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Abstract
Stiffened shells and plates are widely used in engineering, but their performance is highly influenced by
the arrangement, or layout, of stiffeners on the base shell or plate and the geometric features, or topol
ogy, of these stiffeners. Moreover, structures with modules are beneficial, since it allows for increased
quality control and more accessible mass production. The aim of this work is to develop a method
that simultaneously optimizes the topology of the modular stiffeners and their layout on a base shell
or plate. This is accomplished by introducing a fixed number of module stiffeners which are subject
to density based topology optimization and a mapping of these modules to a ground structure of stiff
eners. To illustrate potential applications, several stiffened plates and shell examples are presented.
After optimization, these examples were converted to threedimensional physical structures using ad
ditive manufacturing. All examples demonstrated that the proposed method is able to generate clear
topologies for any number of modules and a distinct layout on the base.
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1
Introduction

Stiffened shells are widely used in engineering constructions because of their high load carrying ca
pacity and lightweight properties. Typical applications can be found in bridge constructions, buildings,
storage tanks, ship hulls, offshore structures and airplane wings [3]. Due to their thinwalled features,
these structures are usually sensitive to outofplane loadings, imperfections, vibrations and buckling
[20]. Such responses are influenced by the geometric proportions, called topology, of the stiffeners and
base shell [2], and the location or layout of the stiffeners on the base shell [15]. Changing the thickness
of the base shell from point to point as well as the topology of every stiffener, is often infeasible due
to manufacturing difficulties and high costs [4, 13]. Moreover, every unique component has to be pro
duced and qualified apiece. Thus, the tendency in industry is towards designing structures with fewer
components, since it allows increased and cheaper quality control, better accessible mass production
and therewith reduction of costs [8]. This reuse of components is called modularity, where a module is
defined as a component with particular geometric features, that can be repeatedly used in the design
domain. Illustrations of possible layouts of the stiffeners on the plate or shell and the topologies of the
stiffener modules, are shown in Figure 1.1.

(a) Two possible layouts for the stiffeners on the
base shell.

(b) For the layouts as shown in (a) the topologies of
the used stiffener modules are illustrated.

Figure 1.1: An illustration of two stiffener layouts in (a), and the topologies of the stiffener modules used for these layouts in (b).

The complexity of the above design problem make the result highly dependent on the experience of
the designer, which restricts the generation of innovative designs and cannot effectively save materials.
Thus optimization is a powerful tool to assist designers. A structural optimization problem contains
[16]: the recognition of a criterion, called the objective and a technical statement of the problem. In this
problem definition, the design variables are identified. Also constraints are stated, which assure that
the design is valid. The problem definition leads to the creation of one or more physical structures which
is/are analyzed by using a mechanical finite element model. The model can be used to predict the effect
of changes in the design variables on the objective, called sensitivities. This information is used in the
selection of the best alternative design, which is called the optimization. The process can be validated
by testing the prototype against the original criterion. Structural optimization includes size, shape and
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2 1. Introduction

topology optimization, as illustrated in Figure 1.2. In sizing optimization an initial structure is assumed
and the sizes of this structure are optimized. An example of a discrete truss sizing optimization is
illustrated in Figure 1.2a. In shape optimization a fixed number of topological properties is assumed,
such as a fixed number of holes, and their shape is optimized, see Figure 1.2b. In topology optimization,
an initial design domain is assumed and within this domain a structure is formed by the adding and
removal of material, see Figure 1.2c. In order to achieve a design with regard to the optimal layout and
topology of stiffeners, topology optimization will be adopted.

(a) In sizing optimization, the sizes of structures are optimized.

(b) In shape optimization, a fixed number of topological properties is as
sumed, in this case a fixed number of holes, and their shape is optimized.

(c) In topology optimization, an initial design domain is assumed. Within this
design domain a structure is formed by the adding and removal of material.

Figure 1.2: Three types of structural optimization are illustrated, sizing (a), shape (b) and topology optimization (c).

The basic idea of topology optimization is the removal and addition of material in a continua. Due to
the finite element modelling, the design variables within topology optimization are typically a material
density 𝜌 per finite element 𝑒, 𝜌𝑒. An illustration is given in Figure 1.3. During the optimization, the
density value is used to interpolate the Young’s Modulus and therefore the stiffness of the finite element.
A density around zero is therefore corresponding to the absence of the material, called void, while a
density equal to 1 denotes the presence of the material. A relevant objective function in academic
research is the compliance, a measurement for the overall stiffness, under a constraint of occupying a
maximum amount of material [7]. Therefore, this approach is also considered in this work. However, it
should be noted that different objective functions, are also possible.

(a) Illustrated is the initial condition of a material
density based optimization of a stiffener module.
The finite elements of a stiffener module are as
signed with a material density per element 𝜌𝑒.

(b) A typical topology optimization result is shown.
If the material density of an element is assigned the
value 1, the material should be present, if the value
is around 0, thematerial should be absent. As such,
different topologies can arise.

Figure 1.3: Density based topology optimization is illustrated in two parts. The initialization is illustrated in (a), and a typical
optimization result in (b).

A detailed literature review is performed in Section 3.1, therefore only the conclusions are briefly
stated here. The stateoftheart for the topology optimization of stiffeners on shells mainly focuses
on two separate aspects. First aspect is the optimal layout for stiffeners on the base shell or shell. In
this field of research, the optimization is focusing on the best location of the stiffeners, as illustrated in
Figure 1.1a. Second, is the optimal topology of the individual stiffeners. Within this aspect, the layout
of the stiffeners is assumed to be fixed, and the individual topologies of the stiffeners are optimized,
for example using the density based method as illustrated in Figure 1.3. An illustration of a possible
stiffener topology that results from this optimization is given in Figure 1.3b. The current stateoftheart
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of modularity in topology optimization is limited to structures that consist out of discrete trusses or two
dimensional (2D) continua. Since previous work explores the aspects of optimizing (i) the layout, (ii)
topologies of the stiffeners and (iii) modularity separately. The aim of this work is to develop a method
that simultaneously optimizes both the modular stiffeners topology and their layout on a base shell or
plate.

The proposed method relies on the combination and extension of two existing methods: a ground
structure combined with the topology optimization framework for 2D continuum modular structures [8].
The present work will focus on maximizing the overall stiffness of the structure, stated as minimizing the
compliance, while subject to a prescribed volume. However, it is emphasized that the proposed method
can easily be extended to other settings. The main idea will be described on the basis of a simple
example, consisting of a plate with stiffeners, see Figure 1.4. On the base plate, a ground structure of
stiffeners is placed. For this example, the ground structure is generated by specifying a uniform grid on
the base plate. In this example, a ground structure for the stiffeners has been presented consisting of
two stiffener types, see Figure 1.4a. The aim of the proposed method is to specify a fixed, but limited,
number of modules within these stiffener types and to find their optimal topology. The topologies of
these modules can range from empty, called void, to fully present. These modules can be repeatedly
used in the ground structure. The layout of the modules in the ground structure is simultaneously
optimized with the topologies. As such, a layout in the ground structure arises which only consists of
a limited number of modules. An example is provided in Figure 1.4b, here the design only consists of
two modules within each stiffener type.

(a) On top of a base shell a ground structure of stiff
eners is generated. This ground structure consist
out of two types of stiffeners which can be distin
guished by their type letter and color

(b) The proposed method aims to find the optimal
topologies of a fixed number of module stiffeners
for every type of stiffener. These modules can be
repeatedly used in the ground structure. As such,
a layout in the ground structure arises which only
consists of the specified modules.

Figure 1.4: The main idea of the proposed method explained in two parts. In (a), an initial ground structure is presented, which
is the basis for the optimization. A typical result is shown in (b).

The method is applied to several numerical examples such as stiffened plates and a more practical
stiffened shell fuselage. It is shown to be able to converge to module template topologies with a clear
layout in the ground structure and distinct solid/void boundaries. Successively, a method is developed
to convert the numerical examples to physical structures using additive manufacturing (3D printing).
The resulting methods of this work results in a design tool that can be utilized in the conceptualdesign
phase of the design of structures with stiffeners. Moreover, the resulting conversion method allows for
3D printing of topology optimized results.

The remainder of this thesis report is set up as follows. In Chapter 2, the aspects of design opti
mization problems are introduced. Since the work presented here is to be submitted for publication,
the report is written around a paper manuscript. Therefore, the contents of this chapter mainly focus
on aspects which are assumed to be known by readers of the journal of Structural and Multidisciplinary
Optimization and therefore not included in the paper. In Chapter 3, the manuscript of the paper is en
closed. In Section 3.1, the introduction including a literature review is given. The detailed description
of the proposed method is provided in Section 3.2. The method is applied to several numerical exam
ples, such as stiffened plates and shells in Section 3.3. In Section 3.4, the conclusions are drawn and
recommendations regarding the method and examples presented in the paper are given. In Chapter 4,
a workflow is presented to convert the optimization results of the examples, as retrieved in the pa
per, to physical structures using 3D printing. Finally, the conclusions are drawn and recommendations
regarding the entire thesis project are given in Chapter 5.





2
Aspects of design optimization

The aspects of a design optimization problem were mentioned in Chapter 1 and can be summarized
by the definition “the selection of the ‘best’ design within the available means” [16]. In order to quantify
this for the case of shells with stiffeners, the following four questions have to be answered [1, 12]:

1. How can designs be described?
2. What are the available means?
3. Which objective, as a function of the design variables, is minimized to retrieve the ‘best’ design?
4. How to determine a set of design variables, which minimizes the objective while satisfying all the

constraints?

As mentioned in Chapter 1, this chapter mainly provides the aspects that are not provided in the en
closed paper. For the first question, a general problem formulation to describe an optimization problem
is introduced in Section 2.1. Within the available means, only the designs that are within the limitations
imposed by physical laws, available volume, and compatibility with the geometric constraints are called
feasible designs [1]. These limitations of the problem are called constraints and are introduced in the
paper in Section 3.2. The objectives and design constraints are implemented in a finite element model.
This model is evaluating the physical laws and the objective and constraint values are obtained. Veri
fication of the modelling for stiffeners on shells using the finite element method is discussed in Section
2.2. In order for the optimizer to generate a new design, sensitivities of the objective and constraints
with respect to the design variables are retrieved. A part of the sensitivity analysis is described in
Section 2.3.

2.1. Problem formulation
The design optimization problem can be stated mathematically in terms of the design variables [16].
The design variables represent a subset of ranges of real values or types, such as integers. In design
optimization, these variables are part of the 𝑛 dimensional sized real space, ℝ𝑛. The design variables
can be written in a vector as x = (𝑥1, 𝑥2, …, 𝑥𝑛)𝑇 and form a subset 𝜒 of the 𝑛 sized dimensional real
space, ℝ𝑛. This can be mathematically stated as x ∈ 𝜒 ⊆ ℝ𝑛. The objective is a function of the design
variables and can therefore be written as 𝑓(x). The constraints can also be functional relations of the
design variables. A distinction in two types of constraints can be made, namely equality and inequality
constraints. These are denoted as h(x) = 0 and g(x) ≤ 0, where the less and equal to, operates
on every component. This leads to a general mathematical statement to represent the optimization
problem, the socalled negative null form:

min
x

𝑓(x)

subject to (s.t.) h(x) = 0
g(x) ≤ 0
x ∈ 𝜒 ⊆ ℝ𝑛

. (2.1)

5



6 2. Aspects of design optimization

This general optimization problem statement is further specified in the paper in Section 3.2. Here
the design variables are specified, along with the compliance objective function, the volume inequality
constraint and the equality finite element equilibrium and mapping constraints.

