum Relevance) algorithm was used to speed up
feature selection, identifying a good feature set in about 20 seconds, much faster than the original
approach, which took over 2 minutes.

In terms of performance, the results indicate that logistic regression with a 24-month target
offers a balanced trade-off between precision and recall, making it suitable for routine mortgage
acceptance decisions, where fewer flagged cases (false positives) are preferable. On the other
hand, multivariate isotonic regression showed higher recall, which is beneficial for identifying
more defaults, but led to an increased workload due to more false positives. As such, multivariate
isotonic regression could be employed in scenarios where higher recall is necessary, such as high-
risk cases that warrant more thorough manual review despite the potential for more flagged
cases.

To summarise the answers to the research questions:

• Dataset modification: Using only the first observation per facility better represents the
data available at acceptance.

• Target variable: Default within 24 months improves model generalization and reduces
overfitting compared to 12 months.

• Feature selection: Both forward stepwise regression and mRMR effectively reduce fea-
tures, with mRMR being faster.

• Evaluation metric: The GINI coefficient combined with F1 score and accuracy provides
a good balance for model assessment.
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• Model performance: Logistic regression with the 24-month target performs best in terms
of precision and flag management, while multivariate isotonic regression has higher recall
but more flagged cases.

Logistic regression requires more preprocessing, such as binning and transformations, to meet
model assumptions. multivariate isotonic regression only requires monotonicity, simplifying data
preparation.

Choosing a suitable target variable is important. The low default rate within 12 months risks
overfitting for logistic regression, which improves by using a 24-month horizon. Multivariate
isotonic regression shows less overfitting even with the 12-month target.

In conclusion, both models provide valuable insights for Achmea’s mortgage acceptance pro-
cess. The logistic regression model with a 24-month target offers a good balance between accuracy
and manageable flagged cases. The multivariate isotonic regression model offers better recall but
at the cost of more flagged applications.
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This chapter gives the limitations of the results and proposes directions for further research.

6.1 Data

To simulate the mortgage approval process, the model is trained on data of accepted applicants
to compute the probability of default. The latter probability score is used to inform applicants
of manual checks. However, in practice, the model is applied to both approved and rejected
applicants, which could produce a sample selection bias. This is an occurrence known as reject
inference because the training information does not include rejected candidates and therefore
can limit the model’s ability to generalise to the whole candidate population.

The effectiveness of reject inference is debatable in credit risk studies. Past research shows
that reject inference will not have a significant impact on model outcomes [11], whereas some
show positive effects on prediction performance [5]. The attention for future study should be
on analysing the impact of applying rejection inference techniques in the acceptance system of
Achmea Bank and on knowing if predictive accuracy can be increased.

6.2 Logistic Regression

The logistic regression models developed within this thesis are overfitting, as evidenced by high
variation between training set and test set performance. Overfitting can be attributed to the
relatively low default rate and the low number of default observations, which restricts the model
from generalising sufficiently.

Furthermore, logistic regression requires heavy preprocessing, i.e., feature binning and trans-
formation. While these transformations improve interpretability and fit, they add complexity to
the model.

Future work may explore alternative approaches to beat overfitting, such as regularisation
or ensemble methods that maintain interpretability. Further, trying out different target variable
specifications, e.g., expanding the default horizon from 12 to 24 months, can improve model
stability and performance, as shown here.

6.3 Multivariate Isotonic Regression

Multivariate isotonic regression has been found to be useful in that it is flexible but under
monotonicity constraints that prevent overfitting. However, there are some limitations and areas
for enhancement.

One of them is computational complexity. The problem of solving the large non-negative least
squares is the demand of the method, and this becomes increasingly expensive as it introduces
more features. Future work would involve using faster algorithms or approximation methods for
scalability.
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Another such area of enhancement is handling class imbalance. Because default rates are low,
isotonic regression may have problems identifying defaults effectively. Application of techniques
such as weighted losses or isotonic regression-specific synthetic sampling would help in such
situations.

6.4 Ethical Framework

6.4.1 Transparency and Explainability

In terms of financial regulation, transparency and explainability of models are very important.
Logistic regression is easy to interpret from the coefficients since they clearly indicate the effect
of each driver of risk on the default probability. Such a transparent explanation aids stakeholders
and regulators in understanding and trusting the model.

While multivariate isotonic regression is not as common in financial applications, it remains
interpretable due to the fact that it possesses a monotonicity constraint. The monotone assump-
tion among predictors and the response is natural and intuitive.

