Urban environment effects on pedestrian route choice for train station access and egress

Johan Klaas Krom

January 11, 2022

Preface

This report is the final version of the master thesis by Johan Klaas Krom (student number: 5188636) towards a degree in Transport, Infrastructure and Logistics at TU Delft. It is written in cooperation with the Mobility Group at Witteveen+Bos over the summer and autumn of 2021. The final presentation took place on 18 January 2022.

The supervisory committee for this thesis consists of Dr. Winnie Daamen (committee chair), Dr. Dorine C. Duives and Dr. Jan-Anne Annema. From Witteveen+Bos the project was supervised by Elise Zuurbier and Laurens Versluis.

There are many people I would like to thank for their support throughout the process of writing this thesis, not least of all my supervisors, friends, family and girlfriend. In addition to these, there are three groups of people of whom I would like to make specific mention:

First, I would like to thank all respondents who filled in the survey upon which this study is based. The data you provided made this entire project possible.

Second, I would like to thank representatives from 92920v.nl and Wandelnet for taking their time to advise on matters related to pedestrian mobility. I would moreover like to thank you for sharing the survey within your network.

Finally, I would like to thank the countless authors, experts and laymen who have written websites, asked questions and composed meticulous answers on almost every conceivable problem in Python coding. Proper referencing of these names would be close to impossible, but without them so would have been this thesis.

Project summary

Background

This thesis studies the theoretical notion of pedestrian route choice. It does so with the aim of identifying how features in the urban environment affect route choice for people who walk to or from a heavy rail train station in the Netherlands. Methodologically, it tests a number of innovations to self-reported revealed preference pedestrian route choice studies. Under this new approach, the study is performed in an entirely digital manner - both in terms of data collection, processing and analysis.

Why is this relevant? Walking can and does fulfil a substantive role in local transport. This role becomes particularly apparent when considered as access or egress mode for multimodal trip-chains. A study by Shelat, Huisman, & van Oort (2018) on travel movements to and from public transport facilities in the Netherlands finds that the deterrence function for walking dominates all other modes up to 1 km, and remains the second-most preferred mode (after cycling) up to 2.3 km. A better understanding of where people are inclined to walk enables policymakers to better integrate station areas with the wider urban environment and stimulate healthy mobility behaviour throughout their cities.

What research gaps does this address? Through a review of a the academic and grey literature on the way the urban environment affects pedestrian route choice, two such gaps are identified: first, a lack of studies in Europe, and in the Netherlands specifically. It is argued that various societal dimensions such as culture and legal frameworks may cause differences in mobility behaviour. As such, research performed overseas may not be applicable elsewhere. As such, local research is required. This thesis performs such research. Second, a focus of prior studies on small-scale, well demarcated populations and geographies. It is noted that no studies have sought to study an entire country (even a small one like the Netherlands) before. As infrastructure is used by a mix of demographic groups, it is argued that a comprehensive research effort may be of value. This thesis provides such research.

Research questions

In order to perform a study which can provide an initial insight to these gaps in the literature, the following main research question is defined:

"To what extent do features in the urban environment cause pedestrians to divert their walking routes to or from heavy rail train stations in the Netherlands?"

This question is operationalised by means of four sub-questions, of which the last two specify types of results which this thesis seeks to obtain. Both of which are formulated as null hypotheses: it is expected that, ceteris paribus, people will take the mathematically optimum route (sub-question three) and do not base their route choice on features which may or may not be present along routes (sub-question four).:

- 1. Whether routes chosen by people differ from two null hypothesis routes in terms of the urban features along which routes lead. Here, the null hypothesis routes are defined as shortest path or least directional turns paths, which they would be expected to take according to extant transport engineering and urbanism research.
- 2. Whether routes chosen by people more often differ from other routes which they are consciously aware of but take less often in terms of the urban features present along such routes. This tests the effect of urban features specifically with regards to the route choice set which people might consider in practice.

Methodology

Reflecting on the methodologies which have been used by similar studies to date, this thesis identifies that research efforts have so far not used the full range of possibilities which are offered by digital tools and open geographic data. This thesis approaches the research gaps identified above by testing an integrated process consisting of an online GIS-survey and analytical framework which dynamically matches routes with data from high quality online geographic data sources. This method is seen as potentially enabling greater scalability and less on-site manual effort by researchers.

The method can be summarised as follows: an online survey is distributed in which respondents are asked to provide a collection of three walking routes which they use to access and/or egress a train station in an online survey. Subsequently, these 'known routes' are overlaid with a selection of open geodata layers on variables which are deemed to be of potential interest in determining pedestrian route choice. By locating these variables 'on' a route, it is possible to score routes in terms of the extent to which they contain certain variables. Finally, these scores can be used to perform various statistical analysis in order to generate theoretical insight. This thesis re-tests features which have been identified as having a significant effect in prior studies, so as to see whether the effects on these also hold within the identified literature gaps. Based on this, six data categories are identified: Known routes, route choice frequency, urban variables, subjective variables and interaction effects (respondent background). All data categories with the exception of urban features, are obtained through an online-distributed survey. Urban features are obtained from a range of publicly available open data sources, such as Open StreetMaps and sources managed by the Dutch land planning agency (Kadaster). All in all, 41 distinct urban variables, 12 subjective variables and 9 interaction effects are selected for analysis.

This data is analysed with the aim of understanding route choice in three ways:

- 1. Route geometry analysis: this analysis type compares routes in terms of their geographic 'shape'. This gives an idea of how far respondents are willing to go out of their way to experience certain urban features.
- 2. Route feature aggregate analysis: this analysis compares samples in terms of the number of features on each route as a whole. For instance the number of shops along route A are compared to the number of shops along route B etc.
- 3. Within-route feature distribution analysis: this analysis seeks to identify whether the location of features along a route differs from alternative routes. For this, routes are divided into quadrants, with the feature score per route per quadrant being compared to some alternative.

Statistical analysis is performed using descriptive statistics. Although it is recognised that modelling approaches generally deliver stronger results, too few responses were obtained to apply this technique. The inability of the experimental code applied in this thesis to run tests across large numbers of respondent routes, as would be required to obtain enough data per respondent. This limitation is counterbalanced in two ways: first, a highly permissive significance level of $\alpha = 0.1$ is included to identify variables exhibiting slight effects. Second, a qualitative 'verification' is applied to the quantitative results. This qualitative verification consists of asking respondents to provide written motivation for their route choice, and text-coding these responses to gain insight on features which respondents consider to be 'attractive' or 'repelling'.

The study is implemented using an online ArgGIS 123 Survey tool for respondent data collection. For data preparation, processing and analysis a series of python scripts are developed which draw directly on survey results. For data processing, four tools are purpose made for this study: first, a map-matching algorithm, which aligns manually drawn routes with the existing infrastructure network. This is performed by placing masks around respondent-entered routes and computing shortest paths within these. Second, a WFS and a WMS downloading algorithm, which retrieves urban features data from a series of online sources. Third, a GeoTIFF downloader and matching algorithm, which downloads and matches raster data to route data. Fourth, a data-matching algorithm is developed which matches urban feature data to each link of each route. With this data in place, the statistical analysis can be applied.

Results and analysis

Following application, five main findings are identified:

- 1. Variable coefficient confirmed: Most variables tested are confirmed. Amongst others, respondents exhibit a mixed attraction/avoidance of retail/business, an attraction towards urban green, well-maintained footpaths, traffic safety, lighting and obstruction-free footpaths, and finally an avoidance of noise, darkness and social risks.
- 2. Variable coefficients deviated from: This study finds results which contrast outcomes of prior studies on X variables: traffic signals (avoided, not attracted to), other people (attracted to, not avoided quite as distinctly) and weather protection (not actively sought out).
- 3. A preference for 'fastest' routes: Geometric analysis found a great similarity between shortest paths and high-frequency respondent routes. However, subjective data and qualitative motivations note a distinct appreciation of 'faster' routes too. When combined with the avoidance of traffic signals, it is understood that (perceived) route speed may indeed be an overarching route choice rationale for pedestrians.
- 4. Susceptibility to urban features on station-egress legs: analysis shows that pedestrians exhibit greater deviations from the shortest path when they egress a station. This effect is characterised in two ways: recreational (e.g. a higher incidence of shops) and safety (an attraction to e.g. lighting and routes which are appreciated at night).
- 5. Concentration of 'green' the third quadrant: within-route analysis shows that green values (especially grass) feature at substantially higher concentrations between 50% and 75% of route length (in distance from the station).

Academically, these findings are seen as an initial inroad into research on pedestrian route choice in the Netherlands. Further research is advised on the topic, with an effort to scale up the present study so that more more variables are considered, variables are included in a more spatially-sensitive manner, and more advanced tools can be applied.

With regards to the societal value of this study, the findings provide insights which urban designers and policymakers can take along in their work. Especially the avoidance of traffic signals may be of some relevance here.

Methodologically, this thesis may be regarded as a proof of concept of the digitally integrated process for self-reported revealed preference pedestrian route choice studies. The method has managed to generate results which are verified by qualitative tests. If code is improved and current assumptions are calibrated further, this may offer a promising avenue for future studies to explore.

For further research, it is recommended that this study is replicated with a larger and more geographically balanced respondent sample so as to enable analysis based on modelling rather than descriptive statistics. Additionally, future studies can set out to include include some of the variables which this study did not get round to. The feature selection process might also be improved upon, with a buffering approach that is more sensitive to link-level line-of-sight being a top priority. A final recommendation pertains to within-route analysis, which appears to be a scantly studied topic overall. This thesis has shed some initial light on how distributions differ from baseline samples. However, a more rigorous investigation could study distributions which are preferred by people on their own accord without testing these against baseline samples. As far as this study can assess based on the literature which it has reviewed, that would establish an as of yet unstudied subarea of research.

Contents

Pr	reface	е		i					
Pı	rojec	t sumr	mary	ii					
1	Intr 1.1 1.2	oducti Projec Reseau	ion et outline	1 1 2					
2	The	Theoretical background 6							
	2.1	Litera	ture review	6					
		2.1.1	Literature collection procedure	6					
		2.1.2	Theoretical background	8					
		2.1.3	Prior research on pedestrian route choice	11					
	2.2	Reflec	tions on literature	13					
		2.2.1	Scientific value of this study	13					
		2.2.2	Wider value of this study	14					
		2.2.3	Theoretical framework	16					
3	Met	thodol	Ωσν	19					
Č	3.1	Conce	ptual structure	19					
	0.1	3.1.1	Understanding the research questions	20					
		3.1.2	Research paradigm and analysis	22					
		3.1.3	Conceptual model	24					
	3.2	Appro	ach	25					
		3.2.1	Data requirements and collection	26					
		3.2.2	Data analysis	37					
		3.2.3	Statistical analysis	43					
	3.3	Implei	mentation	49					
		3.3.1	Survey design	50					
		3.3.2	Route data preparation	51					
		3.3.3	Loading urban features	60					
		3.3.4	Statistical data preparation	62					
		3.3.5	Statistical testing	62					
	3.4	Metho	odology output structure	64					

4	Results 67		
	4.1	Survey outcomes	67
		4.1.1 Survey coverage	67
		4.1.2 Qualitative responses	70
	4.2	Sub-question 3: null-hypothesis routes	74
		4.2.1 Route geometry results	74
		4.2.2 Route-aggregate results	78
		4.2.3 Within-route distribution results	84
	4.3	Sub-question 4: respondent route choice sets	86
		4.3.1 Route geometry results	86
		4.3.2 Route-aggregate results	90
		4.3.3 Within-route distribution results	95
5	5 Analysis 98		
	5.1	Sub-question 3: Null hypothesis routes	98
		5.1.1 Route geometry analysis	98
		5.1.2 Route-aggregate analysis	100
		5.1.3 Within-route distribution analysis	102
	5.2	Sub-question 4: Respondent route choice sets	103
		5.2.1 Route geometry analysis	103
		5.2.2 Route-aggregate analysis	104
		5.2.3 Within-route distribution analysis	107
	5.3	Fundamental null hypotheses	107
		5.3.1 Sub-question $3 \ldots \ldots$	108
		5.3.2 Sub-question 4 \ldots 1	109
6	\mathbf{Dis}	cussion and conclusions 1	.10
	6.1	Main findings	110
		6.1.1 Theoretical findings	110
		6.1.2 Methodological findings	111
	6.2	Main conclusions	113
	6.3	Assumptions and limitations	114
	6.4	Implications for practice	116
	6.5	Implications for research	116
7	Ref	ferences 1	19
			•
\mathbf{A}	ppen	ndices 1	.26
Α	A Features: literature review 127		
в	B Features: selected 130		
\mathbf{C}	C Map matching algorithm 134		
D	D Survey English version 13		

\mathbf{E}	Survey Dutch version	151
\mathbf{F}	Results	165
\mathbf{G}	Python scripts	3 48

Chapter 1

Introduction

1.1 Project outline

Despite often being lumped together as 'active modes', their respective differences in speed, route and movement physics causes cycling and walking to be treated rather distinctly in both academic research and planning practice. Although long neglected, cycling is now recognised for its ability to autonomously compete with various motorised modes. As such it is fast maturing in its consideration as a 'serious' means of local transportation (Ton, 2019). In contrast, research on pedestrian travel mostly focuses on single-facility flows, crowd behaviour and evacuation planning.

This view is however incomplete: walking can and does fulfil a substantive role in local transport. This role becomes particularly apparent when considered as access or egress mode for multimodal trip-chains. As with cycling, public transport expands the range of an individual traveller. In contrast to cycling, walking does so without the need for the traveller to arrange an additional vehicle. A study by Shelat et al. (2018) on travel movements to and from public transport facilities in the Netherlands finds that the deterrence function for walking dominates all other modes up to 1 km, and remains the secondmost preferred mode (after cycling) up to 2.3 km. When considered in terms of actual mode shares, it is found that most access trips to bus, tram or metro stops under 1.5 km, and egress trips from heavy rail stations are made on foot. For the busiest 30 train stations in the Netherlands, 13-44% (mean 25.3%) of access trips and 24-80% (mean 52.8%) of egress trips are made on foot (Nederlandse Spoorwegen, 2020). When considered for societies where cycling is less prevalent (i.e. most of the world), walking generally takes an even greater share of the modal split (e.g. Daniels & Mulley (2013)). As the one mode which is available to a very large part of the entire human species, walking plays an important role as means of local transport. Through a connection to public transport, walking also becomes a mode of importance to longer-distance transport.

The figures above belie a marked variation in people's propensity to walk.

One notable feature is the low share of walking on public transport access and comparatively high share upon egress. Public transport scholars have identified several effects which would explain these discrepancies by looking at characteristics of public transport services, such as frequency and network density (e.g. Alshalalfah & Shalaby (2007)). Service design however offers but a partial explanation. When considered based on mode-inherent characteristics, numerous studies point out that people's propensity to walk varies with the 'walkability' of the local environment, the length and approach direction of first/last mile trip-legs and activity-end vehicle availability (see chapter 2). These points suggest that to come to a walking-sensitive set of transport planning tools attention must be given to the design of the local urban environment itself.

As an important means of local transport, which through access and egress mode-chains also impacts upon longer-distance transport, walking is increasingly noticed as mode of importance by practitioners. One topic which is of particular interest in this vein is the connection of train stations to the wider urban environment in terms of pedestrian accessibility. As mode which has enjoyed comparatively little attention in research so far, a need exists for a better understanding of how pedestrians navigate the urban sphere. Better understanding of such navigational behaviour permits for the design of urban areas that stimulate pedestrian movement: for instance to make it more appealing for people to walk to the station. In the light of this realisation, this project sets out to study the effect of the urban environment on peoples' route choices during utilitarian walking trips.

This report is structured as follows: first the project's research questions and aims are outlined. Second, these aims are contextualised and underpinned by a structured review of the academic literature. Third, building on the research gap identified in the literature review, the project's methodological and analytical approach is outlined. Fourth, the implementation of this method is presented, and trade-offs therein are discussed. Fifth, the project's results are presented. The report finalises with a discussion of the project's findings.

1.2 Research objective

This thesis performs a study into the routes pedestrians take when they perform utilitarian walking trips. Recognising the particular role of walking in multimodal trip chains, the study focuses on trip-legs which are performed on foot to and from train stations. Route choice is studied with the intention to identify how it is influenced by local (neighbourhood or street-level) elements in the urban environment which are known to stimulate walking. As will be explored to greater detail in chapter 2, a substantial body of research exists on what types of urban environments stimulate walking at the local level. However, as found in section 2.1.3, rather little research appears to have been done on whether such local 'walkability' values affect people's actual inter-local walking routes. A better understanding of this topic will enable policymakers to better integrate station areas with the wider urban environment and stimulate healthy mobility behaviour throughout their cities. Consequently, this study sets out to answer the following main research question:

"To what extent do features in the urban environment cause pedestrians to divert their walking routes to or from heavy rail train stations in the Netherlands?"

This question implicitly contains a number of definitions and assumptions. First, the question specifies an effect of 'features' in the 'urban environment'. Here, 'features' are be to understood characteristics of the urban environment. These can be either physical (trees, buildings) or subjective (a sense of safety, an aesthetic quality). By extension, in referring to 'urban environment', this thesis implies the general publicly accessible space in cities, towns and other built-up areas. This definition is used because train stations generally serve urban areas and that these are consequently areas where walking has greater potential as mode of transport.

Second, although not made explicit to permit for some flexibility, this thesis primarily sets out to investigate so-called utilitarian walking trips: trips which people walk to go about their daily chores. This definition is applied because it envisions walking as a means to an end, rather than an end as of itself (as for e.g. recreational walking). Utilitarian trips are performed more often and have a bigger impact on urban infrastructure. Is such trips are better understood, this knowledge can be used to make urban areas nicer for people to live in.

Figure 1.1: General illustration of the problem which the main research question seeks to investigate: which of these three routes would people prefer to take while walking to and from the train station?

Third, for the context of the study either the origin or the destination of the pedestrian leg of a multimodal trip must be a Dutch 'heavy' rail train station. Note that the question specifies this particular type of train station so as to differentiate it from 'light' rail services such as trams or metros. This specification is made as 'light' rail services typically provide local transport services which compete on different mode choice sets and offer higher resolution networks. As such, these modes differently affect pedestrian behaviour. Note that, being a small country, Dutch 'heavy rail' services may cover distances and speeds which would be performed by lighter trains elsewhere. Operationally, these services generally provide connections between towns and cities, but might occasionally also be used for intra-urban transport in major cities with multiple stations.

Fourth, in specifying a 'diversion' some other 'non-diverted' route is presupposed. This is of interest as it implies that there are features in the urban environment which bring people to take a route that is different from the presupposed non-diverted one. This principle is illustrated in fig. 1.1. Following the literature, two perspectives on this matter are taken: on the one hand diversion compared to the mathematical optima of the shortest path and the least directional change path, and on the other hand diversions compared to the routes which people are actually aware of. More on this in section 3.1.1.

The main research question will be answered by dividing it into four subquestions. The first sub-question seeks to explore the current extent of knowledge on pedestrian route choice dynamics, and to identify a knowledge gap to which this project study can contribute. With the knowledge gap established, the second sub-question requests a the specification of a methodological approach which can generate results that can be used to answer the main research question. As the resources available to the study are not unlimited, the question also prescribes that the approach must be feasible.

Sub-question 1: "What features have previously been found to affect pedestrian route choice, in what way and how applicable are these findings to the Dutch context?"

Sub-question 2: "What methods and data are can be used to adequately answer the main research question given the project's operational constraints?"

With the theory and method set, the third and fourth sub-questions perform the analysis through which the main research question can be answered. These questions each work out one of the perspectives on route 'adjustment' in the main research question. Sub-question three sets out to learn how routs taken differ from those which are expected according to travel behaviour theory. Subquestion four investigates route adjustment in the context of those routes which people are actually aware of.

Sub-question 3: "To what extent do selected features in the urban environment correlate with diversions from pedestrians' shortest routes and least directional turns routes for trips to and from train stations?" Sub-question 4: "To what extent do selected features in the urban environment correlate with differences between the various routes which pedestrians' consider for their routes for trips to and from train stations?"

(a) The research sub-question 3 (b) The research sub-question 4

Figure 1.2: Illustrated definitions of the adjustment concept under investigation in either sub-question. The dotted lines illustrate the behavioural element of interest.

Note that the questions request the study of 'selected' features. This is necessary as it is practically impossible to study the full breath of all possible dimensions of the urban environment which a pedestrian is both consciously and unconsciously subjected to. For this thesis, selection will encompass a triple aim: to bolster scientific evidence on the (un)importance of features which only a few similar studies have so far found significant effects for, to test whether significant effects found on certain features in overseas studies hold in the Dutch context, and to identify new features of importance. This selection procedure is detailed in section 3.2.1.

Note that several assumptions are inherent to the research questions. Two points which are important to keep in mind here. First, this study is performed as master thesis work at an engineering college. This biases the tools and theoretical frameworks by which the research questions are addressed towards those which are quantitative rather than qualitative in nature. A similar study rooted in e.g. the humanities or social sciences at a more traditional university might opt for a fundamentally different approach. Second, the study takes place in the field of transportation sciences. It will focus on one part of the assignment phase of the classical four-step transport model. It is assumed that travellers have already decided to perform a multimodel trip including train travel and have determined at which station they will (dis)embark. It is moreover assumed that people have decided to access or egress the full distance to their station on foot.

Chapter 2

Theoretical background

This chapter presents a review of the academic and 'gray' literatures on the topic of pedestrian route choice. The aim of this chapter is to give all subsequent work a solid footing on the current state of knowledge in this area of research. The chapter is divided in two parts. In the first part an overarching literature review is given. In the second part, the findings from the review are reflected upon and a theoretical framework for this thesis is drawn up.

2.1 Literature review

As posited in research sub-question one, the project commences with a literature review aimed at identifying a knowledge gap. Bryman (2016) describes the potential purposes of a literature study as, amongst others, to identify current knowledge about an area of study and to develop relevant concepts and theories as well as to understand significant controversies within it. It also serves to identify unanswered research questions. Consequently, this paper follows a systematic review methodology, which is described as a four-step process: first, to define the purpose and scope of the review; second, to seek out relevant studies; third, to narrow down the literature list to meet the conditions stipulated under step one; and fourth, to analyse and synthesise the results.

2.1.1 Literature collection procedure

Purpose and scope

The purpose of this literature review is to answer sub-question one: to understand the current state of the art on the area of pedestrian route choice for trips to and from heavy rail train stations, and to identify knowledge gaps within this body of knowledge. For the purposes of this review, route choice is approached from the perspective of urban planning. This means that a particular focus will be taken to studies on the interaction between identifiable features of city and pedestrian flows.

Concepts	Pedestrian mode; route choice; infrastructure design			
Keywords	Pedestrian:	Walking, pedestrian, on foot		
	Route choice:	Choice set, utility maximisation		
	Infrastructure design:	Built environment, urban planning,		
		urban areas		
Truncation	(Pedestrian) AND (Route choice) OR			
	(Pedestrian) AND (Infrastructure design) OR			
	(Pedestrian) AND (Route choice) AND (Infrastructure design)			

Table 2.1: Conceptual and methodological framework for literature review

Relevant studies and conditionality

Works of literature are only included if they meet the following three requirements: first the topic meets the general concept structure outlined in table 2.1; second, the work is published as a doctoral dissertation or as an article in an academic (peer-reviewed) journal; third, the work is published recently (after the 1st of January 2010) or alternatively represents a seminal contribution that continues to be cited positively by recent publications.

Literature search

Literature is identified by application of a four-step search process. All sources are obtained through the Google Scholar search engine: First, TU Delft course literature is reviewed for potentially applicable readings. For this, the following courses were reviewed: *CIE5825 Advanced Public Transport Operations* and Modelling, *CIE5802-18 Advanced Transport Modelling* and *CIE5822 Ac*tive Modes. This search delivered six papers of potential relevance. Second, to converge the literature selection towards the state of the art, a search is performed for papers which cite the articles selected for further review under step two. For this the "citation"-function in Google Scholar is used. Articles which are deemed to offer a contribution which is in line with table 2.1 were added to the literature selection. This step adds 21 papers of potential relevance to the selection.

Third, to extend the review beyond chains of citations, the most relevant papers found in step two are reviewed for the journals in which they were published. The past two years-worth of issues from these journals are subsequently reviewed for contribution which are in line with table 2.1. Fourth, filtering. If the reading under step three leads to the discovery of particularly relevant additional sources, these are added to the literature selection. If such new sources are 'more' relevant that those currently selected, the less-relevant papers are discarded. New papers are again given a 'light' read. This process is performed iteratively, until no more new sources appear to come forward. Upon concluding this procedure, a set of 16 papers remained in the basic literature selection. To this selection were added three doctoral dissertations which were recommended by this project's supervisors, and a few which were sought to complement other specific gaps which were identified later on (e.g. practitioner-related sources).

2.1.2 Theoretical background

When studying human interaction with the urban environment, the field of human geography provides a insight. Here, a tradition of research exists on the study of human cognition in relation to their geographic surroundings: how people make sense of the place they're in and act accordingly. Such processes lie as theoretical foundation for the notion that pedestrian route choice is affected by the urban environment. As described by e.g. Knox, Marston, & Imort (2007), the real world emits environmental messages which are perceived by the human senses, brain and personality. Cognition emerges as the interpretation of these signals. This process is noted to be affected by culture. Knox et al. note that research has found five 'elements' into which human beings cognitively organise space. First, paths, representing challenges along which movement is possible. Second, edges, which represent barriers separating areas. Third, districts, spatial areas with an identifiable character (either physical or social). Fourth, nodes, which are distinct geographical points upon which human attention focuses - often in relation to travel behaviour. And fifth, Landmarks, representing exceptional nodes which function as spatial reference points in human behaviour.

The early history of pedestrian routing research can be traced as far back as 1978. In that year Brändli, Siegrist, Altherr, & Enz identified that pedestrians' willingness to walk to a bus stop varies per bus stop 'access zone'. Here zones are defined as the direction of the bus relative to the pedestrians' own position: people are willing to walk further if this matches the direction in which the vehicle is travelling. This research is complemented by early studies by e.g. Peperna (1982) and Lam & Morrall (1982) who try to assess people's willingness to walk based on features of the public transport service and land use patterns. As noted by Hillnhütter (2016) however, these (and other) historical sources are however limited due to their focus on the population density around stops as well as the methodology to determine walking distances.

In review of the literature, three 'phases' in pedestrian navigation research can be distinguished. These will be discussed over the following paragraphs.

The first phase pedestrian research emerged in relation to the concept of neighbourhood 'walkability'. This literature emerged driven by public health concerns during the first decade of the 2000's. This period witnessed renewed attention for the relationship between the built environment and people's propensity to engage in physical activities such as walking. In a literature review Lee & Moudon (2004) conclude that "[w]alking and biking emerge as prominent forms of physical activity and occur primarily in neighbourhood streets and public facilities, suggesting that building walkable and bikable communities can address health as well as transportation concerns" (p. 147). This conclusion is worked out in a widely-cited review by Ewing & Cervero (2010) who find that the relationship between travel and singular environmental features is mostly inelastic, but that multiple features combined could have a distinct effect. Overall these studies support the idea that the built environment can be used to stimulate walking behaviour. Together, these studies develop the concept of 'walkability', which represents the extent to which a single area (often a street or a neighbourhood) stimulates walking. Environmental features are often framed in terms of aggregated land use variables. Although walkability research has been ongoing for some time, major work is still being performed in this area, as exemplified by the province-wide walkability review by Goossen, Rip, Staritsky, & Thomas (2021).

The notion of walkability is a key term in the development of pedestrian research and continues to guide thinking until today. Kim, Park, & Jang (2019) notes that much research until now has been based on the idea what walkability is determined by "5 D's" as posited by Cervero, Sarmiento, Jacoby, Gomez, & Neiman (2009): density, diversity, design, distance to public transport and destination accessibility. Other studies (e.g. Knapskog, Hagen, Tennøy, & Rynning (2019)) take a less stylised approach, but list related features such as infrastructure, urban structure, surroundings and potential activities. A comprehensive review by Sugiyama, Neuhaus, Cole, Giles-Corti, & Owen (2012) focusing on the impact of 'destination' and 'route' elements (note that this source understands 'destination' and 'route' as isolated features of a local environment, rather than as descriptors for a coherent geographical path connecting some origin-destination (OD) pair) finds that 'utilitarian' walking - which can be understood as including pedestrian movements to access and egress public transport stops - is consistently associated with the vicinity of shops as well as the presence of sidewalks and general street connectivity. Finally, various authors (e.g. Lee & Moudon (2004)) find that people's propensity to walk due to the surroundings varies across sub-groups in the population.

The walkability concept reached beyond the academic sphere. A review of practitioner-related sources shows that the notion of 'walkability' has been taken up by a variety of companies and policy institutions. A range of US-based sources refer to the company 'WalkScore' (Walk Score (2021)) which maintains a proprietary definition for walkability. The Healthy Streets project (Healthy Streets Ltd. (2021)), which is referred to by several UK authorities and Dutch researchers (e.g. Ruimte voor lopen (2021)) outlines a set of ten quantitative and qualitative principles which integrate walking in the urban environment. These principles include e.g. 'everyone feels welcome', 'shade and shelter' and 'clean air'. As part of its ongoing open data initiative, the Municipality of Amsterdam publishes data sets on the 'walkability' based on crowdedness, sidewalk width and street-side obstacles City of Amsterdam (2021). As such it must be concluded that no single definition of 'walkabilty' appears to exist in either academic literature or practice.

The second phase of pedestrian research emerged around 2010 with the application of mathematically-defined route-finding models. With increasing availability of data, academic attention shifted from the study of aggregated 'walkability'-related notions to actual routes taken by pedestrians. Route choice is highly contingent on travellers' subjective perceptions, as found by e.g. Hess (2012) and Vreeswijk, Thomas, Van Berkum, & Van Arem (2014). When considering predominant principles in route choice, Shatu, Yigitcanlar, & Bunker

(2019) identify a tension between geographical and topological schools of thought. Here, the former is rooted in transport engineering approaches which seek to determine route choice in terms of shortest path definitions. Deviations from the shortest path are explained in terms of 'detour factors'. As recently confirmed by Bongiorno et al., pedestrian tend to take different routes when the origin and destination of a trip are reversed. Conversely, academic urbanists, drawing on the spatial syntax tradition posit the principle of least directional change as key determinant for route choice. In their study, Shatu et al. (2019) seek to compare both methods and find that taken together shortest path and least directional change determine approximately 53% of pedestrian route choice motivations are driven by other factors. Moreover, considerable variation in these figures may be assumed across populations and places.

The third phase of pedestrian navigation research appears to be underway today. This phase can be characterised as a merger of the 'walkability' approach and the more mathematically-driven route determination approaches: it seeks to consider full route-length route patterns as these are affected by the urban environment. In the wake of recent research on cycling route choice factors (e.g. Ton (2019)), an increasing number of researchers have started looking at the way in which also pedestrian route choice is guided by local-level environmental features. In an early contribution, Rodríguez et al. (2015) added to this literature though a GPS-based revealed preference study of adolescent girls in the US. This study determined route choice on the built environmental features of aesthetics, destinations, functionality and safety. The authors find that, in addition to shortest paths, the presence of green trails, secure conditions, sidewalks and ease of destination access were the strongest determinants for route choice. Building on the relatively novel idea to study routes (i.e. geographically distinct path), the authors suggest that smart use of these features in urban design might incentivise people to walk longer distances. This study of a single demographic is expanded to consider a more heterogeneous demographic by Liu, Yang, Timmermans, & de Vries (2020). At the core of this study stands a series of surveys and structured interviews in which the researchers asked pedestrians who egress from metro stations to draw their walking routes on maps. The authors find that pedestrians prefer routes which have a fence separating them from a road, as well as those featuring a lower floor-area-ratio. Using latent class analysis, the authors identify two preference sets, demarcated by whether people work in an area: people who work in an area prefer shorter routes, narrower roads and sidewalks, fewer traffic lights and less urban green. The other class, of non-local working people attach higher utilities to longer routes higher building plot coverage and road widths.

To conclude the review, it is important to consider work on the relationship between walking navigation and public transport. This is needed, as this thesis investigates walking routes to and from train stations. With their study Liu et al. (2020) bring together the notion of utilitarian walking, route selection features and trips to public transport stations. As the work by Brändli et al. on bus stop access zones suggests, there is considerable nuance on routes through which public transport facilities are accessed. Additionally, as hypothesised by Brand, Hoogendoorn, van Oort, & Schalkwijk (2017) people's mode choice depends on whether they access or egress to/from a stop and whether the stop is at the traveller's home-end or activity-end. The authors find that such difference is reflected in a willingness to accept comparatively long access distances, a prevalence of relatively short egress distances (to which walking is suited), exacerbated by the unavailability of other modes upon egress at the activity-side of a public transport trip. In a study on walking speeds, Hillnhütter (2016) finds that pedestrians approaching bus stops tend to walk at notably higher speeds and only adjust their speed when they can clearly see that they will be able to catch their connection. According to the author this suggests that pedestrians adjust their walking speeds to time pressure. Pedestrians who egress bus stops do so at a more varied range of paces, reflecting their 'natural' walking speed. This element of time pressure affecting pedestrian walking speed corresponds with the first category identified by Liu et al. (2020): people heading to work appear to prefer routes which are more direct and feature less risk of delays. Combined, these studies suggest that pedestrians may have different route preferences based on whether they access or egress a public transport stop. By extension, it may be hypothesised that these effects are more pronounced in the case of stops where it is generally harder for pedestrians to assess whether they will be able to catch their ride by looking down the line, as would be the case for heavy rail train stations.

2.1.3 Prior research on pedestrian route choice

The preceding section presents the development of research on pedestrian route choice as a whole. As laid out in chapter 1, this thesis sets out to study the sub-topic of the effect of features of the urban environment on pedestrian route choice. Before proceeding to conduct this study, the literature is reviewed to identify what features previous studies have investigated and what effects they have(n't) found that these features have on pedestrian route choice. These factors provide an important input for feature selection of this study. Sources were collected using the same methodology described in section 2.1.1, but with a more specific filtering process. This method resulted in 16 sources which had conducted studies which are largely comparable to this thesis.

With regards to results, the effects which these studies identified as having a significant (or otherwise notable, depending on their methodology) effect on route choice are listed in chapter A. Half the papers identified a notable effect for features such as public green, the presence of retail businesses, the presence of traffic devices or crossing aids, sidewalk condition and sidewalk width. A slightly lesser number of studies also identify particular effects of stairs and slopes, as well as role of a range of subjective dimensions such as the sense of security from non-traffic factors (e.g. crime and harassment). Although these features are recurring, this is in part symptomatic of whether studies have included them in the first place. It must also be noted that, despite studying urban features, the route characteristic which is most often found to have a notable effect is related to route geometry: route length (found by 8 out of 16 papers).

With regards to method, the studies considered here are based on a range of different methodological approaches. This leads to different ranges and definitions of the features considered. Qualitative studies such as Brown, Werner, Amburgev, & Szalav (2007) and Ferrer, Ruiz, & Mars (2015), which asked respondents to state those features which they found to be relevant offer a wider understanding of features of potential interest. To confirm whether these features indeed have an effect, or are merely perceived as such by respondents, quantitative studies such as those by Liu et al. (2020) or Rodríguez et al. (2015) offer further clarification. For quantitative studies, route choice data is collected by various means. Examples are GPS tracking (e.g. Rodríguez et al. (2015) or Lue & Miller (2019)), self-reported travel dairies (Liu et al. (2020) or Borst et al. (2009)), or pen-and-paper surveying at target public transport stops (Guo (2009) or Liu et al. (2020)). Analytically, quantitative studies have, if possible, applied discrete choice models such as multinomial or mixed logit (Liu et al. or Muraleetharan & Hagiwara, Broach & Dill (2016)). Although the work by Brändli et al. on access zones, or Bongiorno et al. on differing route choice per travel direction would suggest that the sequence by which urban features are experienced matters, none of the 16 studies seem to have considered this dimension.

With regards to coverage, the sources which are taken along in the present study clearly show that gaps continue to exist in the coverage of pedestrian route choice studies. In geographical terms, seven of the studies are conducted in the United States, two in Canada and two in Japan. Of the remaining studies, only two are conducted in Europe, of which one in the Netherlands. Here, it must be recognised that the central premise of these studies is that travel behaviour is affected by urban environments and that the form and shape of urban areas vary considerably between jurisdictions. Due do limitations on data collection, almost all studies have taken stake with highly specific population samples: school classes (Rodríguez et al. (2015)), specific metro station (Liu et al. (2020)). No studies have exceeded the city level (Guo (2009)), with studies at that level generally basic themselves on large data sets obtained from public transport operators.

Several dimensions may however be expected to differ between regions in terms of pedestrian travel behaviour. Amongst others the availability of relevant destinations which might be accessed on foot could differ depending on the urban planning of a city. Similarly, the availability of competing modes could have effects - for instance the prevalence of high quality bike infrastructure in the Netherlands may cause people to shift to their bike sooner than other societies would. Cultural or legal dimensions could also affect results: amongst others walking might be considered to be reflective of socio-economic class differences ('not being able to afford some other mode') or the more assertive imposition of fines for 'jaywalking'. As such, it would not be unreasonable to expect that the relative wealth of North American studies may be less relevant for the Dutch, or even European, context. A similar fragmentation may be identified in demographic terms. Although about half the studies were non-specific towards any particular demographic, the other half were. For instance, the work by Borst et al. (2009), who performed a local study in Schiedam in the Netherlands, focused exclusively on independently-living elderly people. Other foci include students (e.g. Brown et al. (2007)) or school children (Rodríguez et al. (2015)).

Grey literature

The preceding sections have reviewed the academic literature on pedestrian route choice. As peer-reviewed research, this is deemed to be methodologically rigorous. However, practitioners in urban design have over the years also built up sets of design tools and operational assumptions on how how pedestrians navigate the urban environment. For the present study, two sources are considered. Note however that these sources are not explicitly based on peer-reviewed research and are based on standards which deviate from those of academia.

First, 'Loopmonitor'-variables. In-house research performed by engineers at Witteveen+Bos in their work of drawing up a pedestrian flow density prediction model called the "Loopmonitor". This source is included as the present thesis is written in order to further calibrate this model. For the Loopmonitor a range of pedestrian counts are considered and extrapolated to flows through the urban environment. These flows are are assessed for the presence of urban features. A list of features which are found to be significant are given in table 2.2.

Second, the 'CROW' guidelines on pedestrian walking route design. CROW is a Dutch non-profit organisation which develops sets of design guidelines for public infrastructure. This source is considered as CROW guidelines are largely regarded as the standard setting authority on infrastructure design in the Netherlands. The 'walking routes guideline' published by this organisation outlines 11 urban feature categories of importance. These categories are listed in table 2.2.

2.2 Reflections on literature

The literature review shows that a body of research exists in the field of pedestrian route choice studies. To come to a good understanding of the exact manner by which this thesis might contribute to that literature the lessons which are drawn from the review must be made explicit. First, in section 2.2.1 the potential scientific value of this study is assessed in the light of the literature. Second, in section 2.2.2, the societal implications are assessed. Finally, with these set, section 2.2.3 posits a general theoretical framework upon which this thesis builds.

2.2.1 Scientific value of this study

The literature review in section 2.1.2 and investigation of potential features of interest in section 2.1.3 have made it possible to establish that a knowledge gap exists in the main research question's prospective area of study.

As identified by the historical overview, research on the interaction between the urban environment and walking has rarely been translated as to its effect on actual route choice behaviour: we know where people would theoretically like to walk, but we don't know whether this preference has any effect when they're en-route to some further-off destination. As found in the study on variables of interest, some recent studies are making inroads in this area. This presents a trend which this thesis can fruitfully expand upon. In review of the studies which have been performed to date, three potential gaps are found.

Firstly, regional differences in pedestrian route choice behaviour remain under-studied. Although a handful of studies have started to explore the field of pedestrian route choice, these are mostly contained to non-European contexts. Specifically for the Netherlands, the prevalence of cycling leads to different mobility patterns on short- and midrange transport (van Oort, 2020). This might cause route choice to be substantially difference from e.g. US or Chinese contexts. For example, the prevalence of cycling may cause people to be less familiar with walking routes, as a greater share of short distance trips are performed by bike. Similarly, different legal contexts may cause greater risk taking behaviour - e.g. due to the greater permissiveness towards 'jaywalking' in the Netherlands or assignment of legal responsibility for accidents to car drivers.

Secondly, by extension from point one, studying behaviour at a larger geographical scale. All studies found in the literature review have focused on narrowly demarcated geographical case studies. The largest areas which have been identified in the literature are metropolitan areas. No studies have attempted to study an entire country. Doing so would be theoretically defensible as countries (at least centrally governed ones like the Netherlands), with all modes being subject to largely comparable rules. Moreover, countries may use comparable urban design standards, such as those issued by CROW (2021).

Thirdly, studying a societal cross-section. Many prior studies have focused on specific traveller groups. Few studies have attempted to consider a broader demographic. Doing so would permits for the study of identification of populationwide behavioural patterns. As public infrastructure is generally open for use by a wide range of demographic groups, understanding behaviour at such level is important for urban design efforts. Moreover, it would permit for the study of differences between demographic groups. Rather than needing to assess such differences from disparate studies which were conducted under different circumstances, a population-wide study would permit for a more standardised assessment of demographic identity-induced interaction effects.

2.2.2 Wider value of this study

In addition to the academic contributions which might be made to the literature gap identified above, a study as described in the research questions may also be of value in a wider sense.

The project is performed in cooperation with Witteveen+Bos as an effort to calibrate the company's Loopmonitor tool (Witteveen+Bos, 2021) with regards to the impact of public transport stops on pedestrian movement. This illustrates

a wider area to which this study provides value: the prediction of pedestrian flows in which walking is used as a dedicated mode of urban transport. As urban planners and policymakers more consciously consider active modes as standalone mode of urban transport, it is becoming evident that there is a lack of knowledge on how pedestrians actually navigate the full length of their walking trips. If cities are to stimulate utilitarian walking overall or spatially nudge walkers to take certain routes rather than others, far more knowledge is needed on what features attract or repel walkers. This thesis provides an initial insight into what features in Dutch urban environments have significant effects on these flows.

In addition to this content-related benefit, a methodological one can also be identified. In review of the literature, a window of opportunity is identified in which a novel methodological approach to pedestrian route choice research can be tested. Other recent works, such as by Liu et al. (2020) collected walking route data through manual pen-and-paper surveying. Additionally, data about the urban environment was collected by physical observations in the area under investigation. Such work, although it delivers interesting results, is highly labour-intensive. This limits studies to clearly demarcated local case studies.

This thesis sees an opportunity in testing whether this method might also be performed digitally. The opportunity as identified for this thesis holds that survey data collection can be performed by means of an online survey which is complemented with a GIS-data entry facility for route mapping purposes. In addition, rather than inspecting the environment manually, the fast-growing body of high quality online geographical data is seen as a potential source of data on the pedestrian environment. Combined, this may be of potential societal relevance for six reasons:

- 1. It removes the need to go to a case study site in person. This permits studies to be performed flexibly for places which are otherwise harder for researchers to travel to.
- 2. It makes the process less labour intensive. Rather than needing a host of assistants to perform the survey and inspect the environment, researchers can now focus their energy on knowledge generation.
- 3. Scalability in case study size. As local inspection is no longer required, responses can safely be collected across a range of locations which are deemed relevant for the study at hand. This permits for the performance of a study at e.g. the country-level, as this thesis will attempt.
- 4. Uniformity in data input. Manual surveying is a human process, which is subject to errors, e.g. due to subjective and interpretations or weariness after a long day's work. By downloading all geodata from well-maintained resources, a study can draw directly on the collective work of data collecting organisations (e.g. governmental land-planning agencies).

- 5. Process integration. By collecting data digitally in a GIS format, matching this with geodata ditigally and finally also analysing it through digital means, all data can be processed in one go once relevant scripts are prepared. This reduces the need for extensive data transcription efforts (which are in turn prone to errors), and hypothetically permits for a faster transition from data collection to output analysis.
- 6. Applicability to other topics. This methodology can be applied to may other subjects, such as to find whether people avoid certain features at the neighbourhood level, or to cycling data from fietstelweek surveys (Fietsersbond, 2016).

2.2.3 Theoretical framework

With this overview of the academic literature set, it is possible to define a theoretical framework befitting the present project's research question. The final structure is illustrated in fig. 2.1. This structure illustrates a notional process leading from a set of academic traditions to the specific theoretical question of pedestrian route choice. Although the structure indicates causal relationships, it is important to emphasise that these are only to illustrate a line of reasoning: it is recognised that in practice most of these concepts are highly interrelated. Academically, this thesis sees itself as rooted in the fields of human geography, urbanism and transport engineering.

Figure 2.1: Illustration of the theoretical framework guiding this project. The dashed lines indicate the approximate fields of study from which certain notions have been taken from. Note that these lines merely represent the structure at a very abstract level: it is recognised that in practice these boxes are highly interrelated

In this schema, three overall causal sequences can be distinguished. Each sequence feeds into a distinct input category for the conceptual model, as specified in the next chapter.

First, interaction effects. This sequence captures how people's liking of a certain environment as a walking environment is seen as a process which is ultimately based on their perception of that environment as a spatial area. People's individual cognitive processes affect this perception, causing it to vary between individuals. This causes this sequence to interact with more general route choice preferences.

Second, variables. Prior research shows that behavioural patterns exist in the population at large. It is assumed that such patterns also exist in people's interaction with features of the urban environment. These features can be considered as 'variables', the presence of which affects the general proclivity of people to choose one route over another.

Third, route choice set. The actual sequences of locations along which people walk to travel across an OD-pair. Following literature and intuition, two types of paths are identified: mathematically defined optimal routes such as the shortest path, the least directional turns path (both following Shatu et al. (2019)), and those routes which an individual may happen to know (or be able to come up based on e.g. local knowledge) through their cognitive processes. The mental process underpinning this latter source is referred to as 'sense of direction', although this is recognised to be a poorly fit term. Note that in recent years journey planning software has assisted people in discovering routes. It is assumed that such software defines routes based on some mathematical optimum. Table 2.2: Synopsys of urban features recommended by CROW to urban designers, and features which were found to have a significant effect on pedestrian counts in the Witteveen+Bos 'Loopmonitor' model.

	Features design guidelines,		Features 'Loopmonitor',
	CROW (2021)		Witteveen+Bos (2021)
1	Walking space	1	Walking space
2	Pavement quality	2	Facilities
3	Signage	3	Sidewalk width
4	Lighting	4	Building floor space
5	Flow separation	5	Parks
6	Seating		
7	Toilets		
8	Social safety		
9	Attractiveness		
10	Altitude differences		
11	Stairs		
12	Navigational guides		
13	Maintenance		
14	Ease of road crossing		

Chapter 3

Methodology

Sub-question two requests for the definition of a set of methods and data by which the main research question can be answered. The question moreover notes that any answer to it must be feasible within the constraints under which this project is performed. This chapter formulates an answer to this question. It presents the process by which this study will obtain results which permit it to answer the main research question. This process encompasses a set of quantitative and qualitative methods which are used to obtain and prepare data, compute results and analyse it in a way that permits for the formulation of an answer to the main research question.

The chapter consists of three sections: First, section 3.1 sets out a conceptual structure upon which the thesis builds. For this it clarifies the intention of research sub-questions and outlines the methodological paradigms which facilitate a study of these intentions. Second, section 3.2 outlines the components which are required for a study to be possible and suitable analytical instruments are selected. Third, section 3.3 proceeds to the technical implementation of the method outlined in the first part. Here, practicalities are considered such as data collection design and coding structures.

3.1 Conceptual structure

This section outlines the overarching approach which this thesis takes to the main research question. As noted in section 1.2, the main research question is operationalised by means of two sub-questions which seek to identify different perspectives on how features in the urban environment might correlate with pedestrian route choices. Sub-question three requires an analysis of this with regards to two mathematically-defined optimum routes: the shortest path and least directional turns path. Sub-question four requires an analysis with regards to variation in the route choice set which people people consciously consider to access or egress a station. By answering both questions, the main research question can be answered.

This section is structured as follows: in section 3.1.1 the research questions are reflected on in some more depth so as to understand what exactly it is they require this study to perform. In section 3.1.2, the methodological paradigm of the study is outlined and main methodological requirements are specified. Finally, in section 3.1.3, a conceptual model is drawn up which provides an overview of the components which are needed to make the study work and how these components tie into each other.

3.1.1 Understanding the research questions

Before a methodological framework and any of its constituent parts can be specified, the outcomes which such framework is supposed to generate must be defined. In order to do this, the exact meaning of the research questions driving this study must be made explicit.

To learn whether differing data points represent population-wide trends or merely variance, statistical tests commonly express research problems in terms of null hypotheses and alternative hypotheses. Such hypotheses are useful as they make the core of a research interest explicit. Consequently, the present study will follow this practice and redefine its research questions through a set of 'fundamental' null hypotheses.

The main research question supposes a 'diversion' of routes due to the presence of certain urban features. This implies that without these particular urban features, the route would have taken another, 'non-diverted' alternative path. This non-diverted path may as such be conceived of as a kind of fundamental null hypothesis:

Fundamental null hypothesis, main research question: $H_0 = people are expected to take the non-diverted path regardless of features in the urban environment.$

Fundamental alternative hypothesis, main research question: $H_1 = people \ deviate \ from \ the \ H_0 \ route \ due \ to \ the \ spatial \ distribution \ of \ features \ in \ the \ urban \ environment.$

To understand what makes a diverted route more appealing than the nondiverted alternative, an operational definition of this non-diverted path is required. For this thesis, two such definitions are posited through sub-questions three and four.

Sub-question three, defines diversion in terms of two mathematically-derived alternatives: the shortest path and least directional turns path. The definition of these alternatives is drawn of the academic literature as was reviewed in section 2.1. These routes are considered of particular interest following the work by Shatu et al. (2019), who find that up to approximately 53% of pedestrian route choice is caused by either shortest path or least directional turns path considerations. This in turn implies that 47% of route choice is determined by other considerations. This in turn opens up the question whether features in the urban environment play a role in route choice behaviour. Recognising

this, sub-question three posits that the shortest path and least directional turns path combined represent a kind of 'dual null hypothesis' for its definition of 'non-diverted' routes. Expressed formally:

Fundamental null hypothesis, sub-question 3: " $H_0 = a$ pedestrian's route is either the shortest path or least directional turns path, irrespective of urban features which may or may not be present along these routes."

Fundamental alternative hypothesis, sub-question 3: "H₁: a pedestrian diverts from the shortest path or least directional turns path in favour of a route which contains different urban features."

Sub-question four specifies an interest in the a pedestrians' diversion away from route alternatives which that pedestrian consciously knows would be an alternative for the OD-pair which it seeks to travel between. This question is derived from a more practical consideration as it compares across those routes which people are in fact aware of and might actually consider for trips on a given OD-pair. Here, the non-diverted route is defined by drawing on the fundamental null hypothesis that routes are diverted from due to certain features in the urban environment. Following this reasoning, diversion is defined in terms of frequency: in a non-diverted case all routes which a respondent is aware of would be taken equally often. After all, if a traveller were to be indifferent to features in the urban environment, that traveller would be equally glad to choose any of the routes in the choice set. Expressed formally:

Fundamental null hypothesis, sub-question 4: " H_0 = there is no difference between frequently taken and infrequently taken routes in terms of features in the urban environment."

Fundamental alternative hypothesis, sub-question 4: " H_1 = there is a difference between often taken and not-often taken routes in terms of features in the urban environment."

With these definitions set, it becomes apparent that to answer either subquestion, information is needed on two points: first, the geographical form of a route versus some other route, and second, the presence of certain urban features on one route as opposed to an alternative route.

Note that these definitions can be contested and additional null hypotheses can be defined. For example, a distinction can be made between shortest path and fastest path. Also, any feature of the urban environment can be redefined as null hypothesis: e.g. that a pedestrian's path leads through a maximum amount of public greenery or that such path only crosses roads at intersections with traffic lights. Such definitions are not chosen for three reasons. First, although the transport modelling convention for vehicular traffic is to use the fastest rather than shortest path, pedestrians are not bound to the formal speed limits which make this convention applicable. As pedestrians can in theory walk almost anywhere at (almost) the same speed, the shortest and fastest path on pedestrian-available infrastructure are (all else being equal) considered to be one and the same. Second, testing respondents' route choice against an individual urban feature would say little about people's sensitivity to the urban environment overall and as such be of less societal benefit (e.g. through policymaking efforts). Finally, note that the reason these definitions are posited is to provide a structure to the following work, not to exclude other possible structures as theoretically unsound.

3.1.2 Research paradigm and analysis

How can these fundamental null hypotheses be studied? Research on travel behaviour can generally be divided into stated preference or revealed preference paradigms. The chosen approach affects the methods that can subsequently be applied and the kind of results which are eventually obtained (e.g. Duives (2021b)). In the context of the present main research question, a stated preference study would generate results on what features people would generally prefer to see in their walking environments. This is comparable to the field of walkability, which seeks to identify the relative appeal of certain spatial qualities to pedestrians. Conversely, a revealed preference study would seek to derive insights from people's actual behaviour. In the context of the proposed study, this would deliver results on the extent to which people have consciously or unconsciously adjusted their behaviour in response to certain characteristics of the urban sphere.

For the present study the 'revealed choice' approach is deemed to be most suited for answering the research questions. This decision follows from the formulation of the main research question, which requests that this study generates knowledge on 'how people divert walking routes', rather than e.g. 'what someone's ideal walking route would look like'. The emphasis is on real behaviour, rather than ideal-world preference. An additional motivation is more practical: as noted in section 2.2.2, this study wishes to test a number of methodological innovations to pedestrian route choice research. These innovations are based on a form of data collection and analysis which build upon observed actual behaviour rather than hypothetical behaviour. Consequently, a revealed preference study is opted for.

The choice for a revealed preference approach has several consequences for the build and structure of this thesis. Three of these consequences are: First, it means that data must be obtained from which choice behavioural insights might be 'revealed' upon analysis. Under the 'stated preference' approach data is obtained from choice experiments. Such experiments consist of a list of outcomes on questions on people's behavioural preferences (choices) (Chorus, 2021b). In contrast, revealed preference data builds on less advance-formatted 'generic' data. Second, by building on more generic data, this may make actual choices of people harder to discern: after all, when is the higher incidence of a certain feature along a route a consequence of choice or coincidence? Third, by drawing on more generic data, this can be analysed on more facets: a string of routecoordinates contains more information than a binary choice between clearly defined sets of parameters. This does however mean that more work is required to extract this information.

When these realisations are combined with the substance of the sub-questions as detailed in the previous section, the requirements for the methodological framework of this study can be determined. Five such methods can be distinguished:

- 1. A method to analyse routes in a way that permits geographical comparison to other routes which an individual might take. The need for such method follows from the comparative nature of the research questions. For subquestion three, information is needed by which it can be assessed whether people actually take the shortest or least directional turns route. For subquestion four, a similar question arises, but then with regards to the routes which a respondent consciously knows.
- 2. A method to determine which features in the urban environment might elicit an effect on pedestrian route choice. Such a feature selection method is needed because it is practically not doable for a study with these resources to include every possible characteristic of the urban sphere. Epistemologically, one may argue that this is not even possible at all as the full extent of the world with all its subjective intricacies cannot be known, let alone measured. Consequently, this study will study an abstraction of the world - and as such requires a definition upon which to base this abstraction.
- 3. A method to determine how features in the urban environment might be 'present' on a given route. What matters more: ten trees concentrated in a small area, the same number of trees spaced evenly along the full length of a route, or just the presence of that number of trees on route regardless of their location? Such method may be conceived of as an 'analytical' method: a way by which data on a subject is interpreted.
- 4. A method to determine whether features in the urban environment attract or repel pedestrian route choice motivations. As found by prior studies on pedestrian route choice, people prefer to walk in the presence of certain features, and rather not in the presence of others. A method is needed to determine whether such effect is positive (attraction) or negative (repelling). In the field of quantitative science, this function is typically performed by statistical tools.
- 5. A method to prepare data inputs for analytical use. This follows from the recognition that a revealed preference study draws on generic data. Such data will not be perfectly suited for direct analysis and will require meticulous cleaning and aligning work in order to derive lessons which are theoretically interesting.

These methodological requirements will be worked out further over the course of this chapter. Points (1) and (2) pertain to aspects of data collection and will be worked out further in section 3.2.1. Point (3) addresses data analysis and will be worked out in section 3.2.2. Point (4) relates to statistical methods, which are discussed in section 3.2.3. Finally, point (5) concerns a more practical consideration and will be detailed in section 3.3.

3.1.3 Conceptual model

Now a clear understanding has been established on what the research questions entail and what is needed to answer them, a model can be drawn up of the components which are needed to construct a study of these research questions. This model follows from the theoretical framework defined in the previous chapter (fig. 2.1), and is presented in fig. 3.1. The central axis of this model describes the need to travel across a certain OD-pair, the routes which are available for this, and the eventual output: a choice for one of these routes. The fields marked 'interaction effects' and 'urban variables' represent characteristics which affect this route choice.

As noted in section 1.2, this thesis builds on the premise that people have made their mode choice decision and have opted for a multimodal trip in which they access and/or egress a train station on foot. This thesis only studies the part of such trip which is performed on foot. Although characteristics of the non-pedestrian trip leg may affect behaviour on the pedestrian trip leg (e.g. due to public transport frequency and quality (Shelat et al. (2018), van Oort (2020)), this study seeks to provide insights which can aid in redesign of urban areas rather than train schedules. Consequently, the effect of the non-pedestrian trip leg on route choice is assumed to be constant across the population. This assumption is operationalised by considering the pedestrian-leg of the trip as the OD-pair for this study. Following from this reasoning, these pairs are the starting point of fig. 3.1.

Trips on OD-pairs can usually be made along a multiplicity of routes. Considering that human beings aren't omniscient, pedestrians will only be consciously aware of a subset of possible routes for a given OD-pair: the 'known routes'. Other routes may exist, but if someone is not aware of these it is assumed that they will not be opted for. For this project two such 'unknown' routes are considered: the null hypothesis routes of sub-question three. As time progresses, the set of known routes grows through exploration or circumstance. However, at any given point in time the set of known routes is deemed to be finite.

Following from this, each time an individual performs a trip on an OD-pair, it can be assumed that one of the known routes will be chosen. This leads to the outcome of fig. 3.1: route choice. As trips are performed again and again, an individual might vary the route it opts for. Successive route choices translate to a relative route choice frequency: some routes are chosen more often than others. A route which is taken more often than others may be deemed to be 'preferred' over its alternatives.

Figure 3.1: Illustration of the conceptual logic underpinning this study.

This thesis seeks to find out how characteristics of the urban sphere affect such preference. As evidenced by the body of 'walkability' research, people prefer certain environments over others when walking. This is worked out further by prior studies on pedestrian route choice, who find that indeed pedestrians adapt their walking routes in accordance to the presence or absence of certain features of their environment. In fig. 3.1, these characteristics are labelled as 'urban variables'.

In addition to urban features, prior social scientific research shows that a range of other parameters have substantial effects on choice. For this study, those dimensions are referred to as 'interaction effects'. To understand how trends in the population might vary on the variables under consideration, these effects will be studied. Both categories will be worked out and their selection motivated in section 3.2.1.

3.2 Approach

The approach taken by this study can be summarised as follows: a survey is distributed in which respondents are asked to provide a collection of three walking routes which they use to access and/or egress a train station in an online survey. Subsequently, these routes are overlaid with a selection of open geodata layers on variables which are deemed to be of potential interest in determining pedestrian route choice. By locating these variables 'on' a route, it is possible to 'score' routes in terms of the extent to which they contain certain variables. Finally, these scores can be used to perform various statistical analysis in order to generate theoretical insight. In this section this overall workflow is worked out and detailed further.

With the 'high-level' framework of this study outlined, this section works out the components which are needed to make this study work. The section consists of three parts: first in section 3.2.1, the data requirements and a related collection strategies are outlined. Second, in section 3.2.2, a set of analytical actions are introduced through which results can be generated that answer the research question. Finally, in section 3.2.3, a set of statistical tools are introduced with which analysis outcomes can be tested for differences between various samples of interest.

3.2.1 Data requirements and collection

Following from the conceptual framework in fig. 3.1, two overarching types of data are required: first, data pertaining to route choice sets as input and an indication as to which of these routes people actually choose as output (the boxes 'route choice set' and 'route choice', respectively). Second, data pertaining to variables which might influence such a choice (the groups 'urban variables' and 'interaction effects'). As can be read in fig. 3.1, this latter category can subdivided into four parts: urban features, subjective variables, route geometry and interaction effects. The motivation for this subdivision will be provided later in section 3.2.1 and section 3.2.1. To permit a more complete discussion of the variables, the applicable data collection strategy for each variable will be discussed first.

Known routes

Background: As a study on pedestrian route choice, walking route data represents the core data type of this project. Such data can be represented in various formats, e.g. point-specific counts and flow measurements, or as full originto-destination 'lines on a map'. The former options are comparatively easy to collect. However, these generally do not include the origin and destination of individual passersby, which complicates the computation of the shortest path and least turns path as are required under sub-question three. Point-measured data is highly local, whilst in order to learn about the effect of urban features, information is required on all features along a route. Finally, point-measured data offers little insight to alternative routes which an individual might consider. This complicates routes choice set analysis as needed fro sub-question four. In contrast, full-length, geographically represented routes by definition include all geographical dimensions along their path. This permits for shortest paths to be defined. By including all geographical dimensions of a route, it also becomes easier to identify urban features which are located along the route. The greater emphasis on the individual traveller also increases the ability consider alternative paths. Consequently, this thesis chooses to study routes in this format.
In terms of data resolution, this thesis sets its scope at the between-intersection level. Hereby routes are understood as consecutive series of between-intersection path segments connecting an origin and a destination. This level is chosen for two reasons. First, convenience: with the exception of fields and squares urban areas are largely organised around paths. Structures around these paths bound sight lines and amenities are placed along them. Second, to sustain information density and to contain complexity: lower-resolution data would make it impossible to assess what path-surroundings a pedestrian chooses to walk along. As paths / roads may vary substantially in appearance and character, a lot of information would be lost in such an abstraction. Conversely, higherresolution walking route data would include information on e.g. the side of a road or the direction in which people walk around objects. Although this would provide more information, it greatly increases complexity as trip-to-trip variability will increase. It places far greater requirements on data collection procedures, thus limiting the possibility to implement this thesis with the available resources. Also, this complexity does not seem proportional to the added knowledge: does the possibility to walk around an obstacle (e.g. a garbage can) in a clockwise manner really lead someone to choose that entire road? For such higher-resolution studies microscopic tools are more suitable, such as agent-based simulations (Duives, 2021a).

Data collection strategy: Pedestrian routing data can be collected by various means. Examples are GPS tracking (e.g. Rodríguez et al. (2015) or Lue & Miller (2019)), self-reported travel dairies (Liu et al. (2020) or Borst et al. (2009)), or various qualitative techniques such as interviews and focus groups (e.g. Ferrer et al. (2015)). Evidently, techniques vary in the extent to which they require technical aids and the extent to which individuals need to provide personal information. As noted in section 2.2.2, this thesis identifies the self-reported data collection approach as one that lends itself for further innovation, and sets out to test the ideas described in that section.

Combined with the revealed preference paradigm selected for this study, this implies that this study will build upon a 'self-reported revealed preference' principle. In this format, preference data is self-reported by voluntary respondents in a survey. As posited as potential innovation in section 2.2.2, the self-reporting principle for known route data is operationalised by means of an online survey in which respondents draw their walking routes on a free-form GIS-based map. A detailed description of the implementation of such survey for this thesis is given in section 3.3.1.

To study route choice between 'known' routes, multiple routes for an ODpair must be obtained per respondent. In requesting respondents to self-report their route data, a question arises on the number of routes which people can be asked to provide without affecting data quality. Here, it is noted that longer surveys negatively affect data quality and respondent cooperation (?). Following several trails with survey design (detailed further in section 3.3.1), it is found that a maximum of three routes can be asked without substantial loss of quality or respondent cooperativeness. Therefore, all respondents are asked to provide three routes. This number is not varied across respondents: adding / removing routes would cause certain respondents to feature more often in data, and other less. This is foreseen to further complicate data preparation exercises. Respondents who can only come up with fewer than three routes are requested to fill in additional routes by imagining an existing route were to be blocked at some point and assigning such route a frequency of 'never taken'.

In addition to the more conceptual motivations listed in section 3.3.1, this online survey-based approach is chosen for five reasons: Firstly, by basing and circulating the survey online, it represents an innovation over pen-and-paper based methods which appear to have been commonplace for prior studies. Testing whether this approach works as methodology is as of itself deemed as a potentially interesting outcome of this study. Second, it can be developed using online services which are available to the researcher, making it relatively easy to create and affordable to deploy. Third, by requesting respondents to fill their routes directly into a GIS-tool, this facilitates computational analysis. Fourth, by being accessible for everyone with an internet connection and not requiring invasive GPS-tracking, it is possible to circulate the survey a country-wide level and elicit responses from a greater diversity of demographic groups. Fifth, in contrast to e.g. travel diaries, it does not require close monitoring of a population of participants over a course of time. As with any survey-based method, the online self-reporting principle is not perfect. Last but not least, it provides for an integrated platform through which other data required for this thesis may be collected.

Two main shortcomings are evident from such a method: First, data quality. As respondents fill in data on their own accord, it is not possible to ensure that all respondents provide data at an equivalent resolution. Second, persuading people to respond. Filling in an online survey requires goodwill of people to commit their time with no direct benefit to themselves. Some people may not be inclined to do so.

Route choice frequency

Background: Successive choices for a route lead to a frequency by which certain routes are chosen. As noted in section 3.1.1, it is hypothesised that of the routes which people know, the frequency at which they take these routes again depends on the independent variables of the urban form. The frequency by which certain routes are taken is as such an important indication of people's (dis)like of features along routes in the respondent's choice set.

Note that alternative explanations may exist as to why a route is in fact chosen. Amongst others, these could be the lack of realistic alternative options, taking pleasure in the act of walking more than the environment where that act is performed, or just plain habit. The first reason can be controlled for through various computations on route geometry. The last two reasons can be assessed by asking people to provide a qualitative motivation for their route choice.

Data collection strategy: Data on route frequency is obtained through the

same survey which is used to obtain known route data. The data can be obtained by asking respondents to provide an indication as to how often they choose each route which they provide. This approach has the advantage of obtaining such information right after respondents have provided their route data and are as such still aware of it. By collecting frequency data through the same platform as route geography data, this can be taken along in the integrated digital analysis process.

Variable selection strategy

Background: To select independent variables which can be studied quantitatively, a 'long list' is drawn up containing features which are expected to have an effect on pedestrian route choice. The 'long list' is determined with the triple selection aim stated in the introduction: firstly bolstering evidence for the (un)importance of certain features which prior research suggests may have an impact on pedestrian navigation, secondly confirming whether features found to have a significant effect overseas hold within the Dutch context, and thirdly identifying new features of importance.

The long list is composed from two sources: First, academic literature as discussed in chapter 2 and of which an overview is provided in appendix A.1 and A.2. Second, features recommended by experts on pedestrian movement in the Netherlands. These conversations delivered insight on what features might be relevant to the Dutch context. To this end, representatives from two organisations were interviewed: the journey planner company '9292ov.nl' and the Dutch national interest group for walking, 'Wandelnet.' The features which were identified through these conversations are listed in table 3.1.

To make sure as many relevant variables can be included in the time available for this project, the long list is first sorted for each feature's expected relevance according to the sources noted above, and again for the expected complexity of each feature's implementation. Over the course of implementation the long list is worked through starting at the feature which is deemed to be the easiest to implement and most relevant. The ease of implementation is assessed in four steps:

- 1. The kind of information it describes. Some features are based on highly personal subjective experiences whilst others reflect tangible 'things' in the urban sphere.
- 2. Whether the feature represents a distinctly measurable phenomenon. If this is not the case, it is assessed whether the description in literature suggests aspects of such feature which can be measured directly. If present, such underlying aspects are considered as potential proxies.
- 3. The possibility and manner of obtaining data on a feature. Some features may need to be obtained from individuals while others may require geographic data which is not available (at adequate quality) for the Netherlands.

Table 3.1: Overview of features recommended as important design elements over the course of personal interviews with experts on pedestrian mobility in the Nederlands.

	Feature	
1	Network connectivity	
2	Road crossing safety	
3	Traffic safety	
4	Obstructions	
5	Attractiveness (overall)	
6	Green areas	
7	Social environment	
8	Universal access	
9	Sidewalk width	

4. The computational effort required to operationalise a feature is considered. Here, for instance the feature of 'sidewalk width' is quantitatively distinct, highly relevant, has data available, but is exceedingly hard to compute reliably at a large scale.

The final list of implemented features is referred to as the 'short list'. Both the long and short lists can be found in the appendix under B.1 and B.2.

The short list contains 28 features. Some of these are best assessed through other data formats, such as the null hypothesis routes. The 'familiarity' dimension pertains to personal characteristics and is better included as an interaction effect as will be introduced later. Similarly, whether a route is a 'customary route' is interpreted as best reflected by the route frequency category introduced previously.

This leaves 26 features of interest which are expected to have an influence on pedestrian route choice behaviour. Of these, two features can be classified as 'geometric' aspects which are inherent to the geographic shape of routes. These represent characteristics which can be computed locally based on 'known' route data. As such, these are conceived of as a form of analysis and will as such be discussed in section 3.2.2.

Data collection strategy: The remaining 24 variables and variable categories on the short list are judged to affect route choice in qualitatively different ways. A consequence of this is that these variables are ideally collected using different methodologies. Following from the ease if implementation assessment points described previously, two collection approached are identified: subjective experiences (12 features) and urban features (12 features).

With regards to urban variables, this data cannot be obtained through the survey as it would be a highly time-intensive process for respondents. As noted in section 2.2.2, this thesis here seeks an methodological innovation by drawing on publicly available geodata. A wealth of such data is exists and is freely available. As many of these sources are managed by Dutch government agencies, these sources generally meet high and uniform quality standards.

Although open geographical data offers a wealth of possibilities, it is important to note that there are drawbacks. As data is managed and defined by an external organisation, categories, definitions and data resolutions are defined by a number of third parties. Data which is not relevant to these parties purposes will not be recorded, even if it might have been relevant to a pedestrian or the analytical purposes of this thesis.

Nevertheless, as with the use of an online route-mapping survey, use of these open geographic data sources represents an interesting innovation which has as of yet been unused in the field of pedestrian route choice studies. By using these sources this thesis will explore the potential offered by open public data, which may be of benefit to future studies.

With regards to subjective experiences, this category requires insight into the personal experiences of respondents. It is as such not possible to obtain these through publicly managed geodata sources. As literature and intuition suggest that such features are of considerable importance, they cannot be discarded either.

To permit for the inclusion of subjective data, this thesis adds an additional category of questions to the survey where respondents can indicate their appreciation or dislike of certain variables in a closed-form question format. These questions prompt a respondent with a statement on the feature (e.g. 'this route feels safe'), and permit the respondent to choose from five options as to how much they agree with such a statement ('strongly agree', 'agree', 'neutral', 'disagree', 'strongly disagree').

Note that this represents a great abstraction from the full depth of the personal experience. To permit for analysis, this data must however be obtained in a manner which can be assessed across the full respondent population and the survey provides the most suitable platform for this.

Urban features

Drawing on the set of cognitive elements through which human beings understand their geographic environment from the field of human geography (Knox et al., 2007), it is understood that in order to navigate space human beings interpret this in terms of paths, districts, nodes, edges and landmarks. For this thesis, such elements can be considered to entail 'urban features'. Urban features constitute the main independent variable for this study: certain urban features are expected to attract people whilst other features are expected to repel people. This causes people to seek out or avoid the presence of such features on their walking routes, which in turn is expected to be measurable in terms of the incidence of features in walking route data. The urban feature variable category is constituted by elements which have a physical presence in the urban environment.

The short list of relevant urban features contains two categories: tangible features which can be measured directly, and features which represent a basket of several sub-features. To permit analytical comparison to prior research and to test expert recommendations, variables which can be measured directly are assigned a hypothesised positive or negative correlation with walking route attractiveness. These correlations are based on the correlations found for these features in prior research or expert advice. Positive hypotheses presuppose that these features attract people and that such features will be more present on more popular routes, whilst negative hypothesis suppose that these features repel people and will consequently be less present on popular routes.

Four such directly measurable variables are identified: traffic lights, the number of staircases, plot size and floor space index. Note that ultimately 'directly measurable' still belies an abstraction: the data upon which prior research identifies significant effects may have used different definitions. Moreover, for this thesis variables are selected that are 'most similar' based on available data sources. For instance, road crossing safety encompasses a wider range of items than just traffic lights. In addition, following Knox et al., it is noted that exceptional entities in the urban fabric may also affect human navigation. Here, 'landmark' cognitive element category stands as a particularly interesting notion which, following literature, would be expected to guide human wayfinding.

