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1 Introduction

Plant phenotyping, the quantitative acquiring, modeling, and analyzing of plant traits that
are formed by the dynamic interaction of genotype and environment, could bridge the gap
between genotype and phenotype and reveal the contribution of genotype to phenotypic vari-
ation through quantitative trait locus (QTL) mapping and genome-wide association studies
(GWASs) (Yang et al, 2020; Ninomiya et al., 2019; Junker et al., 2015; Xiao et al., 2017). More-
over, plant phenotyping is also essential in plant genetic gain and plant variety improvement
by characterizing desired phenotypes in the breeding programme (Watt et al., 2020). How-
ever, unlike the advanced high-throughput DNA sequencing technology in plant genomics,
the plant phenotyping approaches mainly remain in the infancy stage (Hu et al., 2021). Con-
fronted with large genotype data, the lack of efficient high-throughput plant phenotyping
technology to acquire corresponding reliable phenotype data has emerged as the bottleneck of
agronomy and plant sciences (Mir et al, 2019). Traditional plant phenotyping methods, char-
acterized by their labor-intensive, time-consuming, and often invasive nature, coupled with
a reliance on subjective and manual measurements, are increasingly inadequate for the de-
mands of modern plant phenomics (Tardieu et al., 2017). Therefore, to break the “phenotypic
bottleneck”, the development of automatic, non-invasive, high-throughput plant phenotyp-
ing technology has attracted much attention worldwide.

In the last several decades, the integration of computer vision in plant phenotyping has ad-
vanced significantly, which is evident in the efficient extraction of plant traits and reduction
of manual labor (Das Choudhury et al} 2019). Among those computer vision-based plant
phenotyping pipelines, the importance of high-precision segmentation of plant organs is self-
evidence. Early works mainly focus on developing two-dimensional (2D) image-based meth-
ods. For instance, using threshold-based approaches, Hartmann et al.| (2011) and De Vylder
et al.| (2012) established organ segmentation from barley and arabidopsis 2D images, respec-
tively; Zhang et al.|(2017) and Das Choudhury et al.| (2018) successfully segmented individual
components of maize from its 2D image sequences by using graph-based methods; based on
edge detection, Yin et al.[(2017) segmented all leaves of arabidopsis. What is more, the rapid
development of the application of convolutional neural networks (CNNs) in image classifi-
cation and segmentation has led to breakthroughs in plant phenotyping, as demonstrated by
Aich and Stavness| (2017) and |Hasan et al. (2018) who achieved segmentation of arabidopsis
and tobacco leaf, and detection of wheat spikes, respectively. These 2D phenotyping pipelines,
being either automatic or semiautomatic, have significantly reduced the manual labor re-
quired in conventional phenotyping practice. However, they are not without limitations. Due
to the lack of depth information, self-occlusions and leaf crossover problems are difficult to
address; it is hard to describe plants with complex morphological structures accurately (Sun
et al., |2020). Consequently, the 2D phenotyping methods are mainly restricted to the afore-
mentioned simple monocotyledonous or rosette plants (Li et al., 2022b).

Those limitations spurred the studies of three-dimensional (3D) phenotyping methods, which
involve segmenting plant organs from the 3D model reconstructed by using technologies like
time of flight (ToF) cameras (Xiang et al., 2019), structure from motion (SfM) (Jay et al., 2015),
light detection and ranging (LiDAR) (Jin et al., 2021), and neural radiance fields (NeRFs) (Jig-
nasu et al., 2023). The advantages of 3D phenotyping are notable, addressing occlusion and
overlapping issues, allowing for accurate trait extraction from plants with more complicated
structures, such as rapeseed (Du et al., 2023), rice (Gong et al.,[2021), tomato (Li et al., 2022b),
which shows great potential in plant phenotyping.



