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Abstract

In this paper we compare various preconditioners for the numerical solution of partial

differential equations. We compare the well-known balancing Neumann-Neumann precondi-

tioner used in domain decomposition methods with a so-called deflation preconditioner. We

prove that the effective condition number of the deflated preconditioned system is always, i.e.

for all deflation vectors and all restrictions and prolongations, below the condition number of

the system preconditioned by the balancing Neumann-Neumann preconditioner. Even more,

we establish that both preconditioners lead to almost the same spectra. The zero eigenvalues

of the deflation preconditioned system are replaced by eigenvalues which are one if the balanc-

ing Neumann-Neumann preconditioner is used. Moreover, we proved that the A-norm of the

errors of the iterates build by the deflation preconditioner is always below the A-norm of the

errors of the iterates build by the balancing Neumann-Neumann preconditioner. Additionally,

the amount of work of one iteration of the deflation preconditioned system is less than the

amount of work of one iteration of the balancing Neumann-Neumann preconditioned system.

Finally, we establish that the deflation preconditioner and the balancing Neumann-Neumann

preconditioner produces the same iterates if one uses certain starting vectors. Numerical

results for porous media flows emphasize the theoretical results.

Keywords. deflation, coarse grid correction, balancing Neumann Neumann, preconditioners,
Conjugate Gradients, porous media flow, scalable parallel preconditioner

AMS subject classifications. 65F10, 65F50, 65N22

1 Introduction

The Conjugate Gradient method is the most used method to solve large linear systems of equations

Ax = b

whose coefficient matrices A are sparse and symmetric positive definite. Such systems are en-
countered, for example, when a finite volume/difference/element method is used to discretize an
elliptic partial differential equation.

The convergence rate of the Conjugate Gradient method (cg-method) is bounded as a function
of the condition number of the system matrix to which it is applied. If the condition number
of A is large it is advisable to solve, instead, a preconditioned system M−1Ax = M−1b, where
the symmetric positive definite preconditioner M is chosen such that M−1A has a more clustered
spectrum or a smaller condition number than that of A. Furthermore, M must be cheap to
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solve relative to the improvement it provides in convergence rate. A final desirable property in a
preconditioner is that it should parallelize well, especially on distributed memory computers.

In [16] two different preconditioner are compared, namely a deflation preconditioner and a
coarse grid correction preconditioner. It is shown that the deflation preconditioner leads to a
smaller condition number than a coarse grid correction preconditioner like the BPS preconditioner
by Bramble, Paschiak and Schatz [1].

Here we compare the deflation preconditioner with the balancing Neumann-Neumann precon-
ditioner by Mandel [11].

In the following we give a brief introduction into both preconditioning techniques.
To describe the deflation method we define the projection PD by

PD = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×r, (1)

where the column space of Z is the deflation subspace, i.e. the space to be projected out of the
residual, and I is the identity matrix of appropriate size. We assume that r � n and that Z has
rank r. Under this assumption E ≡ ZT AZ may be easily computed and factored and is symmetric
positive definite. Since x = (I − P T

D )x + P T
Dx and because

(I − P T
D )x = Z(ZT AZ)−1ZT Ax = ZE−1ZT b (2)

can be immediately computed, we need only compute P T
Dx. In light of the identity AP T

D = PDA,
we can solve the deflated system

PDAx̃ = PDb (3)

for x̃ using the Conjugate Gradient method, premultiply this by P T
D and add it to (2).

Obviously (3) is singular. But a positive semidefinite system can be solved by the cg-method
as long as the right-hand side is consistent (i.e. as long as b = Ax for some x) [9]. This is certainly
true for (3), where the same projection is applied to both sides of the nonsingular system. Since
the null space never enters the iteration, the corresponding zero-eigenvalues do not influence the
convergence [9, 21]. Motivated by this fact, we define the effective condition number of a positive
semidefinite matrix C ∈ Rn×n with r zero eigenvalues to be the ratio of its largest to smallest
positive eigenvalues:

κeff(C) =
λn

λr+1

.

It is possible to combine both a standard preconditioning and preconditioning by deflation (for
details see [7]). The convergence is then described by the effective condition number of M−1PDA.
For more details about the deflation preconditioner see [17, 15, 4, 13, 14, 10, 23, 2, 24, 25, 7, 22, 16].

We compare the preconditioned deflation operator with the balancing Neumann-Neumann
preconditioner proposed by Mandel [11, 12, 3, 18]. As the FETI algorithm [5, 6] the balancing
Neumann-Neumann preconditioner is one of the domain decomposition methods that have been
most carefully implemented and severely tested on the very largest existing parallel computer
systems.

Applied to some symmetric positive definite problems the balancing Neumann-Neumann pre-

conditioner leads to condition numbers which grow like 0(1 + log( H
h

2
)) in both two and three

dimensions [20]. Moreover, the condition numbers are independent of jumps in the coefficients in
the matrices [20].