6.4.2 Bias

Credit risk models can accidentally hold or even enhance biases in the data. For example, the
data show that self-employed borrowers default at a higher rate compared to others. This is a
pattern in the past data, but not necessarily due to being self-employed leading to greater risk.
It could be due to other factors related to self-employment, including income variability or fewer
financial documents.

Because of this, special care has to be taken while using such information. Excessive re-
liance on self-employment status can have a negative effect on some borrowers. To prevent this,
the models must undergo constant fairness checks, and steps should be taken to make lending
decisions ethical, equitable, and in compliance with the law.
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A.1 Acceptance dataset

[REDACTED]

Figure A.1: Comparing the default rates over time of de training set (left) and the test set
(right).

[REDACTED]

Figure A.2: Comparing the distribution of the BKR scores of de training set (left) and the test
set (right).

A.2 Example design matrix A

Suppose we have two risk drivers (d = 2) with values ranging between 0 and 1. Let x1,x2, . . . ,x9 ∈
[0, 1]2 denote the nine different observations. These observations lie on an equally spaced 10×10
grid. The design matrix A is defined such that each entry is given by:

A(i, j) = I{xj ⪯ xi}

where I{·} is the indicator function.
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The resulting design matrix A is given by:

A =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1


A.3 Performance

[REDACTED]

Table A.1: Performance metrics by number of grouping variables (IRB,12).

f_est Train Gini Test Gini
f_est_1 0.415 0.348
f_est_2 0.555 0.456
f_est_3 0.532 0.466
f_est_4 0.560 0.449

Table A.2: Gini Scores for Training and Test Data.

Threshold Acc Prec Detec F1 False Alarm TP TN FP FN
1e-04 to 1e-04 0.036 0.005 1.000 0.010 0.968 108 680 20828 0
2e-04 to 5e-04 0.157 0.006 0.991 0.012 0.848 107 3276 18232 1
6e-04 to 0.0025 0.257 0.006 0.963 0.013 0.747 104 5443 16065 4
0.0026 to 0.0044 0.401 0.008 0.935 0.015 0.602 101 8562 12946 7
0.0045 to 0.005 0.440 0.008 0.907 0.016 0.562 98 9417 12091 10
0.0051 to 0.0069 0.483 0.009 0.889 0.017 0.519 96 10346 11162 12
0.007 to 0.0094 0.767 0.013 0.611 0.026 0.232 66 16511 4997 42
0.0095 to 0.0146 0.880 0.021 0.500 0.040 0.118 54 18971 2537 54
0.0147 to 0.025 0.905 0.025 0.472 0.047 0.093 51 19504 2004 57
0.0251 to 0.0276 0.912 0.025 0.444 0.048 0.085 48 19671 1837 60
0.0277 to 0.0296 0.914 0.025 0.426 0.047 0.083 46 19714 1794 62
0.0297 to 0.0478 0.990 0.056 0.065 0.060 0.005 7 21390 118 101

0.0479 to 0.1 0.995 0.000 0.000 0.000 0.000 0 21508 0 108

Table A.3: Model Performance Metrics at Different Threshold Ranges for f_est_3.
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A.4 Multivariate Results

[REDACTED]

Table A.4: The table presents the multivariate results for various predictors in a statistical
model, including the coefficients, standard errors, z-values, and corresponding p-values for each
variable.

A.5 F1 Score

Figure A.3: F1 score as a function of threshold values for Model LR_B_12. The threshold of
0.096 results in an F1 score of 0.069, wich is marked as a vertical dotted red line.
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Figure A.4: F1 score as a function of threshold values for Model LR_B_24. The threshold of
0.227 results in an F1 score of 0.160, which is marked as a vertical dotted red line.

A.6 Confusion Matrix

Model TN FP FN TP Accuracy Precision Recall F1 Score
LRA,12 5446 48 24 4 0.9870 0.0769 0.1429 0.1000
LRB,12 5436 58 26 2 0.9848 0.0333 0.0714 0.0455
LRB,24 5418 46 52 6 0.9823 0.1154 0.1034 0.1091

Table A.5: Confusion matrix components and classification metrics for three logistic regression
models. TN = True Negatives, FP = False Positives, FN = False Negatives, TP = True Positives.

A.7 Trade-off Sensitivity and Specificity

[REDACTED]

Figure A.5: Distribution of the predicted probability of default.
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[REDACTED]

Figure A.6: Distribution of the predicted probability of default.



