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Abstract

In magnetic resonance imaging (MRI) the interest in electric properties tomography (EPT) is
growing. In current EPT applications the reconstruction is performed based on the Helmholtz
equation which relies on the assumption of a homogeneous contrast. The goal of this thesis is
to present new approaches to reconstruct the electrical properties that require less assump-
tions on the contrast.

Two fundamentally new approaches are presented, one based on first order differentiation
and one on the global integral field equations using a contrast-source variable. In this thesis
these methods are described alongside the existing Helmholtz based approach, the contrast
source inversion (CSI) - EPT approach, and a deconvolution approach.

Reconstruction of both two- and three-dimensional simulations as well as the reconstruc-
tion of an in vivo measurement are performed to compare the five different methods.

It can be concluded from this comparison that methods that are not based on the homo-
geneous contrast assumption are much more accurate (overal) than the Helmholtz equation
based method. Both CSI and the direct inversion method based on the global integral equa-
tions perform comparable, but the latter is significantly faster and offers almost the same range
of flexibility regarding regularisation and preconditioning. The direct inversion method is an
improvement on the deconvolution method, performing equally well regarding noise robust-
ness, but offering better reconstructions in all cases due to the lack of an apodisation step.
The first order differential method provides a surprisingly robust, accurate, and extremely fast
way to get insight into the data, and shows that the inversion problem in MRI is actually very
well behaved as far as inversion problems go.

These new methods provide new insight into the inversion problem in MRI, specifically for
EPT and get us one step closer to accurate electric properties reconstruction from an MRI
scan.






Preface

In this thesis the work of almost a year of research into inversion methods for MRI applications
is presented.

With a solid background in numerical methods | have approached Rob Remis as early as
the fall of 2014 to discuss possibilities of doing a thesis project with him. Back then already,
the CSI-EPT method was being worked on jointly between him and (amongst others) Edmond
Balidemaj, and they had some exciting results.

Quickly Rob’s enthusiasm on the subject spoke to me, and by December 2014 | had de-
cided | definitely wanted to get involved in the MRI research. (Unfortunately) it wasn’t until
September 2015 that | finally started this research, due to some planned travels abroad. To
see the sights, before settling back down in Delft was the plan.

From that point onward the process was equally convoluted as the buildup towards it, from
working on an amplitude-only approach, through various other reconstruction ideas that came
up during the research, to finding out that phase-only would be a much better way to go...

Nothing turned out quite as it was planned, but | daresay that in the end it turned out
much better and | hope you enjoy reading about the discoveries that were made as much as
I enjoyed writing about them.

Much is yet to be researched and said on this subject, and | do hope | have the opportunity
to continue my voyage of discovery.

P. S. Fuchs
Delft, June 2016
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Introduction

Medical imaging is a dynamic field. It contains some of the most versatile diagnostic tech-
niques available to doctors. In magnetic resonance imaging (MRI) the interest in electric prop-
erties tomography (EPT) is growing. This is the process of estimating the electrical properties
(conductivity and permittivity) of tissue using the measured magnetic field.

In the current EPT methods, the reconstruction is performed using the Helmholtz approxi-
mation [20]. The goal of this thesis is to present new approaches to reconstruct the electrical
properties that require less assumptions on the to be reconstructed contrast.

First a short introduction on MRI and EPT will be given in Section 1.1. After this a descrip-
tion of the electromagnetic (EM) fields inside a scanner and their interaction will be given in
Chapter 2. There a scattering formalism is derived and from it the various inversion algorithms
which are described in Chapter 3. Following this reconstruction results are displayed in Chap-
ter 5. At the end based on these results the assumptions are discussed in Chapter 6 after
which the conclusions of this research are given in Chapter 7.

1.1. How does magnetic resonance imaging work?

Magnetic Resonance Imaging (MRI) is a way to image the inside of the human body through
the magnetic resonance effect. The magnetic resonance effect, which will be described below,
was first discovered by Paul C. Lauterbur in 1971 [7]. Its application to tomography (mapping
the human body) has been developed since then and a large humber of commercial MRI
machines are available nowadays.

MRI uses the signal from the nuclei of basic hydrogen atoms (*H) to generate an image.
To understand how this works, quantum mechanics is necessary. It can however be explained
using a macroscopic example. You can imagine the nucleus of a hydrogen atom as a spinning
top. This spinning is an intrinsic property of elementary particles. Through this spinning a
magnetic moment is induced. A magnetic moment means that it acts like a magnet with a plus
and minus pole.

Now, water (H,O), which constitutes about 70% of your bodies mass, contains a lot of
hydrogen atoms. In an MRI scanner a large external magnetic field is applied to the body.
This magnetic field (like the magnetic field of the earth acts on a compass) aligns the nuclear
spins.

To generate an image in these conditions, an electromagnetic pulse (or a series of pulses)
is emitted by an external antenna. The frequency of this pulse is chosen so that the electro-
magnetic energy excites the spin transitions. This means the EM pulse pushes the spinning
nuclei out of alignment. As the spins return to equilibrium (which is called relaxing) they emit

1



2 1. Introduction

radio-waves themselves depending on the external magnetic field. These emitted waves are
then measured and translated into an MRI image."

1.1.1. Electric Properties Tomography

A special application of MRl measurements is the so called EPT. This is a relatively new
process, the goal of which is to reconstruct the electric properties of the human tissue scanned
(conductivity and permittivity) [10]. Most electric property (EP) methods are based on the well-
known B1 mapping, as are the methods described in this thesis. A single RF coil of a standard
MR system is sufficient for this approach.

The electric properties of the human body characterise a number of healthy and patho-
logical tissue. They can also be used to determine the specific absorption rate (SAR) of the
tissue. The SAR is needed to calculate how much the tissue will heat up in a scan. This is
used in medical procedures such as hyperthermia, and can also help keep patients safe from
unwanted heating up during MRI scans.

1.2. What is inversion?

In physics, models are often used to generate synthetic data for various applications such as
simulations. This is called solving a forward problem. If, however, we are interested in the
reverse, finding model parameters from data, it is called an inversion problem.

Often these inversion problems are ill posed, and in addition measured data is inaccurate
and incomplete making the problem hard to solve.

There are two types of inverse problems, which are very much related. One is the inverse
source problem, where the goal is to reconstruct a source given a measured field. The second
is the inverse scattering problem, where the goal is to reconstruct medium properties inside
the scattering object based on a measured field with a known source.

MRI revolves around the second type of problem, as the measured field is inside the body,
or source. We will treat a generic formulation for the Maxwell equations which are fundamental
to this problem later and then describe the MRI specifics.

'For a more thorough explanation see: http: //www.howequipmentworks.com/mri_basics/ (visited March
2016)
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Electromagnetic theory

In this chapter the basic equations for EM fields in an MRI setting are defined and derived.
With this a scattering formalism is described and the corresponding integral field equations are
derived. These equations serve as a starting point for the inversion methods to be discussed
in the following chapters.

2.1. Maxwell’s equations

To begin the derivation of the field equations governing the working of an MRI scanner, we
start with Maxwell’'s equations. The local form of Maxwell’s equations in matter and in vector
notation are

—V X H+J°0 4+ 9,D = —Jt, (2.1)
VXE+ 9B = —K°*, (2.2)

The right-hand side of these equations are the sources feeding the fields, J*t and Kt are
the external electric and magnetic currents flowing through, for example, an antenna, or in this
case the MRI coil. These sources excite a field, which is described in the two main unknowns,
namely the the magnetic field strength H and electric field strength E. The remaining variables,
Jeon js the volume density of the electric conduction current and D is the electric and B the
magnetic flux density, are related to these field quantities through the constitutive relations.
Through these relations J°°™ and D depend linearly and in a time-invariant manner on the
electric field E and B depends linearly and time invariant on the magnetic field H. These
dependencies are further defined in the frequency domain.

2.1.1. Frequency domain

In this thesis only linear, causal and time invariant' media are considered. Therefore it is pos-
sible to transform the above equations into the frequency domain. This allows the description
of the steady state behaviour of single-frequency harmonic wave fields. The complex phasor
E(x, w) (the over hat is used to denote the frequency domain representation of the quantities)
relates to the time dependent E(x, t) field quantity through a common time factor eIt as

E(x t) = R{E(x w)el®t}, (2.3)

where j is the imaginary unit (j> = —1). The location of the field is denoted by a vector x € R3
and the time or angular frequency are denoted by t and w, respectively. The constitutive

"within the time of a measurement



4 2. Electromagnetic theory

relations in the frequency domain are then defined as

Jeon(x, w) = 6(x, w)E(x, ), (2.4)
D(x w) = (% 0)E(X ), (2.5)
B(x, w) = A(x w)H(xX, 0), (2.6)

where 4, ¢, i are the conductivity, permittivity and permeability. In the Maxwell equations,
the time derivative becomes a multiplication with jw in the frequency domain, so the Equa-
tions (2.1) and (2.2) simplify to

-V x H+AE = —J°~, (2.7)
VxE+(H = -K™, (2.8)
where
{(x w) = jwi(x, ), (2.9)
(& 0) = 6(X ) +jwix, o), (2.10)

are the medium parameters, derived by substituting the constitutive relations into the Maxwell
equations in the frequency domain.

2.2. Polarisation
Expanding the rotation in Maxwell’s equations gives

oyH, — 0,1,
vxH=|(0d,A,—-0,H, |. (2.11)

A

0xHy — 0y H

The same also holds for the electric field component. Inside an MRI scanner, which can be
considered a tube, in the middle of this tube, one direction of the geometry (and the field)
is translation invariant (co-axial). The radiofrequency (RF) field excited by the coil is also
constructed in a way to be translation invariant along this axis. This axis is chosen to be the
z-axis by convention. Therefore, the z-dimension is franslation invariant in this region and it
is reasonable to assume d,H; = 0 for i = [x,y, z]. Updating the rotation with this assumption,
we obtain .
0y H,
VxH= —0,H, . (2.12)
0xHy — 0y H,

Here something interesting can be observed. In the first of Maxwell’'s equations, the x and
y components of the left-hand side (first and second terms of the vector) only contain the
z-component of the magnetic field H (and x and y components of the electric field). In the
second of Maxwell’s equations these electric field components only occur in the z component
of the left-hand side (and the z component of the H-field). The same is true vice versa for the x
and y components of the H-field and z component of the E-field. In a two-dimensional setting,
this allows the decoupling of the electromagnetic waves into E- and H-polarised waves as

E-polarised: {H,, H,,E,}(x,y) # 0, (2.13)
H-polarised: {E,, Ey, H,}(x,y) # 0, (2.14)
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where (x,y) is used to denote the position and the subscripts are used to denote the field
components. A two-dimensional approximation is reliable inside the pelvic region (region oc-
cupied by the pelvis when a person is fully inside a scanner) that is situated in the mid-plane
of generic 3T and 7T body coils [18].