In our notation the balancing Neumann-Neumann preconditioner is given by

PB = (I − ZE−1ZT A)M−1(I − AZE−1ZT ) + ZE−1ZT , (4)

here Z ∈ Rn×r, E = ZT AZ and M is a symmetric positive definite matrix - the Neumann-
Neumann preconditioner. Note that PB is symmetric and positive definite. For more details we
refer to the the books [20] and [19]. Further references are [11].

As a first comparison of both preconditioners we easily observe that balancing Neumann-
Neumann preconditioner needs per iteration 3 matrix vector products and the coarse grid operator
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is used 2 times. This makes the balancing Neumann-Neumann preconditioner per iteration more
expensive than the deflation approach.

In this article we give a detailed comparison of these two preconditioners. We prove that the
effective condition number of the deflated preconditioned system M−1PDA is always below the
condition number of the system preconditioned by the balancing Neumann-Neumann precondi-
tioner PBA. Even more, we establish that the spectra of PBA is the same as M−1PDA, except
the r zero eigenvalues are replaced by eigenvalues which are one.

This implies that for all matrices Z ∈ Rn×r and all positive definite preconditioners M−1 the
effective condition number of the deflated preconditioned system is below or equal to the condition
number of the system preconditioned by the balancing Neumann-Neumann preconditioner! How-
ever the condition number is not the only parameter which influence the convergence behavior of
the Conjugate Gradient method. The convergence may be significantly faster if the eigenvalues
of A are clustered [21]. But we obtain from the above mentioned result that the clustering of the
eigenvalues of the two different preconditioned systems is the same. However, we have a cluster
at zero in one case and at one in the other case. These results are stated in Section 2.

However, there are other properties which influence the convergence behavior of the Conjugate
Gradient method, e.g. the starting vector, the right hand side and the location of the clusters of
eigenvalues. Therefore, a more detailed comparison is given in Section 3. There we proof that
the A-norm of the errors of the iterates build by the deflation preconditioner is always below the
A-norm of the errors of the iterates build by the balancing Neumann-Neumann preconditioner.
Moreover, we establish that the deflation preconditioner and the balancing Neumann-Neumann
preconditioner produces the same iterates if one uses certain starting vectors. More precisely
we show which terms in the preconditioned Conjugate Gradient method are the same for both
methods and which terms are different. At the end of Section 3 we prove that the condition of the
balancing Neumann-Neumann preconditioned system decrease if one take a finer grid as a coarse
grid.

In Section 4 numerical results emphasize our theoretical results.

2 Spectral properties

In this section we compare the effective condition number for the deflation and balancing Neumann-
Neumann preconditioned matrices. In Section 2.1 we give some definitions and preliminary results.
Thereafter a comparison is made if the projection vectors are equal to eigenvectors in Section 2.2
and for general projection vectors in Section 2.3.

2.1 Notations and Preliminary Results

In the following we denote by λi(M) the eigenvalues of a matrix M . If the eigenvalues are real
the λi(M)′s are ordered increasingly.

For two Hermitian n × n matrices A and B we write A � B, if A−B is positive semidefinite.
Next we mention well-known properties of the eigenvalues of Hermitian matrices.

Lemma 2.1 Let A, B ∈ Cn×n be Hermitian. For each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B)

From the above lemma we easily obtain the next lemma.

Lemma 2.2 If A, B ∈ Cn×n are positive semidefinite with A � B, then λi(A) ≥ λi(B).

Moreover, we will use

Lemma 2.3 Let A, B ∈ Cn×n be Hermitian and suppose that B has rank at most r. Then
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• λk(A + B) ≤ λk+r(A), k = 1, 2, · · ·n − r,

• λk(A) ≤ λk+r(A + B), k = 1, 2, · · ·n − r.

Lemma 2.1, Lemma 2.2 and Lemma 2.3 can be found e.g. as Theorem 4.3.1, Corollary 7.7.4.
and Theorem 4.3.6, respectively, in [8].

2.2 Projection vectors chosen as eigenvectors

In this subsection we compare the effective condition number of PDA and PBA if the projection
vectors are equal to the eigenvectors of A.

Definition 2.4 Let λi be the eigenvalues of A. Choose the eigenvectors vk of A such that vT
k vj =

δkj , and define Z = [v1 . . . vr].

Theorem 2.5 Using Z as given in Definition 2.4 and preconditioner M equal to the identity, the

spectrum of PBA is:

spectrum(PBA) = {1, . . . , 1, λr+1, . . . , λn}.

Proof: For this choice of Z it appears that

E = ZT AZ = diag(λ1, . . . , λr). (5)

We consider PBAvk. For k = 1, . . . , n we obtain

PBAvk = (I − Zdiag(
1

λ1

, . . . ,
1

λr

) ZT A)(I − AZdiag(
1

λ1

, . . . ,
1

λr

) ZT )λkvk+

Zdiag(
1

λ1

, . . . ,
1

λr

) ZT λkvk.

Using the orthogonality properties of the eigenvectors one obtains:

PBAvk = vk, for k = 1, . . . , r.