Bibliography

[1] Amirsaleh Azadinamin. “The Bankruptcy of Lehman Brothers: Causes of Failure & Rec-
ommendations Going Forward”. In: SSRN Electronic Journal (2012). doi: 10.2139/ssrn.
2016892.

[2] Bank for International Settlements. Calculation of RWA for credit risk. Accessed: 2025-04-
17. 2004. url: https://www.bis.org/publ/bcbs107.htm.

[3] Bank for International Settlements. Calculation of RWA for credit risk. Accessed: 2025-04-
17. 2023. url: https://www.bis.org/basel_framework/chapter/CRE/36.htm.

[4] Basel Committee on Banking Supervision. Supporting Document to the New Basel Capital
Accord. Tech. rep. Annex 4: The IRB Approach. Bank for International Settlements, Jan.
2001. url: https://www.bis.org/publ/bcbsca05.pdf.

[5] Marc Baudry, Olivier H. N’Guessan, and Stéphane R. M. L. Title of the Report. Tech. rep.
Economix - University of Paris Ouest Nanterre La Défense, 2016. url: https://economix.
fr/pdf/dt/2016/WP_EcoX_2016-10.pdf.

[6] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford Series in Probability and Statistics. Ox-
ford: Oxford University Press, 2013. isbn: 978-0-19-953525-5.

[7] Tim S Campbell and J Kimball Dietrich. “The determinants of default on insured con-
ventional residential mortgage loans”. In: The Journal of Finance 38.5 (1983), pp. 1569–
1581.

[8] S. Chatterjee. “A new perspective on least squares under convex constraint”. In: Annals of
Statistics 42.6 (2014), pp. 2340–2381. doi: 10.1214/14-AOS1242.

[9] Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. “On matrix estima-
tion under monotonicity constraints”. In: arXiv preprint arXiv:1506.03430 (2015). arXiv:
1506.03430 [math.ST]. url: https://arxiv.org/abs/1506.03430.

[10] T. M. Cover. “The Best Two Independent Measurements Are Not the Two Best”. In: IEEE
Transactions on Systems, Man, and Cybernetics 4 (1974), pp. 116–117.

[11] Jonathan Crook and John Banasik. “Does reject inference really improve the performance
of application scoring models?” In: Journal of Banking & Finance 28.4 (2004), pp. 857–874.
doi: 10.1016/j.jbankfin.2003.10.010. url: https://doi.org/10.1016/j.jbankfin.
2003.10.010.

[12] Chris H. Q. Ding and Inna Dubchak. “Multi-class Protein Fold Recognition using Support
Vector Machines and Neural Networks”. In: Bioinformatics 19.4 (2003), pp. 404–411. url:
https://ranger.uta.edu/~chqding/papers/gene_select.pdf.

[13] Encord. F1 Score in Machine Learning. Accessed: 2023-05-04. 2023. url: https://encord.
com/blog/f1-score-in-machine-learning/#:~:text=Typically%2C%20an%20F1%
20score%20%3E%200.9,to%20have%20a%20poor%20performance..

https://doi.org/10.2139/ssrn.2016892
https://doi.org/10.2139/ssrn.2016892
https://www.bis.org/publ/bcbs107.htm
https://www.bis.org/basel_framework/chapter/CRE/36.htm
https://www.bis.org/publ/bcbsca05.pdf
https://economix.fr/pdf/dt/2016/WP_EcoX_2016-10.pdf
https://economix.fr/pdf/dt/2016/WP_EcoX_2016-10.pdf
https://doi.org/10.1214/14-AOS1242
https://arxiv.org/abs/1506.03430
https://arxiv.org/abs/1506.03430
https://doi.org/10.1016/j.jbankfin.2003.10.010
https://doi.org/10.1016/j.jbankfin.2003.10.010
https://doi.org/10.1016/j.jbankfin.2003.10.010
https://ranger.uta.edu/~chqding/papers/gene_select.pdf
https://encord.com/blog/f1-score-in-machine-learning/#:~:text=Typically%2C%20an%20F1%20score%20%3E%200.9,to%20have%20a%20poor%20performance.
https://encord.com/blog/f1-score-in-machine-learning/#:~:text=Typically%2C%20an%20F1%20score%20%3E%200.9,to%20have%20a%20poor%20performance.
https://encord.com/blog/f1-score-in-machine-learning/#:~:text=Typically%2C%20an%20F1%20score%20%3E%200.9,to%20have%20a%20poor%20performance.