2.2. Verification of the finite element analysis
In this thesis, the optimization of designs is performed using mathematical modelling. The accuracy of
the modelling of the physics depends on the information contained in this mathematical model. Since
a structure with stiffeners on shell is threedimensional (3D), the best model to use in terms of accu
racy would be the continuum theory. Analytical solutions for these kind of problems however are not
available [5]. Therefore, this theory is discretized, leading to threedimensional solid finite elements. A
model consisting of such elements can be an excellent replica of the real structure, provided that the
finite element of the mesh are fine enough. However, in thinwalled problems, the use of solid finite
elements will lead to unnecessary many degrees of freedom and will therefore be computationally ex
pensive [5]. Therefore, in the tradeoff between accuracy and computational expenses for stiffeners
on a shell, degrees of freedoms can be removed, which will lead to shell finite elements. These will
therefore be used in this work. The shell finite element used is a triangular 3 node with 12 degrees
of freedom [19]. These degrees of freedom are the translations of the nodes and the rotations about
the sides of the element. The use of this element is advantageous for the use of stiffened plates and
shells, since translations and rotations between the stiffener and base shell are properly transferred.
An illustration is provided in Figure 2.1. The finite element analysis is based on an inhouse code, called
Charles. The majority of this finite element analysis is written in the programming language Pascal.

Figure 2.1: A detailed view of the finite element mesh at the connection between the stiffener and the base shell. The degrees of
freedom of the triangular element are the translations of the nodes and the rotations about the sides of the element. Therefore,
translations and rotations between the stiffener and base shell are properly transferred.

In order to verify that a model in Charles consisting of shell finite elements properly represents the
physics, a comparison with experimental data, an analytical model or a model consisting of fine enough
three dimensional solid or shell elements can be made. A mesh convergence study is performed, to
determine the minimum refinement that provides a numerical result with sufficient accuracy [6]. In this
work, a problem of a nonstiffened shell finite element model will be compared with an analytical model
and a finite element model based on commercial software in Section 2.2.1. The case of a stiffened
shell finite element model will be compared with another reference finite element model and a model
based on commercial software in Section 2.2.2.

2.2.1. Nonstiffened shell
The geometry, boundary conditions and loadings for the nonstiffened shell are shown in Figure 2.2.
The corresponding parameters and material properties are given in Table 2.1. A comparison with the
analytical theory of plates and shells [18] and a model based on the Shell181 element in ANSYS is
made [9]. The ANSYS model is written in the ANSYS APDL language along with the input for Charles
in order to be reproducible and added to Appendix B.1. The results for the deflection of the center of
the shell (𝑤) for increasing number of finite elements per length are presented in Figure 2.3 along with
the results obtained by the references.
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Figure 2.2: Geometry, loading and boundary conditions are given for the nonstiffened shell. The values of the parameters are
stated in Table 2.1

Table 2.1: Parameters as used in the verification of the nonstiffened shell in Figure 2.2 and the stiffened shell finite element
model as shown in Figure 2.4.

Parameter Description Value Unit

𝑎 Width base shell 25.4 mm
𝑡 Thickness base shell 0.254 mm
𝑝1 Pressure load 6894.76 Pa
𝐸0 Young’s modulus nonstiffened shell 117.21 GPa
𝜈 Poisson ratio nonstiffened shell 0.3 
𝑏 Width base shell 1524 mm
𝑐 Length base shell 762 mm
𝑑 Thickness base shell 6.35 mm
𝑒 Height stiffener 127 mm
𝑓 Thickness stiffeners 12.7 mm
𝑔 Height stiffener 76.2 mm
𝐹 Concentrated force 4.448 kN
𝑝2 Pressure load 68947.57 Pa
𝐸0 Young’s modulus stiffened shell 203.84 GPa
𝜈 Poisson ratio stiffened shell 0.3 

0.5 1 1.5 2 2.5 3 3.5 4
Number of finite elements [#] 104

6.6

6.65

6.7

w
 [m

]

10-5 Displacement of the center of the base shell

Present work
ANSYS (Shell181)
Timoshenko (Analytical)

Figure 2.3: Results of the mesh convergence study for the nonstiffened shell as shown in Figure 2.2. The shell finite elements
in this work [19] are compared with an analytical model [18] and commercial Shell181 finite elements in ANSYS [9].

From Figure 2.3, it can be concluded that the values of the deflection of the center of the shell for
the present work and the ANSYS model, converge very close to the ones by the analytical reference
[17]. The present work differences 0.13% and ANSYS 0.75% when compared with the results of [17].
Detailed results can be found in Appendix B.1. Therefore, it is stated that both models have been
properly verified for the use on thin shells for a sufficiently fine mesh.
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2.2.2. Stiffened shell
Similar to the nonstiffened shell, the stiffened shell was verified by comparing the values of the central
deflection. However, in this case no analytical solution is known, therefore the results are compared
to a reference paper with ANSYS Shell93 finite elements [6] and again by an ANSYS model based on
the Shell181 finite elements [9]. In this case, the stiffened shell considered is shown in Figure 2.4 and
the parameters used are given in Table 2.1. Again, the ANSYS model is written in the ANSYS APDL
language along with the input for Charles in order to be reproducible and added to Appendix B.2.

Figure 2.4: Geometry, loading and boundary conditions are given for the stiffened shell. The values of the parameters are given
in Table 2.1.
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Figure 2.5: Results of the mesh convergence study for the stiffened shell as shown in Figure 2.4. The shell finite elements in this
work [19] are compared with a reference paper using commercial Shell93 finite elements in ANSYS [6] and commercial Shell181
finite elements in ANSYS [9].

From Figure 2.5, it can be concluded that the values of the deflection of the center of the shell for
the present work and the ANSYS model, converge very close to the ones by the numerical reference
[6]. The present work, excluding the first value, differences on average 2.4% and ANSYS 1.1%, when
compared with the results of [6]. The detailed results can be found in Appendix B.2. Therefore, it is
stated that both models have been properly verified for the use on stiffened shells for a sufficiently fine
mesh.

The shell finite element analysis in Charles is verified for the use on problems representing stiffeners
on shells. The implications for the use of the finite element analysis along with the density based
optimization are given in the paper in Section 3.2.4.
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2.3. Sensitivity analysis
In order to improve the design, sensitivity information is retrieved from the finite element analysis. This
information is used by the gradient based optimizer to generate a new set of design variables. In the
case of density based optimization, a lot of design variables are involved and only a few responses
in terms of objectives and constraints. Therefore, the adjoint method to calculate the sensitivities is
attractive to use [14]. Moreover, as explained at the end of this section, the adjoint method has some
advantages in terms of computational efforts. This section will focus on the derivation of the adjoint
sensitivity of the objective function with respect to the material density, since the derivation is not pre
sented in the paper. More details on the sensitivity analysis are provided in Section 3.2.8 of the paper.

The objective function was already introduced as the compliance, 𝑐 along with the material density
(𝜌). Since the modelling is finite element based, the material density 𝜌𝑒 is a value per finite element 𝑒.
The compliance is a function of the material densities and is defined as:

𝑐(𝜌𝑒) = f(𝜌𝑒)Tu, (2.2)

where u is the global nodal degrees of freedom vector and f(𝜌𝑒) the external nodal loads of the finite
element analysis. The finite element equilibrium equation is added with Lagrange multiplier λλλ

ℒ = f(𝜌𝑒)Tu+λλλT(f(𝜌𝑒) −K(𝜌𝑒))u), (2.3)

whereK is the global stiffness matrix, which is a function of the element material densities. More details
on this dependency are provided in Section 3.2.2.

The Lagrangian is differentiated with respect to the material density:

𝜕𝑐
𝜕𝜌𝑒

= 𝜕ℒ
𝜕𝜌𝑒

= 𝜕
𝜕𝜌𝑒

[f(𝜌𝑒)Tu+λλλTf(𝜌𝑒) − λλλTK(𝜌𝑒)u] = 0. (2.4)

After the differentiation and reordering, the following expression is obtained:

𝜕𝑐
𝜕𝜌𝑒

= 𝜕ℒ
𝜕𝜌𝑒

= [f(𝜌𝑒)T −λλλTK(𝜌𝑒)]
𝜕u
𝜕𝜌𝑒

−λλλT 𝜕K(𝜌𝑒)𝜕𝜌𝑒
u+ 𝜕λλλ

𝜕𝜌𝑒
[f(𝜌𝑒) −K(𝜌𝑒)u] = 0. (2.5)

To avoid the computation of the derivatives of the nodal degrees of freedom with respect to every
material density 𝜕u

𝜕𝜌𝑒
, we choose λλλ such that this term vanishes:

f(𝜌𝑒)T −λλλTK(𝜌𝑒) = 0. (2.6)

Which reduces to the finite element equilibrium equation if:

λλλ = u. (2.7)

If the result of (2.7) is substituted in (2.5), and it is recognized that the finite element equilibrium equals
0, this results in:

𝜕𝑐
𝜕𝜌𝑒

= 𝜕ℒ
𝜕𝜌𝑒

= −uT 𝜕K(𝜌𝑒)
𝜕𝜌𝑒

u. (2.8)

The resulting adjoint compliance sensitivities are depending on the global nodal degrees of freedom
vectoru, and the global stiffnessmatrixK, Both are known after the finite element analysis and therefore
these sensitivities can be retrieved relatively easy in terms of computational efforts.

In this work, the sensitivities of the compliance and volume with respect to the material density were
already implemented in Charles and checked. For the other sensitivities as presented in the paper,
the values of the sensitivities were checked after implementation. Details on the implementation are
provided in Appendix A.
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Paper: Simultaneous optimization of the

topology and the layout of modular
stiffeners on shells and plates

In this chapter, the manuscript of the research paper on the topic of: ‘Simultaneous optimization of
the topology and the layout of modular stiffeners on shells and plates’, is presented. The manuscript
will be submitted to the journal Structural and Multidisciplinary Optimization. An introduction with a
literature review is given, which results in the gap as already stated in the introduction of this thesis:
until the moment of writing, to the best of the authors knowledge, no research has been published
regarding simultaneous optimization of both the stiffener layout and the topology of the stiffener. In order
to accomplish this, a topology optimization approach using modularity, based on a ground structure,
is proposed. The methodology is applied to several stiffened plates and a stiffened shell example.
The presented stiffened shell is a practical example, representing the fuselage of an airplane. Finally,
conclusions are drawn and recommendations are given.
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1 Introduction

Stiffened shells are used widely in, for example, ship
hulls, airplane wings and bridge constructions. This is
because of their high load carrying capacity and light-
weight properties. However, due to their thin-walled
features, these structures are usually sensitive to out-of-
plane loadings, imperfections, vibrations and buckling.
Such responses are influenced by the geometric propor-
tions of the stiffeners and base shell, and the layout of
the stiffeners on the base shell [4]. However, changing
the geometric features, such as the thickness of the base
shell as well as every individual stiffener from point to
point, is often infeasible due to manufacturing difficul-
ties and high costs [9,27]. Moreover, every unique com-
ponent has to be produced and qualified apiece. Thus,
the tendency in industry is towards designing structures
with fewer components, since it allows for increased and
cheaper quality control, more accessible mass produc-
tion and therewith reduction of costs [21]. This reuse
of components is called modularity, where a module is
defined as a component with particular geometric fea-
tures, that can be repeatedly used in the design domain.
The complexity of the above design problem make the
result highly dependent on the experience of the de-
signer. Therefore, a model-based structural optimiza-
tion technique known as topology optimization poses
a solution. Topology optimization has shown the abil-
ity to solve complex design problems and to produce
interesting and innovative solutions [24].