Features which represent a basket of sub-features are addressed by proxy. Based on the way such dimensions are introduced in prior publications and available data one or more distinct variables are defined through which the overarching feature is represented. Five such features are identified, as presented in appendix B.2. A variable-level definition of these categories given in appendix B.3.

The overarching feature of 'attractive buildings' is largely redefined as 'year of construction'. This is done based on an assumption that buildings are attractive due to their appearance, which is based on architecture, which in turn contingent on fashion and fluctuates over time. This architectural definition of building age is operationalised by organising building ages into brackets representing distinct chronological phases in urban planning in the Netherlands as defined by de Klerk & van der Cammen (2008). Urban planning phases are used here, as planning adds an indication as to to role which buildings were intended to perform in the urban sphere. Architectural design largely follows these phases.

The overarching features of 'attractiveness (overall)' and 'land use mix' are defined as building status and building function, respectively. These represent data categories contained in the 'Basisadministratic Adressen en Gebouwen' database managed by the Dutch land registry office. Here, 'status' is deemed to be relevant as this describes whether a building is in use and/or undergoing forms of construction work. This affects the physical appearance of a building or may cause noise or social discomfort which affect attractiveness. With regards to building function, this describes the type of activity which is going on in the building and the use of the building.

To include the 'landmark' notion from the field of human geography, an analytical definition is required. This definition is found following Zomer (2021), who posits a one to measure the routing behaviour of cyclists. Here, landmarks are conceived of as buildings which are exceptional in terms of floor space index (FSI), plot area and/or age, relative to other buildings in the area. Although Zomer performed her study on cyclists, human geographic research holds that this feature is applicable for all human navigation. In the analytical definition applied here, 'exceptionality' is defined as eq. (3.1): any building with an FSI, plot area or age C, on route r which is more than thrice the standard deviation for that C on all routes of respondent k. To assess the level of exceptionality, three variables are added indicating whether buildings are considered a landmark in terms of one, two or all three C. This is represented by the '1', '2' or '3' criterion features.

$$C_{i,r} \ge 3 \cdot \sqrt{\frac{\sum (C_{i,k} - \mu_k)^2}{N_k}} \quad \forall i \in r \quad \forall r \in k$$
(3.1)

In the end, 41 urban feature variables are included for analysis. The final list is given in table 3.2.

Subjective variables

As found in section 3.2.1, route choice is affected by a range of factors which are characterised as 'subjective', i.e. dependent on an individual's personal experience of a situation. This information is obtained by asking respondents to rate their routes in terms of these experiences. Note that these features are only tested under sub-question four. This is done as it is not possible to obtain subjective data for the (locally computed) null hypothesis routes, thus making comparisons on these features impossible.

Subjective questions capture different dimensions of the pedestrian experience. For each category respondents are asked to what extent they agree with they agree with a statement on a subject. Examples of such statements can be seen in appendix D.12. Three categories of subjective questions are distinguished:

1. Route speed and ease by which a route can be remembered. These characteristics are relevant because they emulate characteristics which are inherent to the 'null hypothesis routes' which are tested under sub-question three: the shortest path and least directional turns path.

As the null hypothesis routes are locally computed, it is not possible to perform tests against these routes on any of the subjective variables. Hypothetically, it might be that a route is taken because is is experienced as the fastest path across an OD-pair, but does not overlap with the actual shortest path. This would give insight to situations where the shortest path may not be the fastest option for pedestrians. Similarly, the least directional turns route (amongst others) tests how easy it is to remember a route. Again, if this feature scores high, without overlap with the least directional turns path this suggests deviations from theory.

2. Urban features which cannot / are hard to test on open geographic data. By including a question about the extent to which such features are present Table 3.2: Overview of all urban features tested in this study. Note that this list does not include subjective variables. In the "Hypothesis" column "+" implies that a feature attracts routes and "-" repels routes. All variables are represented by ratio values.

	Urban feature variable	Metric	Hypothesis
1	Year of construction: <1945	summed	n/a
2	Year of construction: 1946-1970	summed	n/a
3	Year of construction: 1971-1985	summed	n/a
4	Year of construction: 1986-2000	summed	n/a
5	Year of construction: 2001-2022	summed	n/a
6	Year of construction: mean	averaged	n/a
7	Traffic signals count	summed	+
8	Stairs count	summed	-
9	Status: construction permit granted	summed	n/a
10	Status: unrealised building	summed	n/a
11	Status: construction commenced	summed	n/a
12	Status: building in use (not measured)	summed	n/a
13	Status: building in use	summed	n/a
14	Status: demolition permit granted	summed	n/a
15	Status: building demolished	summed	n/a
16	Status: building not in use	summed	n/a
17	Status: building under reconstruction	summed	n/a
18	Status: building illegitimately realised	summed	n/a
19	Function: residential	summed	n/a
20	Function: gathering	summed	n/a
21	Function: prison	summed	n/a
22	Function: health care	summed	n/a
23	Function: factory	summed	n/a
24	Function: office	summed	n/a
25	Function: guesthouse	summed	n/a
26	Function: education	summed	n/a
27	Function: sports	summed	n/a
28	Function: shops	summed	n/a
29	Function: other	summed	n/a
30	Green: $\%$ tree cover	averaged	+
31	Green: % bush cover	averaged	+
32	Green: $\%$ grass cover	averaged	+
33	Noise pollution: total	averaged	-
34	Noise pollution: roads	averaged	-
35	Noise pollution: railways	averaged	-
36	Landmark count: FSI	summed	-
37	Landmark count: plot area	summed	+
38	Landmark count: year of construction	summed	n/a
39	Landmark count: 1 criterion	summed	n/a
40	Landmark count: 2 criteria	summed	n/a
41	Landmark count: 3 criteria	summed	n/a

on routes in the respondent's choice set, it is possible to review the role which these features play in pedestrian route choice.

Although these features (e.g. seating) themselves are not necessarily 'subjective', it would not be possible to measure these at an accuracy at that is equal to the way in which open data-based features are assessed. To make this difference more explicit, it is decided to ask for the presence of these features in a purely subjective manner: i.e. instead of asking "how many chairs are there on this route?", a respondent is asked "is there enough seating on this route".

3. Route characteristics which are fully subjective. A range of features refer to 'intangible' topics which may be expected to vary considerably between individuals. Examples of features are the feeling of (social) safety or whether the route is sufficiently well-lit at night. Here the experience of 'safety' might not be in line with e.g. actual crime statistics. Similarly, the presence of street lights may not mean that a place is experienced as well lit.

These subjective categories lead to the creation of a list of 12 subjective variables which can be analysed directly. The full list of variables is provided in table 3.3

Interaction effect: respondent background

The basic hypothesis of this thesis holds that urban features affect route choice. This effect may however differ depending on the interaction by contextual conditions. Three interaction effects are considered: personal background, modal and local familiarity and trip direction. Methorst (2021) notes that "[i]t is commonly accepted that life cycle stages, gender and civil/household status predispose activity patterns and consequently [waking and sojourning] behaviours. These are important factors in lifestyle [...], mobility choices and habits as they govern life needs, abilities and the search for walking and sojourning opportunities, autonomy and mode captivity" (p.151). Following e.g. Hillnhütter (2016) and Bongiorno et al. (2021), trip direction is of importance. The full list of interaction effects is provided in table 3.4.

Following Methorst, age is noted as indication for physical ability and endurance, whilst gender reflects the propensity to take risks and general preferences. In line with age, respondents are also explicitly asked to indicate their ability to walk further than 2 km without requiring assistance or rest (see also appendix D.17). This is asked so as to determine the role which walking plays in the respondent's mode choice set. Although Methorst also mentions the importance of household status, this is noted to be of primary importance on mode choice, but of lesser relevance to route choice. As the present study focuses on the latter it implicitly takes that a mode choice has already been made and is no longer relevant. Although mode choice behaviour is considered to be out of scope, the set of background questions will request information on a respondent's Table 3.3: Overview of all subjective variables tested in this study, including their manner of measurement. All variables are represented by ordinal values measured on a 5-point scale.

	Subjective variables	Type	Hypothesis
1	Subjective: fastest	Averaged	+
2	Subjective: easy to remember	Averaged	+
3	Subjective: no obstructions	Averaged	-
4	Subjective: steep slopes	Averaged	-
5	Subjective: lot of seating	Averaged	+
6	Subjective: protected against weather	Averaged	+
7	Subjective: safe vs.traffic	Averaged	+
8	Subjective: safe vs. social risk	Averaged	+
9	Subjective: like when dark	Averaged	+
10	Subjective: well lit	Averaged	+
11	Subjective: other people	Averaged	-
12	Subjective: well maintained	Averaged	+

Table 3.4: The following interaction effects are considered.

	Variable	Data type
1	Regularity of performing walking trips	Ordinal (4 scales)
2	Regularity of travelling by train	Ordinal (4 scales)
3	Ability to walk farther than 2 km unassisted.	Ordinal (5 scales)
4	Gender identity	Nominal (4 options)
5	Age, per bracket	Ordinal (7 scales)
6	Familiarity with area.	Ordinal (4 scales)
7	Whether a respondent lives in that city.	Binary
8	Whether a respondent has a bike available.	Binary
9	Trip direction	Binary

access to a bike and people's familiarity with the area. As noted by Methorst (2021), cycling in the Netherlands claims a substantial share of the trips which would be performed on foot elsewhere. Consequently, it may be expected that longer-distance walking trips will be relatively scarce if a respondent has a bike available in that city. If a respondent walks farther despite having a bike, this may be read as either a certain attractiveness of walking or 'unattractiveness' of cycling. Respondents are asked to indicate their familiarity with the area surrounding the station to understand respondents' ability to tailor a route to their personal preferences. Respondents who are unfamiliar with the immediate environment may choose routes which are easier to remember or chosen based on some navigational aid.

3.2.2 Data analysis

Methodologically, the main difference in the way this thesis goes about answering sub-questions three and four lies in the selection of sample categories and variables which are considered. This allows both questions to be analysed in a largely similar manner. In order to permit structured comparison, each subquestion will be answered by performing three kinds of analysis: route geometry analysis, route aggregate analysis and within-route distribution analysis. Additionally, the results generated by this study are analytically strengthened by applying a qualitative verification.

Analysis method

This study engages with with a form of discrete choice analysis: the choice of a person for one among a finite set of distinct route alternatives. In line with the research questions and prior academic research, this choice is hypothesised to be dependent on the combined effect of a range of variables. For such studies, a multinomial (logit) regression or mixed logit random utility modelling approach would generally be considered the ideal go-to method. Indeed, other studies on pedestrian route choice such as Liu et al. (2020) or Muraleetharan & Hagiwara (2007) have applied this. Such a 'modelling' approach permits for the statistical estimation of weights (β 's) for each variable under consideration. Through application of the logistic distribution, research shows that choice behaviour can be powerfully emulated (Chorus, 2021a). Moreover, it permits for the inclusion of a basket of variables *in combination*. This is in line with the finding by Ewing & Cervero (2010), that individual variables in the urban environment may have a relatively minor effect on route choice, but do affect such choice when combined.

Although this approach would generate the most powerful results, this thesis chooses not to apply it in analysis. Instead, each variable will be tested individually through 'simple' univariate descriptive statistics. Here, 'descriptive statistics' are understood as collection of statistical tools which draw upon statistical sample indicators such as proportions, mean, variance, residuals and rank. Although one-sample and two-sample methods are used, all tests are used to either directly or indirectly compare pairs of samples. Aim of this method is to obtain an understanding of which variables on which route categories deviate significantly from their specified baseline route categories.

By opting for a non-modelling method, this consciously entails a weakening of the results this study generates. By considering all variables autonomously it complicates analysis: a far greater greater number of tests need to be performed and interpreted. Moreover, by not estimating a model, no 'weights' are obtained that will lend themselves to clear interpretation of the relative importance of variables. Under the applied method the relative weight is taken from the less exact significance threshold which as moreover not been tested for interaction with other variables. This decision is taken for two reasons:

First, in order to generate results which are meaningful a comparatively large amount of data is required. Although exact rules of thumb are unclear, e.g. Stoltzfus (2011) finds that 10-20 responses per independent variable are required so as to capture enough variability in the population so that a model can reliably identify the relative weight of variables. This thesis study considers approximately 41 urban feature variables and 12 subjective variables. When the rule posited by Stoltzfus is applied to the present study, this translates to a requirement of at minimum (41 urban variables times 10 = 140 valid responses for sub-question three, and ((41 urban variables + 12 subjective variables) times 10 = 1530 valid responses for sub-question four. However, as is discussed to greater detail in section 4.1.1, only 105 valid responses have been obtained. This is far too little to obtain reliable results using a modelling approach, which means that an alternative method is required.

Second, in order to determine the exact preference of each respondent in addition to the way by which that respondent's preferences vary vis-a-vis the wider population - a sizable choice data set is prequired. In the field of route choice this problem is generally approach by comparing the route which is chosen by a respondent against a wide body of alternative routes. In the present study sub-question three considers five routes (three 'known' routes and two null hypothesis routes) and sub-question four considers three routes (the 'known' routes only). Studies which approach route choice by means of modelling commonly generate several tens, if not hundreds of route alternatives generated by k-routes or other more complex mathematical models (e.g. , Liu et al. (2020)).

Although this latter requirement would mathematically be possible, it is highly demanding computationally. This challenges the methodological innovations which this thesis seeks to explore: drawing on public geodata to perform analysis on urban features. As will be discussed in section 3.3.3, each route set requires a download of features and extensive computational handling in order to match these to the routes. This is a computationally intensive process which takes several days to complete with the small route choice set which is currently under consideration. This computation time can surely be reduced in future implementations, but as a first trail (combined with the modest coding skills of the researcher) a longer-than-necessary computation time must be accepted. If such code were required to compute a substantially larger number of routes, this would place prohibitive demands on available computational power.

It is as such recognised that the quantitative results generated by this thesis will be less powerful than they might have been. To offer a modest counterbalance to this, two compensatory measures are taken.

First, as will be worked out in section 3.2.3, the thesis will include a significance level (alpha) of 10%. This is substantially more permissive than what is conventional academically. Nevertheless, by doing so this thesis hopes to capture a wider image of variables which might exhibit subtle effects. Although inconclusive, this will give a picture of other variables which might have an effect on route choice and may provide input for future studies.

Second, a qualitative verification. This permits for results which are obtained through quantitative means to be explicitly compared to those features which respondents say they find important. Here, it is recognised that both methods test different things: the quantitative methods applied in this thesis draw lessons through the 'revealed preference' approach, in which it is posited that behaviour is apparent from variables which the researcher can identify surrounding the study object. Conversely, qualitative responses give insight in the motivations and reasoning of people. These may over-attribute, be unable to express or simply not be aware of certain elements. However, this thesis argues, this in itself is a powerful control mechanism: if a feature is found to exhibit an effect by quantitative analysis, and this effect is also mentioned in the qualitative study, it gives double support for the finding.

Analysis 1: Route geometry

This thesis seeks to identify how features in the urban environment affect route choice. To understand the extent to which people are willing to go out of their way to experience such a route, various geometric features of these routes need to be considered. This study will quantify route geometry using the nine statistics, each of which can be computed using route path data as input. An overview of these variables is given in table 3.5. A definition of the variables is given below.

The first two variables general descriptions, with the remaining eight geometry statistics are computed based on a set of walking route metrics posited by Zomer (2021). Many of these statistics are based around the 'bearing line', which represents a straight line connecting origin and destination.

- 1. Route length: this dimension is relevant as it has implications for the potential and realised catchment area of train stations. Assuming that the Netherlands are mostly flat thus waiving the need to avoid steep slopes, gives an immediate indication of the amount of effort which people are willing to commit to their trips.
- 2. Route overlap: this indicates the proportion of a given route which overlaps with some baseline alternative route (e.g. the shortest path or least directional turns paths for sub-question three). This is relevant as it permits for understanding the amount of substantive difference between routes in a choice set. Computationally, route overlap is defined as the proportion

of number of links of a route which lie wholly within a 30 m buffer around the baseline route under consideration.

- 3. Detour ratio (definition given in eq. (3.2)): this gives the proportion between the revealed route distance and the bearing line, computed over each respondent n and trip i. This is relevant as it expresses the additional distance covered by respondents when compared to the very minimum possible distance. In addition to this version used by Zomer, two alternative interpretations of the detour ratio are computed giving the detour ratio from the null hypothesis routes.
- 4. Maximum spatial deviation (definition given in eq. (3.3)): this gives an indication of the furthest distance a route deviates from the bearing line at a 90 degree angle. This is relevant as it illustrates the extent to which people are willing to travel into a direction other than that of their destination while en route to that destination. It also gives an indication of the breadth of the walking area which pedestrians would consider to be in scope for their trip.

$$Detour \ ratio_{n,i} = \frac{response \ line \ distance_{n,i}}{bearing \ line \ distance_{n,i}}$$
(3.2)

$$Maximum \ deviation_{n,i} = Max(Y_{n,i}) \tag{3.3}$$

- 5. Eccentricity (definition given in eq. (3.4)): this gives the bearing line length as a proportion of the combined distances from the origin and the destination (here indicated by respectively O and D) to the point where the route has achieved its maximum deviation (as defined above), here indicated by F. In doing so, it gives a combined representation of the detour ratio and maximum deviation variables.
- 6. Curvature (definition given in eq. (3.5)): this gives the extent to which a respondent route differs from the minimum route to the maximum deviation point. Here, the deviation out to the maximum deviation point is considered as the the main geographical 'curve' described by a route. Any additional distance as such indicates that a route takes more curves.

$$Eccentricity_{n,i} = \frac{bearing \ line \ distance_{n,i}}{Max(distance_{O,F_{n,i}} + distance_{D,F_{n,i}})}$$
(3.4)

$$Curvature_{n,i} = \frac{Max(distance_{O,F_{n,i}} + distance_{D,F_{n,i}})}{response \ line \ distance_{n,i}}$$
(3.5)

Analysis 2: Route aggregate

Route aggregate analysis studies the extent of difference between two samples of route types in terms of aggregate urban feature scores. This is relevant as it describes whether some urban feature occurs significantly more (or less) often along a routes which people (do not) like to take. This analysis type is based on the incidence of urban features on each route *in total*.

(a) Hypothetical test sample (b) Hypothetical baseline sample

Figure 3.2: Illustration of sample construction for route aggregate analysis. The images show how the numbers of trees per route are summed and saved into a data vector. This is performed for both the test and baseline sample. For analysis, these vectors are tested for similarity.

This method is illustrated in fig. 3.2. In that illustration, two samples of routes are compared, each of which meet some criterion of interest (more on this in section 3.2.3). For the present analysis type, the number of times in which a certain feature (here, trees) occurs along the route is summed for each route, and then combined into a list. These lists represent samples which can be tested against each other.

If one route sample contains a given feature more often than some other sample, it suggests that structural differences may exist in terms of routes which people like to take.

Analysis 3: within-route distribution

Urban features may not always be distributed evenly along a route. Indeed, pedestrians, driven by a preference for certain features, may opt to experience urban features in particular sequences. This type of analysis studies such distributional variation and is illustrated in fig. 3.3.

Within-route distribution analysis is in effect a form of time-series analysis. Ideally, this would be studied by means of a modelling technique such as autoregressive integrated moving average (ARIMA) (e.g. Brownlee (2017)). However, such an approach would require calibrating a model to fit trends observed in the data under investigation, and subsequently compute deviations from it.

Instead, this thesis takes a similar approach to distribution analysis, as it does to route aggregate analysis by applying descriptive statistics. THis is opted for for two reasons: First, extensive calibration as required for ARIMA would be highly time-demanding. Second, as far as this thesis is aware, hardly any research has of yet been done on within-route distribution. Consequently, even limited findings would constitute a contribution to the literature.

The implementation of the descriptive method is discussed to greater detail in section 3.3.5.

Figure 3.3: Illustration of sample construction for within-route distribution analysis using the same hypothetical case as in fig. 3.2. Now, the numbers of trees are counted per route quadrant and saved into a vector for that quadrant. This is performed for both the test and baseline sample. For analysis, each pair of quadrant vectors are tested for similarity.

Verification: qualitative responses

The data types which are derived from the traditional MNL utility function permit for the quantitative study of the research questions which this thesis seeks to answer. When combined with the variable types suggested by literature and experts, a body of variables is accumulated upon which route choice should reasonably be able to be determined. However, it is important to realise that these variables constitute a rationale which is superimposed upon a respondent population which might not confirm to this rationale. Simply put: elements which are suggested as relevant in studies performed elsewhere might not be relevant for the people who end up filling in the survey of this thesis. Consequently, the validity of the selected variables for the present study must be tested.

Such validation is hard to perform conclusively. One manner by which it

might be achieved is through follow-up in-person interviews with a sample from the respondent population. This would however require personal contact details from respondents, leading to a reduced willingness to participate. Moreover, selection effects might bias the population which agrees to leave behind contact details. Also, the sample might not be reflective of the full population.

Instead, this thesis performs the validity test by asking respondents to provide a brief free-form textual motivation as to why they (don't) take each each route which they submit to the survey. This question, which is voluntary, permits respondents to control the amount of private information they reveal, thus containing ethical risks and respondents' hesitancy to contribute. By permitting each respondent to provide the information in their own words without fixed word limit, this permits the survey to both capture a direct insight into respondent's actual lived experience, whilst simultaneously covering the breadth of the full respondent population. This technique is not perfect: it assumes respondents are consciously aware of their choice behaviour. This creates a risk of choice-supportive bias in results.

This method delivers a set of inherently qualitative data, which cannot be analysed through the main quantitative methods which hav ebeen described so far. Following the instructions by Crang (2005) on human-geographic qualitative analysis methods, this textual data will be analysed by means of text coding. In this technique, responses are individually reviewed for any route choice variables which might me discerned in them. Each identified variable is assigned a code. Codes are subsequently assessed for similarity and aggregated as far as possible without losing too much detail. Additionally, each variable-code is checked for respondent sentiment: whether a respondent perceives the mentioned variable as an attracting or repelling dimension to route choice. Combined, this builds a body of codes which can be counted, with most-featuring codes representing route choice variables which are most important to respondents.

3.2.3 Statistical analysis

Data tends to contain substantial internal variance. To determine whether any of the sample pairs differ significantly, statistical tests must be applied. As it is not possible to properly perform a modelling study with the achieved response rate, descriptive statistics are applied. As modelling is discarded it is not possible to determine 'weights' per variable, making multivariate testing overall challenging. In order to contain complexity, this study will solely perform tests on a per variable-basis: no interactions between urban variables are tested.

Tests on trail data indicated that within-route distribution samples are more likely to be normally distributed than (non-standardised) route-aggregate data samples. Consequently, non-standardised route-aggregate samples will only be tested through non-parametric tests. Standardised route-aggregate samples are tested through both parametric and non-parametric means. Finally, withinroute distribution tests are also performed through mixed parametric and nonparametric means.

As introduced at the onset of this chapter (section 3.1.1), this thesis makes

the intention of sub-questions three and four explicit by redefining them in terms of null hypothesis tests. These definitions describe the questions as comparisons between different types of route categories. For the purpose of statistical testing, these categories will be defined as 'samples'. First, a description of the sample selection procedure is given. After that a description of the statistical tools will be given by which differences between these samples can be are analysed.

Sample selection

Route aggregate analysis and within-route distribution analysis are performed by either directly or indirectly comparing two alternating samples of data by means of a selection of statistical tests. These samples will subsequently be referred to as the 'test sample' and the 'baseline sample', with results reported in terms of the deviation of the test sample from the baseline sample. Both samples represent different subsets of routes, based on some criterion of interest. Tests are iterated across all applicable variables independently. What exactly either sample entails varies per test and will be detailed below. Considered together, each set of two samples is referred to as a 'sample pair'.

- For sub-question three, tests are performed between respondent-provided routes and the null hypothesis routes.
- For sub-question four tests are exclusively performed between respondentprovided routes, with the inclusion of the subjective variables. The variable 'frequency' is used as criterion in sample construction.

The sub-questions will be answered by applying a structured sample composition strategy that is the same across both questions. As noted in section 3.2.1, a route 'frequency' indication is assigned by respondents for every route which they have provided. For this, they were given the option of assigning one of five frequency classes: (1) 'never', (2) 'sometimes', (3) 'regularly', (4) 'often', (5) 'always'. Additionally, from these classes a 'most'-used and 'least'-used frequency class can be defined. Such definition is relevant because not all respondents have assigned every frequency class category (in fact, with five classes and only three routes to be entered, this is impossible). By defining a 'most' and 'least' class, this permits for the construction of sample pairs which contain a response for every respondent, thus increasing the body of data from which lessons may be derived. A full list of sample-pairs is given in table 3.6.

As noted in section 3.2.1, this thesis also considers several interaction variables which are related to the respondent's personal background. To assess interaction effects, samples are cropped to only include routes which match a specific interaction effect category. Interaction effects are as such tested on subsets of the original sample pairs.

Sample-pairs have been selected following two rationales: First, by testing between route types which exhibit maximally differing frequencies of use, it is assumed the biggest difference will be found between urban features which respondents like and which they do not like. The larger such difference, the more Table 3.5: Overview of indicators of route geometry. All values are represented by ratio values.

	Variable	Type
1	Route length	averaged
2	Overlap vs. shortest path	averaged
3	Overlap vs. ldt path	averaged
4	Detour ratio vs. bearing line	averaged
5	Detour ratio vs. shortest path	averaged
6	Detour ratio vs. ldt path	averaged
7	Maximum deviation	averaged
8	Eccentricity	averaged
9	Curvature	averaged

Table 3.6: Overview of the comparisons between test samples and baselines samples performed in this study, including a breakdown per sub-question (indicated by R.Q.). Note that each sample comparison is performed for two route directions: trips from an external destination to a train station, and vice versa.

$\mathbf{R}.\mathbf{Q}.$	Test sample	Baseline sample
3	Most-used route	SP-route
3	Most-used route	LDTP-route
3	Least-used route	SP-route
3	Least-used route	LDTP-route
3	Freq. class (1)	SP-route
3	Freq. class (1)	LDTP-route
3	Freq. class (5)	SP-route
3	Freq. class (5)	LDTP-route
3	Freq. class (2)	SP-route
3	Freq. class (2)	LDTP-route
3	Freq. class (3)	SP-route
3	Freq. class (3)	LDTP-route
3	Freq. class (4)	SP-route
3	Freq. class (4)	LDTP-route
4	Most-used route	Least-used route
4	Freq. class (5)	Freq. class (1)
4	Most-used intermed. freq.	Least-used intermed. freq.

evident this should be from a statistical test, which in turn permits for clearer insights. Second, to control for the 'always' and 'never' frequency classes which some respondents have entered. These classes are by definition exclusionary: if a given route is 'always' taken other routes are 'never' taken. To control for this, tests are rerun with the intermediate frequency classes 'often', 'regularly' and 'sometimes'. These intermediate classes encompass scenarios that witness a more active form of route choice on behalf of the respondent.

Note that for tests to be valid the subsets of respondents from which samplepairs are drawn are identical for both samples: all respondents who feature in the test sample must feature in the baseline sample and vice versa. Additionally, the number of times respondents feature in these samples must be equal for all respondents in the sample. In terms of sample size, note that respondents could choose from five frequency classes, but only entered three routes. Respondents may therefore not have routes which are eligible for each condition of interest. This causes sample sizes to fluctuate between tests. For all tests a minimum threshold of 20 responses is applied, which is the minimum sample size stipulated by the SciPy statistical testing package which is used for analysis (more on this in section 3.3.5). The number of respondents for tests are reported in the raw data tables in appendix F.

Data standardisation

When route aggregates and within-route quadrants indicators are computed, route aggregate analysis tests can in principle be performed. However, such data may contain variance which obscures underlying patterns. For within-route distribution analysis further preparation is required. Two issues are identified:

- 1. For route aggregate analysis: A potential lack of normally distributed data. The most powerful descriptive statistical tests are generally optimised towards normally distributed data. However, there is no guarantee that the data which is obtained through this study meets this requirement.
- 2. For within-route distribution analysis: two compared samples might contain differing route-level totals of features. This may skew an understanding of distribution of these features: if one route has higher feature incidences overall than some route is it being tested against, clusters in the latter might be obscured.

For route-aggregate analysis: in order to be able to identify more patterns in the available data, a parallel 'standardised' data set is generated. This permits for wider application of the statistically powerful t-test. This standardised data set is computed by scoring feature incidences of the test sample in terms of their relative difference from corresponding feature incidences on the baseline sample. Following Törnqvist, Vartia, & Vartia differences are expressed in terms of log-percentages (eq. (3.6)). Log-percentages are applied as these express both positive and negative differences in the same absolute number. This creates a more evenly distributed distribution. Note that by applying this method each route pair is now represented by a single difference index. This means that this data requires the application of one-sample rather than two-sample tests.

$$Log\%_{\frac{route}{baseline}} = 100 \cdot log_e(\frac{featurescore_{route}}{featurescore_{baseline}})$$
(3.6)

For within-route distribution analysis, data must be standardised in order to permit for a focused study of distribution effects. Deviations stemming from differences in route totals need to be evened out. For standardisation, a correction is applied per respondent expressing the difference of one respondent from the two-sample mean. This is expressed mathematically in eq. (3.7). This factor is applied to all link-level scores for a respondent's test sample route. This process is iterated across all respondents in the sample-pair.

$$score \frac{standardised}{link} = \frac{score \frac{ts}{route}}{score \frac{bs}{route}} \cdot score \frac{ts}{link} \forall link \in route$$
(3.7)

Statistical framework

If sample pairs are different on some variable, this may indicate that a different preference for this variable exists in the population. E.g.: if the 'most'-taken route test sample features more trees than the 'least'-taken route baseline sample, this may imply that people like to have trees on the routes which they walk. However, data contains variation. To perform tests which control for this variation statistical tools need to be applied.

Each sample pair tests for the difference between two samples. Generally speaking, this can have three possible outcomes: first, that neither sample contains significantly larger of smaller values than the other. Second, that there is a significant probability that the test sample contains larger values than the test sample. Third, that there is a significant probability that the baseline sample contains larger values than the test sample.

These differences are identified according to a null hypotheses which have been defined for a test. These null hypotheses have been defined generally in section 3.1.1. However, in order to operationalise these for the tests which are performed a slight redefinition is in order. This will be detailed along with their overall implementation in section 3.3.5.

For route aggregate analysis, a non-standardised version of the data is tested and a standardised version of the data is tested. The testing approach is outlined in fig. 3.4. For the non-standardised version of the data, a test is required which can compare two independent samples of continuous data. Visual tests indicate that most samples are not normally distributed. For this, the nonparametric two-sample Man-Whitney (M-W) test is applied. This test is highly comparable to the two-sample Kolmogorov-Smirnov (K-S) test. As noted by Özçomak, Kartal, Senger, & Çelik (2013), both tests share three requirements: "[1] Every sample is chosen randomly from the population it represents; [2] The measurement scale is sequential at least; [and 3] The basic observed variable is a continuous variable" (p. 83). However, the M-W test only requires point sequences to be independent from each other, whilst the K-S test required both full samples to be independent. This latter requirement is problematic for sample-pairs tested under sub-question four. Here, both sample pairs contain a route which was entered by a respondent. This means that the samples are not fully independent: after all, both samples contain routes which the respondent actively provided. This as opposed to sample pairs in sub-question three, where respondent routes are tested against locally computed null hypothesis routes (i.e.: routes which the respondent did not personally provide). Although this effect is considered to be minute enough to still permit use of the t-test, if given such a distinct choice the M-W test would seem more desirable.

For the standardised version of the data, the difference between two samples is merged into one relative variable which is more likely to be normally distributed, as was noted in section 3.2.3. To determine normality the Agostino-Pearson, Liliefors- and Shapiro-Wilk test tests are applied in parallel at $\alpha =$ 0.025. Samples that score $p \geq \alpha$ on either test are deemed to be normally distributed. The low threshold of 2.5% is applied to obtain as many candidates for t-test testing as possible. Each test is widely-cited and has notable advantages on different points (e.g. the D'agostino-Pearson test is considered the default "normal test" in the much-used Python SciPy library SciPy (2021b), whilst academic research shows merits of the other tests (Razali, Wah, et al., 2011)). As all tests are optimised towards slightly different objectives, all three tests are applied in parallel.

Data which is normally distributed is tested with the one-sample t-test location test. This is generally viewed as one of the most powerful statistical tests for normally distributed data. For non-normal data, a one-sample nonparametric location test is required. For this, the Wilcoxon signed-rank test is applied, as a review of the academic and gray literature recommend it as the non-parametric equivalent of the one-sample t-test (e.g. Armstrong & Hilton (2011) or Scheff (2016)).

Sample pair - Route-level	 Non-standardised Two samples 	 Man-Whitney test two-sample test + Bonferroni 	
	Standardised data - Single sample	 Normality tests - d'Agostino test - Liliefors test 	 Normal: Student's t-test One-sample test + Bonferroni
		- Shapiro-Wilk test	 Not normal: Wilcoxon test One-sample test + Bonferroni

Figure 3.4: Test selection procedure for route aggregate analysis.

For within-route distribution analysis, the testing approach is outlined in fig. 3.5. Visual inspection shows that data is more often normally distributed. Consequently, each sample per sample-pair is tested for normality using the same three-test method applied for standardised data route aggregate analysis. Sample-pairs in which both samples are found to be normally distributed are analysed using the two-sample t-test. Samples in which at least one sample per sample-pair is not normally distributed are again analysed using the nonparametric two-sample M-W test detailed above.

```
Sample pair → Non-standardised data → Normality tests

- Segment-level - Two samples - d'Agostino test

- Liliefors test

- Shapiro-Wilk test - Two-sample test + Bonferroni

Not normal: M-W test

- Two-sample test + Bonferroni
```

Figure 3.5: Test selection procedure for within-route distribution analysis.

Upon application of these tests, a data set is compiled consisting of p-values and directions of deviation. In order to make statements on this data, it is tested at three significance levels: $\alpha = 2.5\%$, $\alpha = 5.0\%$ and $\alpha = 10.0\%$. Hereby 2.5% and 5.0% are chosen following academic convention. Of these, the 2.5% threshold represents the most stringent criterion and is used to identify variables upon which substantive differences are found between test and baselines samples. In contrast, the 10.0% threshold is highly permissive and does not lend itself for any kind of conclusive statement. It is however applied nonetheless so as to obtain a sense of variables that might yet be of interest for future largersample studies. For instance it may be used to identify features of relevance with regards to interaction effects.

With the method described above, series of successive tests are performed on sample pairs. In doing so, a 'familywise' error rate may occur, which needs to be controlled for. This is controlled for in the application of significance thresholds. With this many successive tests, there is a level of uncertainty equal to the applied significance threshold per individual test. This means that, even if there is no difference in the population, that threshold's equivalent percentage of tests will test significant anyway.

One common tool by which familywise errors can be controlled for is the 'Bonferroni correction'. To test for the robustness of the results, all tests are therefore re-run with this correction. Under this correction the significance level α for each variable is corrected using eq. (3.8). Note however, that this correction is particularly conservative, and there is ample debate on its suitability (e.g. VanderWeele & Mathur (2019) or Armstrong (2014)). In application therefore results will first be reported for the tests including the Bonferroni correction. If only very few significant results are found when the correction is applied, the uncorrected results are also reported.

$$p - value_{var} = \frac{\alpha_{var}}{\# tests} \tag{3.8}$$

3.3 Implementation

This section details the technical implementation of the process which was described on a high-level in appendix 3.2. First, survey design will be discussed. Second, the extensive data preparation process is detailed, including data cleaning, map-matching, and null hypothesis route computation. Third, the section discusses how urban features are loaded and assigned to specific routes. Finally, the statistical testing process is worked out.

Unless mentioned otherwise, data processing is performed though a series of 18 python scripts, combined with visual inspection of geographic data in QGIS. Notebook versions of these scripts are available in chapter G. For the sake of brevity only those Python packages which are used for key computations will be mentioned in the text. A word on terminology: this thesis identifies 'links', 'nodes' and OD-points. Links and nodes refer to network or graph structures: nodes represent geographically-fixed points and links are straight lines connecting these points. Paths and routes refer to trajectories across this network: distinct sequences of nodes and links connecting OD-pairs. Finally, OD-points represent the origin and destination pair for each respondent. For this study, one of these points must be a train station, the other an external location. The list of train stations and coordinated used for this study has been obtained through Nederlandse Spoorwegen (2021).

3.3.1 Survey design

For this study, a survey tool is needed which permits both questionnaire and mapping functions. The following platforms are considered: Maptionnaire (Maptionnaire, 2021), Canvis.app (Canvis.app, 2021), ArcGIS Survey 123 (ESRI, 2021) and KoBoToolbox (Harvard Humanitarian Initiative, 2021). In review, it was decided that ArcGIS Survey 123 best fit the needs required for the present project, as it was available to the researcher at no additional cost, offered adapted client-side layouts for both regular computers and mobile devices, and permitted data to be both collected and stored in a GDPR-compliant way through its harmonisation with the TU Delft user account environment. This latter condition has been codified in a data management plan which was approved by the TU Delft Ethics Committee on the 29th of June 2021.

Surveys in the ArcGIS Survey 123 environment are developed using the XLS Forms interface. The survey was developed in an iterative manner consisting of three steps per iteration: development, piloting and review by project supervisors. Approximately four iterations were needed to come to a survey which could be deployed. Draft surveys were piloted across a total of ten pilot respondents. For representativeness, pilot respondents were deliberately varied in terms of age, gender and location of domicile. All pilot respondents who the researcher could access had completed at least an academic or applied sciences bachelor degree, which implies that the survey could not be tested in terms of its suitability for participants who have been less theoretically trained.

In addition to a wealth of minor adjustments, trails resulted in the discovery of two structural issues and led to one decision. First: a declining willingness and focus to answer questions over time. This resulted in lower resolution data on later entries. Second, the need for digital literacy. Particularly older pilot respondents struggled with the digital environment of the survey tool. This resulted in lower-quality data, especially on the map-based survey elements. Monitoring sessions found that these elderly respondents took up to three times as long to complete the survey when compared to twenty-year-olds. This effect is foreseen to bias the survey towards younger and more technologically educated respondents.

Based on these observations, it was decided to limit each survey to a total of three routes per survey. So as to represent a route choice set, all three routes must run between the same pair of OD-points.

To make the survey accessible to an as wide audience as possible, both a Dutch and English version are developed. The final version of the survey is enclosed in appendices D (English version) and E (Dutch version).

The final version of the survey encompasses a total of 61 questions, of which 54 closed-form questions, three open questions, and four map-based questions. These questions encompass questions on known routes, subjective route experiences, qualitative motivations and personal backgrounds / interaction effect data. Each batch of questions is presented on a new 'page', each of which is preceded by a brief introductory text and/or image.

For known route data: respondents are prompted with a series of maps. The first map requires them to enter a point representing their non-station OD point. Subsequently, they are asked to manually draw their known routes on three successive maps. This drawing is done by entering polylines consisting of nodes connected by edges. The station OD-point is obtained through a closed-form question containing all stations in the Netherlands (Nederlandse Spoorwegen, 2021).

Questions on qualitative motivations are asked as a single open-form question immediately following the drawing of the route map. By asking this immediately after drawing, it limits confirmation bias or plain forgetfullness effects which might be caused by first requiring respondents to answer other questions. Questions on subjective experiences are asked as a batch of closed-form questions following the qualitative motivations field. Note that the motivational and subjective question batch are repeated for each known route map.

Questions on respondent background / interaction effects were asked in two parts: Questions on a respondent's mobility experiences are asked first, by means of warming up. Questions on the respondent's personal background (gender and age) are asked at the end by means of cooling down.

All in all, the survey is designed so that respondents who are moderately skilled with digital tools and have a theoretical thinking ability equivalent to that of an applied sciences degree should be able to complete the survey in 20 minutes time. This duration is found to be a point after which pilot respondents' attention span started to decline noticeably. The final survey's duration in accordance to this aim was verified by pilot respondent monitoring. A copy of the survey can be found in the appendix.

3.3.2 Route data preparation

In order to align survey data so that it can be used for statistical analysis, several preparatory steps are required. To come to a uniform data set, these steps are centered on respondent route data. Firstly because it is critical to this study's main analysis. Secondly, the route-data entry field represents the greatest freeform entry field of the survey, making it highly sensitive to misinterpretation. Thirdly, the free-form nature of route data makes it easier to identify flaws.

Error identification

Respondents make errors or may be unclear in the responses. As the survey is anonymous it is impossible, and for reasons of bias-prevention also undesirable, to ask individual respondents what they meant by their answers. To study route choice, a varied choice set is required per respondent. Moreover, varying route choice set sizes are hard to implement technically. As such it is decided to delete an entire response as soon as one route is found to be invalid. To come to a uniform and structured manner of error identification, five algorithms are applied:

- Total route length. This study investigates routes which are used for utilitarian access / egress of train stations. As mentioned in the literature review (section 2.1), walking is the most dominant or second most dominant mode up to 2.3 km, and plays some role up to 6 km (Shelat et al. (2018)). Routes which are (much) longer are likely to represent qualitatively other type of route or erroneous response. Providing a comfortable buffer, all respondents who have entered routes in excess of 10 km (approximately 2 hours of walking) are discarded. Note that this is a very permissive range which might include responses which are erroneous (e.g. people who drew their bike trip). This risk is consciously accepted.
- Between-node length. This is used to identify routes which are entered at a resolution which is too low for routes to be meaningfully mapped onto an infrastructure network. As train stations are based in (semi-)urban areas, most walking routes to or from a station will contain a number of turns. Following manual inspection of survey data for a realistic threshold, it was decided to discard all responses containing links in excess of 2 km.
- OD-point deviation, station-side. This is used test whether routes drawn by respondents begin/end at a train station. Routes for which the route head nearest to the station is more than 500 m from the station are removed. This threshold is based on the maximum platform length in the Netherlands, which is at least 340 m ProRail (2020), complemented with a comfortable margin to allow for network connectivity and respondent error. Responses containing routes in excess of this threshold are deemed not to represent access or egress trips and are deemed irrelevant to the study. Note that all three routes must be within this radius. If any of the three routes isn't the respondent is considered to have drawn a line elsewhere and is discarded.
- OD-point deviation, non-station side. This is used test whether routes drawn by respondents begin/end near a single non-station OD-point. Two tests are performed:

(a) Total route length: responses which (b) Between-node length: responses which contain routes which are longer than 10 km contain links which are longer than 2 km are discarded.

Figure 3.6: Illustrations of the criteria by which routes are rejected.

Figure 3.7: OD-point deviation, station-side: responses where the station-side route head deviates by more than 500 m from the station OD-point are discarded

- 1. A test is performed whether all three of a respondent's route heads on the non-station side are within 200 m from each other. This is illustrated in fig. 3.8a. This threshold is chosen so that (most) larger buildings can be covered. If this is exceeded, routes are considered not to cover the same OD-pair, and are discarded.
- 2. A test is performed whether the mean location between heads is less than 50 m from OD-point which was separately indicated by the respondent. This is illustrated in fig. 3.8b This threshold is the tolerance which respondents were told was permitted in the survey. If the user-indicated OD-point lies within the threshold, the routes are accepted as valid. If the threshold is exceeded, a respondent is considered to have drawn three valid routes routes to the same destination, but to have misplaced its OD-point. In such case, the user-indicated OD-point is discarded and the mean of all three route head is considered to represent the new non-station OD-point.
- Route similarity. This test is used remove responses which lack a varied route choice set. If respondents have one route only, they have no route

'choice' to make and as such provide no information at to the their preference for certain variables. Consequently, responses containing only one route (the same route drawn three times), are discarded. This criterion is applied in a way that is similar to route overlap.

(a) Head mismatch: responses where non-station OD-point route heads are more than 200 m apart are rejected.
(b) Non-station OD-point vs. route end mismatch: cases where the mean of route ends is more than 50m from the OD-point, a new point is defined.

Figure 3.8: Illustrations of the criteria by which routes containing mismatched on their non-station OD-points are rejected or amended.

In addition to the application of these criteria, a check is performed with regards to route drawing direction. Respondents have drawn routes into the survey GIS function manually. In doing so, they were free to decide where they might start their route lines and end them. As a consequence, some routes have been drawn from the station to the external OD point whilst others did so in the opposite direction. In the ArcGIS Survey 123 application, these drawing directions are preserved in the coordinate-sequence outputs. Such different drawing directions would cause problems when routes are analysed for within-route distribution, as this considers all routes in parallel to each other and thereby assumes that these all start at the station and run to the external OD-point.

To control for this, a route alignment algorithm is applied. With this algorithm all routes are aligned so as that their coordinate sequences start at the station-side of the route. This algorithm tests each route sequence as to whether the route head is closer to that respondent's station or OD-point. If the ODpoint is found to be closer to the top route head, the coordinate sequence is reversed. A few cases where routes caused errors (e.g. for poorly drawn lines in which distancing versus the station and OD-point did not check out), manual interventions were required.

With all coordinate-sequences aligned to start at the station-side and end at the OD-point, lines can be completed. This is done by extending a line from the first route head to the station-node, and similarly extending a line from the bottom route head to the OD-point as is illustrated in fig. C.1a. With this step completed, a route database is obtained with three hand-drawn routes per respondent, running from the station node to each respondent's external OD- location. This extension is needed to as to standardise the data in terms of route length and access/egress routes. By extending lines to the station, it is guaranteed that all routes lead to a uniformly defined station point. Note that this might cause differences from the routes taken by respondents with regards to stations with many platforms or which have entrances which are spaced far apart from each other. Nevertheless, this error is assumed to be equal across all respondents, as very few people will in fact board their train at the very heart of the station (which is the location represented by the station-point coordinates).

Map matching

The route-data tool in the survey requires respondents to draw routes manually by tapping nodes on the map. Although this permits users to enter routes at some level of detail, user patience and willingness to provide such detail is limited. As such, it cannot be assumed that all routes are entered with a level of detail that corresponds to an actual infrastructure network which is accessible for pedestrians. To control for this, user-entered routes must be aligned with the existing pedestrian-accessible infrastructure. This entails an exercise which is referred to as 'map matching'.

The map matching algorithm which was developed for this study consists of a six-step method based on a combination of masking and Dijkstra's shortest path computations. A detailed illustration of each step can be found in appendix C.

1. Route masking, illustrated in fig. 3.9a.

A mask (or buffer) is cast around each respondent's bearing line (the straight line connecting a respondent's OD-points), as well as all individual routes entered by the respondent. The measurements of the bearing line mask are based on the notion of a 'potential path area', discussed by Zomer (2021) in the context of a rather comparable study on cyclist behaviour: "[a] projected ellipse of the space-time diagram on the surface, which represents all locations that a person can occupy during the time available between two sequential activities". As applied by Zomer, bearing line masks are set with a width equal to the maximum deviation a respondent route takes from the bearing line (to a minimum of $1/7^{th}$ of the bearing line length). Note that to save computational complexity the mask which is cast in the present project is not ellipsoid, but a rather a rounded rectangle. Note that even though the work by Zomer focuses on cyclists, this is deemded to be applicable to pedestrians also. Cyclists, as fast-moving objects are - if anything - to be expected to need a larger base network from which to choose their routes than pedestrians. Following this principle in a pedestrian-oriented study as such implies a 'safe bet': a network size that works for cyclists most likely works for (slower) pedestrians also.

Route-level masks consist of a merger of a relatively narrow mask around the route itself, and a wider buffer around the OD-points. The route mask must be as narrow as possible so as to avoid capturing alternative paths, yet wide enough to contain for user errors and capture (most) nodes of the user's actual route. Tests on data from survey pilots showed that a 30 m mask meets these requirements. The OD-point mask is cast fairly wide due the need to capture sufficient graph edges in complex station and housing environments. Survey pilot data showed that a 130 m mask is the minimum range necessity to permit access and egress of Utrecht central station. As one of the largest stations in the Netherlands, a weakest-link reasoning suggests that a mask which suffices for this station, will almost certainly be enough for other stations as well.

(a) Masks are cast round respondent routes (b) A bearing line mask-based Openand the bearing line. StreetMaps network is downloaded.

Figure 3.9: Map-matching algorithm, illustrated

2. Network downloading, illustrated in fig. 3.9b.

Masks are used as a template to download undirected graphs of each used pedestrian network. The base pedestrian network in the region around the bearing line is downloaded from OpenStreetMap (OSM) (OpenStreetMap, 2021a). This is done using the OSMNX python package (Boeing, 2017).

The choice for OSM is based on several assumptions. As OSM is a crowdsourced database, there is a risk that its data is not fully up to date. It has however been chosen for three reasons.

- (a) Ease of availability: OSM data is freely downloadable through various channels, and not subject to paywalls.
- (b) Pedestrian sensitivity: as OSM is maintained by a large base of committed non-professionals, it is more likely that people will have entered 'informal' trails, shortcuts and other pedestrian-accessible pathways than more formal services might contain.
- (c) Industry standard: review of both academic and practitioner literature suggests that OSM is accepted as something of an industry standard for spatial analysis. Downloads from OSM are performed using the graph-from-polygon functionality of OSMNX, because this permits for an efficient integration of OSM network data with more

mainstay Python geographical analysis tools such as NetworkX and Shapely.

Walking is the most basic and flexible form of human mobility. Capturing such 360-degree mobility in the form of a node-link network or graph is effectively impossible. A network or graph is however substantially easier to analyse computationally than a kind of 'open world' format. Consequently, some level of abstraction must be accepted. Moreover, a manual review of OSM networks for places the researcher is personally familiar with in the QGIS environment showed that a variety of link types would be 'walkable' in reality, in contradiction of the OSM documentation. As such, a some mewhat diverse basket of OSM link types must be included in the base network download. Fortunately, OSMNX offers downloads on a series of pre-specified 'network types' in which links have been aggregated to fit with each mode. Tests on pilot survey data indicated that an adequate pedestrian network is obtained when a merger of the OSMNX 'walk' and 'bike' network types. For reference, the current definition of these OSMNX network types in the OSM feature tag structure is given in table 3.7.

(a) The network is truncated to route-level (b) Truncation may cause networks to fracmasks. ture into sub-graphs. Fixing links in gray.

Figure 3.10: Map-matching algorithm, illustrated

3. Network truncation, illustrated in fig. 3.10a.

The overall network is truncated to the route-level mask, so as to obtain a set of candidate links for the respondent's route. The truncation operation may cause the route network to fracture into a series of disconnected subgraphs, an issue which pilot survey data found that happened occasionally at city market squares (where the OSM network only included routes around, but not across the square). To resolve this issue, a node linking algorithm was developed which seeks out the each sub graph's closest point of contact to the nearest other subgraph, and subsequently adds a link connecting these nodes (illustrated in fig. 3.10b). This algorithm is performed iteratively until all sub graphs in the truncated network are again connected.

(a) To determine routes, Dijkstra's shortest (b) Matched respondent routes (white), paths are computed on map-matched ver-shortest path (long dash), least turns path sions of respondent routes across the trun- (short dash), original survey input (gray cated network. dash).

Figure 3.11: Map-matching algorithm, illustrated

4. Route computation, illustrated in fig. 3.11a.

The network node nearest to each OD-point is identified, and performs a Dijkstra's shortest path across the truncated network. To ensure comparability in terms of route length, all of a respondent's routes are set to depart from the same pair of nearest nodes. These now serve as a substitute for the respondent's original OD-points. The shortest path is computed using the OSMNX shortest path functionality. As the truncated network offers no (or only very few) alternative routes, this delivers a route which closely corresponds to the route which the respondent drew in the survey. The route is now considered to be map-matched.

Manual checks on pilot survey data confirm that the algorithm achieves a remarkably higher resolution than the tested ready-to-use packages, but requires a longer computation time. Routes are identified which match to the userentered data at an accuracy of the route buffer (30 m), calibrated with the need for available links facilitating left- or right turns. This is generally sufficient to identify the specific road or path which a respondent takes. For routes through networks of smaller streets (e.g. residential neighbourhoods), this data is insufficient to conclusively determine which side of the road a respondent has opted to walk on. Areas with wider (multi-lane) streets are determined with a greater confidence

As can be seen in fig. 3.11b, matching accuracy isn't constant across an entire route: some deviation from the user-entered route occurs in the immediate vicinity of the station area. This is caused by the wider mask which is applied to each OD-point. As these issues occur exclusively in the immediate vicinity of station areas and only to guide pedestrians towards the onward direction of their route, whilst this study seeks to study route choice as a whole, this limitation is deemed acceptable. For an in-depth understanding of such facility-level route choice behaviour micro-level studies are recommended.

Type - Operation	Key	Value
Walk - Included	[highway	"yes"
	- area]	
Walk - Excluded	[foot]	"no"
	[service]	"private"
	[highway]	"abandoned", "bus_guideway",
		"construction", "cycleway", "motor",
		"planned", "platform"
		"proposed", "raceway"
Bike - Included	[highway	"yes"
	- area]	
Bike - Excluded	[bicycle]	"no"
	[service]	"private"
	[highway]	"abandoned", "bus_guideway",
		"construction", "corridor", "elevator",
		"escalator", "footway", "motor",
		"planned", "platform", "proposed"
		"raceway", "steps"

Table 3.7: Specification of OpenStreetMap data element tags for the packagedefined OSMNX aggregate network types "Walk" and "Bike", as of 29-08-2021.

Null hypothesis paths

As part of this study the (self-reported) revealed preference user-drawn routes are to be compared with two null hypothesis routes: the shortest path and least directional turns path. To ensure that these routes have a level of accuracy that is equivalent to the map matched routes, the shortest path and least turns path are computed by drawing on the same OSMNX (non-truncated) bearing line mask network download.

For the shortest path, the procedure is simple: the same OSMNX shortest path functionality is again applied. As it is now applied across the non-truncated network, more routes are available and a new (shortest) path between the ODpoints is found. For the least turns route 'costs' are based on the aggregate of the number of degrees by which a user needs to turn direction at each node. To come to such a definition, the base network must be redefined to reflect the angle at which separate link segments meet as 'cost' of link traversal - a so-called 'dual graph'. For this, the GeoDataFrame-to-NetworkX functionality from the Python Momepy package is used. Once the network is redefined as dual graph, it is again possible to compute the least directional turns (which is in effect simply a 'lowest cost'-route) using the OSMNX shortest path functionality which has been specified to apply 'angle', rather than 'length', as costing parameter.

Although these routes are computed on the same bearing line network download, it is not possible to apply the sub-graph linking algorithm. This makes the SP these paths somewhat less realistic than they might have been. Unfortunately, no easy fix seems to be available to this issue as squares, fields and other areas with no distinct line-wise structures are hard to identify conclusively.

3.3.3 Loading urban features

Upon completion of the data preparation phase, the data for each respondent contains five routes: three map-matched routes based those provided by the respondent, and two null hypothesis routes computed by the researcher. In order to determine how features in the urban environment affect route choice, the quantity and quality of urban features along each route must be determined. Moreover, to study whether respondents display a spatial preferences in these features, a method is needed to assess the distribution of them along each route. Drawing on the logic used for the map-matching process, urban features are compiled using three-step mask and graph-based approach. The process is illustrated in appendix fig. C.5.

1. Feature download:

A mask is cast around the graph-version of the map-matched route. A downloader algorithm is purpose-built for this study which sets a mask as bounding box through which to download the variable of interest dynamically through the Web Map Services or Web Feature Services feeds made available by the source.

2. Feature selection:

Following download, the urban features located within this mask are selected for consideration. The width of this mask may vary according to the variable under consideration: for instance traffic signals are only relevant when these are encountered on the route itself thus requiring only a narrow mask. In contrast, natural or architectural features are observed as a backdrop for the route, and may as such require a wider mask. Masks range is set following a trail and error process on pilot data. The following reasoning is applied per mask:

- (a) Traffic lights: when passing an intersection, pedestrians most likely only encounter two (or exceptionally three) traffic lights. Nevertheless, large intersections may contain far more signals. The 15 m range limits the number of signals which are found. Moreover an alorithm is applied to reduce the number of signals per link down to one so as to remove signals which are unintentionally captured.
- (b) Staircases: These are represented as route-lines in the data. As some staircases are wide, multiple lines might feature close to each other in the data. In order to avoid capturing more than one such route line, a restrictive 5 m mask is set.
- (c) Building-related characteristics: Here, a mask is desired which captures buildings on both sides of a road, but not those on parallel

roads which might lie behind those buildings. Moreover, as buildings are downloaded as polygons and transformed to centroids so as to facilitate computation, centroids representing buildings lie a bit away from the road. Testing showed that a 20 m mask offered a reasonable compromise on various street types.

- (d) Public green: This mask is set according to an equivalent reasoning as the one applied for buildings. Here, the main aim is to avoid capturing green values in roads which lie behind buildings. As the range of vision on roads was determined to be 20 m, the same is applied to green. Note that this is a conservative estimate: sight ranges in parks (where people enjoy being 'in nature') are far longer. Ideally a dynamic definition would be applied, however this prove to be too computationally complex for the current project scope.
- (e) Noise pollution: As this study is performed at a between-intersection (i.e. road-level) resolution, this mask is set following a similar roadbased reasoning as the previous two points. Additionally, visual inspection of downloaded data showed that the sound imprint of many roads reached up to approximately 20 m.

A list of the categories and sources form which features are downloaded is presented in table 3.8. This table also includes the mask widths which have been applied to them. Note that some features (e.g. from the BAGpanden dataset) are downloaded as polygons. To enable clear selection, these features are transformed to point-data by taking each polygon's centroid.

3. Feature matching

After the features which are relevant to each route have been selected, these features are located along the route. This is done by applying the OSMNX nearest-edge functionality, which seeks out the route edge which is closest to each feature point. Following the description in table 3.2 and table 3.3, either the quantity of same-type features along a route are summed (e.g. for traffic lights), or the quality of said features is saved (e.g. building status or year of construction). At the end of this process, feature scores are saved to each route at the link-level. It is decided to save all data at the link (rather than route aggregate) level, because this permits for easier application of the within-route distribution analysis phase. From link link-level data, route aggregate date can still be computed by simply summing or averaging all link-level scores per route.

The method applied here is not free of shortcomings. By limiting analysis to features which are captured within a mask, it is assumed that everything which falls within with mask width is relevant, and is relevant to an equal level, whilst everything that falls outside of mask isn't at all. The mask may capture features which are in practice outside the respondent's experienced reality (e.g. features which are hidden behind buildings, on out of sight on higher floors or subjectively glossed over as 'unremarkable'). Similarly, routes which pass through wide open areas such as fields, squares or parks may feature long sight-lines, the richness of which affects the respondent's experience. Additionally, saving the distribution of features on the link-level may cause an uneven aggregation as link lengths differ. Nevertheless, other approaches (e.g. based on sight-lines) are too computationally complex for the resources available to the project.

3.3.4 Statistical data preparation

To perform the route-aggregate and within-route distribution analytical steps, samples must be constructed. For route-aggregate analysis, variable scores for each route need to be expressed by a single data point. For this, two variable formats are distinguished: counts and averages.

Counts encompass variables which can summed as distinct entities independently of their sequence or immediate context. For this, link-level totals are composed, which can in turn be directly summed to form route totals for each separate variable.

Averages apply to features which were loaded expressing some relative concept, e.g. the extent of tree cover on a given grid cell. For this, these values are assigned to the link level and averaged there. In doing so they effectively reflect the average level in that link's immediate vicinity. However, links vary substantially in length and whilst one link may have captured only one feature data point, another may represent the average of eight or ten. To avoid that a single short link with an outlier feature score biases the aggregated route-level score, a link-length correction is applied using eq. (3.9).

$$\operatorname{score}_{route,var} = \frac{1}{\# \text{ links in route}} \cdot \sum_{link \in route} \frac{\operatorname{length}_{link}}{\operatorname{length}_{route}} \cdot \operatorname{score}_{link,var} \quad (3.9)$$

For within-route distribution analysis, variable scores must be collected within each route quadrant, as illustrated in fig. 3.3. As routes consist of varying numbers of links, which in turn vary in lengths, a proportional segment approach is applied. Each segment represents a proportion of the route's overall length. If combined with equivalent batches from other routes, this can be used to construct a sample which is fit for testing against other samples. Following a series of trails, an approach with 10 segments was found to deliver results which were sufficiently detailed, yet offered enough aggregation for useful results.

3.3.5 Statistical testing

Route-level testing

In order to ascertain whether the t-test might be applicable, all datasets - both non-standardised and standardised - were subjected to a statical 'normality' testing. As noted in section 3.2.3 three such tests, the Agostino-, Liliefors- and
Shapiro-Wilk test, are applied to each sample at a relatively permissive significance threshold of $\alpha = 2.5\%$. This low threshold was set so as to maximise the number of samples which might be tested using the more statistically powerful t-test. Significance on either test implies a statistical deviation from normality and consequently the need for the application of non-parametric methods. In order to perform two-sample tests, a normal distribution is required for both samples. Initial trails on the full dataset indicated that few of the non-standardised sample-pairs both tested normal. In order to maintain consistency throughout results, it was therefore decided to solely apply non-parametric tests to non-standardised data. In contrast, similar trails on standardised data showed that approximately 24-50 % of these samples met normality requirements. As this would offer a wider use of the more powerful t-test, it was decided to continue with a mixed methods parametric - non-parametric approach for standardised data.

Non-standardised data is tested through the iterative comparison across variables for the sample-pairs of interest introduced previously. For the Man-Whitney test this is performed using the two-tailed version of the 'mannwhitneyu'functionality from the Python SciPy library. Following SciPy documentation, this test tests "[..] the hypothesis that the distribution underlying sample x is the same as the distribution underlying sample y." (SciPy (2021a)). Although this test gives an indication of distribution (dis)similarity, the p-value obtained from the test does not permit for an interpretation of the direction by which samples might deviate. To this end, two successive one-tailed versions of the same test are applied. These tests respectively test H_0 that $sample(x) \ge baseline(x) \forall x$ and $sample(x) \leq baseline(x) \forall x$, respectively. The p-values derived from these tests indicate the probability that H_0 is true. For the sake of interpretation, the direction which delivers in the greater p-value is taken as the direction by which both samples mismatch. To translate this to practical terms, significant samplepairs which are found to have a higher p-value on sample(x) > baseline(x), are expected to witness higher values in the test sample as compared to the baseline sample, and vice versa.

The standardised data used in this study already encompass a two-sample comparison comparison: the log-percentage deviation of a study sample vis-a-vis some baseline sample of interest. For these tests, H_0 is that the sample centre is equal to expected population mean. Here, the expected population mean is based on the further null hypothesis that there is no difference between the route sample and baselines sample, i.e. that log-percentage distribution is centered around zero. In other words, tests are performed using *expected value* = μ = 0. Samples which were found to be normally distributed are studied through application of the one-sample t-test location test. This is implemented using the two-tailed 'ttest_1samp' functionality from the Python SciPy library. In addition to a p-value, this test also generates a test statistic which can be used to determine the direction of deviation. Test statistics are positive for samples where μ is larger than the sample mean, and negative if it is smaller. For nonnormal sampels, the Wilcoxon signed rank test is applies. This is implemented using the two-tailed version of the 'wilcoxon' functionality from the Python SciPy library. Direction of deviation is again assessed by performing successive positive and a negative one-tailed versions of the same test.

Within-route distribution testing

In contrast to route-aggregates, within-route distribution sets out to test the incidence of scores over sets of sequences of observations. Consequently, it is not possible to apply similarity-of-distributions tests such as the M-W or two-sample t-test at the route level, as these do not preserve the order by which variable scores feature along a route. This thesis applies a relatively 'lightweight' assessment of this dimension, aimed at obtaining an initial insight. It is imperative to emphasise that for deep statistical insight, further studies will be required using dedicated and well-calibrated modelling techniques such as ARIMA Brownlee (2017).

The test applied here, consists of an iterative batch-wise sequence of similarityof-distributions tests. Each batch is assessed as a standalone test, similar as those which are performed between samples for route-level testing. Generally, two approached might be considered: first, an analysis based on proportional differences (e.g. log-percentages as were used for route-level testing) or betweentrend residuals (as are used in AMIRA modelling). This may again serve to standardise data to an extent that more t-tests can be applied. Trails were performed on this, but were found to result in highly erratic results. Therefore, a second approach is implemented which is designed to take into consideration within-batch variability. In this approach all link-level aggregate scores in each sample of the progression batch are preserved. These are subsequently tested against each other by means of two-tailed two-sample K-S tests, much like the one applied on route-level tests. Direction of deviation is again assessed by means of a successive positive and negative one-tailed version of the same two-sample test. Note that this is again applied on a per-variable basis.

This method delivers a sequence of results on the extent of similarity for each percentile segment of the routes considered in the test at hand. Again, three significance levels are applied in order to grasp the extent by which variation occurs: 2.5%, 5.0% and 10%.

3.4 Methodology output structure

Combined, the methodology as described over the course of this chapter encompasses a rather large number of tests and variables. This may cause the outputs which are delivered by applying this method (in chapter 4) somewhat hard to follow. All in all, the these outputs can be conceived of hierarchically, with each category being subdivided into several sub-categories.

For sub-question three, this hierarchy is presented schematically in fig. 3.12. Each 'lower' level in this graph represents a subdivision of the step above it. For example: each individual geometry variable is studied for seven different sample pairs (as described in table 3.6), and in turn, each sample pair is studied for both of the null hypothesis routes.

Figure 3.12: Result structure for sub-question three. Interaction effects are represented as full block due to a lack of space. Comment on notation: [Q1], [Q2], [Q3] and [Q4] refer to quadrants of within-route distribution, respectively, 0-25%, 26-50%, 51-75%, 76-100%. Furthermore: [Std.] = 'standardised data', [N-std.] = non-standardised data, [Ac.] = Access, [Eg.] = Egress.

For sub-question four, this hierarchy is presented schematically in fig. 3.13. Again, each lower level represents a subdivision of the level abive it. Note that for this sub-question all sample pairs test between respondents' known routes, so no (unknown) null hypothesis routes are tested against.

Figure 3.13: Result structure for sub-question four. Interaction effects are represented as full block due to a lack of space. Comment on notation: [Q1], [Q2], [Q3] and [Q4] refer to quadrants of within-route distribution, respectively, 0-25%, 26-50%, 51-75%, 76-100%. Furthermore: [Std.] = 'standardised data', [N-std.] = non-standardised data, [Ac.] = Access, [Eg.] = Egress.

Table 3.8: Features in the urban environment which are considered in this study per variable download category and source, including the route mask widths at which they are considered. Note that each download category can contain multiple variables.

Feature	Mask	Source
Traffic lights	$15 \mathrm{m}$	OpenStreetMap (2021b)
Number of staircases	$5 \mathrm{m}$	OpenStreetMap (2021b)
Building year of construction	$20 \mathrm{m}$	Kadaster $(2021a)$
Building status	$20 \mathrm{m}$	Kadaster $(2021a)$
Building function	$20 \mathrm{m}$	Kadaster $(2021a)$
Number of addresses	$20 \mathrm{m}$	Kadaster $(2021a)$
Building ground-level geometry	$20 \mathrm{m}$	Kadaster $(2021a)$
Building total floor area	$20 \mathrm{m}$	Kadaster $(2021b)$
Public green (tree cover)	$20 \mathrm{m}$	Rijkswaterstaat (2021a)
Public green (bush cover)	$20 \mathrm{m}$	Rijkswaterstaat (2021f)
Public green (grass cover)	$20 \mathrm{m}$	Rijkswaterstaat (2021e)
Noise pollution (total)	$20 \mathrm{m}$	Rijkswaterstaat (2021c)
Noise pollution (caused by roads)	$20 \mathrm{m}$	Rijkswaterstaat (2021d)
Noise pollution (caused by railways)	$20 \mathrm{m}$	Rijkswaterstaat (2021b)

Chapter 4

Results

This chapter presents the results from the survey. The results encompass the immediate outcomes which are obtained after application of the implementation process as described in section 3.3. Note that this chapter only provides the outcomes: the theoretical implications of these results for the understanding of pedestrian route choice dynamics will analysed in the next chapter. For completeness, the raw results upon which the discussion of this chapter is based are included in appendix F.

This chapter is divided into three parts. First, in section 4.1 the outcomes of the survey are presented. This encompasses an assessment of the general types of results and overall representativeness, as well as a study of the qualitative responses which were provided by respondents. Second, in section 4.2 the results related to sub-question three are presented. Third, in section 4.3, the results related to sub-question four are presented. These last two sections are structured to match the three analysis types which were introduced in section 3.2.2.

4.1 Survey outcomes

This section provides a high-level review of the results from the survey. It encompasses two parts. First, in section 4.1.1 a review of survey results is performed to understand how well the survey represents the overall population. Some general characteristics of the results which respondents have provided are also studied. Second, in section 4.1.2 the responses given by respondents to the 'qualitative motivation'-question in the survey reviewed.

4.1.1 Survey coverage

The survey upon which the self-reported revealed dimension of this thesis is based was open for responses between 2021-07-16 and 2021-09-27 (74 days). Over this period, a total of 121 responses were obtained. After filtering, 105 valid responses remained for further analysis. In terms of route choice frequency, 55 respondents included routes which they 'never' take, and 26 provided routes which they 'always' take. A total of 40 respondents provided routes with intermediate frequencies only.

Responses cover a total of 35 different stations, for 24 municipalities (the administrative level which most closely resembles that of urban areas). No responses have been obtained for the provinces of Zeeland and Limburg. 18 stations and 13 municipalities feature in one response only. The top ten municipalities are listed in table 4.1. Of the municipalities represented in the sample, four represent municipalities of more than 300,000 inhabitants, accounting for 37.3% of responses. Conversely, 15 municipalities are larger than 100,000 inhabitants (91.8% of responses) and 18 of the included municipalities are larger than 50,000 inhabitants (94.5% of responses), with demographic data based on CBS (2017). Of the municipalities for which responses have been obtained, Eindhoven, Almere and Tilburg are underrepresented in terms of population. Most municipalities in the sample are over-represented, with Delft (41 times more than expected) and Deventer (20 times more than expected) vastly so. This latter effect is representative of over-sampling among students at TU Delft and staff at the head office of Witteveen+Bos.

Figure 4.1: Distribution of respondents per self-reported age bracket and the corresponding proportion of that age bracket as part of the overall Dutch population. Demographic data is sourced from CBS (2021)

In terms of interaction effects, 53.6% of the respondents self-identified as male and the remainder (46.4%) as female. In comparison, 49.7% and 50.3% of the overall population are registered as respectively male and female suggesting a modest bias (approximately 4 respondents) towards male respondents. The

age distribution of the sample and expected distribution for the population are given in fig. 4.1. Clearly, the 19 to 30 years old bracket is vastly over-represented, whilst elderly people and children are underrepresented. With regards to local familiarity, 63.8% of the respondents have provided routes for the city they live in and 79% of respondents have a bike available in the city for which they have provided route information, suggesting some respondents might have station bikes or shared bike subscriptions. Regularity of travel per mode is listed in fig. 4.2. Most respondents walk at least once or twice a day and travel by train at least once a month.

Of the eight interaction effects in table 3.4 (note that trip direction is tested for all categories), walking ability and local familiarity are found to be heavily skewed towards people who are 'able' to walk or are (somewhat) 'familiar' with the local area. Only 7 out of 105 respondents indicated a lower ability to walk. Only three respondents indicated to be either 'unfamiliar' or 'somewhat unfamiliar', whilst 102 respondents claimed to be either 'somewhat familiar' or 'familiar'. These results mean that there are too few alternative responses for these interaction effects to test against and will not be taken along in further analysis.

Figure 4.2: Illustration of how regularly respondents travel by walking and travel by train.

In terms of overall route geometry, the respondent routes have a mean length of 1239 m, ranging between 271.7 m and 6063 m with a standard deviation of 774 m. These routes deviate from the bearing line by at least 112 m and at most 250 m, causing a maximum detour ratio from the bearing line of 1.72 and minimum of 1.34. Route eccentricity varies between 0.29 and 0.79 and curvature ranges between 0.84 and 0.77. As is illustrated in fig. 4.3 and fig. 4.4 for the geometry variable of route length, differences may exist between interaction effect groups.

Figure 4.3: Differences between the most and least-taken routes in for each respondent for interaction effect indicators in terms of route length.

Figure 4.4: Differences between the most and least-taken routes in for each respondent for interaction effect indicators in terms of route length.

4.1.2 Qualitative responses

When respondents are asked to provide a qualitative motivation for their route choice in the survey's free-form response field, variable-codes pertaining to route length and perceived speed feature most often. These codes, featuring exclusively as positive characteristics, are mentioned by respondents respectively 100 and 44 times across 330 routes. An overview of all variable-codes identified after application of the text-coding exercise is given in table 4.2. Other features which respondents often refer to as factors affecting their route choice are the presence of other people, the presence of traffic signals and natural qualities. In line with the methodology adopted by this thesis, respondents refer to a mix of social, environmental and physical variables.