For k = r + 1, . . . , n the same orthogonality properties lead to:

PBAvk = λkvk, for k = r + 1, . . . , n.

�

In order to compare both approaches we note that

κeff (PDA) =
λn

λr+1

, (6)

and

κ(PBA) =
max{1, λn}

min{1, λr+1}
. (7)

From (6) and (7) it follows that κ(PBA) ≥ κeff (PDA), so the convergence bound based on the
effective condition number implies that Deflated CG converges faster than CG combined with the
balancing Neumann-Neumann preconditioner if both methods use the eigenvectors corresponding
to the r smallest eigenvalues as projection vectors.
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2.3 Projection vectors chosen as general vectors

In the previous section we showed that the deflation technique leads to a smaller effective condition
number than the balancing Neumann-Neumann preconditioner, if eigenvectors are used. However,
computing the r smallest eigenvalues is mostly very expensive. Moreover, in multigrid methods
and domain decomposition methods special interpolation and prolongation matrices are used to
obtain grid independent convergence rates. So a comparison only for eigenvectors is not enough.
But in this section we generalize the results of the last section. We prove that the effective condi-
tion number of the deflated preconditioned system is always, i.e. for all matrices Z ∈ R

n×r, and
all preconditioners M−1, below the condition number of the system preconditioned by the balanc-
ing Neumann-Neumann preconditioner. To do this we repeat some properties of the projection
operator PD used in the Deflation method (see [7]). The operator PD is defined as:

PD = I − AZE−1ZT , where E = ZT AZ. (8)

Furthermore, the following identities hold:

P 2
D = PD , PDAZ = 0, ZT PD = P T

DZ = 0, and AP T
D = PDA.

We start with a result for the deflation preconditioner which helps to compare the deflation
and the balancing Neumann-Neumann preconditioner.

Theorem 2.6 Let A ∈ Rn×n be symmetric positive definite. Let Z ∈ Rn×r with rankZ = r.
Then

σ(P T
DM−1PDA) = σ(M−1PDA).

Proof:

Let λ be a nonzero eigenvalue of M−1PDA, i.e. there exists a nonzero vector x such that

M−1PDAx = λx.

But then
M−1PDAx = M−1P 2

DAx = M−1PDAP T
Dx = λx 6= 0.

Thus P T
Dx is a nonzero vector. Moreover,

P T
DM−1PDAP T

Dx = λP T
Dx.

Thus
σ(M−1PDA) ⊆ σ(P T

DM−1PDA).

Now let λ be a nonzero eigenvalue of P T
DM−1PDA, i.e. there exists a nonzero vector y such that

yT P T
DM−1PDA = λyT .

Thus yT P T
D is nonzero and we obtain

yT P T
DM−1PDAP T

D = λyT P T
D .

But
yT P T

DM−1PDAP T
D = yT P T

DM−1P 2
DA = yT P T

DM−1PDA.

Hence
yT P T

DM−1PDA = λyT P T
D .

Thus
σ(P T

DM−1PDA) ⊆ σ(M−1PDA),

which completes the proof. �

Using Theorem 2.6 we obtain
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Theorem 2.7 Let A ∈ R
n×n be symmetric positive definite. Let Z ∈ R

n×r with rankZ = r.
Then the preconditioner defined in (1) and (4) satisfies

λn(M−1PDA) ≤ λn(PBA) (9)

λr+1(M
−1PDA) ≥ λ1(PBA). (10)

Proof: We can write PB as

PB = P T
DM−1PD + ZE−1ZT .

Thus
A

1

2 PBA
1

2 = A
1

2 P T
DM−1PDA

1

2 + A
1

2 ZE−1ZT A
1

2 .

Since A
1

2 ZE−1ZT A
1

2 is a symmetric positive semidefinite matrix of rank r, we obtain with
Lemma 2.2

λi(PBA) = λi(A
1

2 PBA
1

2 ) ≥ λi(A
1

2 P T
DM−1PDA

1

2 ) = λi(P
T
DM−1PDA)

Using Lemma 2.3 we get
λr+1(P

T
DM−1PDA) ≥ λ1(PBA).

Using Theorem 2.6 we get the desired result.
�

It follows from Theorem 2.7 that

κ(PBA) ≥ κeff (M−1PDA)

so the convergence bound based on the effective condition number implies that preconditioned
Deflated CG converges faster than CG preconditioned by the balancing Neumann-Neumann pre-
conditioner.

It appears that the results given in Theorem 2.5 can be generalized to general projection
vectors.

Theorem 2.8 Suppose that the spectrum of M−1PDA is given by:

spectrum(M−1PDA) = {0, . . . , 0, µr+1, . . . , µn},

then

spectrum(PBA) = {1, . . . , 1, µr+1, . . . , µn}.

Proof: We know that M−1PDAZ = 0, so the eigenvectors corresponding to the zero eigenvalues
of M−1PDA are equal to {z1, . . . , zr}. On the other hand it is easy to check that

PBAZ = (P T
DM−1PD + ZE−1ZT )AZ = P T

DM−1PDAZ + ZE−1ZT AZ = Z.

