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Ranking of Nodal Infection 
Probability in Susceptible-Infected-
Susceptible Epidemic
Bo Qu1, Cong Li2, Piet Van Mieghem1 & Huijuan Wang1

The prevalence, which is the average fraction of infected nodes, has been studied to evaluate the 
robustness of a network subject to the spread of epidemics. We explore the vulnerability (infection 
probability) of each node in the metastable state with a given effective infection rate τ. Specifically, 
we investigate the ranking of the nodal vulnerability subject to a susceptible-infected-susceptible 
epidemic, motivated by the fact that the ranking can be crucial for a network operator to assess which 
nodes are more vulnerable. Via both theoretical and numerical approaches, we unveil that the ranking 
of nodal vulnerability tends to change more significantly as τ varies when τ is smaller or in Barabási-
Albert than Erdős-Rényi random graphs.

The continuous outbreaks of epidemic diseases in a population and viruses in computer networks1–4 motivate the 
study of epidemic spreading on a network. The Susceptible-Infected-Susceptible (SIS) epidemic process5–12 has 
been widely studied as a model of virus spread on a network. In the SIS model, a node is either infected or sus-
ceptible at any time t. Each infected node infects each of its susceptible neighbors with an infection rate β. Each 
infected node recovers with a recovery rate δ. Both infection and recovery processes are independent Poisson 
processes and the ratio τ = β/δ is the effective infection rate. There is an epidemic threshold τc and above the 
threshold τ > τc a nonzero fraction of nodes is infected in the metastable state. The infection probability vk∞(τ) 
of a node k in the metastable state at a given effective infection rate τ indicates the vulnerability of node k to the 
virus, and the prevalence, which equals the average fraction y∞(τ) of infected nodes reflects the global vulnera-
bility of the network.

Researchers have mainly concentrated on the average fraction y∞ of infected nodes in the metastable state to 
estimate the vulnerability of a network against a certain epidemic or virus. Great effort has been devoted to under-
stand how the network topology influences the vulnerability and the epidemic threshold6, 13–15, when the effective 
infection rate is just above the epidemic threshold [ref. 16, p. 469]. In this case, it is found [ref. 16, p. 469] that, the 
metastable-state infection probability vector (V v v v[ ]N

T
1 2=∞ ∞ ∞ ∞ ), obtained by the N-Intertwined Mean-Field 

Approximation (NIMFA) of SIS model is proportional to the principal eigenvector x1 of the adjacency matrix A. 
In this work, we aim to explore the nodal infection probability in a systematic way, in different network topologies 
and when the effective infection rate τ varies. As a starting point, we investigate the ranking of nodal infection 
probabilities, which crucially informs a network operator which nodes are more vulnerable or require protection. 
Interestingly, we find that the ranking of the nodal infection probability changes as the effective infection rate τ 
varies. The observation points out that we cannot find a topological feature of a node i to represent the vulnera-
bility of node i to an SIS epidemic, because the rankings in vulnerability of nodes in a network may be different 
when the effective infection rate τ varies, whereas a topological feature of node i remains the same. Our observa-
tion explains the finding of Hebert-Dufresne et al.17 that different nodal features (such as degree, betweenness, 
etc.) should be used to select the nodes to immunize in different scenarios (based on different infection rates, link 
densities, etc.), i.e. different nodes should be immunized at different infection rates. In this paper, we explore two 
questions: (I) which network topology changes the ranking of nodal infection probabilities more significantly and 
(II) in which effective infection rate range, does the increment of the effective infection rate lead to a more signif-
icant change in the ranking for a given network topology?
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We first assume that, for an arbitrary pair of nodes, the trajectory vk∞(τ) and vm∞(τ) as a function of the effec-
tive infection rate τ cross at most once in any interval (τ0, τ1). We call this assumption the one-crossing assump-
tion and Section “Discussion about the one-crossing assumption” of the supplementary information shows that 
the assumption is reasonably good. Then the rankings of the vulnerabilities vk∞(τ) and vm∞(τ) change or equiv-
alently the trajectories vk∞(τ) and vm∞(τ) cross if (vk∞(τ0) − vm∞(τ0) (vk∞(τ1) − vm∞(τ1) < 0, when the effective 
infection rate τ changes from τ0 to τ1. To estimate the maximal change in the ranking of nodal infection probabil-
ities in a network, we consider the total number of crossings between the trajectories of the infection probabilities 
of all the nodes in a network, when the effective infection rate τ changes from just above the epidemic threshold 
to a large value, above which the ranking remains the same. The total number of crossings is a simple and straight-
forward measure of the changes in the ranking of nodal infection probabilities. (We also briefly discuss how the 
correlation of the ranking of nodal infection probabilities changes as the effective infection rate increases in 
Section “The Spearman rank correlation ρ as a function of α” of the supplementary information.) A higher total 
number of crossings may lead to a more complicated protection policy for a network operator. Given a network, 
we find a lower bound of the total number of crossings, which can be computed from the topology properties, 
in particular, from the degree vector and the principal eigenvector of the adjacency matrix. The lower bound is 
roughly proportional to, thus an accurate indicator of, the total number of crossings for an arbitrary network. 
Hence, these two topological features (i.e. the degree vector and the principal eigenvector of the adjacency matrix) 
could indeed characterize to what extent the ranking of nodal vulnerabilities would change on a network. Since 
the lower bound is computationally simple, it can be used to compare the total number of crossings for different 
network topologies. This result explains why the total number of crossings tends to be larger in networks with 
a smaller average degree if the degree distribution is given or with a larger degree variance if the average degree 
is given. Regarding to Question (II), we analytically derive the number of crossings when the effective infection 
rate τ0 increases with a small value ε, given the infection probability vector V∞(τ0) at the effective infection rate 
τ0. This theoretical result, validated by numerical results, explains the reason why the crossings are more likely to 
occur when the effective infection rate τ is smaller.