This decouples the fields and lets us rewrite Maxwell’s equations as

E-polarisation:

0yH, — 0,Hy, + AE, = -], (2.15)
Kl . . I:I kext
%)eee(i) =~ (i) @19

H-polarisation:

O\, +a(Ex) = - (15 (2.17)
9, )2 TI\E, Jo<t )’ '
9

By — 0,6, + {H, = —RS™, (2.18)

2.3. Sources

An E-polarised wave can be excited by electric current J<' or magnetic currents K&t and K ;Xt,
and an H-polarised wave can be excited by magnetic currents K€ or electric currents ¢t and
A;"t. Given the coil setup along the z axis as described above, and an electric current being
run through the coil along this axis, in this thesis E-polarised waves are considered without
magnetic sources. Removing the magnetic current source term K, Equation (2.16) can be

rewritten as

A\ 1(09,)\a

(5)--4(5)x
2.4. Scattering formalism

The problem is reformulated to better describe the inhomogeneous problem as it exists in the
MRI case.

To begin, the inhomogeneities of the medium are confined to a bounded domain, which
is called the object domain D. This domain is embedded in an unbounded, homogeneous
background medium, here denoted by B.

Furthermore, the sources are located in the source domain §, which is located in the back-
ground medium exterior to D. This configuration (geometrically displayed as in an MRI scanner
in 2D, but this does not have to be the case for the equations to hold) can be seen in Figure 2.1.

An additional set of equations for the background fields {EP, H} is added to the system
formulation. These are the fields that would be present when there is no object D.

Now rewriting the total field as the sum of the background field and the additional scattered
field {ES¢, H5C} that is introduced by the object D, such that

Il
=

b 4 Esc, (2.20)
b+ C-

s (2.21)

m> =
T b
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Figure 2.1: The general scattering configuration in an MRI scanner in 2D. The object domain is D and the source
domain S.

Since the sources for the total field and the background field remain the same, the background
field can be written as

—0y AR + 0, A5 + A ER = —jgxt (2.22)
3y \ an - (HP
v \Eb Ix) =
(_ 6x> ER+ ¢y (H;) 0 (2.23)

This allows us to relate the scattered field to the total field by subtracting Equation (2.23) from
Equation (2.16) and Equation (2.22) from Equation (2.15). The new set of equations is

—03,1:1,55C + 6,51-7;c + HpESC = —hp Rk, (2.24)
0y \ pee . 2 (H5C , . (H
(%) () - -0t (1) 229

Here the (contrast) variables

2 _{®w) - &) and 7 _ @& ) — (@)
" {p(w) ¢ fin (@)

have been introduced. Interesting to note is that the left-hand sides of Equations (2.24)
and (2.25) describe the EM wave in a homogeneous medium. The same applies to the back-
ground fields, as the background medium is homogeneous.

One more simplification can be done before putting it all together. In the MRI setting it
has been observed that the relative permeability variations of biological tissue are small [19].
These will therefore be ignored, by setting ¢, = ¢, and consequently #,,, = 0. Equation (2.25)

then simplifies to
Ase _ 100, ag
<I-7§,°) = __fb <_ax E3°. (2.27)

2.4.1. Homogeneous medium
To solve the system of equations described above, first the homogeneous case is considered.
Substituting Equation (2.19) into Equation (2.15) and assuming a homogeneous medium (i.e.

(2.26)
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¢ does not depend on x — {(x, w) = {(w)) leads to the second order differential equation
1 2 2 A~ £ fext
E(ay+ax)+n E,=—J& (2.28)

Multiplying both sides with ¢ and introducing wave speed k% = —#¢ gives

2

N =
(35 +0z) - k2] £, = T (2.29)

The equation can be simplified by applying a spatial Fourier transform. This transforms
the derivatives (V) into multiplications by —jk, where k = xk, +yk,, + zk, is the angular wave
vector.

Angular wave domain
In the angular wave domain Equation (2.29) becomes

A

U ‘<
(k- k= k?) B, = 5. (2.30)

where a tilde is used to denote the spatially and temporally transformed field quantities. Also
k- k is the angular wave transform of the spatial derivative 07 + d3. The expression in front of
E, is a scalar, nonzero factor. This expression leads to the introduction of the Green’s function
G (k, w) in the angular wave vector domain as

~ 1
Gk w)=———F. 2.31
(I w) = ——F (2.31)
Multiplying both sides by it yields
~ ~ A2 ~
E, = G(k, a))? ext, (2.32)

Before going back to the frequency domain the angular wave domain solution is simplified by
introducing the vector potential

Ak, w) = =Gk w)fe, (2.33)

| =

which is also the point-source solution of the inhomogeneous Helmholtz equation in the an-
gular wave domain.
Transforming the field expressions gives the frequency domain solution

- A . FT . A A
E,=k*4A —— E,=k?A. (2.34)

The inverse-transform of the vector potential results in a convolution

N 1 A N
A, w) = 7[ Gx—x',0)/&(x")dv. (2.35)
N Jx'eRr?

The Green'’s function G (x, w) in the frequency domain will be discussed later.
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2.5. Integral equations
To put it all together, a system of integral equations from which the total field can be found
is constructed. Using the solution for the homogeneous contrast Equation (2.34), the back-
ground field can be written as

b 12127 A ! Text (<!

E2 = Tf Gx—x',w)F&E)HdAV. (2.36)

Mo Jx'er?

The same derivation can be applied to the scattered fields (with the contrast-source term
(fivdeE,) as the ‘external’ source ). This leads to

Esc = k2 f Gx—x',w)fE,x)dV. (2.37)
x'eD

Note that the domain of integration is restricted to the (inhomogeneous) contrast, as outside
of it the contrast term vanishes (y. = 0). Combining this with the definition of the total field
gives

Ep=FE, -k} f Gx—x', w)fE,(x)dV. (2.38)

x' €D

This is an equation in terms of the total field, which will, as will later be shown allow the
reconstruction of the contrast term (y.) from a measured field and known background field.

2.6. Measured field

The actual measured field in an MRI scanner is the By field. This is related to the magnetic

field as .

ASC: Hp ra PN

Bt = > [A5°(x) +jH5 (%)) . (2.39)
Here Plx,y is used to denote the different components of the H vector (in the (x, y) directions).
Note that it only depends on the scattered magnetic field, where the total B field would obvi-

ously depend on the total field.

2.7. Green’s function

To solve the scattering equations posed before the Green’s function as it was found in the
angular wave domain needs to be transformed to the frequency domain. This yields, with
k= kb

6@ =~ HP (hy =) (2.40)

Here H(()z) is the Hankel function of the second kind and order zero [2, §11.4, p. 604-610].



Inversion Methods

In this chapter the inversion methods used to reconstruct the contrast (and electric field) from
a measured B/ field are described. First the methods based on the integral equations (global,
or contrast-source) approach will be described, then the differentiation (local) approaches.

From this point on the over-hat (*) is dropped and all operations and variables are in the
frequency domain unless otherwise stated.

3.1. Integral approach

As can be seen in Equation (2.37), the electric scattered field relies on the source term y E,.
This term will be referred to as the contrast-source and denoted by w. Also, the contrast will
be written without a subscript (y = y.) in the rest of this thesis, as no magnetic contrast is
present. Explicitly we have

w(x w) = y(x,w)E,(X), (3.1)
and Equation (2.37) becomes
E,(x w) = EX(x) + k? f Gx—x"w', w)dV. (3.2)
x'eD

sc;+

Using the contrast-source, Equations (2.27) and (2.37), the B;~™ equation can be rewritten as

_ bpkp

2¢y,

HSC;+ __
Bl -

(0y +30x) L - Gx—x"wE, w)dV. (3.3)

The domain § is the domain in which the field is measured (in this case it is equal to the
contrast domain D). These are two equations with two unknowns (E, and y), related through
the contrast-source w. The integral approach methods all (try to) solve Equation (3.3) for
the contrast-source w, and then reconstruct the field E, from Equation (3.2), after which the
contrast is easily solved from Equation (3.1).

For all global equation based reconstruction methods, the required fields for reconstruction
are the B;°* field and the background field E2. The measured field is the total B;, to derive the
scattered field from this a measurement or simulation without contrast (Bf”') can be carried
out and subtracted

Bt = Bf — BPY (3.4)
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3.1.1. lterative inversion

One method to iteratively reconstruct the contrast-source (and contrast) from a measured field
is the CSI method [17]. This can be derived from the set of equations described in Section 3.1.
Multiplying Equation (3.2) on both sides with y, and combining it with Equation (3.1) yields the
object or state equation as

w = yEP + xGp{w}, x€D. (3.5)

Where Gp{-} is essentially the operation of the Green’s function (the calculation of the vector
potential) on the operand (the contrast-source)

Gp{w} = sz Gx—x"wk' w)dV. (3.6)

x'eD
The data equation 3.3 can be rewritten as
f(x w) =G6{wXx w)}, XES. (3.7)

Here f = B;“™ to follow literature conventions, and the operator is defined as

Gsiw} = —

k2
Fo% (ay+jax)f G(x — x)w(x', w)dV. (3.8)
Zcb x'es

In the equations above, the subscript D and S on the operators are added to differentiate
between the two operations and accentuate the location of the point x. In the MRI scenario
both the contrast domain (D) and measurement domain (§) are the same domain. This is
different from most general inversion applications, where measurements are taken outside of
the contrast domain.

Equation (3.5) and Equation (3.7) are the two equations from which the unknown contrast-
source w, contrast y and field E, will be reconstructed. To solve this non-linear set of equa-
tions, the CSI method employs an alternating update direction gradient search algorithm. This
iteratively first reconstructs a contrast-source, and then a contrast, which is repeated. This is
done while minimising the cost function

F(w x) = If = Gs{w3lI§ | IXE; — w;ll}
g I£1I& IXE2II3

(3.9)

A more thorough description can be found in [16]. A definition of the norms can be found in
Appendix A.

This method has been applied to MRI before [3] and will be used as a reference, notes on
the specific implementation can be found in Chapter 4.

3.1.2. Single-step inversion
In the single-step inversion methods the goal is to solve Equation (3.3) for the contrast-source
w in a single-step. After this the total field is reconstructed using w, and then the contrast is
found from w and E,. Solving Equation (3.3) for w is possible because the measured field
(Bf) is measured in the same domain D as the contrast.

Solving the equation through deconvolution is first described, after which a more robust
approach is described in which a minimum norm is considered. After this the necessary steps
to go from contrast-source to contrast are outlined.



3.1. Integral approach 11

Operator
The Green’s function that is used to relate the Bf°‘+ field to the contrast-source, as it is men-
tioned in Equation (3.3) can be written as

Gs{w} = ;7“: (0y +joy) -k f’es Gx—xHw)dV. (3.10)

differentiation Green’s function

Numerically this function can be implemented in two distinct ways. One is separated as above
with the Green’s function and the differentiation operator as separate functions. The other is
to apply the differentiation analytically to the Green’s function and then calculate that operator
numerically. More information on this can be found in [5], and the derived operator can be
found in Equation (4.4).

There are a number of advantages for the second approach. First, it requires the same
size Green’s operator as before, and the Green’s function will be calculated as it would in
the separated case. Now the end result needs one less matrix vector multiplication (which
is needed for the differentiation operator). Therefore, it should be faster. Secondly, as the
derivative is calculated analytically it does not introduce rounding errors, while a numerical
application would. Lastly, finding the adjoint or inverse operation of this operator is much more
straightforward. Therefore the ‘nabla-Green’ combined operator will be used in the single-step
inversion methods.