This implies that {z1, . . . , zr} are the eigenvectors corresponding to the eigenvalues of PBA, which
are equal to 1.

Now we consider the eigenvalue µi, with r + 1 ≤ i ≤ n. Suppose vi is the corresponding
eigenvector of M−1PDA, so M−1PDAvi = µivi. Since

M−1PDAvi = M−1P 2
DAvi = M−1PDAP T

Dvi = µivi 6= 0,

the vector P T
Dvi is nonzero. Using this vector, it follows that:

PBA(P T
Dvi) = (P T

DM−1PD + ZE−1ZT )AP T
Dvi = (11)

= P T
DM−1PDAP T

Dvi + ZE−1ZT AP T
Dvi = (12)

= P T
DM−1P 2

DAvi = P T
DM−1PDAvi = µiP

T
Dvi. (13)

So the vectors P T
Dvi are eigenvectors of PBA corresponding to the eigenvalues µi. �

Thus both preconditioners lead to almost the same spectra with the same clustering. The zero
eigenvalues of the deflation preconditioned system are replaced by eigenvalues which are one if the
balancing Neumann-Neumann preconditioner is used.
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3 Comparing the norm of the residuals

In order to make a more detailed comparison of the Deflation operator and the balancing Neumann-
Neumann preconditioner for general projection vectors we start to compare the vectorspaces which
contain the approximations of both methods. Using CG with PB as preconditioner and start vector
x0,B = 0 it is well known that

xk,B ∈ Kk{PBA, PBb},

where the Krylov subspace Kk{PBA, PBb} = span{PBb, PBAPBb, . . . , (PBA)k−1PBb}.

Theorem 3.1 The Krylov space used in the CG method with PB as preconditioner and startvector

x0,B = 0 has the following property:

Kk{PBA, PBb} ⊂ span{ZE−1ZT b, P T
DM−1PDb, . . . , P T

D (M−1PDA)k−1M−1PDb}. (14)

Proof: To start the proof we first note that

PBb = P T
DM−1PDb + ZE−1ZT b.

So the property holds for k = 1. For k = 2 we note that

PBAPBb = (P T
DM−1PD + ZE−1ZT )A(P T

DM−1PD + ZE−1ZT )b.

Writing out the various terms on the right-hand side one obtains:

ZE−1ZT AZE−1ZT b = ZE−1ZT b,

P T
DM−1PDAP T

DM−1PDb = P T
DM−1PDPDAM−1PDb = P T

DM−1PDAM−1PDb,

where we have used that AP T
D = PDA and P 2

D = PD . Finally the terms

P T
DM−1PDAZE−1ZT and ZE−1ZT AP T

DM−1PD ,

are both zero because they contain the combination PDAZ = 0 or ZT AP T
D = (PDAZ)T = 0.

Repeating this argument for (PBA)iPBb for i = 3, . . . k − 1 proves the theorem.
�

With respect to the approximation using preconditioned CG combined with Deflation, we note
that x = (I − P T

D )x + P T
Dx = ZE−1ZT b + P T

Dx. So after k iterations of preconditioned CG
applied to AP T

Dx = PDAx = PDb we get the approximation x̃k,D . The approximation xk,D of the
solution vector x is then given by xk,D = ZE−1ZT b + P T

D x̃k,D . The vector xk,D is contained in
the following space:

xk,D ∈ ZE−1ZT b + span{P T
DM−1PDb, . . . , P T

D (M−1PDA)k−1M−1PDb}.

This implies that both approximations are element of the same space. So the difference in quality
of the approximation only depends on which norm is minimized.

Lemma 3.2 For the Deflation iterates xk,D and x̃k,D with start vector x̃0,D = 0 the following

optimality property holds

‖x − xk,D‖A = ‖P T
D (x − x̃k,D)‖A = min

ξ∈Kk{M−1PDA,M−1PDb}
‖P T

D (x − ξ)‖A (15)

Proof: The first equality follows from the fact that x = (I − P T
D )x + P T

Dx. If CG is applied
to the preconditioned system

L−1PDAL−T y = L−1PDb, (16)
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the following expression holds

‖ỹ − yk‖L−1PDAL−T = min
η∈Kk{L−1PDAL−T ,L−1PDb}

‖ỹ − η‖L−1PDAL−T , (17)

where ỹ is a solution of (16). Note that x̃ = L−T ỹ is a solution of PDAx = PDb. Rewriting (17)
with ξ = L−T η leads to

‖LT (x̃ − x̃k,D)‖L−1PDAL−T = min
ξ∈Kk{M−1PDA,M−1PDb}

‖LT (x̃ − ξ)‖L−1PDAL−T .