BIBLIOGRAPHY 43

[14] Billy Fang, Adityanand Guntuboyina, and Bodhisattva Sen. “Multivariate extensions of
isotonic regression and total variation denoising via entire monotonicity and Hardy–Krause
variation”. In: Ann. Statist. 49.2 (2021), pp. 769–792.

[15] Andreas Fuster et al. “The Role of Technology in Mortgage Lending”. In: Review of Finan-
cial Studies 32.5 (2019), pp. 1854–1899.

[16] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. 2nd. Springer Series in Statistics. Springer,
2009. isbn: 978-0-387-84857-7.

[17] A. K. Jain, R. P. W. Duin, and J. Mao. “Statistical Pattern Recognition: A Review”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 22.1 (Jan. 2000), pp. 4–
37.

[18] Jan Kroot and Evangelos Giouvris. “Dutch mortgages: Impact of the crisis on probability
of default”. In: Finance Research Letters 18 (2016), pp. 205–217.

[19] Edward C Lawrence, L Douglas Smith, and Malcolm Rhoades. “An analysis of default risk
in mobile home credit”. In: Journal of Banking & Finance 16.2 (1992), pp. 299–312.

[20] Lydian Medema, Ruud H Koning, and Robert Lensink. “A practical approach to validating
a PD model”. In: Journal of Banking & Finance 33.4 (2009), pp. 701–708.

[21] Atif Mian and Amir Sufi. “Household Leverage and the Recession of 2007 to 2009”. In: IMF
Economic Review 58.1 (2009), pp. 74–117.

[22] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy”. In: IEEE Transac-
tions on pattern analysis and machine intelligence 27.8 (2005), pp. 1226–1238.

[23] Hemlata Sharma et al. “Analysing the Influence of Macroeconomic Factors on Credit
Risk in the UK Banking Sector”. In: Analytics 3.1 (2024), pp. 63–83. doi: 10.3390/
analytics3010005. url: https://doi.org/10.3390/analytics3010005.

[24] Kerry D Vandell. “Default risk under alternative mortgage instruments”. In: The Journal
of Finance 33.5 (1978), pp. 1279–1296.

[25] Bianca Zadrozny and Charles Elkan. “Transforming classifier scores into accurate multiclass
probability estimates”. In: Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2002, pp. 694–699. doi: 10.1145/775047.
775151.

[26] Zhenyu Zhao, Radhika Anand, and Mallory Wang. “Maximum Relevance and Minimum
Redundancy Feature Selection Methods for a Marketing Machine Learning Platform”. In:
Uber Engineering Blog (Aug. 2019). Uber AI research; accessed 2025-06-14.

https://doi.org/10.3390/analytics3010005
https://doi.org/10.3390/analytics3010005
https://doi.org/10.3390/analytics3010005
https://doi.org/10.1145/775047.775151
https://doi.org/10.1145/775047.775151

	Introduction
	Basel Committee on Banking Supervision (BCBS)
	A-IRB model
	Extending the A-IRB Model for Credit Approval
	Research objective and Contribution

	Data and Preprocessing
	Definitions
	Mortgage
	Facility
	Default

	Available data
	Missing data and outliers

	Datasets

	Modelling the probability of default using logistic regression
	Logistic Regression
	Feature Selection
	Model Performance
	Comparison across models
	Acceptance Framework
	Threshold Optimisation and Model Evaluation via F1 Score
	Further Analysis for Credit Policy

	Conclusion

	Multivariate Isotonic Regression
	Entire Monotonicity
	Solving LSE problem using NNLS
	Risk results
	Proof sketch
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Feature Selection for Multivariate Isotonic Regression
	mRMR-algorithm

	Probability of Default Modelling with Isotonic Regression
	Two risk drivers
	Number of Risk Drivers
	Cut-off point
	Model Evaluation and Results

	Comparative Analysis
	Forward Stepwise Regression vs mRMR-algorithm
	Logistic vs Multivariate Isotonic Regression


	Conclusion
	Discussion
	Data
	Logistic Regression
	Multivariate Isotonic Regression
	Ethical Framework
	Transparency and Explainability
	Bias


	Appendix
	Acceptance dataset
	Example design matrix A
	Performance
	Multivariate Results
	F1 Score
	Confusion Matrix
	Trade-off Sensitivity and Specificity