Results
We first introduce in detail how to count or quantify the changes of the nodal ranking of the infection probability. 
Afterwards, we investigate the changes in the ranking (I) in different topologies when the effective infection rate τ 
increases from just above the epidemic threshold to a large value, above which the ranking remains the same, and 
(II) when the effective infection rate varies in different ranges.

The counting of the nodal ranking changes. To explore the changes of the nodal ranking of the infec-
tion probability, we investigate in a given network how many crossings, denoted by χ, between the trajectory 
vk∞(τ) and vm∞(τ) for all pairs of nodes can occur in the effective infection rate interval (τ0, τ1), where c0

(1)τ τ> , 
and where τ =

λc
(1) 1

1
 (λ1 is the largest eigenvalue of the adjacency matrix) is the NIMFA epidemic threshold: the 

epidemic dies out if the effective infection rate c
(1)τ τ< . (More details on τc

(1) are introduced in Section 
“Methods”). In Fig. 1, we illustrate the trajectories vk∞(τ) of 10 nodes, randomly selected from a real-world net-
work called Roget (N = 994 nodes, average degree E [D] = 7.32 and detailed in Section “Real-world graphs” of the 
supplementary information). For example, the vulnerability of the node corresponding to the red dash line in 
Fig. 1 changes dramatically from the medium vulnerability when τ = 0.12 to the high vulnerability when τ = 0.24. 
Network operators should be alert to such a change of nodal vulnerabilities. The trajectories vk∞(τ) of other 
groups of nodes in Roget are shown and discussed in the first section of the supplementary information.

For a graph with N nodes, the maximum possible number of crossings is −N N( 1)
2

 under the one-crossing 
assumption. To count the number of crossings in the interval (τ0, τ1), we define an N × N matrix F with elements fij:

τ
Figure 1. The meta-stable infection probabilit vk∞ as a function of the effective infection rate τ for 10 random 
nodes in a real-world network called Roget (details in Section “Real-world graph” of the supplementary 
information). The meta-stable infection probability vk∞ is obtained by solving (11).
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τ τ τ τ τ τ= − −∞ ∞ ∞ ∞ ∞ ∞f V V v v v v( ( ), ( )) ( ( ) ( )) ( ( ) ( ))ij i j i j0 1 0 0 1 1

Since fii = 0, the matrix F has a zero diagonal just as the adjacency matrix A. A negative matrix element fij < 0 
means that there is a crossing between the trajectory vi∞(τ) and vj∞(τ) in the interval (τ0, τ1). The number of 
crossings in the interval (τ0, τ1) of the effective infection rate then equals

∑∑χ τ τ = τ τ
= =

−

<∞ ∞
( , ) 1

(1)i

N

j

i

f V V0 1
1 1

1

( ( ), ( )) 0ij 0 1

where 1{x} is the indicator function: 1{x} = 1 if the event or condition {x} is true, else 1{x} = 0. Specifically, if all 
nodal degrees are the same in a random graph, the nodal ranking in any interval of τ does not change, since the 
infection probability of every node6 equals the average fraction of infected nodes for any effective infection rate 
τ. In this work, we focus on the NIMFA nodal infection probability in the meta-stable state which is obtained by 
solving (11), hence the initial conditions (such as how many nodes are initially infected) are not necessary.

We can compute the SIS metastable viral infection probability vk∞ of any node k both by the N-Intertwined 
Mean-Field Approximation (NIMFA)6, 18 and by simulations8 of the SIS continuous-time Markov process. We 
then further compare the number of crossings χ as a function of the increment in the effective infection rate τ 
over different ranges, obtained by NIMFA and the continuous-time simulations of the SIS model. As shown in 
Section “The comparison between NIFMA and the continuous-time simulation” of the supplementary informa-
tion, the number of crossings obtained from NIMFA is relatively close to that from the simulations, so we com-
pute the number χ of crossings mainly by NIMFA due to its computational efficiency. However, NIMFA may not 
be accurate when the effective infection rate is close to the epidemic threshold8. Hence, the number of crossings 
obtained by NIMFA and simulations may be different from each other when the effective infection rate is close to 
the epidemic threshold as shown in Section “The comparison between NIFMA and the continuous-time simula-
tion” of the supplementary information.