Using the equalities:

‖LT (x̃ − x̃k,D)‖2
L−1PDAL−T = (x̃ − x̃k,D)T PDA(x̃ − x̃k,D) =

= (x̃ − x̃k,D)T P 2
DA(x̃ − x̃k,D) = ‖P T

D (x̃ − x̃k,D)‖2
A = ‖P T

D(x − x̃k,D)‖2
A

leads to the proof of the lemma.
�

Theorem 3.3 Let xk,D and x̃k,D be the Deflation iterates with start vector x̃0,D = 0. For ev-

ery xk ∈ span{ZE−1ZT b, P T
DM−1PDb, . . . , P T

D (M−1PDA)k−1M−1PDb} the following inequality

holds:

‖x − xk,D‖A ≤ ‖x − xk‖A.

Proof:

We decompose xk as follows xk = αZE−1ZT b + P T
Dξ, where ξ ∈ Kk{M−1PDA, M−1PDb}.

Substituting this into ‖x − xk‖
2
A shows that

‖x − xk‖
2
A = ‖x − αZE−1ZT b − P T

Dξ‖2
A.

Using the equation x = (I − P T
D )x + P T

Dx = ZE−1ZT b + P T
Dx we obtain

‖x − xk‖
2
A = ‖(1− α)ZE−1ZT b − P T

D (x − ξ)‖2
A

= (1 − α)2‖ZE−1ZT b‖2
A + ‖P T

D (x − ξ)‖2
A +

(1 − α)bT ZE−1ZT AP T
D (x − ξ) +

(1 − α)(x − ξ)T PDAZE−1ZT b.

The last two terms are equal to zero, because ZT AP T
D = (PDAZ)T = 0. For xk,D we know that

α = 1. This together with Lemma 3.2 implies

‖x − xk,D‖2
A ≤ (1 − α)2‖ZE−1ZT b‖2

A + ‖P T
D(x − ξ)‖2

A = ‖x − xk‖
2
A,

where ξ ∈ Kk{M−1PDA, M−1PDb}.
�

Theorem 3.1 and Theorem 3.3 imply

Theorem 3.4 The iterates xk,D and xk,B of the CG method with start vector zero and pre-

conditioned by the deflation preconditioner and the balancing Neumann-Neumann preconditioner

respectively satisfy

‖x − xk,D‖A ≤ ‖x − xk,B‖A.

Next we are able to prove that using a certain start vector the iterates xk,D are equal to the
xk,B .

Theorem 3.5 Using x0,B = ZE−1ZT b and x̃0,D = 0 it follows that xk,D = xk,B .
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Proof: Using the start vector x0,B = ZE−1ZT b it appears that

r0,B = b − Ax0,B = (I − AZE−1ZT )b = PDb.

This implies that the Krylov subspace is given by Kk{PBA, PBPDb}. For k = 1 it follows from
P 2

D = PD and ZT PD = ZT (I − AZE−1ZT ) = 0 that

(P T
DM−1PD + ZE−1ZT )PDb = P T

DM−1PDb.

For k = 2 we know from the proof of Theorem 3.1 that

PBAPBPDb = ZE−1ZT PDb + P T
DM−1PDAM−1P 2

Db.

Note that ZT PD = ZT (I − AZE−1ZT ) = 0 so

PBAPBPDb = P T
DM−1PDAM−1PDb.

Repeating this argument shows that

Kk{PBA, PBPDb} = span{P T
DM−1PDb, . . . , P T

D (M−1PDA)k−1M−1PDb} =

= P T
DKk{M−1PDA, M−1PDb}.

We again use the fact that CG combined with the balancing Neumann-Neumann preconditioner
minimizes

(x − xk,B)T A(x − xk,B),

where
xk,B = ZE−1ZT b + P T

Dξ, and ξ ∈ Kk{M−1PDA, M−1PDb}

due to the choice of the start vector x0,B = ZE−1ZT b. We have that

x − xk,B = x − ZE−1ZT b − P T
Dξ = P T

D (x − ξ).

But by Lemma 3.2 the optimal ξ is nothing else than x̃k,D . So we obtain

x − xk,B = P T
D (x − x̃k,D).

Since x = ZE−1ZT b + P T
Dx we get

xk,D = ZE−1ZT b + P T
D x̃k,D = xk,B .

�

Using the identity xk,D = xk,B it is easy to see that Theorem 2.11 of [16] implies that the
balancing Neumann Neumann preconditioner with x0,B = ZE−1ZT b converges faster than the
additive coarse grid preconditioner.

In the following we give a more detailed analysis of the preconditioned cg method for both
preconditioners if the above start vectors are used. We prove which quantities in the precondi-
tioned CG-algorithm (PCG) are same for both preconditioners and which are different. To make
this paper self-containing we repeat the PCG-algorithm.