The topology optimization problem that aims to
find the optimal layout for stiffeners on a base shell
has been explored in literature. Layout is defined as
the arrangement of stiffeners on the base shell. The
homogenization approach [7] has been applied for sev-
eral objective functions, boundary conditions and con-
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straints [10,11,25,29]. The results of these studies usu-
ally result in density plots, where clear domains are
somewhat difficult to interpret. Therefore, a different
solution method based on an isotropic material was
proposed [6]. This method is called the Solid Isotropic
Method with Penalization (SIMP). The SIMP method
is applied for optimizing the layout of stiffeners in sev-
eral topology optimization cases, for example in maxi-
mizing the overall stiffness [1] or eigenfrequencies [17].
A different approach is the thickness optimization of
the finite elements in the base shell. In this approach,
the areas that have a higher value than the set thick-
ness threshold, can be considered as potential stiffener
layout [27,23]. Also, the level-set method has been used
to identify the optimal stiffener regions [20]. It should
be noted that all aforementioned methods are suitable
for identifying regions where stiffeners could be placed
potentially. However, no information about the sizes of
the stiffeners is retrieved. Usually, after interpretation
of the results, a seperate sizing optimization needs to
be performed [1].
For the simultaneous optimization of the stiffener lay-
out and their size, three methods have been proposed in
literature. The first is the group of biologically inspired
methods, such as the Adaptive Growth Method [12–
15,31]. To overcome the shortcoming of an empirical
formula with user-defined parameters, which is unable
to handle multi-objective cases, the Adaptive Growth
Method was reformulated in terms of analytical rules
that cover the morphogenesis of the growth of leaf veins
in nature [28]. The second method is the Method of
Moving Morphable Components, applied to optimize
stiffeners on a plate for maximum stiffness, or mini-
mum compliance, subject to a volume and buckling con-
straint [44]. The last method is the Ground Structure
Approach (GSA) [16]. This method was for example
applied to the optimal panel placement in an airplane
wingbox [32,43].

The topology optimization problem for the individ-
ual stiffeners has been investigated in previous research.
In particular for applications to an airplane wingbox.
Here a ground structure of stiffeners is assumed and
the topologies of the stiffeners are optimized using the
SIMP method. The minimization of the compliance with
a volume constraint was performed [26]. Also, differ-
ent constraints such as lift, drag and stress for mini-
mizing the mass were considered [30]. Two optimiza-
tion problems of a flutter and compliance objective un-
der a weight constraint were performed [35]. Most re-
cently, for this wingbox application, an optimization
of the individual stiffener topology for minimization of
the mass under buckling and stress constraints was re-
ported [33]. A more general application to stiffened pan-

els was considered for a buckling objective with a vol-
ume constraint [34]. Recently, a level-set approach was
published for stiffened plates with a pre-assumed stiff-
ener layout. The topology of the individual stiffeners
was optimized for a buckling objective under a mass
constraint [39].

Modular structures presented in previous research
mainly focus on topological periodicity. In this setting,
the design domain is divided into sub-domains which
are constrained to be topologically identical. As such, a
single module consisting of a ground structure of trusses
is optimized for minimal weight, while subject to a fixed
number of trusses [5]. For two-dimensional (2D) con-
tinua, a repeated module was incorporated by the use
of a simple mapping technique, which separates the de-
sign variables of a module unit and the global density
field. The design variables mapping is carried out one-
to-one to the corresponding element material density
values, such that the overall topology consists of a pat-
tern of the module unit [2].
Although the aforementioned methods are able to de-
sign a structure consisting of one module repeated sev-
eral times in the global domain, they suffer from a com-
mon limitation. Namely, the designs converge towards
solutions with compromised structural performance [22,
45]. The cause lies within the topological periodicity.
The topology of the module is influenced most by the
region with the highest compliance. As the resulting
module design is used at different locations in the struc-
ture, therefore not leading to the most optimal solution
for these regions [40].
This shortcoming can be addressed by two approaches:
(i) by defining additional module properties as design
variables, or (ii) by allowing more modules within the
structure. The first approach was considered by intro-
ducing the ability to rotate to the single truss ground
structure method. Allowing for rotations resulted in im-
proved structural performance because rotation of the
modules modifies the material distribution in the struc-
ture locally [41]. Also in a 2D continuum setting, the
one-to-one mapping of a module to the global domain
is extended by allowing the module to resize. In order
to represent this stretching or shrinking of the module
in the global domain, a projection is introduced [37].
In the second approach, more than one module is al-
lowed within the structure. The optimization problem
is therefore redefined as the search for several module
topologies and the distribution of these in the domain.
This has been incorporated for truss structures based
on the ground structure approach. Moreover, the mod-
ules were also allowed to rotate [40]. For a 2D contin-
uum, the definition of a mapping between the design
variables of a module and the global material density
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field was extended to enable simultaneous optimization
of multiple module topologies and their layout in the
domain [21]. The mapping is based on a weighted sum,
allowing for the choice of one unique module type in
the domain. The resulting topology optimization frame-
work for modular structures can be combined with gra-
dient based optimization.

The aforementioned state-of-the-art emphasizes the
potential of structural optimization to enhance the con-
ceptual design of structures. However, it is observed
that research is mainly focusing on optimizing one of
the following three aspects: (i) the stiffener layout, (ii)
the individual stiffener topology or (iii) truss-based or
2D-continuum modules. Therefore, the goal of this pa-
per is to develop an optimization method that simul-
taneously optimizes the modular stiffener components
including their topology and layout on a base shell or
plate.

The proposed method relies on the combination and
extension of two existing methods: a ground structure
combined with the topology optimization framework
for 2D continuum modular structures [21]. The present
work will focus on maximizing the overall stiffness of the
structure, stated as minimizing the compliance, while
subject to a prescribed volume. However, it is empha-
sized that the proposed method can easily be extended
to other settings. The main idea will be described on
the basis of a simple example, consisting of a plate with
stiffeners, see Figure 1. On the base plate, a ground
structure of stiffeners is placed. For this example, the
ground structure is generated by specifying a uniform
grid on the base plate. In this example, a ground struc-
ture for the stiffeners has been presented consisting of
two stiffener types, see Figure 1a. The aim of the pro-
posed method is to specify a fixed but limited number
of modules within these stiffener types and to find their
optimal topology. The topologies of these modules can
range from empty, called void, to fully present. These
modules can be repeatedly used in the ground struc-
ture. The layout of the modules in the ground struc-
ture is simultaneously optimized with the topology. As
such, a layout in the ground structure arises which only
consists of a limited number of modules, as illustrated
in Figure 1b. The final topology optimization will be
based on a SIMP formulation.

This paper is organized as follows: in Section 2,
the detailed description of the proposed method is pro-
vided. In Section 3, the method is applied to several
practical cases. The conclusions and recommendations
are provided in Section 4.

(a) On top of a base plate a ground structure of stiffeners is
generated. This ground structure consist out of two types of
stiffeners which can be distinguished by their type letter and
color.

(b) The proposed method aims to find the optimal topologies
of a fixed and limited number of module stiffeners for every
type of stiffener. The topologies of the module stiffener can
range from fully empty to fully present. These modules can
be repeatedly used in the ground structure. The layout of the
modules in the ground structure is optimized simultaneously
with the topology. As such, a layout in the ground structure
arises which only consists of the specified modules.

Fig. 1: Overview of the proposed method explained in
two parts. In (a), an initial ground structure is pre-
sented, which is the basis for the optimization. A typical
result is shown in (b).

2 Combined optimization of the stiffener
modular layout and topology

2.1 Modularity in the ground structure

The proposed optimization method is based on a com-
bination of a ground structure approach with the con-
cept of material density topology optimization for mod-
ular structures. The main idea, as introduced in the
Introduction, will be further specified on the basis of
an example, consisting of a plate with stiffeners, see
Figure 2. On a base plate, a ground structure of stiff-
ener components with parents and children, each oc-
cupying a domain Ωs, is generated. For clarity, in this
case the topology of the base plate will not be opti-
mized and is therefore assigned as non-design domain
Ωn. The parents and children, hereafter referred to as
parent-children scheme, will be further specified. At the
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generation of the stiffeners in the ground structure, one
or multiple parent stiffener can be specified. In Fig-
ure 2, these parent stiffeners are the stiffener domains
Ωs=1 and Ωs=6. The parents can be identified by their
type letter, in Figure 2, Type A and B, respectively.
A mesh is generated for each parent stiffener, as illus-
trated in Figure 2. Since the topology optimization is
SIMP based, a material density, ρ is assigned per fi-
nite element e, ρe. The parents are copied one-to-one
in the ground structure to form the so-called children
for each type. In Figure 2, for Type A these children
are stiffener domains Ωs=2−5 and for Type B, stiffen-
ers Ωs=7−10. The result is an initial mesh consisting of
a base plate and a ground structure of parent stiffeners
with their children. This mesh can be used to model
the physics and will be used to optimize the topology
of the structure.

However, if this mesh is subjected to a topology opti-
mization, a unique topology is allowed to arise for every
stiffener. As stated before, it is beneficial to limit the
topologies of the parents and their according children
to a fixed number of modules. Therefore, module tem-
plates are introduced. Module templates are an integer
number Ts, of one-to-one copies of the parent stiffener.
As such, also these module templates have identical
mesh topologies and inherent material properties from
the according parents. The material densities per mod-
ule template t are defined, for every finite element in
the module template d, ρt,d, see Figure 2. These tem-
plate densities, ρt,d are considered as the primary de-
sign variables and form the basis for the topology op-
timization. More details on the topology optimization
are provided in Section 2.2. The material densities of
the mesh, ρe, will be determined by a mapping between
the material densities of the templates ρt,d and by the
use of their according weight factors. The use of weight
factors is inspired by the field of Discrete Material Op-
timization (DMO). Here a multi-material optimization
is commonly described by an element constitutive ma-
trix defined as a weighted sum of predefined potential
materials [21,36]. If a weight factor is a value around
1, a material is present in the element, if the value is
around 0, a material is absent. This idea is used with
the module templates and the parent-children scheme.
A number of weight factors ws,t, is assigned for each
stiffener of a certain type. The number of weight fac-
tors is equal to the amount of introduced templates for
this type Ts, these are for the example in Figure 2,
2 templates per type. If the weight factor is a value
around 1, this denotes the presence of template t in
stiffener domain Ωs, if a weight factor is valued around
0, this denotes the absence of the template. Details on
the mapping are provided in Section 2.3.

