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Distributed Leader-Follower Formation Control for Autonomous Vessels
based on Model Predictive Control*

M.J. van Pampus1,2, A. Haseltalab1, V. Garofano1, V. Reppa1, Y.H. Deinema2, R.R. Negenborn1

Abstract— Formation control of autonomous surface vessels
(ASVs) has been studied extensively over the last few years
since it offers promising advantages. In this paper, two con-
trol methods for distributed leader-follower formation control
are proposed: A Nonlinear Model Predictive Control (MPC)
method and an MPC method using Feedback Linearization.
One agent per vessel performs planning and control. The
agents exchange information on their current and predicted
positions. The two proposed methods are compared with each
other and also with a conventional Proportional-Integral (PI)
control method. The performance of the proposed strategies
is evaluated through simulations and field experiments using
small scale vessels. The simulation and field experiment results
show that the proposed MPC-based approaches outperform the
conventional PI control method.

Index Terms— Autonomous surface vessels, model predictive
control, feedback linearization, formation control

I. INTRODUCTION

Formation control is seen as a promising opportunity for
autonomous surface vessels (ASVs) and has been studied for
years. Advantages of formation control include robustness,
reliability and efficiency [1]. Furthermore, formation control
is useful for applications such as search and rescue [2], ocean
sampling [3], large object transport [4], and surveillance [5].
Autonomous ground, aerial, underwater and surface vehicles
are among the main applications of formation control. Most
research works have focused on ground and aerial vehicles
[6], [7].

Four approaches of formation control have been devel-
oped. The behavior-based approach weighs the relative im-
portance of desired prescribed behavior for each vehicle [8],
[9]. The virtual structure approach handles the formation as a
single entity and assigns a desired motion to the center of the
virtual structure [10], [11]. A third method is graph theory
that uses mathematical structures to model the relations
between vehicles [6], [12], [13]. In the fourth approach, the
leader-follower approach, a designated leader is followed by
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the followers respecting user-defined distances between the
leader and followers [14], [15], [16]. The suitability of each
approach depends on the purpose of the application.

In the case of multiple vessels, three main control struc-
tures have been used for formation control, namely cen-
tralized, decentralized and distributed control. While many
research works apply centralized control [1], [11], [17], it is
shown that centralized control does not scale well and is thus
less suited for formation control [1], [18], [19]. To cope with
these issues decentralized and distributed approaches have
been applied. In decentralized control approaches, vehicles
do not communicate [8], [14] in contrast to distributed
control, where they do communicate to exchange information
[1], [6], [18].

There is a wide range of applications of formation control.
In [20] a Proportional-Integral-Derivative (PID) controller is
used to control a formation of tailsitters. Linear-Quadratic
Regulator is used to control quadcopters in [21]. The Back-
stepping approach is proposed in [10] to hold a desired inter-
ship formation pattern in a group of autonomous surface
vehicles. Neural Networks are used in [16] to control a group
of vessels using leader-follower formation control. In [6],
Model Predictive Control (MPC) is applied to a group of
quadrotors that is able to avoid dynamic obstacles. While
MPC is frequently used and validated through simulations,
research endeavors to validate MPC strategies are limited
[7], [12]. To our best knowledge, no maritime formation
control field experiments have been performed with pre-
dictive control. The main reason for this seems to be the
high computation time [22]. The lack of field experiments
with predictive control seems to be a major research gap in
maritime formation control.

The objective of this work is to design a distributed leader-
follower formation control architecture of multiple vessels
where the leader tracks a trajectory and the followers keep
a safe distance. The leader-follower formation is suitable for
sailing in narrow waterways. Per vessel, one agent performs
planning and control and the agents exchange their current
and predicted positions. A Guidance, Navigation and Control
(GNC) strategy is followed for the design of every agent.
The guidance system solves an MILP optimization problem
in order to produce a feasible, collision free trajectory
that follows a desired trajectory as close as possible. Two
different control strategies are used in this research work.
The first strategy uses an NMPC algorithm, that has a
high computation time. The second strategy uses a fast FL
MPC algorithm. A model-free control approach is used for
comparison. The performance of the strategies are evaluated
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Fig. 1: 1:4 scale Roboat units on the quay in Amsterdam

using six simulation tests and five field experiments using
1:4 scale Roboat units [23], shown in Figure 1.