PCG-algorithm for Ax = b with preconditioner M−1.
r0 := b − Ax0, z0 = M−1r0, p0 := z0

For j = 0, 1, . . . until convergence, do
αj := (rj , zj)/(Apj , pj)
xj+1 := xj + αjpj

rj+1 := rj − αjApj

zj+1 := M−1rj+1

βj := (rj+1, zj+1)/(rj , zj)
pj+1 := zj+1 + βjpj

end

Moreover, we need the next proposition
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Proposition 3.6 Let PD , PB and M−1 be defined as above. Then

P T
DPBPD = P T

DM−1PD = P T
DPB = PBPD . (18)

Proof: Since PD = I − AZE−1ZT we have P T
DZ = Z − ZE−1ZT AZ = 0. Hence,

P T
DPBPD = P T 2

D M−1P 2
D + P T

DZE−1ZPD = P T
DM−1PD.

Similarly,

P T
DPB = P T 2

D M−1PD + PDZE−1ZPD = P T
DM−1PD .

Since P T
DM−1PD is symmetric we have also P T

DM−1PD = PBPD . �

Now, we can prove the following Theorem:

Theorem 3.7 Using the PCG algorithm with the balancing Neumann-Neumann preconditioner

PB and x0,B = ZE−1ZT b on one side and with the deflation preconditioner M−1PD and x̃0,D = 0
on the other side we have for all j

(rj,D , zj,D) = (rj,B , zj,B),

(PDApj,D, pj,D) = (Apj,B , pj,B)

rj+1,D = rj+1,B

zj+1,B = P T
Dzj+1,D

pj+1,B = P T
Dpj+1,D

βj,B = βj,D

xj+1,B = xj+1,D = ZE−1ZT + P T
D x̃j+1,D .

Proof: If we use PCG for
PDAx = PDb

with preconditioner M−1 and start vector x0 = 0 we obtain

x0,D = 0, r0,D = PDb, z0,D = M−1PDb,

p0,D = z0,D = M−1PDb, α0,D =
(r0,D , z0,D)

(PDAp0,D , p0,D)
,

x̃1,D = 0 + α0,DM−1PDb,

x1,D = ZE−1ZT b + α0,DP T
DM−1PDb.

If we use PCG for
Ax = b

with preconditioner PB and start vector x0 = ZE−1ZT b we obtain

x0,B = ZE−1ZT b, r0,B = PDb, z0,B = PBPDb,

p0,B = z0,B = PBPDb, α0,B =
(r0,B , z0,B)

(Ap0,B , p0,B)
,

x1,B = ZE−1ZT b + α0,BPBPDb.

Obviously, we have for all iterates

PDrj+1,D = PD(PDb − PDAxj+1,D) = rj+1,D . (19)

The identity
PBPD = P T

DM−1P 2
D + ZE−1ZT PD = P T

DM−1PD
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is frequently used in the following analysis.
Next, we prove the following identities by induction:

(rj,D, zj,D) = (rj,B , zj,B), (rj+1,D , zj+1,D) = (rj+1,B , zj+1,B)

(PDApj,D, pj,D) = (Apj,B , pj,B)

rj+1,D = rj+1,B

zj+1,B = P T
Dzj+1,D

pj+1,B = P T
Dpj+1,D

βj,B = βj,D

xj+1,B = xj+1,D = ZE−1ZT + P T
D x̃j+1,D .

In the following we use the Proposition 3.6 and (19). For j = 0 we have

(r0,D, z0,D) = bT P T
DM−1PDb = bT P T

DPBPDb = (r0,B , z0,B).

(PDAp0,D, p0,D) = bT P T
DM−1PDAM−1PDb

= bT P T
DM−1PDAP T

DM−1PDb

= bT P T
DPBAPBPDb

= (Ap0,B , p0,B).

Hence, α0,D = α0,B .

r1,D = PDb − α0,DPDAM−1PDb = PDb − α0,DAP T
DM−1PDb

= PDb − α0,BAPBPDb

= r1,B .

x1,D = ZE−1ZT b + α0,DP T
DM−1PDb

= ZE−1ZT b + α0,BPBPDb = x1,B

P T
Dz1,D = P T

DM−1r1,D = P T
DM−1PDr1,D

= PBPDr1,D = PBr1,B = z1,B .

Thus

(r1,B , z1,B) = (r1,D , P T
Dz1,D)

= (PDr1,D , z1,D) = (r1,D , z1,D).

Hence β0,D = β0,B . Next,

p1,B = z1,B + β0,Bp0,B

= P T
Dz1,D + β0,BPBPDb

= P T
Dz1,D + β0,BP T

DM−1PDb

= P T
D (z1,D + β0,Dp0,D)

= P T
Dp1,D.

Now assume that the above identities hold for j − 1 and that (rj,B , zj,B) = (rj,D , zj,D) holds.
We then have

(Apj,B , pj,B) = (AP T
Dpj,D, P T

Dpj,D)

= pT
j,DPDAP T

Dpj,D

= (PDApj,D , pj,D).
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Hence, αj,D = αj,B . Since

xj+1,B = xj,B + αj,Bpj,B ,

x̃j+1,D = x̃j,D + αj,Dpj,D,

we obtain

xj+1,D = ZE−1ZT + PDx̃j,D + αj,DP T
Dpj,D

= xj,B + αj,Bpj,B

= xj+1,B .

rj+1,B = rj,B − αj,BApj,B

= PDrj,D − αj,DAP T
Dpj,D

= PDrj,D − αj,DPDApj,D

= PDrj+1,D

= rj+1,D .