Fig. 2: The mapping of the element densities of the
module templates to the element densities of the stiff-
ener domains. Every parent stiffener is assigned a ma-
terial density per finite element ρe. These parents are
copied one-to-one for each of the children. As such,
a number of stiffener domains Ωs occur. To limit the
topologies of the parents and their according children to
a fixed number of modules, templates are introduced.
Module templates are an integer number of one-to-one
copies of the parent stiffener. As such, also these have
identical mesh topologies and inherent material proper-
ties from the according parents. The material densities
per module template t are defined, for every finite ele-
ment in the module template d, ρt,d. The material den-
sities of the mesh, ρe, will be determined by a mapping
between the material densities of the templates ρt,d and
by the use of their corresponding weight factors. ws,t.
These weight factors denote the presence of template t
in stiffener domain Ωs.

2.2 Topology optimization using the Solid Isotropic
Method with Penalization

The topology optimization in this work is based on
the SIMP approach. This approach was orginally in-
troduced for maximizing the stiffness of a structure,
while prescribing or constraining the mass occupied by
the solid material in the design domain [6,46]. This
was done by introducing a interpolation of the Young’s
modulus E based on a continuous pseudo material den-
sity ρ and initial Young’s modulus E0 for a linear isotropic
material with Poisson ratio ν:
E(x) = ρe(x)

pE0. (1)
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Because of the introduction of the finite element model-
ing, the variables are the pseudo densities per finite ele-
ment. Hereafter, the pseudo material density will be re-
ferred to as material density or density. This allows for
the introduction of non-design domains. For the struc-
ture in Figure 2, the base shell is the non-design domain
and should therefore be present. This can be enforced
by setting the material densities for these elements to
1. For the stiffener domains the Young’s modulus is re-
lated in a non-linear manner to the material density
by means of a penalty factor p ≥ 1. This implies that
whenever the penalty factor is greater than 1, densi-
ties which are intermediate values of the range [0, 1]
are penalized. The value of the penalization factor p is
gradually increased from 1 to 5 during the optimization
process. This so-called continuation approach, drives
the design gradually to a more distinct 0-1 design [19].
In Section 2.3 the conditions for this continuation are
discussed in more detail. The volume of the resulting
design in the total domain Ω is now represented by:

V =

∫
Ω

ρe(x)dV. (2)

In the current formulation, the results of the SIMP ap-
proach are not only dependent on the value p, but also
on the size and orientation of the mesh [19,30]. How-
ever, this drawback can be removed by the use of filter-
ing. This will be discussed in Section 2.6.

2.3 Mapping to the ground structure with prior
unknown module template topology

The modularity concept is introduced as a new addi-
tional constraint in the topology optimization problem.
This constraint is imposed by introducing an element-
based mapping scheme using the module templates.
The formulation does not only allow for optimization
of the topologies of the module templates, but also for
the optimal layout of these within the ground struc-
ture [21].
The topologies of the stiffener domains Ωs are deter-
mined by a mapping between the material densities of
the module template elements, ρt,d and the material
densities in the stiffener domain ρe, see Figure 2. The
ability to simultaneously optimize the stiffener layout
was accomplished by the use of weight factors ws,t be-
tween the templates t, and the corresponding parent or
children stiffener domains Ωs. The material density of
an element ρe(x) of a certain type can be mapped from
the material densities of the corresponding element in

the templates ρt,d by [21]:

ρe(x)=

Ts∑
t=1

wq
s,t

∏Ts

j=1(1− ws,t̸=j)
q∑Ts

t=1 w
q
s,t

∏Ts

j=1(1− ws,t̸=j)q
ρt,d, x∈Ωs. (3)

Here q > 1 denotes a penalty for the weight factors. If
the factor is greater than one, intermediate values of the
weight factor will be penalized. This scheme is similar
to the penalty factor as used in SIMP, see (1). There-
fore, the same continuation scheme is applied. In this
work, the continuation is performed when three condi-
tions are met. Firstly, the condition that the absolute
change in the objective in two successive iterations is
less than 0.1. Secondly, the designs should satisfy all
the constraints during these two iterations. Finally, the
last continuation should be more than 20 iterations ago.

An example of the mapping is provided for the prob-
lem in Figure 2. The material density of dashed element
e = 1 in stiffener domain Ωs=1 is calculated. The stiff-
ener is of Type A, so according to the mapping in (3)
the material density of the element in this domain is
determined by the dashed template elements, see Fig-
ure 2:

ρe=1 =
wq

1,1(1− w1,2)
qρt=1,d=1

wq
1,1(1− w1,2)q + wq

1,2(1− w1,1)q
+

wq
1,2(1− w1,1)

qρt=2,d=1

wq
1,1(1− w1,2)q + wq

1,2(1− w1,1)q
.

(4)

Some notes on the mapping should be made. First of
all, it becomes clear from this formulation, that in case
of a weight factor in the numerator is valued 0 or 1, the
mapping does not provide a finite solution. Therefore,
the weight factor should be limited to the range ws,t∈
(0, 1). Secondly, as also noted by Stegmann and Lund
[36], it could be observed that the term (1 − ws,t̸=j)

q

forces the design to a 0-1 solution for the templates,
since an increase of one weight variable, automatically
means a decrease in all other weights. Therefore, the
converged values for the weight factors should denote
a value around 1 if a template is present at a certain
stiffener domain and 0 if it is not. Finally, the normal-
ization term ensures that the overall mapping sums to
unity for each stiffener domain.

2.4 Finite element analysis

The finite element analysis has multiple functions in the
optimization. Primarily, it is used to model the physics.
By implementing the boundary conditions, such as load-
ings and supports and successively evaluating the model,
a response in terms of the global nodal degrees of free-
dom vector u is retrieved. Using this information, the
second function can be fulfilled: calculation of the objec-
tive and volume constraint. For this work, the objective
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is to maximize the overall stiffness of the structure. This
can be stated as minimizing the compliance c, defined
as:
c(ρe(x)) = uTK(ρe(x))u, (5)
where K is the global stiffness matrix, which is a func-
tion of the element densities introduced by the SIMP
approach. The well-known finite element equilibrium
equation is:
K(ρe(x))u = f(ρe(x)). (6)
Here, f denotes the external nodal loads. In order to
avoid singularities in the global stiffness matrix, the
lower value of the material density is chosen to be a
small value ρmin. In this work, this value is 5 · 10−3.

Lastly, the finite element analysis provides the sen-
sitivities from the objective and the constraint with re-
spect to (w.r.t.) the material density of the element.
This will be further discussed in Section 2.8.

In this work, a triangular 3 node, 12 degrees of free-
dom, shell element will be used [42]. Furthermore, the
analysis will be based on a linear model.

2.5 Problem definition

The design problem is stated. The search for the op-
timal structure with minimal compliance, while sub-
ject to (s.t.) static equilibrium, a maximum volume, a
non-design domain Ωn and stiffener domains Ωs in the
global coordinate system x using the modular template
mapping in (3), is stated as:
min

ρt,d,ws,t

c(ρe) = uTK(ρe)u

s.t. K(ρe)u = f(ρe)∫
Ω

ρedV − Vmax ≤ 0

ρe(x, ρt,d, ws,t)∈ [ρmin, 1], ws,t∈(0, 1), x∈Ωs

ρe(x) = 1, x∈Ωn

.(7)

It becomes clear, that the standard SIMP topology op-
timization problem, with design variables ρe(x) is refor-
mulated in terms of weight factors between the stiffener
domains and templates ws,t and the element material
densities of the templates ρt,d.

2.6 Density filtering per stiffener domain

Filtering is necessary in the SIMP approach to avoid
solutions which are dependent on the mesh or provide
checkerboards. One of these filters is the density filter,
where the element densities or sensitivities are adjusted
based on the values of the neighbouring elements [3]. An

Fig. 3: A detailed view on the filtering at the bound-
ary of three domains. Here, stiffener domains Ωs=1 and
Ωs=6 and the non-design domain Ωn meet each other.
The filter takes into account all the elements that are,
with their center-to-center element distance ∆i, in the
filter region with relative radius rrel.. The relative filter
radius is dependent on a scalar times the element size.
In order to prevent mixing of the material element den-
sities over the boundaries of the domains, the filter is
restricted to only take into account elements that are
within the same domain. This is indicated by the green
circle segment of the filter. The red circle segment indi-
cates elements which are not part of the same domain.

illustration is given in Figure 3. A filter radius, depen-
dent on a scalar value times the element size, is consid-
ered. For this work, this scalar value is set to 1. All the
material densities of the elements, with their center-to-
center distance ∆i within the relative radius rrel., are
weighted depending on this distance.

However, the standard density filter needs to be ad-
justed on three aspects to avoid mixing of the domains.
First of all, to avoid material density values below 1 in
the non-design areas Ωn. Secondly, to prevent material
density transfer from the 1-valued edges of non-design
areas Ωn to the edges of the stiffener domains Ωs. And
finally, to avoid transfer of material density through
the edges of two stiffener domains Ωs. The latter has
to be prevented, because through the use of the map-
ping as in (3), the material density could be transferred
from the edge of one template to another. Especially,
if somewhere in the structure a full solid template is
used, next to a neighbouring void template, resulting
in material density transfer between these and there-
fore diminishing the clear boundary between solid and
void. These three adjustments can be imposed by only
taking elements in the same stiffener domain Ωs, into
account.
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The density filter can now be formulated as the nor-
malized weighted average of the material densities of
elements N of the set i, for which the center to center
distance ∆i is smaller than the filter radius rrel. and is
part of the same stiffener domain Ωs. In equation form,
this is stated as [3]:

ρ̃e(x) =
1∑

i∈N Hi

∑
i∈N

Hiρe(x), x∈Ωs, (8)

where Hi denotes the filter weight factor. This weight
factor is defined as the maximum distance between the
centers of the elements in Ωs [3]:
Hi = max(0, rrel. −∆i(x)), x∈Ωs. (9)
As mentioned before, the filter can be applied at the
design variables or at the sensitivities. In this work,
the filter is applied at the design variables before en-
tering the finite element analysis. The inverse of the
filter is applied after the calculation of the sensitivities
w.r.t. the objective and constraint functions which will
be discussed in the next section.

2.7 Gradient-based optimization

In this work, the optimization solver will be gradient-
based using the Method of Moving Asymptotes (MMA)
[38]. MMA is often used within topology optimization
problems and has proved to be reliable in combination
with multiple complex constraints [24]. To determine
a new set of design variables, the optimizer makes use
of sensitivities of the objective and constraint functions.
These provide two pieces of information around the cur-
rent design point: (i) in what direction and (ii) how far
to go to improve the objective.

In order for the optimizer to work properly, a scal-
ing of the sensitivities might be required. The objec-
tive and constraint values should be scaled between
1 and 100 [38]. In this work, these values and their
corresponding sensitivities are scaled by a constant to
meet this criterion. The optimization procedure is ter-
minated when the continuation of the penalty factors
has reached 5 and a maximum number of iterations is
reached or when the relative objective change is smaller
than a prescribed amount. In this work these are set to
400 iterations and 1× 10−7.

2.8 Sensitivity analysis

The sensitivities of the design variables are calculated
using a chain rule, since the stiffener domains get their
designs from the according templates. Every material
element density ρe is a function of the template mate-
rial element density ρt,d and the according weight factor

ws,t through the mapping as described in (3). There-
fore, the sensitivity of the objective w.r.t. the element
material density of a template can be written as:
∂c

∂ρt,d
=

∑
e∈St

∂c

∂ρe(x)

∂ρe(x)

∂ρt,d
. (10)

Here St denotes the subset of elements e which retrieve
their material densities from the template. For example,
if template t = 1 of Type A is used n times in the do-
main, than St contains n values. The sensitivity of the
objective w.r.t. the element material density ∂c

∂ρe(x)
is

calculated using the self-adjoint formulation of a SIMP
compliance minimization optimization problem [8].