The operator with the differentiation applied to the Green’s function will be denoted with a
V superscript
—Hpki

Zw = 52

f ¢V(x—x"Hw)dv. (3.11)
x'es

Deconvolution

As described in [13], to invert the convolution operation of the Gg operator, a deconvolution

operation can be applied. To clarify, Equation (3.3) will be rewritten using spatial Fourier trans-
forms to change the convolution into a multiplication

upkp
2¢p

Here F is used to denote the spatial Fourier transform. Now, to solve this equation for w in
the Fourier domain, a division can be used

F{B**} = - (FG"}- Fiw}). (3.12)

20, F{B;“"}

Fiw} = k2 FGT (3.13)
and with the inverse Fourier transform applied, we find that
2 :Fv BSC;+

I (RS A (3.14)
Hpki, F{G"}

is the solution. Unfortunately, numerically this approach is not very robust for three reasons.
Firstly, the Fourier transform of the data B;* does not give a stable result as the data is
only available in the imaging region, and therefore requires apodisation or windowing with
a low-pass filter. This in turn reduces the accuracy of the inversion, as sharp contrasts are
smoothed. Secondly, the ‘nabla-Green’s’ operator is an odd operator at the points where the
source point is equal to the measurement point, which results in a division by zero in above
equation. This means that the Green’s function needs to be artificially scaled at the origin (in
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the angular wave domain) to compensate for this. Lastly, there is no regularisation possible
against noise, although noise is not a big issue in this application due to the apodisation step
that already filters noise (and information).

To improve on this using a more robust method, the minimal norm estimation is considered
in the next section.

Minimum norm solution
Instead of deconvolving the Green’s function with the measured field, another approach is to
estimate a possible contrast-source, and then minimising the error between the estimate and
the measured field. In this way no deconvolution has to be carried out. As the system is ill
posed, an error norm is used to find an optimum solution. This minimum norm problem can
be stated as
w = min [|Gs{West} — B lp. (3.15)

Here w,; is the estimated contrast-source, and || - ||, is used to denote the p-norm. No point-
wise division operation is required to circumvent the numerical problems that the deconvolution
approach suffers from.

There is also flexibility in the choice of norm and solver. The choice of norm can influence
the reconstruction.

Euclidian norm least-squares The first norm that is considered is the much used ¢, norm.
This turns the above problem into a least squares problem.

Much research has been done into solving least squares problems [4]. One direct ad-
vantage is that when using an iterative minimisation algorithm, the number of iterations can
be used as a regularisation parameter. This can help to suppress noise, or make a tradeoff
between reconstruction speed and accuracy. Another advantage is the wide range of pre-
conditioners that have been researched for such problems. Using specific preconditioners for
piecewise-constant media (as the MRI contrast is) could potentially speed up convergence
and even improve accuracy. In the implementation of this method the LSQR algorithm has
been used in Matlab®.

£, norm least-squares Another norm that can be interesting given the piecewise-constant
contrast is the £, norm. However, a downside of the £, norm is that it is more difficult to find the
minimum (e.g. slower convergence). This also means that the algorithms are generally less
stable. The £; norm minimisation was implemented using iterative reweighed least squares
(IRLS) [4]. A comparison of the different norms can be found in Appendix E. In the two-
dimensional case they perform almost identical, but the computational complexity of the £,
norm is much higher (7 hours running the algorithm to get a comparable results to 5 minutes
of the ¢, solution) that it is deemed infeasible for further investigation at this time.

Huber norm A way to get the best of both £, and £, norms is using the Huber norm. This is
a hybrid £, /¢, error measure. It uses a threshold to determine when to use the £, or the ¢,
norm and can be tuned to perform like either one of them [9]. The goal is to tune it in a way
that the ¢, is used at discontinuous areas and the £, norm to smooth out the constant areas.

Reconstruction

Once the contrast-source is found using one of the previously mentioned methods, the next
step is to compute the contrast. To do this, first the electric field is calculated and then the
least squares solution for the contrast.
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The total electric field is the sum of the background or incident field and the scattered
electric field due to the contrast. Explicitly, we have

E,(X) = E2(X) + Gp{w(x, w)}. (3.16)

If the background electrical field (E2) of the MRI scanner is known (either simulated or mea-
sured), the equation can be computed for the total field E,.

Simply dividing the contrast-source by the total field should give the contrast, as can be
seen in Equation (3.1). However, the field can be very small (close to 0), which can result in
some problems when this is done numerically. Therefore, the least squares solution for the
contrast is used, which is given by

_ WE,
E,E,

X (3.17)

where the overbar denotes a complex conjugate. It should be noted that the contrast y will
be equated to 0 when the total field E, is 0. This concludes the single-step reconstruction
methods.

3.2. Differential approach

The differential approaches are derived from the local form of Maxwell’'s equations, 2.7 and
2.8. First the Helmholtz equation and corresponding inversion technique is described, which is
widely used in EPT and relies on the assumption that the medium is homogeneous. After this
a new method is proposed that works because the measurement and source domain are equal
in an MRI setting. Therefore, the inversion problem can almost be reworked into a forward
problem and solved analytically.

3.2.1. Naive EPT based on Helmholtz’s equation
To arrive at the Helmholtz equation the following assumptions have to be made:

1. There are no external currents inside the human body;
2. The contrast is homogeneous;
Rewriting Maxwell’s equations with these assumptions gives

~VxH+7E =0, (3.18)
VXE+(H=0. (3.19)

Now, taking the divergence of Equation (3.19) gives
V-VXE+{V-H=0,
and since the divergence of a curl is always zero (V- V x E = 0), we find
(V-H=0, (3.20)

which shows that H is divergence free. Using the same procedure as before when deriving
the homogeneous solution, but this time substituting E in Equation (3.19) instead of H, (E =
1/nV x H) in the first leads to

%Vx(VxH)+{H=O. (3.21)
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Using a vector identity and the fact that H is divergence free yields
Vx (VxH)=V(V-H)—V?H = -V?H. (3.22)
Putting this back into Equation (3.21) gives

1
- EVZH +(H=0. (3.23)

Substituting B into the equation (through the constitutive relations) and multiplying both sides

by _HTM = “Tkz leads to the Helmholtz equation

V2B + k?B = 0, (3.24)
where k? = usw? — juow relates to the electrical properties of the object.

The Helmholtz equation is valid for all Cartesian components, so to solve this equation
using the B field it can be rewritten as

v2By

— = —k2% 3.25
5 (3.25)
This leads to the conductivity and permittivity to be reconstructed as
— V2Bf 1 q o~ VZBf) 1 3.6
€= BF | mw? and 0=3 BF | uw’ (3.26)

The homogeneous assumption unfortunately does not hold in the human body [20]. Another
issue with this method is the Laplacian (the V2 term). Using a second order derivative makes
the method very susceptible to noise.

3.2.2. First-order-differentiation inversion

The total magnetic field H is related to the E field through Maxwell's equations. This relation
can be used, in absence of external sources (which is true inside the body), to directly relate
the two variables through spatial derivatives. This can lead to a reconstruction operation as
follows. Defining the operator

p= 2% 1o (3.27)
 jwug y 110 -
with ¢, = 1/4/,lg, and applying it to the total B field yields
PBf = (x + 1)E,. (3.28)

Furthermore, the integral equation for E, is
E,— f GyE,dV = EP. (3.29)
DSC

Subtracting stc GE,dV inside, and adding it outside of the integral on the left-hand side (which
is possible due to linearity of the operator) gives

E, +f GE,dV —f G(x +1)E,dV = Eb,
DSC DSC
E, +f GE,dV — f GPBf dV = EP,
DSC DSC

E,+ f GE,dV = E2 + f GPBf dv. (3.30)
psc D

sC

known
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This is the standard scattering integral equation with homogeneous contrast equal to —1, which
can be solved numerically for E,. The contrast then follows from
PBYE,
X =
|EZ|?

1 (3.31)

The advantage of this approach is that there are no assumptions of homogeneity made on the
contrast. Also, this method only features a single spatial derivative instead of a second order
derivative as the Helmholtz approach requires. Even though the differentiation part is only first
order, the method overall is a little more complex than the Helmholtz due to Equation (3.30) that
needs to be solved iteratively. Fortunately that equation is very well-behaved, and generally
converges to a normalised 2-norm residual of less than 10~¢ within 5 iterations.

3.3. Summary
To summarise, two new methods have been proposed, and one method will be reviewed:
 the direct contrast source EPT method;
+ the first order differentiation method,;
+ the CSI method will be reviewed.
The reconstructions made with these will be compared with
* the original contrast;
< the Helmholtz based reconstruction;
» the deconvolution based reconstruction.

The results of this will be shown in Chapter 5. The CSI method will also be reviewed and the
algorithm slightly altered.






Data sets and the implementation of the
EPT operators

In this chapter the used datasets and the implementation of previously described methods
in Matlab® are elaborated. For these methods the main operators and their equations are
repeated as well as a numerical implementation of them is given. This is done to aid in repro-
ducing the results obtained in this thesis.

Four different datasets have been used to test the algorithms described in the previous
chapter. In particular, we have considered

1. A 2D simulated pelvis slice.

2. A 3D simulated shoulder slice.

3. An in vivo measurement of the head.
4. Three Phantom measurements.

First the simulated datasets and the original contrast used for these are discussed, after that
the in vivo and phantom dataset is discussed. An overview of all the datasets can be found in
Table 4.1.

4.1. Simulated datasets
For the 2D dataset, the female Ella body model of the ITIS foundation [6] is used, while for the
3D dataset the male Duke model is used. These have an isotropic voxel size of 2.5mm in the
two-dimensional case, and 5mm in the three-dimensional case.

The forward simulation in the two-dimensional case has been performed in Matlab®. Here
16 line sources have been placed (equally spaced) on a circle around the pelvis slice at a
radius of 0.34m. These line sources have been excited using a quadrature phase field at
128MHz (3T) and their influences are summed to arrive at the final background field.

The forward simulation in the 3D case has been performed in Remcom. Here a birdcage
body coil (diameter coil 610mm, diameter shield 680mm, length coil 560mm) is fed using a
128MHz (3T) RF signal to generate the background field.

'"Remcom XFdtd software, v.7.5.0.3, State College, PA, USA.

17
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Source Resolution Domain Scannerused r(m)

Ella 2.5 mm 2D line sources 0.34
Duke 5mm 3D Birdcage 0.305
In-vivo 5 mm 3D Birdcage 0.35
Phantom 5mm 3D Birdcage 0.35

Table 4.1: Overview of used datasets.

Type Name Short form
Contrast source Contrast source inversion CSl
Single-step Deconvolution inversion Decon.
Minimum norm inversion MinNorm.
Differentiation Naive EPT based on Helmholtz Helmholtz

First-order-differentiation inversion Diff.

Table 4.2: Overview of used methods and nomenclature.