Focusing on 3D point cloud data, the common traditional organ-segmentation methods in-
clude model-based algorithms (Gélard et al 2017), clustering-based algorithms (Xu et al|
2018; Thapa et al., [2018), normal vector-based method (Lin et al., [2016; |Li et al., 2017), and
skeleton-based algorithms (Xiang et al., 2019} Gaillard et al., 2020; Miao et al., 2021; Ma et al.,
2023). Although those methods could be efficient on multiple plant species through parameter
tuning, the segmentation performance on the boundary area between two parts can be unsta-
ble (Miao et al., 2021; |[Peng et al., 2022). Moreover, the parameter tuning processes are time-
consuming and highly rely on researchers’ prior knowledge of plant morphology structure
(Li et al., 2022b). Therefore, those common traditional organ-segmentation methods lack gen-
eralizability and cannot meet modern plant phenomics’ evolving demands. Concerning that,
developing a general method that could segment plant organs across multiple plant species is
one of the critical research directions in plant phenotyping.

In recent studies, deep learning-based methods have shown their high generalizability and
accuracy in multiple 3D point cloud tasks, including shape classification, object tracking, and
semantic/instance segmentation (Guo et al., 2020). Regarding that, utilizing deep learning
methods in plant organ segmentation has the potential to tackle the limitations of traditional
3D segmentation methods. However, unlike regular 2D image pixels, point cloud data with
its unordered and uneven natures can not be directly input into most deep learning models
widely used in 2D tasks (Yang et al., 2023). To tackle that problem, previous works mainly
transform 3D point cloud data into multi-view (Su et al,, 2015; Shi et al., 2019) or volumet-
ric (Maturana and Scherer, 2015; [Jin et al., 2019; [Zhang et al., 2023) representations, before
feeding them into a deep learning model (Qi et al., 2017a). However, the projection angles in
multi-view-based methods are hard to determine, and voxelization parameters in voxel-based
methods are also tough to balance between performance and computation complexity, and
geometry information will be lost during such transformations. Point-based methods, extract
point features in an end-to-end fashion, which could minimize the effect of those issues by
directly taking point cloud data as input (Qi et al.,[2017alb). For example, |Li et al. (2022c), and
Patel et al. (2023) adopted PointNet (Qi et al., 2017a) /PointNet++ (Qi et al., 2017b) to segment
organs on maize and sorghum plants, respectively, and both of them obtained outperformed
performance; Li et al.| (2022b) proposed PlantNet, a point-wise network, established tobacco,
tomato, and sorghum organ segmentation successfully. However, the computation complex-
ity is sensitive to the number of the input point cloud, therefore, the down-sampling operation
is normally necessary to balance the training speed and segment performance in point-based
methods (Li et al., [2022a).

Besides those approaches, Transformer (Vaswani et al., [2017), originally designed for natu-
ral language processing, with its well-designed self-attention module, has achieved impres-
sive results in 3D point cloud segmentation (Zhao et al., 2021; Guo et al., 2021). Therefore,
the improvement or modification of the self-attention module is one of the main research di-
rections of 3D point cloud Transformers and is still in its infancy (Lu et al., 2022; |Li et al.
2022a). Adopting the shifted window attention in Swin-Transformer (Liu et al., 2021) and
Single-stride Sparse Transformer (Fan et al, 2022), |Du et al. (2023) built the dual window
sets attention to capture neighborhood information, which performed well in rapeseed plant
organ segmentation; inspired by convolutional block attention module (Woo et al., 2018), Li
et al.|(2022a) designed spatial and channel attention modules in its PSegNet, which improved
its training efficiency on multiple plants organ segmentation tasks; similarly, by introducing
cross-window self-attention module, Win-Former, proposed by Sun et al.| (2023), conducting
maize point cloud efficiently.



In conclusion, the field of plant organ segmentation is increasingly adopting deep learning
methodologies. However, there is a notable scarcity of Transformer-based approaches tai-
lored for the automatic segmentation of plant organs from point clouds. Existing Transform-
ers are predominantly species-specific, casting doubt on their efficacy for cross-species seg-
mentation. Furthermore, most multi-scale attention modules integrated into these Transform-
ers are borrowed from non-plant segmentation networks. These modules typically treat all
regions equally, lacking specific emphasis or attention guidance. To the best of our knowl-
edge, existing self-guided attention modules for point clouds remain cumbersome and ineffi-
cient. In light of these limitations, this research draws inspiration from the multi-scale atten-
tion modules and the concept of the plant skeleton. We will propose the development of a
novel skeleton-guided attention module. This initiative culminates in the introduction of the
Skeleton-aware Attention Transformer, which has the potential to handle organ segmentation
across multiple plant species.