The main contributions of this work are:

• The design of a modular distributed GNC architecture
where information is exchanged in the guidance system
instead of the control system.

• The design of a reconfigurable formation control strat-
egy to produce and follow a collision-free trajectory.

• The design and performance evaluation of two model
predictive control strategies, a nonlinear MPC and a
Feedback Linearization based MPC, and a model-free
control strategy, a PI.

The remainder of this paper is organized as follows. In
Section II the maneuvering model is presented. In Section
III, the MPC-based approaches are described. In Section IV
the results of simulations and field experiments are presented.
Finally, concluding remarks are given in Section V.

II. VESSEL MANEUVERING DYNAMICS

According to [24] the maneuvering of a vessel can be de-
scribed in 3 Degrees of Freedom by the following nonlinear
differential equation:

Mj ν̇j +Cj(νj)νj +Djνj = τj + dj , (1)

where νj = [uj , vj , rj ]
T denotes the velocity; Mj ∈ R3×3

is the added mass and inertia matrix; Cj(νj) ∈ R3×3

is the Coriolis and centripetal matrix; Dj ∈ R3x3 is the
drag matrix; τj ∈ R3×1 is the vector of internal forces
and moments applied to the vessel; and dj ∈ R3×1 the
vector of unknown external forces and moments applied
to the vessel. The position and orientation of the ship in
the North-East-Down (NED) coordinate system is defined
as ηj = [xj , yj , ψj ]

T. The kinematic equation relating the
velocity components in the NED frame to those in the body
fixed frame is:

η̇j = R(ψj)νj , (2)

where R(ψj) is a Jacobian matrix described by:

R(ψj) =

cos(ψj) −sin(ψj) 0
sin(ψj) cos(ψj) 0

0 0 1

 , (3)

Assuming that the origin of the body-fixed frame of the
vessel coincides with the center of mass and that the vessel
is moving at low speeds, the mass matrix (Mj), matrix of
Coriolis and centripetal forces (Cj), and the drag matrix (Dj)
can be described as follows according to [25]:

Mj =

m11 0 0
0 m22 0
0 0 m33

 (4)

Cj =

 0 0 −m22vj
0 0 m11uj

m22vj −m11uj 0

 (5)

Dj =

Xu 0 0
0 Yv 0
0 0 Nr

 , (6)

where mij represents the elements of the mass matrix and
Xu, Yv , and Nr represent the elements of the drag matrix.

Furthermore, τj can be written as function of the control
vector uj ∈ Rm×1 that contains the forces produced per
actuator, using thruster allocation matrix Bj ∈ R3×m, where
m denotes the amount of actuators:

τj = Bjuj , (7)

III. DISTRIBUTED FORMATION CONTROL
ARCHITECTURE

The control structure used in this research is a guidance,
navigation, and control (GNC) structure, as described in [24].
In this section, a detailed description of the guidance and
control system is given. The guidance system is designed in
such a way that distributed formation control is established.
The architecture of the distributed leader follower formation
control problem for the Roboat units is shown in Figure 2.
The vessels share their current and predicted positions with
each other. The follower Roboat units base their trajectory
on the current and predicted positions of the leader Roboat
unit. The positions of other vessels, together with positions of
objects are taken into account in the local trajectory planner
of the guidance system in order to produce a collision-free
trajectory. In this section, first the proposed guidance system
is presented. Afterwards, the proposed control systems are
discussed.

A. Guidance system

For usage in inland waterways, the guidance system of
the leader vessel must be able to produce a collision free
route through the navigable area. Furthermore, the follower
vessels have to determine their trajectory based on the
trajectory of the leader. This is done by creating a global
trajectory planner and a local trajectory planner. The global
trajectory of the leader is based on user input, while the
global trajectory for the followers is based on the (predicted)
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Fig. 2: A schematic overview of the distributed formation control architecture.

sailing trajectory of the leader. The local trajectory planner
produces a reference trajectory that minimizes the distance
to the global trajectory, while making sure that the trajectory
is collision free and inside the navigable area. In the follow-
ing paragraphs the guidance algorithms for the leader and
follower Roboat are explained.

a) Leader Roboat: The global trajectory planner for the
leader Roboat has as user inputs: 1) waypoints Wp; 2) the
desired surge speed εd; 3) the sampling time ts; and 4) the
prediction horizon Np. With this input, a global reference
trajectory is formed.