Due to the mapping as described in (3), the sensitiv-
ity of each element material density w.r.t. the template
element material density of the same type is:

∂ρe(x)

∂ρt,d
=

Ts∑
t=1

wq
s,t

∏Ts

j=1(1− ws,t̸=j)
q∑Ts

t=1 w
q
s,t

∏Ts

j=1(1− ws,t̸=j)q
. (11)

The sensitivity of the objective w.r.t. the weight fac-
tor is determined by summing each contribution of the
corresponding template element material density d:
∂c

∂ws,t
=

∑
d

∂c

∂ρe(x)

∂ρe(x)

∂ws,t
. (12)

The sensitivity of each element material density w.r.t.
the weight factor can also be determined by taking the
derivative of the mapping as described in (3). This is
done in a similar fashion as in (11) and is therefore
omitted.

The sensitivities of the volume constraint w.r.t. the
template element material densities of the same type
and the weight factors can be determined similarly:
∂V

∂ρt,d
=

∑
e∈St

∂V

∂ρe(x)

∂ρe(x)

∂ρt,d
, (13)

∂V

∂ws,t
=

∑
d

∂V

∂ρe(x)

∂ρe(x)

∂ws,t
. (14)

Where the sensitivity of the volume constraint w.r.t.
the element material density ∂V

∂ρe(x)
, can be calculated

by taking the derivative of the formulation described
in (2).

2.9 Initial conditions

The initial conditions for both the weight factors and
the template material densities are discussed. The weight
factor should be in the range (0, 1) to provide a finite
solution, as stated in Section 2.3. Therefore, it is chosen
to set the initial value for the weight factor as:

ws,t,0 =
1

Ts
. (15)
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In topology optimization, it is quite common to take
1 or the volume fraction as initial value for the element
density variables. In the latter, the volume constraint
is directly satisfied. However, it should be noted that
if all element material densities have the same value,
the sensitivities w.r.t. the weight factors will be equal
for all the templates. As an example, consider Figure 2.
The initial condition for the weight factors, according
to (15) is 0.5 for both types. If the initial material den-
sity of the elements are also 0.5, the sensitivities of the
objective and constraint w.r.t. the weight factors, re-
spectively (12) and (14), would lead to sensitivity values
equal to 0. As such, due to the gradient based optimizer,
no further changes in the weight variables or template
element material densities would be posed. The result
would be a solution, where every stiffener will have an
equal contribution of the two templates with 0.5 as el-
ement material density, which removes the introduced
modularity.

In order to overcome this issue, the initial values
can be slightly adjusted. As such, the sensitivity values
have a different direction and magnitude and are able to
converge to distinct topologies and layout in the ground
structure. The adjustment is added in terms of a small
perturbation:

ρt,d,0 = 0.5 +



−0.01t, 0 ≤ t ≤
⌈
Ts

2

⌉
0, t =

⌈
Ts

2

⌉
, Ts ≥ 2

0.01t,

⌈
Ts

2

⌉
≤ t ≤ Ts

. (16)

3 Numerical examples

This section discusses three numerical examples. The
first two are examples of stiffened plates. Here, different
initial ground structures, load cases and parent-child
schemes are used. The third example is a stiffened shell
representing a fuselage of an airplane.

3.1 Simply stiffened plate

In Figure 4, a simply stiffened plate is shown. The edges
of the stiffeners and base plate are fully clamped. In
the center of the base shell, there is a concentrated
force F1. The values for the parameters are shown in
Table 1. The parent-child scheme and the according
stiffener domains were already introduced in Section
2.3 and shown in Figure 2. The optimization problem
formulation in (7) is utilized with an upper value of
half the initial volume of the stiffeners for the volume

Fig. 4: Geometry, loading and boundary conditions for
the simply stiffened plate. The values of the parameters
are given in Table 1.

constraint, Vmax = 0.5 · Vinit.stiff.. Since the problem is
symmetric along the x1 and x2 axis, it is hypothesized
that the resulting stiffener layout and template topolo-
gies should be symmetric. The example is performed for
three cases, where the number of templates per stiffener
type is varied from 1 to 3.

Table 1: Parameters used in the examples of the simply
stiffened plate as shown in Figure 4, and the orthogo-
nally stiffened plate as shown in Figure 6.

Parameter Description Value Unit

a Spacing stiffeners 1 m
b Length base shell 6 m
h Height stiffeners 0.5 m
t Thickness 0.01 m
F1 Force 1000 N
F2 Force 100 N
p Pressure 10 Pa
E0 Young’s modulus 300 MPa
ν Poisson ratio 0.3 -

Table 2: The layout of the templates ρt in the stiffener
domains Ωs shown per type. Besides the number of tem-
plates that is allowed, a reference to the corresponding
topologies in Figure 5 is given.

Type A Type B

Number of templates Number of templates
Ωs 1 (5d) 2 (5c) 3 (5b) Ωs 1 (5d) 2 (5c) 3 (5b)

1 ρt=1 ρt=1 ρt=1 6 ρt=1 ρt=1 ρt=1

2 ρt=1 ρt=1 ρt=2 7 ρt=1 ρt=1 ρt=2

3 ρt=1 ρt=2 ρt=3 8 ρt=1 ρt=2 ρt=3

4 ρt=1 ρt=1 ρt=2 9 ρt=1 ρt=1 ρt=2

5 ρt=1 ρt=1 ρt=1 10 ρt=1 ρt=1 ρt=1
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(a) Resulting stiffener layout for the case with 3 templates per
type.

(b) Unfiltered topologies for 3 templates per type resulting in
a compliance value of the design of 1.4742× 10−2 J.

(c) Unfiltered topologies for 2 templates per type resulting in a
compliance value of the design of 1.4745× 10−2 J.

(d) Unfiltered topologies for 1 template per type resulting in a
compliance value of the design of 3.2476× 10−2 J.

Fig. 5: An overview of the topologies of the templates
for the simply stiffened plate example. In (a) the layout
of the templates in the stiffener domains is shown for
the case of 3 templates per type. The template topolo-
gies for this case are shown in (b). For the case of 2 tem-
plates and 1 template per type, the resulting topologies
are shown in (c) and (d) respectively. Their layouts in
the domains are given by Table 2.

3.1.1 Optimization results and discussion

The resulting template topologies of the three cases are
shown in Figure 5 and their layouts in the stiffener do-
mains are shown in Table 2. The observation is made,
that the resulting template topologies and their layout
in the stiffener domains is always symmetric. The case
with the single template has the highest compliance
value and therefore the worst mechanical performance.
As already stated in the introduction, due to the topo-
logical periodicity, the template is influenced the most
by the highest loaded region. In this case these regions
are the stiffener domains Ωs=3,8, which carry a major

part of the concentrated load. The volume constraint
does not allow for a complete solid topology of the tem-
plates and therefore a non-optimal solution arises.

In the case of two and three templates per type, one
complete solid template arises, which carries the major
part of the concentrated load. The compliance values
of these cases are therefore very comparable, with a
minor improvement of the objective function for the
three templates case.

3.2 Orthogonally stiffened plate

A base shell with an orthogonally ground structure of
stiffeners is considered. The stiffener domains are all
based on one parent, as shown in Figure 6a and there-
fore only one template type is defined. The geomet-
ric features including the distributed load, concentrated
force and boundary conditions are shown in Figure 6b.
It should be noted, that the problem is symmetric.
Therefore, it is hypothesized that the resulting topology
should also be symmetric along the x1 and x2 planes.
The optimization problem formulation as stated in (7)
is used. The upper value of the volume constraint is
set to one third of the initial volume of the stiffeners,
Vmax = 0.33 · Vinit.stiff.. The number of templates per
type is varied, with the hypothesis that an increased
number of templates results in a lower compliance value,
since the design space is increased.

3.2.1 Optimization results and discussion

The resulting template topologies for the cases of 1 to
7 templates per type are shown in Figure 7. For all
cases, the resulting layout is symmetric along the x1

and x2 axis, therefore only the results of one quarter
of the plate are shown. In this quarter plate, symmetry
is also observed. The template layout is given for two
opposite stiffener domains in Table 3. The lowest com-
pliance value is retrieved for the case of 7 templates
and the resulting layout is shown in Figure 7a. It is
noted that a major part of the volume is assigned to
the stiffener domains Ωs=7−9 and Ωs=16−18. These do-
mains represent the stiffeners crossing the center of the
base plate and carrying the major contribution of the
concentrated force F2. Since in the center of the base
shell the sum of the deflection due to the concentrated
load and pressure load is expected to be the largest, it
is reasonable that most of the volume should be used
for these stiffener domains. This observation can be ex-
tended to all other cases, where the templates with the
most volume are used at these stiffener domains as well.

Increasing the number of templates resulted in a
lower compliance value, as can be observed in Figure 7.
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(a) A quarter of the orthogonally stiffened plate is shown, since
the result is symmetric along the x1 and x2 axis. The parent
is the stiffener domain Ωs=1, shortly denoted as Ω1. All the
other stiffener domains are children from this parent. The base
plate is assigned as non-design domain Ωn.

(b) A orthogonally stiffened plate, subjected to a distributed
load p, concentrated load F2 and fully clamped on the edges of
the base shell and stiffeners domains. The values of the param-
eters are given in Table 1.

Fig. 6: In (a) the stiffener domains, non-design do-
main and parent-child scheme are presented for the or-
thogonally stiffened plate. The geometry, loadings and
boundary conditions are shown in (b).

Since the quarter plate consists out of 9 unique stiffener
domain pairs, it could be expected that up to 9 unique
templates could be defined with even lower compliance
than for the case of 7 templates. However, for the cases
of 8 and 9 templates, similar topologies and layouts as
for the 7 templates case are found. This is character-
ized in the results by duplicate or not used templates,
therefore the results of these cases are not presented.

3.3 Orthogonally stiffened shell: airplane fuselage

A practical example inspired on the top middle part
of the fuselage of an airplane is considered. Especially,
the critical loadings during a 2.5G pull-up manoeuvre
with a pressurized cabin at cruise height [18]. The ge-
ometry, boundary conditions and loadings are shown in
Figure 8. The parameters used are denoted in Table 4.
It should be noted that for correct boundary conditions,
the slider at the lower side of the base shell along the x1

axis should be in radial direction as is the case for the
upper side. In this case this is not implemented, since

(a) Resulting stiffener layout for the case with 7 templates per
type.

(b) Unfiltered topologies for 7 templates per type resulting in
a compliance value of the design of 3.4830× 10−4 J.

(c) Unfiltered topologies for 6 templates per type resulting in a
compliance value of the design of 3.5765× 10−4 J.

(d) Unfiltered topologies for 5 templates per type resulting in
a compliance value of the design of 4.0307× 10−4 J.

(e) Unfiltered topologies for 4 templates per type resulting in a
compliance value of the design of 4.3375× 10−4 J.

(f) Unfiltered topologies for 3 templates per type resulting in a
compliance value of the design of 4.5145× 10−4 J.