4.2. Real dataset

The in vivo and phantom measurements were performed at the University of Utrecht medical
center. The in vivo measurements have been measured using an Ingenia 3T MRI scanner.?
The phantom datasets have been measured on an older Achieva 3T MRI scanner. For these
measurements three different phantoms have been placed into the scanner, with conductivities
ranging from no conductivity to eight and sixteen siemens per meter.

4.3. Computational implementation
In this section the implementation of the algorithm and the discretisation of various operators
and functions is discussed. First the single step inversion methods, and after that the finite
differencing methods are discussed. The CSI method is implemented as it is described in [3]
with help of the original author.

To reiterate the methods as they are used and described in this thesis are found in Ta-
ble 4.2.

4.3.1. Single-step
In the single step methods (both deconvolving and finding the minimum norm solution) the
‘nabla-Green’s’ function

—Hpki

cZw) = 52

f ¢V(x—x"Hw)dv. (4.1)
x'es

is used. The ‘nabla-Green’s’ operator G¥(x — x') is in this function applied to a (source) field
through a convolution. To implement this numerically, fast Fourier transforms (FFTs) have
been implemented. In this way, the convolution is performed as a multiplication in the (spatial)
Fourier domain.

This is a very powerful and fast way to calculate the convolutions. In Matlab® the compu-
tation has been implemented with the Green’s operator already in the Fourier domain, so that
the transform does not need to be computed every time. Zero padding is applied to the source

2For more information on the particulars of the measurement please contact the author of this thesis.
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data to ensure that the periodicity requirement is fulfilled [22]. The source is zero padded to
the next largest power of two, which should be equal to the Green’s operator dimensions. The
resulting function can be found in Listing 4.1.

Listing 4.1: Green’s function

function field = greensFun(operator, source)
% compute dimensions
dim = size(source); fftDim = size(operator);
% pad input for FFT
source = padarray (source, fftDim—dim, 'post’);
% perform discrete convolution using FFT
field = ifft2(operator .* fft2(source));
% reshape output
field = field (1:dim(1) ,1:dim(2));

end

Before the ‘nabla-Green’s’ operator can be applied, it needs to be computed numerically. This
is not straightforward, as the operator has a logarithmic singularity in 2D.

Weak-Green’s To use the Green’s operator in 2D (and 3D) it needs to be weakened be-
cause of its logarithmic singularity. Starting with Equation (2.40), and following the derivation
presented in [12] yields the following equations for x outside of the singularity (non self patch
elements, x # x,)

j
G¥ (% — %) = —5—]; (o @)HG? (kp |x — %), (4.2)
Zkba
and inside the (previously) singular region (self patch elements)

2j
H? (kya) - Thoa | (4.3)

j
O e

Here ky, is the wavenumber, a the radius of the circular disk used to circumvent the singularity,
J1 is a Bessel function of the first kind, ng) and ng) are Hankel functions of the second kind
(denoted by the superscript), and of zero and first order (denoted by the subscripts), and x the

grid points the Green’s operator is defined on.

Nabla-Green’s The application of the differential operator on the Green’s function gives the
nabla-Green’s function. The differential operator can be taken under the integral because the
Green’s operator in the (convolution) integral is well behaved.

The gradient of the (weak) Green’s operator can then be found as

67(x—x,) = 2], (oo (e — ) @.4)
7 2a *Vx — x|
using elementary differential rules and the Hankel derivative relation
d n
S H (@) = ZHD (2) = Hih (). (4.5)

Furthermore, due to the multiplication with x—x the previously singular region (point) becomes
zero, G'(0) = 0.

The discretised matrix form of the operators can be found in Appendix D. To generate the
numerical form of these is straightforward with a coordinate mesh generated with meshgrid
and then using the besselj and besselh commands for the Bessel and Hankel functions.
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4.3.2. Differentiation operators

Both when separating the Green’s function from Equation (3.10), and in the differentiation
used in the first order differentiation method defined in Equation (3.27), reproduced here for
convenience

Gsw} = ;T“: (9y +jdy) - K2 f  CE=—xw@E)d, (4.6)

p= %@ By +j0y). (4.7)
Jwip

A differencing operator is used. In both cases this operator looks like
D =0y + jOy. (4.8)

To discretise this operation, a central differencing scheme is used for the partial differential
operations. For example the derivative 9,4, |x=x, , (at point m,n) is approximated as

N A;Emyin) — Az(Em—11)
Emn 26x

O0xAzlx= (4.9)

The discretisation of this operation can be found in Appendix D.

4.3.3. Simulated additive noise considerations

A well done measurement ranges in signal to noise ration (SNR) from 90 to 120 dB.3 Often
publications of simulated methods that add noise artificially to their measurements will go down
to as far as 30 dB SNR, but this turns out not to be necessary at all.

Another thing often neglected is that the phase noise and amplitude noise are generally
from two different measurements, hence the noise should be added separately, with their
respectively different SNR levels. The SNR of the amplitude measurement is expected to be
lower as this measurement is more difficult to do than the phase only measurement.

3Based on experiences from MRI technicians on in-situ measurements of human volunteers.



Reconstruction results

In this chapter the simulation and reconstruction results are presented. The different methods
used are:

1. Contrast source inversion: lterative method employing an alternating update direction
gradient search algorithm to solve for a contrast source parameter and the contrast.

2. Deconvolution: Direct method deconvolving the measured field with the Green’s function
to reconstruct the contrast source, and from it the contrast.

3. Direct contrast source EPT: Iterative method finding through a minimum norm the ‘best
fit' contrast source, and from it the contrast.

4. First order differentiation: Direct method which reconstructs a contrast through the rela-
tion provided by the differential form Maxwell’s equations.

5. Helmholtz based: Direct method which reconstructs the contrast through Maxwell’s equa-
tions assuming a homogeneous contrast.

First the contrast sources that are reconstructed using the contrast source (CS) type meth-
ods are compared to the originals. After this the general reconstructions are shown. Lastly,
some additional profiles have been constructed to more clearly compare the different methods.
These comparisons are presented at the end of each section.

The phantom datasets have a number of complications, which lead to ambiguous results.
Therefore it was chosen to discuss these in Appendix F separate from the main results dis-
cussed in this thesis.

5.1. Diagonalised CSI

While implementing the CSI method as proposed by Balidemaj et al. [3] a diagonalised CSI
scheme [1] was investigated. In this scheme the update procedure for the contrast is foregone,
and instead a regularisation parameter is introduced.

It turns out that this produces essentially the same results as the CSI method. This could
be because the data error in regular CSl is much smaller than the contrast source error. This
is because both the field and the contrast are estimated and compared to the contrast source.
Since the contrast source is also the input parameter to estimate the field and contrast these
should not introduce an error.

This small data error leads to a small influence of the contrast reconstruction part on the
total reconstruction. This explains why a simple regularisation constant leads to the same

21
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# iter Fregular Fiiagonal tregular(s) tdiagonal(s)

10 2.331e-2 2.331e-2 0.6428 0.4600
100 3.106e-4 3.106e-4 5.7384 4.3277
500 9.948e-5 9.948e-5 13.542 10.273

Table 5.1: Results for the cost function and algorithm time between diagonalised CSI and regular CSI.

5 150
S 100
4 50
N
10 20 30 40 10 20 30 40
x position (cm) x position (cm)
(a) Original CSI reconstruction (b) diagonal CSI reconstruction

Figure 5.1: Absolute value of reconstructed contrasts using the direct method for the 2D simulation with additive
gaussian noise at SNR = 30dB.

results. An advantage of the diagonalised scheme is that it is about 20% faster due to a number
of calculations that do not have to be performed (for reconstructing the field and contrast). The
contrast can then still be reconstructed from the end result for the contrast source, but this is
a single step as opposed to performing the calculation every iteration.

Cost function and running time results of the diagonalised CSI and regular CSI method
can be found in Table 5.1, and a figure of the reconstruction results can be found in Figure 5.1.
Based on these results, the diagonalised approach is used in this thesis whenever the CSI
method is mentioned.

5.2. Two-dimensional reconstructions

The 2D forward simulation is done using the same equations as described in Chapter 3. In
this simulation the most notable simplification is the fact that it is modeled using perfect two-
dimensional E-polarised fields. This is the reason that the slice used here is a pelvis slice
(since in this region the assumptions generally hold). This also means a simple transmitter
array of 16 line sources can be used.

y position (cm)

10 20 30 40
x position (cm)

Figure 5.2: Total E field of the 2D simulation, V- m™.
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Figure 5.3: Absolute value of original and reconstructed contrast sources for the 2D simulation. The colorbar is
scaled by 1075 (the range is originally [0, 1.2 - 10°]).

5.2.1. Contrast-source

The contrast source reconstructions can be found in Figure 5.3. In this figure it can be clearly
seen that the deconvolution reconstruction is smoothed out more than the other reconstruc-
tions, but all three resemble the original contrast source accurately. The dark ‘spot’ in the
middle of the contrast sources is related to the dip in the electric field, which is shown in Fig-
ure 5.2. The normalised 2-norm of the error of these reconstructions can be found in Table 5.2.

5.2.2. Contrast

Three different contrast reconstructions have been computed using the above mentioned in-
version methods, the absolute value, the permittivity and conductivity. These can be found in
that order in Figures 5.4 and 5.5.

To compare the overall reconstruction results, the absolute value gives a good indication.
The smoothing effect in the deconvolution approach can be observed when compared to the
CSI and direct reconstructions. In all of the CSI based reconstructions a smear across the
center can be observed. This is due to the overall field strength. In the center of the contrast
the magnitude of the electric field strength is low. This means that for the reconstruction there is
less ‘information’ available, which leads to a reconstruction error. This error can be minimised
through, for example, regularisation such as total variation regularisation (TV regularisation)
as can be applied to the CSI method, or shimming with different field polarisations, or by using
dielectric pads to shape the field at certain areas.

The small difference between the direct and the original CSI method can be attributed to
the number of iterations taken (in both the LSQR algorithm used for the least squares solution
in the robust method as well as the CSl iterations).

The differencing based methods show a much more homogeneous contrast (where the
contrast is homogeneous), which is also where the assumptions for the Helmholtz method
hold. However, the Helmholtz method actually has very large ‘transients’ at the boundaries of
the piecewise constant medium. The first order differentiation method does not show these
interestingly enough, but does show a dependence on the electric field, as a slight increase in
contrast can be observed in the areas of lower field in the center of the reconstruction. In the
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Figure 5.4: Absolute value of original and reconstructed contrasts for the 2D simulation.

permittivity and conductivity images the same observations can be made.

Noise

To compare the robustness to noise of the different methods, additive white gaussian (com-
plex) noise was added to the data at an SNR of 50 (dB) based on the magnitude of the mea-
sured field, why this is done is explained in the next section.

From these images, found in Figure 5.6 it can clearly be seen that the Helmholtz method
has the greatest problem with noise. Interesting to note is that the first order differentiation
method does not have a big problem with noise although it also relies on differencing operators.

Reconstruction in the center of the other image has the most notable noise pattern, further
indicating the reconstruction difficulty in this region.