2 Related work

To confine the range of the literature review within our core research scope, three parts will be
examined in this section, the common 3D point cloud skeletonization algorithms will be dis-
cussed in section Section the pioneer Transformer networks in plant organ segmentation
domain will be presented in Section and lastly, the novel multi-scale attention modules
will be explored in section Section

2.1 Skeleton extraction algorithms

The skeleton is one of the simplified representations of a 3D point cloud model, which can
intuitively reflect the morphology structure and topology structure of itself. However, with
the unordered, uneven, and unconnected natures of the point cloud data, and the normally
complexity structure of plant leaves and branches, how to extract the correct skeleton from the
plant point cloud model is a question.

Bao et al|(2019) introduced a simple and efficient algorithm to extract the skeleton graph
of Maize, which involves slicing the plant point cloud into thin layers along the plant growth
direction (the X-axis) first and clustering the points on the same layer into several Euclidean
clusters according to a Euclidean distance threshold, and then the point which is closest to the
centroid of the cluster will be labeled as the skeleton point. The skeleton graph is generated
using the minimum spanning tree (MST). This algorithm is efficient for plants with generally
vertical structures and without horizontal parts, like maize or sorghum (Bao et al., 2019; Xi-
ang et al., 2019). For plants with significant horizontal branches (e.g., tomato, rapeseed), the
extracted skeleton graph can contain unexpected errors.

The Li-Medial Skeleton algorithm constructs the skeletal framework of a point cloud by it-
eratively computing local L; median points (Huang et al.,|2013). This process is governed by
a balance of attractive and repulsive forces within a progressively expanding local neighbor-
hood. Through this iterative method of contraction, the algorithm efficiently identifies and
extracts the skeleton points. This approach allows for a robust representation of the point
cloud’s underlying structure, even in the presence of noise, outliers, or incomplete data. Uti-
lizing L1-medial skeleton algorithm, Ma et al. (2023)) successfully extracted the refined skele-
ton of rapeseed plants, which have strong scattering structures (Du et al) 2023). L;-medial
skeleton algorithm could feasibly process cylindrical-shaped point clouds, adeptly extracting
skeletons from objects like tree branches (Su et al., 2019) or rapeseed siliques (Ma et al., 2021,



2023). However, it is unsuitable for flat or planar structures, such as plant leaves. In these
cases, the extracted leaf skeleton may not accurately represent the leaf veins, and can some-
times fall outside the leaf’s point cloud (Wu et al., 2019).

In the paper by Du et al.|(2019), AdTree, an innovative method that integrates Delaunay trian-
gulation (DT) and graph theory for extracting tree skeletons, was introduced. This approach
utilizes DT for connectivity graph generation from the point cloud and further extracts the
initial skeleton by establishing a MST using the Dijkstra shortest-path algorithm on that con-
nectivity graph. The refined skeleton is obtained by iterative pruning on the initial skeleton to
remove redundant parts. Despite the effectiveness in processing cylinders of this graph-based
algorithm, especially tree branches (Du et al| 2019; Wang et al., 2021), similar to L;-medial
skeleton algorithm, this algorithm shows limitations in accurately representing flat and wide
plant leaves. Figure|l|depicts a tomato skeleton generated by AdTree, which fails on skeleton
extraction from leaves and the stem skeleton also contains errors.

(a) Raw tomato point cloud (b) Tomato skeleton

Figure 1: Skeleton extraction using AdTree

Laplacian-based contraction algorithm, proposed by Cao et al. (2010), which iteratively con-
tracts a point cloud using the cotangent-weighted Laplacian operator constructed by the one-
ring Delaunay neighborhood (Au et al,, 2008; Meyer et al., 2003). With the contraction and
attraction weights to balance the shrinkage processing, the contracted point cloud could pre-
serve the original geometry’s characteristics while minimizing volume. The algorithm gener-
ates a connectivity graph from key points identified through clustering in the contracted cloud.
Subsequently, a skeleton graph is derived using a MST on this connectivity graph. Notably
effective in extracting curve skeletons from both cylinder objects (Li et al.,|2020) and surfaces
with boundaries (e.g., plant stems and leaves), this method has been widely adopted in plant
skeleton extraction. For instance, Wu et al.| (2019), Miao et al. (2021), and Peng et al.| (2022)
successfully applied it to extract refined skeletons of maize and tomato plants, respectively.