Moreover,

zj+1,B = PBrj+1,B = PBPDrj+1,D

= P T
DM−1PDrj+1,D = P T

DM−1rj+1,D

= P T
Dzj+1,D.

(rj+1,B , zj+1,B) = (PDrj+1,D , P T
Dzj+1,D)

= rT
j+1,DP T

Dzj+1,D

= (rj+1,D , zj+1,D).

Hence, βj,B = βj,D. Next we have

pj+1,B = zj+1,B + βj,Bpj,B

= P T
Dzj+1,D + βj,DP T

Dpj,D

= P T
Dpj+1,D,

which completes the proof. �

In the following we show how the eigenvalues and the condition number of the system pre-
conditioned by balancing Neumann-Neumann behave if we choose a coarser grid. Therefore let
Z1 ∈ Rn×r and Z2 ∈ Rn×s with rankZ1 = r and rankZ2 = s. Define

E1 := ZT
1 AZ1 and E2 := ZT

2 AZ2,

PD1
= I − AZ1E

−1
1 ZT

1 and PD2
= I − AZ2E

−1
2 ZT

2 .

Moreover let

PB1
= P T

D1
M−1PD1

+ Z1E
−1
1 ZT

1 and PB2
= P T

D2
M−1PD2

+ Z2E
−1
2 ZT

2 . (20)

We then have

Theorem 3.8 Let A and M ∈ Rn×n be symmetric positive definite. Let PB1
and PB2

be defined

as in (20). If ImZ1 ⊆ ImZ2, then
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λn(PB1
A) ≥ λn(PB2

A). (21)

λr+1(PB1
A) ≤ λs+1(PB2

A). (22)

Moreover

cond(PB1
A) ≥ cond(PB2

A).

Proof:

Theorem 2.12 in [16] states that

λn(M−1PD1
A) ≥ λn(M−1PD2

A),

λr+1(M
−1PD1

A) ≤ λs+1(M
−1PD2

A).

Thus, with Theorem 2.8 we get

cond(PB1
A) =

max(1, λn(M−1PD1
A))

min(1, λr+1(M−1PD1
A))

≥
max(1, λn(M−1PD2

A))

min(1, λs+1(M−1PD2
A))

= cond(PB2
A).

�

If a finer grid is used as a coarse grid in the balancing Neumann-Neumann preconditioner
the amount of work to solve the coarse grid system is increasing. But then Theorem 3.8 states
that the condition number of the system preconditioned by the balancing Neumann-Neumann
preconditioner decreases. So the more work on the coarse grid system will lead to less iterations.

4 Numerical experiments

In all our numerical experiments, the multiplication y = E−1b is done by solving y from Ey = b,
where E is decomposed in its Cholesky factor. In this section, balancing Neumann Neumann is
abbreviated as BNN. The choice of the boundary conditions is such that all problems have as
exact solution the vector with components equal to 1. In order to make the convergence behavior
representative for general problems we chose a random vector as starting solution, in stead of the
zero start vector.

4.1 Artificial test problems

We apply both methods (Deflation and BNN) to the Poisson equation. It appears that in the
numerical experiments ‖x − xk,D‖A ≤ ‖x − xk,B‖A but the differences are very small. From
Theorem 2.8 it follows that the spectrum of the balancing Neumann Neumann preconditioner
consists of two parts: in one part the eigenvalues are equal to 1, and in the other part the
eigenvalues are equal to the nonzero eigenvalues of the Deflated matrix. This suggests that if the
eigenvalues equal to 1 are interior eigenvalues the convergence is close to the convergence of the
preconditioned Deflation method, otherwise these eigenvalues may influence the convergence.

Scaling properties

Note that PDA is scaling invariant whereas PBA is not scaling invariant. This means that if
deflation is applied to a system γAx = γb the effective condition number of PDγAγA = (I −
γAZ(ZT γAZ)−1ZT )γA is independent of the scalar γ, i.e

κeff (PDγAγA) =
γλn(PDAA)

γλr+1(PDAA)
= κeff (PDAA).
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Whereas the condition number of PBγA depends on the choice of γ,

κ(PBγAγA) 6= κ(PBAA).

To check this in practice, we do experiments with BNN using various values of γ. From Figure
1 it appears that the convergence of the balancing Neumann Neumann preconditioner is worse if
γ 6= 1. We note that the Deflation method (for all values of γ) has the same convergence as the
BNN method with γ = 1.

0 10 20 30 40 50

10
−4

10
−2

10
0

10
2

iterate

||x
 −

 x
i ||

A

γ = 1
γ = 500
γ = 0.002

Figure 1: Comparison of the balancing Neumann Neumann preconditioner for various values of γ

Inaccurate solution

If the dimensions of matrix E becomes large (i.e. many projection vectors are used) it seems to
be a good idea to compute E−1 approximately (by an iterative method/or to do the procedure
recursively). It appears that the balancing Neumann-Neumann preconditioner is insensitive to the
accuracy of the approximation of E−1, while Deflation is sensitive to it.