The local trajectory planner determines the reference tra-
jectory based on the following optimization problem for
j ∈ {2, . . . ,m} (m is the number of considered vessels and
obstacles):

J = min
p1

Np∑
i=0

‖p̃1(k + i)− p1(k + i)‖ (8)

subject to
p1(k) = p̂1(k) (9)

‖p1(k + i)− pj(k + i)‖ ≥ dsafe, i = 0, . . . , Np,

j = 2, . . . ,m, (10)

vmin ≤
‖p1(k + i)− p1(k + i− 1)‖

ts
≤ vmax,

i = 1, . . . , Np (11)

where p1(i) =

[
xd
yd

]
∈ R2×1 is the reference position at

time step i; p̃1(i) ∈ R2×1 is the global reference position;
p̂1(k) ∈ R2×1 is the measured position; pj(i) ∈ R2×1 is the
expected position of object or vessel j ∈ N, where j = 1
is the index for the own vessel and m is the total amount
of considered objects and vessels; dsafe ∈ R>0 is the safety
distance between the center of gravity of the vessel with its
neighbor vessels; vmin ∈ R is the minimum speed; vmax ∈ R
is the maximum speed; ts ∈ R>0 is the sampling time; and
Np ∈ N is the number of prediction steps.

The boundaries of inland waterways are considered a se-
quence of point masses, represented by pj . Large objects or
vessels can also be modeled as sequences of points masses,
to ensure a correct working of the collision avoidance.

This optimization problem is transformed into an MILP
problem and solved at every time step k. Using the reference
position, the reference trajectory is calculated as follows for
i ∈ {1, . . . , Np}:

ψd(k + i) = arctan

(
yd(k + i)− yd(k + i− 1)

xd(k + i)− xd(k + i− 1)

)
, (12)

ηd(k + i) =

(
p1(k + i)
ψd(k + i)

)
≡

xd(k + i)
yd(k + i)
ψd(k + i)

 , (13)

where ηd(i) ∈ R3×1 is the reference trajectory at time step i,
consisting of the components in x, y, and ψ direction: xd(i),
yd(i), and ψd(i).
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b) Follower Roboat: The global trajectory planner for
the follower Roboat determines the global reference trajec-
tory based on the trajectory of the leader, a user determined
headway, and a user determined desired lateral distance to
the leader. This leads to the following equations where η1
indicates the position of the leader Roboat, ηj the position
of follower j and n1j is an integer that represents the desired
headway (t1j) in number of sampling times (ts):

n1j ≈
t1j

ts
(14)

η1 =

(
p1

ψ1

)
(15)

η̃d(k + i) = R
(
ψ1(a)

)(
ηb1(a) +

 0
y1j
0

)
i = 1, . . . , Np; a = k + i− n1j. (16)

Although it has not been tested in this research, the
desired headway and lateral distance could change during a
test to achieve dynamically changing formations. The local
trajectory planner of the follower Roboat units is the same
as that of the leader Roboat.

B. Control system

The control system determines the control input of the
vessel’s thrusters, based on the reference trajectory and mea-
sured states. In this paper, two distributed control approaches
are proposed: Nonlinear Model Predictive Control (NMPC)
and Feedback Linearization Model Predictive Control (FL-
MPC).

a) NMPC: The first control method uses Non-linear
Model Predictive Control (NMPC). The objective function
of the NMPC control method is the following:

J = min
u(k+i)

Np∑
i=1

((
η(k + i)− ηd(k + i)

)T
QNMPC(

η(k + i)− ηd(k + i)
)
+

u(k + i)TRNMPCu(k + i)

)
(17)

subject to

x(k + i|k) = x(k) +

∫ (k+i)ts

kts

f(x, τ)dt

i = 1, . . . , NP; (18)

x(k + i) =

[
η(k + i)
ν(k + i)

]
; (19)