The total number of crossings in different topologies. We explore the total number of crossings in 
different graph topologies ( , )c u

(1)χ τ ε τ+  when the effective infection rate τ changes from just above the epidemic 
threshold, i.e. c

(1)τ ε+ , to a large value τu, above which the ranking of the nodal infection probability hardly 
changes. In Section “Methods – The derivation of the lower bound χl”, we prove that there exists a value of τ, 
above which the ranking of the nodal infection probabilities does not change. We derive a lower bound of the total 
number of crossings and show that the lower bound is actually an accurate indicator of the total number of cross-
ings in different types of graphs.

As shown in Section “Methods”, we derive a lower bound χl of the total number of crossings in a given graph:

1 ( , )
(2)

l
i

N

j

i

f x d c u
1 1

1

( , ) 0
(1)

ij 1∑∑χ χ τ ε τ= ≤ +
= =

−

<

where x1 is the principal eigenvector of the adjacency matrix A, belonging to the largest eigenvalue λ1 and d is the 
degree vector of the given graph.

With the one-crossing assumption, we can compute χ τ ε τ+( , )c u
(1)  from the infection probability vector 

τ ε+∞V ( )c
(1)  and V∞(τu). However, we have to select a proper value of τu which is large enough and practical. We 

set the value of τu as the minimum infection rate such that the average fraction of infected nodes y∞(τu) ≥ 0.9, 
since we find for most Erdös-Rényi (ER), Barabási-Albert (BA) random graphs and the aforementioned 
real-world network, that the rankings of the nodal degree and the infection probability are almost the same when 
the average fraction of infected nodes y∞ ≥ 0.9. We discuss how we select the value of τu in Section “The value of 
τu” of the supplementary information. The scatter plot of the lower bound χl vs versus ( , )c u

(1)χ τ ε τ+  is shown in 
Fig. 2 for different graphs including ER random graphs, BA random graphs and six graphs constructed from 
real-world datasets (as described in Section “Real-world graphs” of the supplementary information), and the dash 
line in Fig. 2 is χ χ τ ε τ= + + .log log ( , ) log0 88l c u

(1) , equivalent to

0 88 ( , ) (3)l c u
(1)χ χ τ ε τ= . +

We employ the average degree E [D] = 8, 10, 12, 14, 16, 18, 20, 40, 60, 80 for ER random graphs and E [D] = 4, 6, 
8, 10, 12, 14, 16, 18, 20 for BA random graphs. Both ER and BA random graphs have the same size N = 1000. We 
confine ourselves to the connected graphs in this work. Hence, we employ the link density =

−
p D

N
E[ ]

1
 of ER ran-

dom graphs, which is larger than the critical link density = ≈ .p 0 007c
N

N
ln  (equivalently the average degree 

E [D] > 7), to ensure the connectivity. Figure 2 and Equation (3) show that the lower bound χl is indeed always 
smaller than and approximately proportional to χ τ ε τ+( , )c u

(1) . Hence, the lower bound χl is a computationally 
simple indication of the total number of changes in the ranking of the metastable state infection probability in a 
graph. Moreover, we find that for graphs generated by the same random graph model (ER or BA model), a graph 
with a small average degree tends to have a large number of crossings; given the average degree, a graph with a 
large degree variance tends to have more crossings. We can understand this observation as follows. The principal 
eigenvector component of any node i obeys the eigenvalue equation x a x( ) ( )i j

N
ij j1 1 1= ∑ = . The principal eigenvec-

tor is positively correlated with the degree vector19. Such correlation weakens if the principal eigenvector has a 
large variance, leading to a large χl. When the degree variance is large, the variance of the principal eigenvector 
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tends to be large as well, contributing to a large χl. As more links are added to a network, the network becomes 
more homogeneous and the variance of the principal eigenvector decreases, resulting in a smaller χl, or equiva-
lently less crossings.

The number of crossings in different intervals of τ. As shown in (1), we can compute the number χ(τ0, τ1)  
of crossings in the given interval (τ0, τ1) based on the knowledge of the infection probability vectors V∞(τ0) 
and V∞(τ1) only. Here, we show that we can theoretically derive the number of crossings in a small interval  
(τ0, τ0 + Δτ) with the only knowledge of V∞(τ0). Afterwards, we will validate this theory by numerical results, 
and illustrate in which ranges of the effective infection rate the number of crossings tends to be larger.

The crossings close to a given τ. For sufficiently small ε = Δτ > 0, the Taylor expansion of the steady-state NIMFA 
infection probability vk∞ for any node k is

v
m

v v v v O( )
!

( ) ( ) ( )
2

( ) ( )
(4)k

m

m m
k

m k
k k

0

2 2

2
3∑τ ε ε τ

τ
τ ε

τ
τ

ε τ
τ

ε+ =
∂

∂
= +

∂
∂

+
∂

∂
+∞

=

∞
∞

∞
∞ ∞

explicit up to order 2. In Section “Derivatives of vi∞ with respect to τ” of the supplementary information, we show 
the procedure to determine the m-th order derivative vi∞(τ) with respect to the effective infection rate τ for any 
node k.