Method CS Error (normalised) Contrast Error (normalised)
(03] 0.087 0.328
Direct 0.134 0.258
Deconvolution 0.156 0.565
Single diff. N.A. 0.111
Helmholtz N.A. 2.278

Table 5.2: Normalised 2-norm of error of contrast source (CS), and contrast ("Tl;liuz ), where x is the original and %
the reconstructed variable (y or w).
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Figure 5.5: Permittivity € and conductivity o values of original and reconstructed contrasts for the 2D simulation.
The original permittivity and conductivity can be found in Figures 5.5a and 5.5g. The reconstruction obtained using
CSl in Figures 5.5b and 5.5h, those using the deconvolution approach in Figures 5.5¢ and 5.5i, those using the
direct method in Figures 5.5d and 5.5j, those using first order differentiation approach in Figures 5.5e and 5.5k,
and those using the Helmholtz based method Figures 5.5f and 5.5I.
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Figure 5.6: Absolute value of reconstructed contrasts for the 2D simulation with additive gaussian noise at SNR =

50dB.
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Figure 5.7: Absolute value of reconstructed contrasts using the direct method for the 2D simulation with additive

gaussian noise at SNR = 30dB.
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Figure 5.8: Absolute value of original contrast of 2D slice. Red line indicates location of cut-out.
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Figure 5.9: Absolute value of reconstructed and original contrast at location of cut out as indicated in Figure 5.8.
The Helmholtz reconstruction has been truncated at 170 to declutter the graph.

Lastly, the deconvolution method does not display any noise influence. This has to do
with the apodisation which acts as a noise filter. This ‘effect’ can be seen as well when using
regularisation against noise, for example in the direct method as shown in Figure 5.7. In this
figure the number of LSQR iterations is used as a regularisation parameter. In [3] it has been
demonstrated that TV regularisation is also a very useful technique for noise regularisation.

Phase noise and amplitude noise As stated before, in a real MRI scanner the phase and
amplitude of the B field are measured in two separate measurements. This means that the
noise component of these two will be different. The figures here have been made with complex
noise based on the signal power, so not separate amplitude and phase noise. There are two
reasons for this. First, the SNR is chosen at 50 dB, which is worse than real measurements
would have, since at this level the effect of noise is visible on all reconstructions, and the large
difference between the Helmholtz and other methods becomes clear. Second, a signal power
based noise is chosen due to the fact that both amplitude and phase noise show the same
type of effect. The only difference is that phase noise seems to have a larger impact on the
reconstruction at an equal SNR than amplitude noise (if they are considered separately).

This is probably due to the fact that the phase is a variable modulo 27, and not absolute,
which means that for example phase measured at an SNR of 0 dB (phase and noise ‘power’
are equal) cannot provide distinguishable information anymore.

Reconstructions on a line

To give a more in depth view of the actual quality and accuracy of the reconstructions, we
focus on reconstructions obtained along a line through the two-dimensional contrast profile
as illustrated in Figure 5.8. The values of the reconstruction at this profile can be seen in
Figure 5.9.

The Helmholtz reconstruction has been truncated at a magnitude of 170 to declutter the
graph. It has also been scaled so that the homogeneous parts of the contrast line up with
the actual values (this is not necessarily the case) but makes comparison easier between the
methods.
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Figure 5.10: Absolute value of original and reconstructed contrast sources for the 3D simulation.

From the profile it can be clearly seen that the Helmholtz method largely overestimates
the value of the contrast at the interfaces between two areas of different contrast. This is of
course because especially there the assumption of a homogeneous contrast does not hold.

The deconvolution method tends to underestimate the contrast by a bit and has the smoothest
transitions due to apodization, where a lot of high frequency information and some signal power
is lost.

Another interesting observation is that at the left side the reconstruction is much better
than at the right side. This is related to the strength of the electric field, which is low on
the diagonal of the image as was already displayed in Figure 5.2. Therefore the right side
of the reconstruction is more difficult, which is also shown in the graphical reconstruction in
Figure 5.4. Interesting is that the first order differentiation method seems to overestimate
the contrast where the CS based methods seem to underestimate the contrast. After about
position 160 however, where the total field is stronger, these methods all again converge to
the correct contrast.

5.3. Three-dimensional reconstructions

Even though the operators used are two-dimensional we can apply them to three-dimensional
data. Obviously this introduces some complications. In comparison to the 2D reconstructions,
the 3D case has a number of disadvantages, which explain the lower quality of reconstruction.
Firstly, the slice taken is at the shoulders, so not in the middle of the scanner. This means that
the background field is less homogeneous, as it is further from the centre of the MRI scanner.

Furthermore, the data is simulated in a three-dimensional forward simulation, which only
further emphasises the problems when applying a 2D based reconstruction. This in com-
bination with the less homogeneous background field deteriorates the assumption of a fully
E-polarised field inside the contrast. One reason for this is that tissue in other parts of the body
can (and will) scatter ‘into the slice under consideration with a field of which the polarisation is
shifted, introducing field components that are not taken into consideration in the reconstruction.



5.3. Three-dimensional reconstructions 29

5 150
S 10 100
‘»
Q 20 50
= 0
(a) Original
5 150
S 10 100
‘»
Q 20 50
= 0
(c) Deconvolution
§ 150
S 10 100
g 20 50
EN - ! ‘
10 20 30 40 10 20 30 40
x position (cm) x position (cm)
(e) First order differentiation (f) Helmholtz

Figure 5.11: Absolute value of original and reconstructed contrasts for the 3D simulation.

5.3.1. Contrast-source

First off, observing the reconstructed contrast-source, there are a lot of small details towards
the front of the breast (the top of the image), which are not reconstructed well. The structure
itself is visible, but the reconstructed values are around a magnitude of 2000 (abs), whereas
the original value is up to a magnitude of 6000 (abs), which is three times more.

Another difference between this reconstruction and the 2D simulation is that a birdcage
was used, so the weak area of the electric field is in the center and is more or less circularly
symmetric. Therefore a ‘streak as it was visible in the 2D simulation is not visible here, and
should not be visible on the contrast reconstructions, although the center will still be difficult
to reconstruct.

5.3.2. Contrast

Three different contrast reconstructions have been computed using the above mentioned in-
version methods, the absolute value, the permittivity and conductivity. These can be found in
that order in Figures 5.11 and 5.12.

The results are of significantly lower quality compared to the 2D reconstructions, with no-
tably the Helmholtz method struggling to reconstruct the discontinuities accurately. When
looking at the absolute values of the reconstruction they still look relatively accurate overall,
with a little distortion in the center. Also, there seems to be difficulty in reconstructing the
large jump in contrast between the low contrast of the lungs and the very high contrast of the
sternum. However, comparing this to the reconstruction of the permittivity and conductivity a
number of artefacts and more major distortions can also be observed.
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Figure 5.12: Permittivity € and conductivity ¢ values of original and reconstructed contrasts for the 3D simulation.
The original permittivity and conductivity can be found in Figures 5.12a and 5.12g. The reconstruction obtained
using CSl in Figures 5.12b and 5.12h, those using the deconvolution approach in Figures 5.12c and 5.12i, those
using the direct method in Figures 5.12d and 5.12j, those using first order differentiation approach in Figures 5.12e
and 5.12k, and those using the Helmholtz based method Figures 5.12f and 5.12I.
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Figure 5.13: Absolute value of original contrast of 3D slice. Red line indicates location of cut-out.
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Figure 5.14: Absolute value of reconstructed and original contrast at location of cut out as indicated in Figure 5.13.
Some reconstructions have been truncated at 220 to declutter the graph.

These artefacts show a significant drop in value, with a sharp edge. Therefore, it is be-
lieved these lines stem from the same sort of phase mismatch, caused by the relation between
conductivity and permittivity, which shows that the polarisation assumption does not seem to
hold very well inside the contrast in 3D at the edges of the scanner.

Another observation that can be made are the very bright sides of the deconvolution recon-
struction (most clearly visible in the absolute value of the reconstruction). These are caused
by the close proximity of the bird cage to the edges of the measured contrast. The large
magnitude of the field right next to the contrast seems to influence the reconstruction, pos-
sibly because they are ‘smeared’ into the contrast through the filtering that is applied before
deconvolution.

5.3.3. Reconstructions along a line
To give a more in depth view of the actual quality and accuracy of the reconstructions, we
focus on reconstructions obtained along a line through the 2D contrast profile as illustrated in
Figure 5.13. The values of the reconstruction at this profile can be seen in Figure 5.14.

The Helmholtz, CSI, direct and deconvolution reconstructions have been truncated at a
magnitude of 220 to declutter the graph. The Helmholtz reconstruction has also been scaled
so that the homogeneous parts of the contrast line up with the actual values. This is not
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necessarily the case, but makes comparison easier between the methods.

In this line profile, it can clearly be observed that most methods have trouble reconstruct-
ing the center peak, except for the deconvolution and first order differentiation methods. An
interesting point is also the dip most reconstructions display around x-position 62. This is
most likely due to the dip in contrast one voxel above this point (in the y-direction) that can
also be observed in the overview image of the original contrast. This displays the influence of
the contrast on neighbouring voxels, which is probably also the case in the z-direction in 3D
(possibly slightly smaller, due to the background field polarisation), which also could explain
some artefacts.

5.4. In vivo Reconstructions

Of the in vivo data the reconstructions can be found in Figure 5.15. The measurements are
of a human head, which can also be seen from the reconstructions. Notable in this dataset is
how noisy the Helmholtz reconstruction seems to be in relation to the other reconstructions.
This can be attributed to the second (partial) derivative that is taken in this method, and has
also been observed in the two-dimensional case with simulated noise. Also the smoothing
effect of the deconvolution method as compared to the other methods is evident. As there is
no original contrast available the accuracy can unfortunately not be checked.

— 1,500

IS

o

- 10 1,000

kel

'g 20 500

o

> 30 ‘ 0

10 20 30
x position (cm)
(a) CSl
—_ 1,500
IS
o
s 1,000
kel
'g 500
o
= 0
— 1,500
e
o
- 1,000
kel
'g 500
Q- = - -
> 30 ‘ ‘ 0
10 20 30 10 20 30
x position (cm) x position (cm)

(d) First order differentiation (e) Helmholtz

Figure 5.15: Absolute value of original and reconstructed contrasts for an in vivo measurement of a human head
using a birdcage coil and a 3 Tesla scanner.



Discussion

In this chapter some assumptions regarding the 2D E-polarised field and contrast that were
made are revisited with new information, or discussed critically in light of the subject matter.
After this the domain of the measured Bf and the information needed in a reconstruction
are critically evaluated. Subsequently, perturbations and numerical rounding issues in a finite
precision implementation are discussed.

6.1. Assumptions

A number of assumptions have been made during the course of this thesis and the derivation
of reconstruction methods. Some of these will be revisited with knowledge gained through
simulations, and others will be put to the test through rigorous analysis. The first assumptions
made are those of a linear, isotropic and time invariant medium. These will be discussed here.