2.2 Transformers in plant organ segmentation

The Transformer architecture, known for its exceptional ability to learn global features and
execute permutation-equivariant operations, is inherently suitable for point cloud processing
and analysis (Lu et al., 2022). This suitability has led to its widespread adoption in a variety of
3D point cloud processing tasks, as evidenced by several studies (Zhao et al., 2021} Guo et al.|
2021). Despite its success in these areas, the application of Transformers in the field of 3D
phenotyping, particularly in the segmentation of plant organs, remains relatively unexplored.
And some pioneer studies in the past two years will be discussed in this section.



MASPC _Transform, standing for Multi-head Attention Separation and Position Code, repre-
sents a pioneering application of Transformer architecture in 3D plant organ segmentation (Li
and Guo, 2022). This model primarily builds upon the Point Transformer framework (Engel
et al., 2021). It introduces a position-coding network (which contains absolute and relative po-
sitions) to mitigate the effects of point cloud disorder and irregularity during feature extraction
and integrates this network within the local and global feature extraction modules of the Point
Transformer. Additionally, MASPC_Transform incorporates a multi-head attention separation
loss based on spatial similarity. This loss function effectively segregates attention positions,
thereby facilitating the creation of distinct attention feature spaces and preventing overlap
among them. Comparative semantic segmentation results on the ROSE-X dataset (Dutagaci
et al.,|2020) demonstrate that MASPC_Transform outperforms not only the Point Transformer
but also other common networks like PointNet, DGCNN (Zhang et al., 2021), PointCNN (Li
et al., 2018)).

Du et al.| (2023) introduced PST (Plant Segmentation Transformer) for extracting silique phe-
notypes in rapeseed plants, achieving both semantic and instance segmentation. Inspired by
dynamic voxelization (Zhou et al., 2020) and voxel feature encoding (Zhou and Tuzel, 2018),
PST incorporates a dynamic voxel feature encoder (DVFE), which efficiently converts point-
wise inputs into voxel-wise embeddings with a learned feature, reducing information loss. Its
self-attention module was adopted from the shifted-window self-attention (Liu et al., 2021;
Fan et al., [2022), which could efficiently capture the neighbor context for voxel feature learn-
ing. Additionally, PST integrates an instance segmentation head from PointGroup (Jiang et al.|
2020), enabling its instance segmentation capabilities. The results show that, for both seman-
tic and instance silique segmentation, PST obtained the best performance among PointNet++,
PAConv (Xu et al., 2021)), and DGCNN.

In the article by |Li et al.|(2022a)), PSegNet is introduced as an advanced network for point cloud
segmentation in plants, featuring a Double-Granularity Feature Fusion Module (DGFFM) and
an Attention Modules (AMs) with spatial and channel components. DGFFM adeptly decodes
and fuses features of varying granularities, enhancing the network’s segmentation capabil-
ities. The unique double-flow structure of PSegNet with AMs, with its upper and lower
branches dedicated to instance and semantic segmentation respectively, leverages AMs for fo-
cused feature processing. This innovative architecture allows PSegNet to surpass established
networks like PointNet, PointNet++, ASIS, and PlantNet in both organ semantic and leaf in-
stance segmentation tasks across tobacco, tomato, and sorghum plants

Sun et al.| (2023) innovatively proposed Win-Former, a model utilizing Sphere Projection and
Window Transformer for local feature aggregation. This method projects point clouds onto
a spherical surface, dividing it into sphere windows for local self-attention computations. It
uniquely adopts a Cross-Window self-attention mechanism, akin to the shifted-window ap-
proach in Liu et al.|(2021) and [Fan et al. (2022), by altering sphere window positions along az-
imuth and elevation angles. This design facilitates hierarchical feature extraction through both
Window Transformer and Cross-Window attention. The results demonstrate Win-Former’s
superior performance over established models like PointNet, PointNet++, and DGCNN on
the maize dataset from Pheno4D (Schunck et al., 2021)) dataset.