If vk∞(τ) − vm∞(τ) > 0 and 0v v( ) ( )k m− >τ
τ

τ
τ

∂
∂

∂
∂

∞ ∞ , then vk∞(τ + ε) − vm∞(τ + ε) > 0 for sufficiently small ε > 0 
and the ranking at τ + ε and at τ is unchanged. On the other hand, if vk∞(τ + ε) − vm∞(τ + ε) = 0, which implies, 
for sufficiently small ε > 0 (so that we can ignore the higher order terms in εm for m > 1 in (4)), that

τ τ ε
τ

τ
τ

τ
− ≈ −





∂
∂

−
∂

∂



∞ ∞

∞ ∞v v v v( ) ( ) ( ) ( )
k m

k m

In other words, given vk∞(τ) of all nodes at τ, then there can be a zero or crossing at τ + εkm, where

v v ( )

(5)
km

k m
v v( ) ( )k m

ε
τ

= −
−

−τ
τ

τ
τ

∞ ∞
∂

∂
∂

∂
∞ ∞

if εkm is small compared to τ. This approach is actually known as the Newton-Raphson method and corresponds 
with the first term in the Lagrange series for the inverse function (see ref. 20 in Page 304). A second order approx-
imation, by ignoring terms of order O(ε3) in (4), equating vk∞(τ + ε) − vm∞(τ + ε) = 0 and solving for ε, yields

ε =
τ τ− − ± − −





−



 −





−





τ
τ

τ
τ

τ
τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

τ

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂ ∞ ∞

∂ ∞
∂

∂ ∞
∂

( ) ( )
(6)

km

v v2 ( ( ) ( ))vk vm vk vm vk vm
k m

vk vm

( ) ( ) ( ) ( ) 2 2 ( )
2

2 ( )
2

2 ( )
2

2 ( )
2

which is expected to be more accurate, in spite of the higher computational complexity since now also the set of 
second order derivatives needs to be solved. We rewrite (6) as

ε = −


















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± −




























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τ τ−

−

−

−

−

−

τ
τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

τ
τ

τ
τ

τ
τ

τ
τ

τ

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∞ ∞
∂ ∞

∂
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∂

1 1 2km
v v( ) ( )

vk vm

vk vm

vk vm

vk vm
k m

vk vm

( ) ( )

2 ( )
2

2 ( )
2

2 ( )
2

2 ( )
2

( ) ( ) ( ) ( )

Figure 2. The lower bound χl versus the total number of crossings χ τ ε τ+( , )c u
(1)  in ER random graphs (with 

the size N = 1000), BA random graphs (with the size N = 1000) and real-world networks (details in Section 
“Real-world graphs” of the supplementary information).
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Using the generalized binomial expansion ( )x k z(1 ) k
k

0
α+ = ∑α

=
∞ , valid for any |z| < 1, up to first order yields

1 1km
v v( ) ( )

vk vm

vk vm

vk vm

vk vm
k m

vk vm

( ) ( )

2 ( )
2

2 ( )
2

2 ( )
2

2 ( )
2

( ) ( ) ( ) ( )ε −




















±






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

−









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


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


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


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
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
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τ τ−

−

−

−

−

−

τ
τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

τ
τ

τ
τ

τ
τ

τ
τ

τ

∂ ∞
∂
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∂
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∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∂ ∞
∂

∞ ∞
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∂
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∂

After only retaining the root with the minus sign, we arrive again at (5), illustrating that (5) is accurate when 
(5) is as small as possible (so that higher order evaluations are not needed). The discriminant must be positive 
in order to obtain feasible εkm. A positive discriminant is a condition for the existence of crossing in the interval  
(τ, τ + ε). Hence, given an effective infection rate τ0 and the corresponding infection probability vector V∞(τ0), 
there is a crossing close to τ0 between the trajectory vk∞(τ) and the trajectory vm∞(τ) at τ + εkm if εkm computed 
by (5) is positive and small enough.

Numerical results. In the following, we propose to normalize the effective infection rate by the NIMFA epidemic 
threshold: 1

c
(1)α = ≥τ

τ
, so that we can compare the number χ of crossings in different intervals of α in the same 

range (1, αmax) for different network topologies, i.e. different average degrees and different degree distributions. 
We explore the crossings of the infection probability trajectories when the effective infection rate varies over the 
range (1, αmax). We divide the range (1, αmax) into intervals (αj−1, αj) where j = 1, 2, …, n is the index and 
αn = αmax.

We aim to explore in which interval of the normalized effective infection rate α the crossings are more likely 
to appear. Hence, instead of directly exploring the number of crossings between the trajectory of every node in 
the whole interval (1, αmax) of the effective infection rate α, we investigate the number χ(αj−1, αj) of crossings in 
(1) in each small interval (αj−1, αj). We denote α0 = 1 (since the effective infection rate below the epidemic thresh-
old corresponds to the all-healthy state), αn = αmax and αj = α0 + jΔα, where Δα = (αmax − 1)/n is the length of 
each interval. We will study how the number of crossings changes at different regions of the effective infection rate 
τ or scaled α. The infection probability vk∞(α) at any given value of the normalized effective infection rate α is 
computed by solving the NIMFA equation (11). On one hand, we can further compute the number χ(αj−1, αj) of 
crossings between all node pairs within any interval (αj−1, αj) by employing our theoretical result (5). On the 
other hand, we can also numerically compute the number χ(αj−1, αj) by (1). We first compare the theoretical (5) 
and numerical (1) when the normalized effective infection rate α is not close to 1, i.e. when the effective infection 
rate τ is not close to the epidemic threshold τc; specifically, we start from α0 = 2 and αj = α0 + jΔα, where Δα = 1. 
The main figures in Fig. 3 demonstrate that, for both ER and BA graphs, our theoretical result (5) agrees well with 
the numerical result (1) except for BA graphs in the interval (2, 3). The lower accuracy of our theoretical result for 
small α can be explained as follows. Compared to τ α τ=− −j j c1 1