6.1.1. Linearity

One danger of an MRI scan is that the EM fields heat up tissue, which can be used in a
beneficial way in hyperthermia. However, the electric properties of the dielectric tissue have a
temperature dependence [14]. This means that these properties change as the tissue heats
up. Now unfortunately there is currently no research into the exact dynamic influence of this
during an actual MRI measurement as far as the author of this thesis is aware. However, this
does point towards certain non-linearity in the tissue, and hence contrast. Once EPT methods
have matured to the extend that they can provide accurate measurements on for example
static dielectric phantoms this could be further investigated using in-situ measurements with
real tissue.

6.1.2. Isotropic
As is already discussed by Katscher et al. [10] anisotropic examples of tissue can be found,
e.g., for muscle or nerve fibers between the longitudinal and transverse direction [8]. However,
it is currently still impractical to directly measure the different components. Nevertheless,
the influence of this anisotropic component is only really a problem in the two-dimensional
case when it influences the E-polarisation assumption. If a three-dimensional reconstruction
algorithm would be used these anisotropic components could very likely be recovered with
little extra effort.

Another interesting opportunity for future research would be to see in how far introducing
an ‘artificial’ anisotropic component into the two-dimensional reconstruction methods (i.e. as-
sume a certain anisotropy) could lead to better reconstruction of three-dimensional data since
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these components can introduce the field vectors that are not taken into account through the
E-polarisation assumption.

6.1.3. Time-invariance

Time-invariance is only considered during the time of the measurement. This is important,
as evidently for example a young person growing up can change widely over the course of a
number of years or even months. During this time the contrast would naturally change. But
the real question is of course whether it changes during the time of a measurement. Real
time measurements at time resolutions of 20 ms are a possibility [15]. Some (especially older)
scanners still take a longer time to resolve the magnetic field accurately. However, even on
longer timescales (seconds) the human body does not change to the extend that it would
invalidate this assumption.

6.1.4. E-polarisation

As has already been shown in the reconstruction of a three-dimensional dataset in Section 5.3,
the 2D assumption (naturally) does not hold very well there. Obviously not reconstructing
the 3D components of the E-field (Ey, E ) leads to an error when these are non-zero. The
interesting observation however is that this error seems to come from a phase mismatch,
leading to very large jumps. This seems to depend on the connection between conductivity
and permittivity as when there is no conductivity the error disappears. This makes sense, as
these are possibly coupled in much the same way as the electric and magnetic field are in the
Maxwell equations. These were decoupled in the 2D E-polarised case, but will obviously be
coupled again when the other field components are nonzero.

One way to deal with this issue is to derive the reconstruction methods for the case of a full
three-dimensional field and coupled Maxwell’s equations. However, the coupled equations will
most likely lead to additional non-linearity, making the reconstruction more difficult. Another
issue in the 3D case is the assumed E-polarisation of the background field, where a mismatch
between the simulated field and the true field also influences the reconstruction.

6.2. Field domain

A note on the B; field that was used in the Helmholtz, the first order differentiation, and the
deconvolution methods. In these methods the boundary condition for the contrast is not fully
taken into account and will cause an error on the outer boundary. To more easily compare
the overall reconstruction with the other methods, the B field of the full simulated region is
used as input for the reconstruction instead of just the field inside the area of the contrast (as
it would be measured in real life). In Figure 6.1 the difference between the reconstruction with
‘masked (true) field and with the ‘full field can be observed.

6.3. Operator mismatch
A measure of robustness of a method is how sensitive it is to a perturbation on the data. In
the case of the first order differentiation method this is equal to a perturbation in the operator.
A magnitude mismatch of 10% can be observed in Figure 6.2. In Figure 6.2b the differencing
operator (as defined in Equation (3.27)) is multiplied by 0.9. Because of this a line appears
slightly below the centre on the left in the reconstruction. This line is white because all values
< 0 are white with the given colormap of the figure. However, the numerical values of this line
are negative.

Because of the large jump in reconstructed values it looks like the first order differentia-
tion approach is sensitive to perturbations on the measurement. However, 10% is a large
perturbation, and the rest of the reconstruction is still very recognisable.
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Figure 6.2: Permittivity of first order differentiation reconstruction with operator mismatch.

When investigating analytically the influence of this perturbation the biggest influence it
has is in Equation (3.30). Here the right-hand side is scaled by 0.9 except the background
field. In the last step of the reconstruction the scaling factor is compensated again (since it
also scales the total field that is reconstructed), except for the fact that the background field is
not scaled. This mismatch between the background field and a scattered field (with scatterer
x + 1 instead of ), is what most likely causes the reconstruction error.

To further investigate this, another reconstruction with a mismatch was carried out, only
now in a forward simulation where the conductivity is set to 0. The reconstructed permittivity
should still have the same values, so this will show what influence the two variables have on
each other (since they are both part of the complex valued contrast). This reconstruction can
be seen in Figure 6.3.
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As is clear from Figure 6.3, the reconstruction is (almost) perfect. So even with a mis-
matched operator, when there is no interplay between the real and imaginary parts of the
contrast the reconstruction is much easier. Another consequence the lack of conductivity has,
is that the influence of the background field is diminished (compared to the scattered field),
which also lead to less influence from an operator mismatch.

In the three-dimensional case these large jumps also appear, most likely caused by phase
mismatches or errors between the contrast (source) and the background field through the
fact that the E-polarisation assumption does not necessarily hold inside the contrast when the
conductive medium interacts with the incident field.

6.4. Numerical issues

While working on these methods one problem became apparent relatively quickly. Rounding
errors can have an impact on the quality of the final result. For example, given a fraction of
two squares, one would consider the square of the fraction to be the same. However, with
rounding errors, this is not the case, and can provide a noticeable increase in convergence (in
terms of cost function values). That is to say

a? a\? a2 a\?
7=0) ~7*(5) 6-1)

analytical numerical

This means that when implementing these schemes numerically the utmost care must be
taken to make sure no unnecessary scaling, multiplication or divisions are done, or the order
of operations is chosen to minimise rounding errors This especially gets interesting when also
trying to optimise for speed, as it is not always possible to do both.



Conclusion

First the different reconstruction methods are discussed, after which some concluding remarks
on the reconstruction of EPT from MRI measurements are made.

7.1. Comparisons

The different methods are compared on four aspects, speed, accuracy, robustness, and flex-
ibility. Some of these are more qualitative and others quantitative. An overview of the results
is also tabulated in Table 7.1.

Speed The currently most widely used method, the Helmholtz method, is very fast. It re-
quires one second derivative (which can be done with a matrix multiplication), and further-
more only element-wise division. The time needed to calculate the contrast with this method
is almost negligible on most modern computers, even with a high resolution scan.

The first order differentiation method only requires a single derivative to get to the contrast
source. However, to reconstruct the total field takes slightly longer, therefore it is marginally
slower than the Helmholtz method.

Now the original CSI method is, due to being an iterative method, variable in speed. To get
comparable results in accuracy to the other methods takes a little longer, due to calculating
all the cost functions in the update procedure. The diagonalised CSI method performs slightly
better, but still underperforms the others in terms of speed.

The direct method uses an iterative scheme, but these iterations are faster and the result
also converges faster than CSI. When minimising not to the 2-norm but the 1-norm this method
loses a lot of speed due to the difficulty of this and the extra iteration steps.

Lastly, the deconvolution method performs really fast as it only requires a single division,
and then one scatter field has to be calculated to arrive at the final contrast. This makes it
slightly faster than the first order differentiation method, as the total field is found more straight-
forward from the contrast-source than it is from the differenced B; field.

A quantitative time comparison can be found in Table 7.1.

Accuracy The Helmholtz method needs as previously mentioned the assumption of a con-
stant contrast. That this introduces errors can clearly be seen in Figure 5.4f. The Helmholtz
method matches up on the flat (constant) pieces accurately, but at all the boundaries, and
slightly more heterogenous parts, it fails completely. Its accuracy therefore can vary widely
depending on the subject and specific area under investigation.
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The first order differentiation approach does not have this problem. We observe from Fig-
ure 5.4e that it almost perfectly reconstructs the contrast, even better so than the contrast
source based methods. This is probably because it tries to solve the inversion problem ana-
lytically, instead of minimising a cost function.

The contrast source inversion method is very accurate as was also demonstrated by Balide-
maj et al. [3]. Besides the discrepancies in the centre of the reconstruction, which is due to
the lack of information since there is very little field strength, the results are fairly accurate.
However, when applied to 3D data it becomes clear that this is a 2D operation. There is a
noticeable decrease in accuracy in this case. If one were to derive the CSI formalism for 3D
operators this could be improved upon greatly.

The direct method performs very comparable to the CSI method. Besides some minor
differences the reconstructions are almost identical. These minor differences are most likely
due to the different number of iterations (and thus convergence) of the methods.

Finally, the deconvolution method loses some accuracy due to the apodisation step re-
quired. Especially the discontinuities are averaged out, resulting in a blurry reconstruction.
However, even though the reconstruction is blurry the contrast is still very well recognisable
and there are no noticeable artefacts introduced by this method.

A quantitative analysis of the errors (for the 2D case) can be found in Table 7.1.

Robustness (noise) Inherently a method based on derivatives will not be able to cope well
with noisy data. This is due to the noise being increased instead of averaged out as it is in
integral based methods.

As can also be seen from the data, the Helmholtz method performs worst. Interesting
enough however, the noise does not seem to influence the single difference method more than
it does the contrast source based methods (at the same number of iterations as was used for
the original reconstruction). However, the first order differentiation has (besides filtering the
measured data) no way to deal with noise, whereas the contrast source based methods do.

The contrast source type methods are based on integral equations, so any noise that is
there will be averaged over the domain, possibly decreasing its influence. Furthermore, and
most importantly, both the CSI and direct methods allow for regularisation.

This regularisation will smooth the end result (as filtering the data would also do) but without
loss of source information. Examples of this can be found in Figure 5.7 for example. This
makes these methods more robust than the first order differentiation method.

The deconvolution method does not seem to be influenced by noise at all, but this is be-
cause filtering is applied at the offset already, so source information is lost at the advantage
of robustness against noise.

Flexibility (regularisation etc.) As stated before, the CS| based methods are much more
flexible than the differencing based ones. Besides regularisation these methods can also be
extended with preconditioners to for example speed up the convergence or the calculation
time per iteration.

Additionally, besides regularisation for noise there is also the possibility to regularise for
specific contrast properties i.e. discontinuous transitions through the 1-norm in direct or total
variation regularisation in the CSI method.

7.1.1. Choice of method

With the advantages and disadvantages of the methods given, which method seems to be
most suitable for EPT? Both the first order differential and direct methods provide a very good
accuracy at high speed. Of these methods, the first order differential method is slightly more
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Method Speed Accuracy Robust Flexibility
(seconds) (normalised)

Helmholtz 0.0028 2.278 - -

First order diff. 0.0961 0.111 + -

CSI (1000 iterations)  43.5540 0.328 + +

Direct (50 iterations) 1.1649 0.258 + +

Deconvolution 0.0214 0.565 ++ -

Table 7.1: Quantitative and qualitative comparison between reconstruction methods. Accuracy is given in terms
of the error as defined in the results chapter and on the 2D data reconstruction.

elegant from a mathematical point of view, but ultimately the flexibility and robustness that
the direct method brings to the table makes it the most promising candidate of them all in my
opinion.