(g) Unfiltered topologies for 2 templates per type resulting in
a compliance value of the design of 5.0184× 10−4 J.

(h) Unfiltered topology for 1 templates per type resulting in a
compliance value of the design of 1.3548× 10−3 J.

Fig. 7: An overview of the topologies of the templates
is shown for the orthogonally stiffened plate. In (a)
the layout of the templates in the stiffener domains is
shown for the case of 7 templates per type. The tem-
plate topologies for this case are shown in (b). For the
case reaching from 1-6 templates per type, the result-
ing topologies are shown in (c-h). Their layout in the
domains is given in Table 3.
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Table 3: The layout of the templates ρt in the stiffener
domains Ωs is shown per type. Besides the number of
templates that is allowed, also a reference to the corre-
sponding topologies in Figure 7 is given.

Type A

Number of templates
Ωs 1 (7h) 2 (7g) 3 (7f) 4 (7e) 5 (7d) 6 (7c) 7 (7b)

1, 10 ρt=1 ρt=1 ρt=1 ρt=2 ρt=3 ρt=1 ρt=1

2, 11 ρt=1 ρt=1 ρt=1 ρt=1 ρt=2 ρt=3 ρt=3

3, 12 ρt=1 ρt=1 ρt=1 ρt=1 ρt=2 ρt=2 ρt=2

4, 13 ρt=1 ρt=2 ρt=3 ρt=3 ρt=5 ρt=4 ρt=6

5, 14 ρt=1 ρt=1 ρt=1 ρt=2 ρt=3 ρt=1 ρt=1

6, 15 ρt=1 ρt=1 ρt=1 ρt=1 ρt=2 ρt=3 ρt=5

7, 16 ρt=1 ρt=2 ρt=3 ρt=3 ρt=4 ρt=6 ρt=7

8, 17 ρt=1 ρt=2 ρt=2 ρt=4 ρt=4 ρt=6 ρt=4

9, 18 ρt=1 ρt=2 ρt=3 ρt=3 ρt=4 ρt=5 ρt=7

Fig. 8: Geometry, loading and boundary conditions for
the orthogonally stiffened shell representing an airplane
fuselage. The values of the parameters are given in Ta-
ble 4. The stiffeners are located at the inner side of the
base shell segment, at the dashed lines. The parent for
Type A is the stiffener domain between nodes 1 and
2, denoted by Ωs=1→2. For Type B, the parent is the
domain between nodes 1 and 6, denoted by Ωs=1→6.

the goal of this example is to show the application of the
developed method to shell structures. The optimization
problem formulation as stated in (7) is used, with an up-
per value of the volume constraint set to two third of the
initial volume of the stiffeners, Vmax = 0.667 · Vinit.stiff..
The only domains that are subject to the optimization
are the webs of the stiffeners. The top of a stiffener and
the base shell are assigned as non-design domain.

Table 4: Parameters used in the example of the airplane
fuselage as shown in Figure 8.

Parameter Description Value Unit

R Radius base shell 2 m
ϕ Base shell segment 2π

32
rad

t Thickness base shell 1.5 mm
w Spacing stiffeners 0.5 m
ϕs Radial spacing stiffeners 1

4
ϕ rad

hs Height stiffeners 40 mm
ws Width stiffener top 40 mm
ts Thickness stiffener top 8 mm
tw Thickness stiffener web 3 mm
ppress. Cabin-outside pressure 55 kPa
p2.5G Load 2.5G manoeuvre 130 MPa
E0 Young’s modulus 70 GPa
ν Poisson ratio 0.3 -

3.3.1 Optimization results and discussion

The results of three cases are shown, where 1 up to 3
templates per type are used. The stiffener layout for
the case of 3 templates per type is shown in Figure 9a
and the according template topologies are given in 9b.
It is observed that the stiffeners of Type B are domi-
nantly present. For most templates only some material
is removed just below the top of the stiffener. The stiff-
eners domains on the edges of the base shell for this
type are assigned an almost void template, since there
the boundary conditions provide stiffness. For the cases
of 1 and 2 templates per type, the template topologies
are shown in Figure 9b and 9c respectively. Their lay-
out in the stiffener domains is given in Table 5. A small
improvement is observed in moving from 2 to 3 mod-
ule templates per type as the topologies are not that
different. Also observed is that the stiffener domains
of Type A on the plane where the 2.5G pull-up ma-
noeuvre load is applied, always consist of fully present
templates. This also holds for the cases with 1 and 2
templates per type. Since the pull up load is dominant
in magnitude, this results in a single fully present tem-
plate for Type A at all the corresponding stiffener do-
mains for the case of 1 stiffener per type. Moreover,
the compliance decreases with the introduction of more
templates.

4 Conclusions and recommendations

Stiffened shells are widely used in engineering struc-
tures, but their performance is highly influenced by the
topology of the stiffeners and their layout on the base
shell. Moreover, it is beneficial to design structures with
modules, since it allows for increased and cheaper qual-
ity control, more accessible mass production and there-
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(a) Resulting stiffener layout for the case with 3 templates per
type. To give a clear illustration, the top of the stiffeners are
not shown.

(b) Unfiltered topologies for 3 templates per type resulting in
a compliance value of the design of 4.5798× 104 J.

(c) Unfiltered topologies for 2 templates per type resulting in a
compliance value of the design of 4.5995× 104 J.

(d) Unfiltered topologies for 1 template per type resulting in a
compliance value of the design of 4.8667× 104 J.

Fig. 9: An overview of the topologies of the templates
for the orthogonally stiffened shell. In (a) the layout of
the templates in the stiffener domains is shown for the
case of 3 templates per type. The template topologies
for this case are shown in (b). For the case reaching from
2 and 1 templates per type, the resulting topologies are
shown in (c-d) respectively. Their layout in the domains
is given in Table 5.

with reduction of costs. The method proposed in this
work, allows for the simultaneous optimization of the
topology of the modular stiffeners and their layout on
the base shell or plate.
It can be briefly concluded that the proposed method:

– Enables simultaneous optimization of the stiffener
topology and layout of stiffeners on shells and plates,

– Incorporates a fixed, but limited, number of integer
modules in a three-dimensional structure,

– Reduces the number of design variables,
– Prevents mixing of the boundaries of the domains

through the adjusted density filter,
– Gradually drives the module templates to topolo-

gies with distinct solid/void boundaries and a clear
layout in the ground structure because of the con-
tinuation scheme,

Table 5: The layout of the templates ρt in the stiffener
domains Ωs per type. Besides the number of templates
that is allowed, a reference to the corresponding topolo-
gies in Figure 9 is given.

Type A Type B

Number of templates Number of templates
Ωs 1 (9d) 2 (9c) 3 (9b) Ωs 1 (9d) 2 (9c) 3 (9b)

1→2 ρt=1 ρt=1 ρt=1 1→6 ρt=1 ρt=1 ρt=1

2→3 ρt=1 ρt=2 ρt=3 2→7 ρt=1 ρt=2 ρt=2

3→4 ρt=1 ρt=2 ρt=2 3→8 ρt=1 ρt=2 ρt=2

4→5 ρt=1 ρt=2 ρt=2 4→9 ρt=1 ρt=2 ρt=2

6→7 ρt=1 ρt=1 ρt=1 5→10 ρt=1 ρt=2 ρt=3

7→8 ρt=1 ρt=1 ρt=1 6→11 ρt=1 ρt=2 ρt=3

8→9 ρt=1 ρt=1 ρt=1 7→12 ρt=1 ρt=2 ρt=3

9→10 ρt=1 ρt=2 ρt=3 8→13 ρt=1 ρt=2 ρt=3

11→12 ρt=1 ρt=1 ρt=1 9→14 ρt=1 ρt=2 ρt=3

12→13 ρt=1 ρt=1 ρt=1 10→15 ρt=1 ρt=1 ρt=1

13→14 ρt=1 ρt=1 ρt=1 11→16 ρt=1 ρt=2 ρt=3

14→15 ρt=1 ρt=2 ρt=3 12→17 ρt=1 ρt=2 ρt=3

16→17 ρt=1 ρt=2 ρt=3 13→18 ρt=1 ρt=2 ρt=3

17→18 ρt=1 ρt=2 ρt=3 14→19 ρt=1 ρt=2 ρt=3

18→19 ρt=1 ρt=2 ρt=3 15→20 ρt=1 ρt=1 ρt=1

19→20 ρt=1 ρt=2 ρt=3

– Allows conceptual-designs for stiffened plates and
shells with different number and formats of the mod-
ule templates.

The proposed method is applied to several examples of
stiffened plates and a practical stiffened shell fuselage.
For all examples, the method has shown to converge to
designs with distinct solid/void boundaries in the mod-
ule topologies and a clear layout in the ground struc-
ture. These designs can be reasoned logically from the
boundary conditions and loads. For example, the sym-
metric stiffened plate examples resulted in symmetric
designs and in all examples, the majority of the ma-
terial was placed in the areas where the displacements
were estimated to be largest due to the loadings. More-
over, it was shown that allowing for more templates in-
creased the design space and therefore resulted in lower
values for the compliance. Even, for a limited number
of templates and therefore a reduced number of design
variables, the method is also able to generate innova-
tive designs. Therefore, the proposed method is a design
tool that can be utilized in the conceptual-design phase
of structures with stiffeners.

The recommendations are separated into two parts:
the current implementation and future applications or
extensions of the method. For the first part, it is rec-
ommended to develop a more thorough understanding
of the influence of the initial conditions on the final re-
sults. The same holds for the continuation scheme. The
conditions for increasing the penalty factors and their
influence on the final design should be more thoroughly
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investigated. Finally, the filtering is considered. In this
work, an adjusted density filter with a constant relative
filter radius is adopted. The filter radius is implicitly de-
scribing the minimal feature size that can arise in the
topology. Therefore, the influence of the filter radius
has to be taken into account in more detail. However,
the density filtering also opens up new possibilities. For
example, the filter radius could be adjusted per module
template to provide a minimal feature size per module.

For the second part, future applications and exten-
sions of the method, the importance of different objec-
tive functions is recognized. As already stated in the
Introduction, thin-walled structures are sensitive to vi-
brations. Therefore, it is recommended to include the
dynamics in the objective functions. As also stated in
the Introduction, the structural performance of modu-
lar structures can be increased by allowing additional
module properties as design variables or by introduc-
ing more modules to the structure. This work only fo-
cuses on the latter and therefore the inclusion of ad-
ditional module properties such as the rotation can be
improved in future work. In this work, the method is
mainly applied to stiffener domains. It should be noted
that the method is defined very generally. This opens
up possibilities to apply the method to domains of dif-
ferent shapes to further extend the range of applica-
tions. Moreover, the generality of this method allows
for different topology description methods. In this work,
the material density based topology optimization using
SIMP was used, although the method can also be com-
bined with other topology description methods, such as
level-set.

5 Replication of results

Details for the replication of the results have been de-
scribed. A demonstration can be given on request.
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4
Additive manufacturing of numerical

examples
In this chapter, the numerical examples as presented in the paper are converted to physical structures
through the use of additive manufacturing (3D printing). This could be a first step for the fabrication and
experimental testing of these structures. The challenge is the conversion of all sorts of finite element
meshes consisting of facet shell elements, to a 3D representation suitable for 3D printing. This is ac
complished by using the advanced features of Paraview, an opensource, multiplatform data analysis
and visualization application [10].