Upon closer inspection of respondents' phrasing, it is found that nine variables both attract and repel route choice. A list of these variables is given below. Table 4.1: Top ten station in survey and obtained share of total responses. Expected share indicates the percentage expected for that station's municipality as share of the total population of the Netherlands. Demographic data obtained from CBS (2017)

Station	Response share	Expected share
Delft	20.9%	0.59% (Delft)
Deventer	10.9%	0.58% (Deventer)
Utrecht Centraal	7.27%	2.04% (Utrecht)
Amsterdam Bijlmer ArenA	7.27%	4.97% (Amsterdam)
Rotterdam Centraal	6.36%	3.71% (Rotterdam)
Amsterdam Amstel	4.54%	4.97% (Amsterdam)
Delft Campus	3.63%	0.59% (Delft)
Arnhem Centraal	3.63%	0.92% (Arnhem)
Groningen	2.72%	1.33% (Groningen)
Enschede	2.72%	0.91% (Enschede)

Table 4.2: Overview after text-coding of the features with which respondents described their motivation for route choice, and the number of routes for which each feature is mentioned. Note that some features emit both a push and a pull effect on route choice.

n	Features	n	Features	n
100	Ease	8	Maintenance	4
44	Lighting	8	Slope	4
34	Footpaths	8	Obstacles	3
32	Directional turns	7	Tunnel	3
23	Crossings	7	Nostalgia	2
21	Cyclists	6	Parking lots	2
19	Overview	5	Residential	2
18	Footpath width	5	Public transport	2
15	Safety (traffic)	5	Amenities	1
13	Pollution (e.g. noise)	5		
9	Walking together	4		
	n 100 44 32 23 21 19 18 15 13 9	nFeatures100Ease44Lighting34Footpaths32Directional turns23Crossings21Cyclists19Overview18Footpath width15Safety (traffic)13Pollution (e.g. noise)9Walking together	n Features n 100 Ease 8 44 Lighting 8 34 Footpaths 8 32 Directional turns 7 23 Crossings 7 21 Cyclists 6 19 Overview 5 18 Footpath width 5 15 Safety (traffic) 5 13 Pollution (e.g. noise) 5 9 Walking together 4	nFeaturesnFeatures100Ease8Maintenance44Lighting8Slope34Footpaths8Obstacles32Directional turns7Tunnel23Crossings7Nostalgia21Cyclists6Parking lots19Overview5Residential18Footpath width5Public transport15Safety (traffic)5Amenities13Pollution (e.g. noise)59Walking together4

Here, 'attract' indicates the number of respondents that liked the presence of a given feature on a route. An overview of all attracting features is given in table 4.3. Conversely, 'repel' indicates the number of respondents who stated that they did not like the presence of a given feature on a route. An overview of all repelling features is given in table 4.4.

- Traffic signals (attract: 3 / repel: 20): Motivation: signals are perceived as items which increase travel time. Some respondents verbally note that they actively opt for longer trips in order to avoid signals. Respondents who portray signals as attractive features do so as signals enable them to cross busy roads.
- People (attract 15 /repel: 19): Motivation: a majority of respondents who mention this dimension indicate that they perceive the presence of other people as 'crowding' or a 'busy' atmosphere, which are experienced as conditions which they seek to avoid. Respondents who note an attraction to other people do so based on traits such as a 'lively' or 'convivial' ('gezellig') atmosphere.
- Building aesthetics (attract: 11 / repel: 4): Motivation: respondents note that they chose certain routes because of the presence of 'beautiful' surroundings, often in relation to dimensions of the urban structure such as the 'city centre'. Other respondents note the 'boring' or even 'ugly' appearance of the built environment along some of the routes in their choice set.
- Shops (attract: 17 / repel: 2): Motivation: most respondents who mention this feature do so in relation to personal needs to go shopping. Certain routes are chosen specifically if the respondent needs to go to a shop. The respondents who say they avoid shops do so in relation to 'crowds' which they perceive occur on routes which feature relatively high densities of shops.
- Slope / stairs (attract: 2 / repel: 2): Motivation: respondents who note an attraction to slopes or stairs do so by positing the presence of slopes as features of a natural environment or as elements which create a varied view of the space through which their route leads. When slopes are mentioned as aspects which repel route choice this is in line with the suggestion from literature that navigating slopes requires additional energy.
- Crossings (attract: 6 / repel: 1): Crossings refer to places where roads can be crossed without signalisation. The pattern here is the mirror image of respondents' view on signalised crossings, with those who express an attraction to such crossings doing for their dislike of waiting at signalised intersections. Those repelled by unsignalised crossings are so due to perceived danger of crossing busy roads.

Table 4.3: Overview after text-coding of features which respondents described as attracting features in route choice, and the number of routes for which each feature is mentioned.

Features	$ \mathbf{n} $	Features	$ \mathbf{n} $	Features	n
Route length	100	Ease	8	Maintenance	4
Speed	44	Lighting	8	Traffic signals	3
Nature	21	Footpaths	8	Nostalgia	2
Variation	18	Least turns	7	Residential	2
Shops	17	Crossings	6	Slope	2
People, crowds	15	Safety (traffic)	5	Public transport	2
Safety (social)	13	Footpath width	5	Amenities	1
Building aesthetics	11	Overview	4		
Weather protection	9	Walking together	4		

Table 4.4: Overview after textcoding of features which respondents described as repelling features in route choice, and the number of routes for which each feature is mentioned.

Features	n	Features	n
Features	n	Features	n
Busy roads	32	Tunnel	3
Traffic signals	20	Obstacles	3
People, crowds	19	Shops	2
Cyclists	6	Parking lots	2
Building aesthetics	4	Slope	2
Pollution (e.g. noise)	5	Crossings	1

Of the variables which respondents list as important, a substantial number are included as objects of study in this thesis. Route length, directional turns, traffic signals, nature, shops, noise and residential buildings are directly included as either null hypotheses in sub-question three, or as urban features. Moreover, busy roads, building aesthetics and slopes are studies by proxy through the noise pollution from roads, building year of construction and stairs (which are the most likely sloped walking surfaces encountered in a flat country like the Netherlands). Similarly, route speed, crowding, safety from social risks, weather protection, lighting, traffic safety maintenance, and obstacles are studied as subjective variables.

By extension, this leaves variation, ease, (non-signalised-) crossings, cyclists, overview, sidewalk width, dedicated footpath presence, tunnels, en-route parking lots and public transport facilities as the main features which are not included in this study. This affects the representativeness of results which this study might generate.

4.2 Sub-question 3: null-hypothesis routes

This section presents the results which have been obtained for the sample-pair tests related to sub-question three. The section is structured according to the results structure laid out in fig. 3.12. For the sake of brevity only significant or otherwise substantial results are discussed. Full results are contained in the appendix (references in text). First, in section 4.2.1, route geometry is studied. Second, in section 4.2.2 the outcomes of route-aggregate tests are presented. Third, in section 4.2.3 within-route results are reviewed.

A common on notation: for brevity, the least directional turns path null hypothesis routes are referred to by LDTP. Shortest paths null hypothesis routes are referred by SP.

4.2.1 Route geometry results

The following effects are found with regards to route geometry. First the results are discussed for the full respondent population (i.e. up to the 'access' and 'station egress'-level in fig. 3.12). Subsequently, the data is reviewed for interaction effects.

Full respondent population

• Route length, illustrated in fig. 4.6a:

Averages seem to be more or less stable although marked shorter route lengths occur on 'always'-taken routes at 897.9 m versus 1066 m for all other categories. All in all user-drawn routes fall in-between shortest paths and least directional turns paths in terms of length, with exceptions of even shorter averages on station access trips which are 'often' or 'regularly' taken. When route length is tested statistically against the LDTP, non-standardised data tests find a significant difference regardless of trip direction. For standardised data this changes, with all frequency classes aside from 'never' (station egress trips only) testing strongly significant at a negative correlation. This means that performed trips are generally shorter than the LDTP.

When respondent routes are tested against the shortest path the findings are mostly similar, with two exceptions, namely that for standardised data 'always'-taken rather than 'never'-taken routes fail to note a significant difference, and that significant deviations all note a positive deviation.

• Route overlap:

For LDTP (fig. 4.5b), shows the extent by which respondent route categories overlap with that null hypothesis category. Overlap is highest for routes which are 'always' taken at 53% and 48% for both directions respectively. Lowest overlap holds for routes which are 'sometimes' taken. Overall respondent routes overlap with the LDTP evenly across frequency classes at an average of 42.5% for station egress trips and 43.6% for station access trips.

For SP (fig. 4.7a) respondent-drawn routes overlap markedly more for more-frequented routes than less-frequented ones. Such more-frequented routes overlap with shortest paths for on average 71.8% and 70.4% in both directions. In contrast, less-frequented routes only overlap on average 49.8% and 54.2%.

• Detour ratio:

For LDTP (fig. 4.5b): When detour ratios are considered in a more varied picture emerges. Here, all respondent route averages have a ratio of ≤ 1 , implying shorter routes than LDTP alternatives. Least-taken routes obtain higher ratios than higher-frequency routes. For higher-frequency routes, a difference stands out between routes which are 'always' taken, and cases where respondents have more alternatives, with 'always' displaying greater similarity to LDTP route lengths.

For SP (fig. 4.7b), the patterns found for overlap are reflected in detour ratios. Most-used, 'always', 'often' and 'regularly'-taken routes overlap on average 103.2% of shortest path route length for either direction, whilst less-frequented routes are on average 110.6% or 109.4% of shortest path route length. Here, 'never' used routes from train stations strike out even higher towards 113.6% of shortest path route length.

• Maximum deviation, illustrated in fig. 4.6b: Deviations from the 'bandwidth' between LDTP and SP scores are observed for lower-frequency routes in both trip directions, which have further deviations from the bearing line by an additional 39 to 34 metres. When differences in route direction are investigated, 'regularly' taken routes witness a large difference in deviation distance, with station egress trips permitting comparatively greater deviations from the bearing line than station access trips. Statistical testing offers no additional insight.

• Eccentricity, illustrated in fig. 4.8a:

For LDTP, it is found that less-frequented routes obtain scores which are closer to LDTP route scores. When tested statistically, significant deviations with a positive inclination are found for most-used routes and to a lesser degree also for 'often' and 'regularly' used routes. This effect is reflected on both non-standardised and standardised samples.

For SP, it is found that more-frequented routes obtain scores which are closer to SP route scores. When tested statistically, both non-standard and standard data contain significant negative deviations on the lower frequency classes and least-used routes. This is found for both trip directions. The effect stands as the opposite of the results found on LDTP.

• Curvature, illustrated in fig. 4.8b:

For LDTP, a counter-intuitive result is found in that what is supposed to be the least-turns route, scores lowest on the curvature variable (implying a large amount of curves). When tested statistically against nonstandardised data, strongly significant deviations are found with a positive inclination on most-used, 'often'-used, 'regularly'-used and least-used routes. For standard data, this same pattern is found for station egress trips. station access trips display a greater significance - all positive - on all frequency categories.

For SP, higher-frequency route scores are found to converge on shortest path mean scores. This holds especially for 'often' taken station access trips. This result is qualified slightly by that 'always' taken station egress trips generally have fewer curves. When tested statistically, tests against shortest path data only find very modest negative significant differences on the least-used route category. This effect holds across nonstandard and standard data and is equal for both trip directions.

Interaction effects

• Respondent age:

For LDTP: All age brackets display significant deviations for route length except for the 41+ bracket. For SP: The probability of statistical difference from the shortest path declines slightly with age. This effect holds especially on station access trips.

• Bike availability:

Respondents with access to a bike are found to have entered routes which have more curves according to the curvature geometry variable.

Figure 4.5: Key geometric indicators for least directional turns (LDT) paths.

Figure 4.6: Key geometric indicators.

• Respondent gender identity:

For LDTP: male respondents are found to have a significant positive deviation on curvature for both route directions. This appears to be absent for female respondents. Similarly, male respondents are found to have a negative significant difference with regards to route length on their least used route for station access trips. For SP, no substantial results are found.

• Living in same city:

For LDTP: significant deviations are found between local residents and visitors when tested on non-standardised data for both station access and egress trips. Nonresidents are significant on eccentricity and for their most-used route, whilst the least-used route is significantly different from the null hypothesis in terms of curvature. When standardised, the significant difference on eccentricity of the most-used route remains.

Figure 4.7: Key geometric indicators for shortest paths.

(a) Overlap with shortest path

(b) Detour ratio from shortest path

Figure 4.8: Key geometric indicators for shortest paths.

For SP: when considered for least-used routes, local residents were found to deviate significantly in terms of eccentricity, maximum deviation, eccentricity and curvature. When standardised, both to- and from station trips are significantly different for their most-used routes in terms of route length and eccentricity for local residents. For least-used routes, curvature is significantly different.

4.2.2 Route-aggregate results

Results presented here pertain to the tests with application of the Bonferroni correction. Only in cases where tests including this correction do not deliver meaningful result, will results without the Bonferroni correction be considered. In practice this implies that results for tests against the least directional turns route are only presented with application of the correction, whilst results for

the tests against the shortest path are only considered without the correction.

Results for route aggregate tests are presented over a series of tables. These tables are deemed to be fairly clear and will only receive limited textual commentary. The contents of the tables will be reflected upon in depth in chapter 5.

Null hypothesis route: least directional turns

• Station egress trips:

An overview of the significant results for station access trips when tested against least directional turns routes is given in table 4.5. Both nonstandardised and standardised data find effects for the variables of tree cover, bush cover, grass cover, as well as total, road-based and railwaybased noise. Standardised data also identifies effects for residential buildings.

In terms of frequency, the largest number of deviating variables are found for the frequency categories 'most', 'sometimes' and 'never'. Results display a negative deviation for all variables. This implies that the routes taken by respondents generally witness lower levels of these features than the the least directional turns route.

• Station access trips:

An overview of the variables which test significantly for station access trips is given in table 4.6. As can is evident when this table is compared to table 4.5, results for station access trips are mostly similar to those for station egress trips.

Strongly significant negative deviations are again found for green cover and noise pollution levels on both non-standardised and standardised data. Station access trips differ from egress trips in the lack of a significant difference on noise from railways on non-standardised data.

This similarity implies that there is rather little difference between respondents' route choice sets and the least directional turns routes for their OD-pairs in terms of trip direction: similar features are (mostly-) less present on routes considered by respondents, for either direction type.

Null hypothesis route: shortest path

Whereas tests against least directional turns routes found a large collection of significant results, tests against shortest paths find no such differences as long as the Bonferroni correction is applied. This effect holds for both routes from train stations and those to train stations. This implies a high level of statistical similarity between both route types in terms of urban features.

When the Bonferroni correction is released, some underlying significant differences are found. For non-standardised data, 'often'-classified routes display a slightly positive difference on buildings with educational functions. Conversely,

Table 4.5: Significant variables for sub-question three when testing against the LDT path for station egress trips with Bonferroni correction. Notation: 3: $\alpha=2.5\%$, 2: $\alpha=5.0\%$, 1: $\alpha=10.0\%$.

	Most	Always	Often	${ m Regularly}$	Sometimes	Never	Least
Unstandardised							
Tree cover	3(-)		2(-)	3(-)	3(-)	3(-)	3(-)
Bush cover	3(-)			2(-)	3(-)	3(-)	3(-)
Grass cover	3(-)			2(-)	3(-)	3(-)	3(-)
Noise: total	3(-)				3(-)		3(-)
Noise: roads	3(-)				3(-)	1(-)	3(-)
Noise: railways					1(+)		
Standardised							
Tree cover	3(-)	1(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Bush cover	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Grass cover	3(-)	1(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Noise: total	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Noise: roads	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Noise: railways	3(-)		3(+)	3(+)	3(+)	3(+)	3(+)
Residential	2(-)			1(-)			1(-)

Table 4.6: Significant variables for sub-question three when tested against the LDT path for station access trips with Bonferroni correction. Notation: 3: $\alpha=2.5\%$, 2: $\alpha=5.0\%$, 1: $\alpha=10.0\%$.

	Most	Always	Often	$\operatorname{Regularly}$	Sometimes	Never	Least
Unstandardised							
Tree cover	3(-)		2(-)	3(-)	3(-)	3(-)	3(-)
Bush cover	3(-)			3(-)	3(-)	3(-)	3(-)
Grass cover	3(-)			2(-)	3(-)	3(-)	3(-)
Noise: total	3(-)				3(-)		3(-)
Noise: roads	3(-)				3(-)	3(-)	3(-)
Standardised							
Tree cover	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Bush cover	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Grass cover	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Noise: total	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Noise: roads	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)	3(-)
Noise: railways	3(-)		3(-)	3(-)	3(-)	2(-)	3(-)
Residential	2(-)						

least-taken routes significantly differ from shortest paths with a negative deviation on buildings which are under reconstruction and offices. When tests are performed on standardised data, some more effects are found. The results of this are presented in table 4.7 and table 4.8 and will be detailed below.

• Station egress trips:

For non-standardised data a weak significant difference is found with regards to educational buildings. Such buildings are present more on 'often' taken routes and less on 'least' taken routes.

The strongest deviations (at a 2.5% threshold) are found at a negative difference on landmarks in terms of plot area for 'most'-used routes and building reconstruction sites for least-used routes. Additionally, higher-frequency routes show slight positive differences from the shortest route are found on tree and bush cover and total noise pollution on 'most'-taken routes.

• Station access trips:

The strongest deviations on in this category largely mirror those for station egress trips, with the addition of a strong negative effect for mean building year of construction on 'always'-taken routes. This suggests that 'always'taken station access trips buildings are generally older than on shortest route path alternatives.

Other changes are found in that green cover no longer features more on most-taken routes and the positive effect on traffic signal counts has fallen away for 'never' and least-taken routes.

Interaction effects

Aggregate-level tests found that some level of significant deviation exist for 16 distinct variables overall (listed in table 4.5, table 4.6, table 4.7, and table 4.8). To obtain a better understanding of any possible underlying patterns, the tests upon which these variables are found to be significant are rerun with subsets of the total population described in table 3.4 so as to identify interaction effects which might be contained for these variables. Only effects are reported which are consistent across tests on both non-standardised and standardised data. Unless mentioned otherwise tests are performed with the application of a Bonferroni correction equivalent to the the number of significant variables per category times the number of test categories (least directional turns and shortest paths, each with two directions).

• Regularity of train travel:

A negative significant relationship appears with regards to the 'office function'-variable for the least-taken routes of less-frequent train travellers. This effect is found once the Bonferroni correction is released. Table 4.7: Significant variables for sub-question three when tested against the shortest path for station egress trips without Bonferroni correction. Notation: 3: $\alpha = 2.5\%$, 2: $\alpha = 5.0\%$, 1: $\alpha = 10.0\%$.

	Most	Always	Often	Regularly	Sometimes	Never	Least
Unstandardised							
Educational			1(+)				2(-)
Standardised							
Tree cover	1(+)						
Bush cover	1(+)						
Grass cover			1(+)				
Noise: total	1(+)	1(-)					
Bldg. reconstruction					1(-)	1(-)	3(-)
Offices					2(-)		1(-)
Shops						2(+)	2(+)
Traffic signals						1(+)	1(+)
Built: 2001-2022						1(+)	
Landmark: plot area	3(-)	1(-)		1(-)			
Landmark: 1 criterion	3(-)	1(-)					

Table 4.8: Significant variables for sub-question three for tests against the shortest path for station access trips without Bonferroni correction. Notation: 3: $\alpha = 2.5\%$, 2: $\alpha = 5.0\%$, 1: $\alpha = 10.0\%$.

	Most	Always	Often	Regularly	Sometimes	Never	Least
Unstandardised							
Educational			2(+)				1(-)
Standardised							
Noise: total	1(+)						
Bldg. reconstruction					2(-)		2(-)
Shops						2(+)	1(+)
Offices					3(-)		
Built: year mean		3(-)	0				
Built: 2001-2022						1(+)	
Landmark: plot area	3(-)	1(-)					
Landmark: 1 criterion	2(-)						

This means that significantly fewer office buildings feature along the leasttaken walking routes from train station among less frequent train travellers.

• Respondent age:

For the 31-40 and 41+ age brackets significantly lower incidences of buildings under reconstruction are found on their 'least'-taken egress routes, when compared to 19-30 year-old's.

Additionally, the 31-40 year-old age bracket is found have a negatively significant relationship with office buildings on station egress trips for sometimes and least-taken routes.

4.2.3 Within-route distribution results

Null hypothesis route: least directional turns

When the within-route distribution of features is tested against the within-route distribution of features for the least directional turns route, and the Bonferroni correction is applied, three feature are found to test significantly: noise pollution as total, from roads and from railways. These differences are all found to occur on the first quadrant of route. Results of within-route distribution tests against the least directional turns route are presented in table 4.9.

The statistical significance of deviations seems more or less evenly spread throughout: both much used and less used routes feature thresholds of 2.5% on a variety of variables. Overall this means that routes taken by respondents are generally noisier than the least directional turns alternative for the first section of the trip. No significant deviations in the other direction are found later on in the trip which would balance this effect.

Null hypothesis route: shortest path

Tests against the shortest path with application of the Bonferroni correction find no significant deviations whatsoever. When the Bonferroni correction is released some significant results are found. Results of within-route distribution tests against the shortest path are presented in table 4.9.

These results indicate a relative clustering of deviations on the 50-75% bracket, and to a lesser extent also the 25-50% bracket. Most-used routes of either direction again find higher levels of noise on that bracket. Green values such as bushes and grass also feature more strongly on these routes' middle sections.

This prevalence of green on middle sections contrasts with the relative dearth of trees in the last quadrant of 'regularly'-taken routes from the train station. These area witnesses higher incidences of noise instead. For regularly taken routes to the train station, respondents appear to accept higher levels of noise, but also bushes in the 25-50% quadrant.

Table 4.9: Within-route distribution of variables for sub-question three when tested against the least directional turns route. Notation: 3: $\alpha=2.5\%$, 2: $\alpha=5.0\%$, 1: $\alpha=10.0\%$. (+) and (-) indicate direction of deviation.

	0-25 %	25-50 %	50-75 %	75-100 %
Most-used, dir 1				
Noise: total	3(+)			
Noise: roads	1(+)			
Noise: railways	3(-)			
Most-used, dir 2				
Noise: total	3(+)			
Noise: roads	2(+)			
Noise: railways	3(-)			
Freq(3), dir 1				
Noise: railways	3(-)			
Freq(3), dir 2				
Noise: railways	3(-)			
Noise: railways	1(-)			
$\operatorname{Freq}(2), \operatorname{dir} 1$				
Noise: total	3(+)			
Noise: railways	3(-)			
Freq(2), dir 2				
Noise: total	3(+)			
Noise: railways	3(-)			
Freq (1) , dir 2				
Noise: total	3(+)			
Noise: railways	2(-)			
Least-used, dir 1				
Noise: total	3(+)			
Noise: roads	3(-)			
Noise: railways	3(-)			
Least-used, dir 2				
Noise: total	3(+)			
Noise: railways	3(-)			

Interestingly, the 'never' and 'least'-taken route categories again echo feature distributions which were found on 'most' taken routes. Additionally, such less-frequented routes also contain more buildings constructed between 1946 and 1970. Finally, buildings with 'other functions' are found to feature more prominently in the 50-75% quadrant on less popular routes.

4.3 Sub-question 4: respondent route choice sets

This section presents the results which have been obtained for the sample-pair tests related to sub-question four. The section is structured according to the results structure laid out in fig. 3.13. For the sake of brevity only significant or otherwise substantial results are discussed. Full results are contained in the appendix (references in text). First, in section 4.3.1 route geometry is studied. Second, in section 4.3.2 the outcomes of route-aggregate tests are presented. Third, in section 4.3.3 within-route results are reviewed.

Differences between routes which are a conscious part of respondents' route choice sets are investigated for the comparisons listed in table 3.6. Too few responses were obtained for frequency-classes (5) 'always' and (1) 'never' to perform statistical testing. Consequently, these sample pairs are discarded from statistical analysis. Note that, to give a complete picture, the few results which have been obtained are still included in the visual inspection of geometry data.

4.3.1 Route geometry results

The following effects are found with regards to route geometry. First the results are discussed for the full respondent population (i.e. up to the 'access' and 'station egress'-level in fig. 3.12). Subsequently, the data is reviewed for interaction effects.

Full respondent population

• Route length, illustrated in fig. 4.10a:

It is found that for all sample pairs the highest-frequency routes are on average 90 m shorter than those of the lowest-frequency routes. This difference is largest when midrange routes on station egress trips are considered: 123 m. Longest average routes overall are found for most and least taken routes to the train station, at 1494 m an 1561 m respectively. The shortest routes are found for on the one hand midrange routes from the station (819 m and 943 m), and on the other for 'always' and 'never'classified taken routes from the station (770 m and 869 m).

For the 'most-least' and 'midrange' comparisons it is found that routes from the station are generally shorter than those which are taken to access a station. This pattern is reversed when 'always' and 'never'-taken routes are inspected. Table 4.10: Within-route distribution of variables for sub-question three when tested against the shortest path after release of the Bonferroni correction. Notation: 3: $\alpha=2.5\%$, 2: $\alpha=5.0\%$, 1: $\alpha=10.0\%$. (+) and (-) indicate direction of deviation.

	0-25~%	25-50~%	50-75 %	75-100~%
Most-used, dir 1				
Noise: railways			2(-)	
Noise: total			2(+)	
Noise: roads			2(+)	
Most-used, dir 2				
Noise: railways			2(-)	
Noise: total			3(+)	
Noise: roads			3(+)	
Grass cover			2(+)	
Bush cover		3(+)	1(+)	
Freq (3) , dir 1				
Tree cover				3(-)
Noise: railways				2(+)
Bush cover		1(+)		2(-)
Freq (3) , dir 2				
Noise: total		2(+)		1(-)
Noise: roads		2(+)		1(-)
Bush cover		3(+)		1(-)
Freq (1) , dir 1				
Built: 2001-2022		1(+)	2(+)	
Noise: total			3(+)	
Noise: roads			3(+)	
Grass cover			3(+)	1(-)
Freq (1) , dir 2				
Built: 1946-1970			3(+)	
Built: 2001-2022		3(+)	1(+)	
Tree cover		3(+)	3(+)	
Noise: railways			3(-)	
Noise: total			3(+)	
Noise: roads			3(+)	
Grass cover			3(+)	
Bush cover		3(+)	2(+)	
Least-used, dir 1				
Noise: railways	3(+)			
Other function			2(+)	
Least-used, dir 2				
Built: 1971-1985			2(+)	
Noise: railways	2(+)			
Other function			2(+)	

When analysed statistically on non-standardised data, significant deviations are found on neither the 'most-least' nor the 'midrange' sample pair. Upon standardisation, station egress trips (both most/least and midrange) show a strong positive result, implying that least-taken trips are generally expected to be longer than often-taken alternatives.

• Route overlap, illustrated in fig. 4.9a and fig. 4.9b:

The mean overlap between highest-frequency and lowest-frequency routes seems to be more or less constant across sample pairs. The 'most-least' pair averages at 45.8%, the 'midrange' pair at 47.9% and the 'always-never' pair at 48.1 %.

Differences between station access and egress trips are rather limited. In terms of distribution, the overlap of 'most' and 'least' -taken routes, both across the full population as well as the midrange and 'always' and 'never' pairs are mostly comparable.

• Detour ratio from bearing line, illustrated in fig. 4.10b:

All route categories make detours which are more or less even around an average length of 1.51 times the bearing line. Again, higher-frequency routes are generally a little closer to the bearing line length (at a ratio of on average 1.44) and and longer on lower-frequency routes (at an average ratio of 1.58 times the bearing line length).

In line with overall route length findings, the biggest difference in terms of detour ratio between frequency classes is found for midrange routes from the station. This is followed by the difference between 'always' and 'never'-taken routes on station access trips.

When tested statistically, highly significant deviations are found for both station egress sample pairs on both standardised and non-standard data. This implies that the difference between most- and least-taken routes is most pronounced on the station egress trip direction.

• Maximum deviation, illustrated in fig. 4.11:

Higher frequency routes on average stick closer to the bearing line than less-frequented route alternatives. This effect seems to be rather pronounced, with higher-frequency routes deviating on average only 76.5% of the distance observed on lesser-frequented alternatives. The difference is most explicit for midrange routes from the station, which deviate only on average 63% of the lesser-taken deviation distance.

Furthest deviations in an absolute sense are found for the 'most-least'pair on station access routes (175 m and 235 m, respectively). Midrange routes from the station and 'always' and 'never'-taken routes to the station stay closest to the bearing line at 125 m and 199 m, and 119 and 160 m, respectively. When tested statistically, the results from visual inspection are echoed. Again a significant difference is found between highest- and lowest frequency routes on station egress trips.

• Eccentricity, illustrated in fig. 4.12a:

Eccentricity values are largely stable at 0.855. Lesser-taken routes score lower, presumably owing to their longer maximum deviations. Although patterns are more nuanced, the overall trend appears to be in line with the findings for maximum deviation.

Then tested statistically, these observations are confirmed. Both nonstandardised and standardised data display significant negative deviations from the baseline sample on station egress trips. Station access trips do not deviate significantly.

• Curvature, illustrated in fig. 4.12b:

Differences on this metric are rather minute, leading the y-axis of the graph to be cropped for readability. Lower-frequency routes structurally obtain lower scores. The exception to this is the 'always'-'never' station egress sample pair, which nearly matches evenly at 0.79. Seeing this score is relatively low, compared to others, it implies that these routes are generally curvaceous.

Overall, higher-frequency routes have fewer curves than lesser-frequented alternatives. The biggest difference is again found for the station access 'always' and 'never' sample pair.

When tested statistically, no significant deviations are found. Standardised sample pairs show slight significant differences with a negative inclination on station egress trips only after the Bonferroni correction is released. This implies that less-frequented routes score lower on this dimension, as is in line with what was found through visual inspection.

(a) Overlap midrange sample pair

(b) Overlap most-least sample pair

Figure 4.9: Key geometric indicators for between-routes comparisons.

Figure 4.10: Key geometric indicators for between-routes comparisons.

Interaction effects

- Respondent age: With regards to eccentricity and curvature, deviations are less significant for the 31-40 years bracket than the 19-30 years bracket.
- Bike access: The sample with access to a bike test less significant on eccentricity and curvature than groups that do. When this test is repeated on standardised data the effect is however not replicated.
- Walking frequency: More frequent walkers test less significant on all four geometry indicators. This effect holds for both non-standardised and standardised samples, with the effect being more pronounced for non-standard data.
- Respondent gender identity: female respondents are found to have a slightly more significant difference from least used routes than male respondents.

4.3.2 Route-aggregate results

Results presented here are presented both with and without the application of the Bonferroni correction. This is done because the variables for this subquestion encompass both urban features and subjective variables. Both variables differ from each other substantially in terms of the scale along which they are measured and number of responses. Subjective variables are measured on a five point scale and have been obtained for all routes entered by respondents. Conversely, urban features are measured in counts and averages, and may contain routes with no data in case certain features weren't found to be present. Combined, this makes subjective features more likely to turn up a significant difference.

Figure 4.11: Maximum deviation from the bearing line.

Results for route aggregate tests are presented over a series of tables. These tables are deemed to be fairly clear and will only receive limited textual commentary. The contents of the tables will be reflected upon in depth in chapter 5.

Sample pair: 'most' vs. 'least'

An overview of significant results on Bonferroni-corrected data for this samplepair can be found in table 4.11. Results for uncorrected tests are presented in table 4.12.

• Station egress routes (with Bonferroni correction):

With regards to subjective variables, strong effects are found for: perceived route speed (whether a route is 'fastest'), perceived ease at which respondents can remember routes and whether they like routes when it's dark. All three variables show a positive inclination, implying that respondents perceive higher-frequency routes to be faster, easier to remember and more pleasant when its dark.

Weaker results are found for: the amount of seating. This is only found on station egress routes. The negative coefficient implies that often-taken station egress routes are perceived to have comparatively less seating options than less-taken routes.

With regards to urban features, no significant differences are found.

• Station access routes (with Bonferroni correction):

With regards to subjective variables, only perceived route speed is considered equally significant on to-station trips. Ease by which a route can be remembered features lightly.

Figure 4.12: Key geometric indicators for between-routes comparisons.

With regards to urban features, again no significant differences are found.

• Station egress routes (without Bonferroni correction):

With regards to subjective variables, strongly significant effects are found for almost all variables. The weakest effect is found for 'steep slopes' (only on standardised data). Perceived traffic safety tests significant on both data types, but only mildly so.

With regards to urban features, strongly significant effects are found for traffic signals and plot area landmarks (both on standardised data only). Shop presence shows a mild effect.

• Station access routes (without Bonferroni correction):

With regards to subjective variables, notable effects only remain for route speed, ease of remembering, social safety, darkness and maintenance. All other social variables fall away upon station access.

With regards to urban features, no significant effects remain for station access on either data type.

In review of these results, it can be concluded that these results imply that route choice for station egress is subject to a far wider range of variables (both urban and subjective) than station access.

Sample pair: midrange routes

As can be seen in table 4.11, table 4.12, results for midrange data are highly comparable to those for the 'most' vs. 'least' sample pair. Substantial differences are found for two more subjective variables:

Table 4.11: Overview of significant results for route aggregate analysis on subquestion four with Bonferroni corrected data. Notation: 3: $\alpha = 2.5\%$, 2: $\alpha = 5.0\%$, 1: $\alpha = 10.0\%$.

	Most-least, from-station	Most-least, to-station	Midrange, from-station	Midrange, to-station
Unstandardised				
Subjective: fastest	3(+)	3(+)	3(+)	3(+)
Subjective: easy to remember	3(+)	1(+)	3(+)	
Subjective: lot of seating	2(-)			
Subjective: like when dark	3(+)		3(+)	
Standardised				
Subjective: fastest	3(+)	3(+)	3(+)	3(+)
Subjective: easy to remember	3(+)		3(+)	
Subjective: like when dark	3(+)		3(+)	

• Demolition permit granted (non-corrected, non-standardised data):

This is found to be rather significant on midrange station access data, but fails to notice on the 'most' vs. 'least' sample pair.

• Well maintained (non-corrected, both non- and standardised data):

This is found to be strongly significant on station access for the 'most' vs. 'least' sample pair, but fails to feature on the 'midrange' sample.

Interaction effects

As listed in table 4.11 and discussed in the preceding, four (all subjective) variable are found to display significant effects on Bonferroni-corrected data: perceived route speed, ease of memorisation, amount of seating and appreciation of a route when its dark. These variables are considered further for interaction effect testing. For interaction effects, only features are reported which exhibit similar patterns on both proportional and non-proportional results. Due to a lack of respondents, not all interaction categories can only be studied in terms of the most-used and least-used sample comparison.

When the Bonferroni correction is applied, interaction effects are identified for three respondent characteristics:

• Respondent age:

Respondents in the 31-40 age bracket exhibit lesser difference between their most- and least taken samples in the extent to which they say that the often-chosen route is easy to remember, than respondents in the 19-30 age bracket.

Table 4.12: Overview of significant results for route aggregate analysis on subquestion four without application of the Bonferroni correction. Notation: 3: $\alpha=2.5\%$, 2: $\alpha=5.0\%$, 1: $\alpha=10.0\%$.

	Most+least, from-station	Most+least, to-station	Midrange, from-station	Midrange, to-station
Standardised				
Built: 2001-2022				1(+)
Traffic signals	3(-)		2(-)	
Shops	1(-)			1(+)
Subj.: fastest	3(+)	3(+)	3(+)	3(+)
Subj.: easy to remember	3(+)	3(+)	3(+)	3(+)
Subj.: no obstructions	1(+)	1(+)	2(+)	
Subj.: steep slopes	1(-)		2(-)	
Subj.: lot of seating	3(-)		3(-)	
Subj.: protected against weather	3(-)		3(-)	1(-)
Subj.: safe vs.traffic	2(+)		3(+)	
Subj.: safe vs. social risk	3(+)	2(+)	1(+)	2(+)
Subj.: like when dark	3(+)	3(+)	3(+)	3(+)
Subj.: well lit	2(+)	1(+)	3(+)	
Subj.: other people	2(+)		3(+)	
Subj.: well maintained	2(+)	3(+)	1(-)	
Landmark: plot area	3(-)		3(-)	1(-)
Landmark: 1 criterion	2(-)		1(-)	1(-)
Unstandardised				
Traffic signals	1(-)		1(-)	
Building in use (unmeasured)			1(+)	
Demolition permit granted				2(+)
Educational	1(-)			
Subjective: fastest	3(+)	3(+)	3(+)	3(+)
Subjective: easy to remember	3(+)	3(+)	3(+)	3(+)
Subjective: no obstructions	3(+)	1(+)	3(+)	
Subjective: lot of seating	3(-)		3(-)	
Subjective: weather protected	3(-)		3(-)	1(-)
Subjective: safe vs.traffic	1(+)		3(+)	1(+)
Subjective: safe vs. social risk	3(+)	2(+)	3(+)	2(+)
Subjective: like when dark	3(+)	3(+)	3(+)	3(+)
Subjective: well lit	3(+)	1(+)	3(+)	
Subjective: other people	3(+)		3(+)	
Subjective: well maintained	2(+)	3(+)	1(+)	

Respondents in the 31-40 age are more likely to say that they like their most-taken route more during dark conditions than the least-taken route in their choice set.

• Respondent gender:

Male respondents exhibit a more significant difference between their mostand least-taken routes than female respondents do on their liking of the most-taken route in the dark.

• Respondent place of residence

Respondents who have their home in the city for which they've provided a route choice exhibit a greater preference for their most-taken route during darkness over their least-taken route, than do respondents who do not live in a given city.

After the Bonferroni correction is released effects may tentatively be identified on three additional interaction effects.

• Bike availability:

With regard to the amount of seating: Respondents with access to bikes exhibit a greater negative significant difference between their most- and least-taken routes than do people without bikes. This implies that people who have access to a bike are more inclined to think that there is insufficient seating than do people who have no access to a bike.

With regard to liking a route when it's dark: Respondents who have access to a bike exhibit a more significant positive difference than do people without bike access. This implies that people with access to a bike have a greater appreciation for their most-taken route compared to their leasttaken route than do people without a bike.

• Walking frequency:

With regard to the amount of seating: respondents who walk less have a more significant negative difference versus their least-taken route than do people who walk more.

• Gender:

Respondents who self-identify as female tend to perceive there being insufficient seating on routes than to their male counterparts.

4.3.3 Within-route distribution results

When route samples are tested for along-route differences under application of the Bonferroni correction three significant variables are found. These results are listed in table 4.13. All results are found for midrange sample comparisons, with deviations occurring on the third quadrant (between 50% and 75% of route length, considered from the station) at a permissive 10% threshold. For both Table 4.13: Within-route distribution significant deviations for sub-question four under application of the Bonferroni correction. Only sample pairs are included which contain significant deviations. Notation: 3: $\alpha = 2.5\%$, 2: $\alpha = 5.0\%$, 1: $\alpha = 10.0\%$. (+) and (-) indicate direction of deviation.

	0-25~%	25-50~%	50-75 %	75-100~%
Midrange, dir. 1				
Grass cover			1(+)	
Noise: railway			1(+)	
Midrange, dir. 2				
Grass cover			1(+)	

station egress and station access routes respondents' higher frequency alternatives feature comparatively more grass at this bracket. For station egress routes, a significant positive difference is also noted for railway-related noise pollution. This implies that higher frequency routes feature more railway noise at this distance range.

When the Bonferroni correction is released, a far greater list of significant results is found, as is illustrated in table 4.14. Significant differences between higher-frequency and lower-frequency samples are found mostly on the second half of the routes. When most- and least-used routes are compared, the 'other function'-category tests significant on both directions. On the midrange options, station egress routes witness both higher incidences of bushes, grass and noise in the third quadrant, whilst station access trips only witness larger amounts of bushes and grass there.

Table 4.14: Within-route distribution significant deviations for sub-question four upon release of the Bonferroni correction. Only sample pairs are included which contain significant deviations. Notation: 3: $\alpha = 2.5\%$, 2: $\alpha = 5.0\%$, 1: $\alpha = 10.0\%$. (+) and (-) indicate direction of deviation.

	0-25~%	25-50~%	50-75 $\%$	75-100~%
Most-least, dir. 1				
Other function			2(-)	1(+)
Most-least, dir. 2				
Residential				2(+)
Other function			2(-)	1(+)
Noise: railways	2(-)		1(+)	2(+)
Freq. (1)-freq. (5), dir. 1				
Grass cover			2(-)	
Noise: railways				2(+)
Midrange, dir. 1				
Bush cover			3(+)	1(-)
Grass cover			3(+)	
Noise: total			2(+)	
Noise: roads			2(+)	
Noise: railways			3(+)	
Midrange, dir. 2				
Bush cover			2(+)	
Grass cover			3(+)	

Chapter 5

Analysis

This chapter compares the results of chapter 4 against the hypotheses which were laid out in table 3.2 and table 3.3, with the aim of answering the research questions. Additionally, general patterns which can be observed in the results will be discussed with the aim of gaining deeper insight into dynamics of pedestrian route choice in the population sampled for this study.

5.1 Sub-question 3: Null hypothesis routes

This section takes a closer look at the results which were reported for subquestion three. The section is structured according to the three analytical operations which were outlined in the methodology.

5.1.1 Route geometry analysis

Coefficient testing

Literature, as described in Appendix B.2, suggests a positive relation between a route being the only alternative available and people's propensity to take such route: as fewer routes are available, people will become attracted to one option. For this sub-question, this principle is translated to the overlap rate with null hypothesis routes. If fewer routes are available, there should be less difference between the routes taken by respondents and those computed for the null hypothesis routes. This effect is illustrated for overlap with the least directional turns route in fig. 4.5a, and for overlap with the shortest path in fig. 4.7a. In these figures it is evident that 'always' taken routes indeed overlap on average 10%-points more with the least directional turns path. However, when compared to the shortest path, all higher-frequency routes in those comparisons witness even longer overlap rates. Note that this latter overlap with the shortest path is generally higher than overlap with the least directional turns path, which suggests that least turns routes are not taken that often.
Following theory it is hypothesised that detours act as a repellent on pedestrian route choice. Here, detour is interpreted as the route geometry concept of 'detour ratio'. Under the hypothesis for this variable it is expected that lessfrequented routes show higher detour ratios. As can be studied in fig. 4.5b and fig. 4.7b, such an effect appears to exist both when compared to the least directional turns and shortest paths. Statistically, the difference for detour ratios is less clear. When detour ratio is reconceived as route length, the absence of a significant negative deviation for 'always'-taken routes when tested against shortest path appears to confirm the hypothesised coefficient: all routes are longer, except for the highest frequency ones.

Other observations

When the results on route geometry are reviewed more generally, six other patterns can be distinguished:

- On overlap with the least directional turns path, as evidenced by fig. 4.5a, respondents' routes appear to have relatively little overlap (just 42.5% as opposed to 49%) for frequency classes on which respondents are considered to have an actual route choice. This may either be interpreted that the least directional turns route is actively avoided when alternatives are present, or that there are computational errors in this study's definition of that null hypothesis route (see section 6.3 for thesis limitations).
- On overlap with the shortest path, with values ranging between 71.8% for egress and 70.4% for access, comparatively high overlap rates are found. This suggests respondents have a fairly strong preference for shortest paths, regardless of their trip direction, and a figure which on first sight is in excess of the 53% which Shatu et al. (2019) claim is explained by shortest path (and least turns path) motivations. However, it also raises the question what factors cause the remaining 30% to differ from the shortest path.
- On detour ratio figure fig. 4.5b shows how the least popular routes have means which correspond to the least directional turns alternative. Conversely, the most popular routes show means which are highly comparable to those for shortest paths. This again suggests that, in terms of route length, respondents prefer short routes.
- On route length (fig. 4.6a) it is apparent that route lengths are noticeably shorter for the 'always' category. This may imply that on shorter distances (< 1000 m) respondents are less likely to consider potential route alternatives, or may even have no realistic alternatives available.
- On maximum deviation, less frequented routes deviate further from the bearing line. This holds especially for to-station trips. This suggests that respondents are willing to opt for a less direct route on from-station trips. This observation appears to be bolstered by the relative increase in route

curvature on lower frequencies. This appears to be in line with the notion of time pressure on to-station trips found by e.g. Hillnhütter (2016).

5.1.2 Route-aggregate analysis

Coefficient testing

- Traffic signals (literature: +): When tested against least directional turns paths, no effect is found for this variable for trips in either direction. No significant deviations are found either when tested against shortest paths on to-station trips. Upon release of the Bonferroni correction, tests against shortest paths show a very slight ($\alpha = 10\%$) positive deviation for traffic light presence standardised data on 'never' and 'least' taken routes for from-station trips. This means that respondents' least popular routes may at times feature more traffic signals than the shortest path, but is far from conclusive. This minimal finding is however bolstered by the findings from the qualitative study, in which traffic signals are often noted as a feature which respondents try to avoid on their route choice. This tendency to avoid traffic signals implies a marked difference from the attraction which previous studies have found.
- Retail / business (literature: +/-): Tests against least directional turns routes appear to deliver no results. Tests against shortest paths find that shops feature more often on 'never' and 'least' taken routes, for both trip directions. When considered for businesses, these are found to feature less often on 'sometimes', 'never' and 'least' taken routes. This may reflect that many respondents have provided routes for trips in which they commute to or from work. When this is compared to the qualitative motivations reported by respondents, those mark a more positive inclination, with only 2 respondents actively avoiding shops. The mixed quantitative finding is however in line with literature, which is similarly inconclusive on this topic.
- Stairs (literature: -): No significant deviations are found for the presence of stairs, regardless of the null hypothesis route type or trip trip direction. Although 'slopes' are mentioned four times in qualitative responses, stairs are not. Moreover, with two respondents attracted and two repelled, these results are similarly inconclusive. This means that it is not possible to make any statements on the effect of stairs based on population sample used used for this study.
- Plot size (literature: +): This variable only finds significant differences from shortest paths. For both trip directions it is found that there are substantially fewer buildings with large plot sizes on routes which are taken more often. If assumed to be reflective of behavioural preferences, this would imply people actively avoid such buildings on their routes, including cases where respondents are supposed to have a realistic set of alternatives. No explicit mention of plot size or a similar expression is

found among the qualitative responses. The negative quantitative finding stands in contradiction to the findings in literature. Note however that plot size is studied as 'landmark' feature, which means that only buildings are considered which are exceptionally large when compared to their the local environment.

- Floor space index (literature: -): No differences are found for this variable across any of the tested categories. As with plot size, no qualitative motivation is given on this feature type. This means that it is not possible to make any statements on the effect of stairs based on population sample used used for this study.
- Tree, bush and grass cover (literature: +): The three 'green' variables perform more or less evenly. Significantly lower green coverage levels are found on respondents' routes when compared to least directional turns routes. These results are so strong that they suggest computational errors (see section 6.3 for thesis limitations). When compared to shortest paths, slightly higher green values are found for higher-frequency from-station trips. As the effects are found on 'most' and 'often' taken routes (and not 'always') it moreover suggests that an attraction to green occurs when respondents have realistic choice between routes. No such values are found for to-station trips. Although the relation is very faint ($\alpha = 10\%$), it lends some credence to the finding by prior studies that green values attract pedestrians in their route choice. This is reinforced by respondents' qualitative responses, which note a fairly strong and exclusively positive attraction to natural features.
- Noise pollution (literature: -): Slight effects ($\alpha = 10\%$) are found for the total of noise pollution on 'most' and 'always'-taken routes, with a positive attraction on 'most'-taken routes and negative on 'always'. Noise caused by roads or railways does not strike any significant effect. Route direction does not appear to matter. These findings seem contradictory and hard to explain. Assuming that 'most'-taken routes may include situations in which respondents have route choice, it would mean that respondents do not mind higher noise levels on their routes. A more explicit result is given by respondents' qualitative motivations. Here, 'busy roads' are mentioned as the foremost reason not to take a route alternative. If this were indeed to be true for the population, that supports the finding by prior research.

Other variables

In addition to the findings related to coefficient directions, three other variables are found to exhibit significant effects.

• Residential buildings: When compared to least directional turns routes, respondents appear to include fewer residential buildings on their most-taken routes in both directions. This effect is not found when tested

against shortest paths. Building residential function has been introduced as proxy for first-floor dwellings. This suggests that the negative coefficient suggested by literature also holds for the population investigated in this study. Building function is also considered as proxy for land-use mix. Here, this results suggests a negative coefficient may be applicable.

- Building reconstruction: This variable is found to feature less on 'sometimes' (to-station) and 'least' (from/to-station)-taken routes than on shortest path alternatives. No such effects are found when compared to least turns routes. As the effects do not exclusively include the category 'never', this may imply that avoidance of reconstruction sites is a deliberate behavioural decision. As building reconstruction (as form of building status) is posited as proxy for overall attractiveness, this result suggests a negative coefficient is in place for building reconstruction as element of overall attractiveness.
- Mean year of construction: 'Always'-taken routes for to-station trips include significantly older mean building ages than shortest path alternatives. No such effects are found when compared to least turns routes. As is illustrated in fig. 5.1, these trips generally pass via buildings with a median construction year of 1925, rather than 1940 as on other trip frequencies. As building age has been conceived as proxy for building attractiveness, this may suggest that a negative coefficient may be in place for building age as predictor for overall building attractiveness.

5.1.3 Within-route distribution analysis

When least directional turns paths are considered as null hypothesis, a higherthan-expected level of noise is found on the station-end of respondents' trips (regardless of direction or frequency). As aggregates are evened out, this presumably means that the remainder of respondent routes are (slightly) quieter than would otherwise be expected. Such difference is however not significant across the population.

When shortest paths are considered as null hypothesis, this prevalence of noise on the station-side is not as evident, which suggests that least turns routes follow a different station access/egress sequence. Instead, noise levels peak in the third quadrant. This aligns with increases in bush and grass coverage levels. As trees do not feature at an above-average rate, this suggests open fields where noise might carry further. Architectural styles only cluster on less-popular routes, but the exact meaning of this is hard to assess.

Figure 5.1: Distribution of mean year of construction of buildings along tostation trips.

5.2 Sub-question 4: Respondent route choice sets

This section takes a closer look at the results which were reported for subquestion four. The section is structured according to the three analytical operations which were outlined in the methodology.

5.2.1 Route geometry analysis

In terms of route overlap, the overall population shows that for a small minority of respondents the most- and least taken routes are largely the same. When considered across all respondents, for all sample-pairs less than half of the higher-frequency route is overlapped by the lower-frequency route. When the 'always' and 'never' frequencies are excluded - i.e. when the area in which active route choice behaviour is considered to be possible, approximately 75% of the higher-frequency routes overlap by less than 50% with the least-taken route. Although not tested due to the computational complexity of such question, this remaining half may be assumed to feature in and around OD-point entry and exit as these are the areas where routes converge and comparatively fewest alternatives will exist. With regards to the hypothesised coefficient, no

'always'-'never' sample pairs overlap by 100%, and 89% of these pairs overlap by less than 50%. This suggests that 'never' taken routes are indeed very different and the 'always' taken route might indeed be considered the 'only available route'.

With regards to the detour ratio, it is found that most-taken routes range from 140% to 150% of bearing line length, and lowest frequency routes from 143% to 178%. Indeed, the lower frequency alternatives structurally feature a greater detour ratio from the bearing line length than higher-frequency routes. This lends evidence to the finding in literature that a negative coefficient applies to detour ratio.

5.2.2 Route-aggregate analysis

Coefficient testing

- Traffic signals (literature: +): This variable is found to have a very slight negative relation ($\alpha = 10\%$ without Bonferroni correction) on all sample pairs and directions aside from the most vs. least used pair of to-station trips. As such, there is a suggestion that pedestrians might opt for routes which contain fewer traffic signals, suggesting a negative coefficient should be in place. As mentioned in the analysis for sub-question three, this finding is in line with qualitative motivations given by respondents. These quantitative and qualitative findings are however in distinct contradiction to the relation which is hypothesised by the literature.
- Retail / business (literature: +/-): A slight ($\alpha = 10\%$ without Bonferroni correction) positive relation is found for most-used trips to from the train station. A similarly modest negative relation is identified on midrange-least trips to the station. This suggests people may opt for routes which include more shops when travelling from the station, but with fewer shops when walking to catch a train. Analysis of respondents' qualitative motivations express a more 'positive' attracted image. This mixed positive / negative coefficient from the quantitative analysis appears to be in line with the mixed relation suggested by literature.
- Stairs (literature: -) / steep slopes (literature: -): Neither urban feature variable tests or qualitative motivation analysis have found a distinct positive or negative effect on stairs or slopes. For the subjective variable 'steep slopes', a positive significant effect is found in standardised data on to-station trips. This implies that such trips require pedestrians to navigate more steep inclines than less-taken routes. This would imply a positive coefficient, which stands in contrast to the results obtained in prior studies.
- Plot size (literature: +): Tests on standardised data without Bonferroni correction for station egress trips have identified fairly strong positive relation between landmark-size plot areas and trip attraction. This effect is

far less clear for station access trips. This suggests that respondents include more buildings with large plot areas when walking from the station, implying a positive coefficient. As noted for sub-question three, qualitative responses give no conclusive insight on this matter. The quantitative findings on this variable are in line with literature.

- Floor space index (literature: -): None of the tests performed for this sub-question have found significant effects on this variable. Qualitative analysis offers no additional insight either. As such, the coefficient found in literature cannot be commented on.
- Tree, bush and grass cover (literature: +): None of the tests performed for this sub-question have found significant effects on this variable. As noted for sub-question three, qualitative motivations are less ambiguous and note a distinct preference for natural features, supposing a positive coefficient. This quantitative finding would be in line with literature, but can as such not be supported quantitatively.
- Noise pollution (literature: -): None of the tests performed for this subquestion have found significant effects on this variable. Qualitative motination analysis does however note a distinct dislike for 'busy roads' as the foremost repellent feature. This qualitative finding would be in line with literature, but can as such not be supported quantitatively.
- Fastest (literature: +): This variable is found to be strongly positive across all tested categories. Most-taken routes are as such experienced as being faster vastly more so than other alternatives. This is inline with qualitative motivation analysis, which finds route speed to be explicitly mentioned as the second-most attractive feature, after the highly related feature of route lenght. This implies a distinct positive coefficient is in place, which is in line with the literature.
- Well maintained (literature: +): This variable is found to be positive for most and least taken routes, but substantially less so for the midrange subsection. This suggests that the effect may as such hold especially for the difference between 'always' and 'never' taken routes. Qualitative motivations mention maintenance as an attractive feature, but don't do so often. Such positive coefficient is in line with findings from prior studies, but cannot as such be determined conclusively.
- Safe vs. social risk (literature: +): This variable tests (strongly) positive across all sample pairs. Although the level of significance differs, across route directions, it is not possible to conclusively identify a coherent trip direction effect. This positive perspective is reflected in motivations analysis, with respondents mentioning a preference for social safety more often than traffic safety. The positive effect implies a positive coefficient, which is in line with the literature.

- Like when dark (literature: +): This variable tests strongly positive, especially (incl. Bonferroni correction) on station egress routes. This implies that respondents have a distinct preference for their most-taken routes when its dark and experience this most acutely when leaving the station. Interestingly, 'darkness' is never specifically mentioned in qualitative responses although a dislike for 'tunnels' suggests darkness is not something respondents are fond of. This is in line with the positive coefficient found in literature.
- Other people (literature: -): This variable tests positive for from-station trips on all non-Bonferroni correction data. It suggests that routes which are taken from the station to the external OD-point pass through areas which are significantly more crowded than other possible routes. Interestingly, qualitative responses contradict this, with 'crowds' or 'other people' being mentioned as a repellent more often than an attraction in route choice. The quantitative finding also stands in contrast to the coefficient which is found in literature.
- Safe vs. traffic risk (literature: +): For this variable it is found that more-frequented routes are generally perceived as being safer from traffic risks than alternatives. This effect appears to be strongest for 'most'-taken egress routes, with effects on other tests varying. Qualitative results mention traffic safety as an attractive feature, but not tremendously often. This apparent tendency to take routes which are perceived as 'safer' is in line with the literature, although not as strong as would have been expected.
- Lighting (literature: +): This variable shows some similarity with the 'like when dark' category, although the effect is less strongly so. As such, welllit routes are preferred on the egress-leg trips on both sample pairs. This finding that more-taken routes are better lighted is in line with literature.
- No obstructions (literature: +): This variable finds that respondents feel that their often-taken routes are more likely to have no obstructions on them than alternative routes. This effect appears to be strongest for egress-direction trips. Qualitative analysis also notes a number of respondents who specifically mention lighting as a positive decision criterion. This finding supports the observation in literature that pedestrians are repelled from routes which feature more obstacles.
- Protected against weather (literature: +): For this variable it is found that respondents' often-taken egress routes are experienced as substantially poorer in terms of weather protection than alternatives. This implies that although people take certain routes more often, these routes are taken despite there being alternatives which are better protected. Interestingly, weather protection is specifically however mentioned as a positive characteristic by nine respondents, but may have pertained by less-taken routes. This quantitative finding runs against the finding in literature that

pedestrians are attracted to routes where they are well-projected against bad weather.

• Lot of seating (literature: +): For this variable a strong (Bonferronicorrected) negative relation is found for 'most'-taken station-egress routes. Upon release of the Bonferroni correction, a similar effect is found on the midrange sample pair. This suggests that more-frequented routes are taken, despite respondents feeling there are substantially fewer seating opportunities than on available alternative routes. Seating is not mentioned as qualitative motivation by any respondent. These findings run against what is found in the literature.

Other variables

In addition to the variables which were tested directly and for which hypothesised relations were found in literature, only one effect is found to test stronger than the permissive 10% threshold.

• Educational: More buildings containing educational functions feature on midrange routes for station access. Although it seems unlikely that people actively seek out such buildings on their way to the station, it may be reflective of a certain attractiveness about the types of environments and streets at which educational facilities are situated. An alternative explanation may be that this is the result of a bias incurred by a comparatively large number of respondents in the university city of Delft.

5.2.3 Within-route distribution analysis

With application of the Bonferroni correction a higher incidence of grass cover is registered in the third quadrant of midrange subset trips in both directions. For station access trips higher levels of railway-based noise are also found in this area. These results are largely in line with those for sub-question three, suggesting that there may be some effect in this regard. The prevalence of railway-based noise at this distance from the station is however hard to explain.

Upon release of the Bonferroni correction, most additional effects are also found for the third quadrant. Interestingly, the 'always' and 'never' sample pair displays an effect of grass cover which is the opposite of the effect found for the midrange-subset: a lower incidence in the third quadrant. Meanwhile midrange trips display a concentration of bushes as trees in this quadrant also. Combined this may suggest that, if given a route choice set, respondents opt for routes which contain a level of green concentration.

5.3 Fundamental null hypotheses

In section 3.1.1, sub-questions three and four were redefined in terms of two fundamental null hypotheses. With all results reported and analysed, it is now possible to test these hypotheses.

5.3.1 Sub-question 3

For this sub-question the hypothes is held that "[...] a pedestrian's route is either the shortest path or least directional turns path, irrespective of urban features which may or may not be present along these routes." In the light of the data which has been obtained by this study, the thesis rejects this hypothesis with regards to the least directional turns path. The hypothesis is however accepted as 'mostly true' with regards to shortest paths.

For the least directional turns path, this verdict is based on the following points:

- 1. Considered geometrically: Least directional turn route geometry generally performs in a highly erratic manner. Routes are long, have large deviations are contain many curves. These characteristics are found to be most similar with the less-frequented route alternatives provided by respondents.
- 2. Considered in urban features: Tests identify highly significant differences between variable scores of e.g. green and noise on least directional turns and respondent routes. These differences are highly significant, even with the application of the Bonferroni correction. This suggests that routes are highly dissimilar even when sample variance is considered.
- 3. Considered qualitatively: Seven respondents explicitly mention that the comparatively lower number of turns on a route are a matter which attract them to it. In contrast to the prior considerations, this finding lends some support to the hypothesis. Considering the substantially larger qualitative support for the shortest path motivation, this preference of few turns is comparatively modest. It may however suggest that further research may be required.

For the shortest path, this verdict is based on the following points:

- 1. Considered geometrically: Route geometry shows that more-frequented respondent routes converge on shortest paths in terms of total route length. This similarity is matched in terms of secondary characteristics such as e.g. maximum deviation or eccentricity.
- 2. Considered in terms of urban features: In terms of differences in urban features, higher frequency respondent routes generally do not exhibit large differences.
- 3. Considered qualitatively: The 'shortest path' is the route characteristic which respondents mention most often as motivation for their route choice.

Note that although respondent routes overlap by approximately 75% with shortest paths, 25% do not. When compared with the large number of responses in qualitative verification noting a preference for the 'fastest' route suggests that what people truly prefer is slightly different from the shortest path: they prefer the 'fastest' path. In many cases these will be the similar, but not exactly the same. Traffic lights and obstacles are found as possible causes for this.

5.3.2 Sub-question 4

For this sub-question, the hypothesis held that "[...] there is no difference between often taken and not-often taken routes in terms of features in the urban environment." In the light of the data which has been obtained by this study, the thesis firmly rejects this hypothesis.

- 1. Considered geometrically: It is found that substantive differences exist between higher-frequency and lower-frequency routes. Amongst others lower- frequency routes are found to deviate from the bearing line further and on average longer. These effects a replicated across all tested sample pairs and trip directions.
- 2. Considered in terms of quantitative urban features: Tests on urban features between respondents' 'known' routes don't find incredibly large differences. Nevertheless, less-taken routes are found to contain more traffic lights and substantially fewer large buildings.
- 3. Considered for subjective urban features: Tests on subjective features show that respondents experience the routes which they know of to be substantially different from each other. These differences are most pronounced in terms of speed, ease by which routes can be remembered and route attractiveness in the dark. Upon release of the Bonferroni correction, almost all subjective variables are found to exhibit significant differences. In addition to these dimensions, differences between routes also stand out in terms of trip direction: respondents express a clear preference for routes containing certain features when travelling in certain directions. This again contradicts the hypothesis that routes are the same.
- 4. Considered qualitatively: In line with the subjective experiences, qualitative motivations provided by people exhibit distinct preferences and dislikes of routes and features on them. For instance, many routes are avoided due to them being along "busy roads."

Note that this null hypothesis is largely rejected based on geometric, subjective and qualitative considerations. If regarded in a narrow sense and only results on geographically measured urban features are considered, differences do not appear to be tremendously large and the hypothesis might have to be maintained. In the light of this observation, it may be more accurate to claim that routes are 'experienced' to be different thus leading to route choices, rather than routes differing all too much in an objective sense. This may however also be contingent on the variables which this thesis has considered. Further research is required.

Chapter 6

Discussion and conclusions

This thesis analyses relationships between the urban environment and pedestrian route choice. This was done using a method that offers several innovations over the existing body of literature. This chapter presents the findings of this study.

This chapter is structured as follows: first, in section 6.1 the main findings of this study are presented, discussing both theoretical insights and the performance of the applied methodology. Second, in section 6.1.2 these findings are reflected upon in a conclusion. Third, in section 6.3, the findings of this study are qualified and contextualised in order to understand what they do (not) represent. Fourth, in section 6.4 the implications of the findings of this thesis for practitioners is reflected upon. Fifth, in section 6.5 the implications for research are reflected upon and potential avenues for future research are proposed.

6.1 Main findings

6.1.1 Theoretical findings

This thesis has performed four types of analysis, across 105 respondents and up to five times as many routes. From this analysis five main findings can be identified.

First, variable coefficients confirmed. This study has found that the coefficients for a number of urban features are in line with what would be expected from the academic literature. Some level of quantitative confirmation is found for a mixed attraction/avoidance of retail/business, an attraction towards urban green, well-maintained footpaths, traffic safety, lighting and obstruction-free footpaths, and finally an avoidance of noise, darkness and social risks. This means that pedestrians in the Netherlands are expected to exhibit similar navigational traits when confronted with these features as their peers in more extensively studied areas overseas.

Second, variable coefficients deviated from. The similarity from point one is however not complete. Dutch pedestrians exhibit markedly differing behaviour on a number of points. In contrast to their peers overseas, they are found to avoid traffic signals, exhibit an attraction to routes which have many other people on them, and finally show an indifference to weather protection and seating. Some of these characteristics may be dependent on a context which this study has not been able to study in as much depth as it would have liked (e.g. the low number of elderly respondents may obscure effects on seating), or were less distinct in qualitative verification. Further research is required to better understand dynamics on these characteristics.

Third, a preference for 'fastest' routes. The assumption of this thesis was that for pedestrians route length is indicative of trip duration. Geometric analysis showed that those routes which respondents take more often show a large similarity with the shortest path: both in terms of overall length, but also other indicators such as deviation and curvature. However, exact overlap with shortest paths is rare. Here, the finding that respondents avoid traffic signals and strongly feel that a route is fastest (more so than easy to remember) suggests that pedestrians have a distinct preference for perceived route speed over pure route length. This implies that pedestrians are willing to accept (small) detours if this gives them a route which they perceive to be faster.

Fourth, pedestrians are more susceptible to urban features on their station egress trips. A range of variables are found to strike more significant differences when tested against baseline alternatives on routes from train stations. Geometry analysis shows that people are willing to accept larger maximum deviations on their egress routes. Taking a step back, two categories of preferences might be identified: 'recreation' and 'social safety'. Here, recreation reflects the higher incidence of shops, nature, larger buildings and fewer obstructions. A social safety category may in contrast be identified in the preference for certain well-lit routes when travelling in the dark, routes which are safer from traffic, and have more people on them. These categories should be explored in further research.

Fifth, green and fields in the third quadrant. Within-route distribution analysis finds recurring deviations from baseline routes in terms of green and railway-induced noise in the third quadrant (between 50 and 75% of trip progression considered from the train station). It is observed that such 'green' values often pertain to the grass category. The open character of grasslands suggests that noise from far-off railways might echo across them.

6.1.2 Methodological findings

This thesis applied a methodological approach which innovates over approaches used in other pedestrian route choice studies. Overall, this process worked as planned: route data were successfully collected and prepared, and relevant urban feature data was available and could be applied to routes in a way that permitted analysis. In terms of effectiveness, two methodological issues stand out.

Data quality and availability

As a quasi-revealed preference study, the method applied in this study is inherently data-driven. The most severe challenges in application of the method are as such related to data issues. First, despite intending to generate a fully integrated process, user-entered routes were so 'messy' that some manual filtering turned out to be necessary in data preparation. Due to the limited number of responses it was not preferable to simply drop those responses which exhibited poor fit. Clearer instructions and more rigorous filtering algorithms should be able to deal with this.

Second, route data availability remains a challenge. For the present study, the survey did obtain a decent insight into route data. However, for such research, an extensive and cooperative respondent population. This is a shortcoming when compared to e.g. counts, which can be performed without requiring pedestrians' active participation.

Third, the importance of social experiences. As is apparent from the comparatively strong results on subjective questions and qualitative verification analysis, route choice is affected by a range of highly subjective processes. This pertains to e.g. people's sense of safety or crowding. For this study no equivalent open geodata sources were found from which these dimensions could have been studied - at least not at the country-level scope.

Fourth, data uniformity. if data is assessed at a country-wide level, it is important that this data is measured and represented uniformly across the study area. Here, government-sourced data seems to be of a high standard. However, user-sourced data (e.g. Open StreetMaps) exhibited substantial differences in the manner by which features are stored across space. For example, one city may contain traffic signals with the "pedestrian"-label, whilst such labels are not applied in another city. This requires careful consideration in choosing which features to study.

Fifth, script development time. In order to perform a study as described in this thesis, a lot of time must be spend on coding. This time spent on coding is required before results are obtained, which means that the process lacks a certain flexibility: adding / excluding features is comparatively time-demanding. This time or ability to focus on coding may not be available to other researchers.

Coding errors

When the results for comparisons against least directional turns paths and shortest paths are contrasted, the results found for the former contain a number of largely unexpected results. Three such discrepancies are noted:

First, tests against least directional turns routes exhibit highly significant differences even after the application of the (notoriously conservative) Bonferroni correction. In contrast, similar tests against shortest paths don't. This means that samples related to least directional turns routes are vastly more different from respondent-entered route samples than shortest paths samples are in terms of urban variables.

Second, when overlap geometry is considered, routes appear to have relatively little overlap with least directional turns routes for frequency classes on which respondents are considered to have an actual route choice. This may be interpreted that the least directional turns route is actively avoided when alternatives are present. Whatever the least directional turns route is, people are not taking it.

Third, when considered in terms of the curvature geometry variable, the *least turns* routes are structurally found to have *more curves* than either the routes taken by respondents or the shortest paths. The expectation would, by definition, have been the reverse: the least turns route is after all mathematically optimised to have as few curves and as many straight lines as possible.

Here, it is noted that feature loading and analysis are performed using the same code for both least directional turns and shortest paths routes. The main difference between these routes lies in their route computation: the shortest path is based on a 'simple' distance-based shortest path, whilst the least directional turns path is computed from a 'dual graph' network containing turn degree data. This suggests errors may have occurred in this phase of development, which weren't picked up before results were obtained.

Consequently, an additional manual check is performed on the routes which are generated by the least directional turns algorithm. As can be seen in Appendix ??, least turns route contains turns (more or less halfway the route) which clearly add rather than remove turns from the route. This may mean that the methodology used for implementation needs further review. With the cause of the issue as of yet unknown, this implies that results which have been reported for the least turns route are best seen as an undefined 'other possible' or perhaps even quasi-'random' route.

Such a reconceptualisation of this route generally permits for two findings: firstly, it confirms that routes taken by respondents are to some extent directed in their route choice: indeed, the routes taken by respondents are generally shortest and straighter. Second, it indicates that there are limits to the effort respondents are willing to make in order to obtain higher/lower scores on the variables which these (not so-) least turns routes deviate significantly on. A more in-depth and better tested study will however be needed to come up with more meaningful insights.

6.2 Main conclusions

This study set out to answer the following research question: "To what extent do features in the urban environment cause pedestrians to adjust their walking routes to or from heavy rail train stations in the Netherlands?" This question is defined as being contingent on two sub-questions. Upon review of all data, the null hypothesis for sub-question three is partly rejected. The null hypothesis for sub-question four is wholly rejected, albeit primarily on respondents' subjective and qualitative motivations. With these realisation set, the main research question can be answered. Geometric analysis has identified that more-frequented respondent routes display strong similarity with shortest paths. Existing differences result in fairly limited differences in route length, detour ratio and deviation. When considered in terms of variables, amongst others traffic lights, building plot area, noise pollution (total, but also road or railway-specific), green cover and building age. Distinct subjective preferences are found, with particularly strong effects for route speed, ease by which a route can be remembered and routes' suitability in the dark - especially for egress trips. Upon study of the within-route distribution of features, a higher incidence of green values and noise pollution are noted in the third quadrant. When controlled for interaction effects with respondent background, walking trips by frequent train travellers, especially those between 31 and 40 years of age, are found to witness higher incidences of office buildings along their routes. Subjectively, effects are found for amongst others, age, local residence and liking of routes in the dark.

In qualitative review of the results found by analysis it must be concluded that pedestrians are generally inclined to take routes which they perceive to be 'fastest' and 'easy to remember' for the bulk of their walking trips. These routes differ from the 'shortest' path on features such as avoidance of pedestrian delay caused by traffic lights, unease caused by busy traffic or places that are less pleasant at night. People's ability to identify such routes seems to be impacted by their availability of a bike and whether they live in the city in question. Presumably these affect their familiarity with local pedestrian infrastructure. In addition to these 'fast' trips, people are found to like 'variation', and may take alternative routes just to have a different view. These routes are generally marked by a higher incidence of pleasant environmental features such as urban green, historical buildings and lower noise pollution levels.

In review of the methodological innovations attempted in this thesis, it is concluded that this method is indeed feasible and is capable of generating interesting results. The online GIS survey has permitted for the comparatively low-effort accumulation of geographically dispersed responses. Matching routes with open geodata worked quite smoothly. Together, this suggests that this method is highly suited for further application in both academia and practice. The method is however not free of issues: implementation is complex and somewhat inflexible, which makes correcting errors (such as the one on the least turns route) hard if these are not picked upon in time. As evidenced by the modest number of respondents upon which this study is based, obtaining respondents remains a key vulnerability. However, if a project is well planned, researchers are sufficiently skilled in python coding and are able to obtain large numbers of respondents, the method offers a highly effective improvement to pedestrian route choice studies.

6.3 Assumptions and limitations

The results of this thesis are contingent on a range of assumptions pertaining to the method, data and manner by which these have been implemented. These affect these results' overall representativeness or explanatory strength. Some of these have been mentioned as notes to applicable technical points in the text. Here, some of the main qualifications to study outcomes will be reviewed.

Firstly, the study has only studied pedestrian route choice in the narrow case of walking routes to and from train stations. Although the public transport-leg of respondents' trips was assumed to be constant, the very nature of walking to catch or egress from a train may cause additional behavioural motivations to be at play. For instance, respondents may make other trade-offs on e.g. traffic safety or environmental aesthetics when they need to catch a train or walk back from a work commute, than when doing their groceries. Other trips may be subject to other considerations and as such exhibit starkly different navigational characteristics. On a deeper level, it also assumes that people even walk to train stations in the first place. As some responses to the qualitative response field indicated many prospective respondents only ever travel to the station by bike. The navigational preferences of these and other travellers who don't customarily perform walk-train trip chains, may be different and not reflected in the results.