7.2. Concluding remarks

What are the main takeaways from this research? Besides giving insight into new inversion
methods, all of which have pros and cons, | believe the biggest takeaway is the approach to
inversion. Before elaborating on this let us take a look at the two major reconstruction methods
of this thesis.

First order differentiation provides a surprisingly robust, accurate and extremely fast way to
get insight into the data. And the direct reconstruction method provides an incredible range of
flexibility in its application, which has much potential for future research and implementation.

Finally, first order differentiation and direct reconstruction rely on as little assumptions in
regards to the EM fields and the contrast as possible. This means that the result should be
correct in a wide variety of cases and situations. Also, since they are based directly on the EM
formulations of Maxwell’s equation and scattering formalisms they are very insightful in regards
to how the data interacts, the coupling between conductivity and permittivity and rotation of
the field when measuring the By field.

The importance of this is further illustrated by the results on 3D simulated data, where
clearly, when the assumptions do not hold anymore errors and artefacts start to be introduced.

Especially if the goal is to reconstruct the electric properties accurately we cannot rely on
simulations and the measurements of permittivity and conductivity in deceased tissue to give
us a measure of accuracy, we need to know our inversion methods are accurate and rely on
the values they provide.

7.3. Future work

Research is never finished, but a masters’ thesis does come to an end. Therefore, unfortu-
nately there is much left to be said and done. A short list of points that have come up during
the work on this thesis is:

1. Three-dimensional: Rewrite these into 3D scattering formalisms and investigate possible
sources for error, and derive the 3D equations for all methods (and the ‘nabla Green’s’
function) and implement and test these.

2. Preconditioning: Investigate preconditioners for both contrast source inversion and the
direct method to increase convergence speed.

3. Regularisation: Investigate other forms of regularisation to improve the discontinuous
boundary reconstructions.
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4. Speed: Take a critical look at the (computational) implementation of the methods and
see if these can be improved upon.

5. True conductivity checks on larger data sets: more phantom measurements are nec-
essary over a range of conductivities, permittivities, but also dielectric phantoms that
contain a complex contrast (due to the coupling this might lead to).

6. Higher resolution: Look into applying these methods to 1mm or sub 1mm resolution
datasets and see if they still perform as well, how does speed scale for example?

7. Integrate the RF shield in Green’s operator.

These are the major areas, of which the three-dimensional extension of this work is indubitably
the mostimportant. | hope this thesis helps others getting a head start in this area and provides
a good overview of possibilities.



Nomenclature

The nomenclature used throughout the thesis is shown in table Table A.1.

Quantity Notation
Scalar a

Vector a

Matrix A
Lexicographical ordering a =vec(A)
Field quantity (vector) A

Field quantity (i-dim) A;

Matrix transpose AT

Matrix hermitian AH

Identity matrix (P x P) Ip

Complex conjugate a

Partial derivative to i 0;

Nabla operator V = [0y, 0y,0,]"
Real part R{a}

Imaginary part 3{}

Imaginary unit i?=-1
Frequency domain quantity a

Temporal Fourier transform f(xw) = F{f(x,t)}
Angular wave domain quantity a

Spatial Fourier transform
Inverse Fourier transform
Domain

Inner product on D
P-norm

Norm on L?(D)

Green’s function

Green’s operator

f,6) = P{f(x,0)
FH (e )} = f(x,0)

D orB

(f,9)p = R[[,cp FCOGx) AV]
I

I = (F. f)o

G()

60)

Table A.1: The nomenclature used in this document.
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Algorithms

In this appendix the different inversion algorithms are summarised.

B.1. Contrast source inversion
The CSI-EPT algorithm is reproduced here as it is describe in

[3] with regularisation.

Algorithm 1: CSI-EPT with regularisation

Data: B;, E? field
Result: Reconstructed contrast y and total field E,
[0]

1 compute initial contrast source wy ' and nonzero contrast y!°!:

2 forn=1to k do

3 Step 1: Update the contrast source;

4 begin

5 1. Compute the gradient of the objective function with respect to w,. at
w, = wi"H and y = yn-1;

6 2. Compute v[™ the Polak-Ribiére update direction;

7 3. Compute the step length al[™;

8 4. Determine the new contrast source wi™ = w1 + g1y

9 end

10 Step 2: Update the contrast function;

1 begin

12 1. Compute the preconditioned gradient of the objective function with respect to
x atw, = wi™ and y = yIn-1l;

13 2. Compute d!™ the Polak-Ribiére update direction;

14 3. Compute the step length ak*;

15 4. Determine the new contrast source y}'*! = "7 + ag("]vr["];

16 end

17 | if FI™ < user defined tolerance then

18 | return y, E,

19 else

20 | Continue

21 end

22 end

23 return y, E,
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B.1.1. Diagonalised CSI

In diagonalised CSI the contrast update step is foregone (steps 11-16) and instead a regular-
isation parameter n is updated every iteration as

—b
W[n] EZ

—|E1z°|2 (B.1)

1]

which is used in the algorithm. This is the only difference between the two methods.

B.2. Single step methods

All of the single step methods follow the same procedure, which can be found in Algorithm 2.
How the contrast-source is reconstructed, however, differs between the two, which is de-
scribed separately below.

Algorithm 2: Single-step algorithm procedure
Data: B;, E? field
Result: Reconstructed contrast y and total field E,
Require: Gg, Gp
1 w «— ComputeContrastSource (Bl+, Gg);
2 E, — E2 + Gp{w};
WE, .
2T g

4 return y,E,

B.2.1. Deconvolution

The deconvolution function to reconstruct the contrast-source can be found in Algorithm 3.

Algorithm 3: Deconvolution function to reconstruct the contrast-source

1 Function ComputeContrastSource (Bf,Gg) is /* algorithm to reconstruct
the contrast-source using the deconvolution method */
Data:
Bf: Measured B1 field
Gs: Greens operator to relate contrast source to B1 field (Generally GV will be used)
Result: w: contrast-source
Require: Apodisation matrix D, medium parameters ¢

2 Bf «— F{B{}; /* Take the Fourier transform */
3 B, «— DB{; /* Apply apodisation */
4 W(—Cg—‘;‘; /* Deconvolution */
5 w— F~Hw}; /* Inverse Fourier transform */
6 return w

7 end
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B.2.2. Minimum norm

The function to reconstruct the contrast-source through the minimum norm solution can be
found in Algorithm 4. In the next sections the minimisation algorithms are described.

Algorithm 4: Minimum norm method to reconstruct the contrast-source

1 Function ComputeContrastSource (Bf,Gg) is /* algorithm to reconstruct
the contrast-source using the minimum norm method */

Data:

B;f: Measured B1 field

Gs: Greens operator to relate contrast source to B1 field (Generally GV will be used)
Result: w: contrast-source

2 switch p, type of norm do

3 casep =2do

4 | W LSOR (Gg{West} — Bi)
5 end

6 casep =1do

7 | W« IRLS (Gs{West} — BY)
8 end

9 end

10 return w

end

-
-

B.2.3. Norm minimisation algorithms

Two different algorithms are used to find the least squares solution. First, for the £, norm the
LSQR is used, this is also used to solve the least squares problem posed in the IRLS algorithm
which iterates over this to solve for the £; norm.

LSQR
Algorithm 5: LSQR Algorithm
1 Function IRLS is
2 1. Initialise;
3 for i=1,2,3,... do
4 2. Continue the bidiagonalisation;
5 3. Construct and apply next orthogonal transformation;
6 4. Construct and apply next orthogonal transformation;
7 5. Update x, w;
8 6. Test for convergence;
9 if Converged then
10 | exit;
1 else
12 | Continue;
13 end
14 end

15 end
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IRLS

Algorithm 6: IRLS Algorithm

1 Function IRLS is

2 for k=1,2,3,... do

3 ) = (b — Ax®);;

4 Dy = diag((In"®=272);

5 Solve §x® from ming, ||Dp(r™ — Ax®)||,;
6

7

8

x(k+1) = x(k) + 5x(k)’

end
end




Matlab

In this chapter a number of Matlab® implementations of algorithms and operators are described
to improve reproducibility of this research.

C.1. Operators

C.1.1. Weak Green’s operator
To use the Green’s operator in 2D (and 3D) it needs to be weakened because of its logarithmic
singularity. To do this the weak Green’s function is introduced as

1
GV(x) = ——3 - G(x—x')d4, (C.1)

Where D' is the domain of a circle with radius a centred at the origin (where the original
singularity lies). Following [12] this yields the following equations for x outside of the singularity
(non-self patch elements)

6¥ () = g1y HE eyl €2

and inside the (previously) singular region (self patch elements)

j

Zera |10 Ul =

G¥(0) = —

thyal (€3)

Here k, is the wavenumber, a the radius of the circular disk used to circumvent the singularity,
J. and ng) Bessel functions and x the grid points the Green’s operator is defined on. To
generate the numerical form of this is fairly straightforward with a coordinate mesh generated
with for example meshgrid and then using the besselj and besselh commands for the Bessel
functions.

C.1.2. ‘Nabla Green’s’ operator

The nabla Green’s operator as it was found in Equation (4.4) is equally straightforward to
implement as the weak Green’s operator. Care must be taken that the right bessel functions
are used, but besides that there is little difficulty in this.
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C.1.3. ‘Rotation’ operator
The rotation operation is the combination of a single partial differentiation in the x dimension
and a single partial differentiation in the y dimension multiplied by the imaginary unit j.

This can be done in one matrix multiplication by making a differencing matrix as described
in [12]. The operator in this case will look like

‘Rotation’ = c[(Y @ Rip) +j(R, ® TX)], (C.4)

where c is a scaling operator based on the mesh size and medium parameters. In Matlab®
the differencing matrices X and Y can be constructed using the spdiags function, and the
Kronecker product is implemented in the kron function.

C.2. Functions
A number of functions is used to calculate both the action of the operators on fields as well as
do the minimisations required for certain algorithms.

C.2.1. Vector potential

The action of the Green’s operators on vector fields can be calculated using FFTs. This is
a very powerful and fast way to calculate the convolutions. In Matlab® | have implemented
these with the operators already in the Fourier domain, so that this operation does not need
to be performed every time. This is useful since in the iterative schemes this operation will
be calculated at least once for every iteration. The rest is fairly straightforward, an example is
presented in Listing 4.1.

Listing C.1: Green'’s function

function field = greensFun(operator, source)
% compute dimensions
dim = size(source); fftDim = size(operator);
% pad input for FFT
source = padarray(source, fftDim—dim, 'post’);
% perform discrete convolution using FFT
field = ifft2(operator .* fft2(source));
% reshape output
field = field (1:dim(1),1:dim(2));

end

C.2.2. Least squares functions

The core of the direct algorithm centers on minimising a least squares problem. In Matlab®
this was done using the LSQR algorithm [11]. A number of difficulties arise in doing this.

First of all, the input (and output) of the function to be minimised must be vectors. We can
use lexicographic ordering on the 2D field or contrast matrix to make vectors out of these.

Then, LSQR requires the adjoint of the function that is minimised over. If this were a simple
vector this would be easy, unfortunately, we are dealing with a convolution using FFTs.