To illustrate this we consider the same Poisson problem. In both examples 7 projection vectors
are used. We replace E−1 by Ẽ−1 = (I+εR)E−1(I+εR), where R is a symmetric r×r matrix with
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i ||
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Figure 2: Convergence behavior of DICCG including perturbations

random elements chosen from the interval [− 1

2
, 1

2
]. From Figure 2 it follows that the convergence

is good as long as |ε| < 10−6.

Starting solution for the BNN preconditioner
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In Theorem 3.5 we have proven that xk,B = xk,D if x0,B = ZE−1ZT b and x̃0,D = 0. In this
paragraph we illustrate this by numerical examples. In Figure 3 we plot the convergence of BNN
with start vector x0,B = ZE−1ZT b. It appears that the choice γ = 500 leads to the same results
as γ = 1 (and Deflation). Furthermore, the convergence for the choice γ = 0.002 is initially
also the same but later on the convergence becomes worse. This can be explained by rounding
errors. Using the choice γ = 0.002 the eigenvalues equal to 1 are large with respect to the other
eigenvalues. Initially, due to the start vector the components of the corresponding eigenvectors
are zero or small. During iterations, the perturbations in large eigencomponents increase, which
leads to the same convergence as if the method is started with x0,B = 0. To enlarge this effect we

have also done experiments where the matrix E−1 is replaced by Ẽ−1 with ε = 10−2. The results
are given in Figure 4. Note that the same effect now appears for both values of γ.
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Figure 3: Convergence of BNN with x0,B = ZE−1ZT b and ε = 0
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Figure 4: Convergence of BNN with x0,B = ZE−1ZT b and ε = 10−2

4.2 Porous media flows

In this section we simulate a porous media oil flow in a 3 dimensional layered geometry, where the
layers vary in thickness and orientation (see figures 5 and 6 for a 4 layer problem). Figure 5 shows
a part of the earth’s crust. The depth of this part varies between 3 and 6 kilometers, whereas
horizontally its dimensions are 40 x 60 kilometers. The upper layer is a mixture of sandstone and
shale and has a permeability of 10−4. Below this layer, shale and sandstone layers are present with
permeabilities of 10−7 and 10 respectively. We consider a problem with 9 layers. Five sandstone
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layers are separated by four shale layers. At the top of the first sandstone/shale layer a Dirichlet
boundary condition is posed, so the IC preconditioned matrix has 4 small eigenvalues. We use 4
physical projection vectors and stop if ‖rk‖2 ≤ 10−5. Trilinear hexahedral elements are used and
the total number of gridpoints is equal to 148185. The results are given in Table 1. It appears that
the norm of the residuals for both preconditioners are the same. Due to extra work per iteration
BNN costs more CPU time. In our implementation of BNN we used 2 matrix vector products 1
preconditioner vector product and the coarse grid operator is used 3 times. The computations are
performed on an AMD Athlon, 1.4 GHz processor with 256 Mb of RAM. The code is compiled
with FORTRAN g77 on LINUX.
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Figure 5: The geometry of an oil flow problem
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Figure 6: Permeabilities for each layer

method deflation BNN
iterations 36 36

CPU time in seconds 6.3 9.8

Table 1: The results for the oil flow problem

5 Conclusions

In this paper we compared various preconditioners for the numerical solution of partial differential
equations.

We have given a detailed comparison of the well-known balancing Neumann-Neumann precon-
ditioner used in domain decomposition methods and the deflation preconditioner.

We proved that both preconditioners lead to almost the same spectra. The zero eigenvalues
of the deflation preconditioned system are replaced by eigenvalues which are one if the balancing
Neumann-Neumann preconditioner is used. Thus the effective condition number of the deflated
preconditioned system is always, i.e. for all deflation vectors and all restrictions and prolongations,
below or equal to the condition number of the system preconditioned by the balancing Neumann-
Neumann preconditioner. Moreover, we proved that the A-norm of the errors of the iterates build
by the deflation preconditioner is always below the A-norm of the errors of the iterates build
by the balancing Neumann-Neumann preconditioner. Hence, the Conjugate Gradient method
applied to the deflated preconditioned system converges always faster than the Conjugate Gradient
method applied to the system preconditioned by the balancing Neumann-Neumann preconditioner.
Additionally, the amount of work of one iteration of the deflation preconditioned system is less
than the amount of work of one iteration of the balancing Neumann-Neumann preconditioned
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system. Hence the deflation preconditioner leads to a less number of iterations and each iteration
is of less amount of work.

Moreover, we established that the deflation preconditioner and the balancing Neumann-Neumann
preconditioner produces the same iterates if one uses certain starting vectors. More preciously
we showed which terms in the preconditioned Conjugate Gradient method are the same for both
methods and which terms are different. Numerical results for porous media flows emphasized the
theoretical results.
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