(1), a small value of ( )j j c1
(1)α α τ− −  is required for 

the accuracy of the theoretical results (5), since ε in (5) is required to be small with respect to the given effective 
infection rate τ. Hence, when αj is smaller, a smaller value of ( )j j c1

(1)α α τ− −  is needed for (5) to be accurate.
We further plot the number χ(αj−1, αj) of crossings in the interval (αj−1, αj) as a function of αj, when the 

normalized effective infection rate α is close to 1 and the length of the interval is reduced to Δα = 0.1. When the 
length of the interval, i.e. Δα, is smaller, the theoretical (5) results are more consistent with the numerical (1) 
results for BA random graphs in the range of α ∈ (2, 3) in the inset than in the main figure of Fig. 3(b). For both 
ER and BA graphs, the two methods agree with each other well when the intervals of α are small, even when the 
normalized effective infection rate α is close to 1 as shown in the insets of Fig. 3.

Figure 3. The number χ(αj−1, αj) of crossings as a function of the normalized effective infection rate αj. For ER 
graphs, we employ the link density p = 2pc, thus the average degree E [D] = 14, the size N = 1000 and the NIMFA 
epidemic threshold 0 0673c

(1)τ ≈ . . For BA graphs, we employ the number of newly added links in each step 
m = 2, thus the average degree E [D] = 4, the size N = 1000, and the NIMFA epidemic threshold τ ≈ .0 0902c

(1) . 
The meta-stable infection probability vk∞ is obtained by solving (11) and the number χ(αj−1, αj) of crossings is 
obtained by (1). The results are averaged over 10 realizations.
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Physical explanation. Figure 3 shows that more crossings appear when the effective infection rate is smaller. In 
this section, we give a physical explanation of that observation.

At an effective infection rate τ or a normalized effective infection rate α, Equation (14) shows that the compar-
ison of the infection probabilities vk∞(α) and vm∞(α) is actually equivalent to the comparison of the sum of the 
infection probabilities of their neighbors, i.e. α∑ = ∞a v ( )j

N
kj j1  and a v ( )j

N
mj j1 α∑ = ∞ . Without loss of generality, we 

assume that the degree dk of node k is larger than the degree dm of node m, i.e. dk > dm. As discussed in Section 
“Methods”, the infection probability vk∞(α) > vm∞(α) if the effective infection rate is large enough. If there exists 
a value of α1 at which α α∑ < ∑= ∞ = ∞a v a v( ) ( )j

N
kj j j

N
mj j1 1 1 1  while dk > dm, there must be a crossing between vk∞(α) 

and vm∞(α) in the interval (α1,∞). If the infection probabilities vj∞(α) (where j = 1, 2, …, N) of all nodes vary in 
a larger range with respect to the average infection probability v

N j
N

j
1

1∑ = ∞, i.e. the average fraction y∞ of infected 
nodes, then there may be a higher probability that α α∑ < ∑= ∞ = ∞a v a v( ) ( )j

N
kj j j

N
mj j1 1  and thus more crossings 

could be expected when the effective infection rate τ exceeds α1. This hypothesis further motivates us to study the 
normalized standard deviation of the nodal infection probability:

σ α
α α

α
=

∑ −= ∞ ∞

∞

v y N

y
( )

( ( ) ( )) /

( ) (7)
i
N

i1
2

⁎

(where we define σ α σ α= = α↓
⁎ ⁎( 1) lim ( )1 ) and explore whether a larger difference σ α σ α| − |−

⁎ ⁎( ) ( )j j1  of σ* 
would imply more crossings in the interval (αj−1, αj).

The number χ(αj−1, αj) of crossings as a function of the difference σ*(αj−1) − σ*(αj) is shown in Fig. 4(a) 
for ER random graphs and in Fig. 4(b) for BA random graphs. For both ER and BA random graphs, the number 
χ(αj−1, αj) of crossings are positively correlated with the difference σ*(αj−1) − σ*(αj) in the interval (αj−1, αj). 
We observe the same in ER and BA random graphs with various average degrees though not shown here. The 
numerical results support that more crossings tend to appear in an interval where the variable σ* changes more.

We then further explore how the value of the variable σ*(α) changes with the normalized effective infection 
rate α. We plot the variable σ* as a function of the normalized effective infection rate α in Fig. 5(a) for ER random 
graphs and in Fig. 5(b) for BA random graphs with N = 1000 and various average degrees, and find that for both 
types of random graphs the curves can be fitted by a power law function, i.e. σ* is proportional to α−γ, especially 
when the average degree is not small. More figures and the curve fittings are shown in the last section of the sup-
plementary information for both ER and BA random graphs.