To remedy this problem one needs to define a transpose operation of the circular decon-
volution. Numerically speaking this means the time-reversed complex conjugated shifted by
one kernel. When using the normal ‘weak’ Green’s operator simply taking the hermitian is
sufficient. However, when dealing with the ‘nabla Green’s operator this must be taken into
account. One way to do that is use the rot90 operator. A more thorough explanation of this
can be found in [].
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C.3. Data formats

While working with all these different schemes and methods | found it very useful to think about
the input (and output) data formats so that all of them could be used with the same inputs and
the plotting routines would work with the same results.

There are two major ways to deal with large combined data objects in Matlab®. The first
would be cell arrays (or structs). Structures are basically cell arrays with named cells, these
provide more insight into the data contained within them by being descriptive. The second are
classes.

Before going into classes let me explain why | think these data objects are important. For
example, when reading data in, you will have a matrix of (complex) field measurements. For
this measurement you also have a mesh size or resolution (a X b mm), and an overal size
(which can be derived from the matrix size of course). You may also want to combine this with
a mask for the data in the case of simulations, as in a real scanner you do not have access
to data outside the object. And when using EM based inversion methods you also need a
simulation or measurement of the incident or background field.

All of these matrices and values are related in a single measurement. Therefore it makes
sense to store them together. This way there is no confusion as to which variable belongs to
which measurement.

Storing them in structs means you can use the dot notation to call on different parameters
as data.measuredField = b1+ and data.deltax = dx for example. This way both the mesh size
in the x direction and the field are contained in the data variable (this can be extended to
contain all important parameters of course).

Now structs are nice since they are easy to implement, but taking this one step further is
also interesting. Making an MRI-data class for example would mean that you could implement
automatic display calls to not display the full matrix but only relevant parameters, ease plotting
routines by overloading standard Matlab® operators and automatically add certain parameters
such as size, without explicitly calling this command on the field size.

Of course implementing a class is much more work, but when dealing with a lot of different
datasets | would suggest it as a possibility. Setting it up is a one time investment, and after
that it should make a lot of operations easier (even the reconstruction methods).






Discretisation

To be able to apply the inversion methods that are described in this thesis on real data, both
the methods as well as the computational domain need to be discretised. After this it becomes
possible to numerically apply the methods and approximate the analytic relations describing
them. To carry out this discretisation procedure first the geometry of the problem will be dis-
cretised, and after this the operators and equations are discretised.

The discretisation will only be described in brief, but a lot of reference material can easily
be found when a more in depth discussion is needed. Much of the discretisation will be based
on [12, 21], in which also more literature on this subject can be found.

D.1. Discretising of the geometry

The geometry will be discretised using a vertex centred uniform grid. Uniform means that the
x- and y- step sizes are equal and will be denoted with h = Ax = Ay. The grid size h will
be equal to the resolution of the measurement (or model in the simulations). Vertex centred
means that the position of the unknowns (and in this case also the measurements) is on the
vertices of the grid.

One last note on the grid is that the origin is chosen at the top left, with the x-axis increasing
to the right and the y-axis increasing towards the bottom of the grid. This is the same as
horizontally flipping a regular cartesian grid and is done due to the nature of the imagesc
command in Matlab®which orders the (gridded) values of a matrix in this way. This way the
grid corresponds with the images shown in this thesis.

A schematic representation of this can be found in Figure D.1.

Sometimes these gridded variables are used as a vector variable. In these cases an x-
lexicographical notation is used. To denote the ‘vectorisation’ of a variable the operator vec is
used as notation. Given matrix A

a1 Q21 0 AN
a a cee a
A= 12 2z N2 (D.1)
aim QM ° ANM
this results in r
VeC(A) = [al’l, A1, AN 1,12, ) AN—1, M) aN'M] . (D2)

D.2. Discretising of the operators
There are two main components that need to be discretised. These are the Green’s oper-
ator (or nabla-Green’s) and the finite differencing that needs to be performed. Most of the

51



52 D. Discretisation

i= i=N—-1l=Nx
j=Tle *—
j=2
j=3
Ay
j=M-1¢—e+ @ ———-———-——-
j=M I —e
I L ) = (N, M)
y

Figure D.1: Uniform vertex centred mesh as used in this thesis. N and M are the x and y sizes respectively, h is
the grid size.

derivations in this section are based directly on [12].

D.2.1. Green’s operator
We start with the analytic vector potential of Equation (2.35) repeated here for convenience

AX) = cf Gx—-xHyxHEX)AV. (D.3)
x'eR2

Here c is a constant depending on the medium parameters. Since there is a grid of vari-

ables and these aren’t known continuously the right-hand side of above equation is used to

approximate A at the grid nodes through position vector x = x; ; as

A(x;j) = cf G(x;j —x)yxHEE)AV. (D.4)
x'eR?
Assuming y is piecewise constant within each discretisation cell allows to write
XX) =xmn TXESy,, (D.5)

where x, ,, is position independent, and S, , is used to denote the area of the discretisation
cell centred on (x,y) = (m,n). This leads to

M N
A(xj) = Z z CXmn L'E]RZ G(x;j —x)EX')dAV. (D.6)

n=1m=1

Now, to approximate the integral over the discretisation cells the midpoint rule is used to arrive
at

M N
A;j) = chrdy Y G(ij — Emn)XmnE Gmn)- (0.7)

n=1m=1
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Note that the sum ranges from n = [1,...,N] and m = [1, ..., M]. Via two-dimensional FFTs
Equation (D.7) can be evaluated very efficiently.
To do this the contrast vector ¢ and matrix C are introduced as

c=vec(ymn) and C =diag(c). (D.8)

In addition the Green'’s operator is discretised by introducing the matrix G, ;, form,i =1, ..., N,
of order M with elements
(6ma),, = AxByG Qi =), (D.9)

forj,n =1, ..., M. This concludes the discretisation of the operators and equations needed for
the single-step methods.

D.2.2. Differencing operator
For differencing a central differencing scheme is used

A —A _
axAz|x=xm‘n ~ z(xm+1,n)28x z(xm 1,n). (D.10)

This discretised equation can easily be implemented numerically in a differencing matrix. To
create such a matrix in for example Matlab® the spdiags command may be used as

e
T

ones(n,1);
1/(2*dx)*spdiags([—e e], [-1 1], n, n);

where T is the differencing matrix which is expanded for the two-dimensional case (d, and d,,)
using tensor products. These can be implemented in Matlab®with Kronecker products with
the kron(A,B) command. The full operator then becomes (discretised)

ay +j0, =D =(TQRIy)+jlIy ®T) (D.11)

Where 1 is an identity matrix of dimension d. To apply this operation on the measured field, the
field has to be vectorised (again with x-lexicographic ordering). This means that discretising
PB; becomes

PBf = D - vec(B), (D.12)

where medium parameters and other scaling constants (e.g. due to cell size) are obviously
taken into account in the D operator.







Comparison of different norm
reconstructions using the direct method

To compare the influence of a changed norm two reconstructions of a 1mm pixel sized Ella
model have been computed. One of these is computed using the £, norm LSQR approach,
and the other using the ¢, norm IRLS approach. The first can be found in Figure E.2a and
the second in Figure E.2b. To further illustrate the difference between the two the difference
is displayed in Figure E.2c. The reconstructions presented here were calculated in 5 minutes
for the LSQR (¢,) method and roughly 7 hours for the IRLS (¢,) method.

A more in detail image can be seen in Figure E.1. Here the influence of the £; norm at the
boundary can be observed. Especially the high contrast on the right is smoother due to the
properties of the £; minimisation.
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Figure E.1: Comparison of £, and £, reconstructions using the direct method on a 1mm pixel sized Ella model.
This is just a zoomed in version of the reconstructions found in Figure E.2
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Figure E.2: Comparison of #; and £, reconstructions using the direct method on a 1mm pixel sized Ella model.
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Phantom reconstructions

Measurements on phantoms have been used to see whether and how well the conductivity can
be reconstructed. Unfortunately, the measurements on these phantoms were made some time
ago in an older MRI scanner. This means that there is more noise on these datasets than on
the in-vivo measurements, and due to an offset between amplitude and phase measurements
(introduced by a software bug that has since been fixed) the data need to be slightly altered
to be combined, further convoluting the measurement.

Nevertheless, these datasets have been treated with the same methods as described in
the rest of this thesis, and the results of these reconstructions are presented here.

Since the background field is very weak in the interior of the phantoms, and this results in
a bad reconstruction when using certain methods, a selection of the interior of the phantom
is used to calculate the conductivity value instead of the whole interior. The red lines in Fig-
ure F.1 are used to indicate the area (between the red lines) used to average over to find the
conductivity value for the phantom.

The graphed results for the reconstructed conductivity versus the actual conductivity can be
found in Figure F.3. Scaling has been applied to the results to match the original conductivity.
This scaling is uniform, the results were multiplied with a scalar.
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Figure F.3: Reconstructed conductivity values for three different methods. Error bars are equal to one standard
deviation.



Glossary

apodisation Is an optical filtering technique, and its literal translation is "removing the foot”.
It is the technical term for changing the shape of a mathematical function, an electrical
signal, an optical transmission or a mechanical structure. In optics, it is primarily used to
remove Airy disks caused by diffraction around an intensity peak, improving the focus.
iii, 11, 12, 38

CSI Contrast Source Inversion, a wave field inversion method that iteratively minimises a cost
functional. iii, 10, 18, 21, 22, 37, 44

EM Electromagnetic is a type of physical interaction that occurs between electrically charged
particles. 1, 3, 6, 33, 39

EP Electrical properties are the conductivity o, permittivity e, and permeability u. 2

EPT Electrical properties tomography is an imaging modality to reconstruct the electric con-
ductivity and permittivity inside the human body based on By maps. iii, 1, 2, 13, 37,
38

hyperthermia A method of treating diseased tissue by heating it up through for example elec-
tromagnetic radiation. 2, 33

in vivo Studies that are in vivo are those in which the effects of various biological entities
are tested on whole, living organisms usually animals including humans, and plants as
opposed to a partial or dead organism, or those done in vitro ("within the glass”), i.e., in
a laboratory environment using test tubes, petri dishes. iii, 17, 18, 32

MRI Magnetic resonance imaging is an imaging system used to measure the magnetic field
inside the human body using the magnetic resonance of tissue. iii, v, 1, 3-6, 8, 20, 27,
28, 33, 37

phantom An artificial contrast source with known electric properties used to test MRI scan-
ners. 17, 18, 21, 59

preconditioning Is the application of a transformation, called the preconditioner, that condi-
tions a given problem into a form that is more suitable for numerical solving methods.
Preconditioning is typically related to reducing a condition number of the problem. iii

regularisation In mathematics and statistics and particularly in the fields of machine learning
and inverse problems, refers to a process of introducing additional information in order
to solve an ill-posed problem or to prevent overfitting. iii, 12, 38, 39

RF Radio frequencies are frequencies inside the specific radiofrequency bandwidth. 4

SAR Specific absorption rate is a measure for how much energy is being dissipated inside
tissue based on the field applied to it. 2
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