At first, a compatible input file format which can be read by Paraview has to be created. Therefore,
the Charles post processor was extended with an export to a simple VTK file format [11]. Paraview
comes with all types of filters, which can be combined in a standard workflow and saved as a state file.
The workflow in this state file is illustrated in Figure 4.1. The used filters are described.

The VTK file format, which is written by the post processor, describes the mesh as an unstructured
grid. Unstructured grids are defined by points, cells, and cell types. The points are the locations of
the nodes in the global coordinate system. The cells are described by the connectivity of the nodes.
Since the used elements are triangular, these correspond to three nodes and the cell type is for every
element triangular. However, the required input dataset for the next step has to be in polygonal data.
In polygonal data, a mesh is only described in triangles by using in the locations of the nodes in the
global coordinate system and the connectivity of these nodes. The ’Extract Surface’ filter extracts the
polygons forming the outer surface of the input dataset.

Figure 4.1: Workflow of the state file used for the conversion of the 2D mesh into a 3D mesh with the use of filters in Paraview.
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The conversion of a facet shell element to its 3D equivalent can be performed by the ’Linear Cell
Extrusion’ filter. This filter creates a swept surface by translating the input polygonal data along the
normal vector of the finite elements. The amount for the translation 𝑟𝑒 of the finite element is set to:

𝑟𝑒 = 𝜌𝑒 ⋅ 𝑡𝑒 , (4.1)

where 𝑡𝑒 denotes the thickness of the finite element. As such, elements with a material density value
𝜌min are translated with a small amount. Since these finite elements represents void areas, these can
be removed before 3D printing. This can be accomplished by utilizing the ’Threshold’ filter. As such,
the result is a 3D mesh. However, the 3D printer only needs information about the outer surface of the
mesh. Therefore, the ’Extract Surface’ filter can be applied again. This results in a 3D representation
of the outer surface, which can be saved by Paraview to a STL file. Such files can be opened by 3D
printer software and printed. This was done for the three examples as presented in the paper. Images
of the resulting 3D prints are shown in Figure 4.2.

(a) Image of the 3D printed result of the simply stiffened plate for the case of 3 templates per type. The shown result deviates from the one
presented in the paper, for this result the upper value of the volume constraint was set to 𝑉max = 0.33 ⋅ 𝑉init.stiff..

(b) Image of the 3D printed result of the orthogonally stiffened plate for the case of 7 templates per type.

(c) Image of the 3D printed result of the orthogonally stiffened fuselage shell for the case of 3 templates per type.

(d) Image of the 3D printed result of the orthogonally stiffened fuselage shell for the case of 3 templates per type with the top of the stiffeners
removed.

Figure 4.2: An overview of images of the 3D prints for the numerical examples as presented in the paper. In (a) the simply
stiffened plate is presented. The orthogonally stiffened plate is shown in (b). For the practical example of a orthogonally stiffened
fuselage shell the results are shown in (c) and (d).

It is observed, that in some cases, at an angled connection of two planes of facet shell elements, the
translation in normal direction results in a 3D mesh with intersections. These intersections are handled
most of the times correctly by the 3D printer software. However, in some situations where this is not
the case, defects in the prints can occur. A more thorough understanding of this problem is required,
such that problems that arise can be prevented up front.



5
Conclusions and recommendations

5.1. Conclusions
Stiffened shell structures are widely used in engineering, but due to their thinwalled features, these
structures are usually sensitive to outofplane loadings, imperfections, vibrations and buckling. These
responses are influenced by the topology of the stiffeners and the layout of the stiffeners on the base
shell. Moreover, the tendency in industry is towards designing structures with fewer components,
since it allows increased and cheaper quality control, more accessible mass production and therewith
reduction of costs. The aim of this thesis was to develop an optimization method that simultaneously
optimizes the modular stiffener components including their topology and layout on a base shell. This is
of importance, since the design of the stiffener layout and topology is typically based on the designers’
intuition or existing designs, which may not be optimized and hence will not result in the most efficient
design.

The aim of this thesis is achieved by the proposed optimization method of this work, which combines
and extends two existing methods. It can be briefly concluded that the proposed optimization method:

• Enables simultaneous optimization of the stiffener topology and layout of stiffeners on shells and
plates,

• Incorporates a fixed, but limited, number of integer modules in a threedimensional structure,
• Reduces the number of design variables,
• Prevents mixing of the boundaries of the domains through the adjusted density filter,
• Gradually drives the templates to topologies with distinct solid/void boundaries and a clear layout
in the ground structure because of the continuation scheme,

• Allows conceptualdesigns for stiffened plates and shells with different number and formats of the
module templates.

The proposed method was successfully implemented around the Charles finite element analysis envi
ronment and applied to several examples of stiffened plates and a more practical stiffened shell fuse
lage. For all examples, themethod has shown to converge to designs with distinct solid/void boundaries
in the module topologies and a clear layout in the ground structure. These designs can be reasoned
logically from the boundary conditions and loads. For example, the symmetric stiffened plate examples
resulted in symmetric designs and in all examples, the majority of the material was placed in the areas
where the displacements were estimated to be largest due to the loadings. Moreover, it was shown
that allowing for more templates increased the design space and therefore resulted in lower values
for the compliance. The innovative designs can be achieved using a limited number of templates and
therefore a reduced number of design variables.

Moreover, the numerical examples presented in the paper were successfully converted into physical
structures through the use of additive manufacturing (3D printing). This shows the manufacturability
of these structures. This was performed by using the advanced filtering functions of the software Par
aview. It can be briefly concluded that the proposed conversion method:
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• Enables the conversion of a mesh consisting of facet shell elements into its topology optimized
3D equivalent,

• The resulting 3D mesh can be manufactured using 3D printing.

This work contributes to the research field of topology optimization by proposing an optimization
method that fills the gap of optimizing the layout of the stiffeners on the base shell and successively the
topology of the individual stiffeners. More practically, it can be concluded that the proposed conversion
method enables physical production of the topology optimized results using additive manufacturing.
The resulting methods of this work results in a design tool that can be utilized in the conceptualdesign
phase, to generate innovative modular designs.

5.2. Recommendations
The recommendations are separated into three parts: the current implementation of the proposed
optimization method, future applications or extensions of the proposed optimization method and the
additive manufacturing.

Firstly, it is recommended to develop a more thorough understanding of the influence of the initial
conditions on the final results. The same holds for the continuation scheme. The conditions for increas
ing the penalty factors and their influence on the final design should be more thoroughly investigated.
Finally, the filtering is considered. In this work, an adjusted density filter with a constant relative filter
radius is adopted. The filter radius is implicitly describing the minimal feature size that can arise in
the topology. Therefore, the influence of the filter radius has to be taken into account in more detail.
Additionally, the density filtering also opens up new possibilities. For example, the filter radius could
be adjusted per module template to provide a minimal feature size per module.

Secondly, for the future applications and extensions of the proposed method, the importance of
different objective functions is recognized. As already stated in the Introduction in Chapter 1, thin
walled structures are also sensitive to vibrations and buckling. Therefore, it is recommended to include
dynamics in the objective function and nonlinearity in the finite element analysis. As stated in the Intro
duction of the paper, Section 3.1, the performance of modular structures can be increased by allowing
additional module properties as design variables or by introducing more modules to the structure. This
work only focuses on the latter and therefore the inclusion of additional module properties such as the
rotation can be improved in future work. In this work, the method is mainly applied to stiffener domains.
It should be noted that the method is defined very generally. This opens up possibilities to apply the
method to domains of different shapes to further extend the range of applications. Moreover, the gen
erality of this method allows for different topological description methods. In this work, the material
density based topology optimization using SIMP was utilized, although the method can also be com
bined with other topological description methods, such as levelset.

For the final part, the additive manufacturing, it is recommended to investigate defects that can
occur in the 3D printing of the converted mesh. In some cases, at an angled connection of two planes
of facet shell elements, the translation in normal direction results in a 3Dmesh with intersections. These
intersections are handled in most cases correctly by the 3D printer software. However, a more thorough
understanding is needed for the situations where this is not the case, such that problems in the printing
can be prevented up front.



A
Implementation of the proposed method

In this appendix, details regarding the implementation of the proposed method in the Pascal program
ming language are given. This is done through the flowchart as provided in Figure A.1. Every block
represent an executable. An executable needs certain inputs and gives certain outputs. At the start
of this thesis project, the finite element analysis, Charles and the MMA optimizer executables were
already available. The other executables in Figure A.1 are written to implement the proposed method.
The implementation was done in the Pascal programming language, which can be compiled to form
an executable. A description of every executable is given for future reference. This is provided in
three phases, the first phase is the preprocessing. Here, the preparations for the optimization are
performed, as desribed in Section A.1. The second phase is the optimization, the details are provided
in Section A.2. Finally, the results needs to be interpreted. This can be done by the opensource data
visualization tool Paraview. Details on, this socalled postprocessing, are provided in Section A.3.

The source code, including documentation and an example can be retrieved from a TU Delft Gitlab
repository via an invitation provided by Fred van Keulen. This repository can be accessed via: https:
//gitlab.tudelft.nl/charles/modularstiffenertopologyoptimizaton.

A.1. Preprocessing
The preprocessor, ’(x)pre’ forms the start of the method, see Figure A.1. This executable is used to
build a mesh. Thereafter, the executable ’makeTemplateFile’ reads the information file (’.inf’) from the
preprocessor. The result of this executable is a file called ’templates.input’. In this file an example is
written, which must be followed to specify the parents, their according children and nondesign area’s
for groups of elements, called branches, in the mesh.

The executable ’prepareModularTopologyOptimization’ reads the mesh ’.inf’ file and the filled ’tem
plates.input’ file to write the initial design variables. The initial values are determined according to
Section 3.2.9 in the paper. Moreover, also the initial penalty factors for the continuation scheme are
written to a file called ’PenaltyFactors.output’. More details on the continuation scheme are provided
in the paper in Section 3.2.3.

A.2. Optimization
After performing these two preprocessing steps, the optimization can be started. This is done by run
ning the executable ’mma’, this will call the executable ’ModularTopologyOptimization’. This executable
executes ’MMAtoCharles’, ’Charles’ and ’CharlesToMMA’ every iteration, as illustrated in Figure A.1.

In the executable ’MMAtoCharles’ the design variables xdesignvars., in terms of the template material
densities, 𝜌𝑡,𝑑 and the weight factors between the templates and stiffener domains, 𝑤𝑠,𝑡 are mapped
to the according parent and children element material densities in the physical mesh xphysical, see Fig
ure A.1. This is performed according to the mapping as provided in Section 3.2.3 in the paper.
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In ’Charles’ the filtering is performed first, according to the description as provided in Section 3.2.6
in the paper. Thereafter, the finite element analysis is performed. Also the compliance 𝑐, volume 𝑉 and
their sensitivities w.r.t. the element material densities are calculated. The inverse of the filter is then
applied to the sensitivities. These sensitivities are denotes as ∇∇∇xphysical, which are 𝜕𝑐/𝜕𝜌𝑒 and 𝜕𝑉/𝜕𝜌𝑒
respectively, see Figure A.1.