Secondly, the study is based on a comparatively small sample. This has precluded modelling as analytical tool, but also affects the descriptive statistics which have been applied instead. Although the consequences for tests which use the full respondent sample (e.g. the 'most-used' and 'least-used' sample pairs) are expected to be somewhat limited, subsets are affected. Subsets with few data points will display more variation around the mean than exists in the population. Such larger variation may in turn cause statistical tests to identify certain sample pairs as significantly different where such a result might not have been applicable. As such, results for full-respondent sample tests are to be considered more reliable than those based on subsets.

Third, the survey upon which results for this study are based, does not request respondents to specify routes according to the time, circumstances during which or purpose for which they use them. This may hide important differences in e.g. route choice between day and night, weather conditions or commute vs. recreational use. Tests on subjective data find that respondents' often-taken routes are generally also preferred at night. However, it is not known whether these routes are taken most often because people generally perform their walking trip after subset, and whether they'd have a different favourite route when it is light.

Fourth, baseline testing. This study has tested route characteristics against those of other routes in the respondent's consciously considered choice set, or two mathematically-defined alternatives. Moreover, tests are only performed per test-sample and baseline sample pair, but not across pairs. The consequence of this is that the study actually just tests difference from how certain variables feature on baselines as sets of routes. Although testing is done in terms of variables, such variables may have featured on various different routes for each respondent, in various different circumstances. Such variability is not considered, which means that the exact impact of a certain type of variable on its own is, ultimately, not conclusive.

Fifth, within-route distribution. Following on point four, this manner of

analysis tests whether respondent routes contain substantial deviations from the distribution of the baseline sample. Consequently, cases where respondent routes exhibit distributions which are similar to those on the baseline sample will not register: the actual distribution of features along routes overall is not known. As indicated by several of the qualitative responses, within-route distribution – notably an appreciation for 'variation' - is a dimension which respondents claim to appreciate. This dimension cannot be fully grasped with the present results.

6.4 Implications for practice

By investigating walking as distinct mode of urban transportation, this thesis has set out to engage with a topic of particular societal relevance. The knowledge generated by this thesis can be used as an input by urban planners and designers for their efforts to create an urban sphere which people are not only able, but also willing to traverse on foot. As station bike sheds in the Netherlands are chronically too full to meet demand, cities and rail operators may want to facilitate walking as serious mode of station access and egress. This thesis offers several lessons by which this may be achieved. Although results are too nuanced to sum up here, key findings include pedestrians' intense dislike of detours and perceived delay due to traffic signals. Similarly, pedestrians seem to have a prefer routes with fewer buildings with large plot areas. In what might be bad news for shopping mall operators (e.g. Hoog Catherijne in Utrecht), utilitarian pedestrians do not appear to be tremendously enthusiastic of shops en-route to the station. Finally, subjective inputs studies for this thesis find that detailed consideration is required for routes which people are comfortable taking at night, a effect which interaction effect analysis shows is important for both men and women alike.

With an eye to the 'Loopmonitor' project by Witteveen+Bos, this thesis offers further information on the relative importance of urban features in the attraction of pedestrian flows. This permits for further calibrating of that model to predict crowding in the urban sphere - and how utilitarian walkers may navigate these. In addition to these and other results, the methodological framework posited for this thesis may also be of interest to societal actors. The data sets which have been selected for analysis in the present study can be replaced by any urban elements for which data is available. As such, it offers a toolset which cities can use to analyse the extent to which pedestrians are attracted to or avoid elements of policy relevance such as e.g. artworks or signposts.

6.5 Implications for research

This study has sought to contribute to the emerging field of pedestrian route choice studies. This study believes that it contributes to academic literature two levels:

Firstly, in terms of results, this study lends support to a number of previous

findings in the academic literature and/or expert insights for features presented in chapter 5. Differing effects have however also been found, which raises several questions as to whether these results are correct and if so what their underlying causes are. In a preliminary exploration as to why these effects might differ from the extant literature, qualitative text-coding analysis has given insight into respondents' motivations for such perspectives. Further research will need to identify the validity of these results and whether they are for instance reflective of underlying cultural or geographical dynamics. In addition to testing the general validity and direction of variable coefficients, this study has gone three steps further, by identifying how variables differ by trip direction, the distribution of certain features along route length and the effects of respondent background on perceptions. These aspects constitute distinct contributions to the literature.

Secondly, methodologically this thesis has tested an analytical methodology which scales up self-reported revealed preference pedestrian route choice research by applying a fully digital data collection process as well as a dynamic download-based feature testing process. By collecting pedestrian route data by means of an online survey with an integrated GIS-functionality, route data can be collected for a geographically more dispersed population. This has indeed permitted this study to leverage data inputs from a far greater constituency, across a great number of pedestrian environments. The dynamic-downloading process of feature data was found to nicely complement the the survey method and effectively enabled matching of urban features to route data at a truly country-wide level. As far as this study is aware, this has not been tried before and the implementation tested in this thesis may lend itself to new and exciting research.

This being said, the results from this study are far from complete and are best seen as an initial inroad or 'proof of concept'. The most solid findings of this study are obtained through subjective/qualitative means, and are only in part confirmed by the geodata method. Moreover, several important data types such as feeling of safety do not appear to be retrievable from open data. Although it is found that the online survey tool can indeed collect data for a more wideranging area, it is also found that a more deliberate effort remains necessary to obtain an adequate number of respondents. Qualitative responses found for this study identify that one way by which this might be achieved is by studying trip types which people are more likely to perform on foot: e.g. to the local bus stop or supermarket. By extension, the data collection - dynamic analysis process isn't fully integrated: in order to enable data processing for larger numbers of respondents the manual data cleaning performed in this thesis will need to be automated. The widespread agreement by respondents that their more often taken routes are 'easy to remember' moreover suggests that there might be some truth to the least directional turns hypothesis: a rerun of the present study with corrections on that area might deliver interesting results.

If these challenges can be overcome, it is recommended that this study is replicated with a larger and more geographically balanced respondent sample so as to enable analysis based on modelling rather than descriptive statistics. This would permit for the generation of substantially more rigorous analytical outcomes. Additionally, future studies can set out to include include some of the variables which this study did not get round to such as footpath width. As shown by this thesis, a wealth of open geodata exists which can be tapped into for academic purposes. The feature selection process might also be improved upon, with a buffering approach that is more sensitive to link-level line-of-sight being a top priority. A final recommendation pertains to within-route analysis, which appears to be a scantly studied topic overall. This thesis has shed some initial light on how distributions differ from baseline samples. However, a more rigorous investigation could study distributions which are preferred by people on their own accord without testing these against baseline samples. As far as this study can assess based on the literature which it has reviewed, that would establish an as of yet unstudied subarea of research.

Chapter 7

References

- Alshalalfah, B., & Shalaby, A. S. (2007). Case study: Relationship of walk access distance to transit with service, travel, and personal characteristics. *Journal of urban planning and development*, 133(2), 114–118.
- Armstrong, R. A. (2014). When to use the b onferroni correction. Ophthalmic and Physiological Optics, 34(5), 502–508.
- Armstrong, R. A., & Hilton, A. C. (2011). Statistical analysis in microbiology: statnotes. Wiley Online Library.
- Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. *Computers, Environment and Urban* Systems, 65, 126–139.
- Bongiorno, C., Zhou, Y., Kryven, M., Theurel, D., Rizzo, A., Santi, P., ... Ratti, C. (2021). Vector-based pedestrian navigation in cities. *Nature Computational Science*.
- Borst, H. C., de Vries, S. I., Graham, J. M., van Dongen, J. E., Bakker, I., & Miedema, H. M. (2009). Influence of environmental street characteristics on walking route choice of elderly people. *Journal of Environmental Psychology*, 29(4), 477–484.
- Brand, J., Hoogendoorn, S., van Oort, N., & Schalkwijk, B. (2017). Modelling multimodal transit networks integration of bus networks with walking and cycling. In 2017 5th ieee international conference on models and technologies for intelligent transportation systems (mt-its) (pp. 750–755).
- Brändli, H., Siegrist, R., Altherr, W., & Enz, R. (1978). Grundlagen des öffentlichen verkehrs: Einfluss des anmarschweges auf die benützung öffentlicher verkehrsmittel. *IVT-Berichte*, 78.
- Broach, J., & Dill, J. (2015). Pedestrian route choice model estimated from revealed preference gps data (Tech. Rep.).

- Broach, J., & Dill, J. (2016). Using predicted bicyclist and pedestrian route choice to enhance mode choice models. *Transportation Research Record*, 2564(1), 52–59.
- Brown, B. B., Werner, C. M., Amburgey, J. W., & Szalay, C. (2007). Walkable route perceptions and physical features: Converging evidence for en route walking experiences. *Environment and behavior*, 39(1), 34–61.
- Brownlee, J. (2017). How to create an arima model for time series forecasting in python. Retrieved 2021-10-29, from https://machinelearningmastery.com/arima-for-time-seriesforecasting-with-python/
- Bryman, A. (2016). Social research methods. Oxford university press.
- Canvis.app. (2021). Canvis.app. Retrieved from https://canvis.app
- CBS. (2017). Inwoners per gemeente. Retrieved 2021-11-09, from https://www.cbs.nl/nl-nl/visualisaties/dashboard-bevolking/ regionaal/inwoners
- CBS. (2021).Bevolking op 1 januari engemiddeld; geslacht. leeftijd regio. Retrieved 2021-11-09. from enhttps://opendata.cbs.nl//CBS/nl/dataset/03759ned/table?dl= 39E0B
- Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009). Influences of built environments on walking and cycling: lessons from bogotá. *International journal of sustainable transportation*, 3(4), 203–226.
- Chorus, C. (2021a, April). Sen1221 lecture 2: Part i: Choice behaviour modelling and the logit-model. TU Delft, Faculty of Technology, Policy and Management.
- Chorus, C. (2021b, April). Sen1221 stated choice, lecture 1: Introduction to experimental designs. TU Delft, Faculty of Technology, Policy and Management.
- City of Amsterdam. (2021). Walkability. Retrieved from https://maps.amsterdam.nl/walkability/?LANG=en
- Crang, M. (2005). Methods in human geography: a guide for students doing a research project, chapter 13: Analysing qualitative materials. Pearson Prentice Hall.
- CROW. (2021). Kennismobile voetgangers. Retrieved from https://www.crow.nl/online-kennis-tools/kennismodulevoetgangers

- Daniels, R., & Mulley, C. (2013). Explaining walking distance to public transport: The dominance of public transport supply. Journal of Transport and Land Use, 6(2), 5–20.
- de Klerk, L., & van der Cammen, H. (2008). Ruimtelijke ordening, van grachtengordel tot vinex-wijk. Het Spectrum.
- Duives, D. C. (2021a, April). Cie5822 lecture 6: Microscopic simulation models. TU Delft, Faculty of Civil Engineering.
- Duives, D. C. (2021b, April). Cie5822 lecture 9: Empirics of active mode travel behaviour. TU Delft, Faculty of Civil Engineering.
- ESRI. (2021). Arcgis survey123. Retrieved from https://survey123.arcgis.com
- Ewing, R., & Cervero, R. (2010). Travel and the built environment: A metaanalysis. Journal of the American planning association, 76(3), 265–294.
- Ferrer, S., Ruiz, T., & Mars, L. (2015). A qualitative study on the role of the built environment for short walking trips. Transportation research part F: traffic psychology and behaviour, 33, 141–160.
- Fietsersbond. (2016). Nederland fiets massaal in fietstelweek. Retrieved from https://www.fietsersbond.nl/nieuws/nederland-fietst-massaalfietstelweek/
- Goossen, C., Rip, F., Staritsky, I., & Thomas, D. (2021). Beloopbaarheid gemeten: Pilotstudie naar de mate van beloopbaarheid van ov-knooppunten en hun buurten in de provincie utrecht.
- Guo, Z. (2009). Does the pedestrian environment affect the utility of walking? a case of path choice in downtown boston. *Transportation Research Part D: Transport and Environment*, 14(5), 343–352.
- Guo, Z., & Ferreira Jr, J. (2008). Pedestrian environments, transit path choice, and transfer penalties: understanding land-use impacts on transit travel. *Environment and Planning B: Planning and Design*, 35(3), 461–479.
- Guo, Z., & Loo, B. P. (2013). Pedestrian environment and route choice: evidence from new york city and hong kong. *Journal of transport geography*, 28, 124–136.
- Harvard Humanitarian Initiative. (2021). *Kobotoolbox*. Retrieved from https://www.kobotoolbox.org
- Healthy Streets Ltd. (2021). What is healthy streets? Retrieved from https://www.healthystreets.com/what-is-healthy-streets
- Hess, D. B. (2012). Walking to the bus: perceived versus actual walking distance to bus stops for older adults. *Transportation*, 39(2), 247–266.

- Hillnhütter, H. (2016). *Pedestrian access to public transport* (Unpublished doctoral dissertation). University of Stavanger, Norway.
- Kadaster. (2021a). Basisregistratie adressen en gebouwen: Panden. Retrieved from https://www.geobasisregistraties.nl/basisregistraties/ adressen-en-gebouwen
- Kadaster. (2021b). Basisregistratie adressen en gebouwen: Verblijfsobjecten. Retrieved from https://www.geobasisregistraties.nl/basisregistraties/ adressen-en-gebouwen
- Kim, S., Park, S., & Jang, K. (2019). Spatially-varying effects of built environment determinants on walking. *Transportation research part A: policy and practice*, 123(C), 188–199.
- Knapskog, M., Hagen, O. H., Tennøy, A., & Rynning, M. K. (2019). Exploring ways of measuring walkability. *Transportation research procedia*, 41, 264–282.
- Knox, P. L., Marston, S. A., & Imort, M. (2007). Human geography: Places and regions in global context, fourth edition. Pearson New York.
- Koh, P., & Wong, Y. (2013). Influence of infrastructural compatibility factors on walking and cycling route choices. *Journal of Environmental Psychology*, 36, 202–213.
- Lam, W., & Morrall, J. (1982). Bus passenger walking distances and waiting times: a summer-winter comparison. *Transportation Quarterly*, 36(HS-033 385).
- Lee, C., & Moudon, A. V. (2004). Physical activity and environment research in the health field: Implications for urban and transportation planning practice and research. *Journal of planning literature*, 19(2), 147–181.
- Liu, Y., Yang, D., Timmermans, H. J., & de Vries, B. (2020). The impact of the street-scale built environment on pedestrian metro station access/egress route choice. *Transportation research part D: transport and environment*, 87, 102491.
- Lue, G., & Miller, E. J. (2019). Estimating a toronto pedestrian route choice model using smartphone gps data. Travel behaviour and society, 14, 34–42.
- Maptionnaire. (2021). What is maptionnaire? Retrieved from https://maptionnaire.com
- Methorst, R. (2021). Exploring the pedestrians realm; an overview of insights needed for developing a generative system approach to walkability.

- Muraleetharan, T., & Hagiwara, T. (2007). Overall level of service of urban walking environment and its influence on pedestrian route choice behavior: analysis of pedestrian travel in sapporo, japan. *Transportation Research Record*, 2002(1), 7–17.
- Nederlandse Spoorwegen. (2020). Ns jaarverslag reizigersgedrag 2019. Retrieved from dashboards.nsjaarverslag.nl/reizigersgedrag
- Nederlandse Spoorwegen. (2021). *De ns api.* Retrieved from https://www.ns.nl/reisinformatie/ns-api
- OpenStreetMap. (2021a). About openstreetmap. Retrieved from https://wiki.openstreetmap.org/wiki/About_openStreetMap
- OpenStreetMap. (2021b). Openstreetmap. Retrieved from https://www.openstreetmap.org/
- Özçomak, M. S., Kartal, M., Senger, Ö., & Çelik, A. K. (2013). Comparison of the powers of the kolmogorov-smirnov two-sample test and the mann-whitney test for different kurtosis and skewness coefficients using the monte carlo simulation method. *Journal of Statistical and Econometric Methods*, 2(4), 81–98.
- Peperna, O. (1982). Die einzugsbereiche von haltestellen öffentlicher nahverkehrsmittel im straßenbahn-und busverkehr. na.
- ProRail. (2020). Netwerkverklaring 2020.
- Razali, N. M., Wah, Y. B., et al. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. *Journal of statisti*cal modeling and analytics, 2(1), 21–33.
- Rijkswaterstaat, B., RIVM. (2021a). Atlas leefomgeving: Bomen in nederland. Retrieved from https://www.atlasleefomgeving.nl
- Rijkswaterstaat, B., RIVM. (2021b). Atlas leefomgeving: Geluid spoorwegen. Retrieved from https://www.atlasleefomgeving.nl
- Rijkswaterstaat, B., RIVM. (2021c). Atlas leefomgeving: Geluid totaal. Retrieved from https://www.atlasleefomgeving.nl
- Rijkswaterstaat, B., RIVM. (2021d). Atlas leefomgeving: Geluid wegverkeer. Retrieved from https://www.atlasleefomgeving.nl
- Rijkswaterstaat, B., RIVM. (2021e). Atlas leefomgeving: Gras in nederland. Retrieved from https://www.atlasleefomgeving.nl
- Rijkswaterstaat, B., RIVM. (2021f). Atlas leefomgeving: Struiken in nederland. Retrieved from https://www.atlasleefomgeving.nl

- Rodríguez, D. A., Brisson, E. M., & Estupiñán, N. (2009). The relationship between segment-level built environment attributes and pedestrian activity around bogota's brt stations. *Transportation research part D: transport and* environment, 14(7), 470–478.
- Rodríguez, D. A., Merlin, L., Prato, C. G., Conway, T. L., Cohen, D., Elder, J. P., ... Veblen-Mortenson, S. (2015). Influence of the built environment on pedestrian route choices of adolescent girls. *Environment and behavior*, 47(4), 359–394.
- Ruimte voor lopen. (2021).Beloopbaarheid wivanwalkability. Retrieved iken enbuurten from https://ruimtevoorlopen.nl/activiteit/https-ruimtevoorlopen -nl-project-meten-waarderen-en-publiceren-van-de-beloopbaarheid -van-wijken-en/
- Scheff, S. W. (2016). Fundamental statistical principles for the neurobiologist: a survival guide. Academic Press.
- SciPy. (2021a). scipy.stats.mannwhitneyu. Retrieved 2021-11-05, from https://docs.scipy.org/doc/scipy/reference/generated/scipy. stats.mannwhitneyu.html
- SciPy. (2021b). scipy.stats.normaltest. Retrieved 2021-11-05, from https://docs.scipy.org/doc/scipy/reference/generated/scipy. stats.normaltest.html?highlight=agostino
- Seneviratne, P. N., & Morrall, J. F. (1985). Analysis of factors affecting the choice of route of pedestrians. *Transportation Planning and Technology*, 10(2), 147–159.
- Shatu, F., Yigitcanlar, T., & Bunker, J. (2019). Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. *Journal of Transport Geography*, 74, 37–52.
- Shelat, S., Huisman, R., & van Oort, N. (2018). Analysing the trip and user characteristics of the combined bicycle and transit mode. *Research in transportation economics*, 69, 68–76.
- Stoltzfus, J. C. (2011). Logistic regression: a brief primer. Academic Emergency Medicine, 18(10), 1099–1104.
- Sugiyama, T., Neuhaus, M., Cole, R., Giles-Corti, B., & Owen, N. (2012). Destination and route attributes associated with adults' walking: a review. *Medicine and science in sports and exercise*, 44(7), 1275–1286.
- Ton, D. (2019). Unravelling mode and route choice behaviour of active mode users (Unpublished doctoral dissertation). Delft University of Technology.

- Törnqvist, L., Vartia, P., & Vartia, Y. O. (1985). How should relative changes be measured? *The American Statistician*, 39(1), 43–46.
- VanderWeele, T. J., & Mathur, M. B. (2019). Some desirable properties of the bonferroni correction: is the bonferroni correction really so bad? *American journal of epidemiology*, 188(3), 617–618.
- van Oort, N. (2020, April). Cie5825 lecture 9: Access and egress of public transport, bicycle and transit. TU Delft, Faculty of Civil Engineering.
- Vreeswijk, J., Thomas, T., Van Berkum, E., & Van Arem, B. (2014). Perception bias in route choice. *Transportation*, 41(6), 1305–1321.
- Walk Score. (2021). About walk score. Retrieved from https://www.walkscore.com/about.shtml
- Weinstein Agrawal, A., Schlossberg, M., & Irvin, K. (2008). How far, by which route and why? a spatial analysis of pedestrian preference. *Journal of urban* design, 13(1), 81–98.
- Witteveen+Bos. (2021). Loopmonitor. Retrieved from https://pws-prod.witteveenbos-azu.trimm.net/ruimtelijkeontwikkeling-wonen-en-leven/mobiliteit/loopmonitor
- Zomer, L. (2021). Unravelling urban wayfinding: Studies on the development of spatial knowledge, activity patterns, and route dynamics of cyclists (Unpublished doctoral dissertation). Delft University of Technology.

Appendices

Appendix A

Features: literature review

Table A.1: Literature review of features found to significantly affect walking routes 1/2. Features listed with an asterisk have been found to be non-significant in other studies of this list.

Variable	Seneviratue & Morrall (1985)	Weinstein Agrawal, Schlossberg, & Irvin	Koh & Wong	Guo & Loo (2013)	Rodríguez, Brisson, & Estupiñán (2009)	Borst et al. (2009)	Rodríguez et al. (2015)	Broach & Dill (2015)	Lue & Miller (2019)	Liu et al. (2020)	Guo & Ferreira Jr (2008)	Guo (2009)	Ferrer et al. (2015)	Broach & Dill (2016)	Brown et al. (2007)	Muraleetharan & Hagiwara (2007)	Count
Network																	
Shortest/fastest	+	+	+	+				+	+	+				+			8
number of turns								-	-								2
Detour			-														1
Number of pedestrian																	1
intersections																	-
Choice set																	
Customary route	+	+															2
Only available	+																1
Convenience		+															1
Familiarity				+													1
Attractions																	
Green areas		+	+			+	+			-			+				6
(parks, green strips)																	
Retail / businesses *		-	+	+		-		+						+			6
Attractiveness (overall) *	+														+		2
Architecture																	
Attractive buildings		+					+				.		+				3
Land use mix					+												2
Duilding lot coverage				+/-							+	+					ა 1
Floor area ratio										+							
Blind wells						-				-							
Urban density *					_												
Dwellings (first floor)						_											1
Walking streets													+				1
Other traffic																	-
Noise pollution	+			-									_				3
Air pollution	+			-		128							-				3
Road width							-						+/-				2
Road density					+												1
High traffic speed		-															1
Oncoming cyclists																-	1
Traffic volume *								-									1

Table A.2: Literature review of features found to significantly affect walking routes 2/2. Features listed with an asterisk have been found to be non-significant in other studies of this list.

Variable	Seneviratue & Morrall (1985)	Weinstein Agrawal et al.	Koh & Wong	Guo & Loo (2013)	Rodríguez et al. (2009)	Borst et al. (2009)	Rodríguez et al. (2015)	Broach & Dill (2015)	Lue & Miller (2019)	Liu et al. (2020)	Guo & Ferreira Jr (2008)	Guo (2009)	Ferrer et al. (2015)	Broach & Dill (2016)	Brown et al. (2007)	Muraleetharan & Hagiwara (2007)	Count
Road crossings and																	
traffic safety																	
Presence traffic devices /		+			+		+		+	_						+	6
crossing aids																	
Traffic safety,		+											+			+	3
Number of read crossing																	2
Redestrian delay	-		-														2
Pedestrian refuge							<u> </u>						-				1
Traffic accident risk			_														1
Unmarked crossings								_									1
Other people and																	-
environmental safety																	
Environmental safety	+		+	+											+		4
Other people / crowds	-	+	-														3
Lighting										+			+				2
Transit stops							+/-										1
Social environment															+		1
Sidewalk quality																	
Sidewalk presence /		+					+	+	+		+				+		6
condition																	
Sidewalk width				+	+	+				+		+	+				6
Sidewalk fencing										+							
Sidewalk density												+					
topography																	
Stairs / slope			_			_		_				_			_		5
Obstructions *													-			_	2
Weather protection	+		+														$\overline{2}$
Benches *		+															1
Comfort			+			129											1
Trash bins					+	123											1
Litter *						1											1
Directional signs			+														1
Parked cars													-				1

Appendix B

Features: selected

Table B.1:

Long list of features affecting route choice, ranked to priority of inclusion (column 'R.') based on relative importance (column 'n', number of significant studies) and technical complexity of implementation. Additional features recommended during expert interviews are referred by by 'E.' Features which can be studied after redefining these to more distinct variables are referred to by 'proxy', with 'N.H.' referring to null hypothesis routes, 'S.' referring to survey-based inputs (see also: subjective variables), 'G.' to geometry indicators and 'T.' referring to quantitative-technical variables which can replicate their essence. Features for which data is exceedingly hard to obtain are marked with 'no data'. The 'transit stop' feature is irrelevant, as all walking routes in the present study concerns trips where train station access/egress is fully performed on foot. 'Convenience' is discarded as it is too vague to implement.

R.	Feature	\mathbf{n}	Complexity	R.	Feature	n	Complexity
1	Shortest, fastest	8	1: proxy (N.H.)	29	Network connectivity	Е	6
2	Sidewalk presence, condition	6	1: proxy (S.) 30 Number of road crossings		2	6	
3	Environmental safety	4	1: proxy (S.)	31	Number of pedestrian intersections	1	6
4	Other people, crowds	3	1: proxy (S.)	32	Walking streets	1	6
5	Traffic safety, driver behaviour	3	1: proxy (S.)	33	Road density	1	6
6	Customary route	2	1: proxy (S.)	34	Sidewalk width	6	7
7	Pedestrian delay	2	1: proxy (S.)	35	Open space	3	7
8	Lighting	2	1: proxy (S.)	36	Road width	2	7
9	Obstructions	2	1: proxy (S.)	37	Urban density	1	No data
10	Weather protection	2	1: proxy (S.)	38	Universal access	E	No data
11	number of turns	2	1: proxy (N.H.)	39	Air pollution	3	No data
12	Only available	1	1: proxy (G.)	40	Blind walls	1	No data
13	Familiarity	1	1: proxy (S.)	41	High traffic speed	1	No data
14	Social environment	1	1: proxy (S.)	42	Oncoming cyclists	1	No data
15	Benches	1	1: proxy (S.)	43	Traffic volume	1	No data
16	Detour	1	2: proxy (G.)	44	Pedestrian refuge	1	No data
17	Road crossing safety	Е	3: proxy (T.)	45	Traffic accident risk	1	No data
18	Retai, businesses	6	3	46	Unmarked crossings	1	No data
19	Presence traffic devices, crossing aids	6	3	47	Sidewalk fencing	1	No data
20	Stairs, slope	5	3	48	Sidewalk density	1	No data
21	Building lot coverage	1	4	49	Comfort	1	No data
22	Floor area ratio	1	4	50	Trash bins	1	No data
23	Green areas	6	5	51	Litter	1	No data
24	Attractive buildings	3	5: proxy (T.)	52	Directional signs	1	No data
25	Noise pollution	3	5	53	Parked cars	1	No data
26	Land use mix	2	5: proxy (T.)	54	Convenience	1	Discarded
27	Attractiveness (overall)	2	5: proxy (T.)	55	Transit stops	1	Discarded
28	Dwellings (first floor)	1	5: proxy (T.)				

Table B.2:

Short list of feature categories which this study managed to implement, their manner of measurement and the coefficients related to these elements as reported in academic literature. 'R.' refers to the rank index of each element in the long list.

р	Feature from	Dominant	Measurement	Variable or				
п.	long list	coefficient	category	variable category				
6	Customary route	+	Route frequency					
13	Familiarity	+	Interaction effect	Familiarity with area				
1	Shortest, fastest	+	Null hypothesis	Shortest path				
11	number of turns	-	Null hypothesis	Least directional turns path				
12	Only available	+	Variables (geometry)	Overlap				
16	Detour	-	Variables (geometry)	Detour ratio				
2	Sidewalk presence, condition	+	Variables (subjective)	Well maintained				
3	Environmental safety	+	Variables (subjective)	Safe vs. social risk,				
				Like when dark				
4	Other people, crowds	-	Variables (subjective)	Other people				
5	Traffic safety, driver behaviour	+	Variables (subjective)	Safe vs.traffic				
7	Pedestrian delay	-	Variables (subjective)	Fastest				
8	Lighting	+	Variables (subjective)	Like when dark,				
				Well lit				
9	Obstructions	-	Variables (subjective)	No obstructions				
10	Weather protection	+	Variables (subjective)	Protected against weather				
14	Social environment	+	Variables (subjective)	Safe vs. social risk,				
				Other people				
15	Benches	+	Variables (subjective)	Lot of seating				
20	Slopes	-	Variables (subjective)	Steep slopes				
17	Road crossing safety	+	Variables (urban features)	Traffic lights				
18	Retail, businesses	+/-	Variables (urban features)	Category: building function				
10	Presence traffic devices,		Variables (urban features)	Traffic lights				
19	crossing aids	- -	variables (urban leatures)	frame lights				
20	Stairs, slope	-	Variables (urban features)	Number of staircases				
21	Building lot coverage	+	Variables (urban features)	Landmark plot size				
22	Floor area ratio	-	Variables (urban features)	Landmark floor space index				
23	Green areas	+	Variables (urban features)	Category: public green				
24	Attractive buildings	+	Variables (urban features)	Category: year of construction				
25	Noise pollution	-	Variables (urban features)	Category: noise pollution				
26	Land use mix	+	Variables (urban features)	Category: building function,				
27	Attractiveness (overall)	+	Variables (urban features)	Category: building status				
28	Dwellings (first floor)	-	Variables (urban features)	Category: building function				

Table B.3: Overview of proxies through which certain urban features are studied.

Urban feature category	Proxy variables
Building year of construction	Year of construction: < 1945
	Year of construction: 1946-1970
	Year of construction: 1971-1985
	Year of construction: 1986-2000
	Year of construction: 2001-2022
	Year of construction: mean
	Landmark count: year of construction
Building status	Status: construction permit granted
	Status: unrealised building
	Status: construction commenced
	Status: building in use (not measured)
	Status: building in use
	Status: demolition permit granted
	Status: building demolished
	Status: building not in use
	Status: building under reconstruction
	Status: building illegitimately realised
Building function	Function: residential
	Function: gathering
	Function: prison
	Function: health care
	Function: factory
	Function: office
	Function: guesthouse
	Function: education
	Function: sports
	Function: shops
	Function: other
Public green	Green: % tree cover
	Green: % bush cover
	Green: % grass cover
Noise pollution	Noise pollution: total
	Noise pollution: roads
	Noise pollution: railways

Appendix C

Map matching algorithm

(a) Map matching step 1: Matching user-entered OD-points (b) Map matching step 2: polygon masks are buffered around (station and external location) as begining or endpoint of the routes, with relatively wide perimeters around the OD-the user-drawn routes. The added link is indicated by the points in order to permit for complex networks in station back dashed line. White lines represent user-entered routes. The bearing line is also masked.

(a) Map matching step 3: A bearing line mask-based Open-StreetMaps network is downloaded.

(b) Map matching step 4: The network from step 3 is truncated to route-level masks. This process is repeated for all user-entered routes.

(a) Map matching step 4.1: Truncation may cause networks to fracture into sub-graphs. These are connected by adding each subgraph's nearest nodes with a new link, here represented by the line buffered in grey.(b) Map matching step 5: A Dijkstra's shortest path algorithm is applied to determine the route. Only one route shown for clarity

(a) Map matching result: Map-matched versions of respondent routes in white. The long-dashed line represents the (b) Null hypothesis computation: The long-dashed line repshortest path, the short-dashed line the least directional resents the Dijkstra's shortest path, the short-dashed line turns path. The grey dashed line indicates the original sur- the least directional turns path. vey input.

Figure C.5: Matching features to a route: To identify which urban features are present along a given route, a mask is drawn around the route-graph. Features within the mask are subsequently matched with the nearest edge of graph and saved in that order. The present image shows the location of traffic signals and crossings and a route which avoids these signals.

Appendix D Survey English version

Figure D.1: Survey image 1/19 (English version).

Walking routes: introduction

When travelling by train, many people either begin or end their journey by walking a certain distance: for instance from their home to the station, from the station to their final destination, or the other way around for the return journey.

Any such walking route contains two points: (1) the station where your walk begins or ends, and (2) an external location (e.g. your home or work), where you subsequently arrive or have departed from. This is illustrated in the image below. The train trip itself can be disregarded.

For this survey you are asked to choose one such walking distance and answer a number of questions about it.

Figure D.2: Survey image 2/19 (English version).

Enter the name of the station

Type and select the name of the station which you will use to fill in this survey. If there are multiple stations which you occasionally walk to/from, please choose the station which offers the most diverse set of train services.

Note that you can choose from any train station in the Netherlands, excluding tram and metro stops.

Amsterdam Centraal

*

Figure D.3: Survey image 3/19 (English version).

Please mark the external location (the actual origin or final destination) of your walking route to/from Amsterdam Centraal train station on the map below.

Instructions: mobile phone:

(1) Touch the map below.

(2) Use the search bar to find the address where your route starts, or zoom in manually.
(3) Mark the location of your destination tapping the map at that spot. An arrow will appear.
(4) If need be: correct your answer by tapping the map again, this will move the arrow.
(5) Return to the survey by touching the '<'arrow (top-right of your screen).
(6) Proceed to the next question.

Instructions: computer or tablet:

Use the search bar to find the address where your route starts, or zoom in manually.
 Mark the location of your destination clicking on the map at that spot. An arrow will appear.
 If need be: correct your answer clicking on the map again, this will move the arrow.
 Proceed to the next question.

To protect your identity please feel free to deviate from your destination a little (preferably less than 50 metres).

Figure D.4: Survey image 4/19 (English version).

0			0
Unfamiliar	Somewhat unfamilair	Somewhat familiar	Familiar

Figure D.5: Survey image 5/19 (English version).

Do you live in the same town or city as Amsterdam Centraal station? *

O Yes	
O No	

Figure D.6: Survey image 6/19 (English version).

Do you have the possibility to travel to or from Amsterdam Centraal station by bike? *

Figure D.7: Survey image 7/19 (English version).

Your walking routes to and from Amsterdam Centraal station.

In the next part of the survey, you will be asked to provide the specific routes by which you travel the distance between Amsterdam Centraal station and the origin or destination point you specified earlier. To understand how people's walking routes vary, you will be asked to draw <u>three different routes</u>. After drawing each route, you will be asked to answer a few questions about it. Refer to the picture below for clarification.

Consider for example whether you take different routes when you walk to or from the station, or differences between routes you would consider during the day or at night.

Before you continue, please read the following points carefully:

(1) Only include routes which you travel by walking.

(2) A route is considered 'different' if it differs by at least one street from another route you entered. For very wide streets (e.g. 4 lanes) this could also be the other side of the street. For narrow streets (e.g. 2 lanes) both sides are seen as one single street.

(3) Please answer <u>all of the following questions</u> only for routes between Amsterdam Centraal station and your specified non-station end point.

(4) If you would only ever cover this distance with a single route, please provide for the other two answers routes that you would use as a diversion if your preferred route were to be blocked somewhere.

Figure D.8: Survey image 8/19 (English version).

Figure D.9: Survey image 9/19 (English version).

msterdam Centraal static	on and the o	rigin or destina	ation point yo	u specified (earlier.
	Never	Sometimes	Regularly	Often	Always
from the station to a destination (e.g. home or work)?*	0	0	0	0	0
from an origin (e.g. home or work) to the station?*	0	0	0	0	0

Figure D.10: Survey image 10/19 (English version).

Please describe in two of three words why you (do not) take this route.

Figure D.11: Survey image 11/19 (English version).

Figure D.12: Survey image 12/19 (English version).

	Strongly disagree	disagree	Neutral	Agree	Strongly agree
It feels safe with regards to other traffic.*E.g. safety from being run over by a car.	0	0	0	0	0
It feels safe with regards to social risks.*E.g. safety from crime or unpleasant situations.	0	0	0	0	0
I also like to take this route when it is dark.	0	0	0	0	0
It is well-lit at night.*	0	0	0	0	0
It passes through areas with many other people.*	0	0	0	0	0
The area and pavement are well maintained.*	0	0	0	0	0

Figure D.13: Survey image 13/19 (English version).

Personal background

You're almost done.

To conclude, you will be asked a few short questions about your personal background.

Figure D.14: Survey image 14/19 (English version).

How often do you walk for trips outside your home?*

Consider for example walking trips to your local supermarket, the train station, bus stop or to a car which is not parked right at your doorstep.

O Less than 4 times per week.
O 4 to 6 times per week.
O 1 or 2 times per day
O More than 2 times per dag.

Figure D.15: Survey image 15/19 (English version).

How often do you travel by train?*

Please answer this as would apply to you in the pre-COVID19 pandemic situation.

O Less than once per month
O 1 to 8 days per month
O 3 to 5 days per week
O More than 5 days per week

Figure D.16: Survey image 16/19 (English version).

Are you capable of walking further than 2 km without requiring assistance or rest?*

O Not al all
O With great effort
With some effort
O Quite easily
O Easily

Figure D.17: Survey image 17/19 (English version).

With which gender do you identify?*

O Male
O Female
O Other
O Prefer not to say

Figure D.18: Survey image 18/19 (English version).

What is your age?*

Please select the age group to which you belong.

O 0 to 18
O 19 to 30
O 31 to 40
O 41 to 50
O 51 to 67
O 66 and older
O prefer not to say

Figure D.19: Survey image 19/19 (English version).

Appendix E Survey Dutch version

This survey is also available in English. An option to change the language can be found on the top-left of the screen.

Toestemmingsverklaring*

U wordt uitgenodigd deel te nemen aan een onderzoek getiteld 'Looproutes van en naar treinstations'. Dit onderzoek wordt uitgevoerd om gegevens te verzamelen voor de masterscriptie van Johan Klaas Krom. Het onderzoek wordt uitgevoerd door de Technische Universiteit Delft in samenwerking met Witteveen+Bos.

Het doel van dit onderzoek is om te begrijpen hoe kenmerken van de stedelijke omgeving van invloed zijn op de routes die voetgangers nemen als ze van en naar treinstations lopen. Kennis over dergelijke routes kan stedebouwkundigen helpen om de toegankelijkheid van treinstations voor voetgangers te verbeteren. Het duurt ongeveer 15 minuten om de enquête in te vullen. Uw deelname aan dit onderzoek is geheel vrijwillig en u kunt zich op elk moment terugtrekken. Uw antwoorden worden niet op onze server opgeslagen totdat u na de laatste vraag op 'verzenden' drukt.

U zult niet worden gevraagd om informatie te verstrekken die uw privé-identiteit onthult, zoals uw naam, exacte adress of geboortedatum. Zoals bij elke online activiteit is het echter altijd mogelijk dat er een datalek optreed. De onderzoeker zal zijn best doen om uw antwoorden in deze enquête vertrouwelijk te houden. De gegevens zullen alleen in anonieme vorm worden opgeslagen op beveiligde servers die worden beheerd door de TU Delft of Witteveen+Bos. De ruwe, geanonimiseerde, gegevens worden alleen gedeeld met derden voor onderzoeksdoeleinden en alleen na uitdrukkelijke toestemming van de gegevensbeheerders van de TU Delft of Witteveen+Bos. De gegevens worden alleen gepubliceerd in samengevoegde vorm die niet tot een individu herleidbaar is.

Voor vragen kunt u contact opnemen met Johan Klaas Krom: j.k.krom@student.tudelft.nl

Door verder te gaan bevestig ik dat ik deze risico's begrijp en akkoord ga met de hierboven beschreven procedure voor gegevensbeheer.

Volgende

Pagina 1 van 6

Looproutes: inleiding

Veel mensen die met de trein reizen beginnen of eindigen hun reis door een bepaalde afstand te lopen: bijvoorbeeld van hun huis naar het station, van het station naar hun eindbestemming, of andersom voor de terugreis.

Zo'n looproute bevat altijd twee punten: (1) het station waar uw wandeling begint of eindigt en (2) een externe locatie (bijv. uw huis of werk) waar u vervolgens aankomt of vanuit vertrokken bent (uw daadwerkelijke herkomstpunt of eindbestemming). Dit wordt geïllustreerd in de onderstaande afbeelding. De treinreis zelf kan buiten beschouwing worden gelaten.

Voor de rest van deze enquête wordt u gevraagd één zo'n loopafstand te kiezen en daarover een aantal vragen te beantwoorden.

Figure E.2: Survey image 2/19 (Dutch version).

Benoem het station

Typ en selecteer de naam van het station dat u zult gebruiken om deze enquête in te vullen. Als er meerdere stations zijn de u te voet bereikt, kies dan het station met het meest gevarieerde aanbod aan treindiensten.

Let op: U kunt kiezen uit elk station in Nederland, met uitzondering van tram- en metrostations.

Amsterdam Centraal

*

Figure E.3: Survey image 3/19 (Dutch version).

Geef de externe locatie (uw daadwerkelijke herkomst- of bestemmingspunt) van uw looproute naar/van het station Amsterdam Centraal aan op onderstaande kaart.

*

Instructies: mobiele telefoon:

(1) Tik op de kaart hieronder.

(2) Gebruik de zoekbalk om het adres te vinden waar uw route begint, of zoom handmatig in.(3) Markeer de locatie van uw bestemming door op die plek op de kaart te tikken. Er

verschijnt een pijltje.

(4) Indien nodig: corrigeer uw antwoord door nogmaals op de kaart te tikken, hierdoor zal het pijltje verschuiven.

(5) Keer terug naar de enquête door op de '<'-pijl te tikken (rechtsboven op uw scherm).(6) Ga verder met de volgende vraag.

Instructies: computer of tablet:

Gebruik de zoekbalk om het adres te vinden waar uw route begint, of zoom handmatig in.
 Markeer de locatie van uw bestemming door op die plek op de kaart te klikken. Er verschijnt een pijl.

(3) Indien nodig: corrigeer uw antwoord door opnieuw op de kaart te klikken, hierdoor zal de pijl verschuiven.

(4) Ga verder met de volgende vraag.

Om uw identiteit te beschermen mag u gerust een beetje van uw daadwerkelijke bestemming afwijken (liefst maximaal 50 meter).

Figure E.4: Survey image 4/19 (Dutch version).

Hoe bekend bent u met de omgeving van het station Amsterdam Centraal? *

Bedenk voor deze vraag hoe gemakkelijk u verschillende routes kunt bedenken waarmee u te voet kunt reizen tussen twee willekeurige punten in de omgeving van het station Amsterdam Centraal, zonder een kaart of ander navigatiehulpmiddel te gebruiken.

Figure E.5: Survey image 5/19 (Dutch version).

Woont u in dezelfde plaats als het station Amsterdam Centraal? *

O Ja	
O Nee	

Figure E.6: Survey image 6/19 (Dutch version).

Heeft u de mogelijkheid om met de fiets van of naar station Amsterdam Centraal te komen? *

Figure E.7: Survey image 7/19 (Dutch version).

Uw looproutes van en naar het station Amsterdam Centraal.

In het volgende deel van de enquête wordt u gevraagd de specifieke routes op te geven waarlangs u de afstand aflegt tussen het station Amsterdam Centraal en het daadwerkelijke herkomst- of eindbestemmingspunt dat u eerder hebt opgegeven. Om te begrijpen hoe de looproutes van mensen variëren, wordt u gevraagd <>drie verschillende routes te tekenen. Na het tekenen van elke route wordt u gevraagd om er een paar vragen over te beantwoorden. Zie ook de afbeelding hieronder.

Bedenk bijvoorbeeld of u verschillende routes neemt wanneer u <u>naar</u> of <u>van</u> het station loopt, of verschillen tussen routes die u overdag of 's nachts zou overwegen.

Neem voordat u doorgaat de volgende punten aandachtig door:

(1) Voer alleen routes in die u te voet aflegt.

(2) Een route wordt als 'verschillend' beschouwd als ze minstens één straat verschilt van een andere route die u invoerde. Voor zeer brede straten (bijv. 4 rijstroken) kan dit ook de andere kant van de straat zijn. Voor smalle straten (bijv. 2 rijstroken) worden beide zijden als één enkele straat beschouwd.

(3) Beantwoord <u>alle volgende vragen</u> alleen voor routes tussen het station Amsterdam Centraal en het door u opgegeven eindpunt buiten het station.

(4) Indien u deze afstand slechts met één enkele route zou afleggen, geef dan voor de andere twee antwoorden routes die u als omleiding zou gebruiken indien uw voorkeursroute ergens geblokkeerd zou zijn.

Figure E.8: Survey image 8/19 (Dutch version).

* Looproute 1 van de 3.

Teken uw looproute tussen het station Amsterdam Centraal en het herkomst/bestemmingspunt dat u eerder heeft opgegeven (uw huis, werk etc.) op de onderstaande kaart.

Instructies: mobiele telefoon:

(1) Tik op de kaart hieronder.

(2) Typ [Station Amsterdam Centraal] in de zoekbalk om het station te vinden waar uw route begint/eindigt, of zoom handmatig in.

(3) Raak de knop 'lijn' aan (linksonder op uw scherm).

(4) Markeer uw route op de kaart. Probeer de punten in uw netwerk overeen te laten

komen met de feitelijke kruispunten van voetpaden op de kaart.

(5) Voltooi uw lijn door op de '√'-knop te drukken (rechtsonder op uw scherm).
(6) Indien nodig: corrigeer de lijn door op de 'potlood'-knop te drukken (onderaan uw scherm).

(7) Ga terug naar de enquête door op de '<'-pijl te drukken (rechtsboven op uw scherm).
 (8) Ga verder met de volgende vraag.

Instructies: computer of tablet:

(1) Typ [Station Amsterdam Centraal] in de zoekbalk om het station te vinden waar uw route begint/eindigt, of zoom handmatig in (om in te zoomen drukt u op de 'crtl'-toets op uw computer).

(2) Klik op de 'lijn'-knop (tweede knop rechtsboven op de kaart).

(3) Markeer uw route op de kaart. Merk op dat het mogelijk is om op de kaart te klikken en te slepen. Probeer de punten in uw netwerk overeen te laten komen met de feitelijke

kruispunten van voetpaden op de kaart.

(4) Voltooi uw lijn door op de '√'-knop te klikken (onderaan de kaart).

(5) Indien nodig: corrigeer de lijn door op de 'potlood'-knop te drukken (boven-rechts op de kaart).

(7) Ga verder met de volgende vraag.

Probeer uw route zo gedetailleerd mogelijk in te voeren.

Figure E.9: Survey image 9/19 (Dutch version).

entraal en het begin- of e	indpunt dat i	u eerder het	ot opgegeven, h	ebt afgeleg	d.
	Nooit	Soms	Regelmatig	Vaak	Altijo
van het station naar een eindbestemming (bijv. uw huis of werk)?*	0	0	0	0	0
van een herkomstpunt (bijv. uw huis of werk) naar het station?*	0	0	0	0	0

Figure E.10: Survey image 10/19 (Dutch version).

Beschrijf in twee of drie woorden waarom u deze route (niet) neemt.

Figure E.11: Survey image 11/19 (Dutch version).

Figure E.12: Survey image 12/19 (Dutch version).

Figure E.13: Survey image 13/19 (Dutch version).

Uw achtergrond

U bent bijna klaar.

Ter afsluiting zullen er nog enkele korte vragen gesteld worden over uw persoonlijke achtergrond.

Figure E.14: Survey image 14/19 (Dutch version).

Hoe vaak bent u buitenshuis te voet onderweg?*
Denk hierbij bijvoorbeeld een wandeling naar de winkel, het station, de bushalte, of naar een auto die niet onmiddelijk bij de deur geparkeerd staat.

O Minder dan 4 keer per week.
O 4 tot 6 keer per week
O 1 of 2 keer per dag
O Meer dan 2 keer per dag

Figure E.15: Survey image 15/19 (Dutch version).

Hoe vaak reist u met de trein?*

Beantwoord deze vraag zoals die op u van toepassing zou zijn in de situatie van vóór de COVID19-pandemie.

O Minder dan eens per maand
O 1 tot 8 dagen per maand
O 3 tot 5 dagen per week
O meer dan 5 dagen per week

Figure E.16: Survey image 16/19 (Dutch version).

Bent u in staat om zonder assistentie of rust verder dan 2 km te lopen?*

O Niet
O Met grote moeite
O Met enige moeite
O Redelijk gemakkelijk
O Gemakkelijk

Figure E.17: Survey image 17/19 (Dutch version).

Met welk geslacht identificeert u zich?*

O Man
O Vrouw
O Anders
O Dat vul ik liever niet in

Figure E.18: Survey image 18/19 (Dutch version).

Hoe oud bent u?*

Selecteer de leeftijdsgroep waartoe u behoort.

O 0 t/m 18
O 19 t/m 30
O 31 t/m 40
O 41 t/m 50
O 50 t/m 67
O 66 en ouder
O Dat vul ik liever niet in

Figure E.19: Survey image 19/19 (Dutch version).

Appendix F

Results

This appendix contains the results from statistical testing operations which have been performed for this thesis. Two result chapters are presented:

- 1. Route aggregate analysis results: Sub-question 3
- 2. Route aggregate analysis results: Sub-question 4
- 3. Within-route distribution results: Sub-question 3
- 4. Within-route distribution results: Sub-question 4

Some notes on how to read the tables on the following pages:

- Column header "P([..])": Overall probability of a test sample deviating significantly from a baseline sample, per variable. For route-aggregate results the brackets contain the test sample. For within-route distribution results the brackets contain the route quadrant, counted as route proportion from the train station.
- Column header "[..]_stat": Indication of the weight by which a test sample deviates from the baseline sample. For t-test results (see below) this represents the test statistic, for non-parametric tests it represents the probability at which the coefficient (see below) occurs.
- Column header "[..]_coef,n": Column containing test metadata, respectively the type of test which is applied (see below), the coefficient (see below) and the number of valid observations upon which the test is performed.
- "(+)": Positive coefficient. This implies that a test sample is expected to contain higher values than a baseline sample.
- "(-)": Negative coefficient. This implies that a test sample is expected to contain lower values than a baseline sample.

- "tt": t-test. This is a one-sample t-test for standardised route aggregate tests, and a two-sample t-test for within route distribution tests.
- "wi": Wilcoxon test. This is the non-parametric alternative for the onesample t-test. This test is applied to standardised route aggregate tests which fails to meet normality requirements.
- "mw": Mann-Whitney test. This is the non-parametric test alternative for the two-sample t-test. This test is applied for all non-standardised tests, as well as within-route distribution tests where data fails to meet normality requirements.

Chapter 1

Route aggregate analysis results: Sub-question 3

1.1 Non-standardised results, full sample

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] stat	[5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n P	([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) L	east stat Le	ast coef,n
6	Year constr.: < 1945	0.3792	0.8104	wi(-),105	0.7405	0.6297	wi(+),28	0.6270	0.6865	wi(+),40	0.1419	0.929	wi(-),32	0.3383	0.8309	wi(-),84	0.3035	0.8483	wi(-),52	0.1515	0.9243	wi(-),105
₽	Year constr.: 1946-1970	0.3703	0.8148	wi(+),105	0.5387	0.7306	wi(-),28	0.3487	0.8257	wi(+),40	0.2361	0.882	wi(+),32	0.6830	0.4099	tt(+),84	0.5617	0.7191	wi(+),52	0.2408	0.8796	wi(+),105
ŧ	Year constr.: 1971-1985	0.3566	0.8217	wi(-),105	0.2119	0.894	wi(-),28	0.7943	0.6028	wi(+),40	0.1877	-1.3471	tt(-),32	0.6333	0.6833	wi(+),84	0.4469	0.7765	wi(-),52	0.6990	0.6505	wi(-),105
12	Year constr.: 1986-2000	0.0157	0.9921	wi(-),105	0.2257	0.8871	wi(-),28	0.0372	0.9814	wi(-),40	0.0963	0.9519	wi(-),32	0.0832	0.9584	wi(-),84	0.9273	-0.0916	tt(-),52	0.0301	0.9849	wi(-),105
13	Year constr.: 2001-2022	0.0510	1.974	tt(+),105	0.4922	0.6963	tt(+),28	0.2614	1.1396	tt(+),40	0.8735	0.5632	wi(+),32	0.1025	1.6511	tt(+),84	0.0070	0.9965	wi(+),52	0.0317	0.9842	wi(+),105
14	Traffic signals count	0.1351	0.9325	wi(-),105	0.9241	0.0962	tt(+),28	0.3080	-1.0328	tt(-),40	0.4592	0.7704	wi(-),32	0.9376	0.5312	wi(+),84	0.8909	0.5546	wi(+),52	0.4586	0.7707	wi(+),105
15	Stairs count	0.6851	0.4066	tt(+),105	0.2643	1.1399	tt(+),28	0.7435	0.3296	tt(+),40	0.4229	-0.8121	tt(-),32	0.3488	-0.9422	tt(-),84	0.2894	1.0705	tt(+),52	0.5510	-0.5982	tt(-), 105
16	Status: for construction	0.4092	0.7954	wi(-),105	0.4867	0.7567	wi(-),28	0.1884	-1.3388	tt(-),40	0.9703	0.0376	tt(+),32	0.9469	0.5265	wi(-),84	0.3874	0.8063	wi(+),52	0.9178	0.5411	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
18 St	tatus: under construction	0.9928	0.5036	wi(+),105	0.7194	0.6403	wi(-),28	0.7594	0.6203	wi(+),40	0.9675	0.5163	wi(+),32	0.6888	0.6556	wi(-),84	0.4351	0.7824	wi(-),52	0.4763	0.7619	wi(-),105
19	Status: in use (n.m.)	0.7058	0.6471	wi(+),105	0.9899	0.505	wi(-),28	0.3865	0.8067	wi(+),40	0.9837	0.5081	wi(+),32	0.5315	0.7343	wi(-),84	0.4630	0.7685	wi(-),52	0.7084	0.6458	wi(-),105
20	Status: in use	0.1489	0.9256	wi(-),105	0.9909	0.5045	wi(+),28	0.4435	-0.7742	tt(-),40	0.1015	-1.6879	tt(-),32	0.1823	0.9088	wi(-),84	0.6260	0.687	wi(-),52	0.2652	0.8674	wi(-),105
21	Status: for demolition	0.8501	0.5749	wi(-),105	1.0000	equal	n/a,28	0.7604	0.6198	wi(+),40	0.5111	0.7444	wi(-),32	0.9960	0.502	wi(+),84	0.5964	0.7018	wi(+),52	0.8471	0.5764	wi(+),105
22	Status: demolished	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
ន	Status: not in use	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
24	Status: reconstruction	0.0230	2.3069	tt(+),105	0.3873	0.8787	tt(+),28	0.2655	1.1297	tt(+),40	0.1518	1.4695	tt(+),32	0.5738	0.5646	tt(+),84	0.2521	0.8739	wi(+),52	0.8323	0.5838	wi(+),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
26	Function: residential	0.0011	0.9994	wi(-),105	0.1445	-1.5029	tt(-),28	0.4152	0.7924	wi(-),40	0.0925	-1.7357	tt(-),32	0.1045	0.9477	wi(-),84	0.0233	0.9883	wi(-),52	0.0030	0.9985	wi(-),105
27	Function: gathering	0.9920	0.504	wi(+),105	0.2837	0.8582	wi(-),28	0.7563	0.6218	wi(+),40	0.7778	-0.2847	tt(-),32	0.6327	0.6837	wi(-),84	0.0618	0.9691	wi(+),52	0.5042	0.7479	wi(+),105
28	Function: prison	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
29	Function: healthcare	0.7130	0.6435	wi(+),105	0.7194	0.6403	wi(+),28	0.5512	0.7244	wi(+),40	0.7353	0.6323	wi(-),32	1.0000	0.5	wi(+),84	0.7908	0.6046	wi(+),52	0.8500	0.575	wi(+),105
30	Function: factory	0.7614	0.6193	wi(+),105	0.7508	0.6246	wi(+),28	0.6460	0.677	wi(+),40	0.2873	-1.0827	tt(-),32	0.8638	0.5681	wi(+),84	0.6429	0.6785	wi(+),52	0.9696	0.5152	wi(-),105
31	Function: office	0.9247	-0.0947	tt(-),105	0.4697	0.7333	tt(+),28	0.2360	0.882	wi(-),40	0.9825	-0.0221	tt(-),32	0.0229	-2.3175	tt(-),84	0.5217	-0.6452	tt(-),52	0.0961	-1.6794	tt(-), 105
32	Function: guesthouse	0.2864	0.8568	wi(-),105	0.3118	0.8441	wi(-),28	0.5512	0.7244	wi(+),40	0.3377	0.8311	wi(-),32	0.4604	0.7698	wi(-),84	0.8714	0.5643	wi(-),52	0.3564	0.8218	wi(-),105
33	Function: education	0.9957	0.5021	wi(-),105	0.7194	0.6403	wi(-),28	0.3821	0.8089	wi(+),40	1.0000	equal	n/a,32	0.9921	0.5039	wi(+),84	0.8026	0.5987	wi(-),52	0.5918	0.7041	wi(-),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	0.7353	0.6323	wi(-),32	0.6716	0.6642	wi(-),84	0.7874	0.6063	wi(-),52	0.7029	0.6485	wi(-),105
35	Function: shops	0.6963	0.3914	tt(+),105	0.6049	-0.5235	tt(-),28	0.9087	0.1154	tt(+),40	0.8631	0.1739	tt(+),32	0.8726	0.1608	tt(+),84	0.0094	0.9953	wi(+),52	0.1471	0.9264	wi(+),105
36	Function: other	0.3934	0.8033	wi(-),105	0.2257	0.8871	wi(-),28	0.3493	0.8254	wi(-),40	0.4165	0.7917	wi(-),32	0.8780	0.561	wi(+),84	0.3653	0.9135	tt(+),52	0.7950	0.6025	wi(-),105
37	Green: tree cover	0.0000	-10.3821	tt(-),105	0.0002	-4.4055	tt(-),28	0.0000	-5.534	tt(-),40	0.0000	-6.8209	tt(-),32	0.0000	-9.8652	tt(-),84	0.000	-6.6697	tt(-),52	0.0000	-9.9108	tt(-), 105
38	Green: bush cover	0.0000	1.0	wi(-),105	0.000	-4.947	tt(-),28	0.000	-4.662	tt(-),40	0.000	-6.5476	tt(-),32	0.000	-10.2013	tt(-),84	0.000	1.0	wi(-),52	0.0000	-9.7045	tt(-), 105
39	Green: grass cover	0.0000	-10.001	tt(-),105	0.0000	-4.858	tt(-),28	0.0000	-4.5744	tt(-),40	0.0000	-6.207	tt(-),32	0.0000	-10.651	tt(-),84	0.0000	-6.6494	tt(-),52	0.0000	-10.2611	tt(-),105
4	Noise pollution: total	0.0000	1.0	wi(-),105	0.000	-5.2596	tt(-),28	0.0000	-7.1685	tt(-),40	0.000	-9.6023	tt(-),32	0.000	-12.3625	tt(-),84	0.000	-8.1183	tt(-),52	0.0000	-12.2	tt(-), 105
41	Noise pollution: roads	0.0000	-11.4325	tt(-),105	0.0001	-4.6139	tt(-),28	0.0000	-6.811	tt(-),40	0.000	-8.1997	tt(-),32	0.000	-11.1189	tt(-),84	0.000	-7.5603	tt(-),52	0.0000	1.0	wi(-),105
42	Noise pollution: railways	0.0000	1.0	wi(-),105	0.0362	0.9819	wi(-),28	0.0002	-4.0459	tt(-),40	0.000	-6.5895	tt(-),32	0.000	1.0	wi(-),84	0.0007	0.9996	wi(-),52	0.0000	1.0	wi(-),105
4	Year constr.: mean	1.0000	equal	n/a,105	1.0000	equal	n/a,28	0.8560	0.572	wi(+),40	0.7531	-0.3173	tt(-),32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
45	Landmarks: FSI	0.0025	0.9987	wi(-),105	0.1122	0.9439	wi(-),28	0.1632	0.9184	wi(-),40	0.0314	0.9843	wi(-),32	0.2091	0.8955	wi(-),84	0.4542	0.7729	wi(-),52	0.0750	0.9625	wi(-),105
46	Landmarks: plot area	0.0041	0.9979	wi(-),105	0.0552	0.9724	wi(-),28	0.0187	0.9906	wi(-),40	0.2711	0.8644	wi(-),32	0.2855	0.8573	wi(-),84	0.4775	0.7613	wi(-),52	0.0820	0.959	wi(-),105
47	Landmarks: Year constr.	0.0744	0.9628	wi(-),105	0.5051	0.7475	wi(-),28	0.4523	0.7739	wi(-),40	0.2579	0.871	wi(-),32	0.5976	0.7012	wi(-),84	0.3928	0.8036	wi(-),52	0.2207	0.8896	wi(-),105
48	Landmarks: 1 criterion	0.0026	0.9987	wi(-),105	0.0509	0.9746	wi(-),28	0.1425	0.9288	wi(-),40	0.1934	0.9033	wi(-),32	0.2993	0.8503	wi(-),84	0.2153	0.8923	wi(-),52	0.0542	0.9729	wi(-),105
49	Landmarks: 2 criteria	0.1511	0.9244	wi(-),105	0.3118	0.8441	wi(-),28	0.5512	0.7244	wi(-),40	0.3377	0.8312	wi(-),32	0.4131	0.7935	wi(-),84	0.8041	0.5979	wi(-),52	0.2905	0.8547	wi(-),105
50	Landmarks: 3 criteria	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
Figu	ure 1.1: Rav ctional turn	w rest s nath	ults fo	r route) aggreg access	gate	analys	iis, san	nple:	full,	sub-que	stion	3, da	ta: non-	stand	ardise	d, bas	eline:	least	12		
		5	~ (

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] stat	[5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n P.	([2] sometimes)	[2] stat	[2] coef,n P([1] never)	[1] stat [1]	coef,n P(l	Least) Lea	ast stat Le:	ast coef,n
6	Year constr.: < 1945	0.3438	0.8281	wi(-),105	0.6551	0.6724	wi(+),26	0.6725	0.6638	wi(+),41	0.0197	0.9902	wi(-),37	0.1657	0.9171	wi(-),85	0.2718	0.8641 v	vi(-),55 0	0.0537	0.9732	wi(-),105
10 Yei	ar constr.: 1946-1970	0.2813	0.8594	wi(+),105	0.8049	0.5975	wi(-),26	0.4459	0.7771	wi(+),41	0.9018	0.5491	wi(+),37	0.7559	0.3119	tt(+),85	0.0686	0.9657 w	ri(+),55 0	0.2599	0.8701	wi(+),105
11 Ye	var constr.: 1971-1985	0.3230	0.8385	wi(-),105	1.0000	0.5	wi(+),26	0.4454	-0.7708	tt(-),41	0.1394	-1.5114	tt(-),37	0.8137	0.2364	tt(+),85	0.9729	0.5136 v	vi(-),55 C	0.4829	0.7585	wi(-),105
12 Ye	ar constr.: 1986-2000	0.0096	0.9952	wi(-),105	0.7090	0.6455	wi(-),26	0.0087	0.9957	wi(-),41	0.0312	0.9844	wi(-),37	0.0807	0.9596	wi(-),85	0.4543	0.7728 v	vi(-),55 0	0.0214	0.9893	wi(-),105
13 Yea	iar constr.: 2001-2022	0.0459	2.0204	tt(+),105	0.4718	0.7307	tt(+),26	0.3157	1.016	tt(+),41	0.4275	0.7863	wi(+),37	0.3364	0.8318	wi(+),85	0.0028	3.1265 t	t(+),55 0	0.0042	2.9285	tt(+),105
14	Traffic signals count	0.1411	0.9295	wi(-),105	0.9767	-0.0294	tt(-),26	0.5288	0.7356	wi(-),41	0.7621	0.619	wi(+),37	0.9074	0.5463	wi(-),85	0.8663	0.5668 v	ri(+),55 0	0.2798	0.8601	wi(+),105
15	Stairs count	0.6851	0.4066	tt(+),105	1.0000	-0.0	tt(-),26	0.7671	0.2981	tt(+),41	1.0000	0.5	wi(+),37	0.8287	-0.217	tt(-),85	0.7844	0.275 t	t(+),55 0	0.5342	-0.6237	tt(-),105
16 St	tatus: for construction	0.4092	0.7954	wi(-),105	0.4730	0.7635	wi(-),26	0.1883	-1.3385	tt(-),41	0.7013	0.3866	tt(+),37	0.6723	0.6638	wi(-),85	0.5373	0.7313 M	ri(+),55 0	0.9178	0.5411	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
18 Statu:	is: under construction	0.9928	0.5036	wi(+),105	0.7103	0.6448	wi(+),26	0.9942	0.5029	wi(+),41	0.9736	0.5132	wi(+),37	0.4310	0.7845	wi(-),85	0.6057	0.6972 v	vi(-),55 0	0.4719	0.7641	wi(-),105
19	Status: in use (n.m.)	0.8473	0.5763	wi(+),105	0.9888	0.5056	wi(-),26	0.5692	0.7154	wi(+),41	0.9934	0.5033	wi(+),37	0.2351	0.8825	wi(-),85	0.8096	0.5952 v	vi(-),55 0	0.7084	0.6458	wi(-),105
20	Status: in use	0.0828	0.9586	wi(-),105	0.6288	0.6856	wi(+),26	0.7756	0.6122	wi(-),41	0.0022	-3.2952	tt(-),37	0.2546	0.8727	wi(-),85	0.4789	0.7606 v	vi(-),55 0	0.0543	0.9729	wi(-),105
21	Status: for demolition	0.8501	0.5749	wi(-),105	1.0000	equal	n/a,26	1.0000	0.5	wi(+),41	1.0000	0.5	wi(+),37	0.8388	0.5806	wi(-),85	0.7928	0.6036 v	ri(+),55 0	0.9942	0.5029	wi(+),105
22	Status: demolished	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
23	Status: not in use	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
24 S	Status: reconstruction	0.0294	2.2091	tt(+),105	0.4536	0.7613	tt(+),26	0.1803	1.3637	tt(+),41	0.1072	1.6519	tt(+),37	0.4064	0.8345	tt(+),85	0.7506	0.3194 1	t(+),55 0	0.8761	0.5619	wi(-),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
26	Function: residential	0.0012	0.9994	wi(-),105	0.6230	0.6885	wi(-),26	0.2533	0.8734	wi(-),41	0.0290	-2.2742	tt(-),37	0.0321	0.9839	wi(-),85	0.0543	0.9729 v	vi(-),55 0	0.0021	0.9989	wi(-),105
27	Function: gathering	0.9072	0.5464	wi(+),105	0.4907	-0.6995	tt(-),26	0.5886	0.7057	wi(+),41	0.8838	-0.1472	tt(-),37	0.4521	0.7739	wi(-),85	0.2347	0.8827 w	ri(+),55 0	0.9017	0.5492	wi(-),105
28	Function: prison	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
29	Function: healthcare	0.7130	0.6435	wi(+),105	0.7103	0.6448	wi(+),26	1.0000	0.5	wi(+),41	0.7634	0.6183	wi(-),37	0.8384	0.5808	wi(+),85	0.6057	0.6972 w	ri(+),55 C	0.7103	0.6449	wi(+),105
30	Function: factory	0.8863	0.5568	wi(+),105	0.4730	0.7635	wi(+),26	0.6715	-0.4273	tt(-),41	0.0352	-2.1887	tt(-),37	0.8651	0.5675	wi(-),85	0.4810	0.7595 w	ri(+),55 0	0.7248	0.6376	wi(-),105
31	Function: office	0.9918	-0.0103	tt(-),105	0.4160	0.8271	tt(+),26	0.2690	-1.121	tt(-),41	0.3990	0.8535	tt(+),37	0.1008	-1.6592	tt(-),85	0.0992 -	1.6774	tt(-),55 C	0.0489	-1.9926	tt(-),105
32 F	Function: guesthouse	0.2864	0.8568	wi(-),105	1.0000	equal	n/a,26	0.7731	0.6134	wi(+),41	0.2754	0.8623	wi(-),37	0.2804	0.8598	wi(-),85	0.8276	0.5862 v	vi(-),55 0	0.1935	0.9033	wi(-),105
33	Function: education	0.8497	0.5751	wi(-),105	0.7103	0.6448	wi(-),26	0.5774	0.7113	wi(+),41	1.0000	equal	n/a,37	0.9981	0.501	wi(-),85	0.7960	0.602 w	ri(+),55 0	0.8525	0.5737	wi(+),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	0.7518	0.6241	wi(-),37	0.6733	0.6633	wi(-),85	0.7928	0.6036 v	vi(-),55 0	0.7029	0.6485	wi(-),105
35	Function: shops	0.8956	0.1316	tt(+),105	0.4866	-0.7062	tt(-),26	0.6308	0.4843	tt(+),41	0.7934	-0.2638	tt(-),37	0.7111	0.3716	tt(+),85	0.0040	0.998 v	ri(+),55 C	0.0490	1.9922	tt(+),105
36	Function: other	0.6111	0.6944	wi(-),105	0.6696	0.6652	wi(-),26	0.4489	0.7756	wi(-),41	0.1547	0.9227	wi(-),37	0.6411	0.4679	tt(+),85	0.4633	0.7387 t	t(+),55 C	0.8856	0.1442	tt(+),105
37	Green: tree cover	0.0000	-10.4221	tt(-),105	0.0024	-3.3855	tt(-),26	0.0000	-6.423	tt(-),41	0.0000	-7.2556	tt(-),37	0.0000	-9.9948	tt(-),85	0.0000	8.0309	tt(-),55 C	0000.0	10.5385	tt(-), 105
38	Green: bush cover	0.0000	-10.0163	tt(-),105	0.0002	-4.3181	tt(-),26	0.000	-5.3748	tt(-),41	0.000	-7.0113	tt(-),37	0.0000	-10.0111	tt(-),85	0.0000	1.0 v	vi(-),55 0	0000.0	1.0	wi(-),105
39	Green: grass cover	0.0000	-9.9122	tt(-),105	0.0013	-3.6068	tt(-),26	0.0000	-5.5821	tt(-),41	0.0000	-6.5657	tt(-),37	0.0000	-10.9733	tt(-),85	0.0000	8.5452	tt(-),55 C	00000	11.3861	tt(-),105
40	Noise pollution: total	0.0000	-12.3625	tt(-),105	0.0001	-4.748	tt(-),26	0.0000	-8.326	tt(-),41	0.0000	-8.7405	tt(-),37	0.0000	-12.6075	tt(-),85	0.0000 -	9.2619	tt(-),55 C	0000.0	12.5569	tt(-),105
41	Noise pollution: roads	0.0000	-11.343	tt(-),105	0.0002	-4.2973	tt(-),26	0.0000	-7.7454	tt(-),41	0.0000	-7.7721	tt(-),37	0.0000	-11.0372	tt(-),85	0.0000	7.6983	tt(-),55 C	0000.0	10.7473	tt(-),105
42 Noi	vise pollution: railways	0.0000	1.0	wi(-),105	0.0656	0.9672	wi(-),26	0.0001	1.0	wi(-),41	0.0003	-4.038	tt(-),37	0.0000	-7.6254	tt(-),85	0.0005	v 7666.0	vi(-),55 C	0000.0	1.0	wi(-),105
4	Year constr.: mean	1.0000	equal	n/a,105	1.0000	equal	n/a,26	0.8055	0.5972	wi(+),41	0.1539	0.923	wi(+),37	0.7424	0.6288	wi(-),85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
45	Landmarks: FSI	0.0016	0.9992	wi(-),105	0.2977	0.8511	wi(-),26	0.1673	0.9164	wi(-),41	0.0041	0.9979	wi(-),37	0.1086	0.9457	wi(-),85	0.2523	0.8739 v	vi(-),55 0	0.0341	0.9829	wi(-),105
46	Landmarks: plot area	0.0011	0.9994	wi(-),105	0.0321	0.984	wi(-),26	0.1022	0.9489	wi(-),41	0.0129	0.9935	wi(-),37	0.2902	0.8549	wi(-),85	0.2785	0.8607 v	vi(-),55 C	0.0620	0.969	wi(-),105
47 Lar	ndmarks: Year constr.	0.0538	0.9731	wi(-),105	0.7181	0.6409	wi(-),26	0.3150	0.8425	wi(-),41	0.0442	0.9779	wi(-),37	0.2912	0.8544	wi(-),85	0.9498	0.5251 w	ri(+),55 C	0.3001	0.8499	wi(-),105
48 L	andmarks: 1 criterion	0.0007	0.9996	wi(-),105	0.0458	0.9771	wi(-),26	0.2776	0.8612	wi(-),41	0.0157	0.9922	wi(-),37	0.1092	0.9454	wi(-),85	0.3463	0.8269 v	vi(-),55 C	0.0335	0.9833	wi(-),105
49	Landmarks: 2 criteria	0.1511	0.9244	wi(-),105	0.7103	0.6448	wi(-),26	0.3871	0.8064	wi(-),41	0.0920	0.954	wi(-),37	0.5375	0.7313	wi(-),85	0.9890	0.5055 v	vi(-),55 0	0.4718	0.7641	wi(-),105
50	Landmarks: 3 criteria	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55 1	0000.1	equal	n/a,105
Figur direct	e 1.2: Rav Jional turns	v rest 3 patk	ılts fo ı, direc	r route ction: €	: aggreg gress	sate	analys	is, san	aple:	full,	sub-que	stion	3, dat	a: non-t	standa	ardised	, base	line:]	least			