2.3 Multi-scale attention modules

From the above pioneer Transformer architectures, we can find that the ability to extract fea-
tures in multi-scale is crucial for plant organ segmentation performance. Moreover, as the



core component of Transformers, the importance of the self-attention module is self-evidence.
Herein, the recent studies on multi-scale attention modules will be discussed in this section.
Regarding the infancy stage of Transformer application in 3D tasks, both 2D and 3D scenarios
will be included.

Inspired by the notable performance of multi-scale CNNs, Chen et al. (2021) proposed CrossViT
(Cross-Attention Multi-Scale Vision Transformer), which could efficiently extract multi-scale
feature representations for 2D image classification. And the core component of that opera-
tion is cross-attention module. By partitioning the image with different patch sizes, the large
branch patches operated by coarse-grained patch size, and the small branch patches clipped
by fine-grained patch size can obtained. After adding an additional classification token to two
branches, as in the original BERT (Devlin et al, 2018), they will be fed into cross-attention
module. As illustrated in Figure 2, the additional classification token of the large branch will
be projected to match the feature dimension of the small-scale group to serve as a Query, and
interact with the Key and Value derived from the small branch’s embedded feature tokens.
The small branch follows the same procedure but swaps the additional classification token
and embedded feature tokens from another branch. By enabling multi-scale features in Trans-
former, CrossViT obtained impressive performance. Moreover, Yang et al.| (2023) proposed
PointCAT (Cross-Attention Transformer for Point Cloud), a dual-branch cross-attention trans-
former network. By replacing multi-scale image partitions with multi-scale point grouping,
which is established by farthest point sampling (FPS), K-nearest neighbor (KNN) search, and
max-pooling aggregation, such cross-attention module was able to be utilized in 3D scenar-
ios. And the ablation shows that cross-attention module is also efficient in 3D scenarios, and
has demonstrated improvements in segmentation tasks on ModelNet40 (Wu et al., 2015) and
S3DIS (Armeni et al., 2016) dataset.
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Figure 2: Cross-attention module for large branch (Chen et al., 2021)

The computation cost of self-attention grows quadratically with the token length, which limits
the self-attention application for large-scale input. Concerning that, Ren et al.|(2023) proposed



SG-Former (Self-guided Transformer). This network introduced a token allocation mecha-
nism guided by a significance map, namely self-guided attention module. According to the
significance map, the self-guided attention module will allocate more tokens to regions of high
salience and fewer to less significant areas 3 Consequently, focusing on the inherent signif-
icance difference of different tokens, the self-guided attention module enables the extraction
of more comprehensive and efficient multi-scale features. The SG-Former demonstrated su-
perior performance over many existing vision Transformers, striking a balance between com-
putational efficiency and the extraction of high-scale features.

1 SG-Former

: |
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Figure 3: The idea of SG-Former (Ren et al., 2023)
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3 Research questions

3.1 Objective
The main research question of this project is:

To what extent will the skeleton-guided attention module improve the performance and general-
izability of the plant organ segment network?

This research aims to design a deep-learning network for plant organ semantic and instance
segmentation, which could be performed across plant species. To achieve this research goal,
the main research question can be divided into the following sub-questions:

1) How can we extract refined skeletons from various plant species?

)
2) How to use the skeleton information to guide attention computation?
3) How to establish multi-scale feature extraction according to skeleton information?
)

4) How accurate is the segmentation result of our network compared to traditional methods and
other pioneer networks?