Figure 5 illustrates that the power law exponent γ of the fitting curves is close to 1 as the average degree E [D] 
increases for ER random graphs, and that is always approximately 1 for BA random graphs even though the 
average degree E [D] is small. Furthermore, the relationship between the variable σ* and the normalized effective 
infection rate α follows a power law when the effective infection rate is much larger, as shown in Section “σ* as a 
function of τ” of the supplementary information.

When α is large, we can theoretically prove the power-law relationship between the variable σ* and the nor-
malized effective infection rate α. By (12) and assuming a large enough effective infection rate, we obtain 

τ τ= − +
τ∞

−v O( ) 1 ( )i d
1 2

i
 for node i and consequently y O( ) 1 E ( )

D
1 1 2τ τ= − 





+
τ∞

− , so that (7) becomes

Figure 4. The number χ(αj−1, αj) of crossings as a function of the difference σ*(αj−1) − σ*(αj) of the 
normalized standard deviation of the metastable infection probability. For ER graphs, we employ the link 
density p = 2pc, thus the average degree E [D] = 14, and the size N = 1000 (the NIMFA epidemic threshold 
τ ≈ .0 0673c

(1) ). For BA graphs, we employ the minimum degree m = 2, thus the average degree E [D] = 4, and 
the size N = 1000 (the NIMFA epidemic threshold 0 0902c

(1)τ ≈ . ). The meta-stable infection probability vk∞ is 
obtained by solving (11), the number χ(αj−1, αj) of crossings is obtained by (1) and the value of σ*(α) is 
obtained by (7). The results are averaged over 10 realizations.
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σ
τ

τ=






− 





+ −⁎ O
Var

E
( )

(8)

D

D

1

1
2

In a finite graph, Var 
D
1




 and E 

D
1




 are finite, hence σ* is proportional to τ−1. The NIMFA epidemic threshold τc

(1) 
is a constant for a given graph, and with α τ τ=− −

c
1 1 (1), we obtain that σ* is proportional to α−1. Although the 

power-law relationship between σ* and α can be clearly observed in Fig. 5, the effective infection rate τ corre-
sponding to the variable α in this figure may be smaller than 1 and the theoretical proof is only valid when the 
effective infection rate  1τ . Our result (8) is based on connected graphs, because the terms E 



D

1  and Var 



D

1  are 
undefined in unconnected graphs with isolated nodes.

The power-law decay of the variable σ* with the effective infection rate τ explains why there are more cross-
ings when the effective infection rate is smaller.

Validation on a real-world network. Finally, we validate our previous findings on the real-world network – 
Roget, detailed in Section “Real-world graphs” of the supplementary information. As shown in Fig. 6(a), the 

Figure 5. The normalized standard deviation σ* of infection probabilities of all nodes as a function of α in  
(a) ER and (b) BA random graphs. The dash line is a power-law curve with the exponent γ = −1. The sizes of all 
random graphs are 1000 and the average degree E [D] is shown in the figures. The meta-stable infection 
probability vk∞(α) is obtained by solving (11) and the value of σ*(α) is obtained by (7). The NIMFA epidemic 
threshold 0 1097c

(1)τ ≈ . , 0.0993, 0.0902, 0.0476, 0.0244, 0.0164 and 0.0124 for ER random graphs with the 
average degree E [D] = 8, 9, 10, 20, 40, 60 and 80 respectively, and 0 0902c

(1)τ ≈ . , 0.0698, 0.0479, 0.0416, 0.0368, 
0.0329, 0.0300 and 0.0274 for BA random graphs with the average degree E [D] = 4, 6, 10, 12, 15, 16, 18 and 20 
respectively. The results are averaged over 10 realizations.

Figure 6. (a) The number χ(αj−1, αj) of crossings as a function of the normalized effective infection rate αj.  
(b) Main figure: the number χ(αj−1, αj) of crossings as a function of the difference σ*(αj−1) − σ*(αj) of the 
normalized standard deviation of the metastable infection probability; Inset: the normalized standard deviation 
σ* of infection probabilities of all nodes as a function of α. The real-world network – Roget, detailed in Section 
“Real-world graphs” of the supplementary information, is employed. The meta-stable infection probability vk∞ 
is obtained by solving (11), the number χ(αj−1, αj) of crossings is obtained by (1) and the value of σ*(α) is 
obtained by (7). The NIMFA epidemic threshold τ ≈ .0 0831c

(1) .
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number χ(αj−1, αj) of crossings at normalized effective infection rate α interval obtained by theoretical and 
numerical methods are consistent with each other. The number of crossings decreases fast as α increases, similar 
to ER and BA models. The main figure of Fig. 6(b) shows that the number χ(αj−1, αj) of crossings increases with 
the difference σ*(αj−1) − σ*(αj) in the interval (αj−1, αj). In the inset of Fig. 6(b), we observe the power-law rela-
tionship between the variable σ* and the normalized effective infection rate α. All these findings are well in line 
with previous results on ER and BA random graphs.