The physical sensitivities are retrieved and mapped to the sensitivities w.r.t. the design variables,
∇∇∇xdesignvars. by the executable ’CharlesToMMA’, see Figure A.1. This is performed by the sensitivity
analysis as provided in Section 3.2.8 of the paper. The mappings provided in this section are com
bined with the design variables xdesignvars. for the current iteration, to calculate the sensitivities of the
compliance and volume w.r.t. weight factors, 𝜕𝑐/𝜕𝑤𝑠,𝑡 and 𝜕𝑉/𝜕𝑤𝑠,𝑡 along with the sensitivities of the
compliance and volume w.r.t. material densities of the templates, 𝜕𝑐/𝜕𝜌𝑡,𝑑 and 𝜕𝑉/𝜕𝜌𝑡,𝑑. More details
on this termination criteria are provided in the paper in Section 3.2.7.

A new set of design variables is calculated by ’mma’ using the values for the compliance, volume
and their according sensitivities. The optimization is terminated, when the continuation of the penalty
factors has reached 5 and a maximum number of iterations is reached or when the relative objective
change is smaller than a prescribed amount.

A.3. Postprocessing
The interpretation of the optimization result is performed using the program Paraview. Paraview is
an opensource data visualization tool. Before being able to interpret the results, a compatible file
format has to be written. This is done by the ’processModularTopologyOptimization’, as illustrated in
Figure A.1. This executable retrieves a simple VTK file from the postprocessor for the optimal design
and attaches the template data to it. As such, the parent and their according children relationships,
nondesign domains, and locations in the mesh for every template can be visualized.

Figure A.1: Implementation of the proposed method in the Charles environment. Illustrated is the successive execution of
executables, where the name is denoted between punctuation marks, or programs with their main function described. The
details per executable are given in this Appendix.



B
Verification of the finite element analysis

In this Appendix, the input codes and results for the verification of the finite element analysis are pro
vided. In Section B.1 the nonstiffened shell is presented. The stiffened shell is presented in Sec
tion B.2.

B.1. Nonstiffened shell
ANSYS Mechanical APDL input
The input code can be retrieved via: https://github.com/coen1111/Thesis/blob/master/
VerificationFEA/Nonstiffenedshell/ANSYS_APDL_command_code.txt

Figure B.1: Resulting setup from the ANSYS APDL code. Shown are the boundary conditions and loadings for the nonstiffened
shell verification.
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34 B. Verification of the finite element analysis

ANSYS results

Figure B.2: Threedimensional view of the displacement field for the case of 2500 finite elements. The center displacement is
reported as 0.665888 160 2228 × 10−4 m.

Figure B.3: Threedimensional view of the displacement field for the case of 10000 finite elements. The center displacement is
reported as 0.667346 246 1667 × 10−4 m.
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Figure B.4: Threedimensional view of the displacement field for the case of 22500 finite elements. The center displacement is
reported as 0.668004 582460 5 × 10−4 m.

Figure B.5: Threedimensional view of the displacement field for the case of 40000 finite elements. The center displacement is
reported as 0.668321 162620 1 × 10−4 m.



36 B. Verification of the finite element analysis

Charles input
The input code can be retrieved via: https://github.com/coen1111/Thesis/blob/master/
VerificationFEA/Nonstiffenedshell/Charles_input_code.txt

Charles results

 0.000e+00

 7.0e-05

Plotted: displacement in z-direction in deformed configuration
Figure B.6: Threedimensional view of the displacement field for the case of 1534 finite elements. The center displacement is
reported as 6.641733 394 × 10−5 m.

 0.000e+00

 7.0e-05

Plotted: displacement in z-direction in deformed configuration
Figure B.7: Threedimensional view of the displacement field for the case of 5830 finite elements. The center displacement is
reported as 6.628420 096 × 10−5 m.

https://github.com/coen1111/Thesis/blob/master/Verification-FEA/Non-stiffened-shell/Charles_input_code.txt
https://github.com/coen1111/Thesis/blob/master/Verification-FEA/Non-stiffened-shell/Charles_input_code.txt
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 0.000e+00

 7.0e-05

Plotted: displacement in z-direction in deformed configuration
Figure B.8: Threedimensional view of the displacement field for the case of 22700 finite elements. The center displacement is
reported as 6.628890 801 × 10−5 m.

 0.000e+00

 7.0e-05

Plotted: displacement in z-direction in deformed configuration
Figure B.9: Threedimensional view of the displacement field for the case of 43632 finite elements. The center displacement is
reported as 6.628922 795 × 10−5 m.
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B.2. Stiffened shell
ANSYS Mechanical APDL input
The input code can be retrieved via: https://github.com/coen1111/Thesis/blob/master/
VerificationFEA/Stiffenedshell/ANSYS_APDL_command_code.txt

Figure B.10: Resulting setup from the ANSYS APDL code. Shown are the boundary conditions and loadings for the stiffened
shell.

https://github.com/coen1111/Thesis/blob/master/Verification-FEA/Stiffened-shell/ANSYS_APDL_command_code.txt
https://github.com/coen1111/Thesis/blob/master/Verification-FEA/Stiffened-shell/ANSYS_APDL_command_code.txt
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ANSYS results

Figure B.11: Threedimensional view of the displacement field for the case of 2130 finite elements. The center displacement is
reported as 0.274302 379160 4 × 10−3 m.

Figure B.12: Threedimensional view of the displacement field for the case of 8530 finite elements. The center displacement is
reported as 0.280513 129279 1 × 10−3 m.
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Figure B.13: Threedimensional view of the displacement field for the case of 19170 finite elements. The center displacement
is reported as 0.283435 840 8237 × 10−3 m.

Figure B.14: Threedimensional view of the displacement field for the case of 34080 finite elements. The center displacement
is reported as 0.285226 049 1081 × 10−3 m.
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Charles input
The input code can be retrieved via: https://github.com/coen1111/Thesis/blob/master/
VerificationFEA/Stiffenedshell/Charles_input_code.txt

Charles results

 1.000e-05

 2.0e-03

XY Z

Plotted: displacement in z-direction in deformed configuration
Figure B.15: Threedimensional view of the displacement field for the case of 5088 finite elements. The center displacement is
reported as 2.733826 585021 342 × 10−4 m.
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 2.0e-03

XY Z

Plotted: displacement in z-direction in deformed configuration
Figure B.16: Threedimensional view of the displacement field for the case of 19840 finite elements. The center displacement
is reported as 2.846077 644 660680 × 10−4 m.

https://github.com/coen1111/Thesis/blob/master/Verification-FEA/Stiffened-shell/Charles_input_code.txt
https://github.com/coen1111/Thesis/blob/master/Verification-FEA/Stiffened-shell/Charles_input_code.txt
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 1.000e-05

 2.0e-03

XY Z

Plotted: displacement in z-direction in deformed configuration
Figure B.17: Threedimensional view of the displacement field for the case of 44552 finite elements. The center displacement
is reported as 2.891251 289 976824 × 10−4 m.



Bibliography
[1] C. Bakker. Literature review: Optimization of stiffener layout and size on shells with stiffness and

eigenfrequency objectives. Literature review, 2019.

[2] O.K. Bedair. Stability, free vibration, and bending behavior of multistiffened plates. J. of Eng.
Mech., 123(4):328–337, 1997.

[3] B. Briseghella, L. Fenu, C. Lan, E. Mazzarolo, and T. Zordan. Application of topological optimiza
tion to bridge design. J. of Bridge Eng., 18(8):790–800, 2013.

[4] J. Chung and K. Lee. Optimal design of rib structures using the topology optimization technique.
Proc. of the Inst. of Mech. Eng., Part C: J. of Mech. Eng. Sci., 211(6):425–437, 1997.

[5] R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt. Concepts and Applications of Finite Element
Analysis. 4th edition, 2001. ISBN 9780471356059.

[6] J. T. P. De Queiroz, M. L. Cunha, A. Pavlovic, L. A. O. Rocha, E. D. Dos Santos, G. da S. Troina,
and L. A. Isoldi. Geometric evaluation of stiffened steel plates subjected to transverse loading for
naval and offshore applications. J. of Mar. Sci. and Eng., 7(1):7, 2019. ISSN 20771312.

[7] J.D. Deaton and R.V. Grandhi. A survey of structural and multidisciplinary continuum topology
optimization: post 2000. Struct. and Multidiscip. Optim., 49(1):1–38, 2014. ISSN 16151488.

[8] K. Higginson, D. N. Fernando, and F. Van Keulen. Topology optimization framework for modular
structures. 2020.

[9] ANSYS Inc. Shell181 element description. 2020.

[10] Kitware Inc. Paraview version 5.8. 2020.

[11] Kitware Inc. The VTK User’s Guide. 11th edition, 2020. ISBN 9781930934238.

[12] S. Koppen. Topology Optimization of Optomechanical Systems. Thesis, 2017.

[13] Y.C. Lam and S. Santhikumar. Automated rib location and optimization for plate structures. Struct.
and Multidiscip. Optim., 25(1):35–45, 2003. ISSN 16151488.

[14] M. Langelaar and F. Van Keulen. Engineering optimization: Concepts and applications. 2019.

[15] Z. S. Liu, J. S. Hansen, and D. C. D. Oguamanam. Eigenvalue sensitivity analysis of stiffened
plates with respect to the location of stiffeners. Struct. optim., 16(2):155–161, 1998. ISSN 1615
1488.

[16] P.Y. Papalambros and D. J. Wilde. Principles of optimal design : modeling and computation.
Cambridge University Press, Cambridge, 2nd edition, 2000. ISBN 0521622158 9780521622158
0521627273 9780521627276.

[17] M. P. Rossow and A. K. Ibrahimkhail. Constraint method analysis of stiffened plates. Comp. &
Struct., 8(1):51–60, 1978. ISSN 00457949.

[18] S. Timonshenko and S. WoinowskyKrieger. Theory of plates and shells. Mc GrawHill book
company, 2nd edition, 1989.

[19] F. Van Keulen and J. Booij. Refined consistent formulation of a curved triangular finite rotation
shell element. Int. J. for Numer. Meth. in Eng., 39(16):2803–2820, 1996. ISSN 00295981.

[20] W. Zhang, Y. Liu, Z. Du, Yi. Zhu, and X. Guo. A moving morphable component based topology
optimization approach for ribstiffened structures considering buckling constraints. J. of Mech.
Des., 140(11):12, 2018. ISSN 10500472.

43


	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Aspects of design optimization
	Problem formulation
	Verification of the finite element analysis
	Non-stiffened shell
	Stiffened shell

	Sensitivity analysis

	Paper: Simultaneous optimization of the topology and the layout of modular stiffeners on shells and plates
	Introduction containing a literature review
	Combined optimization of the stiffener modular layout and topology
	Modularity in the ground structure
	Topology optimization using the Solid Isotropic Method with Penalization
	Mapping to the ground structure with prior unkown module template topology
	Finite element analysis
	Problem definition
	Density filtering per stiffener domain
	Gradient based optimization
	Sensitivity analysis
	Initial conditions

	Numerical examples
	Simply stiffened plate
	Orthogonally stiffened plate
	Orthogonally stiffened shell: airplane fuselage

	Conclusions and recommendations

	Additive manufacturing of numerical examples
	Conclusions and recommendations
	Conclusions
	Recommendations

	Implementation of the proposed method
	Pre-processing
	Optimization
	Post-processing

	Verification of the finite element analysis
	Non-stiffened shell
	Stiffened shell

	Bibliography