3.2 Research scope

This research will focus on the organ semantic and instance segmentation for plant shoots, the
plant root will be excluded from our research. And the network architecture will be limited
to Transformer architecture, other architectures will not be discussed. Furthermore, as there
is no official dataset for the 3D plant segmentation task, our network will be evaluated on the
hybrid dataset (including public, unpublic, and self-built datasets) described in Section

4 Methodology

In this research, the skeleton of the plant will be extracted using Laplacian-based contrac-
tion algorithm. The baseline of our deep-learning network will be PointCAT, and the cross-
attention layer in PointCAT, self-guided attention in SG-Former will be used as inspiration for



the design of the skeleton-aware attention module. The transformer decoder of OneFormer3D
(Kolodiazhnyi et al} 2023) will be combined with our network, to establish semantic and in-
stance segmentation.

4.1 Skeleton extraction

Compared with skeleton extraction algorithms mentioned in Section Laplacian-based
contraction algorithm demonstrates notable proficiency when handling objects of horizontal,
cylindrical, and flat geometries. Given this advantage, the Laplacian-based contraction algo-
rithm has been selected as the primary technique for extracting plant skeletons in the present
study. The core process involves an iterative contraction of the point cloud, achieved through
the resolution of a linear system, as defined in Equation

WLL / 0

[ Wr ] " [WHP} g
Here, P represents the initial point cloud, while P’ denotes its contracted form. The matrix
L, a cotangent-weighted Laplacian matrix, is constructed using one-ring Delaunay neighbors.
The diagonal matrices Wy and Wy regulate the intensity of the contraction and the preserva-

tion of the original position, respectively, ensuring the movement of the point cloud along the
estimated normal direction.

The contraction process unfolds iteratively. Each iteration involves solving Equation | to
obtain P’. The matrices Wi, and Wy are subsequently updated as per Equation [2, where S!
and S) represent the current and original neighborhood extent of the point p;, respectively.
This results in the generation of a new point cloud P!*! from the current point cloud P!. The
updated Laplacian matrix, L!*!, is reconstructed using P**!. The iteration terminates when
Wi /WE < 0.01, or after exceeding 15 iterations. Typically, the point cloud can contract to
the skeleton’s shape within 10 iterations.

Y
Wit =S Wi, Wil = W%,ij (2)
1

Upon obtaining the contracted point cloud, the final skeleton graph is subsequently derived
by applying a set of graph-based operations.

4.2 Down-sampling

For most Transformer architectures, down-sampling is necessary for the point cloud before
being fed into. The computation cost is highly sensitive to the number of input points. It is
almost impossible to train a Transformer network with the full-scale input point cloud. With
the advanced sensor technology, the average number of points in common plant point cloud
datasets is exceedingly high, which can exceed 100,000 (ROSE-X), and even above 1,000,000
(Pheno4D). Contrastingly, the input capacity for many Transformer networks is capped at
less than 5,000 points, which means at least 95% of the points need to be deleted, and this
poses a risk of losing the original geometric characteristics information of the plants. Conse-
quently, the selection of an effective down-sampling methodology is critical. A well-chosen
down-sampling strategy should not only mitigate noise impact but also preserve geometry
information as much as possible.

Although the proportion of edge points of the plant point cloud is often less than 10% of the
total points, they can efficiently represent the overall structure of the plant, indicating that the



edge points contain important global information of the point cloud (Li et al., 2019). The 3D
Edge-Preserving Sampling (3DEPS) approach, as proposed in Li et al.| (2022b)), could preserve
the edge/boundary points of the object during down-sampling, and has the potential ability
to preserve the object’s geometry information. 3DEPS employs Surface Boundary Filter (SBF)
(Klasing et al., 2009) to partition the point cloud into two distinct categories: edge points and
internal points. The steps of SBF are as follows:

1) Start with a point in the input point cloud, and find its k-nearest neighbors;

2) Calculate the principal components of that point with its k-nearest neighbors, and project
them on the PCA plane constructed by the first two principal components (u, v), the
projected k-nearest neighbors X = {x; }xcx C R?, and projected point x; C R?;

3) For each projected k-nearest neighbors, compute the angle 6 by equation

0; = arccos ((xx — x;),u), je€K (3)

4) The sign of 6 is assigned by the sign of (x; — x;) - u (i.e., assign the same sign of (x; —
x;) - u to 0), therefore, the range of 6 becomes [—7, 7], and push the 6 with the assigned
sign into the angle set ©;

5) Sort the angle set @ = {0;};cx in ascending order. If the maximum angle difference
satisfies max(9j+1 — Gj) > Bthreshold (default Oynresholda = 7 ), then the corresponding point
of x; in the point cloud is labeled as a edge point;

6) Repeat Step 1-5 with the next point in the input point cloud. After all points have per-
formed the above steps, SBF is completed.