Discussion
In the SIS model, the infection probability trajectory vk∞(τ) of node k and the infection probability trajectory 
vm∞(τ) of node m may cross if (vk∞(τ0) − vm∞(τ0))(vk∞(τ1) − vm∞(τ1)) < 0, when the effective infection rate τ 
varies from τ0 to τ1. The number χ(τ0, τ1) of crossings of all node pairs within an interval (τ0, τ1) of the effective 
infection rate measures the change in the ranking of the nodal vulnerabilities when the effective infection rate 
changes from τ0 to τ1. We explore in what types of network topologies and in what ranges of the effective infection 
rates the crossings are more likely to appear. Theoretically, we find a lower bound χl in (2) of the total number of 
crossings in a graph. The lower bound χl only depends on topological features, i.e. the degree vector and principal 
eigenvector of the adjacency matrix. That lower bound χl is also shown to reflect the total number of crossings 
for a given graph. Moreover, we analytically predict the crossings close to an effective infection rate τ0, given the 
infection probabilities of all nodes at the effective infection rate τ0. This theory can be used to estimate the changes 
of the ranking of the nodal vulnerabilities if the effective infection rate τ slightly increases from its current value 
τ0. We find that more crossings tend to appear when the effective infection rate is smaller. Our findings may help 
network operators to estimate how significant the ranking of nodal vulnerabilities may change for a given change 
of the effective infection rate on a given network.

This work inspires interesting further questions. For example, how much is the change in the value of the 
nodal infection probabilities when the trajectories of the nodal infection probability crossing? Can we use the 
changes in the ranking of nodal infection probabilities to more effectively select the nodes to immunize?

Methods
Network construction. The Erdös-Rényi (ER) random graph21 is one of the most widely-used and 
well-studied models. In an ER random graph Gp(N) with N nodes, each pair of nodes is connected with probabil-
ity p independent from every other pair. The distribution of the degree of a random node is binomial: 

= = − − − −( )D k N
k

p pPr[ ] 1 (1 )k N k1  and the average degree E [D] = (N − 1)p. For large N and constant E [D], 

the degree distribution tends16 to a Poisson distribution: Pr [D = k] = exp(−E [D]) (E [D])k/k! Moreover, if the link 
density > =p pc

N
N

ln  for large N, the graph Gp(N) is almost surely connected. We employ ER graphs with p = 2pc 
(the average degree is approximately E [D] = 14) and N = 1000 as an example in some discussions, but consider 
the ER graphs with various average degrees when needed.

Besides the ER random graph, the scale-free model is often used to capture the scale-free degree distribution of 
the real-world networks such as the Internet22 and World Wide Web23. In this work, we consider the Barabási-Albert 
(BA) model24, which begins with an initial connected network of m0 nodes. At each step, a new node is connected 
to m ≤ m0 existing nodes. The probability that an existing node is chosen to be connected is proportional to the 
degree of the existing node. The degree distribution of BA random graphs16 is Pr [D = k] = ck−3 for sufficiently large 
N, where = ∑ =

− − −c k( )k m
N 1 3 1. The minimum degree of BA graphs is m, and we set m0 = m + 1 to generate a BA graph 

with N = 1000 nodes. Hence, the number of links is ( )L N m m N m( )m m m( 1)
2 0 2

0 0 0= + − = −−  and the average 
degree is E = = −D m[ ] L

N
N m

N
2 2 0 , thus approximately equals to 2m. We employ the BA random graphs with m = 2 

(the average degree E [D] = 4) as an example in discussions and consider more average degrees when needed.

The N-Intertwined Mean-Field Approximation of the SIS model. The N-Intertwined Mean-Field 
Approximation (NIMFA) is one of the most accurate approximation of the SIS model that takes into account the 
influence of the network topology6. The single governing equation for a node i in the NIMFA is

v t
t

v t v t a v td ( )
d

( ) (1 ( )) ( )
(9)

i
i i

j

N

ij j
1

∑δ β= − + −
=

where vi(t) is the infection probability of node i at time t, and the adjacency matrix element aij = 1 or 0 denotes if 
there is a link or not between node i and node j. With V t v t v t v t( ) [ ( ) ( ) ( )]N

T
1 2=  , the matrix evolution equation 

of NIFMA is

V t
t

v t A I V td ( )
d

( diag(1 ( )) ) ( ) (10)iβ δ= − −

where A is the N × N adjacency matrix of the network, I is the N × N identity matrix and diag (vi(t)) is the diago-
nal matrix with elements ....v t v t v t( ), ( ), , ( )N1 2 . In the steady state, defined by = 0V t

t
d ( )

d
, or equivalently 

=→∞ ∞v t vlim ( )t i i  and V t Vlim ( )t =→∞ ∞, we have

τ − − =∞ ∞v A I V( diag(1 ) ) 0 (11)i

Given the network and the effective infection rate τ, we can numerically compute the infection probability vi∞ as a 
function of the effective infection rate τ for each node i by solving (11). The trivial, i.e. all-zero, solution indicates 



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 9233  | DOI:10.1038/s41598-017-08611-9

the absorbing state where all nodes are susceptible. The non-zero solution of V∞ in (11), if exists, points to the 
existence of a metastable state with a non-zero fraction of infected nodes. Or else, the metastable state can be 
figured as 0 or not existing. In this paper, we are interested in actually the metastable state.