τd(k + i) = Bu(k + i); (20)
umin ≤ u(k + i) ≤ umax. (21)

where QNMPC ∈ R3×3
>0 and RNMPC ∈ R3×3

>0 are positive
definite penalty matrices, xj =

[
ηT
j νT

j

]T
with the function

f defined based on (1)-(2), i.e.,

ẋj =f(xj , τj ,dj)

=

[
03×3 R(ψj)
03×3 M−1

j (−Cj(νj)−Dj)

]
xj+[

03×3

M−1
j

]
τj +

[
03×3

M−1
j

]
dj

(22)

The dynamic model (22) is discretized with sampling time
ts to calculate the state at time step k + 1:

xj(k + 1|k) = xj(k) +

∫ (k+1)ts

kts

f(xj , τj ,dj)dt, (23)

As can be noticed, disturbances are not taken into account
in the NMPC control method, since they cannot be measured.
Besides, this control method incorporates the thrust alloca-
tion in the optimization problem. It is suggested by [26] that
this results in a more optimal control output compared to
a separate thrust allocation system. It is emphasized that
the system has a distributed control structure due to the
communication of current and predicted positions in the
guidance system.

b) FL-MPC: A downside of nonlinear MPC with lin-
earization in each sampling time is the high computational
time. To address this problem, the MPC method is combined
with Feedback Linearization (FL) [27]. We use the same
model as (1) -(2) and (22)-(23) but we do not take distur-
bances into account, since environmental disturbances are
unknown. For the sake of FL, an auxiliary control input is in-
troduced to establish a linear relationship between the system
outputs and auxiliary inputs. Furthermore, the constraints of
the optimization problem are linearized, enabling the solution
to the problem using quadratic programming methods. This
leads to significantly lower computational costs compared to
the NMPC problem. The FL-MPC method is based on the
velocity dynamics that can be rewritten as:

ν̇j(t) = M−1
j

(
τj(t)−Cj(νj(t))νj(t)−Djνj(t)

)
, (24)

The dynamical model of the system can be linearized using
the FL law:

τj(t) = Mj

(
Ajνj(t)+Bjζj(t)

)
+Cj(νj(t))νj(t)+Djνj(t),

(25)
where ζj(t) ∈ R3×1 is the input vector of the linear closed-
loop system, and Aj ∈ R3×3 and Bj ∈ R3×3 are states and
input matrices of the linear system, respectively. The values
of Aj and Bj can be chosen by the designer as long as it
leads to stability of the created linear closed-loop system.

This system can be discretized in the same way as in
(23), the new matrices of the state-space representation
are now indicated with Ad, Bd. Since this linear system
contains only velocities and no positions, the vectors in
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the dynamic system have three entries instead of six and
thus the computation time is relatively low. However to
accomplish this, the reference position must be transformed
to a reference velocity. To this purpose, the reference velocity
is calculated in two steps. First the average velocity that is
required between two time steps is determined. Then this is
extrapolated to the required velocity at the second time step,
based on the velocity at the first time step and under the
assumption that the acceleration is constant:

νd(k + i|k) = R−1(ψ(k))
ηd(k + i)− η̂(k)

βits
i = 1, . . . , Np; (26)

νd(k + i|k) = 2
(
νd(k + i|k)− ν̂(k)

)
+ ν̂(k)

i = 1, . . . , Np; (27)

where νd(k + i|k) ∈ R3×1 is the average reference velocity
of time step k + i, calculated at time step k; η̂d(k) ∈ R3×1

is the measured position at time step k; β ∈ R>0 is a tuning
parameter; ts ∈ R>0 is the sampling time; νd(k + i|k) ∈
R3×1 is the reference velocity of time step k+ i, calculated
at time step k; and ν̂(k) ∈ R3×1 is the measured velocity
at time step k. The following optimization problem is now
created:

J = min
ζj

Np∑
i=1

((
νj(k + i)− νd(k + i)

)T
QFL

(
νj(k + i)− νd(k + i)

))
, (28)

subject to

ν(k + i+ 1) = Adν(k + i) +Bdζ(k + i), (29)

τmin ≤ τd(k + i) ≤ τmax, (30)

τd(k + i) = M

(
Adν(k + i) +Bdζ(k + i)

)
+

C
(
ν̂(k)

)
ν̂(k) +Dν̂(k) i = 1, . . . , Np, (31)

where QFL ∈ R3×3
>0 is a positive definite penalty matrix.