After labeling the edge points in the point cloud, 3DEPS applies FPS separately on edge points
and non-edge points to form the final sampled point cloud. The proportion of edge points and
non-edge points in the final sampled point cloud is user-defined. By purposefully increas-
ing the edge points ratio in the final sampled point cloud, geometry loss during the down-
sampling operation can be minimized.

4.3 Baseline network

As discussed in Section PointCAT could efficiently capture long-range dependencies and
multi-scale information among sampled points through its cross-attention module. This mod-
ule is adept at fusing and learning features from multiple scales. What is more, our research
aims to develop a Skeleton-aware Attention Transformer, which will leverage a skeleton-
guided attention module to capture multi-scale features. Given the effectiveness of the cross-
attention module in PointCAT in learning features from multi-scale data, it is an ideal baseline
for our research, offering a robust foundation for our network design.

In the original PointCAT network, point patch tokens are derived through FPS and KNN
grouping. While this method is efficient, it is somewhat arbitrary and lacks a targeted ap-
proach. Incorporating skeleton information to guide the generation of point patch tokens can
potentially enhance the network’s performance. Therefore, in our proposed modification, the
multi-scale grouping module in PointCAT will be substituted with a skeleton-guided atten-
tion module. This approach aims to provide a more structured and informed method for
token generation, potentially leading to improvements in the model’s performance.



4.3.1 Skeleton-guided attention module

The skeleton-guided attention module is inspired by the self-guide attention module in SG-
Former. The self-guided attention module could allocate the token according to the signif-
icance map, which aims to extract detailed features from salient regions by allocating more
tokens, and cursory features from inconspicuous areas by allocating fewer tokens. This mech-
anism established a comprehensive patch token generation compared with the multi-scale
grouping module in PointCAT.

In this self-guided attention module, token distribution is determined by a significance graph
derived from self-attention computations. To incorporate skeleton information for token al-
location, it’s necessary to devise an algorithm capable of computing a skeleton-based signif-
icance map. Inspired by skeleton-based methods used in plant organ segmentation, as dis-
cussed in Section [l those methods typically consider the skeleton graph as a connectivity
graph, utilizing its junction vertices to guide segmentation. Following this logic, we could cre-
ate a significance map that references these junction vertices, attributing higher significance to
areas near the junctions and lower significance to those further away. Such a skeleton-based
significance map would enable the skeleton-guided attention module to allocate tokens more
effectively.

4.3.2 Semantic and instance segmentation

Kolodiazhnyi et al.| (2023) proposed OneFormer3D, which demonstrated significant accom-
plishments in 3D semantic and instance segmentation with a Query Decoder. This is a Trans-
former decoder that could tackle both 3D semantic and instance segmentation tasks at the
same time. Thus, we will directly combine its Query Decoder with our network to establish
plant organ semantic/instance segmentation. Moreover, the settings for loss functions will be
as same as those in OneFormer3D.

4.4 Evaluation metrics

In terms of semantic segmentation, we will calculate Precision, Recall, F1-score, Intersection
over Union (IoU), and overall accuracy on each semantic class to evaluate the network’s per-
formance. For instance segmentation, we will employ mean precision (mPrec), mean recall
(mRec), mean coverage (mCov), and the mean weighted coverage (mWCov).

5 Time planning

The following Gantt chart shows the initial schedule of this research.
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6 Tools and datasets used

6.1 Programming language

C++ is renowned for its efficiency in executing computationally intensive tasks, making it an
ideal choice for handling large-scale numerical computations, particularly in the domain of
point cloud processing. The language’s performance is further enhanced by robust libraries
such as Eigen, Open3D, PCL, and OpenMP. These tools collectively facilitate efficient point
cloud processing, including crucial operations like down-sampling and skeleton extraction.
Accordingly, these aspects of our research will be implemented in C++.