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] stat	[5] coef,n	P([4] often)	[4] stat	[4] coef,n P([;	<pre>i] regularly)</pre>	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) L	east stat Le	ast coef,n
6	Year constr.: < 1945	0.8234	0.5883	wi(-),105	0.8340	0.583	wi(+),28	0.7849	0.6076	wi(+),40	0.8874	0.5563	wi(+),32	0.8241	0.5879	wi(-),84	0.3862	0.8069	wi(+),52	0.7351	0.6324	wi(+),105
6	Year constr.: 1946-1970	0.5341	0.733	wi(+),105	0.7789	0.6106	wi(-),28	0.5748	0.7126	wi(+),40	0.7318	0.6341	wi(+),32	0.8089	0.5955	wi(+),84	0.7106	0.3731	tt(+),52	0.5510	0.7245	wi(+),105
÷	Year constr.: 1971-1985	0.9282	0.5359	wi(+),105	0.7918	0.6041	wi(+),28	0.8456	0.5772	wi(+),40	0.6029	0.6986	wi(-),32	0.1811	0.9094	wi(+),84	0.9702	0.5149	wi(+),52	0.1443	0.9278	wi(+),105
12	Year constr.: 1986-2000	0.6893	0.6554	wi(-),105	0.5884	0.7058	wi(-),28	0.5449	0.7276	wi(-),40	0.5292	0.7354	wi(+),32	0.6679	0.6661	wi(+),84	0.6402	0.6799	wi(+),52	0.9794	0.5103	wi(+),105
13	Year constr.: 2001-2022	0.3875	0.8062	wi(+),105	0.8129	0.5935	wi(-),28	0.3652	0.8174	wi(+),40	0.6842	-0.4106	tt(-),32	0.7081	0.646	wi(-),84	0.0826	1.7705	tt(+),52	0.7261	0.6369	wi(+),105
14	Traffic signals count	0.5126	0.7437	wi(-),105	0.3780	0.811	wi(-),28	0.7529	0.6235	wi(-),40	0.1733	0.9133	wi(+),32	0.3381	0.8309	wi(+),84	0.2806	1.0907	tt(+),52	0.2255	0.8873	wi(+),105
15	Stairs count	0.6031	0.6984	wi(+),105	0.1906	0.9047	wi(+),28	0.5687	0.7157	wi(+),40	0.2133	0.8934	wi(-),32	0.4552	0.7724	wi(-),84	0.6323	0.6839	wi(+),52	0.7392	0.6304	wi(-),105
16	Status: for construction	0.8556	0.5722	wi(+),105	1.0000	equal	n/a,28	0.9941	0.503	wi(-),40	0.7337	0.6331	wi(+),32	0.6805	0.6597	wi(+),84	0.4659	0.7671	wi(+),52	0.5825	0.7087	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
18	Status: under construction	0.7170	0.6415	wi(+),105	0.4867	0.7567	wi(-),28	0.3821	0.8089	wi(+),40	0.2134	0.8933	wi(+),32	0.9960	0.502	wi(-),84	0.4351	0.7824	wi(-),52	0.8525	0.5737	wi(-),105
19	Status: in use (n.m.)	0.2019	0.8991	wi(+),105	0.4867	0.7567	wi(+),28	0.3821	0.8089	wi(+),40	0.3377	0.8312	wi(+),32	0.6824	0.6588	wi(-),84	1.0000	equal	n/a,52	0.8595	0.5702	wi(+),105
20	Status: in use	0.7876	0.6062	wi(-),105	0.8365	0.5818	wi(+),28	0.6549	0.6726	wi(-),40	0.5401	0.7299	wi(-),32	0.6487	0.6756	wi(-),84	0.2187	0.8907	wi(+),52	0.6321	0.684	wi(+),105
51	Status: for demolition	0.8474	0.5763	wi(+),105	1.0000	equal	n/a,28	0.7604	0.6198	wi(+),40	1.0000	equal	n/a,32	0.6767	0.6617	wi(+),84	0.5964	0.7018	wi(+),52	0.5753	0.7124	wi(+),105
53	Status: demolished	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
53	Status: not in use	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
24	Status: reconstruction	0.5507	0.7246	wi(-),105	0.5134	0.7433	wi(-),28	0.8566	0.5717	wi(-),40	0.9817	-0.0232	tt(-),32	0.0400	0.98	wi(-),84	0.2585	0.8707	wi(-),52	0.0467	0.9766	wi(-),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
26	Function: residential	0.7082	0.6459	wi(+),105	0.2655	0.8672	wi(+),28	0.6109	0.6945	wi(+),40	0.8946	0.5527	wi(+),32	0.9625	0.5188	wi(+),84	0.8476	0.5762	wi(+),52	0.8297	0.5852	wi(-),105
27	Function: gathering	0.7964	0.6018	wi(-),105	0.1533	0.9234	wi(-),28	0.5513	0.7243	wi(+),40	0.8993	0.5504	wi(-),32	0.6265	-0.4885	tt(-),84	0.3464	0.8268	wi(+),52	0.3683	0.8159	wi(+),105
28	Function: prison	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
29	Function: healthcare	1.0000	0.5	wi(+),105	0.7194	0.6403	wi(+),28	0.7604	0.6198	wi(+),40	0.5111	0.7444	wi(-),32	0.6785	0.6608	wi(-),84	0.7908	0.6046	wi(+),52	0.8609	0.5695	wi(-),105
30	Function: factory	0.2574	0.8713	wi(+),105	0.3344	0.8328	wi(+),28	0.6103	0.6949	wi(+),40	0.9760	0.512	wi(-),32	0.6975	0.6512	wi(+),84	0.9882	0.5059	wi(-),52	0.8592	0.5704	wi(+),105
31	Function: office	0.9905	0.5048	wi(-),105	0.6838	-0.4117	tt(-),28	0.7725	0.6137	wl(+),40	0.9528	0.5236	wi(-),32	0.0132	0.9934	wi(-),84	0.7270	-0.3511	tt(-),52	0.1030	-1.6451	tt(-),105
32	Function: guesthouse	0.7103	0.6448	wi(-),105	0.4867	0.7567	wi(-),28	1.0000	0.5	wi(+),40	1.0000	equal	n/a,32	0.9980	0.501	wi(+),84	0.6001	0.6999	wi(+),52	0.9860	0.507	wi(+),105
33	Function: education	0.5765	0.7118	wi(+),105	0.7194	0.6403	wi(-),28	0.2543	0.8728	wi(+),40	1.0000	equal	n/a,32	0.3054	0.8473	wi(+),84	0.9959	0.5021	wi(+),52	0.7067	0.6466	wi(+),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	0.7353	0.6323	wi(-),32	0.6716	0.6642	wi(-),84	0.7874	0.6063	wi(-),52	0.7029	0.6485	wi(-),105
35	Function: shops	0.8069	0.5966	wi(+),105	0.8010	0.5995	wi(-),28	0.8995	0.5503	wi(+),40	0.9685	0.5157	wi(-),32	0.5762	0.5612	tt(+),84	0.0273	0.9863	wi(+),52	0.0813	0.9593	wi(+),105
36	Function: other	0.8116	0.5942	wi(-),105	0.3285	0.8358	wi(-),28	0.5685	0.7158	wi(-),40	0.4964	0.7518	wi(-),32	0.5278	0.7361	wi(+),84	0.7485	0.3224	tt(+),52	0.8408	0.2014	tt(+),105
37	Green: tree cover	0.1675	0.9163	wi(+),105	0.9818	0.5091	wi(+),28	0.2042	1.2912	tt(+),40	0.1309	0.9346	wi(+),32	0.8737	-0.1595	tt(-),84	0.8470	0.1939	tt(+),52	0.7012	0.3848	tt(+),105
38	Green: bush cover	0.1903	0.9049	wi(+),105	0.8730	0.5635	wi(-),28	0.1071	1.6493	tt(+),40	0.3433	0.8284	wi(+),32	0.9006	0.5497	wi(-),84	0.8133	0.2374	tt(+),52	0.8552	0.1829	tt(+),105
39	Green: grass cover	0.4057	0.7971	wi(+),105	0.6365	-0.478	tt(-),28	0.1489	1.4726	tt(+),40	0.2976	1.0593	tt(+),32	0.8684	0.1661	tt(+),84	0.5562	0.5925	tt(+),52	0.3740	0.813	wi(+),105
6	Noise pollution: total	0.0807	0.9596	wi(+),105	0.8971	0.1305	tt(+),28	0.3056	1.038	tt(+),40	0.5053	0.7474	wi(+),32	0.6427	0.6786	wi(+),84	0.8681	0.1669	tt(+),52	0.3880	0.806	wi(+),105
41	Noise pollution: roads	0.1157	0.9421	wi(+),105	0.9454	0.5273	wi(-),28	0.2899	1.073	tt(+),40	0.4934	0.7533	wi(+),32	0.8340	0.583	wi(+),84	0.9510	0.0618	tt(+),52	0.4978	0.7511	wi(+),105
42	Noise pollution: railways	0.1831	0.9084	wi(+),105	0.4933	0.7533	wi(+),28	0.3384	0.8308	wi(+),40	0.6793	0.6603	wi(+),32	0.3199	0.84	wi(+),84	0.3942	0.8029	wi(+),52	0.3279	0.8361	wi(+),105
4	Year constr.: mean	1.0000	equal	n/a,105	1.0000	equal	n/a,28	0.8390	0.5805	wi(+),40	0.9252	0.5374	wi(-),32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
45	Landmarks: FSI	0.2168	0.8916	wi(-),105	0.7194	0.6403	wi(-),28	0.7604	0.6198	wi(-),40	0.7582	0.6209	wi(-),32	0.8373	0.5814	wi(-),84	0.9196	0.5402	wi(+),52	0.8258	0.5871	wi(+),105
46	Landmarks: plot area	0.0148	0.9926	wi(-),105	0.0906	0.9547	wi(-),28	0.1481	0.926	wi(-),40	0.1443	0.9279	wi(-),32	0.4237	0.7882	wi(-),84	0.9001	0.55	wi(-),52	0.3762	0.8119	wi(-),105
47	Landmarks: Year constr.	0.1532	0.9234	wi(-),105	0.4867	0.7567	wi(-),28	0.3946	0.8027	wi(-),40	0.5111	0.7444	wi(-),32	0.6000	0.7	wi(-),84	0.4909	0.7546	wi(+),52	0.8770	0.5615	wi(-),105
48	Landmarks: 1 criterion	0.0439	0.978	wi(-),105	0.2125	0.8937	wi(-),28	0.1499	0.925	wi(-),40	0.3888	0.8056	wi(-),32	0.5356	0.7322	wi(-),84	0.9325	0.5337	wi(+),52	0.6736	0.6632	wi(-),105
49	Landmarks: 2 criteria	0.2019	0.8991	wi(-),105	0.4867	0.7567	wi(-),28	1.0000	equal	n/a,40	0.5111	0.7444	wi(-),32	0.4071	0.7965	wi(-),84	0.7947	0.6026	wi(-),52	0.5790	0.7105	wi(-),105
20	Landmarks: 3 criteria	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
ř	1 9. D	0	14.0 f.04			0 (1-	ind on		-	d	400	ی د	1040 1040			1:001 L	:logod	2	100	4		
900 0.85 716 0.814 447 0.627 157 0.542 578 0.821	5 wi(-),26 2 wi(-),26	0.5091 0	.7455 \	vi(+),41 0.65 vi(+),41 0.84	31 0.6734 39 0.5781	wi(+),37 wi(+),37	0.9210	0.5395	wi(+),85 (1.5609 0.71	95 wi(-),55	0.6744	0.6628	wi(-),105								
---	--------------------------	--	--	--	--	---	---	---	---	---	---	---	---	---								
716 0.814 447 0.627 157 0.542 578 0.821	2 wi(-),26	0.3350	.8325	vi(+),41 0.84	39 0.5781	wi(+),37	21120	0 6426	wi(+) 85 (0.2920	54 wi(+).55	00000	10025									
447 0.627 157 0.542 578 0.821		1000 0					U./14/	07400				0.3330	0.0000	wi(+),105								
157 0.542 578 0.821	7 wi(-),26	6799.0	1800.	wi(-),41 0.27	10 1.1179	tt(+),37	0.1192	0.9404	wi(+),85 (.7501 0.6	25 wi(+),55	0.2863	0.8569	wi(+),105								
578 0.821	1 wi(-),26	0.2970	.8515	wi(-),41 0.57	73 0.7114	wi(+),37	0.8069	0.5966	wi(+),85 (.8891 0.55	54 wi(+),55	0.8365	0.5818	wi(-),105								
	1 wi(+),26	0.4650 (.7675	vi(+),41 0.63	90 0.6805	wi(+),37	0.7909	0.6046	wi(-),85 (1.6708 1.6	43 tt(+),55	0.6530	0.6735	wi(+),105								
811 -0.415	9 tt(-),26	0.9101	0.545	vi(+),41 0.37	78 0.8111	wi(+),37	0.7523	0.6239	wi(+),85 (0635 1.85	46 tt(+),55	0.0928	0.9536	wi(+),105								
730 0.763	5 wi(+),26	0.4072 0	.7964	vi(+),41 0.38	87 0.8057	wi(-),37	0.8539	0.573	wi(-),85 (.5685 0.57	38 tt(+),55	0.6719	-0.4247	tt(-),105								
npe ooc	al n/a,26	0.9943 (.5028	wi(-),41 0.54	00 0.73	wi(+),37	0.9808	0.5096	wi(+),85 (.3180 0.6	41 wi(+),55	0.5799	0.7101	wi(+),105								
nbə ooc	al n/a,26	1.0000	equal	n/a,41 1.00	00 equal	n/a,37	1.0000	equal	n/a,85	pa 0000.	al n/a,55	1.0000	equal	n/a,105								
103 0.644	8 wi(+),26	0.5555 (.7222	vi(+),41 0.38	88 0.8056	wi(+),37	0.6812	0.6594	wi(-),85 (16057 0.65	72 wi(-),55	0.8469	0.5765	wi(-),105								
103 0.644	8 wi(+),26	0.3871 0	.8065	vi(+),41 0.56	21 0.7189	wi(+),37	0.6733	0.6634	wi(-),85 (1.7928 0.60	36 wl(+),55	0.8595	0.5702	wi(+),105								
393 0.780	3 wi(-),26	0.6011 0	.6995	wi(-),41 0.75	62 0.6219	wi(-),37	0.8779	0.561	wi(+),85 (.7880 0.6	06 wi(+),55	0.9375	0.5313	wi(-),105								
npe ooc	al n/a,26	0.7630	.6185	vi(+),41 0.75	18 0.6241	wi(+),37	0.8329	0.5835	wi(+),85 (.7928 0.60	36 wi(+),55	0.7054	0.6473	wi(+),105								
npe ooc	al n/a,26	1.0000	equal	n/a,41 1.00	00 equal	n/a,37	1.0000	equal	n/a,85	bə 0000 [.]	ual n/a,55	1.0000	equal	n/a,105								
nbə ooc	al n/a,26	1.0000	equal	n/a,41 1.00	00 equal	n/a,37	1.0000	equal	n/a,85	pa 0000.	al n/a,55	1.0000	equal	n/a,105								
0.64	8 wi(-),26	0.8152 0	.5924	wi(-),41 0.72	15 0.3592	tt(+),37	0.0700	0.965	wi(-),85 (10996 0.95	02 wi(-),55	0.0124	0.9938	wi(-),105								
nbə ooc	al n/a,26	1.0000	equal	n/a,41 1.00	00 equal	n/a,37	1.0000	equal	n/a,85	bə 0000 [.]	al n/a,55	1.0000	equal	n/a,105								
900 0.85	5 wi(+),26	0.8239 (.5881	wi(-),41 0.44	25 0.7788	wi(+),37	0.8741	0.5629	wi(+),85 (.5246 0.73	77 wl(+),55	0.7348	0.6326	wi(+),105								
561 0.821	9 wi(-),26	0.5699 (.7151	vi(+),41 0.68	73 0.6564	wi(-),37	0.6264	-0.4886	tt(-),85 (.3640 0.6	18 wi(+),55	0.6372	0.6814	wi(+),105								
npe ooc	al n/a,26	1.0000	equal	n/a,41 1.00	00 equal	n/a,37	1.0000	equal	n/a,85	bə 0000 [.]	ual n/a,55	1.0000	equal	n/a,105								
103 0.644	8 wi(+),26	1.0000	equal	n/a,41 0.76	34 0.6183	wi(-),37	0.8384	0.5808	wi(-),85 (.7960 0.6	02 wi(+),55	0.9943	0.5028	wi(+),105								
978 0.851	1 wi(+),26	0.6474 0	.6763	vi(+),41 0.96	35 0.5032	wi(-),37	0.8145	0.5927	wi(+),85 (.8564 0.57	18 wi(+),55	0.9889	0.5055	wi(+),105								
930 0.753	5 wi(-),26	0.7909 (.6045	vi(+),41 0.29	72 0.8514	wi(+),37	0.0485	-2.0021	tt(-),85 (11.11	08 tt(-),55	0.0540	-1.9487	tt(-),105								
103 0.644	8 wi(-),26	0.7731	.6134	vi(+),41 0.77	62 0.6119	wi(-),37	0.7078	0.6461	wi(-),85	0000	0.5 wi(+),55	0.7250	0.6375	wi(-),105								
103 0.644	8 wi(-),26	0.3871 0	.8064	vi(+),41 1.00	00 equal	n/a,37	0.3079	0.846	wi(+),85 (.6143 0.65	29 wi(+),55	0.2781	0.8609	wi(+),105								
nbə ooc	al n/a,26	1.0000	equal	n/a,41 0.75	18 0.6241	wi(-),37	0.6733	0.6633	wi(-),85 (.7928 0.60	36 wi(-),55	0.7029	0.6485	wi(-),105								
533 0.718	4 wi(-),26	0.9400	0.53	vi(+),41 0.86	86 0.5657	wi(+),37	0.4706	0.7248	tt(+),85 (.0420 0.9	79 wi(+),55	0.0704	0.9648	wi(+),105								
242 0.637	9 wi(-),26	0.9083	.5458	wi(-),41 0.74	31 0.6284	wi(-),37	0.5603	0.5847	tt(+),85 (.6862 0.40	63 tt(+),55	0.8189	0.2296	tt(+),105								
913 0.704	3 wi(+),26	0.2958 (.8521	vi(+),41 0.59	60 0.5349	tt(+),37	0.4211	0.8084	tt(+),85 (.3590 -0.92	52 tt(-),55	0.7224	-0.3562	tt(-),105								
892 -0.013	6 tt(-),26	0.1121	.6245	tt(+),41 0.41	81 0.7909	wi(+),37	0.7648	0.3002	tt(+),85 (.7641 -0.30	17 tt(-),55	0.7427	-0.3292	tt(-),105								
796 0.510	2 wi(-),26	0.0915 1	.7291	tt(+),41 0.66	62 0.6669	wi(+),37	0.3835	0.876	tt(+),85 (.7422 0.33	07 tt(+),55	0.5847	0.5483	tt(+),105								
781 0.56	1 wi(-),26	0.2022	.2965	tt(+),41 0.45	38 0.7731	wi(+),37	0.3752	0.8915	tt(+),85 (1	.7864 -0.27	24 tt(-),55	0.3837	0.8082	wi(+),105								
180 0.59	1 wi(-),26	0.1911	1.33	tt(+),41 0.48	16 0.7592	wi(+),37	0.3371	0.9654	tt(+),85 (1	.7934 -0.26	32 tt(-),55	0.5965	0.531	tt(+),105								
103 0.894	9 wi(+),26	0.1706 0	.9147	vi(+),41 0.98	19 0.5091	wi(-),37	0.2990	0.8505	wi(+),85 (1	.4841 0.75	79 wi(+),55	0.4401	0.78	wi(+),105								
nbə ooc	al n/a,26	0.7103 0	.6449	vi(+),41 0.80	26 0.5987	wi(-),37	0.5134	0.7433	wi(+),85	.0000 eq	al n/a,55	1.0000	equal	n/a,105								
103 0.644	8 wi(-),26	0.7630	.6185	wi(-),41 0.93	61 0.532	wi(-),37	0.9588	0.5206	wi(-),85 (.6238 0.68	81 wi(-),55	0.9266	0.5367	wi(-),105								
533 0.973	3 wi(-),26	0.1978 0	.9011	wi(-),41 0.05	68 0.9716	wi(-),37	0.4853	0.7574	wi(-),85 (.7447 0.62	77 wi(-),55	0.5404	0.7298	wi(-),105								
978 0.851	1 wi(-),26	0.7676 0	.6162	wi(-),41 0.77	39 0.613	wi(-),37	0.6100	0.695	wi(-),85 (.9677 0.51	62 wi(+),55	0.8985	0.5508	wi(-),105								
579 0.96	6 wi(-),26	0.2152 0	.8924	wi(-),41 0.44	47 0.7776	wi(-),37	0.7157	0.6421	wi(-),85 (.6538 0.67	31 wi(-),55	0.6344	0.6828	wi(-),105								
103 0.644	8 wi(-),26	0.7630 0	.6185	wi(-),41 0.36	65 0.8168	wi(-),37	0.5391	0.7305	wi(-),85	0000).5 wi(+),55	0.8539	0.573	wi(-),105								
nbə ooc	al n/a,26	1.0000	equal	n/a,41 1.00	00 equal	n/a,37	1.0000	equal	n/a,85	.0000 eq	al n/a,55	1.0000	equal	n/a,105								
egate	analysis	s, samp	le: fu	ll, sub-que	stion :	3, data	: non-sta	ndard	ised, ba	seline:	$\mathrm{short}\epsilon$	st										
200 equ 261 0.82 261 0.82 278 0.85 278 0.85 242 0.64 103 0.64 103 0.64 103 0.64 103 0.64 103 0.64 103 0.89 103 0.89 103 0.89 103 0.64 103 0.		all n/a.26 35 w(+).26 48 w(-).26 48 w(-).26 48 w(-).26 48 w(-).26 48 w(-).26 48 w(-).26 44 w(-).26 44 w(-).26 51 w(-).26 51 w(-).26 52 w(-).26 51 w(-).26 53 w(-).26 53 w(-).26 53 w(-).26 54 w(-).26 55 w(-).26 56 w(-).26 56 w(-).26 56 w(-).26 56 w(-).26 57 w(-).26 58 w(-	$n/a_2 E$ 1.0000 55 $w(+)_2 E$ 0.8239 0 19 $w(-)_2 E$ 0.5669 0 48 $w(+)_2 E$ 1.0000 0 48 $w(+)_2 E$ 1.0000 0 49 $w(+)_2 E$ 0.0730 0 49 $w(+)_2 E$ 0.3871 0 49 $w(+)_2 E$ 0.3871 0 41 $w(+)_2 E$ 0.3871 0 44 $w(+)_2 E$ 0.3871 0 45 $w(+)_2 E$ 0.3871 0 46 $w(+)_2 E$ 0.3871 0 47 $w(+)_2 E$ 0.3871 0 48 $w(+)_2 E$ 0.3871 0 49 $w(+)_2 E$ 0.1121 1 49 $w(+)_2 E$ 0.1702 0 49 $w(+)_2 E$ 0.1712 0 49 $w(+)_2 E$ 0.1712 0 49 $w(+)_2 E$ 0.1702 0	n/a,26 1.0000 equal 55 w(+),26 0.8581 1 19 w(-),26 0.8569 0.7151 v 48 w(-),26 0.5669 0.7151 v 49 w(-),26 0.5669 0.7151 v 49 w(-),26 0.5669 0.7151 v 49 w(-),26 0.5703 v v 49 w(-),26 0.7731 0.6134 v 49 w(-),26 0.7731 0.6134 v 41 w(-),26 0.7731 0.6134 v 49 w(-),26 0.3691 1.0000 equal 41 w(-),26 0.3691 1.2865 0.141 41 w(-),26 0.1706 0.3147 v 42 w(-),26 0.3141 1.133 v 43 w(-),26 0.3141 1.133 v 44 w(-),26 0.3141 1.33 v v <	n/a.26 1.0000 equal n/a,41 1.00 55 w(+).26 0.8239 0.5681 w(+).41 0.44 19 w(-).26 0.8239 0.5151 w(+).41 0.64 48 w(+).26 0.5693 0.7151 w(+).41 0.66 48 w(+).26 0.5603 0.716 w(+).41 0.70 48 w(+).26 0.6474 0.6783 w(+).41 0.70 49 w(-).26 0.7300 0.6045 w(+).41 0.70 49 w(-).26 0.7331 0.6134 w(+).41 0.70 40 w(-).26 0.7331 0.6134 w(+).41 0.70 41 w(-).26 0.7331 0.6134 w(+).41 0.71 41 w(-).26 0.733 w(+).41 0.71 0.73 41 w(-).26 0.733 w(+).41 0.74 0.74 42 w(-).26 0.7121 1.244 0.74 0.74	n/a.26 1.0000 equal n/a,41 1.0000 equal 55 w(-).26 0.8239 0.5861 w(-).41 0.425 0.7768 16 n/a.26 0.7583 0.7681 w(-).41 0.425 0.7768 16 n/a.26 0.7503 0.5643 0.7151 w(-).41 0.5653 0.5654 11 w(-).26 0.500 equal n/a,41 0.7633 0.5654 11 w(-).26 0.7731 0.513 w(+).41 0.7634 0.5634 11 w(-).26 0.7731 0.513 w(+).41 0.7634 0.5634 11 w(-).26 0.7731 0.513 w(+).41 0.7634 0.5634 12 n/a.26 0.7731 0.513 w(+).41 0.7634 0.5634 13 w(+).41 0.7641 0.763 0.5643 0.5643 14 w(+).41 0.7641 0.763 0.5664 0.5646 14 w(+).41 0.7641<	1 1	n n	m m	m m	m max max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<>	m m	ndze 1000 qual ndzi 1000 qual 1000 qual <th< th=""><th>0426 1000 6444 1000 1000 6444 1000 <th< th=""></th<></th></th<>	0426 1000 6444 1000 1000 6444 1000 <th< th=""></th<>								

1.2 Standardised results, full sample

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] stat	[5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) L	east stat Le	ast coef,n
6	Year constr.: < 1945	0.3792	0.8104	wi(-),105	0.7405	0.6297	wi(+),28	0.6270	0.6865	wi(+),40	0.1419	0.929	wi(-),32	0.3383	0.8309	wi(-),84	0.3035	0.8483	wi(-),52	0.1515	0.9243	wi(-),105
9	Year constr.: 1946-1970	0.3703	0.8148	wi(+),105	0.5387	0.7306	wi(-),28	0.3487	0.8257	wi(+),40	0.2361	0.882	wi(+),32	0.6830	0.4099	tt(+),84	0.5617	0.7191	wi(+),52	0.2408	0.8796	wi(+),105
÷	Year constr.: 1971-1985	0.3566	0.8217	wi(-),105	0.2119	0.894	wi(-),28	0.7943	0.6028	wi(+),40	0.1877	-1.3471	tt(-),32	0.6333	0.6833	wi(+),84	0.4469	0.7765	wi(-),52	0.6990	0.6505	wi(-),105
12	Year constr.: 1986-2000	0.0157	0.9921	wi(-),105	0.2257	0.8871	wi(-),28	0.0372	0.9814	wi(-),40	0.0963	0.9519	wi(-),32	0.0832	0.9584	wi(-),84	0.9273	-0.0916	tt(-),52	0.0301	0.9849	wi(-),105
13	Year constr.: 2001-2022	0.0510	1.974	tt(+),105	0.4922	0.6963	tt(+),28	0.2614	1.1396	tt(+),40	0.8735	0.5632	wi(+),32	0.1025	1.6511	tt(+),84	0.0070	0.9965	wi(+),52	0.0317	0.9842	wi(+),105
14	Traffic signals count	0.1351	0.9325	wi(-),105	0.9241	0.0962	tt(+),28	0.3080	-1.0328	tt(-),40	0.4592	0.7704	wi(-),32	0.9376	0.5312	wi(+),84	0.8909	0.5546	wi(+),52	0.4586	0.7707	wi(+),105
15	Stairs count	0.6851	0.4066	tt(+),105	0.2643	1.1399	tt(+),28	0.7435	0.3296	tt(+),40	0.4229	-0.8121	tt(-),32	0.3488	-0.9422	tt(-),84	0.2894	1.0705	tt(+),52	0.5510	-0.5982	tt(-),105
16	Status: for construction	0.4092	0.7954	wi(-),105	0.4867	0.7567	wi(-),28	0.1884	-1.3388	tt(-),40	0.9703	0.0376	tt(+),32	0.9469	0.5265	wi(-),84	0.3874	0.8063	wi(+),52	0.9178	0.5411	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
18 St	latus: under construction	0.9928	0.5036	wi(+),105	0.7194	0.6403	wi(-),28	0.7594	0.6203	wi(+),40	0.9675	0.5163	wi(+),32	0.6888	0.6556	wi(-),84	0.4351	0.7824	wi(-),52	0.4763	0.7619	wi(-),105
19	Status: in use (n.m.)	0.7058	0.6471	wi(+),105	0.9899	0.505	wi(-),28	0.3865	0.8067	wi(+),40	0.9837	0.5081	wi(+),32	0.5315	0.7343	wi(-),84	0.4630	0.7685	wi(-),52	0.7084	0.6458	wi(-),105
20	Status: in use	0.1489	0.9256	wi(-),105	0.9909	0.5045	wi(+),28	0.4435	-0.7742	tt(-),40	0.1015	-1.6879	tt(-),32	0.1823	0.9088	wi(-),84	0.6260	0.687	wi(-),52	0.2652	0.8674	wi(-),105
21	Status: for demolition	0.8501	0.5749	wi(-),105	1.0000	equal	n/a,28	0.7604	0.6198	wi(+),40	0.5111	0.7444	wi(-),32	0.9960	0.502	wi(+),84	0.5964	0.7018	wi(+),52	0.8471	0.5764	wi(+),105
53	Status: demolished	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
8	Status: not in use	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
24	Status: reconstruction	0.0230	2.3069	tt(+),105	0.3873	0.8787	tt(+),28	0.2655	1.1297	tt(+),40	0.1518	1.4695	tt(+),32	0.5738	0.5646	tt(+),84	0.2521	0.8739	wi(+),52	0.8323	0.5838	wi(+),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
26	Function: residential	0.0011	0.9994	wi(-),105	0.1445	-1.5029	tt(-),28	0.4152	0.7924	wi(-),40	0.0925	-1.7357	tt(-),32	0.1045	0.9477	wi(-),84	0.0233	0.9883	wi(-),52	0.0030	0.9985	wi(-),105
27	Function: gathering	0.9920	0.504	wi(+),105	0.2837	0.8582	wi(-),28	0.7563	0.6218	wi(+),40	0.7778	-0.2847	tt(-),32	0.6327	0.6837	wi(-),84	0.0618	0.9691	wi(+),52	0.5042	0.7479	wi(+),105
28	Function: prison	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
29	Function: healthcare	0.7130	0.6435	wi(+),105	0.7194	0.6403	wi(+),28	0.5512	0.7244	wi(+),40	0.7353	0.6323	wi(-),32	1.0000	0.5	wi(+),84	0.7908	0.6046	wi(+),52	0.8500	0.575	wi(+),105
30	Function: factory	0.7614	0.6193	wi(+),105	0.7508	0.6246	wi(+),28	0.6460	0.677	wi(+),40	0.2873	-1.0827	tt(-),32	0.8638	0.5681	wi(+),84	0.6429	0.6785	wi(+),52	0.9696	0.5152	wi(-),105
31	Function: office	0.9247	-0.0947	tt(-),105	0.4697	0.7333	tt(+),28	0.2360	0.882	wi(-),40	0.9825	-0.0221	tt(-),32	0.0229	-2.3175	tt(-),84	0.5217	-0.6452	tt(-),52	0.0961	-1.6794	tt(-),105
32	Function: guesthouse	0.2864	0.8568	wi(-),105	0.3118	0.8441	wi(-),28	0.5512	0.7244	wi(+),40	0.3377	0.8311	wi(-),32	0.4604	0.7698	wi(-),84	0.8714	0.5643	wi(-),52	0.3564	0.8218	wi(-),105
33	Function: education	0.9957	0.5021	wi(-),105	0.7194	0.6403	wi(-),28	0.3821	0.8089	wi(+),40	1.0000	equal	n/a,32	0.9921	0.5039	wi(+),84	0.8026	0.5987	wi(-),52	0.5918	0.7041	wi(-),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	0.7353	0.6323	wi(-),32	0.6716	0.6642	wi(-),84	0.7874	0.6063	wi(-),52	0.7029	0.6485	wi(-),105
35	Function: shops	0.6963	0.3914	tt(+),105	0.6049	-0.5235	tt(-),28	0.9087	0.1154	tt(+),40	0.8631	0.1739	tt(+),32	0.8726	0.1608	tt(+),84	0.0094	0.9953	wi(+),52	0.1471	0.9264	wi(+),105
36	Function: other	0.3934	0.8033	wi(-),105	0.2257	0.8871	wi(-),28	0.3493	0.8254	wi(-),40	0.4165	0.7917	wi(-),32	0.8780	0.561	wi(+),84	0.3653	0.9135	tt(+),52	0.7950	0.6025	wi(-),105
37	Green: tree cover	0.0000	-10.3821	tt(-),105	0.0002	-4.4055	tt(-),28	0.0000	-5.534	tt(-),40	0.0000	-6.8209	tt(-),32	0.000	-9.8652	tt(-),84	0.0000	-6.6697	tt(-),52	0.0000	-9.9108	tt(-),105
88	Green: bush cover	0.0000	1.0	wi(-),105	0.0000	-4.947	tt(-),28	0.0000	-4.662	tt(-),40	0.0000	-6.5476	tt(-),32	0.000	-10.2013	tt(-),84	0.0000	1.0	wi(-),52	0.0000	-9.7045	tt(-),105
39	Green: grass cover	0.0000	-10.001	tt(-),105	0.0000	-4.858	tt(-),28	0.0000	-4.5744	tt(-),40	0.0000	-6.207	tt(-),32	0.000	-10.651	tt(-),84	0.0000	-6.6494	tt(-),52	0.0000	-10.2611	tt(-),105
40	Noise pollution: total	0.0000	1.0	wi(-),105	0.0000	-5.2596	tt(-),28	0.0000	-7.1685	tt(-),40	0.0000	-9.6023	tt(-),32	0.000	-12.3625	tt(-),84	0.0000	-8.1183	tt(-),52	0.0000	-12.2	tt(-),105
41	Noise pollution: roads	0.0000	-11.4325	tt(-),105	0.0001	-4.6139	tt(-),28	0.0000	-6.811	tt(-),40	0.0000	-8.1997	tt(-),32	0.000	-11.1189	tt(-),84	0.0000	-7.5603	tt(-),52	0.0000	1.0	wi(-),105
42	Noise pollution: railways	0.0000	1.0	wi(-),105	0.0362	0.9819	wi(-),28	0.0002	-4.0459	tt(-),40	0.0000	-6.5895	tt(-),32	0.000	1.0	wi(-),84	0.0007	0.9996	wi(-),52	0.0000	1.0	wi(-),105
4	Year constr.: mean	1.0000	equal	n/a,105	1.0000	equal	n/a,28	0.8560	0.572	wi(+),40	0.7531	-0.3173	tt(-),32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
45	Landmarks: FSI	0.0025	0.9987	wi(-),105	0.1122	0.9439	wi(-),28	0.1632	0.9184	wi(-),40	0.0314	0.9843	wi(-),32	0.2091	0.8955	wi(-),84	0.4542	0.7729	wi(-),52	0.0750	0.9625	wi(-),105
46	Landmarks: plot area	0.0041	0.9979	wi(-),105	0.0552	0.9724	wi(-),28	0.0187	0.9906	wi(-),40	0.2711	0.8644	wi(-),32	0.2855	0.8573	wi(-),84	0.4775	0.7613	wi(-),52	0.0820	0.959	wi(-),105
47	Landmarks: Year constr.	0.0744	0.9628	wi(-),105	0.5051	0.7475	wi(-),28	0.4523	0.7739	wi(-),40	0.2579	0.871	wi(-),32	0.5976	0.7012	wi(-),84	0.3928	0.8036	wi(-),52	0.2207	0.8896	wi(-),105
48	Landmarks: 1 criterion	0.0026	0.9987	wi(-),105	0.0509	0.9746	wi(-),28	0.1425	0.9288	wi(-),40	0.1934	0.9033	wi(-),32	0.2993	0.8503	wi(-),84	0.2153	0.8923	wi(-),52	0.0542	0.9729	wi(-),105
49	Landmarks: 2 criteria	0.1511	0.9244	wi(-),105	0.3118	0.8441	wi(-),28	0.5512	0.7244	wi(-),40	0.3377	0.8312	wi(-),32	0.4131	0.7935	wi(-),84	0.8041	0.5979	wi(-),52	0.2905	0.8547	wi(-),105
50	Landmarks: 3 criteria	1.0000	equal	n/a,105	1.0000	equal	n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.0000	equal	n/a,84	1.0000	equal	n/a,52	1.0000	equal	n/a,105
Figr turn	ure 1.5: Raw ıs path, dire	r resul	lts for acces	route a _i ss	ggregat	e ant	alysis,	sample	: ful	l, sub-	questio	13, d	ata: st	andardis	ed, be	seline	: least	direc	tional			

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] stat	[5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) L	east stat Le	ast coef,n
6	Year constr.: < 1945	0.4975	0.7513	wi(-),105	0.2900	0.855	wi(-),26	0.5091	0.7455	wi(+),41	0.6531	0.6734	wi(+),37	0.9210	0.5395	wi(+),85	0.5609	0.7195	wi(-),55	0.6744	0.6628	wi(-),105
₽	Year constr.: 1946-1970	0.6538	0.6731	wi(+),105	0.3716	0.8142	wi(-),26	0.3350	0.8325	wi(+),41	0.8439	0.5781	wi(+),37	0.7147	0.6426	wi(+),85	0.2920	0.854	wi(+),55	0.3330	0.8335	wi(+),105
÷	Year constr.: 1971-1985	0.6667	0.6666	wi(-),105	0.7447	0.6277	wi(-),26	0.6625	0.6687	wi(-),41	0.2710	1.1179	tt(+),37	0.1192	0.9404	wi(+),85	0.7501	0.625	wi(+),55	0.2863	0.8569	wi(+),105
12	Year constr.: 1986-2000	0.7848	0.6076	wi(-),105	0.9157	0.5421	wi(-),26	0.2970	0.8515	wi(-),41	0.5773	0.7114	wi(+),37	0.8069	0.5966	wi(+),85	0.8891	0.5554	wi(+),55	0.8365	0.5818	wi(-),105
13	Year constr.: 2001-2022	0.3785	0.8107	wi(+),105	0.3578	0.8211	wi(+),26	0.4650	0.7675	wi(+),41	0.6390	0.6805	wi(+),37	0.7909	0.6046	wi(-),85	0.0708	1.843	tt(+),55	0.6530	0.6735	wi(+),105
14	Traffic signals count	0.5448	0.7276	wi(-),105	0.6811	-0.4159	tt(-),26	0.9101	0.545	wi(+),41	0.3778	0.8111	wi(+),37	0.7523	0.6239	wi(+),85	0.0635	1.8946	tt(+),55	0.0928	0.9536	wi(+),105
15	Stairs count	0.6031	0.6984	wi(+),105	0.4730	0.7635	wi(+),26	0.4072	0.7964	wi(+),41	0.3887	0.8057	wi(-),37	0.8539	0.573	wi(-),85	0.5685	0.5738	tt(+),55	0.6719	-0.4247	tt(-),105
16	Status: for construction	0.8556	0.5722	wi(+),105	1.0000	equal	n/a,26	0.9943	0.5028	wi(-),41	0.5400	0.73	wi(+),37	0.9808	0.5096	wi(+),85	0.3180	0.841	wi(+),55	0.5799	0.7101	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
18	Status: under construction	0.7170	0.6415	wi(+),105	0.7103	0.6448	wi(+),26	0.5555	0.7222	wi(+),41	0.3888	0.8056	wi(+),37	0.6812	0.6594	wi(-),85	0.6057	0.6972	wi(-),55	0.8469	0.5765	wi(-),105
19	Status: in use (n.m.)	0.3620	0.819	wi(+),105	0.7103	0.6448	wi(+),26	0.3871	0.8065	wi(+),41	0.5621	0.7189	wi(+),37	0.6733	0.6634	wi(-),85	0.7928	0.6036	wi(+),55	0.8595	0.5702	wi(+),105
20	Status: in use	0.2863	0.8568	wi(-),105	0.4393	0.7803	wi(-),26	0.6011	0.6995	wi(-),41	0.7562	0.6219	wi(-),37	0.8779	0.561	wi(+),85	0.7880	0.606	wi(+),55	0.9375	0.5313	wi(-),105
51	Status: for demolition	0.8474	0.5763	wi(+),105	1.0000	equal	n/a,26	0.7630	0.6185	wi(+),41	0.7518	0.6241	wi(+),37	0.8329	0.5835	wi(+),85	0.7928	0.6036	wi(+),55	0.7054	0.6473	wi(+),105
53	Status: demolished	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
23	Status: not in use	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edual	n/a,85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
24	Status: reconstruction	0.5303	0.7348	wi(-),105	0.7039	0.648	wi(-),26	0.8152	0.5924	wi(-),41	0.7215	0.3592	tt(+),37	0.0700	0.965	wi(-),85	0.0996	0.9502	wi(-),55	0.0124	0.9938	wi(-),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
26	Function: residential	0.8586	0.5707	wi(+),105	0.2900	0.855	wi(+),26	0.8239	0.5881	wi(-),41	0.4425	0.7788	wi(+),37	0.8741	0.5629	wi(+),85	0.5246	0.7377	wi(+),55	0.7348	0.6326	wi(+),105
27	Function: gathering	0.8976	0.5512	wi(-),105	0.3561	0.8219	wi(-),26	0.5699	0.7151	wi(+),41	0.6873	0.6564	wi(-),37	0.6264	-0.4886	tt(-),85	0.3640	0.818	wi(+),55	0.6372	0.6814	wi(+),105
28	Function: prison	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edual	n/a,85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
29	Function: healthcare	1.0000	0.5	wi(+),105	0.7103	0.6448	wi(+),26	1.0000	equal	n/a,41	0.7634	0.6183	wi(-),37	0.8384	0.5808	wi(-),85	0.7960	0.602	wi(+),55	0.9943	0.5028	wi(+),105
30	Function: factory	0.3298	0.8351	wi(+),105	0.2978	0.8511	wi(+),26	0.6474	0.6763	wi(+),41	0.9935	0.5032	wi(-),37	0.8145	0.5927	wi(+),85	0.8564	0.5718	wi(+),55	0.9889	0.5055	wi(+),105
31	Function: office	0.8837	0.5582	wi(+),105	0.4930	0.7535	wi(-),26	0.7909	0.6045	wi(+),41	0.2972	0.8514	wi(+),37	0.0485	-2.0021	tt(-),85	0.2716	-1.1108	tt(-),55	0.0540	-1.9487	tt(-),105
32	Function: guesthouse	0.7103	0.6448	wi(-),105	0.7103	0.6448	wi(-),26	0.7731	0.6134	wi(+),41	0.7762	0.6119	wi(-),37	0.7078	0.6461	wi(-),85	1.0000	0.5	wi(+),55	0.7250	0.6375	wi(-),105
33	Function: education	0.7067	0.6466	wi(+),105	0.7103	0.6448	wi(-),26	0.3871	0.8064	wi(+),41	1.0000	equal	n/a,37	0.3079	0.846	wi(+),85	0.6143	0.6929	wi(+),55	0.2781	0.8609	wi(+),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	0.7518	0.6241	wi(-),37	0.6733	0.6633	wi(-),85	0.7928	0.6036	wi(-),55	0.7029	0.6485	wi(-),105
35	Function: shops	0.9461	0.5269	wi(+),105	0.5633	0.7184	wi(-),26	0.9400	0.53	wi(+),41	0.8686	0.5657	wi(+),37	0.4706	0.7248	tt(+),85	0.0420	0.979	wi(+),55	0.0704	0.9648	wi(+),105
36	Function: other	0.9238	0.5381	wi(+),105	0.7242	0.6379	wi(-),26	0.9083	0.5458	wi(-),41	0.7431	0.6284	wi(-),37	0.5603	0.5847	tt(+),85	0.6862	0.4063	tt(+),55	0.8189	0.2296	tt(+),105
37	Green: tree cover	0.0771	0.9615	wi(+),105	0.5913	0.7043	wi(+),26	0.2958	0.8521	wi(+),41	0.5960	0.5349	tt(+),37	0.4211	0.8084	tt(+),85	0.3590	-0.9252	tt(-),55	0.7224	-0.3562	tt(-),105
38	Green: bush cover	0.0998	0.9501	wi(+),105	0.9892	-0.0136	tt(-),26	0.1121	1.6245	tt(+),41	0.4181	0.7909	wi(+),37	0.7648	0.3002	tt(+),85	0.7641	-0.3017	tt(-),55	0.7427	-0.3292	tt(-),105
39	Green: grass cover	0.2075	0.8963	wi(+),105	0.9796	0.5102	wi(-),26	0.0915	1.7291	tt(+),41	0.6662	0.6669	wi(+),37	0.3835	0.876	tt(+),85	0.7422	0.3307	tt(+),55	0.5847	0.5483	tt(+),105
4	Noise pollution: total	0.0694	0.9653	wi(+),105	0.8781	0.561	wi(-),26	0.2022	1.2965	tt(+),41	0.4538	0.7731	wi(+),37	0.3752	0.8915	tt(+),85	0.7864	-0.2724	tt(-),55	0.3837	0.8082	wi(+),105
41	Noise pollution: roads	0.1018	0.9491	wi(+),105	0.8180	0.591	wi(-),26	0.1911	1.33	tt(+),41	0.4816	0.7592	wi(+),37	0.3371	0.9654	tt(+),85	0.7934	-0.2632	tt(-),55	0.5965	0.531	tt(+),105
42	Noise pollution: railways	0.2264	0.8868	wi(+),105	0.2103	0.8949	wi(+),26	0.1706	0.9147	wi(+),41	0.9819	0.5091	wi(-),37	0.2990	0.8505	wi(+),85	0.4841	0.7579	wi(+),55	0.4401	0.78	wi(+),105
4	Year constr.: mean	1.0000	equal	n/a,105	1.0000	equal	n/a,26	0.7103	0.6449	wi(+),41	0.8026	0.5987	wi(-),37	0.5134	0.7433	wi(+),85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
45	Landmarks: FSI	0.1511	0.9244	wi(-),105	0.7103	0.6448	wi(-),26	0.7630	0.6185	wi(-),41	0.9361	0.532	wi(-),37	0.9588	0.5206	wi(-),85	0.6238	0.6881	wi(-),55	0.9266	0.5367	wi(-),105
46	Landmarks: plot area	0.0025	0.9988	wi(-),105	0.0533	0.9733	wi(-),26	0.1978	0.9011	wi(-),41	0.0568	0.9716	wi(-),37	0.4853	0.7574	wi(-),85	0.7447	0.6277	wi(-),55	0.5404	0.7298	wi(-),105
47	Landmarks: Year constr.	0.1112	0.9444	wi(-),105	0.2978	0.8511	wi(-),26	0.7676	0.6162	wi(-),41	0.7739	0.613	wi(-),37	0.6100	0.695	wi(-),85	0.9677	0.5162	wi(+),55	0.8985	0.5508	wi(-),105
48	Landmarks: 1 criterion	0.0091	0.9955	wi(-),105	0.0679	0.966	wi(-),26	0.2152	0.8924	wi(-),41	0.4447	0.7776	wi(-),37	0.7157	0.6421	wi(-),85	0.6538	0.6731	wi(-),55	0.6344	0.6828	wi(-),105
49	Landmarks: 2 criteria	0.2019	0.8991	wi(-),105	0.7103	0.6448	wi(-),26	0.7630	0.6185	wi(-),41	0.3665	0.8168	wi(-),37	0.5391	0.7305	wi(-),85	1.0000	0.5	wi(+),55	0.8539	0.573	wi(-),105
20	Landmarks: 3 criteria	1.0000	equal	n/a,105	1.0000	equal	n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	equal	n/a,85	1.0000	equal	n/a,55	1.0000	equal	n/a,105
i							•	,		•		(:	-	;	,	;				

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] sta	t [5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometime:	s) [2] sta	t [2] coef,	n P([1] neve	r) [1] sta	t [1] coef,r	ר P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.8234	0.5883	wi(-),105	0.8340	0.583	3 wi(+),28	0.7849	0.6076	wi(+),40	0.8874	0.5563	wi(+),32	0.824	1 0.587	e,(-),8	4 0.386	2 0.806	9 wi(+),52	2 0.7351	0.6324	wi(+),105
₽	Year constr.: 1946-1970	0.5341	0.733	wi(+),105	0.7789	0.6106	6 wi(-),28	0.5748	0.7126	wi(+),40	0.7318	0.6341	wi(+),32	0.808	9 0.595	5 wi(+),8	4 0.710	6 0.373	1 tt(+),52	2 0.5510	0.7245	wi(+),105
÷	Year constr.: 1971-1985	0.9282	0.5359	wi(+),105	0.7918	0.6041	1 wi(+),28	0.8456	0.5772	wi(+),40	0.6029	0.6986	wi(-),32	0.181	1 0.909	t wi(+),8	4 0.970	2 0.514	9 wi(+),52	2 0.1443	0.9278	wi(+),105
12	Year constr.: 1986-2000	0.6893	0.6554	wi(-),105	0.5884	0.7058	8 wi(-),28	0.5449	0.7276	wi(-),40	0.5292	0.7354	wi(+),32	0.667	9 0.666	l wi(+),8	4 0.640	2 0.679	9 wi(+),52	2 0.9794	0.5103	wi(+),105
13	Year constr.: 2001-2022	0.3875	0.8062	wi(+),105	0.8129	0.5935	5 wi(-),28	0.3652	0.8174	wi(+),40	0.6842	-0.4106	tt(-),32	0.708	1 0.64	š wi(-),8	4 0.082	6 1.770	5 tt(+),52	2 0.7261	0.6369	wi(+),105
14	Traffic signals count	0.5126	0.7437	wi(-),105	0.3780	0.81	1 wi(-),28	0.7529	0.6235	wi(-),40	0.1733	0.9133	wi(+),32	0.338	1 0.830	9 wi(+),8	4 0.280	6 1.090	7 tt(+),52	2 0.2255	0.8873	wi(+),105
15	Stairs count	0.6031	0.6984	wi(+),105	0.1906	0.9047	7 wi(+),28	0.5687	0.7157	wi(+),40	0.2133	0.8934	wi(-),32	0.455	2 0.772	t wi(-),8	4 0.632	3 0.683	9 wi(+),52	2 0.7392	0.6304	wi(-),105
16	Status: for construction	0.8556	0.5722	wi(+),105	1.0000	edna	al n/a,28	0.9941	0.503	wi(-),40	0.7337	0.6331	wi(+),32	0.680	5 0.659	7 wi(+),8	4 0.465	9 0.767	1 wi(+),52	2 0.5825	0.7087	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.000	o edu	l n/a,8	4 1.000	anbe 0	al n/a,52	2 1.0000	equal	n/a,105
18	Status: under construction	0.7170	0.6415	wi(+),105	0.4867	0.7567	7 wi(-),28	0.3821	0.8089	wi(+),40	0.2134	0.8933	wi(+),32	0.996	0 0.50	2 wi(-),8	4 0.435	1 0.782	4 wi(-),52	2 0.8525	0.5737	wi(-),105
19	Status: in use (n.m.)	0.2019	0.8991	wi(+),105	0.4867	0.7567	7 wi(+),28	0.3821	0.8089	wi(+),40	0.3377	0.8312	wi(+),32	0.682	4 0.658	3 wi(-),8	4 1.000	onbe o	al n/a,52	2 0.8595	0.5702	wi(+),105
50	Status: in use	0.7876	0.6062	wi(-),105	0.8365	0.5818	8 wi(+),28	0.6549	0.6726	wi(-),40	0.5401	0.7299	wi(-),32	0.648	7 0.675	š wi(-),8	4 0.218	0.890	7 wi(+),52	2 0.6321	0.684	wi(+),105
5	Status: for demolition	0.8474	0.5763	wi(+),105	1.0000	edna	al n/a,28	0.7604	0.6198	wi(+),40	1.0000	equal	n/a,32	0.676	7 0.661	7 wi(+),8	4 0.596	4 0.701	8 wi(+),52	2 0.5753	0.7124	wi(+),105
52	Status: demolished	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.000	o eduá	l n/a,8	4 1.000	o edua	al n/a,52	2 1.0000	equal	n/a,105
53	Status: not in use	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.000	o equi	l n/a,8	4 1.000	o equa	al n/a,52	2 1.0000	equal	n/a,105
24	Status: reconstruction	0.5507	0.7246	wi(-),105	0.5134	0.743	3 wi(-),28	0.8566	0.5717	wi(-),40	0.9817	-0.0232	tt(-),32	0.040	0 0.9	3 wi(-),8	4 0.258	5 0.870	7 wi(-),52	2 0.0467	0.9766	wi(-),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.000	o equi	l n/a,8	4 1.000	o equa	al n/a,52	2 1.0000	equal	n/a,105
26	Function: residential	0.7082	0.6459	wi(+),105	0.2655	0.8672	2 wi(+),28	0.6109	0.6945	wi(+),40	0.8946	0.5527	wi(+),32	0.962	5 0.518	8 wi(+),8	4 0.847	6 0.576	2 wi(+),52	2 0.8297	0.5852	wi(-),105
57	Function: gathering	0.7964	0.6018	wi(-),105	0.1533	0.9234	4 wi(-),28	0.5513	0.7243	wi(+),40	0.8993	0.5504	wi(-),32	0.626	5 -0.488	5 tt(-),8	4 0.346	4 0.826	8 wi(+),52	2 0.3683	0.8159	wi(+),105
88	Function: prison	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.000	o equi	l n/a,8	4 1.000	o equa	al n/a,52	2 1.0000	equal	n/a,105
58	Function: healthcare	1.0000	0.5	wi(+),105	0.7194	0.6400	3 wi(+),28	0.7604	0.6198	wi(+),40	0.5111	0.7444	wi(-),32	0.678	5 0.660	3 wi(-),8	4 0.790	8 0.604	6 wi(+),52	2 0.8609	0.5695	wi(-),105
30	Function: factory	0.2574	0.8713	wi(+),105	0.3344	0.8328	8 wi(+),28	0.6103	0.6949	wi(+),40	0.9760	0.512	wi(-),32	0.697	5 0.651	2 wi(+),8	4 0.986	2 0.505	9 wi(-),52	2 0.8592	0.5704	wi(+),105
31	Function: office	0.9905	0.5048	wi(-),105	0.6838	-0.4117	7 tt(-),28	0.7725	0.6137	wi(+),40	0.9528	0.5236	wi(-),32	0.013	2 0.993	t wi(-),8	4 0.727	0 -0.351	1 tt(-),52	2 0.1030	-1.6451	tt(-),105
32	Function: guesthouse	0.7103	0.6448	wi(-),105	0.4867	0.7567	7 wi(-),28	1.0000	0.5	wi(+),40	1.0000	equal	n/a,32	0.998	0 0.50	l wi(+),8	4 0.600	0.699	9 wi(+),52	2 0.9860	0.507	wi(+),105
g	Function: education	0.5765	0.7118	wi(+),105	0.7194	0.6400	3 wi(-),28	0.2543	0.8728	wi(+),40	1.0000	equal	n/a,32	0.305	4 0.847	8 wi(+),8	4 0.995	9 0.502	1 wi(+),52	2 0.7067	0.6466	wi(+),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	0.7353	0.6323	wi(-),32	0.671	6 0.664	2 wi(-),8	4 0.787	4 0.606	3 wi(-),52	2 0.7029	0.6485	wi(-),105
35	Function: shops	0.8069	0.5966	wi(+),105	0.8010	0.5995	5 wi(-),28	0.8995	0.5503	wi(+),40	0.9685	0.5157	wi(-),32	0.576	2 0.561	2 tt(+),8	4 0.027	3 0.986	3 wi(+),52	2 0.0813	0.9593	wi(+),105
36	Function: other	0.8116	0.5942	wi(-),105	0.3285	0.8358	8 wi(-),28	0.5685	0.7158	wi(-),40	0.4964	0.7518	wi(-),32	0.527	8 0.736	l wi(+),8	4 0.748	5 0.322	4 tt(+),52	2 0.8408	0.2014	tt(+),105
37	Green: tree cover	0.1675	0.9163	wi(+),105	0.9818	0.5091	1 wi(+),28	0.2042	1.2912	tt(+),40	0.1309	0.9346	wi(+),32	0.873	7 -0.159	5 tt(-),8	4 0.847	0 0.193	9 tt(+),52	2 0.7012	0.3848	tt(+),105
38	Green: bush cover	0.1903	0.9049	wi(+),105	0.8730	0.5635	5 wi(-),28	0.1071	1.6493	tt(+),40	0.3433	0.8284	wi(+),32	0.900	6 0.549	7 wi(-),8	4 0.813	3 0.237	4 tt(+),52	2 0.8552	0.1829	tt(+),105
39	Green: grass cover	0.4057	0.7971	wi(+),105	0.6365	-0.478	8 tt(-),28	0.1489	1.4726	tt(+),40	0.2976	1.0593	tt(+),32	0.868	4 0.166	l tt(+),8	4 0.556	2 0.592	5 tt(+),52	2 0.3740	0.813	wi(+),105
ç	Noise pollution: total	0.0807	0.9596	wi(+),105	0.8971	0.1305	5 tt(+),28	0.3056	1.038	tt(+),40	0.5053	0.7474	wi(+),32	0.642	7 0.678	5 wi(+),8	4 0.868	1 0.166	9 tt(+),52	2 0.3880	0.806	wi(+),105
ŧ	Noise pollution: roads	0.1157	0.9421	wi(+),105	0.9454	0.5273	3 wi(-),28	0.2899	1.073	tt(+),40	0.4934	0.7533	wi(+),32	0.834	0 0.58	3 wi(+),8	4 0.951	0 0.061	8 tt(+),52	2 0.4978	0.7511	wi(+),105
42	Noise pollution: railways	0.1831	0.9084	wi(+),105	0.4933	0.7533	3 wi(+),28	0.3384	0.8308	wi(+),40	0.6793	0.6603	wi(+),32	0.319	9 0.8	t wi(+),8	4 0.394	2 0.802	9 wi(+),52	2 0.3279	0.8361	wi(+),105
\$	Year constr.: mean	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	0.8390	0.5805	wi(+),40	0.9252	0.5374	wi(-),32	1.000	o equá	l n/a,8	4 1.000	on equa	al n/a,52	2 1.0000	equal	n/a,105
\$5	Landmarks: FSI	0.2168	0.8916	wi(-),105	0.7194	0.6403	3 wi(-),28	0.7604	0.6198	wi(-),40	0.7582	0.6209	wi(-),32	0.837	3 0.581	t wi(-),8	4 0.919	6 0.540	2 wi(+),52	2 0.8258	0.5871	wi(+),105
46	Landmarks: plot area	0.0148	0.9926	wi(-),105	0.0906	0.9547	7 wi(-),28	0.1481	0.926	wi(-),40	0.1443	0.9279	wi(-),32	0.423	7 0.788	2 wi(-),8	4 0.900	11 0.5	5 wi(-),52	2 0.3762	0.8119	wi(-),105
47	Landmarks: Year constr.	0.1532	0.9234	wi(-),105	0.4867	0.7567	7 wi(-),28	0.3946	0.8027	wi(-),40	0.5111	0.7444	wi(-),32	0.600	0	7 wi(-),8	4 0.490	9 0.754	6 wi(+),52	2 0.8770	0.5615	wi(-),105
48	Landmarks: 1 criterion	0.0439	0.978	wi(-),105	0.2125	0.8937	7 wi(-),28	0.1499	0.925	wi(-),40	0.3888	0.8056	wi(-),32	0.535	6 0.732	2 wi(-),8	4 0.932	5 0.533	7 wi(+),52	2 0.6736	0.6632	wi(-),105
49	Landmarks: 2 criteria	0.2019	0.8991	wi(-),105	0.4867	0.7567	7 wi(-),28	1.0000	equal	n/a,40	0.5111	0.7444	wi(-),32	0.407	1 0.796	5 wi(-),8	4 0.794	17 0.602	6 wi(-),52	2 0.5790	0.7105	wi(-),105
20	Landmarks: 3 criterla	1.0000	equal	n/a,105	1.0000	edna	al n/a,28	1.0000	equal	n/a,40	1.0000	equal	n/a,32	1.000	o equá	l n/a,8	4 1.000	o equa	al n/a,52	2 1.0000	equal	n/a,105
;										:					;		:					

Figure 1.7: Raw results for route aggregate analysis, sample: full, sub-question 3, data: standardised, baseline: shortest path, direction: access

	Variables	P(Most) I	Most stat A	Most coef,n	P([5] always)	[5] sta	t [5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly	[3] stat	[3] coef,n	P([2] sometimes) [2] sta	t [2] coef,r	P([1] neve	r) [1] star	t [1] coef,n	P(Least)	Least stat L	east coef,n
6	Year constr.: < 1945	0.4975	0.7513	wi(-),105	0.2900	0.855	5 wi(-),26	0.5091	0.7455	wi(+),41	0.6531	0.6734	wi(+),37	0.9210	0.539	i wi(+),85	0.560	9 0.719	5 wi(-),55	0.6744	0.6628	wi(-),105
₽	Year constr.: 1946-1970	0.6538	0.6731	wi(+),105	0.3716	0.8142	2 wi(-),26	0.3350	0.8325	wi(+),41	0.8439	0.5781	wi(+),37	0.7147	7 0.6426	i wi(+),85	0.292	0 0.854	t wi(+),55	0.3330	0.8335	wi(+),105
÷	Year constr.: 1971-1985	0.6667	0.6666	wi(-),105	0.7447	0.6277	7 wi(-),26	0.6625	0.6687	wi(-),41	0.2710	1.1179	tt(+),37	0.1192	2 0.9404	t wi(+),85	0.750	1 0.625	5 wi(+),55	0.2863	0.8569	wi(+),105
12	Year constr.: 1986-2000	0.7848	0.6076	wi(-),105	0.9157	0.5421	1 wi(-),26	0.2970	0.8515	wi(-),41	0.5773	0.7114	wi(+),37	0.8069	0.5966	i wi(+),85	0.880	1 0.5554	t wi(+),55	0.8365	0.5818	wi(-),105
13	Year constr.: 2001-2022	0.3785	0.8107	wi(+),105	0.3578	0.821	1 wi(+),26	0.4650	0.7675	wi(+),41	0.6390	0.6805	wi(+),37	0.7909	0.6046	i wi(-),85	0.070	8 1.843	3 tt(+),55	0.6530	0.6735	wi(+),105
14	Traffic signals count	0.5448	0.7276	wi(-),105	0.6811	-0.4159	9 tt(-),26	0.9101	0.545	wi(+),41	0.3778	0.8111	wi(+),37	0.7523	3 0.6239	9 wi(+),85	0.063	5 1.8946	5 tt(+),55	0.0928	0.9536	wi(+),105
15	Stairs count	0.6031	0.6984	wi(+),105	0.4730	0.7635	5 wi(+),26	0.4072	0.7964	wi(+),41	0.3887	0.8057	wi(-),37	0.8535	0.573	s wi(-),85	0.568	10.5738	3 tt(+),55	0.6719	-0.4247	tt(-),105
16	Status: for construction	0.8556	0.5722	wi(+),105	1.0000	edna	il n/a,26	0.9943	0.5028	wi(-),41	0.5400	0.73	wi(+),37	0.9808	3 0.5096	i wi(+),85	0.318	0 0.84	l wi(+),55	0.5799	0.7101	wi(+),105
17	Status: unrealised	1.0000	equal	n/a,105	1.0000	edna	il n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edna	l n/a,85	1.000	0 edna	l n/a,55	1.0000	equal	n/a,105
18	Status: under construction	0.7170	0.6415	wi(+),105	0.7103	0.6448	3 wi(+),26	0.5555	0.7222	wi(+),41	0.3886	0.8056	wi(+),37	0.6812	0.659	t wi(-),85	0.605	57 0.6972	2 wi(-),55	0.8469	0.5765	wi(-),105
19	Status: in use (n.m.)	0.3620	0.819	wi(+),105	0.7103	0.6448	3 wi(+),26	0.3871	0.8065	wi(+),41	0.5621	0.7189	wi(+),37	0.6733	3 0.6634	t wi(-),85	0.792	8 0.6036	5 wi(+),55	0.8595	0.5702	wi(+),105
20	Status: in use	0.2863	0.8568	wi(-),105	0.4393	0.7803	3 wi(-),26	0.6011	0.6995	wi(-),41	0.7562	0.6219	wi(-),37	0.8779	9 0.561	wi(+),85	0.785	0.606	5 wi(+),55	0.9375	0.5313	wi(-),105
51	Status: for demolition	0.8474	0.5763	wi(+),105	1.0000	edna	il n/a,26	0.7630	0.6185	wi(+),41	0.7518	0.6241	wi(+),37	0.8329	9 0.583	i wi(+),85	0.792	8 0.6036	5 wi(+),55	0.7054	0.6473	wi(+),105
53	Status: demolished	1.0000	equal	n/a,105	1.0000	edna	il n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edna	l n/a,85	1.000	0 edna	l n/a,55	1.0000	equal	n/a,105
53	Status: not in use	1.0000	equal	n/a,105	1.0000	edna	il n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edna	l n/a,85	1.000	o edna	l n/a,55	1.0000	equal	n/a,105
24	Status: reconstruction	0.5303	0.7348	wi(-),105	0.7039	0.648	8 wi(-),26	0.8152	0.5924	wi(-),41	0.7215	0.3592	tt(+),37	0.0700	0.96	i wi(-),85	0.095	6 0.9502	2 wi(-),55	0.0124	0.9938	wi(-),105
25	Status: illegitimate	1.0000	equal	n/a,105	1.0000	edna	il n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edua	l n/a,85	1.000	o equa	l n/a,55	1.0000	equal	n/a,105
26	Function: residential	0.8586	0.5707	wi(+),105	0.2900	0.855	5 wi(+),26	0.8239	0.5881	wi(-),41	0.4425	0.7788	wi(+),37	0.8741	0.5629	9 wi(+),85	0.524	6 0.7377	7 wi(+),55	0.7348	0.6326	wi(+),105
27	Function: gathering	0.8976	0.5512	wi(-),105	0.3561	0.8219	9 wi(-),26	0.5699	0.7151	wi(+),41	0.6873	0.6564	wi(-),37	0.6264	4 -0.4886	5 tt(-),85	0.364	0 0.818	3 wi(+),55	0.6372	0.6814	wi(+),105
28	Function: prison	1.0000	equal	n/a,105	1.0000	edna	il n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	edna	l n/a,85	1.000	o edna	l n/a,55	1.0000	equal	n/a,105
29	Function: healthcare	1.0000	0.5	wi(+),105	0.7103	0.6448	8 wi(+),26	1.0000	equal	n/a,41	0.7634	0.6183	wi(-),37	0.8384	1 0.5808	s wi(-),85	0.796	0 0.602	2 wi(+),55	0.9943	0.5028	wi(+),105
30	Function: factory	0.3298	0.8351	wi(+),105	0.2978	0.8511	1 wi(+),26	0.6474	0.6763	wi(+),41	0.9935	0.5032	wi(-),37	0.8145	0.5927	r wi(+),85	0.856	4 0.5718	3 wi(+),55	0.9889	0.5055	wi(+),105
31	Function: office	0.8837	0.5582	wi(+),105	0.4930	0.7535	5 wi(-),26	0.7909	0.6045	wi(+),41	0.2972	0.8514	wi(+),37	0.0485	5 -2.0021	tt(-),85	0.271	6 -1.1108	3 tt(-),55	0.0540	-1.9487	tt(-),105
32	Function: guesthouse	0.7103	0.6448	wi(-),105	0.7103	0.6448	3 wi(-),26	0.7731	0.6134	wi(+),41	0.7762	0.6119	wi(-),37	0.7078	3 0.6461	wi(-),85	1.000	0.5	5 wi(+),55	0.7250	0.6375	wi(-),105
33	Function: education	0.7067	0.6466	wi(+),105	0.7103	0.6448	3 wi(-),26	0.3871	0.8064	wi(+),41	1.0000	equal	n/a,37	0.3079	9 0.846	i wi(+),85	0.614	3 0.6929	9 wi(+),55	0.2781	0.8609	wi(+),105
34	Function: sports	0.8474	0.5763	wi(-),105	1.0000	edna	il n/a,26	1.0000	equal	n/a,41	0.7518	0.6241	wi(-),37	0.6733	3 0.6633	s wi(-),85	0.792	8 0.6036	ò wi(-),55	0.7029	0.6485	wi(-),105
35	Function: shops	0.9461	0.5269	wi(+),105	0.5633	0.7184	4 wi(-),26	0.9400	0.53	wi(+),41	0.8686	0.5657	wi(+),37	0.4706	§ 0.7248	s tt(+),85	0.042	0 0.975	9 wi(+),55	0.0704	0.9648	wi(+),105
36	Function: other	0.9238	0.5381	wi(+),105	0.7242	0.6379	9 wi(-),26	0.9083	0.5458	wi(-),41	0.7431	0.6284	wi(-),37	0.5603	3 0.5847	r tt(+),85	0.686	2 0.406	3 tt(+),55	0.8189	0.2296	tt(+),105
37	Green: tree cover	0.0771	0.9615	wi(+),105	0.5913	0.7043	3 wi(+),26	0.2958	0.8521	wi(+),41	0.5960	0.5349	tt(+),37	0.4211	0.808	tt(+),85	0.355	0 -0.9252	2 tt(-),55	0.7224	-0.3562	tt(-),105
38	Green: bush cover	0.0998	0.9501	wi(+),105	0.9892	-0.0136	5 tt(-),26	0.1121	1.6245	tt(+),41	0.4181	0.7909	wi(+),37	0.7648	3 0.3002	e tt(+),85	0.764	1 -0.3017	r tt(-),55	0.7427	-0.3292	tt(-),105
39	Green: grass cover	0.2075	0.8963	wi(+),105	0.9796	0.5102	2 wi(-),26	0.0915	1.7291	tt(+),41	0.6662	0.6669	wi(+),37	0.3835	0.876	6 tt(+),85	0.742	2 0.3307	7 tt(+),55	0.5847	0.5483	tt(+),105
6	Noise pollution: total	0.0694	0.9653	wi(+),105	0.8781	0.561	1 wi(-),26	0.2022	1.2965	tt(+),41	0.4536	0.7731	wi(+),37	0.3752	2 0.8915	tt(+),85	0.786	4 -0.272	t tt(-),55	0.3837	0.8082	wi(+),105
41	Noise pollution: roads	0.1018	0.9491	wi(+),105	0.8180	0.591	1 wi(-),26	0.1911	1.33	tt(+),41	0.4816	0.7592	wi(+),37	0.3371	1 0.9654	tt(+),85	0.793	4 -0.2632	2 tt(-),55	0.5965	0.531	tt(+),105
42	Noise pollution: railways	0.2264	0.8868	wi(+),105	0.2103	0.8949	9 wi(+),26	0.1706	0.9147	wi(+),41	0.9819	0.5091	wi(-),37	0.2990	0.850	i wi(+),85	0.484	1 0.7579	9 wi(+),55	0.4401	0.78	wi(+),105
44	Year constr.: mean	1.0000	equal	n/a,105	1.0000	edna	il n/a,26	0.7103	0.6449	wi(+),41	0.8026	0.5987	wi(-),37	0.5134	4 0.7433	s wi(+),85	1.000	00 edua	l n/a,55	1.0000	equal	n/a,105
45	Landmarks: FSI	0.1511	0.9244	wi(-),105	0.7103	0.6448	3 wi(-),26	0.7630	0.6185	wi(-),41	0.9361	0.532	wi(-),37	0.9588	3 0.5206	i wi(-),85	0.623	88 0.688	l wi(-),55	0.9266	0.5367	wi(-),105
46	Landmarks: plot area	0.0025	0.9988	wi(-),105	0.0533	0.9730	3 wi(-),26	0.1978	0.9011	wi(-),41	0.0568	0.9716	wi(-),37	0.4853	3 0.7574	t wi(-),85	0.744	17 0.6277	7 wi(-),55	0.5404	0.7298	wi(-),105
47	Landmarks: Year constr.	0.1112	0.9444	wi(-),105	0.2978	0.851	1 wi(-),26	0.7676	0.6162	wi(-),41	0.7736	0.613	wi(-),37	0.6100	0.695	i wi(-),85	0.967	7 0.5162	2 wi(+),55	0.8985	0.5508	wi(-),105
48	Landmarks: 1 criterion	0.0091	0.9955	wi(-),105	0.0679	0.96	5 wi(-),26	0.2152	0.8924	wi(-),41	0.4447	0.7776	wi(-),37	0.7157	7 0.6421	wi(-),85	0.653	8 0.673	l wi(-),55	0.6344	0.6828	wi(-),105
49	Landmarks: 2 criteria	0.2019	0.8991	wi(-),105	0.7103	0.6448	3 wi(-),26	0.7630	0.6185	wi(-),41	0.3665	0.8168	wi(-),37	0.5391	0.730	i wi(-),85	1.000	0.5	5 wi(+),55	0.8539	0.573	wi(-),105
20	Landmarks: 3 criteria	1.0000	equal	n/a,105	1.0000	edua	il n/a,26	1.0000	equal	n/a,41	1.0000	equal	n/a,37	1.0000	o equa	l n/a,85	1.000	o equa	l n/a,55	1.0000	equal	n/a,105
			,							;					1							