To address the thrust allocation, an optimization function
that minimizes the amount of force and the amount of
change of force per thruster is proposed. The proposed thrust
allocation algorithm is made predictive, this is especially
useful for vessels that have slow reacting actuators. The
algorithm is explained in [28].

IV. SIMULATION AND FIELD EXPERIMENT
RESULTS

In this section, the performance of the proposed formation
control strategies is evaluated during six tests in simulation
and five field experiments using 1:4 scale Roboat units [23].
First, the details of the Roboat units are presented. Then, the
methodology for the experiments is discussed. Finally, the
results of the simulations and field experiments are analysed.

A. System description

The model parameters of the 1:4 scale Roboat unit used,
have been determined experimentally in [25] and are shown
in Table I.

TABLE I: Results of the parameter identification conducted
by [25].

Item m11 m22 m33 Xu Yv Nr

Value 12.982 23.318 1.273 6.012 7.112 0.771

The thrust configuration of a Roboat unit is:

B =

 1 1 0 0
0 0 1 1
a/2 −a/2 b/2 −b/2

 (32)

where a is the distance between the transverse propellers,
and b the distance between the longitudinal propellers, with
a = 0.90 m, and b = 0.45 m. Each propeller is fixed
and can generate forward and backward forces. Note that
the designed approaches can be applied to an underactuated
vessel following a similar procedure as in [29].

During the field experiments, the communication platform
used is ROS [30], hosted by a pc using a quad core 1.8 GHz
Intel(R) Core(TM) i7-8550U processor with 16 GB of RAM.
A central pc with a simulated distributed control approach
runs a MATLAB script that determines the control inputs of
the Roboat units, this pc has the same processor and 8 GB of
RAM. The control action is sent to the mini pcs on board the
Roboat units that transform the signal to an input signal of
the thrusters. Sensor data is continuously sent to the central
MATLAB computer. The code on the mini pcs is written in
C++. The MATLAB control loop is executed at 2 Hz.

B. Methodology

In simulation, the control methods are PI control, FL-
MPC, and NMPC respectively. The first three tests are
conducted by using both the global and the local trajec-
tory planners, while the remaining three tests, the guidance
system of the leader Roboat consists of only the global
trajectory planner. The reason for using only the global
trajectory planner is to determine the influence of the local
trajectory planner on the control systems. During the field
experiments, the same tests except for Test 1 are performed,
and Test 4 (PID control with partial guidance system of
the leader) uses FL-MPC as control system for the follower
Roboat. An overview of the tests is displayed in Table II. The
FL-MPC problem is solved in MATLAB using Quadratic
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Programming, while the NMPC problem is solved using the
ACADO toolkit [31].

TABLE II: Overview of the simulations (S1-S6) and field
experiments (E1-E6)

Guidance Control
Test # Local Global PI NMPC FL-

vessels Planner Planner MPC
S1 3 all vessels all vessels X
S2 3 all vessels all vessels X
S3 3 all vessels all vessels X
S4 3 followers all vessels X
S5 3 followers all vessels X
S6 3 followers all vessels X
E1 - - -
E2 2 all vessels all vessels X
E3 2 all vessels all vessels X
E4 2 followers all vessels X(L) X(F)
E5 2 followers all vessels X
E6 2 followers all vessels X

A trajectory is designed in front of the AMS Institute
building on the Marineterrein in Amsterdam, as shown in
Figures 3a and 5a. In simulation an object that has to be
avoided is added. During the field experiments, it appeared
that the computation time to avoid the object was too high.
In simulation we considered three and during the field
experiments two Roboat units. One dedicated leader Roboat
is followed by the follower(s) with a headway of 5 s and
lateral distance of 2 m (in simulation this is -2 m for one
of the follower Roboat units). The prediction horizon for the
FL-MPC method is 10 s, for the NMPC method it is 5 s.

C. Results

Two full sets of results are shown in this section. In
Figure 3 the results of simulation test 6: NMPC & half
guidance system are shown. In Figure 5 the results of
field experiment test 6 are shown. In the tests, a smooth,
collision-free trajectory is sailed. Besides the formation is
kept wherever possible. In Figure 3 the object avoidance
ability is clearly shown. In Figure 4 it is shown that the
safety distance with the other vessels is kept throughout the
entire field experiment test.