With excellent deep learning libraries, like PyTorch and TensorFlow, and user-friendly syn-
tax, Python has been widely used in the deep learning area. Therefore, the construction and
optimization of our Transformer network, as well as the training and testing of the network,
will be implemented in Python.

6.2 Platform

The network building, module designing, and initial training/testing will be conducted on a
laptop with an i7-12700H CPU and NVIDIA GeForce RTX 3060 GPU (6G) under the Ubuntu
operation system. For experiments in the final stage, like performance comparison, and ab-
lation study, the High-Performance Computer, DelftBlue (Delft High Performance Comput-
ing Centre ,| DHPC)), will also be utilized.

6.3 Datasets

As there is no official benchmark dataset for 3D plant organ segmentation, a hybrid dataset
consisting of public, unpublic, and self-built datasets will be used for network training and
testing. The components of this hybrid dataset are discussed as follows.

6.3.1 Pheno4D

Pheno4D, as introduced by Schunck et al. (2021), represents a significant advancement in
the acquisition of plant point cloud data through the use of a laser triangulation scanner.
The dataset encompasses detailed measurements of plant growth, featuring observations of
7 maize plants over 12 days and 7 tomato plants monitored over 20 days. This comprehensive
data collection resulted in 84 point clouds for maize and 140 for tomato plants.

By using a laser triangulation scanner, Schunck et al.| (2021) produced a high-quality plant
point cloud dataset, namely Pheno4D. The authors measured 7 maize plants on 12 days, and
7 tomatoes measured on 20 days. This gives 84 maize and 140 tomato point clouds. However,
not all of them were labeled by the authors, only 49 maize and 77 tomato point clouds were
labeled. For all labeled point clouds, soil, stem, and leaves points were added semantic labels,
and instance labels were assigned to all individual leaves.

6.3.2 ROSE-X

The ROSE-X (Dutagaci et al, [2020) dataset consists of 11 annotated 3D models of rosebush
plants acquired through X-ray tomography. However, those plant models only contain se-
mantic labels. Therefore, in the subsequent processing, the instance label will be added man-
ually to every individual leaf by using the Semantic Segmentation Editor (SSE) tool https://
github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor/.

11


https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor/
https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor/

6.3.3 Unpublic dataset

Conn et al. (2017) introduced Plant3D, a data repository dedicated to the storage of three-
dimensional scans of plants. Currently, this database comprises 714 point clouds over four
plant species (tomato, tobacco, sorghum, and Arabidopsis). However, a notable limitation of
this dataset was the absence of labels, which restricted its usage in the deep learning domain.

To address this gap, |Li et al.| (2022b) made a significant contribution by manually annotat-
ing the point cloud in the Plant3D dataset with semantic and instance labels. Their efforts
resulted in the labeling of a substantial portion of the Plant3D dataset, encompassing 105 to-
bacco, 312 tomato, and 129 sorghum specimens. However, the enhanced dataset with |Li et al.
(2022b) annotations was not publicly released. By communicating with the authors, we were
granted access to this labeled dataset under specific terms and conditions. This means we are
not permitted to distribute this dataset, either publicly or privately. Concerning that, to make
our research result reproducible by any other researchers, this dataset will be limited to use in
the preliminary training and testing stage, for parameter pruning, and in the final stage, only
the public and self-built datasets will be utilized.

6.3.4 Self-built dataset

The current 3D plant data are still lacking, and those data are mainly limited to species like
maize, tomato, and sorghum. To enrich and diversify the current 3D plant data, we decide
to develop a self-built dataset. This work will focus on capturing the 3D point cloud data of
Polygonum lapathifolium L., an annual herbaceous plant, by using SfM, or NeRFs-based method
such as NeUDF (Liu et al.,[2023).

7 Expected outcomes

When completing this research, we expect to have below outcomes:

1. A dataset that merges several public datasets and our self-built dataset will be public, to
boost the development of 3D plant phenotyping.

2. An academic article is expected to be produced and ready to be published.

3. The complete code and trained weight will be public on GitHub.
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