Figure 1.8: Raw results for route aggregate analysis, sample: full, sub-question 3, data: standardised, baseline: shortest path, direction: egress

1.3 Interaction effect results

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n	P(Least) I	Least_stat	east_coef	5
6	Year constr.: < 1945	0.6148	0.4895	(+),56	0.8453	0.4518	(-),26	0.5460	0.4362	(+),43	0.9882	0.2157	(-),30	0.8977	0.6726	2'(+)	56
₽	Year constr.: 1946-1970	0.7346	0.4584	(+),56	0.8649	0.4397	(-),26	0.9789	0.4507	(-),43	0.7554	0.3797	(-),30	0.7874	0.3055	;(-) ;	26
ŧ	Year constr.: 1971-1985	0.6762	0.4854	(+),56	0.8486	0.5152	(+),26	0.9679	0.4051	(-),43	0.6825	0.2436	(-),30	0.7275	0.2354	÷(-)	56
12	Year constr.: 1986-2000	0.0984	0.3438	(+),56	0.1214	0.4482	(+),26	0.5068	0.7635	(+),43	0.8743	0.7315	(+),30	0.5588	0.7767	(+),5	56
13	Year constr.: 2001-2022	0.7260	0.6128	(+),56	0.7165	0.5298	(+),26	0.7139	0.1089	(-),43	0.6455	0.1601	(-),30	0.6933	0.1620	(-),5	56
14	Traffic signals count	0.7856	0.3474	(+),56	1.0000	0.5334	(-),26	0.7008	0.4808	(-),43	0.6378	0.2016	(-),30	0.2233	0.2287	÷(-)	56
15	Stairs count	0.2732	0.3248	(-),56	0.9893	0.3732	(-),26	0.7926	0.5026	(-),43	0.0955	0.2758	(-),30	0.3870	0.4122	÷(-)	56
16	Status: for construction	0.4988	0.4960	(+),56	0.5116	0.5000	(+),26	0.8770	0.2640	(-),43	0.8780	0.5408	(+),30	0.7499	0.6216	2'(+)	26
17	Status: unrealised	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.0000	(-) : £	56
18	Status: under construction	0.7396	0.3613	(-),56	0.6546	0.1515	(-),26	0.7574	0.3664	(-),43	0.5703	0.2852	(+),30	0.7998	0.3826	-),E	26
19	Status: in use (n.m.)	0.6917	0.2122	(-),56	0.7804	0.2276	(-),26	0.4799	0.2595	(+),43	0.9864	0.0000	(-),30	0.5737	0.4171	;(+) ;	56
20	Status: in use	0.2385	0.4215	(+),56	0.6938	0.4309	(+),26	0.4627	0.5000	(+),43	0.9764	0.1029	(-),30	0.9073	0.8055	£'(+)	26
5	Status: for demolition	0.3260	0.0000	(-),56	0.3363	0.0000	(-),26	0.3287	0.5066	(-),43	0.1608	0.0804	(-),30	0.1592	0.2801	2'(-)	56
8	Status: demolished	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.0000	÷(-)	26
23	Status: not in use	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.0000	(-) : £	56
24	Status: reconstruction	0.1009	0.4863	(-),56	0.2960	0.2609	(-),26	0.8021	0.0657	(+),43	0.3132	0.7180	(-),30	0.5106	0.8165	(-),5	56
25	Status: illegitimate	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.0000	3'(-)	56
26	Function: residential	0.1463	0.3274	(+),56	0.5427	0.3976	(+),26	0.3935	0.4620	(+),43	0.8239	0.8392	(+),30	0.5947	0.6879	(+), 5	56
27	Function: gathering	0.8496	0.3991	(-),56	0.8025	0.3332	(-),26	0.8497	0.4522	(+),43	0.2468	0.2357	(-),30	0.3651	0.1757	;(-)	56
28	Function: prison	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.0000	(-),5	56
59	Function: healthcare	0.5672	0.5036	(-),56	0.3363	0.1681	(-),26	0.9868	0.7250	(-),43	0.5571	0.2785	(-),30	0.5602	0.4964	, (-)	56
8	Function: factory	0.6983	0.5034	(+),56	0.7489	0.5116	(+),26	0.7826	0.5027	(+),43	0.9575	0.6215	(-),30	0.8691	0.5869	(+)	26
3	Function: office	0.5869	0.6991	(+),56	0.6642	0.6642	(+),26	0.1989	0.2598	(+),43	0.8923	0.7735	(+),30	0.5326	0.6348	2'(+)	56
32	Function: guesthouse	0.0826	0.2038	(+),56	1.0000	0.7296	(-),26	0.9795	0.3409	(-),43	0.5816	0.7159	(+),30	0.3978	0.5338	£'(+)	26
33	Function: education	0.4076	0.9241	(+),56	0.5711	0.0806	(-),26	0.4055	0.9249	(+),43	0.5972	0.8493	(+),30	0.4248	0.9241	2'(+)	56
34	Function: sports	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.000	(-);£	26
35	Function: shops	0.8939	0.3185	(-),56	0.8986	0.7607	(+),26	0.9962	0.4200	(-),43	0.3491	0.2126	(-),30	0.5374	0.1732	, (-)	56
36	Function: other	0.5770	0.4573	(+),56	0.2771	0.2224	(+),26	0.7822	0.1851	(-),43	0.3300	0.2373	(-),30	0.6435	0.1943	(-)	26
37	Green: tree cover	0.0000	0.6255	(+),56	0.0012	0.5110	(+),26	0.0004	0.6544	(+),43	0.0024	0.5529	(+),30	0.0001	0.6571	(+)	56
38	Green: bush cover	0.0001	0.6167	(+),56	0.0047	0.5762	(+),26	0.0017	0.5584	(+),43	0.0053	0.5646	(+),30	0.0002	0.5886	£'(+)	26
39	Green: grass cover	0.0003	0.6624	(+),56	0.0047	0.5618	(+),26	0.0019	0.7038	(+),43	0.0024	0.5118	(+),30	0.0001	0.5727	2'(+)	56
4	Noise pollution: total	0.0079	0.6189	(+),56	0.0491	0.6187	(+),26	0.0072	0.5754	(+),43	0.0095	0.4412	(+),30	0.0014	0.4548	(+), 5	26
41	Noise pollution: roads	0.0075	0.6771	(+),56	0.0378	0.6463	(+),26	0.0026	0.5034	(+),43	0.0133	0.4941	(+),30	0.0007	0.4618	2'(+)	56
42	Noise pollution: railways	0.0169	0.5509	(+),56	0.0774	0.5834	(+),26	0.0711	0.7098	(+),43	0.0635	0.4647	(+),30	0.0320	0.6332	3,(+)	56
4	Year constr.: mean	0.6106	0.4698	(+),56	0.4586	0.3503	(+),26	0.8358	0.2628	(-),43	0.5493	0.3476	(+),30	0.7511	0.4756	£'(+)	56
45	Landmarks: FSI	0.3638	0.3092	(+),56	0.8206	0.0000	(+),26	0.6563	0.4070	(+),43	0.9365	0.6041	(+),30	0.7758	0.5694	2'(+)	26
46	Landmarks: plot area	0.1129	0.1311	(+),56	0.3807	0.3511	(+),26	0.3383	0.2811	(+),43	1.0000	0.4629	(-),30	0.4802	0.4024	2'(+)	56
47	Landmarks: Year constr.	0.4988	0.3302	(+),56	0.8400	0.3750	(+),26	0.6861	0.3520	(+),43	0.8504	0.6865	(+),30	0.8289	0.5131	3,(+)	26
48	Landmarks: 1 criterion	0.2424	0.1856	(+),56	0.8267	0.3179	(+),26	0.4842	0.2869	(+),43	0.8675	0.6075	(+),30	0.6775	0.4858	(+),5	56
6	Landmarks: 2 criteria	0.2538	0.2664	(+),56	0.3029	0.0000	(+),26	0.4925	0.3409	(+),43	0.9492	0.3835	(-),30	0.6083	0.5020	;(+)	26
50	Landmarks: 3 criteria	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),43	1.0000	0.0000	(-),30	1.0000	0.0000	£'(-)	56

Figure 1.9: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least) I	Least_stat	-east_coef,n	_
6	Year constr.: < 1945	0.5141	0.4052	(+),56	0.8526	0.5223	(+),26	0.6709	0.5818	(+),45	0.9559	0.3849	(-),29	0.7544	0.5834	(+),56	G
₽	Year constr.: 1946-1970	0.8584	0.5143	(+),56	0.8438	0.4034	(-),26	0.7121	0.4347	(+),45	0.5030	0.2675	(-),29	0.8704	0.3416	(-),56	ß
÷	Year constr.: 1971-1985	0.6366	0.4781	(+),56	0.4741	0.3694	(+),26	0.9308	0.2980	(-),45	0.6479	0.3948	(-),29	0.9588	0.3419	(-),56	6
12	Year constr.: 1986-2000	0.1116	0.4002	(+),56	0.0499	0.3000	(+),26	0.4154	0.6931	(+),45	0.8469	0.2770	(-),29	0.5608	0.7863	(+),56	ő
13	Year constr.: 2001-2022	0.8506	0.6689	(+),56	0.6966	0.6030	(+),26	0.9384	0.1799	(-),45	0.4615	0.1181	(-),29	0.7797	0.1790	(-),56	6
14	Traffic signals count	0.8638	0.3820	(+),56	0.9043	0.5037	(-),26	0.2692	0.3467	(-),45	0.8124	0.7340	(+),29	0.1919	0.2030	(-),56	6
15	Stairs count	0.2732	0.3248	(-),56	0.7270	0.2471	(-),26	0.2755	0.2837	(-),45	0.4219	0.2952	(-),29	0.3870	0.4122	(-),56	6
16	Status: for construction	0.4988	0.4960	(+),56	0.5116	0.5000	(+),26	0.5175	0.5191	(+),45	0.8965	0.3419	(-),29	0.7499	0.6216	(+),56	ő
17	Status: unrealised	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.0000	(-),56	6
18	Status: under construction	0.7396	0.3613	(-),56	0.6546	0.1515	(-),26	1.0000	0.5118	(+),45	1.0000	0.5000	(+),29	0.7998	0.3826	(-),56	ő
19	Status: in use (n.m.)	0.8997	0.3006	(-),56	0.7804	0.2276	(-),26	0.3619	0.2921	(+),45	0.5843	0.0000	(-),29	0.5737	0.4171	(+),56	6
30	Status: in use	0.1844	0.3525	(+),56	0.4809	0.4166	(+),26	0.6600	0.6931	(+),45	0.9627	0.8189	(+),29	0.6709	0.6978	(+),56	6
2	Status: for demolition	0.3260	0.0000	(-),56	0.3363	0.0000	(-),26	1.0000	0.8467	(-),45	0.3343	0.1671	(-),29	0.3260	0.5000	(-),56	6
23	Status: demolished	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.0000	(-),56	6
53	Status: not in use	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.0000	(-),56	6
24	Status: reconstruction	0.1093	0.5110	(-),56	0.6552	0.4766	(-),26	0.7995	0.8584	(-),45	0.6925	0.8262	(-),29	0.8040	0.9028	(-),56	ú
25	Status: illegitimate	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.0000	(-),56	6
26	Function: residential	0.1572	0.3489	(+),56	0.3290	0.3256	(+),26	0.5230	0.6346	(+),45	0.7529	0.7381	(+),29	0.4335	0.5652	(+),56	io.
27	Function: gathering	0.9947	0.5186	(+),56	0.6376	0.4374	(-),26	0.8588	0.4834	(-),45	0.3303	0.1557	(-),29	0.5054	0.2359	(-),56	6
28	Function: prison	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.0000	(-),56	ŝ
59	Function: healthcare	0.5672	0.5036	(-),56	0.3363	0.0000	(+),26	0.5680	0.5045	(-),45	0.1609	0.2784	(-),29	0.3107	0.3215	(-),56	6
8	Function: factory	0.5340	0.4118	(+),56	0.3471	0.3744	(+),26	0.8085	0.5813	(+),45	0.6920	0.6081	(-),29	0.9621	0.3343	(-),56	6
31	Function: office	0.6194	0.7186	(+),56	0.5336	0.6707	(+),26	0.4681	0.5740	(+),45	0.3525	0.5514	(+),29	0.5084	0.6205	(+),56	6
32	Function: guesthouse	0.0826	0.2038	(+),56	1.0000	0.7296	(-),26	0.3864	0.5293	(+),45	0.5983	0.5196	(+),29	0.2143	0.3722	(+),56	6
33	Function: education	0.1744	0.8456	(+),56	0.9781	0.1681	(-),26	0.4059	0.9248	(+),45	0.9859	0.0805	(-),29	0.9844	0.0218	(-),56	6
34	Function: sports	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.000	(-),56	ő
35	Function: shops	0.9137	0.5874	(+),56	0.7565	0.6935	(+),26	1.0000	0.3665	(-),45	0.0610	0.0803	(-),29	0.3231	0.0953	(-),56	6
36	Function: other	0.9202	0.6359	(+),56	0.6184	0.3162	(+),26	0.8902	0.3561	(-),45	0.5094	0.1689	(-),29	0.8676	0.2797	(-),56	6
37	Green: tree cover	0.0000	0.6474	(+),56	0.0042	0.5618	(+),26	0.0001	0.5609	(+),45	0.0022	0.5464	(+),29	0.0000	0.4250	(+),56	6
38	Green: bush cover	0.0001	0.6255	(+),56	0.0086	0.6046	(+),26	0.0002	0.4678	(+),45	0.0056	0.5771	(+),29	0.0001	0.4159	(+),56	6
39	Green: grass cover	0.0003	0.7197	(+),56	0.0101	0.7054	(+),26	0.0001	0.4968	(+),45	0.0153	0.6599	(+),29	0.0001	0.4803	(+),56	6
4	Noise pollution: total	0.0075	0.6122	(+),56	0.0431	0.5905	(+),26	0.0012	0.5673	(+),45	0.0272	0.5155	(+),29	0.0021	0.5081	(+),56	6
41	Noise pollution: roads	0.0071	0.6687	(+),56	0.0491	0.6326	(+),26	0.0007	0.5988	(+),45	0.0372	0.5464	(+),29	0.0022	0.5567	(+),56	6
42	Noise pollution: railways	0.0166	0.5440	(+),56	0.1176	0.5690	(+),26	0.0185	0.6387	(+),45	0.2192	0.5093	(+),29	0.0272	0.6156	(+),56	ģ
4	Year constr.: mean	0.7161	0.5255	(+),56	0.6277	0.4059	(+),26	0.9293	0.5957	(+),45	0.6132	0.5372	(+),29	0.8159	0.5058	(+),56	ŝ
45	Landmarks: FSI	0.3638	0.3092	(+),56	0.6095	0.4105	(+),26	0.6870	0.4294	(+),45	0.9783	0.5181	(+),29	0.6961	0.5191	(+),56	6
46	Landmarks: plot area	0.0870	0.1056	(+),56	0.2475	0.2154	(+),26	0.4981	0.2946	(+),45	0.8932	0.6038	(+),29	0.4614	0.3906	(+),56	6
47	Landmarks: Year constr.	0.4717	0.3145	(+),56	0.6387	0.3981	(+),26	0.7681	0.4301	(+),45	0.8372	0.4113	(-),29	0.8340	0.5131	(+),56	6
1 8	Landmarks: 1 criterion	0.2147	0.1685	(+),56	0.6629	0.2700	(+),26	0.5000	0.3552	(+),45	0.9670	0.4440	(-),29	0.6535	0.4528	(+),56	6
49	Landmarks: 2 criteria	0.2538	0.2664	(+),56	0.2221	0.3271	(+),26	0.8119	0.3856	(+),45	0.9276	0.3604	(-),29	0.6355	0.5142	(+),56	6
50	Landmarks: 3 criteria	1.0000	0.0000	(-),56	1.0000	0.0000	(-),26	1.0000	0.0000	(-),45	1.0000	0.0000	(-),29	1.0000	0.000	(-),56	(0

Figure 1.10: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least) I	Least_stat	-east_coef,n
6	Year constr.: < 1945	0.9790	0.5128	(-),56	0.9036	0.5556	(+),26	0.8723	0.5673	(-),43	0.4314	0.7886	(+),30	0.6591	0.6726	(+),56
₽	Year constr.: 1946-1970	0.9168	0.5440	(-),56	0.8794	0.5678	(+),26	0.9014	0.5528	(+),43	0.7594	0.6261	(+),30	0.6110	0.6966	(+),56
÷	Year constr.: 1971-1985	0.9708	0.5170	(-),56	0.9848	0.5152	(+),26	0.8101	0.5984	(+),43	0.4873	0.7613	(+),30	0.4709	0.7664	(+),56
12	Year constr.: 1986-2000	0.6876	0.6584	(-),56	0.8963	0.5592	(-),26	0.4784	0.7635	(+),43	0.5469	0.7315	(+),30	0.4502	0.7767	(+),56
13	Year constr.: 2001-2022	0.7790	0.6128	(+),56	0.9553	0.5298	(+),26	0.2179	0.8927	(+),43	0.3202	0.8435	(+),30	0.3239	0.8395	(+),56
14	Traffic signals count	0.6948	0.6548	(-),56	0.9481	0.5334	(-),26	0.9616	0.5227	(+),43	0.4032	0.8026	(+),30	0.4573	0.7731	(+),56
15	Stairs count	0.6495	0.6782	(+),56	0.7464	0.6365	(+),26	0.9949	0.5026	(+),43	0.5517	0.7309	(+),30	0.8244	0.5909	(+),56
16	Status: for construction	0.9919	0.5081	(-),56	1.0000	0.5132	(-),26	0.5280	0.7407	(+),43	0.9364	0.5408	(+),30	0.7643	0.6216	(+),56
17	Status: unrealised	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.0000	(+),56
18	Status: under construction	0.7226	0.6429	(+),56	0.3029	0.8576	(+),26	0.7328	0.6397	(+),43	0.5703	0.7280	(-),30	0.7652	0.6217	(+),56
19	Status: in use (n.m.)	0.4243	0.7905	(+),56	0.4553	0.7811	(+),26	0.5191	0.7455	(-),43	1.0000	0.0000	(+),30	0.8341	0.5870	(-),56
20	Status: in use	0.8430	0.5808	(-),56	0.8618	0.5763	(-),26	1.0000	0.5034	(-),43	0.2059	0.8997	(+),30	0.3922	0.8055	(+),56
21	Status: for demolition	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	0.9868	0.5066	(+),43	0.1608	0.9265	(+),30	0.5602	0.7269	(+),56
52	Status: demolished	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.000	(+),56
33	Status: not in use	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.0000	(+),56
24	Status: reconstruction	0.9725	0.5165	(+),56	0.5219	0.7463	(+),26	0.1313	0.9357	(-),43	0.5765	0.7180	(-),30	0.3709	0.8165	(-),56
25	Status: illegitimate	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.0000	(+),56
26	Function: residential	0.6548	0.6747	(-),56	0.7953	0.6095	(-),26	0.9239	0.5415	(-),43	0.3290	0.8392	(+),30	0.6284	0.6879	(+),56
27	Function: gathering	0.7983	0.6034	(+),56	0.6665	0.6748	(+),26	0.9044	0.5519	(-),43	0.4714	0.7694	(+),30	0.3514	0.8260	(+),56
28	Function: prison	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.0000	(+),56
59	Function: healthcare	0.9928	0.5036	(+),56	0.3363	0.8505	(+),26	0.5682	0.7250	(-),43	0.5571	0.7345	(+),30	0.9928	0.5108	(+),56
8	Function: factory	1.0000	0.5034	(+),56	1.0000	0.5116	(+),26	0.9946	0.5027	(+),43	0.7727	0.6215	(-),30	0.8327	0.5869	(+),56
3	Function: office	0.6063	0.6991	(+),56	0.6861	0.6642	(+),26	0.5196	0.7434	(-),43	0.4628	0.7735	(+),30	0.7351	0.6348	(+),56
32	Function: guesthouse	0.4076	0.8004	(-),56	0.5711	0.7296	(-),26	0.6817	0.6658	(+),43	0.5893	0.7159	(+),30	0.9428	0.5338	(+),56
33	Function: education	0.1591	0.9241	(+),56	0.1613	0.9273	(+),26	0.1597	0.9249	(+),43	0.3337	0.8493	(+),30	0.1592	0.9241	(+),56
34	Function: sports	1.0000	0.000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.0000	(+),56
35	Function: shops	0.6371	0.6837	(+),56	0.4924	0.7607	(+),26	0.8400	0.5838	(+),43	0.4252	0.7919	(+),30	0.3464	0.8284	(+),56
36	Function: other	0.9147	0.5451	(-);56	0.4449	0.7833	(-),26	0.3702	0.8173	(+),43	0.4747	0.7674	(+),30	0.3887	0.8073	(+),56
37	Green: tree cover	0.7533	0.6255	(+),56	0.9927	0.5110	(+),26	0.6975	0.6544	(+),43	0.9058	0.5529	(+),30	0.6902	0.6571	(+),56
8	Green: bush cover	0.7711	0.6167	(+),56	0.8620	0.5762	(+),26	0.8901	0.5584	(+),43	0.8825	0.5646	(+),30	0.8273	0.5886	(+),56
39	Green: grass cover	0.6795	0.6624	(+),56	0.8908	0.5618	(+),26	0.5983	0.7038	(+),43	0.9882	0.5118	(+),30	0.8591	0.5727	(+),56
4	Noise pollution: total	0.7666	0.6189	(+),56	0.7766	0.6187	(+),26	0.8561	0.5754	(+),43	0.8825	0.5646	(-),30	0.9097	0.5475	(-),56
4	Noise pollution: roads	0.6499	0.6771	(+),56	0.7211	0.6463	(+),26	1.0000	0.5034	(+),43	0.9882	0.5118	(-),30	0.9235	0.5406	(-),56
42	Noise pollution: railways	0.9027	0.5509	(+),56	0.8476	0.5834	(+),26	0.5863	0.7098	(+),43	0.9293	0.5412	(-),30	0.7379	0.6332	(+),56
4	Year constr.: mean	0.9397	0.5325	(-),56	0.7006	0.6564	(-),26	0.5255	0.7400	(+),43	0.6951	0.6579	(-),30	0.9513	0.5267	(-),56
45	Landmarks: FSI	0.6184	0.6931	(-),56	1.0000	0.0000	(+),26	0.8139	0.5967	(-),43	0.8041	0.6041	(+),30	0.8662	0.5694	(+),56
46	Landmarks: plot area	0.2621	0.8703	(-),56	0.7021	0.6564	(-),26	0.5622	0.7220	(-),43	0.9257	0.5433	(+),30	0.8048	0.6000	(-),56
47	Landmarks: Year constr.	0.6604	0.6722	(-),56	0.7499	0.6331	(-),26	0.7040	0.6516	(-),43	0.6389	0.6865	(+),30	0.9790	0.5131	(+),56
8	Landmarks: 1 criterion	0.3711	0.8160	(-),56	0.6359	0.6888	(-),26	0.5739	0.7160	(-),43	0.7966	0.6075	(+),30	0.9716	0.5166	(-),56
49	Landmarks: 2 criteria	0.5328	0.7372	(-),56	1.0000	0.0000	(+),26	0.6819	0.6657	(-),43	0.7670	0.6248	(+),30	0.9960	0.5020	(+),56
20	Landmarks: 3 criteria	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),43	1.0000	0.0000	(+),30	1.0000	0.0000	(+),56

Figure 1.11: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n	P(Least) I	Least_stat	-east_coef,n
6	Year constr.: < 1945	0.8104	0.5971	(-),56	0.9703	0.5223	(+),26	0.8428	0.5818	(+),45	0.7699	0.6211	(+),29	0.8378	0.5834	(+),56
₽	Year constr.: 1946-1970	0.9762	0.5143	(+),56	0.8068	0.6039	(+),26	0.8695	0.5685	(-),45	0.5350	0.7380	(+),29	0.6832	0.6606	(+),56
÷	Year constr.: 1971-1985	0.9563	0.5243	(-),56	0.7388	0.6378	(-),26	0.5960	0.7049	(+),45	0.7895	0.6117	(+),29	0.6838	0.6603	(+),56
12	Year constr.: 1986-2000	0.8004	0.6021	(-),56	0.6001	0.7064	(-),26	0.6196	0.6931	(+),45	0.5539	0.7284	(+),29	0.4309	0.7863	(+),56
13	Year constr.: 2001-2022	0.6664	0.6689	(+),56	0.8084	0.6030	(+),26	0.3598	0.8223	(+),45	0.2363	0.8850	(+),29	0.3580	0.8225	(+),56
14	Traffic signals count	0.7640	0.6203	(-),56	0.9926	0.5037	(+),26	0.6933	0.6563	(+),45	0.5427	0.7340	(+),29	0.4060	0.7987	(+),56
15	Stairs count	0.6495	0.6782	(+),56	0.4943	0.7613	(+),26	0.5673	0.7207	(+),45	0.5904	0.7113	(+),29	0.8244	0.5909	(+),56
16	Status: for construction	0.9919	0.5081	(-),56	1.0000	0.5132	(-),26	0.9728	0.5191	(+),45	0.6838	0.6671	(+),29	0.7643	0.6216	(+),56
17	Status: unrealised	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.0000	(+),56
18	Status: under construction	0.7226	0.6429	(+),56	0.3029	0.8576	(+),26	0.9882	0.5118	(+),45	1.0000	0.5196	(-),29	0.7652	0.6217	(+),56
19	Status: in use (n.m.)	0.6013	0.7027	(+),56	0.4553	0.7811	(+),26	0.5843	0.7125	(-),45	1.0000	0.0000	(+),29	0.8341	0.5870	(-),56
50	Status: in use	0.7050	0.6496	(-),56	0.8332	0.5905	(-),26	0.6196	0.6931	(+),45	0.3705	0.8189	(+),29	0.6085	0.6978	(+),56
5	Status: for demolition	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	0.3282	0.8467	(-),45	0.3343	0.8495	(+),29	1.0000	0.5101	(+),56
53	Status: demolished	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.0000	(+),56
53	Status: not in use	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.0000	(+),56
24	Status: reconstruction	0.9835	0.5110	(-),56	0.9532	0.5328	(+),26	0.2877	0.8584	(-),45	0.3587	0.8262	(-),29	0.1970	0.9028	(-),56
25	Status: illegitimate	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.0000	(+),56
26	Function: residential	0.6978	0.6533	(-),56	0.6512	0.6810	(-),26	0.7369	0.6346	(+),45	0.5343	0.7381	(+),29	0.8742	0.5652	(+),56
27	Function: gathering	0.9680	0.5186	(+),56	0.8748	0.5715	(+),26	0.9669	0.5202	(+),45	0.3113	0.8489	(+),29	0.4717	0.7662	(+),56
28	Function: prison	1.0000	0.0000	(+)"26	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.0000	(+),56
29	Function: healthcare	0.9928	0.5036	(+),56	1.0000	0.0000	(+),26	0.9910	0.5045	(+),45	0.5568	0.7350	(+),29	0.6430	0.6843	(+),56
8	Function: factory	0.8235	0.5916	(-);56	0.7489	0.6361	(-),26	0.8463	0.5813	(+),45	0.8015	0.6081	(-),29	0.6686	0.6687	(+),56
31	Function: office	0.5671	0.7186	(+),56	0.6733	0.6707	(+),26	0.8590	0.5740	(+),45	0.9118	0.5514	(+),29	0.7638	0.6205	(+),56
32	Function: guesthouse	0.4076	0.8004	(-),56	0.5711	0.7296	(-),26	0.9543	0.5293	(+),45	1.0000	0.5196	(+),29	0.7444	0.6330	(-),56
33	Function: education	0.3260	0.8456	(+),56	0.3363	0.8505	(+),26	0.1596	0.9248	(+),45	0.1609	0.9266	(+),29	0.0436	0.9791	(+),56
34	Function: sports	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.000	(+),56
35	Function: shops	0.8301	0.5874	(+),56	0.6290	0.6935	(+),26	0.7329	0.6368	(+),45	0.1605	0.9223	(+),29	0.1905	0.9058	(+),56
36	Function: other	0.7328	0.6359	(+),56	0.6324	0.6906	(-),26	0.7122	0.6470	(+),45	0.3378	0.8352	(+),29	0.5593	0.7224	(+),56
37	Green: tree cover	0.7096	0.6474	(+),56	0.8908	0.5618	(+),26	0.8845	0.5609	(+),45	0.9195	0.5464	(+),29	0.8500	0.5773	(-),56
88	Green: bush cover	0.7533	0.6255	(+),56	0.8048	0.6046	(+),26	0.9357	0.5354	(-),45	0.8581	0.5771	(+),29	0.8318	0.5864	(-),56
39	Green: grass cover	0.5645	0.7197	(+),56	0.6019	0.7054	(+),26	0.9936	0.5064	(-),45	0.6917	0.6599	(+),29	0.9605	0.5220	(-),56
4	Noise pollution: total	0.7800	0.6122	(+),56	0.8333	0.5905	(+),26	0.8718	0.5673	(+),45	0.9814	0.5155	(+),29	0.9884	0.5081	(+),56
41	Noise pollution: roads	0.6667	0.6687	(+),56	0.7487	0.6326	(+),26	0.8087	0.5988	(+),45	0.9195	0.5464	(+),29	0.8912	0.5567	(+),56
42	Noise pollution: railways	0.9166	0.5440	(+),56	0.8764	0.5690	(+),26	0.7286	0.6387	(+),45	0.9938	0.5093	(+),29	0.7733	0.6156	(+),56
4	Year constr.: mean	0.9536	0.5255	(+),56	0.8119	0.6011	(-),26	0.8150	0.5957	(+),45	0.9380	0.5372	(+),29	0.9930	0.5058	(+),56
45	Landmarks: FSI	0.6184	0.6931	(-),56	0.8210	0.5975	(-),26	0.8587	0.5741	(-),45	0.9782	0.5181	(+),29	0.9669	0.5191	(+),56
46	Landmarks: plot area	0.2111	0.8956	(-),56	0.4308	0.7904	(-),26	0.5892	0.7083	(-),45	0.8055	0.6038	(+),29	0.7811	0.6118	(-),56
47	Landmarks: Year constr.	0.6290	0.6879	(-),56	0.7961	0.6099	(-),26	0.8601	0.5734	(-),45	0.8227	0.5959	(+),29	06790	0.5131	(+),56
48	Landmarks: 1 criterion	0.3371	0.8329	(-),56	0.5401	0.7362	(-),26	0.7104	0.6478	(-),45	0.8880	0.5625	(+),29	0.9055	0.5496	(-),56
49	Landmarks: 2 criteria	0.5328	0.7372	(-),56	0.6542	0.6857	(-),26	0.7712	0.6194	(-),45	0.7208	0.6498	(+),29	0.9798	0.5142	(+),56
20	Landmarks: 3 criteria	1.0000	0.0000	(+),56	1.0000	0.0000	(+),26	1.0000	0.0000	(+),45	1.0000	0.0000	(+),29	1.0000	0.0000	(+),56

Figure 1.12: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: non-standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.1316	0.9342	wi(-),56	0.7792	0.6104	wi(+),26	0.1038	0.9481	wi(-),43	0.5634	0.7183	wi(-),30	0.4303	0.7848	wi(-),56
₽	Year constr.: 1946-1970	0.4142	0.7929	wi(-),56	0.6073	0.6964	wi(+),26	0.8663	-0.1693	tt(-),43	0.7456	0.3276	tt(+),30	0.3734	0.8133	wi(+),56
Ŧ	Year constr.: 1971-1985	0.5453	0.7274	wi(-),56	0.7383	0.6309	wi(-),26	0.6349	0.4783	tt(+),43	0.7792	0.6104	wi(-),30	0.6085	0.5152	tt(+),56
12	Year constr.: 1986-2000	0.0193	0.9904	wi(-),56	0.0098	0.9951	wi(-),26	0.2341	-1.2072	tt(-),43	0.9495	0.0639	tt(+),30	0.3862	-0.8735	tt(-),56
13	Year constr.: 2001-2022	0.4219	0.8091	tt(+),56	0.8494	0.1919	tt(+),26	0.2495	0.8753	wi(+),43	0.0920	1.7427	tt(+),30	0.2321	0.8839	wi(+),56
4	Traffic signals count	0.1251	-1.5573	tt(-),56	0.8287	0.5857	wi(+),26	0.8603	0.5699	wi(+),43	0.1605	0.9197	wi(+),30	0.0556	0.9722	wi(+),56
15	Stairs count	0.1994	1.2989	tt(+),56	1.0000	0.0	tt(+),26	0.7431	0.3299	tt(+),43	0.0314	2.2622	tt(+),30	0.2518	1.1582	tt(+),56
16	Status: for construction	0.4337	-0.7886	tt(-),56	0.4723	-0.7299	tt(-),26	0.6227	0.6887	wi(+),43	0.8405	-0.2031	tt(-),30	0.9965	0.5017	wi(-),56
17	Status: unrealised	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
18	Status: under construction	0.9855	0.5073	wi(+),56	0.9888	0.5056	wi(+),26	0.9787	0.5106	wi(+),43	0.4993	0.7503	wi(-),30	0.6505	0.6747	wi(-),56
19	Status: in use (n.m.)	0.8284	0.5858	wi(-),56	0.9888	0.5056	wi(+),26	0.4084	0.7958	wi(-),43	0.7601	0.62	wi(-),30	0.4812	0.7594	wi(-),56
20	Status: in use	0.0151	0.9925	wi(-),56	0.3620	-0.9285	tt(-),26	0.2825	0.8588	wi(-),43	0.4404	0.7798	wi(-),30	0.4703	0.7648	wi(-),56
5	Status: for demolition	0.7946	0.6027	wi(+),56	0.7103	0.6448	wi(+),26	0.7681	0.616	wi(+),43	0.4993	0.7503	wi(+),30	0.6086	0.6957	wi(+),56
2	Status: demolished	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
23	Status: not in use	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
24	Status: reconstruction	0.0285	2.2489	tt(+),56	0.1452	1.5037	tt(+),26	0.7492	-0.3217	tt(-),43	0.2414	1.1959	tt(+),30	0.4410	0.7762	tt(+),56
25	Status: illegitimate	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
26	Function: residential	0.0006	0.9997	wi(-),56	0.1993	-1.3185	tt(-),26	0.2268	0.8866	wi(-),43	0.1526	0.9237	wi(-),30	0.0731	0.9635	wi(-),56
27	Function: gathering	0.9526	0.5237	wi(+),56	0.8793	0.1534	tt(+),26	0.7472	-0.3244	tt(-),43	0.0839	0.9581	wi(+),30	0.2665	0.8668	wi(+),56
28	Function: prison	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
29	Function: healthcare	0.8012	0.5994	wi(+),56	0.7103	0.6448	wi(+),26	1.0000	0.5	wi(+),43	0.7344	0.6328	wi(+),30	0.7977	0.6012	wi(+),56
30	Function: factory	0.9545	0.5227	wi(-),56	0.9672	0.5164	wi(-),26	0.7862	0.6069	wi(-),43	0.7733	0.6133	wi(+),30	0.9859	0.5071	wi(-),56
31	Function: office	0.5291	-0.6334	tt(-),56	0.5831	-0.556	tt(-),26	0.0414	-2.1036	tt(-),43	0.7703	-0.2947	tt(-),30	0.4090	-0.8321	tt(-),56
32	Function: guesthouse	0.2229	0.8886	wi(-),56	1.0000	equal	n/a,26	0.9894	0.5053	wi(+),43	0.5719	-0.5717	tt(-),30	0.4209	-0.8109	tt(-),56
33	Function: education	0.6203	0.6899	wi(-),56	0.7103	0.6448	wi(+),26	0.5799	0.71	wi(-),43	0.7601	0.62	wi(-),30	0.6440	0.678	wi(-),56
34	Function: sports	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
35	Function: shops	0.6422	0.4672	tt(+),56	0.8897	-0.1401	tt(-),26	0.8927	0.1357	tt(+),43	0.0561	0.9719	wi(+),30	0.2961	1.0549	tt(+),56
36	Function: other	0.9919	0.0102	tt(+),56	0.1324	-1.5554	tt(-),26	0.3822	0.8089	wi(+),43	0.2152	1.2671	tt(+),30	0.3857	0.8072	wi(+),56
37	Green: tree cover	0.0000	-7.8607	tt(-),56	0.0000	-5.1553	tt(-),26	0.0000	-7.2221	tt(-),43	0.0000	-5.1343	tt(-),30	0.0000	-7.2112	tt(-),56
88	Green: bush cover	0.0000	-8.2323	tt(-),56	0.0000	-4.918	tt(-),26	0.0000	-8.0951	tt(-),43	0.0000	-4.7615	tt(-),30	0.0000	-7.2092	tt(-),56
39	Green: grass cover	0.0000	-8.3347	tt(-),56	0.0000	-5.0304	tt(-),26	0.0000	-7.7375	tt(-),43	0.0000	-5.593	tt(-),30	0.0000	-8.0347	tt(-),56
4	Noise pollution: total	0.0000	-8.7696	tt(-),56	0.0000	-6.7953	tt(-),26	0.0000	-8.2209	tt(-),43	0.0000	-6.7681	tt(-),30	0.0000	-9.0901	tt(-),56
41	Noise pollution: roads	0.0000	-7.8884	tt(-),56	0.0000	-6.0992	tt(-),26	0.0000	-7.546	tt(-),43	0.0000	-6.051	tt(-),30	0.0000	-8.1637	tt(-),56
42	Noise pollution: railways	0.0000	1.0	wi(-),56	0.0004	-4.128	tt(-),26	0.0000	1.0	wi(-),43	0.0001	-4.4303	tt(-),30	0.0000	1.0	wi(-),56
4	Year constr.: mean	1.0000	equal	n/a,56	0.5172	0.7414	wi(-),26	0.3280	0.836	wi(+),43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
45	Landmarks: FSI	0.0170	0.9915	wi(-),56	0.4730	0.7635	wi(-),26	0.4342	0.7829	wi(-),43	0.9490	0.5255	wi(-),30	0.5145	0.7428	wi(-),56
46	Landmarks: plot area	0.0012	0.9994	wi(-),56	0.0172	0.9914	wi(-),26	0.2941	0.8529	wi(-),43	0.9575	0.5213	wi(-),30	0.3549	0.8225	wi(-),56
47	Landmarks: Year constr.	0.1941	0.903	wi(-),56	0.6907	-0.4026	tt(-),26	0.4381	0.781	wi(-),43	0.5742	0.7129	wi(-),30	0.3995	0.8003	wi(-),56
48	Landmarks: 1 criterion	0.0026	0.9987	wi(-),56	0.1979	0.9011	wi(-),26	0.2674	0.8663	wi(-),43	0.4199	0.7901	wi(-),30	0.2464	0.8768	wi(-),56
49	Landmarks: 2 criteria	0.3281	0.8359	wi(-),56	0.4730	0.7635	wi(-),26	0.7673	0.6164	wi(-),43	0.7565	0.6217	wi(+),30	0.7960	0.602	wi(-),56
50	Landmarks: 3 criteria	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56

Figure 1.13: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.1156	0.9422	wi(-),56	0.9593	0.5203	wi(+),26	0.0957	0.9522	wi(-),45	0.7931	0.6035	wi(-),29	0.1304	0.9348	wi(-),56
₽	Year constr.: 1946-1970	0.7512	0.6244	wi(-),56	0.6529	0.6735	wi(+),26	0.7333	-0.3429	tt(-),45	0.1002	0.9499	wi(+),29	0.5798	0.7101	wi(+),56
÷	Year constr.: 1971-1985	0.5289	0.7356	wi(-),56	0.3266	-1.0005	tt(-),26	0.7751	0.2875	tt(+),45	0.9384	0.5308	wi(+),29	0.8944	0.1333	tt(+),56
12	Year constr.: 1986-2000	0.0097	0.9952	wi(-),56	0.0022	0.9989	wi(-),26	0.2963	-1.057	tt(-),45	0.7433	0.3308	tt(+),29	0.2822	-1.0859	tt(-),56
13	Year constr.: 2001-2022	0.3729	0.8984	tt(+),56	0.8683	0.1675	tt(+),26	0.1208	1.582	tt(+),45	0.0442	2.1066	tt(+),29	0.2468	0.8766	wi(+),56
14	Traffic signals count	0.1496	-1.4613	tt(-),56	0.8485	0.5757	wi(+),26	0.7161	0.366	tt(+),45	0.7685	0.6158	wi(+),29	0.0554	0.9723	wi(+),56
15	Stairs count	0.1994	1.2989	tt(+),56	0.7133	0.3716	tt(+),26	0.2527	1.1591	tt(+),45	0.2641	1.1397	tt(+),29	0.3660	0.817	wi(+),56
16	Status: for construction	0.4337	-0.7886	tt(-),56	0.4723	-0.7299	tt(-),26	0.7769	0.6116	wi(-),45	0.8455	0.1967	tt(+),29	0.9965	0.5017	wi(-),56
17	Status: unrealised	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
18	Status: under construction	0.9855	0.5073	wi(+),56	0.9888	0.5056	wi(+),26	0.8043	0.5978	wi(-),45	0.7237	0.6382	wi(-),29	0.6505	0.6747	wi(-),56
19	Status: in use (n.m.)	0.6473	0.6764	wi(-),56	0.9888	0.5056	wi(+),26	0.2875	0.8563	wi(-),45	0.9904	0.5048	wi(+),29	0.4812	0.7594	wi(-),56
20	Status: in use	0.0097	0.9951	wi(-),56	0.1736	-1.4007	tt(-),26	0.2590	0.8705	wi(-),45	0.6732	0.6634	wi(-),29	0.1002	0.9499	wi(-),56
21	Status: for demolition	0.7946	0.6027	wi(+),56	0.7103	0.6448	wi(+),26	1.0000	equal	n/a,45	0.7237	0.6382	wi(+),29	0.7946	0.6027	wi(+),56
22	Status: demolished	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
53	Status: not in use	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
24	Status: reconstruction	0.0432	2.0695	tt(+),56	0.5916	0.5435	tt(+),26	0.7733	0.2898	tt(+),45	0.7404	0.6298	wi(+),29	0.7725	0.2905	tt(+),56
25	Status: illegitimate	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
26	Function: residential	0.0012	0.9994	wi(-),56	0.1952	-1.3311	tt(-),26	0.0992	0.9504	wi(-),45	0.2288	0.8856	wi(-),29	0.0190	0.9905	wi(-),56
27	Function: gathering	0.8767	0.1559	tt(+),56	0.5896	0.5464	tt(+),26	0.7685	0.2962	tt(+),45	0.3432	0.8284	wi(+),29	0.5870	0.7065	wi(+),56
28	Function: prison	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
59	Function: healthcare	0.8012	0.5994	wi(+),56	0.7103	0.6448	wi(-),26	0.7817	0.6091	wi(+),45	0.4931	0.7534	wi(+),29	0.6171	0.6915	wi(+),56
8	Function: factory	0.7733	0.6134	wi(-),56	0.2345	-1.2184	tt(-),26	0.7899	0.605	wi(-),45	0.5260	0.737	wi(+),29	0.8236	0.5882	wi(+),56
31	Function: office	0.5582	-0.5891	tt(-),56	0.3724	-0.9083	tt(-),26	0.3433	-0.958	tt(-),45	0.1525	-1.4709	tt(-),29	0.3634	-0.9166	tt(-),56
32	Function: guesthouse	0.2229	0.8886	wi(-),56	1.0000	equal	n/a,26	0.4156	-0.8218	tt(-),45	0.7575	0.6212	wi(-),29	0.3948	0.8026	wi(-),56
33	Function: education	0.4645	0.7677	wi(-),56	1.0000	0.5	wi(+),26	0.5870	0.7065	wi(-),45	0.9904	0.5048	wi(+),29	0.9927	0.5036	wi(+),56
34	Function: sports	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
35	Function: shops	0.8862	0.1438	tt(+),56	0.7063	-0.3812	tt(-),26	0.8363	0.2078	tt(+),45	0.0061	0.997	wi(+),29	0.1007	1.6694	tt(+),56
36	Function: other	0.6463	0.4615	tt(+),56	0.2665	0.8668	wi(-),26	0.5913	0.541	tt(+),45	0.2417	1.196	tt(+),29	0.7727	0.2903	tt(+),56
37	Green: tree cover	0.0000	-7.8315	tt(-),56	0.0000	-4.985	tt(-),26	0.0000	-8.4948	tt(-),45	0.0000	-5.6475	tt(-),29	0.0000	-7.9467	tt(-),56
38	Green: bush cover	0.0000	-8.167	tt(-),56	0.0001	-4.7649	tt(-),26	0.0000	-8.5075	tt(-),45	0.0000	-5.2228	tt(-),29	0.0000	-8.0882	tt(-),56
39	Green: grass cover	0.0000	-8.2594	tt(-),56	0.0001	-4.8344	tt(-),26	0.000	-8.8116	tt(-),45	0.0000	-5.9646	tt(-),29	0.0000	-8.6955	tt(-),56
4	Noise pollution: total	0.0000	-8.7625	tt(-),56	0.0000	-7.0503	tt(-),26	0.000	-9.9305	tt(-),45	0.0000	-6.3459	tt(-),29	0.0000	-9.2385	tt(-),56
41	Noise pollution: roads	0.0000	-7.9091	tt(-),56	0.000	-6.021	tt(-),26	0.0000	1.0	wi(-),45	0.0000	-5.6682	tt(-),29	0.0000	-8.3683	tt(-),56
42	Noise pollution: railways	0.0000	1.0	wi(-),56	0.0018	-3.5002	tt(-),26	0.0000	1.0	wi(-),45	0.0002	-4.2459	tt(-),29	0.0000	1.0	wi(-),56
4	Year constr.: mean	1.0000	equal	n/a,56	0.7897	0.6051	wi(-),26	0.6400	0.471	tt(+),45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
45	Landmarks: FSI	0.0170	0.9915	wi(-),56	0.4730	0.7635	wi(-),26	0.2232	0.8884	wi(-),45	0.5726	0.7137	wi(+),29	0.4782	0.7609	wi(-),56
46	Landmarks: plot area	0.0007	0.9997	wi(-),56	0.0319	0.9841	wi(-),26	0.1991	0.9005	wi(-),45	0.8570	0.5715	wi(+),29	0.2701	0.8649	wi(-),56
47	Landmarks: Year constr.	0.1381	0.931	wi(-),56	0.4366	-0.7907	tt(-),26	0.3288	0.8356	wi(-),45	0.9633	0.5184	wi(+),29	0.3055	0.8473	wi(-),56
48	Landmarks: 1 criterion	0.0017	0.9992	wi(-),56	0.2665	0.8667	wi(-),26	0.0554	0.9723	wi(-),45	0.9643	0.5179	wi(+),29	0.1637	0.9181	wi(-),56
49	Landmarks: 2 criteria	0.3281	0.8359	wi(-),56	0.2978	0.8511	wi(-),26	0.9949	0.5025	wi(-),45	0.5338	0.7331	wi(+),29	0.9750	0.5125	wi(-),56
50	Landmarks: 3 criteria	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56

Figure 1.14: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.4551	0.7724	wi(-),56	0.5706	0.7147	wi(+),26	0.6292	0.6854	wi(-),43	0.0636	0.9682	wi(+),30	0.2660	0.867	wi(+),56
9	Year constr.: 1946-1970	0.8415	0.5792	wi(+),56	0.7570	0.6215	wi(+),26	0.5887	0.545	tt(+),43	0.4308	0.799	tt(+),30	0.2209	1.2383	tt(+),56
÷	Year constr.: 1971-1985	0.5853	0.7074	wi(-),56	0.6664	0.6668	wi(-),26	0.9950	0.5025	wi(+),43	0.4614	0.7464	tt(+),30	0.6071	0.5172	tt(+),56
12	Year constr.: 1986-2000	0.4175	-0.8169	tt(-),56	0.2567	0.8717	wi(-),26	0.3768	0.8116	wi(+),43	0.3920	0.804	wi(+),30	0.3475	0.8263	wi(+),56
13	Year constr.: 2001-2022	0.7441	0.6279	wi(+),56	0.9486	0.5257	wi(-),26	0.3768	0.8116	wi(+),43	0.3395	0.9711	tt(+),30	0.0732	1.8262	tt(+),56
4	Traffic signals count	0.6923	0.6539	wi(-),56	0.6882	0.6559	wi(+),26	0.6636	0.6682	wi(-),43	0.1996	1.3126	tt(+),30	0.1825	0.9087	wi(+),56
15	Stairs count	0.6513	0.6744	wi(+),56	0.7285	0.6358	wi(+),26	1.0000	0.5	wi(+),43	0.4235	0.8118	tt(+),30	0.7660	0.299	tt(+),56
16	Status: for construction	0.9964	0.5018	wi(-),56	0.9891	0.5055	wi(-),26	0.7673	0.6164	wi(+),43	0.7649	0.6175	wi(+),30	0.8029	0.5986	wi(+),56
17	Status: unrealised	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
18	Status: under construction	0.6203	0.6899	wi(+),56	0.4730	0.7635	wi(+),26	0.5639	0.7181	wi(+),43	0.4993	0.7503	wi(-),30	0.8074	0.5963	wi(+),56
19	Status: in use (n.m.)	0.3217	0.8391	wl(+),56	0.4730	0.7635	wi(+),26	0.7673	0.6164	wi(-),43	1.0000	equal	n/a,30	0.8083	0.5959	wi(+),56
20	Status: in use	0.3717	0.8142	wi(-),56	0.6644	0.6678	wi(-),26	0.9181	0.5409	wi(+),43	0.0123	0.9939	wi(+),30	0.0515	0.9742	wi(+),56
21	Status: for demolition	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	0.5	wi(+),43	0.4993	0.7503	wi(+),30	0.7977	0.6012	wi(+),56
2	Status: demolished	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
23	Status: not in use	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
24	Status: reconstruction	0.7152	0.6424	wi(-),56	0.4730	0.7635	wi(+),26	0.0369	0.9815	wi(-),43	0.4270	-0.8057	tt(-),30	0.1637	0.9181	wi(-),56
25	Status: illegitimate	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
26	Function: residential	0.8238	0.5881	wi(-),56	0.7013	0.6493	wi(+),26	0.6706	0.6647	wi(+),43	0.1610	0.9195	wi(+),30	0.2677	0.8662	wi(+),56
27	Function: gathering	0.8968	0.5516	wi(-),56	0.6036	0.5258	tt(+),26	0.6660	-0.4348	tt(-),43	0.2433	0.8784	wi(+),30	0.2029	0.8985	wi(+),56
28	Function: prison	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
29	Function: healthcare	1.0000	0.5	wi(+),56	0.7103	0.6448	wi(+),26	0.7681	0.616	wi(-),43	0.7344	0.6328	wi(+),30	0.9927	0.5036	wi(+),56
30	Function: factory	0.8579	0.571	wi(+),56	0.7861	0.607	wi(+),26	1.0000	0.5	wi(+),43	0.7481	0.626	wi(-),30	0.9823	0.5088	wi(+),56
31	Function: office	0.6205	0.6897	wi(+),56	0.4757	0.7622	wi(+),26	0.0800	0.96	wi(-),43	0.5201	0.6511	tt(+),30	0.6392	0.4715	tt(+),56
32	Function: guesthouse	0.6086	0.6957	wi(-),56	0.7103	0.6448	wi(-),26	0.7681	0.616	wi(+),43	0.7065	0.6467	wi(+),30	0.9678	0.5161	wi(+),56
33	Function: education	0.6086	0.6957	wi(+),56	0.4730	0.7635	wi(+),26	0.5639	0.7181	wi(+),43	0.7277	0.6361	wi(+),30	0.6086	0.6957	wi(+),56
34	Function: sports	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
35	Function: shops	0.6224	0.6888	wi(+),56	0.2108	1.2843	tt(+),26	0.5859	0.5491	tt(+),43	0.0729	0.9635	wi(+),30	0.1246	0.9377	wi(+),56
36	Function: other	0.8470	0.5765	wi(+),56	0.2338	0.8831	wi(-),26	0.0635	0.9683	wi(+),43	0.8363	0.2085	tt(+),30	0.4257	0.8026	tt(+),56
37	Green: tree cover	0.2369	0.8815	wi(+),56	0.5383	0.624	tt(+),26	0.2048	0.8976	wi(+),43	0.9633	-0.0464	tt(-),30	0.8628	0.1737	tt(+),56
38	Green: bush cover	0.3572	0.8214	wi(+),56	0.4381	0.7879	tt(+),26	0.7476	0.3239	tt(+),43	0.8912	0.138	tt(+),30	0.9683	-0.0399	tt(-),56
39	Green: grass cover	0.2570	0.8715	wi(+),56	0.3516	0.9492	tt(+),26	0.3727	0.901	tt(+),43	0.8392	0.2048	tt(+),30	0.7626	0.3035	tt(+),56
4	Noise pollution: total	0.0365	0.9817	wi(+),56	0.2593	1.1543	tt(+),26	0.1542	0.9229	wi(+),43	0.6494	-0.4593	tt(-),30	0.8004	0.5998	wi(+),56
41	Noise pollution: roads	0.0420	0.979	wi(+),56	0.1836	1.3675	tt(+),26	0.5222	0.7389	wi(+),43	0.8664	0.1697	tt(+),30	0.8787	-0.1533	tt(-),56
42	Noise pollution: railways	0.2150	0.8925	wi(+),56	0.4677	0.7662	wi(+),26	0.0832	1.7745	tt(+),43	0.9810	0.0241	tt(+),30	0.3872	0.8064	wi(+),56
4	Year constr.: mean	1.0000	equal	n/a,56	0.2303	0.8848	wi(-),26	0.2270	0.8865	wi(+),43	1.0000	equal	n/a,30	1.0000	equal	n/a,56
45	Landmarks: FSI	0.2287	0.8857	wi(-),56	1.0000	equal	n/a,26	0.6227	0.6886	wi(-),43	0.4143	0.7928	wi(+),30	0.5306	0.7347	wi(+),56
46	Landmarks: plot area	0.0089	0.9956	wi(-),56	0.0799	-1.8258	tt(-),26	0.4036	0.7982	wi(-),43	0.3899	0.8051	wi(+),30	0.8874	0.5563	wi(+),56
47	Landmarks: Year constr.	0.6171	0.6915	wi(-),56	0.7181	0.6409	wi(-),26	0.7793	0.6103	wi(-),43	0.2403	0.8798	wi(+),30	0.5500	0.725	wi(+),56
48	Landmarks: 1 criterion	0.0416	0.9792	wi(-),56	0.2236	0.8882	wi(-),26	0.6515	0.6743	wi(-),43	0.2958	0.8521	wi(+),30	0.5182	0.7409	wi(+),56
49	Landmarks: 2 criteria	0.3217	0.8391	wi(-),56	1.0000	equal	n/a,26	0.3967	0.8016	wi(-),43	0.7277	0.6361	wi(+),30	1.0000	0.5	wi(+),56
50	Landmarks: 3 criteria	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,43	1.0000	equal	n/a,30	1.0000	equal	n/a,56

Figure 1.15: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) I	Least stat	Least coef,n
6	Year constr.: < 1945	0.1675	0.9162	wi(-),56	0.6800	0.66	wi(+),26	0.7507	0.6247	wi(+),45	0.2207	0.8897	wi(+),29	0.6605	0.6698	wi(+),56
우	Year constr.: 1946-1970	0.6855	0.6572	wi(+),56	0.4167	0.7916	wi(+),26	0.6963	0.3928	tt(+),45	0.3207	1.0109	tt(+),29	0.3509	0.9408	tt(+),56
÷	Year constr.: 1971-1985	0.3812	0.8094	wi(-),56	0.2834	-1.0962	tt(-),26	0.7515	0.3186	tt(+),45	0.8586	0.5707	wi(-),29	0.8784	0.1537	tt(+),56
12	Year constr.: 1986-2000	0.4284	-0.7979	tt(-),56	0.3922	-0.8706	tt(-),26	0.5477	0.7262	wi(+),45	0.2104	0.8948	wi(+),29	0.2658	0.8671	wi(+),56
13	Year constr.: 2001-2022	0.7034	0.6483	wi(+),56	0.9692	0.5154	wi(-),26	0.5067	0.7466	wi(+),45	0.1596	1.445	tt(+),29	0.3371	0.8314	wi(+),56
4	Traffic signals count	0.8838	0.5581	wi(-),56	0.4909	0.7546	wi(+),26	0.8781	0.561	wi(+),45	0.1058	1.6714	tt(+),29	0.2060	0.897	wi(+),56
15	Stairs count	0.6513	0.6744	wi(+),56	0.5013	0.7493	wi(+),26	0.6144	0.6928	wi(+),45	0.4892	0.7009	tt(+),29	0.7843	0.2751	tt(+),56
16	Status: for construction	0.9964	0.5018	wi(-),56	0.9891	0.5055	wi(-),26	0.8187	0.5906	wi(-),45	0.4931	0.7534	wi(+),29	0.8004	0.5998	wi(+),56
17	Status: unrealised	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
18	status: under construction	0.6203	0.6899	wi(+),56	0.4730	0.7635	wi(+),26	0.7866	0.6067	wi(+),45	0.7237	0.6382	wi(-),29	0.8074	0.5963	wi(+),56
19	Status: in use (n.m.)	0.6203	0.6899	wi(+),56	0.4730	0.7635	wi(+),26	0.9801	0.51	wi(-),45	1.0000	equal	n/a,29	0.8083	0.5959	wi(+),56
20	Status: in use	0.1100	0.945	wi(-),56	0.4081	0.796	wi(-),26	0.5234	0.7383	wi(+),45	0.0149	0.9925	wi(+),29	0.1450	0.9275	wi(+),56
21	Status: for demolition	1.0000	equal	n/a,56	1.0000	equal	n/a,26	0.7728	0.6136	wi(-),45	0.7237	0.6382	wi(+),29	0.9963	0.5018	wi(+),56
22	Status: demolished	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
23	Status: not in use	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
24	Status: reconstruction	0.6834	0.6583	wi(-),56	0.9888	0.5056	wi(+),26	0.1823	-1.355	tt(-),45	0.3290	0.8355	wi(-),29	0.0973	0.9514	wi(-),56
25	Status: illegitimate	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
26	Function: residential	0.8690	0.5655	wi(-),56	0.7594	0.6203	wi(-),26	0.6586	0.6707	wi(+),45	0.0881	0.956	wi(+),29	0.3365	0.8318	wi(+),56
27	Function: gathering	0.7240	0.638	wi(-),56	0.9240	0.0963	tt(+),26	0.8559	-0.1827	tt(-),45	0.2356	0.8822	wi(+),29	0.3109	0.8445	wi(+),56
28	Function: prison	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
29	Function: healthcare	1.0000	0.5	wi(+),56	1.0000	equal	n/a,26	1.0000	0.5	wi(+),45	0.7306	0.6347	wi(+),29	0.8004	0.5998	wi(+),56
8	Function: factory	0.9685	0.5157	wi(-),56	0.7261	-0.3543	tt(-),26	0.9853	0.5074	wi(+),45	0.9813	0.5094	wi(-),29	0.7948	0.6026	wi(+),56
31	Function: office	0.6205	0.6897	wi(+),56	0.4757	0.7622	wi(+),26	0.7682	0.2966	tt(+),45	0.9845	0.0196	tt(+),29	0.6353	0.4769	tt(+),56
32	Function: guesthouse	0.6086	0.6957	wi(-),56	0.7103	0.6448	wi(-),26	0.9801	0.51	wi(+),45	0.9904	0.5048	wi(+),29	0.8284	0.5858	wi(-),56
33	Function: education	0.7946	0.6027	wi(+),56	0.7103	0.6448	wi(+),26	0.5718	0.7141	wi(+),45	0.4931	0.7534	wi(+),29	0.3217	0.8391	wi(+),56
34	Function: sports	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
35	Function: shops	0.7950	0.6025	wi(+),56	0.8948	0.5526	wi(+),26	0.4234	0.808	tt(+),45	0.0377	0.9812	wi(+),29	0.0378	0.9811	wi(+),56
36	Function: other	0.5117	0.7441	wi(+),56	0.5341	0.7329	wi(-),26	0.5333	0.6279	tt(+),45	0.4437	0.777	tt(+),29	0.5617	0.5838	tt(+),56
37	Green: tree cover	0.1556	0.9222	wi(+),56	0.3005	1.0573	tt(+),26	0.6135	0.5087	tt(+),45	0.3189	-1.0147	tt(-),29	0.4450	-0.7693	tt(-),56
8	Green: bush cover	0.2337	0.8832	wi(+),56	0.3549	0.9426	tt(+),26	0.9695	0.0384	tt(+),45	0.8998	-0.1271	tt(-),29	0.4070	-0.8356	tt(-),56
39	Green: grass cover	0.1209	0.9396	wi(+),56	0.1632	1.4366	tt(+),26	0.6657	0.435	tt(+),45	0.5497	0.6055	tt(+),29	0.8977	0.1291	tt(+),56
4	Noise pollution: total	0.0614	0.9693	wi(+),56	0.2269	1.2388	tt(+),26	0.5937	0.5374	tt(+),45	0.7246	-0.3559	tt(-),29	0.5960	0.702	wi(+),56
41	Noise pollution: roads	0.0698	0.9651	wi(+),56	0.1854	1.3617	tt(+),26	0.5560	0.5934	tt(+),45	0.8447	0.1978	tt(+),29	0.6441	0.4645	tt(+),56
42	Noise pollution: railways	0.3200	0.84	wi(+),56	0.2834	1.0962	tt(+),26	0.1599	0.9201	wi(+),45	0.9370	-0.0798	tt(-),29	0.5469	0.6061	tt(+),56
4	Year constr.: mean	1.0000	equal	n/a,56	0.3026	0.8487	wi(-),26	0.8833	0.5583	wi(+),45	1.0000	equal	n/a,29	1.0000	equal	n/a,56
5	Landmarks: FSI	0.2287	0.8857	wi(-),56	0.7103	0.6448	wi(-),26	0.8300	0.585	wi(-),45	0.5415	0.7292	wi(+),29	0.5536	0.7232	wi(+),56
46	Landmarks: plot area	0.0026	0.9987	wi(-),56	0.0580	0.971	wi(-),26	0.3716	0.8142	wi(-),45	0.2713	0.8644	wi(+),29	0.9258	0.5371	wi(+),56
47	Landmarks: Year constr.	0.4618	0.7691	wi(-),56	0.9888	0.5056	wi(-),26	0.9809	0.5096	wi(-),45	0.5184	0.7408	wi(+),29	0.6959	0.6521	wi(+),56
8	Landmarks: 1 criterion	0.0171	0.9915	wi(-),56	0.1253	0.9373	wi(-),26	0.8091	0.5954	wi(-),45	0.2763	0.8619	wi(+),29	0.6798	0.6601	wi(+),56
49	Landmarks: 2 criteria	0.3217	0.8391	wi(-),56	0.7103	0.6448	wi(-),26	0.5870	0.7065	wi(-),45	0.7237	0.6382	wi(+),29	0.8047	0.5976	wi(+),56
50	Landmarks: 3 criteria	1.0000	equal	n/a,56	1.0000	equal	n/a,26	1.0000	equal	n/a,45	1.0000	equal	n/a,29	1.0000	equal	n/a,56

Figure 1.16: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 3, data: standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.6011	0.3657	(-),29	0.7172	0.2881	(+),24	0.5734	0.2288	(+),29
우	Year constr.: 1946-1970	0.5372	0.5351	(-),29	0.8374	0.2442	(+),24	0.8297	0.6635	(-),29
÷	Year constr.: 1971-1985	0.8489	0.1795	(-),29	0.5874	0.0867	(-),24	0.8863	0.7176	(+),29
12	Year constr.: 1986-2000	0.5829	0.6257	(+),29	0.5725	0.5668	(+),24	0.2894	0.3521	(+),29
13	Year constr.: 2001-2022	0.3564	0.4064	(-),29	0.6312	0.5250	(-),24	0.3310	0.3877	(-),29
4	Traffic signals count	0.1986	0.2500	(+),29	0.2045	0.2465	(+),24	0.4192	0.4501	(+),29
15	Stairs count	0.5499	0.5040	(+),29	0.1265	0.1152	(+),24	0.0933	0.1387	(+),29
16	Status: for construction	0.9882	0.3272	(-),29	0.6616	0.1893	(-),24	0.9765	0.3158	(-),29
17	Status: unrealised	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
18	Status: under construction	1.0000	0.0000	(-),29	0.3379	0.1689	(+),24	0.3343	0.1671	(+),29
19	Status: in use (n.m.)	0.6008	0.2503	(-),29	0.5780	0.3622	(+),24	0.8337	0.5000	(+),29
20	Status: in use	0.6800	0.4045	(-),29	0.8045	0.4062	(+),24	0.6405	0.2899	(+),29
21	Status: for demolition	0.3126	0.8495	(+),29	0.6971	0.9277	(+),24	0.6895	0.9266	(+),29
52	Status: demolished	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
23	Status: not in use	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
24	Status: reconstruction	0.2348	0.5378	(-),29	0.7491	0.9088	(-),24	0.4353	0.0148	(+),29
25	Status: illegitimate	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
26	Function: residential	0.8753	0.3942	(-),29	0.9339	0.5660	(+),24	0.6209	0.4003	(+),29
27	Function: gathering	0.9123	0.5396	(-),29	0.4397	0.1480	(+),24	0.7867	0.3003	(+),29
28	Function: prison	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
29	Function: healthcare	0.5704	0.2852	(-),29	0.3379	0.1689	(+),24	0.3343	0.1671	(+),29
30	Function: factory	0.6654	0.2655	(-),29	0.7674	0.3260	(-),24	0.4353	0.3055	(+),29
31	Function: office	0.4365	0.6279	(-),29	0.6115	0.0358	(+),24	0.3678	0.0156	(+),29
32	Function: guesthouse	0.7624	0.5176	(+),29	0.7117	0.5072	(+),24	0.7106	0.5059	(+),29
33	Function: education	0.6546	0.3158	(-),29	0.4396	0.1988	(-),24	0.9859	0.5071	(+),29
34	Function: sports	1.0000	0.0000	(-),29	0.3379	0.1689	(+),24	0.3343	0.1671	(+),29
35	Function: shops	1.0000	0.5173	(-),29	0.9820	0.4687	(+),24	0.7828	0.4185	(-),29
36	Function: other	0.8430	0.3080	(+),29	0.9570	0.3897	(+),24	0.5806	0.2392	(+),29
37	Green: tree cover	0.0009	0.4474	(+),29	0.0014	0.4549	(+),24	0.0035	0.5922	(+),29
38	Green: bush cover	0.0181	0.5771	(+),29	0.0052	0.3668	(+),24	0.0140	0.4938	(+),29
39	Green: grass cover	0.0134	0.5341	(+),29	0.0109	0.4959	(+),24	0.0232	0.5801	(+),29
4	Noise pollution: total	0.0118	0.4659	(+),29	0.0240	0.5041	(+),24	0.0283	0.5862	(+),29
41	Noise pollution: roads	0.0059	0.5710	(+),29	0.0145	0.5615	(+),24	0.0078	0.5186	(+),29
42	Noise pollution: railways	0.2251	0.5124	(+),29	0.0489	0.4063	(+),24	0.1355	0.4443	(+),29
4	Year constr.: mean	0.8887	0.4566	(+),29	0.9589	0.4344	(-),24	0.7089	0.3807	(-),29
45	Landmarks: FSI	0.7222	0.5399	(+),29	0.4778	0.3230	(+),24	0.1459	0.1658	(+),29
46	Landmarks: plot area	0.9933	0.5601	(-),29	0.9207	0.3786	(+),24	0.6107	0.2337	(+),29
47	Landmarks: Year constr.	0.9242	0.4247	(+),29	0.8938	0.5000	(-),24	0.9403	0.5186	(-),29
48	Landmarks: 1 criterion	0.9231	0.5032	(-),29	0.9916	0.5954	(-),24	0.7035	0.2806	(+),29
49	Landmarks: 2 criteria	0.6092	0.3046	(+),29	0.5553	0.2777	(+),24	0.6092	0.3046	(+),29
50	Landmarks: 3 criteria	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29

Figure 1.17: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.6011	0.3657	(-),29	0.6865	0.2811	(+),24	0.5734	0.2288	(+),29
9	Year constr.: 1946-1970	0.7317	0.6562	(-),29	0.9657	0.2797	(+),24	0.6048	0.4775	(-),29
÷	Year constr.: 1971-1985	0.8489	0.1795	(-),29	0.4848	0.0633	(-),24	0.8863	0.7176	(+),29
12	Year constr.: 1986-2000	0.5829	0.6257	(+),29	0.5941	0.5668	(+),24	0.2894	0.3521	(+),29
13	Year constr.: 2001-2022	0.3564	0.4064	(-),29	0.5320	0.4585	(-),24	0.3045	0.3637	(-),29
4	Traffic signals count	0.1826	0.2279	(+),29	0.2045	0.2465	(+),24	0.5884	0.5281	(+),29
15	Stairs count	0.5499	0.5040	(+),29	0.1265	0.1152	(+),24	0.1556	0.2054	(+),29
16	Status: for construction	0.9882	0.3272	(-),29	0.6616	0.1893	(-),24	0.9765	0.3158	(-),29
17	Status: unrealised	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
18	Status: under construction	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	0.3343	0.1671	(+),29
19	Status: in use (n.m.)	0.6008	0.2503	(-),29	0.2974	0.2149	(+),24	0.8337	0.5000	(+),29
20	Status: in use	0.7497	0.4166	(-),29	0.7413	0.3823	(+),24	0.7438	0.3341	(+),29
21	Status: for demolition	0.3126	0.8495	(+),29	0.6971	0.9277	(+),24	0.6895	0.9266	(+),29
22	Status: demolished	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
33	Status: not in use	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
24	Status: reconstruction	0.2348	0.5378	(-),29	0.7491	0.9088	(-),24	0.4353	0.0148	(+),29
25	Status: illegitimate	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
26	Function: residential	0.9312	0.4064	(-),29	0.9504	0.5945	(+),24	0.6659	0.4064	(+),29
27	Function: gathering	0.9123	0.5396	(-),29	0.3338	0.1019	(+),24	0.8919	0.5604	(-),29
28	Function: prison	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29
29	Function: healthcare	0.5704	0.2852	(-),29	0.3379	0.1689	(+),24	0.3343	0.1671	(+),29
30	Function: factory	0.6654	0.2655	(-),29	0.7674	0.3260	(-),24	0.4353	0.3055	(+),29
31	Function: office	0.4365	0.6279	(-),29	0.5056	0.0199	(+),24	0.3678	0.0156	(+),29
32	Function: guesthouse	0.7624	0.5176	(+),29	0.3695	0.3066	(+),24	0.7106	0.5059	(+),29
33	Function: education	0.6546	0.3158	(-),29	0.4396	0.1988	(-),24	0.9859	0.5071	(+),29
34	Function: sports	1.0000	0.0000	(-),29	0.3379	0.1689	(+),24	0.3343	0.1671	(+),29
35	Function: shops	1.0000	0.5173	(-),29	0.8833	0.4109	(+),24	0.7828	0.4185	(-),29
36	Function: other	0.8430	0.3080	(+),29	0.9058	0.5682	(-),24	0.6872	0.2936	(+),29
37	Green: tree cover	0.0012	0.5186	(+),29	0.0031	0.6175	(+),24	0.0040	0.5372	(+),29
38	Green: bush cover	0.0241	0.6162	(+),29	0.0109	0.5288	(+),24	0.0153	0.5000	(+),29
39	Green: grass cover	0.0153	0.5618	(+),29	0.0215	0.6254	(+),24	0.0189	0.4690	(+),29
6	Noise pollution: total	0.0153	0.4938	(+),29	0.0296	0.5451	(+),24	0.0272	0.5740	(+),29
41	Noise pollution: roads	0.0071	0.5922	(+),29	0.0172	0.6096	(+),24	0.0090	0.5372	(+),29
42	Noise pollution: railways	0.2311	0.5217	(+),29	0.0565	0.4549	(+),24	0.1396	0.4443	(+),29
4	Year constr.: mean	0.9010	0.4752	(+),29	0.9589	0.4344	(-),24	0.6297	0.3778	(-),29
45	Landmarks: FSI	0.5652	0.4523	(+),29	0.4778	0.3230	(+),24	0.2258	0.2343	(+),29
46	Landmarks: plot area	0.9598	0.4099	(+),29	0.9207	0.3786	(+),24	0.6658	0.2638	(+),29
47	Landmarks: Year constr.	0.9242	0.4247	(+),29	0.8938	0.5000	(-),24	0.9403	0.5186	(-),29
48	Landmarks: 1 criterion	1.0000	0.5511	(-),29	0.9916	0.5954	(-),24	0.8021	0.3318	(+),29
49	Landmarks: 2 criteria	0.6092	0.3046	(+),29	0.5553	0.2777	(+),24	0.6092	0.3046	(+),29
50	Landmarks: 3 criteria	1.0000	0.0000	(-),29	1.0000	0.0000	(-),24	1.0000	0.0000	(-),29