Furthermore, the NIMFA epidemic threshold c
(1) 1

1
τ =

λ
, where λ1 is the largest eigenvalue of the adjacency 

matrix A, is a lower bound of the exact epidemic threshold τc, i.e. c c
(1)τ τ< . The epidemic dies out if the effective 

infection rate τ τ< c
(1). Since the NIMFA is the main approach in this work, we also employ the NIMFA epidemic 

threshold τc
(1). The Laurent series of the steady-state infection probability is given by refs 16 and 25

v i( ) 1 ( )
(12)i

m
m

m

1
∑τ η τ= +∞

=

∞
−

possesses the coefficients i( )
d1
1

i
η = −  and

∑η =





−





=
i

d

a
d

( ) 1 1
(13)i j

N
ij

j
2 2

1

and for m ≥ 2, the coefficients obey the recursion

i
d

i
a
d d

i a j( ) 1 ( ) 1 1 ( ) ( )m
i

m
j

N
ij

j i k

m

m k
j

N

ij k1
1 2

1
1

∑ ∑ ∑η η η η= −





−






−+

= =
+ −

=

The derivation of the lower bound χl. As shown in [ref. 16, p. 469] when the effective infection rate 
c
(1)τ τ ε= +  is just above the NIMFA epidemic threshold τ =

λc
(1) 1

1
, the vector V∞ with the NIMFA metastable- 

state infection probabilities is proportional to the principal eigenvector x1 of the adjacency matrix A. In particular, 
vk∞ = ε(x1)k, where ε > 0 and (x1)k is the k-th component corresponding to node k of the principal eigenvector x1 of 
the adjacency matrix A, belonging to the largest eigenvalue λ1. The Perron-Frobenius Theorem20 states that all 
vector components of x1 are non-negative, and even positive if the graph G is connected. Hence, when the effective 
infection rate is just above the epidemic threshold, the ranking of the infection probability v ( )i c

(1)τ ε+∞  is the same 
as the ranking of the component of the principal eigenvector (x1)i, i.e. τ ε+ =∞f V x( ( ), ) 0km c

(1)
1  for any k and m.

On the other hand, the NIMFA steady-state infection probability for node k is given by ref. 18, [ref. 16, p. 464] 
and expressed as

v
a v

( ) 1 1
1 ( ) (14)

k
j
N

kj j1
τ

τ τ
= −

+ ∑
∞

= ∞

from which we obtain

v v v v a a v( ) ( ) (1 ( )) (1 ( )) ( ) ( )k m k m
j

N

kj mj j
1

∑τ τ τ τ τ τ− = − − −∞ ∞ ∞ ∞
=

∞

The sign of vk∞(τ) − vm∞(τ) thus equals to the sign of a a v( ) ( )j
N

kj mj j1 τ∑ −= ∞ . Common neighbors of node m and 
k do not play a role in the sign change of vk∞(τ) − vm∞(τ). (The common neighbors of node m and k are the set of 
nodes ∈ =j a a{ : }mj kj ). Moreover, if the number of non-common neighbors is 1 (or 0), then there is no change 
in the sign of vk∞(τ) − vm∞(τ) while the effective infection rate τ varies. Since the minimum infection probability 
vmin(τ) > 0 for c

(1)τ τ>  as shown in [ref. 16, Lemma 17.4.2 on p. 464], the following bounds apply

∑τ τ τ τ τ− ≤ − ≤ −
=

∞d v d v a a v d v d v( ) ( ) ( ) ( ) ( ) ( )k m
j

N

kj mj j k mmin max
1

max min

where vmax(τ) and vmin(τ) are the maximum and minimum infection probability respectively and dk is the degree 
of node k, so that the condition vk∞(τ) − vm∞(τ) > 0 at τ is surely satisfied if d d 0k m

v
v

( )max

min( )
− >τ

τ
. Using 

v ( ) 1
dmax

1
1 max

τ ≤ −
τ+

 and v ( ) 1
dmin

1

min
τ ≥ −

τ
 in [ref. 16, p. 464–465], we arrive at the conservative bound for 

the condition vk∞(τ) − vm∞(τ) > 0 at τ,

τ

τ τ
>

− +( ) ( )
d dk m

d d

2

1 1

min max

Hence, for large τ, the comparison between vk∞(τ) and vm∞(τ) reduces to a comparison in the nodal degree: 
if dk > dm, then vk∞(τ) > vm∞(τ). This conclusion implies that there exists an effective infection rate τu, above 
which the ranking of the metastable-state infection probability is the same as the ranking of the nodal degree, i.e. 
fkm(V∞(τ), d) = 0 for any k and m (where d is the degree vector), if τ ≥ τu.

The above discussion suggests that the number χ τ ε τ+( , )c u
(1)  of crossings in the interval τ ε τ+( , )c u

(1)  is the 
total number of crossings which a graph can possess. With the one-crossing assumption, we have
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f V V
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f x d
(1)

1 1
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1

( , ) 0ij c u ij
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1

Since only the crossings between two nodes with different degrees are considered in 1i
N

j
i

f x d1 1
1

( , ) 0ij 1∑ ∑= =
−

< , we 
obtain a lower bound of the total number ( , )c u

(1)χ τ ε τ+  of crossings. In order to simplify the notation, we denote 
the lower bound of the total number of crossings by 1l i

N
j
i

f x d1 1
1

( , ) 0ij 1
χ = ∑ ∑= =

−
< .
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