During the tests, each vessel is assessed on five KPIs
defined in the Appendix. In short, KPI 1: RMSE trajectory
guidance system shows how well the guidance system creates
a reference trajectory that resembles the desired trajectory.
KPI 2: RMSE trajectory control system shows how well
the vessel follows the created reference trajectory. KPI 3:
RMSE heading control system shows how well the actual
heading resembles the desired heading of the vessel. KPI
4: Applied forces by thrusters shows how much forces the
thrusters produce in total. Finally, KPI 5: Change of forces
by thrusters gives insight in the amount of changes in thrust.
The ideal value of all KPIs is zero.

Valuable insights provided by Figure 6 and Figure 7 that
show the KPIs are the following. It can be seen that the
NMPC method scored better than the other methods in most

(a) The sailed trajectory (start at X)

(b) Position over time and surge speed

Fig. 3: Results of simulation test 6

tests. The conventional PI control method scored lowest in
both the simulation and field experiments.

Furthermore, the results of the simulation KPIs are nor-
malized to the results of the PI control method. The average
of these normalized KPIs are 62% and 65% for the NMPC
and FL-MPC control methods respectively. This clearly
demonstrates that in simulation the NMPC and FL-MPC
methods have similar overall performance - tested with
equally weighted KPIs - and both outperform the PI control
method. The results of the KPIs of the field experiments
are normalized to the values of the FL-MPC method, since
only half of the PI control method tests were carried out.

Fig. 4: Distance between vessels during field experiment test
6
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(a) The sailed trajectory (start at X)

(b) Position over time and surge speed

Fig. 5: Results of field experiment test 6

Fig. 6: KPIs during the tests in simulation after the initial-
ization phase of 1 minute

The average of these normalized KPIs are 80% and 141%
for the NMPC and PI control methods respectively. This

Fig. 7: KPIs during the field experiments after the initializa-
tion phase of 1 minute

demonstrates that rated on equally weighted KPIs, in practice
the NMPC method performs better than the FL-MPC control
method. The PI control method yields the worst results of
the three control methods.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, distributed leader-follower formation control
strategies based on Model Predictive Control have been
proposed for the control of autonomous vessel application in
inland waterways. A guidance system using a Mixed-Integer
Linear Programming (MILP) optimization problem that is
able to perform object avoidance and three control systems
have been designed. Both the Nonlinear Model Predictive
Control (NMPC) and the Feedback Linearization Model
Predictive Control (FL-MPC) method gave better results than
the conventional PI control method in simulation and during
field experiments. The total costs in simulation were 38
and 35 percentage points less for the NMPC and FL-MPC
methods respectively compared to the PI control method.
During the field experiments the total costs were 43 and 29
percentage points less for the NMPC and FL-MPC methods
respectively. In future research the computation time can be
lowered so the frequency of the control loop can be increased
and with that the performance of the system.

Future research will involve the optimal configuration of
formation based on hydrodynamic effects, dynamic model
predictive control to account for different weight distribu-
tions, and combining different tasks such as entering a forma-
tion, leaving the formation, and docking. Thorough analysis
on the sensitivity to modelling errors and on communication
delays will also be investigated.

APPENDIX
DETERMINATION OF THE KPIS

During the tests, the following KPIs are used:
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1) Root mean square error (RMSE) of the reference
trajectory relative to the global trajectory (guidance):√√√√√∑N

k=1

((
‖pd(k)− p̃(k)‖

)2)
N

(33)

2) RMSE of the measured position relative to the refer-
ence trajectory (control):√√√√√∑N

k=1

((
‖p̂(k)− pd(k)‖

)2)
N

(34)

3) RMSE of the measured heading relative to reference
heading (control):√√√√√∑N

k=1

((∥∥∥ψ̂(k)− ψd(k)∥∥∥ )2)
N

(35)

4) Square root of the total sum of forces applied by each
thruster squared (control):√√√√ N∑

k=1

((
‖u(k)‖

)2)
(36)

5) Square root of the total sum of the differences in
successive control inputs of each thruster over time
squared (control):√√√√N−1∑

k=1

((
‖u(k + 1)− u(k)‖

)2)
(37)
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