Figure 1.18: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7313	0.6402	(+),29	0.5762	0.7189	(-),24	0.4575	0.7759	(-),29
9	Year constr.: 1946-1970	0.9425	0.5351	(-),29	0.4884	0.7624	(-),24	0.6850	0.6635	(-),29
÷	Year constr.: 1971-1985	0.3590	0.8247	(+),29	0.1735	0.9165	(+),24	0.5756	0.7176	(+),29
12	Year constr.: 1986-2000	0.7608	0.6257	(+),29	0.8831	0.5668	(+),24	0.7042	0.6539	(-),29
13	Year constr.: 2001-2022	0.8128	0.5997	(+),29	0.9667	0.5250	(-),24	0.7753	0.6184	(+),29
14	Traffic signals count	0.4999	0.7550	(-),29	0.4929	0.7600	(-),24	0.9002	0.5561	(-),29
15	Stairs count	0.9920	0.5040	(+),29	0.2304	0.8896	(-),24	0.2775	0.8654	(-),29
16	Status: for construction	0.6543	0.6843	(+),29	0.3785	0.8203	(+),24	0.6316	0.6955	(+),29
17	Status: unrealised	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
18	Status: under construction	1.0000	0.0000	(+),29	0.3379	0.8512	(-),24	0.3343	0.8495	(-),29
19	Status: in use (n.m.)	0.5006	0.7572	(+),29	0.7243	0.6504	(-),24	1.0000	0.5103	(-),29
20	Status: in use	0.8090	0.6015	(+),29	0.8123	0.6018	(-),24	0.5799	0.7154	(-),29
21	Status: for demolition	0.3343	0.8495	(+),29	0.1617	0.9277	(+),24	0.1609	0.9266	(+),29
22	Status: demolished	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
23	Status: not in use	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
24	Status: reconstruction	0.9395	0.5378	(-),29	0.1917	0.9088	(-),24	0.0297	0.9859	(-),29
25	Status: illegitimate	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
26	Function: residential	0.7883	0.6119	(+),29	0.8843	0.5660	(+),24	0.8005	0.6058	(-),29
27	Function: gathering	0.9351	0.5396	(-),29	0.2960	0.8574	(-),24	0.6007	0.7060	(-),29
28	Function: prison	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
29	Function: healthcare	0.5704	0.7284	(+),29	0.3379	0.8512	(-),24	0.3343	0.8495	(-),29
30	Function: factory	0.5310	0.7422	(+),29	0.6519	0.6845	(+),24	0.6110	0.7041	(-),29
31	Function: office	0.7569	0.6279	(-),29	0.0715	0.9660	(-),24	0.0311	0.9851	(-),29
32	Function: guesthouse	0.9883	0.5176	(+),29	0.9857	0.5072	(+),24	0.9883	0.5059	(+),29
33	Function: education	0.6316	0.6955	(+),29	0.3977	0.8110	(+),24	0.9859	0.5071	(+),29
34	Function: sports	1.0000	0.0000	(+),29	0.3379	0.8512	(-),24	0.3343	0.8495	(-),29
35	Function: shops	0.9792	0.5173	(-),29	0.9374	0.5402	(-),24	0.8369	0.5882	(+),29
36	Function: other	0.6161	0.6977	(-),29	0.7794	0.6185	(-),24	0.4783	0.7659	(-),29
37	Green: tree cover	0.8948	0.5587	(-),29	0.9097	0.5533	(-),24	0.8276	0.5922	(+),29
38	Green: bush cover	0.8580	0.5771	(+),29	0.7337	0.6409	(-),24	0.9876	0.5124	(-),29
39	Green: grass cover	0.9442	0.5341	(+),29	0.9918	0.5123	(-),24	0.8520	0.5801	(+),29
4	Noise pollution: total	0.9318	0.5403	(-),29	0.9918	0.5041	(+),24	0.8398	0.5862	(+),29
41	Noise pollution: roads	0.8703	0.5710	(+),29	0.8934	0.5615	(+),24	0.9752	0.5186	(+),29
42	Noise pollution: railways	0.9876	0.5124	(+),29	0.8125	0.6017	(-),24	0.8887	0.5618	(-),29
4	Year constr.: mean	0.9131	0.5496	(-),29	0.8688	0.5737	(+),24	0.7614	0.6252	(+),29
45	Landmarks: FSI	0.9347	0.5399	(+),29	0.6461	0.6854	(-),24	0.3316	0.8390	(-),29
46	Landmarks: plot area	0.8931	0.5601	(-),29	0.7572	0.6298	(-),24	0.4673	0.7715	(-),29
47	Landmarks: Year constr.	0.8493	0.5828	(-),29	1.0000	0.5097	(+),24	0.9776	0.5186	(-),29
48	Landmarks: 1 criterion	0.9936	0.5032	(+),29	0.8255	0.5954	(-),24	0.5613	0.7248	(-),29
49	Landmarks: 2 criteria	0.6092	0.7065	(-),29	0.5553	0.7386	(-),24	0.6092	0.7065	(-),29
20	Landmarks: 3 criteria	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29

Figure 1.19: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7313	0.6402	(+),29	0.5621	0.7259	(-),24	0.4575	0.7759	(-),29
9	Year constr.: 1946-1970	0.6995	0.6562	(-),29	0.5595	0.7274	(-),24	0.9549	0.5290	(+),29
÷	Year constr.: 1971-1985	0.3590	0.8247	(+),29	0.1267	0.9392	(+),24	0.5756	0.7176	(+),29
12	Year constr.: 1986-2000	0.7608	0.6257	(+),29	0.8831	0.5668	(+),24	0.7042	0.6539	(-),29
13	Year constr.: 2001-2022	0.8128	0.5997	(+),29	0.9169	0.5498	(+),24	0.7275	0.6422	(+),29
14	Traffic signals count	0.4558	0.7768	(-),29	0.4929	0.7600	(-),24	0.9563	0.5281	(+),29
15	Stairs count	0.9920	0.5040	(+),29	0.2304	0.8896	(-),24	0.4108	0.8000	(-),29
16	Status: for construction	0.6543	0.6843	(+),29	0.3785	0.8203	(+),24	0.6316	0.6955	(+),29
17	Status: unrealised	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
18	Status: under construction	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	0.3343	0.8495	(-),29
19	Status: in use (n.m.)	0.5006	0.7572	(+),29	0.4298	0.7954	(-),24	1.0000	0.5103	(-),29
20	Status: in use	0.8333	0.5894	(+),29	0.7646	0.6255	(-),24	0.6682	0.6716	(-),29
21	Status: for demolition	0.3343	0.8495	(+),29	0.1617	0.9277	(+),24	0.1609	0.9266	(+),29
23	Status: demolished	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
23	Status: not in use	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
24	Status: reconstruction	0.9395	0.5378	(-),29	0.1917	0.9088	(-),24	0.0297	0.9859	(-),29
25	Status: illegitimate	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
26	Function: residential	0.8127	0.5997	(+),29	0.8272	0.5945	(+),24	0.8127	0.5997	(-),29
27	Function: gathering	0.9351	0.5396	(-),29	0.2037	0.9023	(-),24	0.8934	0.5604	(-),29
28	Function: prison	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29
29	Function: healthcare	0.5704	0.7284	(+),29	0.3379	0.8512	(-),24	0.3343	0.8495	(-),29
30	Function: factory	0.5310	0.7422	(+),29	0.6519	0.6845	(+),24	0.6110	0.7041	(-),29
31	Function: office	0.7569	0.6279	(-),29	0.0398	0.9812	(-),24	0.0311	0.9851	(-),29
32	Function: guesthouse	0.9883	0.5176	(+),29	0.6131	0.7069	(-),24	0.9883	0.5059	(+),29
33	Function: education	0.6316	0.6955	(+),29	0.3977	0.8110	(+),24	0.9859	0.5071	(+),29
34	Function: sports	1.0000	0.0000	(+),29	0.3379	0.8512	(-),24	0.3343	0.8495	(-),29
35	Function: shops	0.9792	0.5173	(-),29	0.8218	0.5978	(-),24	0.8369	0.5882	(+),29
36	Function: other	0.6161	0.6977	(-),29	0.8805	0.5682	(-),24	0.5872	0.7120	(-),29
37	Green: tree cover	0.9752	0.5186	(+),29	0.7807	0.6175	(+),24	0.9380	0.5372	(+),29
38	Green: bush cover	0.7795	0.6162	(+),29	0.9589	0.5288	(+),24	1.0000	0.5062	(-),29
39	Green: grass cover	0.8887	0.5618	(+),29	0.7649	0.6254	(+),24	0.9380	0.5372	(-),29
6	Noise pollution: total	0.9876	0.5124	(-),29	0.9261	0.5451	(+),24	0.8642	0.5740	(+),29
41	Noise pollution: roads	0.8276	0.5922	(+),29	0.7966	0.6096	(+),24	0.9380	0.5372	(+),29
42	Noise pollution: railways	0.9690	0.5217	(+),29	0.9097	0.5533	(-),24	0.8887	0.5618	(-),29
4	Year constr.: mean	0.9503	0.5310	(-),29	0.8688	0.5737	(+),24	0.7555	0.6281	(+),29
45	Landmarks: FSI	0.9046	0.5550	(-),29	0.6461	0.6854	(-),24	0.4687	0.7715	(-),29
46	Landmarks: plot area	0.8198	0.5967	(-),29	0.7572	0.6298	(-),24	0.5275	0.7417	(-),29
47	Landmarks: Year constr.	0.8493	0.5828	(-),29	1.0000	0.5097	(+),24	0.9776	0.5186	(-),29
48	Landmarks: 1 criterion	0.9105	0.5511	(-),29	0.8255	0.5954	(-),24	0.6635	0.6741	(-),29
49	Landmarks: 2 criteria	0.6092	0.7065	(-),29	0.5553	0.7386	(-),24	0.6092	0.7065	(-),29
50	Landmarks: 3 criteria	1.0000	0.0000	(+),29	1.0000	0.0000	(+),24	1.0000	0.0000	(+),29

Figure 1.20: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 3, data: non-standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most stat	Most coet,n	P([2] sometimes)	[2] stat	[2] coef,n	P(Least)	Least stat	Least coet,n
6	Year constr.: < 1945	0.4951	0.7525	wi(+),29	0.7422	0.6289	wi(-),24	0.1825	0.9088	wi(-),29
5	Year constr.: 1946-1970	0.2454	0.8773	wi(+),29	0.6165	-0.5077	tt(-),24	0.8760	0.1574	tt(+),29
÷	Year constr.: 1971-1985	0.5912	0.7044	wi(+),29	0.5083	0.672	tt(+),24	0.8037	-0.251	tt(-),29
12	Year constr.: 1986-2000	0.3806	0.8097	wi(-),29	0.2202	-1.2603	tt(-),24	0.0783	-1.8278	tt(-),29
13	Year constr.: 2001-2022	0.1544	1.4637	tt(+),29	0.1772	1.392	tt(+),24	0.0463	2.0854	tt(+),29
14	Traffic signals count	0.1083	0.9459	wi(-),29	0.1058	0.9471	wi(-),24	0.4410	0.7795	wi(-),29
15	Stairs count	0.4238	-0.8117	tt(-),29	0.0568	-2.0052	tt(-),24	0.0562	-1.9921	tt(-),29
16	Status: for construction	1.0000	0.5	wi(+),29	0.6034	0.5267	tt(+),24	0.7713	0.6143	wi(+),29
17	Status: unrealised	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
18	Status: under construction	1.0000	equal	n/a,29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
19	Status: in use (n.m.)	0.2311	0.8844	wi(+),29	0.8079	0.5961	wi(+),24	0.5415	0.7292	wi(+),29
50	Status: in use	0.3189	1.0147	tt(+),29	0.5304	-0.637	tt(-),24	0.3718	-0.9076	tt(-),29
51	Status: for demolition	0.4931	0.7534	wi(-),29	0.7438	0.6281	wi(-),24	0.7575	0.6212	wi(-),29
ន	Status: demolished	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
ន	Status: not in use	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
24	Status: reconstruction	0.1683	1.4144	tt(+),29	0.7160	0.3683	tt(+),24	0.3185	0.8407	wi(-),29
25	Status: illegitimate	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
26	Function: residential	0.7864	0.6068	wi(+),29	0.3984	0.8008	wi(-),24	0.0713	0.9643	wi(-),29
22	Function: gathering	0.4176	0.7912	wi(+),29	0.2028	0.8986	wi(-),24	0.5708	0.7146	wi(-),29
8	Function: prison	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
6	Function: healthcare	0.7395	0.6303	wi(+),29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
æ	Function: factory	0.6392	0.4739	tt(+),29	0.7349	0.3428	tt(+),24	0.5108	0.7446	wi(-),29
Ŧ	Function: office	0.7902	0.6049	wi(+),29	0.6237	-0.4973	tt(-),24	0.2643	-1.1391	tt(-),29
N	Function: guesthouse	1.0000	0.5	wi(+),29	0.5187	0.7407	wi(-),24	0.5415	0.7292	wi(-),29
ŝ	Function: education	0.4931	0.7534	wi(+),29	0.6972	0.6514	wi(+),24	0.7237	0.6382	wi(-),29
34	Function: sports	1.0000	equal	n/a,29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
35	Function: shops	0.8306	0.5847	wi(+),29	0.8815	0.1507	tt(+),24	0.9187	0.5406	wi(+),29
36	Function: other	0.8777	0.5612	wi(-),29	0.7589	0.3105	tt(+),24	0.8143	-0.237	tt(-),29
37	Green: tree cover	0.0000	-5.7278	tt(-),29	0.0001	-4.5667	tt(-),24	0.0000	-4.9305	tt(-),29
8	Green: bush cover	0.0001	-4.6569	tt(-),29	0.0003	-4.2969	tt(-),24	0.0001	-4.6833	tt(-),29
6	Green: grass cover	0.0000	-4.9534	tt(-),29	0.0001	-4.8411	tt(-),24	0.0001	-4.5927	tt(-),29
₽	Noise pollution: total	0.0000	-8.1351	tt(-),29	0.0000	-7.3396	tt(-),24	0.0000	-6.5913	tt(-),29
4	Noise pollution: roads	0.0000	-8.0822	tt(-),29	0.0000	-6.401	tt(-),24	0.0000	-5.5993	tt(-),29
4	Noise pollution: railways	0.0028	-3.2703	tt(-),29	0.0001	-4.6268	tt(-),24	0.0138	-2.6271	tt(-),29
4	Year constr.: mean	0.4778	-0.7195	tt(-),29	0.7178	-0.3659	tt(-),24	0.5452	0.6124	tt(+),29
1 5	Landmarks: FSI	0.3585	0.8207	wi(-),29	0.3158	0.8421	wi(-),24	0.0671	0.9665	wi(-),29
46	Landmarks: plot area	0.9113	0.5443	wi(-),29	0.8113	0.5944	wi(-),24	0.2356	0.8822	wi(-),29
47	Landmarks: Year constr.	0.5109	0.7446	wi(-),29	0.7438	0.6281	wi(-),24	0.5415	0.7292	wi(-),29
8	Landmarks: 1 criterion	0.8849	0.5575	wi(-),29	0.4892	0.7554	wi(-),24	0.0980	0.951	wi(-),29
49	Landmarks: 2 criteria	0.4931	0.7534	wi(-),29	0.7003	0.6498	wi(-),24	0.4931	0.7534	wi(-),29
20	Landmarks: 3 criteria	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29

Figure 1.21: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

_	Year constr.: < 1945	0.4951	0.7525	wi(+),29	0.5576	0.7212	wi(-),24	0.1825	0.9088	wi(-),29
0	Year constr.: 1946-1970	0.4000	0.8	wi(+),29	0.9206	-0.1007	tt(-),24	0.4464	0.7768	wi(+),29
-	Year constr.: 1971-1985	0.5912	0.7044	wi(+),29	0.4646	0.7437	tt(+),24	0.8037	-0.251	tt(-),29
2	Year constr.: 1986-2000	0.3806	0.8097	wi(-),29	0.2249	-1.2471	tt(-),24	0.0783	-1.8278	tt(-),29
e	Year constr.: 2001-2022	0.1544	1.4637	tt(+),29	0.1484	1.4954	tt(+),24	0.0426	2.1245	tt(+),29
4	Traffic signals count	0.1036	0.9482	wi(-),29	0.1058	0.9471	wi(-),24	0.5652	0.7174	wi(-),29
5	Stairs count	0.4238	-0.8117	tt(-),29	0.0568	-2.0052	tt(-),24	0.0961	-1.7222	tt(-),29
9	Status: for construction	1.0000	0.5	wi(+),29	0.6034	0.5267	tt(+),24	0.7713	0.6143	wi(+),29
2	Status: unrealised	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
8	Status: under construction	1.0000	equal	n/a,29	1.0000	equal	n/a,24	0.7237	0.6382	wi(-),29
6	Status: in use (n.m.)	0.2311	0.8844	wi(+),29	0.6704	0.6648	wi(-),24	0.5415	0.7292	wi(+),29
0	Status: in use	0.3982	0.858	tt(+),29	0.4747	-0.7268	tt(-),24	0.5152	-0.6591	tt(-),29
-	Status: for demolition	0.4931	0.7534	wi(-),29	0.7438	0.6281	wi(-),24	0.7575	0.6212	wi(-),29
N	Status: demolished	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
	Status: not in use	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
4	Status: reconstruction	0.1683	1.4144	tt(+),29	0.7160	0.3683	tt(+),24	0.3185	0.8407	wi(-),29
ŝ	Status: illegitimate	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
9	Function: residential	0.9741	0.513	wi(-),29	0.5573	0.7213	wi(-),24	0.0784	0.9608	wi(-),29
E.	Function: gathering	0.4176	0.7912	wi(+),29	0.1039	0.9481	wi(-),24	0.7460	0.3271	tt(+),29
	Function: prison	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
6	Function: healthcare	0.7395	0.6303	wi(+),29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
•	Function: factory	0.6392	0.4739	tt(+),29	0.7349	0.3428	tt(+),24	0.5108	0.7446	wi(-),29
-	Function: office	0.7902	0.6049	wi(+),29	0.5763	-0.5669	tt(-),24	0.2643	-1.1391	tt(-),29
N	Function: guesthouse	1.0000	0.5	wi(+),29	0.2830	0.8585	wi(-),24	0.5415	0.7292	wi(-),29
0	Function: education	0.4931	0.7534	wi(+),29	0.6972	0.6514	wi(+),24	0.7237	0.6382	wi(-),29
4	Function: sports	1.0000	equal	n/a,29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
5	Function: shops	0.8306	0.5847	wi(+),29	0.9986	-0.0018	tt(-),24	0.9187	0.5406	wi(+),29
9	Function: other	0.8777	0.5612	wi(-),29	0.7071	0.3804	tt(+),24	0.9271	0.0923	tt(+),29
P.	Green: tree cover	0.0000	-5.903	tt(-),29	0.0004	-4.1765	tt(-),24	0.0000	-5.2379	tt(-),29
8	Green: bush cover	0.0001	-4.6411	tt(-),29	0.0006	-3.9495	tt(-),24	0.0000	-5.0432	tt(-),29
6	Green: grass cover	0.0000	-4.8357	tt(-),29	0.0001	-4.6117	tt(-),24	0.0000	-5.5546	tt(-),29
•	Noise pollution: total	0.0000	-7.8624	tt(-),29	0.0000	-6.8459	tt(-),24	0.0000	-7.2299	tt(-),29
-	Noise pollution: roads	0.0000	-7.8119	tt(-),29	0.0000	-6.0537	tt(-),24	0.0000	-5.8038	tt(-),29
N	Noise pollution: railways	0.0035	-3.1877	tt(-),29	0.0002	-4.3944	tt(-),24	0.0153	-2.5822	tt(-),29
4	Year constr.: mean	0.5148	-0.6598	tt(-),29	0.8421	-0.2014	tt(-),24	0.5222	0.6481	tt(+),29
ŝ	Landmarks: FSI	0.2310	0.8845	wi(-),29	0.3158	0.8421	wi(-),24	0.1167	0.9417	wi(-),29
9	Landmarks: plot area	0.7118	0.6441	wi(-),29	0.8113	0.5944	wi(-),24	0.2356	0.8822	wi(-),29
5	Landmarks: Year constr.	0.5109	0.7446	wi(-),29	0.7438	0.6281	wi(-),24	0.5415	0.7292	wi(-),29
æ	Landmarks: 1 criterion	0.5042	0.7479	wi(-),29	0.4892	0.7554	wi(-),24	0.1568	0.9216	wi(-),29
6	Landmarks: 2 criteria	0.4931	0.7534	wi(-),29	0.7003	0.6498	wi(-),24	0.4931	0.7534	wi(-),29
9	Landmarks: 3 criteria	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29

Figure 1.22: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

уd,	
dise	
dar	
cane	
 2	
lata	
3, 3	
on	
esti	
-dn	
.db	
), s	
-40	
(31	
age	
1	
ion	
ract	
nteı	
н. С	
nple	
san	
iis,	
alys	
ana	
ate	
reg	\mathbf{SS}
agg	cce
te	 9
rou	ion
for	rect
lts]	, di
esul	ath
W L	st p
Ra	rtes
23:	$_{\rm sho}$
51.	ne:
şure	seliı
Fig.	ba£

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.3066	0.8467	wi(+),29	0.2884	0.8558	wi(-),24	0.0632	0.9684	wi(-),29
₽	Year constr.: 1946-1970	0.7229	0.6385	wi(+),29	0.1969	0.9016	wi(-),24	0.2341	-1.216	tt(-),29
÷	Year constr.: 1971-1985	0.2012	0.8994	wi(+),29	0.1439	1.5129	tt(+),24	0.5362	0.6264	tt(+),29
12	Year constr.: 1986-2000	0.4373	0.7814	wi(+),29	0.5794	-0.5622	tt(-),24	0.2868	-1.0858	tt(-),29
13	Year constr.: 2001-2022	0.5942	0.7029	wi(+),29	0.4066	0.7967	wi(-),24	0.7333	0.6334	wi(-),29
14	Traffic signals count	0.2111	0.8945	wi(-),29	0.8298	0.5851	wi(+),24	0.4395	0.7802	wi(+),29
15	Stairs count	1.0000	0.5	wi(+),29	0.1035	-1.6956	tt(-),24	0.1033	-1.6839	tt(-),29
16	Status: for construction	0.7237	0.6382	wi(+),29	0.4796	0.7602	wi(+),24	0.7306	0.6347	wi(+),29
17	Status: unrealised	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
18	Status: under construction	1.0000	equal	n/a,29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
19	Status: in use (n.m.)	0.3186	0.8407	wi(+),29	0.7267	0.6367	wi(-),24	0.9906	0.5047	wi(-),29
20	Status: in use	0.2128	0.8936	wi(+),29	0.2517	0.8741	wi(-),24	0.0372	0.9814	wi(-),29
5	Status: for demolition	0.7237	0.6382	wi(+),29	0.4582	0.7709	wi(+),24	0.4931	0.7534	wi(+),29
22	Status: demolished	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
23	Status: not in use	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
24	Status: reconstruction	0.7331	-0.3445	tt(-),29	0.1035	-1.6956	tt(-),24	0.0373	0.9813	wi(-),29
25	Status: illegitimate	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
26	Function: residential	0.0967	0.9517	wi(+),29	0.7091	0.6454	wi(-),24	0.1304	0.9348	wi(-),29
27	Function: gathering	0.8193	0.5903	wi(+),29	0.1027	-1.6994	tt(-),24	0.4628	-0.7445	tt(-),29
28	Function: prison	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
29	Function: healthcare	0.7237	0.6382	wi(+),29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
30	Function: factory	0.4931	0.7534	wi(+),29	0.9510	0.5245	wi(+),24	0.3185	0.8407	wi(-),29
3	Function: office	0.8550	0.5725	wi(+),29	0.0058	-3.0395	tt(-),24	0.0223	0.9888	wi(-),29
32	Function: guesthouse	0.7575	0.6212	wi(+),29	0.7438	0.6281	wi(+),24	0.7575	0.6212	wi(+),29
33	Function: education	0.7306	0.6347	wi(+),29	0.4582	0.7709	wi(+),24	1.0000	0.5	wi(+),29
34	Function: sports	1.0000	equal	n/a,29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
35	Function: shops	0.7537	0.6231	wi(+),29	0.9533	-0.0592	tt(-),24	0.5556	0.7222	wi(+),29
36	Function: other	0.6935	0.6532	wi(-),29	0.8284	-0.2192	tt(-),24	0.5194	-0.6525	tt(-),29
37	Green: tree cover	0.6025	0.6987	wi(-),29	0.6573	-0.4494	tt(-),24	0.9209	0.1001	tt(+),29
38	Green: bush cover	0.9235	0.0969	tt(+),29	0.5609	-0.5901	tt(-),24	0.9876	-0.0156	tt(-),29
39	Green: grass cover	0.1929	0.9035	wi(-),29	0.8405	-0.2036	tt(-),24	0.7261	0.3538	tt(+),29
6	Noise pollution: total	0.6952	-0.3958	tt(-),29	0.9959	-0.0053	tt(-),24	0.5047	0.6757	tt(+),29
41	Noise pollution: roads	0.4812	-0.7139	tt(-),29	0.9118	-0.1119	tt(-),24	0.9699	-0.0381	tt(-),29
42	Noise pollution: railways	0.9307	0.5346	wi(-),29	0.6373	0.6813	wi(-),24	0.9225	0.5388	wi(+),29
4	Year constr.: mean	0.9565	0.5217	wi(-),29	0.5121	0.6659	tt(+),24	0.1560	0.922	wi(+),29
45	Landmarks: FSI	0.9904	0.5048	wi(+),29	0.6973	0.6514	wi(-),24	0.3232	0.8384	wi(-),29
46	Landmarks: plot area	0.9819	0.509	wi(-),29	0.7427	0.6287	wi(-),24	0.2384	0.8808	wi(-),29
47	Landmarks: Year constr.	0.1965	0.9017	wi(-),29	0.2228	0.8886	wi(-),24	0.1568	0.9216	wi(-),29
48	Landmarks: 1 criterion	1.0000	0.5	wi(+),29	0.3058	0.8471	wi(-),24	0.0679	0.9661	wi(-),29
49	Landmarks: 2 criteria	0.4931	0.7534	wi(-),29	0.7003	0.6498	wi(-),24	0.4931	0.7534	wi(-),29
50	Landmarks: 3 criteria	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29

age (31-40), sub-question 3, data: standardi	
mple: interaction -	
e aggregate analysis, sa	egress
cesults for route	bath, direction:
igure 1.24: Raw 1	aseline: shortest _f

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.3066	0.8467	wi(+),29	0.2511	0.8745	wi(-),24	0.0632	0.9684	wi(-),29
9	Year constr.: 1946-1970	0.8419	0.579	wi(-),29	0.2071	0.8964	wi(-),24	0.5405	0.7297	wi(-),29
Ŧ	Year constr.: 1971-1985	0.2012	0.8994	wi(+),29	0.1354	1.5475	tt(+),24	0.5362	0.6264	tt(+),29
12	Year constr.: 1986-2000	0.4373	0.7814	wi(+),29	0.5890	-0.5479	tt(-),24	0.2868	-1.0858	tt(-),29
13	Year constr.: 2001-2022	0.5942	0.7029	wi(+),29	0.4066	0.7967	wi(-),24	0.9650	0.5175	wi(-),29
14	Traffic signals count	0.1209	0.9395	wi(-),29	0.8298	0.5851	wi(+),24	0.2635	0.8682	wi(+),29
15	Stairs count	1.0000	0.5	wi(+),29	0.1035	-1.6956	tt(-),24	0.2641	-1.1397	tt(-),29
16	Status: for construction	0.7237	0.6382	wi(+),29	0.4796	0.7602	wi(+),24	0.7306	0.6347	wi(+),29
17	Status: unrealised	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
18	Status: under construction	1.0000	equal	n/a,29	1.0000	equal	n/a,24	0.7237	0.6382	wi(-),29
19	Status: in use (n.m.)	0.3186	0.8407	wi(+),29	0.4608	0.7696	wi(-),24	0.9906	0.5047	wi(-),29
20	Status: in use	0.4187	0.7907	wi(+),29	0.2288	0.8856	wi(-),24	0.1111	0.9444	wi(-),29
5	Status: for demolition	0.7237	0.6382	wi(+),29	0.4582	0.7709	wi(+),24	0.4931	0.7534	wi(+),29
52	Status: demolished	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
23	Status: not in use	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
24	Status: reconstruction	0.7331	-0.3445	tt(-),29	0.1035	-1.6956	tt(-),24	0.0373	0.9813	wi(-),29
25	Status: illegitimate	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
26	Function: residential	0.2210	0.8895	wi(+),29	0.9542	0.5229	wi(-),24	0.1799	0.9101	wi(-),29
27	Function: gathering	0.8193	0.5903	wi(+),29	0.0795	-1.8346	tt(-),24	0.9395	-0.0766	tt(-),29
28	Function: prison	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29
29	Function: healthcare	0.7237	0.6382	wi(+),29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
30	Function: factory	0.4931	0.7534	wi(+),29	0.9510	0.5245	wi(+),24	0.3185	0.8407	wi(-),29
31	Function: office	0.8550	0.5725	wi(+),29	0.0045	-3.1515	tt(-),24	0.0223	0.9888	wi(-),29
32	Function: guesthouse	0.7575	0.6212	wi(+),29	0.6973	0.6514	wi(-),24	0.7575	0.6212	wi(+),29
33	Function: education	0.7306	0.6347	wi(+),29	0.4582	0.7709	wi(+),24	1.0000	0.5	wi(+),29
34	Function: sports	1.0000	equal	n/a,29	0.7003	0.6498	wi(-),24	0.7237	0.6382	wi(-),29
35	Function: shops	0.7537	0.6231	wi(+),29	0.8180	-0.2328	tt(-),24	0.5556	0.7222	wi(+),29
36	Function: other	0.6935	0.6532	wi(-),29	0.8866	-0.1442	tt(-),24	0.7747	-0.2891	tt(-),29
37	Green: tree cover	0.8450	0.5775	wi(-),29	0.8918	0.1376	tt(+),24	0.8525	-0.1876	tt(-),29
38	Green: bush cover	0.5969	0.535	tt(+),29	0.9354	0.0819	tt(+),24	0.8621	-0.1752	tt(-),29
39	Green: grass cover	0.4214	0.7893	wi(-),29	0.5454	0.6138	tt(+),24	0.9212	-0.0998	tt(-),29
4	Noise pollution: total	0.8570	-0.1819	tt(-),29	0.7445	0.3299	tt(+),24	0.5534	0.5999	tt(+),29
41	Noise pollution: roads	0.6195	-0.5021	tt(-),29	0.8842	0.1473	tt(+),24	0.9464	0.0678	tt(+),29
42	Noise pollution: railways	0.6872	0.6564	wi(+),29	0.8527	0.5737	wi(-),24	0.7070	-0.3797	tt(-),29
44	Year constr.: mean	0.7685	0.6158	wi(+),29	0.3748	0.905	tt(+),24	0.2242	1.2428	tt(+),29
45	Landmarks: FSI	0.7237	0.6382	wi(-),29	0.6973	0.6514	wi(-),24	0.5042	0.7479	wi(-),29
46	Landmarks: plot area	0.7665	0.6167	wi(-),29	0.7427	0.6287	wi(-),24	0.3549	0.8225	wi(-),29
47	Landmarks: Year constr.	0.1965	0.9017	wi(-),29	0.2228	0.8886	wi(-),24	0.1568	0.9216	wi(-),29
48	Landmarks: 1 criterion	0.7492	0.6254	wi(-),29	0.3058	0.8471	wi(-),24	0.1927	0.9036	wi(-),29
49	Landmarks: 2 criteria	0.4931	0.7534	wi(-),29	0.7003	0.6498	wi(-),24	0.4931	0.7534	wi(-),29
20	Landmarks: 3 criteria	1.0000	equal	n/a,29	1.0000	equal	n/a,24	1.0000	equal	n/a,29

nteraction - age $(41+)$, sub-question 3, data: non-standardised	
ire 1.25: Raw results for route aggregate analysis, sample: i	sline: least directional turns path, direction: access
Figu	base

•

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7138	0.4621	(+),20	0.9892	0.3468	(-),20
1	Year constr.: 1946-1970	0.3980	0.4017	(-),20	0.6409	0.5296	(-),20
Ŧ	Year constr.: 1971-1985	0.1300	0.3860	(+),20	0.4965	0.6984	(+),20
12	Year constr.: 1986-2000	0.4572	0.4559	(+),20	0.5546	0.5165	(+),20
13	Year constr.: 2001-2022	0.9022	0.3552	(-),20	0.7024	0.4293	(+),20
4	Traffic signals count	0.8564	0.5613	(+),20	0.6539	0.4216	(+),20
15	Stairs count	0.7225	0.6432	(+),20	0.7225	0.6432	(+),20
16	Status: for construction	0.1954	0.000	(+),20	0.4996	0.7332	(+),20
17	Status: unrealised	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
18	Status: under construction	0.7902	0.3951	(+),20	0.9382	0.4691	(+),20
19	Status: in use (n.m.)	0.5734	0.0000	(+),20	0.5734	0.0000	(+),20
20	Status: in use	0.6262	0.4461	(+),20	0.7971	0.5698	(+),20
5	Status: for demolition	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
22	Status: demolished	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
23	Status: not in use	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
24	Status: reconstruction	0.9652	0.2233	(+),20	0.4723	0.4714	(-),20
25	Status: illegitimate	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
26	Function: residential	0.2779	0.2934	(+),20	0.3707	0.3518	(+),20
27	Function: gathering	0.6714	0.5067	(+),20	0.9873	0.3414	(-),20
28	Function: prison	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
29	Function: healthcare	1.0000	0.8531	(-),20	0.3421	0.5143	(-),20
30	Function: factory	0.9536	0.2834	(-),20	0.7247	0.1911	(-),20
3	Function: office	0.4919	0.2095	(+),20	0.5295	0.2403	(+),20
32	Function: guesthouse	0.9826	0.3563	(+),20	0.8219	0.5388	(-),20
33	Function: education	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
34	Function: sports	0.3421	0.1711	(+),20	0.3421	0.1711	(+),20
35	Function: shops	0.9056	0.5235	(-),20	0.5134	0.3241	(-),20
36	Function: other	0.6648	0.4389	(+),20	0.8026	0.5277	(+),20
37	Green: tree cover	0.1404	0.6324	(+),20	0.1298	0.5431	(+),20
38	Green: bush cover	0.1478	0.6014	(+),20	0.1677	0.5000	(+),20
39	Green: grass cover	0.0810	0.5804	(+),20	0.1167	0.6375	(+),20
40	Noise pollution: total	0.1895	0.6118	(+),20	0.1368	0.5538	(+),20
41	Noise pollution: roads	0.1895	0.5592	(+),20	0.1167	0.5751	(+),20
42	Noise pollution: railways	0.2977	0.4623	(+),20	0.4488	0.5645	(+),20
4	Year constr.: mean	0.9784	0.4892	(+),20	0.9676	0.5162	(+),20
45	Landmarks: FSI	0.5605	0.3851	(+),20	0.8615	0.5578	(+),20
46	Landmarks: plot area	0.3467	0.2646	(+),20	0.5089	0.3361	(+),20
47	Landmarks: Year constr.	0.7867	0.3539	(+),20	0.9873	0.5434	(-),20
48	Landmarks: 1 criterion	0.5100	0.2821	(+),20	0.9673	0.4455	(-),20
49	Landmarks: 2 criteria	0.6531	0.4653	(+),20	0.6980	0.5000	(+),20
50	Landmarks: 3 criteria	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20

andardised,	
: non-sta	
e (41+), sub-question 3, data	
: interaction - ag	
ysis, sample	egress
uggregate anal	th, direction:
s for route ε	al turns pat
: Raw result	ast direction
Figure 1.26	baseline: le

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7138	0.4567	(+),20	0.9567	0.6225	(+),20
10	Year constr.: 1946-1970	0.4492	0.4302	(-),20	0.4063	0.4360	(-),20
÷	Year constr.: 1971-1985	0.0855	0.3195	(+),20	0.7137	0.7744	(+),20
12	Year constr.: 1986-2000	0.4572	0.4559	(+),20	0.2815	0.3131	(+),20
13	Year constr.: 2001-2022	0.9891	0.3970	(-),20	0.6038	0.3655	(+),20
4	Traffic signals count	0.8564	0.5613	(+),20	0.7510	0.2618	(-),20
15	Stairs count	0.7225	0.6432	(+),20	0.4820	0.5068	(+),20
16	Status: for construction	0.1954	0.0000	(+),20	0.4996	0.7332	(+),20
17	Status: unrealised	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
18	Status: under construction	0.7902	0.3951	(+),20	0.7129	0.3564	(+),20
19	Status: in use (n.m.)	0.5734	0.0000	(+),20	0.5734	0.0000	(+),20
20	Status: in use	0.6072	0.4461	(+),20	0.6262	0.4569	(+),20
5	Status: for demolition	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
2	Status: demolished	1.0000	0.000	(-),20	1.0000	0.0000	(-),20
23	Status: not in use	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
24	Status: reconstruction	0.9652	0.2233	(+),20	0.7585	0.6527	(-),20
25	Status: illegitimate	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
26	Function: residential	0.2779	0.2934	(+),20	0.6841	0.6329	(+),20
27	Function: gathering	0.8069	0.5533	(+),20	0.6245	0.5000	(+),20
28	Function: prison	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20
29	Function: healthcare	1.0000	0.8531	(-),20	0.3421	0.5143	(-),20
30	Function: factory	0.9536	0.2834	(-),20	0.9536	0.6886	(+),20
31	Function: office	0.6080	0.2679	(+),20	0.2542	0.1058	(+),20
32	Function: guesthouse	0.9826	0.3563	(+),20	0.5881	0.1855	(+),20
33	Function: education	1.0000	0.0000	(-),20	0.5536	0.2768	(-),20
34	Function: sports	0.3421	0.1711	(+),20	0.3421	0.1711	(+),20
35	Function: shops	0.9056	0.5235	(-),20	0.5992	0.3776	(-),20
36	Function: other	0.6648	0.4389	(+),20	0.5498	0.3957	(+),20
37	Green: tree cover	0.1404	0.6324	(+),20	0.0883	0.5484	(+),20
38	Green: bush cover	0.1404	0.5910	(+),20	0.1368	0.5484	(+),20
39	Green: grass cover	0.0810	0.5592	(+),20	0.1046	0.6014	(+),20
6	Noise pollution: total	0.1895	0.6118	(+),20	0.1677	0.5698	(+),20
41	Noise pollution: roads	0.1895	0.5592	(+),20	0.1231	0.5377	(+),20
42	Noise pollution: railways	0.2977	0.4515	(+),20	0.3867	0.4946	(+),20
4	Year constr.: mean	0.8924	0.4569	(+),20	0.9353	0.4892	(-),20
45	Landmarks: FSI	0.5605	0.3851	(+),20	0.6626	0.4362	(+),20
46	Landmarks: plot area	0.3044	0.2462	(+),20	0.4876	0.3298	(+),20
47	Landmarks: Year constr.	0.7867	0.3539	(+),20	0.8031	0.4391	(-),20
48	Landmarks: 1 criterion	0.4925	0.2594	(+),20	0.8802	0.4672	(+),20
49	Landmarks: 2 criteria	0.6531	0.4653	(+),20	0.9691	0.6358	(+),20
20	Landmarks: 3 criteria	1.0000	0.0000	(-),20	1.0000	0.0000	(-),20

÷	
eq	
IS.	
rd	
la	
ŭ	
ta	
ŝ	
п	
ă	
<u></u>	
at:	
ų.	
с,	
d	
.Ö	
st	
ne	
Ę.	
ف	
ß	
÷	
+	
11	
$\overline{)}$	
e B	
å	
-	
or	
iti.	
ac	
er	
nt	
le	
du	
ar	
s	
IS.	
-ys	
٦	
ar	
e	
at	
- 60 00	SS
5 L	e
ĝ	ac
ය ග	
Ŧ	п
ē	Ĕ
Ľ	8
fo	÷
Ŋ	0
тļ	Ę
SSI	at
re	ρ
M	št
Ra	te
	o
21	ds
1.7	
e	ne
μ	eli
<u>.</u>	3S(
Ē	ã

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.9242	0.5487	(-),20	0.6936	0.6632	(+),20
9	Year constr.: 1946-1970	0.8034	0.6096	(+),20	0.9645	0.5296	(-),20
Ŧ	Year constr.: 1971-1985	0.7720	0.6245	(-),20	0.6225	0.6984	(+),20
12	Year constr.: 1986-2000	0.9118	0.5551	(-),20	0.9890	0.5165	(+),20
3	Year constr.: 2001-2022	0.7105	0.6550	(+),20	0.8585	0.5815	(-),20
4	Traffic signals count	0.8996	0.5613	(+),20	0.8431	0.5895	(-),20
12	Stairs count	0.7398	0.6432	(+),20	0.7398	0.6432	(+),20
16	Status: for construction	1.0000	0.0000	(+),20	0.5734	0.7332	(+),20
4	Status: unrealised	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
8	Status: under construction	0.7902	0.6206	(-),20	0.9382	0.5463	(-),20
19	Status: in use (n.m.)	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
8	Status: in use	0.8923	0.5645	(-),20	0.8816	0.5698	(+),20
5	Status: for demolition	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
2	Status: demolished	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
ន	Status: not in use	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
54	Status: reconstruction	0.4466	0.7882	(-),20	0.9427	0.5429	(+),20
52	Status: illegitimate	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
28	Function: residential	0.5868	0.7159	(-),20	0.7037	0.6582	(-),20
22	Function: gathering	0.9866	0.5067	(+),20	0.6828	0.6705	(+),20
8	Function: prison	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
6	Function: healthcare	0.3421	0.8531	(-),20	0.9714	0.5143	(+),20
8	Function: factory	0.5669	0.7302	(+),20	0.3821	0.8193	(+),20
Ξ	Function: office	0.4189	0.7994	(-),20	0.4805	0.7694	(-),20
g	Function: guesthouse	0.7126	0.6589	(-),20	0.9534	0.5388	(-),20
8	Function: education	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
3	Function: sports	0.3421	0.8531	(-),20	0.3421	0.8531	(-),20
35	Function: shops	0.9765	0.5235	(-),20	0.6483	0.6864	(+),20
36	Function: other	0.8777	0.5721	(-),20	0.9667	0.5277	(+),20
31	Green: tree cover	0.7557	0.6324	(+),20	0.9353	0.5431	(+),20
g	Green: bush cover	0.8181	0.6014	(+),20	1.0000	0.5108	(-),20
33	Green: grass cover	0.8604	0.5804	(+),20	0.7454	0.6375	(+),20
ç	Noise pollution: total	0.7971	0.6118	(+),20	0.9138	0.5538	(+),20
Ŧ	Noise pollution: roads	0.9031	0.5592	(+),20	0.8710	0.5751	(+),20
5	Noise pollution: railways	0.9245	0.5485	(-),20	0.8924	0.5645	(+),20
4	Year constr.: mean	0.9784	0.5216	(-),20	0.9892	0.5162	(+),20
45	Landmarks: FSI	0.7702	0.6260	(-),20	0.9073	0.5578	(+),20
1 6	Landmarks: plot area	0.5292	0.7447	(-),20	0.6722	0.6741	(-),20
47	Landmarks: Year constr.	0.7078	0.6576	(-),20	0.9379	0.5434	(-),20
\$	Landmarks: 1 criterion	0.5642	0.7271	(-),20	0.8910	0.5653	(+),20
49	Landmarks: 2 criteria	0.9306	0.5520	(-),20	1.0000	0.5174	(-),20
22	Landmarks: 3 criteria	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20

regate analysis, sample: interaction - age (41+), sub-question 3, data: non-standardised,	SS
nalys	
ate a	
ggreg	gress
oute a	ion: •
for ro	lirect
sults	ath, c
aw re	est pé
8: Rí	hort
1.2	le: s
Figure	baseliı

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.9134	0.5540	(-),20	0.7757	0.6225	(+),20
₽	Year constr.: 1946-1970	0.8605	0.5812	(+),20	0.8720	0.5755	(+),20
÷	Year constr.: 1971-1985	0.6389	0.6903	(-),20	0.4679	0.7744	(+),20
12	Year constr.: 1986-2000	0.9118	0.5551	(-),20	0.6262	0.6967	(-),20
13	Year constr.: 2001-2022	0.7939	0.6136	(+),20	0.7310	0.6448	(-),20
14	Traffic signals count	0.8996	0.5613	(+),20	0.5237	0.7471	(+),20
15	Stairs count	0.7398	0.6432	(+),20	0.9864	0.5068	(+),20
16	Status: for construction	1.0000	0.0000	(+),20	0.5734	0.7332	(+),20
17	Status: unrealised	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
18	Status: under construction	0.7902	0.6206	(-),20	0.7129	0.6587	(-),20
19	Status: in use (n.m.)	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
20	Status: in use	0.8923	0.5645	(-),20	0.9138	0.5538	(-),20
5	Status: for demolition	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
8	Status: demolished	1.0000	0.000	(+),20	1.0000	0.0000	(+),20
83	Status: not in use	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
24	Status: reconstruction	0.4466	0.7882	(-),20	0.7225	0.6527	(-),20
25	Status: illegitimate	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
26	Function: residential	0.5868	0.7159	(-),20	0.7547	0.6329	(+),20
27	Function: gathering	0.9199	0.5533	(+),20	1.0000	0.5134	(-),20
28	Function: prison	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20
29	Function: healthcare	0.3421	0.8531	(-),20	0.9714	0.5143	(+),20
30	Function: factory	0.5669	0.7302	(+),20	0.6520	0.6886	(+),20
31	Function: office	0.5357	0.7422	(-),20	0.2117	0.8999	(-),20
32	Function: guesthouse	0.7126	0.6589	(-),20	0.3710	0.8260	(-),20
33	Function: education	1.0000	0.0000	(+),20	0.5536	0.7427	(+),20
34	Function: sports	0.3421	0.8531	(-),20	0.3421	0.8531	(-),20
35	Function: shops	0.9765	0.5235	(-),20	0.7551	0.6337	(+),20
36	Function: other	0.8777	0.5721	(-),20	0.7914	0.6150	(-),20
37	Green: tree cover	0.7557	0.6324	(+),20	0.9246	0.5484	(+),20
38	Green: bush cover	0.8392	0.5910	(+),20	0.9246	0.5484	(+),20
39	Green: grass cover	0.9031	0.5592	(+),20	0.8181	0.6014	(+),20
4	Noise pollution: total	0.7971	0.6118	(+),20	0.8817	0.5698	(+),20
41	Noise pollution: roads	0.9031	0.5592	(+),20	0.9461	0.5377	(+),20
42	Noise pollution: railways	0.9031	0.5592	(-),20	0.9892	0.5162	(-),20
4	Year constr.: mean	0.9138	0.5538	(-),20	0.9784	0.5216	(+),20
45	Landmarks: FSI	0.7702	0.6260	(-),20	0.8724	0.5753	(-),20
46	Landmarks: plot area	0.4924	0.7627	(-),20	0.6596	0.6804	(-),20
47	Landmarks: Year constr.	0.7078	0.6576	(-),20	0.8783	0.5729	(+),20
48	Landmarks: 1 criterion	0.5188	0.7494	(-),20	0.9344	0.5437	(-),20
49	Landmarks: 2 criteria	0.9306	0.5520	(-),20	0.7593	0.6358	(+),20
50	Landmarks: 3 criteria	1.0000	0.0000	(+),20	1.0000	0.0000	(+),20

ub-question 3, data: standardised,	
(41+), s	
- age	
interaction	
sample:	
analysis,	: access
gregate s	lirection
oute agg	s path, c
for r	turns
results	etional
Raw	st dire
1.29:	e: lea
Figure	baselin

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.6681	-0.4355	tt(-),20	0.8219	0.589	wi(-),20
9	Year constr.: 1946-1970	0.0217	0.9891	wi(+),20	0.4323	0.7838	wi(+),20
Ξ	Year constr.: 1971-1985	0.0462	0.9769	wi(-),20	0.4486	0.7757	wi(-),20
12	Year constr.: 1986-2000	0.3557	-0.9467	tt(-),20	0.0734	-1.8954	tt(-),20
13	Year constr.: 2001-2022	0.7075	0.6463	wi(+),20	0.5584	0.5957	tt(+),20
4	Traffic signals count	0.6720	-0.43	tt(-),20	0.2909	-1.0863	tt(-),20
15	Stairs count	0.7017	0.6492	wi(-),20	0.7017	0.6492	wi(-),20
16	Status: for construction	0.4264	0.7868	wi(-),20	0.9366	0.5317	wi(-),20
17	Status: unrealised	1.0000	equal	n/a,20	1.0000	equal	n/a,20
18	Status: under construction	0.9837	0.5082	wi(-),20	0.6767	0.6617	wi(-),20
19	Status: in use (n.m.)	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
20	Status: in use	0.4782	-0.7234	tt(-),20	0.7342	-0.3445	tt(-),20
21	Status: for demolition	1.0000	equal	n/a,20	1.0000	equal	n/a,20
ដ	Status: demolished	1.0000	equal	n/a,20	1.0000	equal	n/a,20
8	Status: not in use	1.0000	equal	n/a,20	1.0000	equal	n/a,20
24	Status: reconstruction	0.9691	-0.0392	tt(-),20	0.3547	0.9488	tt(+),20
25	Status: illegitimate	1.0000	equal	n/a,20	1.0000	equal	n/a,20
26	Function: residential	0.0511	0.9745	wi(-),20	0.1151	0.9424	wi(-),20
27	Function: gathering	0.3162	0.8419	wi(-),20	0.7319	0.6341	wi(+),20
28	Function: prison	1.0000	equal	n/a,20	1.0000	equal	n/a,20
29	Function: healthcare	1.0000	equal	n/a,20	0.6767	0.6617	wi(+),20
8	Function: factory	0.9625	0.0477	tt(+),20	0.4740	0.763	wi(+),20
31	Function: office	0.3195	-1.0223	tt(-),20	0.2736	-1.1275	tt(-),20
32	Function: guesthouse	0.6767	0.6617	wi(-),20	0.7319	0.6341	wi(-),20
33	Function: education	1.0000	equal	n/a,20	1.0000	equal	n/a,20
34	Function: sports	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
35	Function: shops	0.9787	0.027	tt(+),20	0.3070	1.0497	tt(+),20
36	Function: other	0.5441	0.728	wi(-),20	0.1478	0.9261	wi(-),20
37	Green: tree cover	0.0018	-3.6328	tt(-),20	0.0001	-4.9219	tt(-),20
8	Green: bush cover	0.0019	-3.596	tt(-),20	0.0002	-4.5568	tt(-),20
39	Green: grass cover	0.0042	-3.2515	tt(-),20	0.0003	-4.4436	tt(-),20
4	Noise pollution: total	0.0003	-4.4128	tt(-),20	0.0001	-5.0726	tt(-),20
41	Noise pollution: roads	0.0009	-3.9088	tt(-),20	0.0002	-4.687	tt(-),20
42	Noise pollution: railways	0.0375	-2.237	tt(-),20	0.0239	0.988	wi(-),20
4	Year constr.: mean	0.8519	0.5741	wi(-),20	0.1909	0.9045	wi(-),20
45	Landmarks: FSI	0.0769	0.9616	wi(-),20	0.3992	-0.8624	tt(-),20
46	Landmarks: plot area	0.2627	0.8687	wi(-),20	0.2886	0.8557	wi(-),20
47	Landmarks: Year constr.	0.2507	0.8747	wi(-),20	0.5465	0.7268	wi(-),20
48	Landmarks: 1 criterion	0.1094	0.9453	wi(-),20	0.8547	0.1857	tt(+),20
49	Landmarks: 2 criteria	0.4246	0.7877	wi(-),20	0.2507	0.8747	wi(-),20
50	Landmarks: 3 criteria	1.0000	equal	n/a,20	1.0000	equal	n/a,20

ed,	
standardis	
data:	
sub-question 3,	
(41+)	
- age	
interaction	
sample:	
gregate analysis,	lirection: egress
for route age	turns path, c
r results	rectional
: Raw	ast dir
1.30:	ie: le£
Figure	baselir

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.6664	-0.4379	tt(-),20	0.7788	0.6106	wi(-),20
9	Year constr.: 1946-1970	0.0217	0.9891	wi(+),20	0.2352	1.226	tt(+),20
Ξ	Year constr.: 1971-1985	0.0423	0.9789	wi(-),20	0.5599	0.72	wi(-),20
12	Year constr.: 1986-2000	0.3557	-0.9467	tt(-),20	0.0315	0.9843	wi(-),20
13	Year constr.: 2001-2022	1.0000	0.5	wi(+),20	0.7030	0.3871	tt(+),20
4	Traffic signals count	0.6720	-0.43	tt(-),20	0.6541	0.4553	tt(+),20
15	Stairs count	0.7017	0.6492	wi(-),20	0.3299	-1.0	tt(-),20
16	Status: for construction	0.4264	0.7868	wi(-),20	0.9366	0.5317	wi(-),20
17	Status: unrealised	1.0000	equal	n/a,20	1.0000	equal	n/a,20
18	Status: under construction	0.9837	0.5082	wi(-),20	0.6767	0.6617	wi(-),20
19	Status: in use (n.m.)	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
20	Status: in use	0.4524	-0.7673	tt(-),20	0.2321	0.884	wi(-),20
21	Status: for demolition	1.0000	equal	n/a,20	1.0000	equal	n/a,20
ដ	Status: demolished	1.0000	equal	n/a,20	1.0000	equal	n/a,20
8	Status: not in use	1.0000	equal	n/a,20	1.0000	equal	n/a,20
24	Status: reconstruction	0.9691	-0.0392	tt(-),20	0.7040	0.3856	tt(+),20
25	Status: illegitimate	1.0000	equal	n/a,20	1.0000	equal	n/a,20
26	Function: residential	0.0511	0.9745	wi(-),20	0.3396	0.8302	wi(-),20
27	Function: gathering	0.7383	0.6308	wi(-),20	0.1412	0.9294	wi(-),20
28	Function: prison	1.0000	equal	n/a,20	1.0000	equal	n/a,20
29	Function: healthcare	1.0000	equal	n/a,20	0.6767	0.6617	wi(+),20
8	Function: factory	0.9625	0.0477	tt(+),20	0.9616	-0.0488	tt(-),20
31	Function: office	0.3882	-0.8831	tt(-),20	0.1172	-1.6414	tt(-),20
32	Function: guesthouse	0.6767	0.6617	wi(-),20	0.4246	0.7877	wi(-),20
33	Function: education	1.0000	equal	n/a,20	0.4246	0.7877	wi(+),20
34	Function: sports	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
35	Function: shops	0.9787	0.027	tt(+),20	0.4309	0.8048	tt(+),20
36	Function: other	0.5441	0.728	wi(-),20	0.7974	-0.2604	tt(-),20
37	Green: tree cover	0.0018	-3.6222	tt(-),20	0.0002	-4.6717	tt(-),20
38	Green: bush cover	0.0016	-3.6657	tt(-),20	0.0003	-4.4116	tt(-),20
39	Green: grass cover	0.0036	-3.3218	tt(-),20	0.0001	-4.8007	tt(-),20
6	Noise pollution: total	0.0003	-4.4034	tt(-),20	0.0001	-4.7617	tt(-),20
41	Noise pollution: roads	0.0010	-3.8829	tt(-),20	0.0019	-3.5912	tt(-),20
42	Noise pollution: railways	0.0338	-2.2875	tt(-),20	0.0594	0.9703	wi(-),20
4	Year constr.: mean	0.5255	0.7372	wi(-),20	1.0000	equal	n/a,20
45	Landmarks: FSI	0.0769	0.9616	wi(-),20	0.0335	-2.2916	tt(-),20
46	Landmarks: plot area	0.1613	0.9194	wi(-),20	0.2714	0.8643	wi(-),20
47	Landmarks: Year constr.	0.2507	0.8747	wi(-),20	0.9225	0.5387	wi(+),20
48	Landmarks: 1 criterion	0.1093	0.9454	wi(-),20	0.6729	-0.4287	tt(-),20
49	Landmarks: 2 criteria	0.4246	0.7877	wi(-),20	0.4246	0.7877	wi(-),20
50	Landmarks: 3 criteria	1.0000	equal	n/a,20	1.0000	equal	n/a,20

ndardised,	
ı: staı	
, data	
+), sub-question 3	
e (41-	
ı - ag	
interaction	
sample:	
analysis,	
aggregate	cess
route	ion: ac
for 1	lirecti
results	ath, c
Raw 1	test _f
1.31:	: shor
Figure j	baseline

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.5150	0.7425	wi(-),20	0.1641	0.918	wi(+),20
우	Year constr.: 1946-1970	0.5083	0.7458	wi(+),20	0.7430	0.6285	wi(+),20
ŧ	Year constr.: 1971-1985	0.6854	0.6573	wi(-),20	0.1571	0.9214	wi(+),20
12	Year constr.: 1986-2000	0.5994	0.7003	wi(+),20	0.7497	0.3238	tt(+),20
13	Year constr.: 2001-2022	0.3446	0.8277	wi(+),20	0.5571	0.7215	wi(-),20
14	Traffic signals count	0.3854	0.8073	wi(+),20	0.6683	-0.4352	tt(-),20
15	Stairs count	0.6767	0.6617	wi(+),20	0.6767	0.6617	wi(+),20
16	Status: for construction	1.0000	equal	n/a,20	0.6767	0.6617	wi(+),20
17	Status: unrealised	1.0000	equal	n/a,20	1.0000	equal	n/a,20
18	Status: under construction	0.9837	0.5082	wi(-),20	0.6767	0.6617	wi(-),20
19	Status: in use (n.m.)	1.0000	equal	n/a,20	1.0000	equal	n/a,20
20	Status: in use	0.4876	-0.7079	tt(-),20	0.7822	0.2804	tt(+),20
21	Status: for demolition	1.0000	equal	n/a,20	1.0000	equal	n/a,20
22	Status: demolished	1.0000	equal	n/a,20	1.0000	equal	n/a,20
53	Status: not in use	1.0000	equal	n/a,20	1.0000	equal	n/a,20
24	Status: reconstruction	0.4245	0.7877	wi(-),20	0.9616	0.0488	tt(+),20
25	Status: illegitimate	1.0000	equal	n/a,20	1.0000	equal	n/a,20
26	Function: residential	0.0853	-1.8152	tt(-),20	0.2272	-1.248	tt(-),20
27	Function: gathering	0.4991	0.7505	wi(-),20	0.4619	0.769	wi(+),20
28	Function: prison	1.0000	equal	n/a,20	1.0000	equal	n/a,20
59	Function: healthcare	0.6767	0.6617	wi(-),20	1.0000	0.5	wi(+),20
30	Function: factory	0.1411	0.9295	wi(+),20	0.1412	0.9294	wi(+),20
31	Function: office	0.2507	0.8747	wi(-),20	0.3363	-0.9864	tt(-),20
32	Function: guesthouse	0.6767	0.6617	wi(-),20	0.7168	0.6416	wi(-),20
33	Function: education	1.0000	equal	n/a,20	1.0000	equal	n/a,20
34	Function: sports	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
35	Function: shops	0.4865	0.7568	wi(-),20	0.3633	0.9315	tt(+),20
36	Function: other	0.6655	0.6672	wi(-),20	0.9888	-0.0142	tt(-),20
37	Green: tree cover	0.0321	0.984	wi(+),20	0.6504	0.4605	tt(+),20
38	Green: bush cover	0.0836	0.9582	wi(+),20	0.5128	0.7436	wi(+),20
39	Green: grass cover	0.0980	0.951	wi(+),20	0.5621	0.7189	wi(+),20
6	Noise pollution: total	0.0906	0.9547	wi(+),20	0.5070	0.6763	tt(+),20
41	Noise pollution: roads	0.1142	0.9429	wi(+),20	0.5009	0.6862	tt(+),20
42	Noise pollution: railways	0.2437	0.8782	wi(+),20	0.5128	0.7436	wi(+),20
4	Year constr.: mean	0.7034	0.6483	wl(-),20	0.5367	0.7317	wi(+),20
45	Landmarks: FSI	0.4246	0.7877	wi(-),20	0.3998	0.8614	tt(+),20
46	Landmarks: plot area	0.2506	0.8747	wi(-),20	0.4480	0.776	wi(-),20
47	Landmarks: Year constr.	0.4246	0.7877	wi(-),20	0.7532	0.6234	wi(+),20
48	Landmarks: 1 criterion	0.2507	0.8747	wi(-),20	0.5339	0.6335	tt(+),20
49	Landmarks: 2 criteria	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
50	Landmarks: 3 criteria	1.0000	equal	n/a,20	1.0000	equal	n/a,20

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.5150	0.7425	wi(-),20	0.5123	0.7439	wi(+),20
₽	Year constr.: 1946-1970	0.5464	0.7268	wi(+),20	0.7319	0.6341	wi(+),20
÷	Year constr.: 1971-1985	0.3253	0.8374	wi(-),20	0.1571	0.9214	wi(+),20
12	Year constr.: 1986-2000	0.5994	0.7003	wi(+),20	0.4372	-0.7936	tt(-),20
13	Year constr.: 2001-2022	0.3647	0.8177	wi(+),20	0.8359	-0.21	tt(-),20
14	Traffic signals count	0.3854	0.8073	wi(+),20	0.2967	1.073	tt(+),20
15	Stairs count	0.6767	0.6617	wi(+),20	1.0000	0.5	wi(+),20
16	Status: for construction	1.0000	equal	n/a,20	0.6767	0.6617	wi(+),20
17	Status: unrealised	1.0000	equal	n/a,20	1.0000	equal	n/a,20
18	Status: under construction	0.9837	0.5082	wi(-),20	0.6767	0.6617	wi(-),20
19	Status: in use (n.m.)	1.0000	equal	n/a,20	1.0000	equal	n/a,20
20	Status: in use	0.4127	-0.8375	tt(-),20	0.6136	0.6932	wi(-),20
21	Status: for demolition	1.0000	equal	n/a,20	1.0000	equal	n/a,20
53	Status: demolished	1.0000	equal	n/a,20	1.0000	equal	n/a,20
33	Status: not in use	1.0000	equal	n/a,20	1.0000	equal	n/a,20
24	Status: reconstruction	0.4245	0.7877	wi(-),20	0.7017	0.6492	wi(-),20
25	Status: illegitimate	1.0000	equal	n/a,20	1.0000	equal	n/a,20
26	Function: residential	0.0840	-1.8236	tt(-),20	0.2021	0.8989	wi(+),20
27	Function: gathering	0.9683	0.5159	wi(+),20	0.4991	0.7505	wi(-),20
28	Function: prison	1.0000	equal	n/a,20	1.0000	equal	n/a,20
59	Function: healthcare	0.6767	0.6617	wi(-),20	1.0000	0.5	wi(+),20
30	Function: factory	0.1411	0.9295	wi(+),20	0.4740	0.763	wi(+),20
31	Function: office	0.4500	0.775	wi(-),20	0.1655	-1.4423	tt(-),20
32	Function: guesthouse	0.6767	0.6617	wi(-),20	0.4246	0.7877	wi(-),20
33	Function: education	1.0000	equal	n/a,20	0.4246	0.7877	wi(+),20
34	Function: sports	0.6767	0.6617	wi(-),20	0.6767	0.6617	wi(-),20
35	Function: shops	0.4865	0.7568	wi(-),20	0.3931	0.8739	tt(+),20
36	Function: other	0.6655	0.6672	wi(-),20	0.8769	-0.157	tt(-),20
37	Green: tree cover	0.0292	0.9854	wi(+),20	0.6567	0.4516	tt(+),20
38	Green: bush cover	0.2010	0.8995	wi(+),20	0.8083	0.5959	wi(+),20
39	Green: grass cover	0.2146	0.8927	wi(+),20	0.4440	0.778	wi(+),20
6	Noise pollution: total	0.0906	0.9547	wi(+),20	0.7658	0.3022	tt(+),20
41	Noise pollution: roads	0.1142	0.9429	wi(+),20	0.7600	0.3099	tt(+),20
42	Noise pollution: railways	0.4519	0.774	wi(+),20	0.6950	0.6525	wi(+),20
4	Year constr.: mean	0.6478	0.6761	wi(-),20	1.0000	equal	n/a,20
45	Landmarks: FSI	0.4246	0.7877	wi(-),20	0.6721	0.664	wi(-),20
46	Landmarks: plot area	0.1412	0.9294	wi(-),20	0.7088	0.6456	wi(-),20
47	Landmarks: Year constr.	0.4246	0.7877	wi(-),20	0.4265	0.7868	wi(+),20
48	Landmarks: 1 criterion	0.1412	0.9294	wi(-),20	0.9613	-0.0492	tt(-),20
49	Landmarks: 2 criteria	0.6767	0.6617	wi(-),20	0.9837	0.5082	wi(+),20
20	Landmarks: 3 criteria	1.0000	equal	n/a,20	1.0000	equal	n/a,20

	Variables	P(Most)	Most_stat M	ost_coef,n P	([5] always)	[5]_stat	[5]_coef,n F	([4] often)	[4]_stat [[4]_coef,n P([3] regularly)	[3]_stat [3		[2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least) Lo	east_stat Lea	ist_coef,n
6	Year constr.: < 1945	0.7468	0.5584	(+),80	0.8338	0.2720	(-),23	0.9234	0.4911	(-),30	0.6136	0.4813	(+),22	0.6101	0.4477	(+),67	0.9281	0.5873	(+),39	0.5229	0.4973	(+),80
9	Year constr.: 1946-1970	0.9225	0.5656	(-),80	0.9459	0.4638	(+),23	0.9820	0.4940	(-),30	0.7173	0.5000	(-),22	0.7051	0.5145	(-),67	0.6723	0.3431	(-),39	0.5828	0.3771	(-),80
÷	Year constr.: 1971-1985	0.4373	0.6929	(+),80	0.3899	0.5045	(+),23	0.8071	0.2134	(-),30	0.4049	0.5000	(+),22	0.8316	0.8442	(+),67	0.9263	0.2902	65,(-)	1.0000	0.0972	(-),80
12	Year constr.: 1986-2000	0.1498	0.4681	(+),80	0.2478	0.2671	(+),23	0.3514	0.6385	(+),30	0.5065	0.6263	(+),22	0.4792	0.7561	(+),67	0.7021	0.2105	65,(-)	0.5710	0.7806	(+),80
13	Year constr.: 2001-2022	0.9726	0.3916	(-),80	0.8498	0.4601	(-),23	0.6545	0.4261	(-),30	0.9249	0.5141	(-),22	0.7931	0.6044	(+),67	0.4485	0.1581	(-)"39	0.7182	0.2652	(-),80
14	Traffic signals count	0.6560	0.2495	(+),80	0.7358	0.5446	(-),23	0.8037	0.3386	(+),30	0.7226	0.5981	(+),22	0.6295	0.4794	(-),67	0.9477	0.2636	(-),39	0.4165	0.4166	(-),80
15	Stairs count	0.1996	0.4237	(-),80	0.3121	0.1561	(-),23	0.3263	0.3645	(-),30	0.9888	0.9121	(-),22	0.8369	0.8162	(-),67	0.2305	0.4024	65,(-)	0.5953	0.7133	(-),80
16	Status: for construction	0.2296	0.4963	(+),80	0.3337	0.0000	(+),23	0.1724	0.3329	(+),30	0.9880	0.2555	(-),22	0.7142	0.7736	(+),67	0.4696	0.2688	(-),39	0.8669	0.8273	(+),80
17	Status: unrealised	1.0000	0.0000	(-),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-)"30	1.0000	0.0000	(-),22	1.0000	0.0000	(-),67	1.0000	0.0000	65,(-)	1.0000	0.0000	(-),80
18 S	status: under construction	0.9750	0.4889	(-),80	0.3388	0.0809	(+),23	0.6907	0.1971	(-),30	0.5015	0.1431	(-),22	0.8116	0.4041	(-),67	0.6794	0.3397	(+),39	0.8395	0.4158	(-),80
19	Status: in use (n.m.)	0.6283	0.2513	(-),80	0.7116	0.5300	(+),23	0.3176	0.1812	(-),30	0.9165	0.3357	(-),22	0.3210	0.1520	(+),67	0.4763	0.0000	(+),39	0.5392	0.3354	(+),80
20	Status: in use	0.3019	0.4925	(+),80	0.5677	0.6167	(+),23	0.8824	0.5029	(+),30	0.4596	0.3623	(+),22	0.4414	0.5053	(+),67	0.9681	0.7852	(+),39	0.5722	0.6726	(+),80
21	Status: for demolition	0.6547	0.7218	(+),80	1.0000	0.0000	(-),23	0.5702	0.2851	(-),30	0.1620	0.0000	(+),22	0.6694	0.7254	(+),67	0.1600	0.0800	65,(-)	0.6823	0.0862	(-),80
22	Status: demolished	1.0000	0.0000	(-),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-),30	1.0000	0.0000	(-),22	1.0000	0.0000	(-),67	1.0000	0.0000	(-),39	1.0000	0.0000	(-),80
53	Status: not in use	1.0000	0.0000	(-),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-),30	1.0000	0.0000	(-),22	1.0000	0.0000	(-),67	1.0000	0.0000	65,(-)	1.0000	0.0000	(-),80
24	Status: reconstruction	0.2838	0.6175	(-),80	0.6362	0.8240	(-),23	0.4180	0.4166	(-),30	0.6520	0.4128	(-),22	0.9397	0.8972	(-),67	0.4773	0.7616	65°(-)	0.9981	0.9165	(-),80
25	Status: illegitimate	1.0000	0.0000	(-),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-),30	1.0000	0.0000	(-),22	1.0000	0.0000	(-),67	1.0000	0.0000	(-),39	1.0000	0.0000	(-),80
26	Function: residential	0.1890	0.3240	(+),80	0.4670	0.4300	(+),23	0.9292	0.5059	(+),30	0.3721	0.4347	(+),22	0.4845	0.5009	(+),67	0.7601	0.7312	(+),39	0.4261	0.5591	(+),80
27	Function: gathering	0.8735	0.5558	(+),80	0.6079	0.4107	(+),23	0.7694	0.2435	(-)"30	0.6905	0.3144	(+),22	0.8341	0.5489	(+),67	0.2329	0.2892	(-),39	0.6197	0.2266	(-),80
28	Function: prison	1.0000	0.0000	(-),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-)"30	1.0000	0.0000	(-),22	1.0000	0.0000	(-),67	1.0000	0.000	65,(-)	1.0000	0.0000	(-),80
29	Function: healthcare	0.4097	0.5018	(-),80	0.3388	0.1694	(-),23	0.1607	0.2851	(-)"30	0.3398	0.0810	(+),22	0.9940	0.7991	(-),67	0.5586	0.2793	65°(-)	0.6465	0.6446	(-),80
30	Function: factory	0.9822	0.2650	(-),80	0.8334	0.7544	(+),23	0.9362	0.3750	(-),30	0.6788	0.4825	(+),22	1.0000	0.6517	(+),67	0.7526	0.5288	65,(-)	0.7312	0.6153	(+),80
31	Function: office	0.9897	0.4472	(+),80	0.5628	0.5377	(-),23	0.3931	0.4586	(+),30	0.6841	0.4756	(-),22	0.4073	0.0921	(+),67	0:9030	0.4427	(-),39	0.5589	0.2343	(+),80
32	Function: guesthouse	0.1726	0.3266	(+),80	0.1603	0.2861	(+),23	0.6810	0.5941	(-),30	0.3975	0.0000	(+),22	0.5731	0.5016	(+),67	0.8358	0.8211	(+),39	0.3480	0.5137	(+),80
33	Function: education	0.7814	0.8515	(+),80	0.5721	0.2861	(+),23	0.4100	0.0209	(-),30	1.0000	0.0000	(-),22	0.8133	0.0590	(-),67	0.6803	0.5156	(+),39	0.5547	0.7707	(+),80
34	Function: sports	0.5661	0.2831	(+),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-),30	0.5725	0.2862	(+),22	0.1588	0.0794	(+),67	0.3299	0.1649	6£,(+)	0.1586	0.0793	(+),80
35	Function: shops	0.8205	0.3546	(-),80	0.5350	0.4607	(+),23	0.8217	0.2939	(-),30	0.5760	0.4703	(-),22	0.9211	0.5280	(+),67	0.1471	0.1748	(-),39	0.3779	0.1361	(-),80
36	Function: other	0.4414	0.2890	(+),80	0.1874	0.2543	(+),23	0.3715	0.2106	(+),30	0.9902	0.7288	(-),22	0.6872	0.3050	(-),67	0.4583	0.3005	65°(-)	0.8424	0.3401	(-),80
37	Green: tree cover	0.0000	0.6290	(+),80	0.0994	0.5481	(+),23	0.0035	0.5353	(+),30	0.0016	0.6288	(+),22	0.0000	0.4796	(+),67	0.0036	0.4801	(+),39	0.0000	0.5061	(+),80
38	Green: bush cover	0.0001	0.6213	(+),80	0.0950	0.4606	(+),23	0.0207	0.6819	(+),30	0.0077	0.6109	(+),22	0.0001	0.3354	(+),67	0.0066	0.5279	(+),39	0.0001	0.4912	(+),80
39	Green: grass cover	0.0000	0.6583	(+),80	0.0907	0.4956	(+),23	0.0112	0.5704	(+),30	0.0067	0.6722	(+),22	0.0001	0.5487	(+),67	0.0029	0.5080	(+),39	0.0000	0.5414	(+),80
4	Noise pollution: total	0.0008	0.6482	(+),80	0.1137	0.5044	(+),23	0.0484	0.6049	(+),30	0.0109	0.5653	(+),22	0.0001	0.4920	(+),67	0.0091	0.4841	(+),39	0.0002	0.5550	(+),80
41	Noise pollution: roads	0.0010	0.6866	(+),80	0.0588	0.5394	(+),23	0.0468	0.6331	(+),30	0.0378	0.6288	(+),22	0.0002	0.5275	(+),67	0.0033	0.4091	(+),39	0.0001	0.5496	(+),80
42	Noise pollution: railways	0.0017	0.5252	(+),80	0.2817	0.4693	(+),23	0.0303	0.5820	(+),30	0.0845	0.5653	(+),22	0.0016	0.5098	(+),67	0.0786	0.4523	(+),39	0.0030	0.5711	(+),80
44	Year constr.: mean	0.6610	0.4142	(+),80	0.4958	0.2656	(+),23	0.8418	0.4705	(+),30	0.7872	0.5281	(-),22	0.7319	0.5186	(+),67	0.6747	0.5909	(+),39	0.9728	0.4082	(-),80
45	Landmarks: FSI	0.2370	0.2871	(+),80	0.6532	0.4527	(+),23	0.5363	0.0000	(+),30	0.3771	0.3976	(+),22	0.5582	0.4183	(+),67	0.8274	0.4767	(+),39	0.4095	0.4202	(+),80
46	Landmarks: plot area	0.0739	0.0858	(+),80	0.2898	0.1815	(+),23	0.4100	0.2943	(+),30	0.3621	0.1938	(+),22	0.3413	0.2666	(+),67	0.6950	0.3399	(+),39	0.2411	0.2268	(+),80
47	Landmarks: Year constr.	0.4817	0.2351	(+),80	0.6700	0.4383	(+),23	1.0000	0.2901	(+),30	1.0000	0.4565	(+),22	0.9861	0.5918	(-),67	0.9737	0.6385	(+),39	0.9202	0.4490	(+),80
48	Landmarks: 1 criterion	0.1813	0.1291	(+),80	0.4754	0.3988	(+),23	0.7923	0.2520	(+),30	0.5529	0.3209	(+),22	0.6016	0.3552	(+),67	0.8672	0.4899	(+),39	0.5310	0.3794	(+),80
49	Landmarks: 2 criteria	0.2299	0.2118	(+),80	0.6221	0.3298	(+),23	0.5702	0.0000	(+),30	0.3549	0.3028	(+),22	0.4350	0.2801	(+),67	0.9660	0.4576	(+),39	0.4856	0.3844	(+),80
50	Landmarks: 3 criteria	1.0000	0.0000	(-),80	1.0000	0.0000	(-),23	1.0000	0.0000	(-),30	1.0000	0.0000	(-),22	1.0000	0.0000	(-),67	1.0000	0.0000	(-),39	1.0000	0.0000	(-),80
Fig star	ure 1.33 : R ε ndardised, ba	aw res tseline	sults fo: 9: least	r route directi	aggreg onal tu	gate ırns j	analys path, d	is, san irectic	nple: n: ac	interac	tion -	bike (have a	access),	-qns	questic	on 3, e	lata:	-uou			
						•																

	Variables	P(Most) N.	lost_stat M	ost_coef,n	([4] often)	[4]_stat [4	l]_coef,n F	ol[3] regularly)	[3]_stat	3]_coef,n	P([2] sometimes	[2] stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n F	P(Least) Le	east_stat Le	ist_coef,n
6	Year constr.: < 1945	0.6409	0.4734	(+),80	0.7674	0.5000	(+),32	0.2564	0.5037	(+),26	0.615	1 0.5187	(+),69	0.7938	0.4398	(+),38	0.4450	0.4362	(+),80
9	Year constr.: 1946-1970	0.9086	0.5622	(-),80	0.9075	0.4564	(-),32	0.9851	0.4739	(+),26	0.866	0.5112	(-)'69	0.3023	0.2993	(-),38	0.4564	0.2909	(-),80
÷	Year constr.: 1971-1985	0.3522	0.6588	(+),80	0.5848	0.6277	(+),32	0.2469	0.7680	(+),26	0.891	3 0.8918	(+),69	0.6653	0.3123	(-),38	0.8877	0.8641	(+),80
12	Year constr.: 1986-2000	0.1720	0.5132	(+),80	0.1867	0.5109	(+),32	0.4109	0.6309	(+),26	0.459	3 0.7530	(+),69	0.7662	0.3894	(-),38	0.4490	0.7051	(+),80
13	Year constr.: 2001-2022	0.9124	0.3526	(-),80	0.8871	0.3424	(-),32	0.8112	0.5073	(-),26	0.837	1 0.6065	(+),69	0.2479	0.1711	(-),38	0.8406	0.3224	(-),80
14	Traffic signals count	0.7247	0.2789	(+),80	0.8388	0.3905	(+),32	0.7672	0.4521	(-),26	0.511	3 0.5334	(-),69	0.9123	0.7131	(+),38	0.3256	0.3346	(-),80
15	Stairs count	0.1996	0.4237	(-),80	0.3601	0.2658	(-),32	0.5798	0.8215	(-),26	0.311	0.5884	(-),69	0.6355	0.6005	(-),38	0.8626	0.8212	(-),80
16	Status: for construction	0.2296	0.4963	(+),80	0.1714	0.3326	(+),32	0.7905	0.1742	(-),26	0.419	9 0.5944	(+),69	0.6277	0.1847	(-),38	0.8669	0.8273	(+),80
17	Status: unrealised	1.0000	0.0000	(-),80	1.0000	0.0000	(-),32	1.0000	0.0000	(-),26	1.000	0.0000	(-),69	1.0000	0.0000	(-),38	1.0000	0.0000	(-),80
18	Status: under construction	0.9750	0.4889	(-),80	0.7139	0.2272	(-),32	0.4659	0.2197	(-),26	0.739	9 0.3715	(+),69	0.9823	0.4911	(+),38	0.9778	0.4903	(+),80
19	Status: in use (n.m.)	0.7973	0.3270	(-),80	0.5076	0.1813	(-),32	0.9535	0.4767	(-),26	0.256	5 0.1720	(+),69	0.7092	0.0000	(+),38	0.5392	0.3354	(+),80
20	Status: in use	0.2329	0.4142	(+),80	0.5682	0.5080	(+),32	0.1906	0.3989	(+),26	0.576	9 0.6726	(+),69	0.6252	0.5187	(+),38	0.3676	0.5157	(+),80
21	Status: for demolition	0.6547	0.7218	(+),80	0.9872	0.2849	(-),32	0.3363	0.0000	(+),26	0.669	0.7252	(+),69	0.3302	0.1651	(-),38	0.9793	0.1549	(-),80
22	Status: demolished	1.0000	0.0000	(-),80	1.0000	0.0000	(-),32	1.0000	0.0000	(-),26	1.000	0.0000	(-)"69	1.0000	0.0000	(-),38	1.0000	0.0000	(-),80
23	Status: not in use	1.0000	0.0000	(-),80	1.0000	0.0000	(-),32	1.0000	0.0000	(-),26	1.000	0.0000	(-),69	1.0000	0.0000	(-),38	1.0000	0.0000	(-),80
24	Status: reconstruction	0.2998	0.6374	(-),80	0.4677	0.5399	(-),32	0.7999	0.3999	(-),26	0.740	7 0.8434	(-)'69	0.9935	0.8682	(-),38	0.6877	0.0367	(+),80
25	Status: illegitimate	1.0000	0.0000	(-),80	1.0000	0.0000	(-),32	1.0000	0.0000	(-),26	1.000	0.0000	(-),69	1.0000	0.0000	(-),38	1.0000	0.0000	(-),80
26	Function: residential	0.2002	0.3339	(+),80	0.5409	0.4017	(+),32	0.2450	0.5292	(+),26	0.555;	2 0.6042	(+),69	0.6026	0.5374	(+),38	0.3884	0.5340	(+),80
27	Function: gathering	0.8308	0.5254	(+),80	0.6664	0.3079	(-),32	0.9390	0.3806	(+),26	0.898	3 0.5163	(+),69	0.5280	0.3513	(-),38	0.9817	0.6071	(+),80
28	Function: prison	1.0000	0.0000	(-),80	1.0000	0.0000	(-),32	1.0000	0.0000	(-),26	1.000	0.0000	(-),69	1.0000	0.0000	(-),38	1.0000	0.0000	(-),80
29	Function: healthcare	0.4097	0.5018	(-),80	0.9822	0.0000	(-),32	0.5711	0.2856	(+),26	0.654	7 0.6525	(-),69	0.1601	0.2792	(-),38	0.4039	0.4946	(-),80
30	Function: factory	0.8853	0.6785	(+),80	0.7464	0.5388	(+),32	0.2746	0.5515	(+),26	0.960	0.7354	(+),69	0.5579	0.5765	(-),38	0.6923	0.6000	(+),80
31	Function: office	0.9131	0.4978	(-),80	0.2991	0.3944	(+),32	0.2158	0.1180	(-),26	0.581	0.2023	(+),69	0.5020	0.2886	(+),38	0.3892	0.1537	(+),80
32	Function: guesthouse	0.1726	0.3266	(+),80	0.9814	0.4674	(-),32	0.3106	0.3729	(+),26	0.229	2 0.4095	(+),69	0.6634	0.3405	(+),38	0.0906	0.2207	(+),80
33	Function: education	0.5598	0.7707	(+),80	0.6547	0.0408	(-),32	1.0000	0.0000	(-),26	1.000	0.9078	(+),69	0.6785	0.1960	(-),38	0.7793	0.0575	(-),80
34	Function: sports	0.5661	0.2831	(+),80	1.0000	0.0000	(-),32	0.5711	0.2856	(+),26	0.158	3 0.0794	(+),69	0.3302	0.1651	(+),38	0.1586	0.0793	(+),80
35	Function: shops	0.9823	0.4368	(-),80	0.5981	0.3509	(-),32	0.8202	0.4508	(-),26	0.938	0.3936	(-),69	0.0498	0.0695	(-),38	0.2498	0.0860	(-),80
36	Function: other	0.6937	0.4250	(+),80	0.5256	0.3027	(+),32	0.5850	0.4586	(+),26	0.949	4 0.3972	(-),69	0.7126	0.3787	(-),38	0.8726	0.5260	(+),80
37	Green: tree cover	0.0000	0.6431	(+),80	0.0060	0.5824	(+),32	0.0022	0.5146	(+),26	0.000	0.4737	(+),69	0.0006	0.4157	(+),38	0.0000	0.3436	(+),80
38	Green: bush cover	0.0001	0.6174	(+),80	0.0254	0.6974	(+),32	0.0066	0.5292	(+),26	0.000	0.3531	(+),69	0.0018	0.4401	(+),38	0.0000	0.3361	(+),80
39	Green: grass cover	0.0001	0.6926	(+),80	0.0205	0.7159	(+),32	0.0039	0.5510	(+),26	0.000	0.4500	(+),69	0.0018	0.4689	(+),38	0.0000	0.4430	(+),80
4	Noise pollution: total	0.0007	0.6419	(+),80	0.0433	0.5719	(+),32	0.0107	0.5073	(+),26	0.000	0.5851	(+),69	0.0157	0.5145	(+),38	0.0004	0.5997	(+),80
41	Noise pollution: roads	0.0009	0.6769	(+),80	0.0492	0.6136	(+),32	0.0153	0.6222	(+),26	0.000	2 0.6657	(+),69	0.0108	0.4566	(+),38	0.0003	0.6193	(+),80
42	Noise pollution: railways	0.0016	0.5116	(+),80	0.0507	0.5824	(+),32	0.0431	0.4563	(+),26	0.000	5 0.4873	(+),69	0.1687	0.5104	(+),38	0.0026	0.5258	(+),80
4	Year constr.: mean	0.7291	0.4464	(+),80	0.9679	0.4920	(-),32	0.7627	0.6428	(-),26	0.715	3 0.4525	(+),69	0606.0	0.7712	(+),38	0.9157	0.3905	(-),80
45	Landmarks: FSI	0.2370	0.2871	(+),80	0.3336	0.4245	(+),32	0.1604	0.4284	(+),26	0.475	7 0.3723	(+),69	0.6175	0.3658	(+),38	0.3126	0.3404	(+),80
46	Landmarks: plot area	0.0514	0.0643	(+),80	0.3879	0.2193	(+),32	0.1847	0.1332	(+),26	0.432	3 0.2975	(+),69	0.5557	0.4174	(+),38	0.3183	0.2816	(+),80
47	Landmarks: Year constr.	0.4592	0.2229	(+),80	0.7849	0.3868	(+),32	0.6320	0.4797	(+),26	0.823	9 0.4068	(+),69	0.5998	0.4256	(-),38	0.9775	0.4985	(-),80
48	Landmarks: 1 criterion	0.1567	0.1108	(+),80	0.6091	0.2417	(+),32	0.2490	0.3589	(+),26	0.562	3 0.3766	(+),69	0.8446	0.4286	(+),38	0.5412	0.3702	(+),80
49	Landmarks: 2 criteria	0.2299	0.2118	(+),80	0.4028	0.3325	(+),32	0.2420	0.2240	(+),26	0.504	0.3106	(+),69	0.9939	0.4339	(-),38	0.6398	0.4726	(+),80
20	Landmarks: 3 criteria	1.0000	0.0000	(-),80	1.0000	0.0000	(-),32	1.0000	0.0000	(-),26	1.000	0.0000	(-)'69	1.0000	0.0000	(-),38	1.0000	0.0000	(-),80
Fig	ure 1.34: Ra	w resi	ults fo	r route	aggre	gate	analy.	sis, sam	iple:	intera	ction -	oike (have a	ccess),	b-qns	luestic	on 3, -	data: 1	-non
sla	nuaruiseu, ba	enne	least	urect	1 IBIIO	d stim	Jaun,	allectio	II: egi	GSS									

	Variables	P(Most)	Most_stat M	ost_coef,n P	([5] always)	[5]_stat	[5]_coef,n I	([4] often)	[4]_stat	[4]_coef,n P(]	3] regularly)	[3]_stat [3	Lcoef,n P([2] sometimes)	[2]_stat	2]_coef,n	([1] never)	[1]_stat [1]_coef,n F	(Least) Le	ast_stat Lea	st_coef,n
6	Year constr.: < 1945	0.8859	0.5584	(+),80	0.5439	0.7353	(+),23	0.9823	0.5148	(+),30	0.9625	0.5281	(-),22	0.8955	0.5540	(-),67	0.8332	0.5873	(+),39	0.9945	0.5041	(-),80
9	Year constr.: 1946-1970	0.8716	0.5656	(-),80	0.9276	0.5452	(-),23	0.9880	0.5120	(+),30	1.0000	0.5096	(+),22	0.9747	0.5145	(-),67	0.6862	0.6607	(+),39	0.7542	0.6242	(+),80
÷	Year constr.: 1971-1985	0.6167	0.6929	(+),80	0.9910	0.5045	(+),23	0.4268	0.7910	(+),30	1.0000	0.5096	(-),22	0.3138	0.8442	(+),67	0.5805	0.7133	6£,(+)	0.1944	0.9034	(+),80
12	Year constr.: 1986-2000	0.9363	0.5333	(-),80	0.5342	0.7404	(-),23	0.7343	0.6385	(+),30	0.7655	0.6263	(+),22	0.4906	0.7561	(+),67	0.4210	0.7924	(+),39	0.4408	0.7806	(+),80
13	Year constr.: 2001-2022	0.7832	0.6097	(+),80	0.9201	0.5488	(+),23	0.8521	0.5798	(+),30	0.9906	0.5141	(-),22	0.7946	0.6044	(+),67	0.3163	0.8443	(+),39	0.5303	0.7360	(+),80
14	Traffic signals count	0.4989	0.7516	(-),80	0.9286	0.5446	(-),23	0.6772	0.6669	(-),30	0.8221	0.5981	(+),22	0.9588	0.5224	(+),67	0.5271	0.7397	(+),39	0.8331	0.5848	(+),80
15	Stairs count	0.8475	0.5782	(+),80	0.3121	0.8509	(+),23	0.7289	0.6445	(+),30	0.1857	0.9121	(-),22	0.3711	0.8162	(-),67	0.8048	0.6026	(+),39	0.5766	0.7133	(-),80
16	Status: for construction	0.9926	0.5062	(-),80	1.0000	0.0000	(+),23	0.6659	0.6782	(-),30	0.5110	0.7547	(+),22	0.4574	0.7736	(+),67	0.5376	0.7359	(+),39	0.3483	0.8273	(+),80
17	Status: unrealised	1.0000	0.0000	(+),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	1.0000	0.0000	(+),22	1.0000	0.0000	(+),67	1.0000	0.0000	(+),39	1.0000	0.0000	(+),80
18 S	status: under construction	0.9778	0.5139	(+),80	0.1619	0.9280	(-),23	0.3941	0.8107	(+),30	0.2862	0.8643	(+),22	0.8083	0.5992	(+),67	0.6794	0.6677	65,(-)	0.8316	0.5868	(+),80
19	Status: in use (n.m.)	0.5026	0.7504	(+),80	0.9700	0.5300	(+),23	0.3624	0.8245	(+),30	0.6715	0.6776	(+),22	0.3041	0.8498	(-),67	1.0000	0.0000	(+),39	0.6709	0.6667	(-),80
20	Status: in use	0.9850	0.5089	(-),80	0.7834	0.6167	(+),23	0.9941	0.5029	(+),30	0.7246	0.6465	(-),22	0.9929	0.5053	(+),67	0.4355	0.7852	(+),39	0.6573	0.6726	(+),80
21	Status: for demolition	0.5661	0.7218	(+),80	1.0000	0.0000	(+),23	0.5702	0.7281	(+),30	1.0000	0.0000	(+),22	0.5608	0.7254	(+),67	0.1600	0.9253	(+),39	0.1725	0.9155	(+),80
22	Status: demolished	1.0000	0.0000	(+),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	1.0000	0.0000	(+),22	1.0000	0.0000	(+),67	1.0000	0.0000	(+),39	1.0000	0.0000	(+),80
23	Status: not in use	1.0000	0.0000	(+),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	1.0000	0.0000	(+),22	1.0000	0.0000	(+),67	1.0000	0.0000	(+),39	1.0000	0.0000	(+),80
24	Status: reconstruction	0.7682	0.6175	(-),80	0.3660	0.8240	(-),23	0.8333	0.5905	(+),30	0.8257	0.5986	(+),22	0.2076	0.8972	(-),67	0.4851	0.7616	65°(-)	0.1683	0.9165	(-),80
25	Status: illegitimate	1.0000	0.0000	(+),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	1.0000	0.0000	(+),22	1.0000	0.0000	(+),67	1.0000	0.0000	(+),39	1.0000	0.0000	(+),80
26	Function: residential	0.6481	0.6772	(-),80	0.8600	0.5787	(-),23	1.0000	0.5059	(+),30	0.8693	0.5746	(-),22	0.9982	0.5009	(+),67	0.5442	0.7312	(+),39	0.8845	0.5591	(+),80
27	Function: gathering	0.8915	0.5558	(+),80	0.8213	0.5991	(-),23	0.4871	0.7618	(+),30	0.6288	0.6943	(-),22	0.9063	0.5489	(+),67	0.5784	0.7147	(+),39	0.4532	0.7746	(+),80
28	Function: prison	1.0000	0.0000	(+),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	1.0000	0.0000	(+),22	1.0000	0.0000	(+),67	1.0000	0.0000	(+),39	1.0000	0.0000	(+),80
29	Function: healthcare	0.9964	0.5018	(+),80	0.3388	0.8516	(+),23	0.5702	0.7281	(+),30	0.1620	0.9283	(-),22	0.4088	0.7991	(-),67	0.5586	0.7307	(+),39	0.7180	0.6446	(-),80
30	Function: factory	0.5300	0.7365	(+),80	0.5107	0.7544	(+),23	0.7501	0.6327	(+),30	0.9650	0.5291	(-),22	0.7012	0.6517	(+),67	0.9529	0.5288	65°(-)	0.7731	0.6153	(+),80
31	Function: office	0.8944	0.5542	(-),80	0.9434	0.5377	(-),23	0.9173	0.5477	(-),30	0.9513	0.5341	(+),22	0.1842	0.9087	(-),67	0.8854	0.5617	(+),39	0.4686	0.7669	(-),80
32	Function: guesthouse	0.6532	0.6757	(-),80	0.5721	0.7312	(-),23	0.8303	0.5941	(-),30	1.0000	0.0000	(+),22	0.9968	0.5016	(+),67	0.3693	0.8211	(+),39	0.9777	0.5137	(+),80
33	Function: education	0.3009	0.8515	(+),80	0.5721	0.7312	(-),23	0.0419	0.9807	(+),30	1.0000	0.0000	(+),22	0.1181	0.9421	(+),67	0.9896	0.5156	(+),39	0.4641	0.7707	(+),80
34	Function: sports	0.5661	0.7218	(-),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	0.5725	0.7318	(-),22	0.1588	0.9237	(-),67	0.3299	0.8475	65,(-)	0.1586	0.9233	(-),80
35	Function: shops	0.7092	0.6468	(+),80	0.9214	0.5491	(-),23	0.5878	0.7116	(+),30	0.9405	0.5396	(+),22	0.9479	0.5280	(+),67	0.3496	0.8279	(+),39	0.2721	0.8647	(+),80
36	Function: other	0.5779	0.7122	(-),80	0.5087	0.7530	(-),23	0.4211	0.7939	(-),30	0.5587	0.7288	(-),22	0.6099	0.6966	(+),67	0.6010	0.7031	(+),39	0.6803	0.6612	(+),80
37	Green: tree cover	0.7445	0.6290	(+),80	0.9212	0.5481	(+),23	0.9411	0.5353	(+),30	0.7602	0.6288	(+),22	0.9592	0.5222	(-),67	0.9601	0.5239	(-),39	0.9905	0.5061	(+),80
38	Green: bush cover	0.7600	0.6213	(+),80	0.9212	0.5481	(-),23	0.6467	0.6819	(+),30	0.7962	0.6109	(+),22	0.6709	0.6662	(-),67	0.9522	0.5279	(+),39	0.9823	0.5102	(-),80
39	Green: grass cover	0.6859	0.6583	(+),80	0.9912	0.5131	(-),23	0.8708	0.5704	(+),30	0.6726	0.6722	(+),22	0.9061	0.5487	(+),67	0.9920	0.5080	(+),39	0.9198	0.5414	(+),80
4	Noise pollution: total	0.7061	0.6482	(+),80	0.9912	0.5044	(+),23	0.8015	0.6049	(+),30	0.8880	0.5653	(+),22	0.9840	0.5098	(-),67	0.9681	0.5199	65,(-)	0.8928	0.5550	(+),80
41	Noise pollution: roads	0.6292	0.6866	(+),80	0.9387	0.5394	(+),23	0.7450	0.6331	(+),30	0.7602	0.6288	(+),22	0.9486	0.5275	(+),67	0.8182	0.5948	(-),39	0.9036	0.5496	(+),80
42	Noise pollution: railways	0.9524	0.5252	(+),80	0.9387	0.5394	(-),23	0.8476	0.5820	(+),30	0.8880	0.5653	(+),22	0.9840	0.5098	(+),67	0.9045	0.5517	(-),39	0.8605	0.5711	(+),80
44	Year constr.: mean	0.8284	0.5871	(-),80	0.5311	0.7416	(-),23	0.9411	0.5353	(-),30	0.9626	0.5281	(-),22	0.9663	0.5186	(+),67	0.8260	0.5909	(+),39	0.8165	0.5931	(+),80
45	Landmarks: FSI	0.5743	0.7141	(-),80	0.9053	0.5568	(-),23	1.0000	0.0000	(+),30	0.7953	0.6119	(-),22	0.8365	0.5836	(-),67	0.9534	0.5275	(-),39	0.8404	0.5812	(-),80
46	Landmarks: plot area	0.1715	0.9148	(-),80	0.3631	0.8245	(-),23	0.5886	0.7110	(-),30	0.3877	0.8130	(-),22	0.5331	0.7350	(-),67	0.6798	0.6639	(-),39	0.4536	0.7743	(-),80
47	Landmarks: Year constr.	0.4702	0.7661	(-),80	0.8766	0.5711	(-),23	0.5802	0.7156	(-),30	0.9131	0.5543	(-),22	0.8201	0.5918	(-),67	0.7314	0.6385	(+),39	0.8981	0.5525	(-),80
48	Landmarks: 1 criterion	0.2583	0.8716	(-),80	0.7975	0.6098	(-),23	0.5041	0.7527	(-),30	0.6419	0.6875	(-),22	0.7105	0.6464	(-),67	0.9798	0.5141	65.(-)	0.7588	0.6219	(-),80
49	Landmarks: 2 criteria	0.4237	0.7898	(-),80	0.6595	0.6829	(-),23	1.0000	0.0000	(+),30	0.6057	0.7099	(-),22	0.5601	0.7227	(-),67	0.9152	0.5480	65°(-)	0.7689	0.6177	(-),80
50	Landmarks: 3 criteria	1.0000	0.0000	(+),80	1.0000	0.0000	(+),23	1.0000	0.0000	(+),30	1.0000	0.0000	(+),22	1.0000	0.0000	(+),67	1.0000	0.0000	(+),39	1.0000	0.0000	(+),80
Fig star	ure 1.35 : R ϵ ndardised, b ϵ	aw ree aseline	sults fo: :: short	r route est pat	aggre h, dire	gate ectior	analys 1: acce	is, san ss	nple:	interac	tion -	bike (have	access), s	sub-c	uestio	n 3, d	lata: 1	-uot			

	Variables	P(Most) N	Aost_stat M	ost_coef,n	often)	[4]_stat [4	l_coef,n P	([3] regularly)	[3]_stat	[3]_coef,n P	([2] sometimes) [2]_sta	t [2]_coef,n	P([1] never)	[1]_stat [1]	_coef,n P	P(Least) Le	ast_stat Lea	st_coef,n
6	Year constr.: < 1945	0.9469	0.5279	(-),80	1.0000	0.5054	(-),32	0.9927	0.5037	(+),26	0.966	0.518	69'(+) 4	0.8795	0.5643	(-),38	0.8724	0.5651	(-),80
9	Year constr.: 1946-1970	0.8783	0.5622	(-),80	0.9129	0.5490	(+),32	0.9479	0.5335	(-),26	0.981	0.511	69'(-) ₂	0.5986	0.7045	(+),38	0.5818	0.7103	(+),80
÷	Year constr.: 1971-1985	0.6850	0.6588	(+),80	0.7551	0.6277	(+),32	0.4756	0.7680	(+),26	0.218	0.891	3 (+),69	0.6246	0.6915	(+),38	0.2734	0.8641	(+),80
12	Year constr.: 1986-2000	0.9764	0.5132	(+),80	0.9891	0.5109	(+),32	0.7523	0.6309	(+),26	0.496	7 0.753	(+),69	0.7789	0.6146	(+),38	0.5922	0.7051	(+),80
13	Year constr.: 2001-2022	0.7052	0.6487	(+),80	0.6847	0.6626	(+),32	1.0000	0.5073	(-),26	0.790	1 0.606	69'(+) 9	0.3422	0.8316	(+),38	0.6448	0.6789	(+),80
14	Traffic signals count	0.5577	0.7223	(-),80	0.7809	0.6147	(-),32	0.9043	0.5552	(+),26	0.936	7 0.5334	t (-),69	0.5810	0.7131	(+),38	0.6692	0.6666	(+),80
15	Stairs count	0.8475	0.5782	(+),80	0.5316	0.7407	(+),32	0.3693	0.8215	(-),26	0.828	2 0.5884	t (-),69	0.8092	0.6005	(-),38	0.3599	0.8212	(-),80
16	Status: for construction	0.9926	0.5062	(-),80	0.6652	0.6778	(-),32	0.3484	0.8323	(+),26	0.817	0.594	t (+),69	0.3694	0.8192	(+),38	0.3483	0.8273	(+),80
17	Status: unrealised	1.0000	0.0000	(+),80	1.0000	0.0000	(+),32	1.0000	0.0000	(+),26	1.000	0000	69'(+) 0	1.0000	0.0000	(+),38	1.0000	0.0000	(+),80
18 S	Status: under construction	0.9778	0.5139	(+),80	0.4544	0.7798	(+),32	0.4394	0.7889	(+),26	0.743	0.631	ş (-),69	0.9823	0.5177	(-),38	0.9806	0.5125	(-),80
19	Status: in use (n.m.)	0.6540	0.6750	(+),80	0.3626	0.8240	(+),32	0.9535	0.5349	(+),26	0.343	9 0.829	69'(-) 6	1.0000	0.0000	(+),38	0.6709	0.6667	(-),80
20	Status: in use	0.8284	0.5871	(-),80	0.9946	0.5080	(+),32	0.7977	0.6082	(-),26	0.657	3 0.672	69'(+) 9	0.9710	0.5187	(+),38	0.9714	0.5157	(+),80
21	Status: for demolition	0.5661	0.7218	(+),80	0.5698	0.7274	(+),32	1.0000	0.0000	(+),26	0.560	3 0.725	5 (+),69	0.3302	0.8476	(+),38	0.3097	0.8481	(+),80
52	Status: demolished	1.0000	0.0000	(+),80	1.0000	0.0000	(+),32	1.0000	0.0000	(+),26	1.000	0000	69'(+) 0	1.0000	0.0000	(+),38	1.0000	0.0000	(+),80
23	Status: not in use	1.0000	0.0000	(+),80	1.0000	0.0000	(+),32	1.0000	0.0000	(+),26	1.000	00000	69'(+) 0	1.0000	0.0000	(+),38	1.0000	0.0000	(+),80
24	Status: reconstruction	0.7284	0.6374	(-),80	0.9335	0.5399	(-),32	0.7999	0.6094	(+),26	0.315	3 0.843	t (-),69	0.2699	0.8682	(-),38	0.0734	0.9636	(-),80
25	Status: illegitimate	1.0000	0.0000	(+),80	1.0000	0.0000	(+),32	1.0000	0.0000	(+),26	1.000	00000	69'(+) 0	1.0000	0.0000	(+),38	1.0000	0.0000	(+),80
26	Function: residential	0.6679	0.6673	(-),80	0.8035	0.6034	(-),32	0.9562	0.5292	(+),26	0.794	9 0.604	5 (+),69	0.9334	0.5374	(+),38	0.9346	0.5340	(+),80
27	Function: gathering	0.9523	0.5254	(+),80	0.6157	0.6976	(+),32	0.7612	0.6266	(-),26	0.971	2 0.516	89'(+) 8	0.7026	0.6532	(+),38	0.7888	0.6071	(+),80
28	Function: prison	1.0000	0.0000	(+),80	1.0000	0.0000	(+),32	1.0000	0.0000	(+),26	1.000	0000	69'(+) 0	1.0000	0.0000	(+),38	1.0000	0.0000	(+),80
29	Function: healthcare	0.9964	0.5018	(+),80	1.0000	0.0000	(+),32	0.5711	0.7296	(-),26	0.703	3 0.652	69'(-) 68	0.5585	0.7310	(+),38	0.9892	0.5090	(+),80
90	Function: factory	0.6464	0.6785	(+),80	0.9365	0.5388	(+),32	0.9157	0.5515	(+),26	0.533	1 0.735-	t (+),69	0.8579	0.5765	(-),38	0.8036	0.6000	(+),80
31	Function: office	0.9956	0.5037	(+),80	0.7889	0.6113	(-),32	0.2361	0.8857	(+),26	0.404	0.799	69'(-) 1	0.5773	0.7154	(-),38	0.3074	0.8472	(-),80
32	Function: guesthouse	0.6532	0.6757	(-),80	0.9348	0.5419	(+),32	0.7459	0.6387	(-),26	0.819	0.593	69'(-) 68	0.6810	0.6683	(-),38	0.4415	0.7813	(-),80
33	Function: education	0.4641	0.7707	(+),80	0.0816	0.9623	(+),32	1.0000	0.0000	(+),26	0.187	0:907	89'(+) 8	0.3921	0.8101	(+),38	0.1150	0.9434	(+),80
34	Function: sports	0.5661	0.7218	(-),80	1.0000	0.0000	(+),32	0.5711	0.7296	(-),26	0.158	3 0.923	69'(-) 68	0.3302	0.8476	(-),38	0.1586	0.9233	(-),80
35	Function: shops	0.8735	0.5647	(+),80	0.7018	0.6546	(+),32	0.9017	0.5567	(+),26	0.787	3 0.607	69'(+) 6	0.1390	0.9320	(+),38	0.1720	0.9146	(+),80
36	Function: other	0.8499	0.5764	(-),80	0.6054	0.7021	(-),32	0.9171	0.5489	(-),26	0.794	4 0.604	5 (+),69	0.7575	0.6254	(+),38	0.9508	0.5260	(+),80
37	Green: tree cover	0.7163	0.6431	(+),80	0.8456	0.5824	(+),32	0.9854	0.5146	(+),26	0.947	4 0.528	69'(-) 0	0.8314	0.5884	(-),38	0.6872	0.6577	(-),80
38	Green: bush cover	0.7678	0.6174	(+),80	0.6146	0.6974	(+),32	0.9562	0.5292	(+),26	0.706	3 0.648-	t),69	0.8803	0.5640	(-),38	0.6722	0.6652	(-),80
39	Green: grass cover	0.6171	0.6926	(+),80	0.5773	0.7159	(+),32	0.9126	0.5510	(+),26	006:0	0.551	69'(-) 2	0.9379	0.5352	(-),38	0.8860	0.5583	(-),80
4	Noise pollution: total	0.7188	0.6419	(+),80	0.8667	0.5719	(+),32	1.0000	0.5073	(+),26	0.833	0.585	(+),69	0.9793	0.5145	(+),38	0.8033	0.5997	(+),80
41	Noise pollution: roads	0.6487	0.6769	(+),80	0.7831	0.6136	(+),32	0.7696	0.6222	(+),26	0.671	3 0.665	7 (+),69	0.9131	0.5475	(-),38	0.7639	0.6193	(+),80
42	Noise pollution: railways	0.9796	0.5116	(+),80	0.8456	0.5824	(+),32	0.9126	0.5510	(-),26	0.974	5 0.514	t (-),69	0.9876	0.5104	(+),38	0.9510	0.5258	(+),80
4	Year constr.: mean	0.8928	0.5550	(-),80	0.9839	0.5134	(+),32	0.7280	0.6428	(-),26	0.905	0.549	1,69	0.4639	0.7712	(+),38	0.7809	0.6109	(+),80
45	Landmarks: FSI	0.5743	0.7141	(-),80	0.8489	0.5813	(-),32	0.8568	0.5790	(-),26	0.744	0.629	2 (-)" 5	0.7317	0.6384	(-),38	0.6808	0.6609	(-),80
46	Landmarks: plot area	0.1286	0.9362	(-),80	0.4386	0.7849	(-),32	0.2663	0.8709	(-),26	0.594	0.704	69'(-) 1	0.8349	0.5868	(-),38	0.5631	0.7196	(-),80
47	Landmarks: Year constr.	0.4458	0.7782	(-),80	0.7736	0.6188	(-),32	0.9593	0.5285	(-),26	0.813	0.595	69'(-) 0	0.8513	0.5790	(+),38	0.9970	0.5030	(+),80
48	Landmarks: 1 criterion	0.2217	0.8898	(-),80	0.4833	0.7626	(-),32	0.7178	0.6480	(-),26	0.753	2 0.625	69'(-)	0.8572	0.5755	(-),38	0.7404	0.6311	(-),80
49	Landmarks: 2 criteria	0.4237	0.7898	(-),80	0.6651	0.6779	(-),32	0.4481	0.7833	(-),26	0.621	3 0.691	3 (-),69	0.8678	0.5723	(+),38	0.9452	0.5296	(-),80
20	Landmarks: 3 criteria	1.0000	0.0000	(+),80	1.0000	0.0000	(+),32	1.0000	0.0000	(+),26	1.000	0000	69'(+) 0	1.0000	0.0000	(+),38	1.0000	0.0000	(+),80
Fig	ure 1.36: Ra	w res	ults fo	r route	e aggre	egate	analys ·	iis, sam	iple:	interac	tion - l	oike	(have a	ccess),	p-dus	uestic	on 3, c	lata: r	-uou
sla	liuaruiseu, ba	Sellie		est pa	un, un	ecrion	egre	ñ											

	Variables	P(Most)	Most stat N	lost coef,n P	([5] always)	[5] stat	[5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] sta	tt [2] coef,r	P([1] neve	er) [1] staf	[1] coef,n	P(Least)	Least stat L	east coef,n
6	Year constr.: < 1945	0.8103	0.5948	wi(-),80	0.8074	0.5963	wi(+),23	0.5574	0.7213	wi(+),30	0.7210	0.6395	wi(-),22	0.7054	0.647	3 wi(-),67	0.52	39 0.7355	wi(-),39	0.3054	0.8473	wi(-),80
10	Year constr.: 1946-1970	0.7370	0.6315	wi(+),80	0.3242	0.8379	wi(-),23	0.5892	0.7054	wi(+),30	0.2874	0.8563	wi(+),22	0.5024	0.674	5 tt(+),67	0.69	20 0.3992	tt(+),39	0.4162	0.7919	wi(+),80
Ŧ	Year constr.: 1971-1985	0.5211	0.7394	wi(-),80	0.1903	0.9048	wi(-),23	0.6079	0.5187	tt(+),30	0.3330	-0.9909	tt(-),22	0.6181	0.500	9 tt(+),67	0.91	54 -0.107	tt(-);39	0.9365	0.0799	tt(+),80
12	Year constr.: 1986-2000	0.1136	0.9432	wi(-),80	0.1570	0.9215	wi(-),23	0.1718	0.9141	wi(-),30	0.5151	0.7425	wi(-),22	0.3577	0.821	1 wi(-),67	0.38	96 0.8702	tt(+),39	0.2320	0.884	wi(-),80
13	Year constr.: 2001-2022	0.8322	0.5839	wl(+),80	0.7016	0.3882	tt(+),23	0.7554	0.6223	wi(+),30	0.7453	0.6273	wi(+),22	0.4946	0.686	8 tt(+),67	0.02	19 2.3897	tt(+),39	0.1485	0.9258	wi(+),80
14	Traffic signals count	0.4216	0.7892	wi(-),80	0.8760	0.1578	tt(+),23	0.7805	0.6097	wi(-),30	0.7818	0.6091	wi(-),22	0.6678	0.666	1 wi(+),67	0.73	71 0.6314	wl(+),39	0.2018	0.8991	wi(+),80
15	Stairs count	0.1881	0.906	wi(+),80	0.1855	1.3667	tt(+),23	0.3520	0.824	wi(+),30	1.0000	0.0	tt(+),22	0.7838	0.275	4 tt(+),67	0.13	34 1.5335	tt(+),39	0.4703	0.7254	tt(+),80
16	Status: for construction	0.3600	0.82	wi(-),80	0.4503	0.7748	wi(-),23	0.1328	-1.5466	tt(-),30	0.9706	0.0373	tt(+),22	0.6736	-0.423	1 tt(-),67	0.35	44 0.9375	tt(+),39	0.6344	0.6828	wi(+),80
17	Status: unrealised	1.0000	equal	n/a,80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	inbe	al n/a,67	1.00	oo equa	n/a,39	1.0000	equal	n/a,80
18	Status: under construction	0.9957	0.5022	wi(+),80	0.6949	0.6526	wi(-),23	0.9909	0.5046	wi(+),30	0.6855	0.6573	wi(+),22	0.9944	0.502	8 wi(+),67	0.37	70 0.8115	wi(-),39	0.6906	0.6547	wi(-),80
19	Status: in use (n.m.)	0.6689	0.6655	wl(+),80	0.6949	0.6526	wi(-),23	0.3298	0.8351	wi(+),30	0.7115	0.6442	wi(+),22	0.4937	0.753	1 wi(-),67	0.41	55 0.7923	wi(-),39	0.6804	0.6598	wi(-),80
20	Status: in use	0.0631	0.9685	wi(-),80	0.4802	-0.7182	tt(-),23	0.5314	-0.6335	tt(-),30	0.4589	-0.7545	tt(-),22	0.1703	0.914	8 wi(-),67	0.81	25 0.5938	wi(-),39	0.1847	0.9076	wi(-),80
51	Status: for demolition	0.8303	0.5849	wi(-),80	1.0000	equal	n/a,23	0.7277	0.6361	wi(+),30	0.4421	0.779	wi(-),22	0.8217	0.589	1 wi(-),67	0.54	57 0.7266	wi(+),39	0.8257	0.5871	wi(+),80
22	Status: demolished	1.0000	equal	n/a,80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	edu	al n/a,67	1.00	oo edna	n/a,39	1.0000	equal	n/a,80
33	Status: not in use	1.0000	equal	n/a,80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	inbe	al n/a,67	1.00	oo equa	n/a,39	1.0000	equal	n/a,80
24	Status: reconstruction	0.1789	1.3562	tt(+),80	0.6103	0.517	tt(+),23	0.3410	0.968	tt(+),30	0.4742	0.7287	tt(+),22	0.8865	0.143	2 tt(+),67	0.42	19 0.8067	tt(+);39	1.0000	0.0	tt(+),80
25	Status: illegitimate	1.0000	equal	n/a,80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	edu	al n/a,67	1.00	oo equa	n/a,39	1.0000	equal	n/a,80
26	Function: residential	0.0123	0.9938	wi(-),80	0.1080	-1.6756	tt(-),23	0.7110	0.6445	wi(-),30	0.0348	0.9826	wi(-),22	0.4495	0.775	3 wi(-),67	0.22	97 0.8851	wi(-),39	0.0671	0.9665	wi(-),80
27	Function: gathering	0.7553	0.6224	wi(-),80	0.6874	-0.4077	tt(-),23	0.8367	0.208	tt(+),30	0.4629	-0.7477	tt(-),22	0.7487	-0.321	6 tt(-),67	0.06	78 0.9661	wi(+),39	0.5704	0.7148	wi(+),80
28	Function: prison	1.0000	equal	n/a,80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	edni	al n/a,67	1.00	oo edna	n/a,39	1.0000	equal	n/a,80
29	Function: healthcare	0.6788	0.6606	wi(+),80	0.6949	0.6526	wi(+),23	0.4993	0.7503	wi(+),30	0.6892	0.6554	wi(-),22	1.0000	0	5 wi(+),67	0.76	25 0.6186	wi(+),39	0.8299	0.585	wi(+),80
30	Function: factory	0.9501	-0.0628	tt(-),80	0.9740	0.513	wi(-),23	0.8797	0.1527	tt(+),30	0.4588	-0.7548	tt(-),22	0.8566	0.571	7 wi(+),67	0.68	33 0.4111	tt(+),39	0.9550	0.5225	wi(-),80
31	Function: office	0.9973	0.0034	tt(+),80	0.4083	0.843	tt(+),23	0.0931	0.9535	wi(-),30	0.6482	0.4629	tt(+),22	0.1926	-1.316	3 tt(-),67	0.88	38 -0.1472	tt(-),39	0.3184	-1.0042	tt(-),80
32	Function: guesthouse	0.2347	0.8827	wi(-),80	0.2752	0.8624	wi(-),23	0.4993	0.7503	wi(+),30	0.2673	0.8664	wi(-),22	0.2974	0.851	3 wi(-),67	0.82	52 -0.2225	tt(-);39	0.2275	0.8862	wi(-),80
33	Function: education	0.9936	0.5032	wi(-),80	0.6949	0.6526	wi(-),23	0.3251	0.8375	wi(+),30	1.0000	equal	n/a,22	0.9891	0.505	5 wi(+),67	0.78	33 0.6099	wi(-),39	0.5497	0.7252	wi(-),80
34	Function: sports	0.8262	0.5869	wi(-),80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	0.6892	0.6554	wi(-),22	0.6374	0.681	3 wi(-),67	0.75	76 0.6212	wi(-),39	0.6644	0.6678	wi(-),80
35	Function: shops	0.5645	0.5786	tt(+),80	0.3724	-0.9107	tt(-),23	0.6066	0.5206	tt(+),30	0.3561	0.9437	tt(+),22	0.9154	0.106	6 tt(+),67	0.00	91 0.9955	wi(+),39	0.1108	1.6128	tt(+),80
36	Function: other	0.3798	0.8101	wi(-),80	0.1971	0.9014	wi(-),23	0.1798	0.9101	wi(-),30	0.8821	0.5589	wi(-),22	0.5232	0.738	4 wi(+),67	0.33	58 0.9749	tt(+),39	0.6803	0.4136	tt(+),80
37	Green: tree cover	0.0000	-9.2205	tt(-),80	0.0008	-3.8833	tt(-),23	0.0000	-5.636	tt(-),30	0.0000	-6.7521	tt(-),22	0.0000	-8.656	8 tt(-),67	0.00	00 -5.5899	tt(-),39	0.0000	-8.4478	tt(-),80
38	Green: bush cover	0.0000	-8.5744	tt(-),80	0.0002	-4.3928	tt(-),23	0.0004	-3.9825	tt(-),30	0.0000	-5.7365	tt(-),22	0.000	-8.808	2 tt(-),67	0.00	00 -5.1942	tt(-),39	0.0000	-8.1945	tt(-),80
39	Green: grass cover	0.0000	-8.8628	tt(-),80	0.0003	-4.2798	tt(-),23	0.0001	-4.6774	tt(-),30	0.0000	-5.499	tt(-),22	0.0000	-9.600	4 tt(-),67	0.00	00 -6.0435	tt(-),39	0.0000	-9.2738	tt(-),80
6	Noise pollution: total	0.0000	-10.1496	tt(-),80	0.0001	-4.7077	tt(-),23	0.000	-5.7092	tt(-),30	0.0000	-7.8179	tt(-),22	0.0000	-10.580	2 tt(-),67	0.00	3070.7- 00	tt(-),39	0.000	-10.3282	tt(-),80
41	Noise pollution: roads	0.0000	-9.3719	tt(-),80	0.0004	-4.1399	tt(-),23	0.0000	-5.6746	tt(-),30	0.0000	-6.3304	tt(-),22	0.0000	-9.651	5 tt(-),67	0.00	00 -6.6342	tt(-),39	0.0000	-9.3909	tt(-),80
42	Noise pollution: railways	0.0000	1.0	wi(-),80	0.0243	-2.4181	tt(-),23	0.0004	-3.9935	tt(-),30	0.0000	-5.4772	tt(-),22	0.0000	-5.994	5 tt(-),67	0.02	50 -2.3341	tt(-),39	0.0000	1.0	wi(-),80
4	Year constr.: mean	0.9312	0.5344	wi(+),80	0.8671	0.5664	wi(-),23	0.9018	0.5491	wi(+),30	0.6651	-0.439	tt(-),22	1.0000	edn	al n/a,67	0.58	25 -0.5545	tt(-),39	0.8913	0.5544	wi(+),80
45	Landmarks: FSI	0.0046	0.9977	wi(-),80	0.0901	0.955	wi(-),23	0.2022	0.8989	wi(-),30	0.0607	0.9697	wi(-),22	0.2417	0.879	1 wi(-),67	0.75	00 0.625	wi(-),39	0.1085	0.9458	wi(-),80
46	Landmarks: plot area	0.0052	0.9974	wi(-),80	0.0471	0.9764	wi(-),23	0.0375	0.9813	wi(-),30	0.3362	0.8319	wi(-),22	0.3378	0.831	1 wi(-),67	0.79	99 0.6001	wi(-),39	0.1196	0.9402	wi(-),80
47	Landmarks: Year constr.	0.0753	0.9623	wi(-),80	0.4727	0.7637	wi(-),23	0.5832	0.7084	wi(-),30	0.2143	0.8929	wi(-),22	0.7140	0.64	3 wi(-),67	0:50	58 0.7471	wi(-),39	0.2557	0.8721	wi(-),80
48	Landmarks: 1 criterion	0.0039	0.998	wi(-),80	0.0422	0.9789	wi(-),23	0.1977	0.9011	wi(-),30	0.2800	0.86	wi(-),22	0.3795	0.810	3 wi(-),67	0.40	35 0.7967	wi(-),39	0.0978	0.9511	wi(-),80
49	Landmarks: 2 criteria	0.1556	0.9222	wi(-),80	0.2752	0.8624	wi(-),23	0.7277	0.6361	wi(-),30	0.2672	0.8664	wi(-),22	0.4932	0.753	4 wi(-),67	0.99	10 0.503	wi(+),39	0.3234	0.8383	wi(-),80
20	Landmarks: 3 criteria	1.0000	equal	n/a,80	1.0000	equal	n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	nbə	al n/a,67	1.00	oo equa	n/a,39	1.0000	equal	n/a,80
i											-	5		-	,	•	-		-			
	Variables	P(Most)	Most stat N	Aost coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n P	([2] sometimes)	[2] stat	[2] coef,n P	([1] never)	[1] stat	[1] coef,n	P(Least)	-east stat L	east coef,n			
----	----------------------------	---------	-------------	-------------	--------------	----------	------------	------------------	----------	--------------	-----------------	----------	--------------	-------------	----------	------------	----------	--------------	-------------			
6	Year constr.: < 1945	0.7441	0.6279	wi(-),80	0.7362	0.6319	wi(+),32	0.1477	0.9262	wi(-),26	0.5863	0.7069	wi(-),69	0.4408	0.7796	wi(-),38	0.1553	0.9224	wi(-),80			
₽	Year constr.: 1946-1970	0.5939	0.703	wi(+),80	0.7344	0.6328	wi(+),32	0.8879	0.556	wi(-),26	0.5773	0.56	tt(+),69	0.3004	1.0503	tt(+),38	0.4319	0.7841	wi(+),80			
÷	Year constr.: 1971-1985	0.4676	0.7662	wi(-),80	0.4417	-0.7794	tt(-),32	0.2537	-1.1683	tt(-),26	0.8910	0.1376	tt(+),69	0.6977	0.3915	tt(+),38	0.7290	-0.3477	tt(-),80			
12	Year constr.: 1986-2000	0.0761	0.9619	wi(-),80	0.0506	0.9747	wi(-),32	0.2410	0.8795	wi(-),26	0.3423	-0.9562	tt(-),69	0.7572	0.3115	tt(+),38	0.1690	0.9155	wi(-),80			
13	Year constr.: 2001-2022	0.9176	0.5412	wi(+),80	0.6793	0.6603	wi(-),32	0.4926	0.7537	wi(+),26	0.7602	0.6199	wi(+),69	0.0370	2.164	tt(+),38	0.2013	0.8994	wi(+),80			
14	Traffic signals count	0.4370	0.7815	wi(-),80	0.7279	-0.3511	tt(-),32	0.2158	0.8921	wi(+),26	0.6857	-0.4064	tt(-),69	0.8387	0.5806	wi(+),38	0.1649	0.9176	wi(+),80			
15	Stairs count	0.1881	0.906	wi(+),80	0.2634	1.1392	tt(+),32	0.5013	0.7493	wi(+),26	0.1989	1.2974	tt(+),69	0.5343	0.6274	tt(+),38	0.8101	0.2411	tt(+),80			
16	Status: for construction	0.3600	0.82	wi(-),80	0.1327	-1.5443	tt(-),32	0.7037	0.3847	tt(+),26	0.3485	-0.944	tt(-),69	0.5722	0.5698	tt(+),38	0.6344	0.6828	wi(+),80			
17	Status: unrealised	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
18	Status: under construction	0.9957	0.5022	wi(+),80	0.9917	0.5042	wi(+),32	0.7078	0.6461	wi(+),26	0.5119	0.7441	wi(-),69	0.7548	0.6226	wi(-),38	0.6827	0.6586	wi(-),80			
19	Status: in use (n.m.)	0.8283	0.5858	wi(+),80	0.5282	0.7359	wi(+),32	0.7390	0.6305	wl(+),26	0.3752	0.8124	wi(-),69	0.5770	0.7115	wi(-),38	0.6804	0.6598	wi(-),80			
20	Status: in use	0.0408	0.9796	wi(-),80	0.7435	0.6283	wi(-),32	0.0156	-2.5953	tt(-),26	0.6081	-0.5152	tt(-),69	0.2930	0.8535	wi(-),38	0.0259	0.9871	wi(-),80			
21	Status: for demolition	0.8303	0.5849	wi(-),80	1.0000	0.5	wi(+),32	0.7103	0.6448	wi(-),26	0.8239	0.5881	wi(-),69	0.7548	0.6226	wi(+),38	0.9914	0.5043	wi(+),80			
22	Status: demolished	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
53	Status: not in use	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
24	Status: reconstruction	0.2065	1.2738	tt(+),80	0.4252	0.8081	tt(+),32	0.6808	0.4162	tt(+),26	0.6768	0.4186	tt(+),69	0.9734	0.0336	tt(+),38	0.6073	-0.5159	tt(-),80			
25	Status: illegitimate	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
26	Function: residential	0.0183	0.9908	wi(-),80	0.5066	0.7467	wi(-),32	0.0103	0.9948	wi(-),26	0.1625	0.9187	wi(-),69	0.3719	0.8141	wi(-),38	0.0361	0.982	wi(-),80			
27	Function: gathering	0.8415	0.5793	wi(-),80	0.5526	0.7237	wi(+),32	0.6050	-0.5239	tt(-),26	0.5459	0.727	wi(-),69	0.6988	0.6506	wi(+),38	0.5143	0.7428	wi(-),80			
28	Function: prison	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
29	Function: healthcare	0.6788	0.6606	wi(+),80	1.0000	0.5	wi(+),32	0.7285	0.6358	wi(-),26	0.8233	0.5883	wi(+),69	0.5421	0.729	wi(+),38	0.6749	0.6626	wi(+),80			
30	Function: factory	0.7771	-0.2841	tt(-),80	0.6730	-0.4261	tt(-),32	0.0628	-1.9474	tt(-),26	0.9468	-0.0669	tt(-),69	0.4229	0.7885	wi(+),38	0.6946	0.6527	wi(-),80			
31	Function: office	0.9204	0.1003	tt(+),80	0.0490	-2.0492	tt(-),32	0.1685	1.4182	tt(+),26	0.5279	-0.6345	tt(-),69	0.1877	-1.3423	tt(-),38	0.1847	-1.3382	tt(-),80			
32	Function: guesthouse	0.2347	0.8827	wi(-),80	0.7493	0.6254	wi(+),32	0.1887	-1.3513	tt(-),26	0.2501	0.8749	wi(-),69	0.5770	0.7115	wi(-),38	0.1000	0.95	wi(-),80			
33	Function: education	0.8295	0.5853	wi(-),80	0.5405	0.7297	wi(+),32	1.0000	equal	n/a,26	0.9974	0.5013	wi(-),69	0.7598	0.6201	wi(+),38	0.8336	0.5832	wi(+),80			
34	Function: sports	0.8262	0.5869	wi(-),80	1.0000	equal	n/a,32	0.7103	0.6448	wi(-),26	0.6420	0.679	wi(-),69	0.7548	0.6226	wi(-),38	0.6644	0.6678	wi(-),80			
35	Function: shops	0.7628	0.3028	tt(+),80	0.4243	0.8096	tt(+),32	0.6519	0.4566	tt(+),26	0.6846	0.4079	tt(+),69	0.0033	3.1397	tt(+),38	0.0441	2.0454	tt(+),80			
36	Function: other	0.6291	0.6854	wi(-),80	0.3556	0.8222	wi(-),32	0.3707	0.8146	wi(-),26	0.5710	0.5694	tt(+),69	0.5520	0.6002	tt(+),38	0.8130	0.2374	tt(+),80			
37	Green: tree cover	0.0000	-9.2156	tt(-),80	0.0000	-6.1538	tt(-),32	0.0000	-6.4943	tt(-),26	0.0000	-8.9373	tt(-),69	0.0000	-6.5658	tt(-),38	0.0000	-9.0842	tt(-),80			
38	Green: bush cover	0.0000	-8.5905	tt(-),80	0.0001	-4.5529	tt(-),32	0.000	-6.0365	tt(-),26	0.000	-8.7274	tt(-),69	0.0000	-6.1209	tt(-),38	0.0000	-8.9672	tt(-),80			
39	Green: grass cover	0.0000	-8.8734	tt(-),80	0.000	-5.3521	tt(-),32	0.000	-6.1438	tt(-),26	0.000	-9.911	tt(-),69	0.000	-7.3166	tt(-),38	0.0000	-10.1509	tt(-),80			
4	Noise pollution: total	0.0000	-10.1495	tt(-),80	0.000	-7.0656	tt(-),32	0.000	-7.3076	tt(-),26	0.000	-10.9333	tt(-),69	0.0000	-7.2023	tt(-),38	0.0000	-10.3743	tt(-),80			
41	Noise pollution: roads	0.0000	-9.3705	tt(-),80	0.0000	-6.853	tt(-),32	0.000	-6.0233	tt(-),26	0.000	-9.7464	tt(-),69	0.0000	-6.1843	tt(-),38	0.0000	1.0	wi(-),80			
42	Noise pollution: railways	0.0000	1.0	wi(-),80	0.0002	0.9999	wi(-),32	0.000	-5.8521	tt(-),26	0.000	-7.0387	tt(-),69	0.0081	0.9959	wi(-),38	0.0000	1.0	wi(-),80			
44	Year constr.: mean	0.8932	0.5534	wi(+),80	0.9033	0.5484	wi(-),32	0.7480	0.3249	tt(+),26	0.7468	0.6266	wi(-),69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
45	Landmarks: FSI	0.0046	0.9977	wi(-),80	0.1297	0.9351	wi(-),32	0.0046	-3.114	tt(-),26	0.1228	0.9386	wi(-),69	0.4125	0.7937	wi(-),38	0.0458	0.9771	wi(-),80			
46	Landmarks: plot area	0.0024	0.9988	wi(-),80	0.1364	0.9318	wi(-),32	0.0238	0.9881	wi(-),26	0.2598	0.8701	wi(-),69	0.6425	0.6787	wi(-),38	0.1277	0.9361	wi(-),80			
47	Landmarks: Year constr.	0.0532	0.9734	wi(-),80	0.4042	0.7979	wi(-),32	0.0518	0.9741	wi(-),26	0.2631	0.8685	wi(-),69	0.7012	0.6494	wi(+),38	0.3566	0.8217	wi(-),80			
48	Landmarks: 1 criterion	0.0027	0.9986	wi(-),80	0.2658	0.8671	wi(-),32	0.0383	0.9809	wi(-),26	0.1445	0.9278	wi(-),69	0.6043	0.6979	wi(-),38	0.0600	0.97	wi(-),80			
49	Landmarks: 2 criteria	0.1556	0.9222	wi(-),80	0.5111	0.7444	wi(-),32	0.1034	0.9483	wi(-),26	0.4987	0.7506	wi(-),69	0.7822	0.6089	wi(+),38	0.5428	0.7286	wi(-),80			
20	Landmarks: 3 criteria	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80			
Ë	1 20. Der	1004	.14 a for		504.0 x c				:. 	tono of:	an bile	(h.a	00000	1.10 (v.			9 Jot		0.00			

	Variables	P(Most)	Most stat	Most coef,n	P([5] always)	[5] sta	t [5] coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) L	east stat Le	ast coef,n
6	Year constr.: < 1945	0.6190	0.6905	wi(+),80	0.4102	0.7949	9 wi(+),23	0.4619	0.7691	wi(+),30	0.4348	0.7826	wi(+),22	0.7804	0.6098	wi(+),67	0.2362	0.8819	wi(+),39	0.3828	0.8086	wi(+),80
₽	Year constr.: 1946-1970	0.6392	0.6804	wi(+),80	0.5973	0.701	4 wi(-),23	0.5963	0.7018	wi(+),30	0.7358	0.6321	wi(+),22	0.5358	0.6225	tt(+),67	0.6219	0.4972	tt(+),39	0.5441	0.6092	tt(+),80
÷	Year constr.: 1971-1985	0.5754	0.7123	wi(+),80	0.7877	0.606	2 wi(+),23	0.4925	0.7537	wi(+),30	0.9194	-0.1024	tt(-),22	0.2659	1.1221	tt(+),67	0.7528	0.3173	tt(+),39	0.2444	1.1727	tt(+),80
12	Year constr.: 1986-2000	0.7924	0.6038	wi(-),80	0.2199	0.890	1 wi(-),23	0.9251	0.5374	wi(-),30	0.3128	0.8436	wi(+),22	0.4067	0.7967	wi(+),67	0.2873	0.8563	wi(+),39	0.4128	0.7936	wi(+),80
13	Year constr.: 2001-2022	0.6525	0.6737	wi(+),80	0.8147	0.592	7 wi(-),23	0.6524	0.6738	wi(+),30	0.7282	-0.3522	tt(-),22	0.6370	0.6815	wi(-),67	0.2147	1.2618	tt(+),39	0.8434	0.5783	wi(+),80
14	Traffic signals count	0.3421	0.829	wi(-),80	0.7220	0.63	9 wi(-),23	0.3605	0.8197	wi(-),30	0.3477	0.8261	wi(+),22	0.9648	0.5176	wi(+),67	0.5942	0.5373	tt(+),39	0.8737	0.5632	wi(+),80
15	Stairs count	0.8446	0.5777	wi(+),80	0.2751	0.862	5 wi(+),23	0.7429	0.6286	wi(+),30	0.1538	0.9231	wi(-),22	0.2884	-1.0702	tt(-),67	0.7107	0.3738	tt(+),39	0.4703	-0.7254	tt(-),80
16	Status: for construction	0.9978	0.5011	wi(-),80	1.0000	edna	al n/a,23	0.7429	0.6285	wi(-),30	0.6855	0.6573	wi(+),22	0.6505	0.6748	wi(+),67	0.4184	0.7908	wi(+),39	0.4146	0.7927	wi(+),80
17	Status: unrealised	1.0000	equal	n/a,80	1.0000	edne	al n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	equal	n/a,67	1.0000	equal	n/a,39	1.0000	equal	n/a,80
18	Status: under construction	0.9978	0.5011	wi(+),80	0.4503	0.774	8 wi(-),23	0.4993	0.7503	wi(+),30	0.2672	0.8664	wi(+),22	0.9972	0.5014	wi(+),67	0.3770	0.8115	wi(-),39	0.8425	0.5787	wi(-),80
19	Status: in use (n.m.)	0.2951	0.8525	wi(+),80	0.6949	0.652(6 wi(+),23	0.3250	0.8375	wi(+),30	0.4421	0.7789	wi(+),22	0.4915	0.7543	wi(-),67	1.0000	equal	n/a,39	0.9893	0.5053	wi(-),80
20	Status: in use	0.9500	0.525	wi(+),80	0.8821	0.1	5 tt(+),23	0.8442	0.5779	wi(+),30	0.8834	0.5583	wi(-),22	0.9576	0.5212	wi(-),67	0.1280	0.936	wi(+),39	0.3057	0.8471	wi(+),80
21	Status: for demolition	0.8262	0.5869	wi(+),80	1.0000	edna	al n/a,23	0.7277	0.6361	wi(+),30	1.0000	equal	n/a,22	0.8135	0.5932	wi(+),67	0.5467	0.7266	wi(+),39	0.5263	0.7368	wi(+),80
52	Status: demolished	1.0000	equal	n/a,80	1.0000	edna	al n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	equal	n/a,67	1.0000	equal	n/a,39	1.0000	equal	n/a,80
53	Status: not in use	1.0000	equal	n/a,80	1.0000	edna	al n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	equal	n/a,67	1.0000	equal	n/a,39	1.0000	equal	n/a,80
24	Status: reconstruction	0.5141	0.7429	wi(-),80	0.2867	0.856	6 wi(-),23	0.9093	0.115	tt(+),30	0.6900	0.4044	tt(+),22	0.0950	-1.6937	tt(-),67	0.4426	0.7787	wi(-),39	0.0608	-1.9025	tt(-),80
25	Status: illegitimate	1.0000	equal	n/a,80	1.0000	edna	al n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	equal	n/a,67	1.0000	equal	n/a,39	1.0000	equal	n/a,80
26	Function: residential	0.7662	0.6169	wi(+),80	0.3883	0.805	8 wi(+),23	0.5146	0.7427	wi(+),30	0.9870	0.5065	wi(-),22	0.8486	0.5757	wi(+),67	0.4891	0.7555	wi(+),39	0.7973	0.6014	wi(+),80
27	Function: gathering	0.7953	0.6024	wi(-),80	0.2185	0.890	7 wi(-),23	0.3491	0.9517	tt(+),30	0.2213	-1.2605	tt(-),22	0.9381	-0.0779	tt(-),67	0.4298	0.7851	wi(+),39	0.4254	0.8013	tt(+),80
28	Function: prison	1.0000	equal	n/a,80	1.0000	edns	al n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	equal	n/a,67	1.0000	equal	n/a,39	1.0000	equal	n/a,80
29	Function: healthcare	1.0000	0.5	wi(+),80	0.6949	0.652	6 wi(+),23	0.7277	0.6361	wi(+),30	0.4421	0.779	wi(-),22	0.6467	0.6767	wi(-),67	0.7625	0.6188	wi(+),39	0.8461	0.577	wi(-),80
30	Function: factory	0.2090	0.8955	wi(+),80	0.4825	0.758	7 wi(+),23	0.6275	0.4904	tt(+),30	0.7310	0.6345	wi(+),22	0.6718	0.6641	wi(+),67	0.9822	0.5089	wi(-),39	0.8429	0.5785	wi(+),80
31	Function: office	0.8440	0.578	wi(-),80	0.9618	0.519	1 wi(-),23	0.7481	0.6259	wi(-),30	0.7872	0.6064	wi(+),22	0.0237	-2.3155	tt(-),67	0.8896	-0.1398	tt(-),39	0.2289	-1.2127	tt(-),80
32	Function: guesthouse	0.8341	0.5829	wi(-),80	0.6949	0.652(6 wi(-),23	1.0000	0.5	wi(+),30	1.0000	equal	n/a,22	0.8320	0.584	wi(-),67	0.5509	0.7246	wi(+),39	0.8775	0.5613	wi(-),80
33	Function: education	0.5281	0.736	wi(+),80	0.6949	0.652(6 wi(-),23	0.2022	0.8989	wi(+),30	1.0000	equal	n/a,22	0.2583	0.8709	wi(+),67	0.9938	0.5031	wi(+),39	0.6698	0.6651	wi(+),80
34	Function: sports	0.8262	0.5869	wi(-),80	1.0000	edns	al n/a,23	1.0000	equal	n/a,30	0.6892	0.6554	wi(-),22	0.6374	0.6813	wi(-),67	0.7576	0.6212	wi(-),39	0.6644	0.6678	wi(-),80
35	Function: shops	0.6502	0.6749	wi(+),80	0.7591	0.620	4 wi(-),23	0.4879	0.7561	wi(+),30	0.7311	0.6344	wi(+),22	0.7120	0.3707	tt(+),67	0.0287	0.9856	wi(+),39	0.0729	0.9635	wi(+),80
36	Function: other	0.7395	0.6302	wi(-),80	0.4528	0.773(6 wi(-),23	0.3342	0.8329	wi(-),30	0.4120	0.794	wi(-),22	0.3436	0.8282	wi(+),67	0.5749	0.5658	tt(+),39	0.5341	0.6245	tt(+),80
37	Green: tree cover	0.2970	0.8515	wi(+),80	0.9393	0.530	3 wi(-),23	0.3331	0.9844	tt(+),30	0.7290	0.3511	tt(+),22	0.6587	-0.4438	tt(-),67	0.8436	-0.1987	tt(-),39	0.8617	-0.1748	tt(-),80
38	Green: bush cover	0.1738	0.9131	wi(+),80	0.8431	0.578	4 wi(-),23	0.1098	1.6498	tt(+),30	0.5322	0.6352	tt(+),22	0.4277	-0.7981	tt(-),67	0.9098	-0.1141	tt(-),39	0.8112	-0.2397	tt(-),80
39	Green: grass cover	0.2287	1.213	tt(+),80	0.6588	0.670	6 wi(-),23	0.2297	1.227	tt(+),30	0.4689	0.7376	tt(+),22	0.8734	0.5633	wi(+),67	0.9304	0.088	tt(+),39	0.8197	0.2287	tt(+),80
4	Noise pollution: total	0.0388	0.9806	wi(+),80	0.5793	0.562	8 tt(+),23	0.1553	1.4589	tt(+),30	0.3801	0.81	wi(+),22	0.8981	0.551	wi(+),67	0.9807	-0.0244	tt(-),39	0.9685	0.0396	tt(+),80
41	Noise pollution: roads	0.0622	0.9689	wi(+),80	0.9151	0.542	4 wi(+),23	0.2000	1.3113	tt(+),30	0.3894	0.8789	tt(+),22	0.8099	0.595	wi(+),67	0.7375	-0.3376	tt(-),39	0.9368	-0.0796	tt(-),80
42	Noise pollution: railways	0.0993	0.9504	wi(+),80	0.8910	0.554	5 wi(+),23	0.1300	0.935	wi(+),30	0.3980	0.801	wi(+),22	0.5568	0.5906	tt(+),67	0.4810	0.7595	wi(+),39	0.3208	0.8396	wi(+),80
4	Year constr.: mean	0.4804	0.7598	wi(-),80	0.0227	-2.4	5 tt(-),23	0.6122	0.6939	wi(+),30	0.8038	-0.2516	tt(-),22	1.0000	equal	n/a,67	0.4983	0.7508	wl(+),39	0.3080	0.846	wi(+),80
45	Landmarks: FSI	0.2185	0.8908	wi(-),80	0.6949	0.652	6 wi(-),23	1.0000	equal	n/a,30	0.9446	0.5277	wi(-),22	0.8201	0.59	wi(-),67	0.7269	0.6365	wi(+),39	0.6861	0.657	wi(+),80
46	Landmarks: plot area	0.0181	0.991	wi(-),80	0.1281	0.93(6 wi(-),23	0.1912	0.9044	wi(-),30	0.1541	0.9229	wi(-),22	0.4994	0.7503	wi(-),67	0.9185	0.5408	wi(+),39	0.5126	0.7437	wi(-),80
47	Landmarks: Year constr.	0.1571	0.9214	wi(-),80	0.6949	0.652	6 wi(-),23	0.3409	0.8296	wi(-),30	0.4421	0.7789	wi(-),22	0.6964	0.6518	wi(-),67	0.4515	0.7743	wi(+),39	0.9839	0.508	wi(-),80
48	Landmarks: 1 criterion	0.0524	0.9738	wi(-),80	0.2940	0.85	3 wi(-),23	0.1921	0.904	wi(-),30	0.4749	0.7626	wi(-),22	0.6334	0.6833	wi(-),67	0.7434	0.6283	wi(+),39	0.8778	0.5611	wi(-),80
49	Landmarks: 2 criteria	0.1518	0.9241	wi(-),80	0.4503	0.774	8 wi(-),23	1.0000	equal	n/a,30	0.4421	0.7789	wi(-),22	0.3593	0.8204	wi(-),67	0.7684	0.6158	wi(-),39	0.5316	0.7342	wi(-),80
50	Landmarks: 3 criteria	1.0000	equal	n/a,80	1.0000	edua	al n/a,23	1.0000	equal	n/a,30	1.0000	equal	n/a,22	1.0000	equal	n/a,67	1.0000	equal	n/a,39	1.0000	equal	n/a,80
į			, ,									:										

Figure 1.39: Raw results for route aggregate analysis, sample: interaction - bike (have access), sub-question 3, data: standard-ised, baseline: shortest path, direction: access

	Variables	P(Most) N	fost stat N	Most coef,n	P([4] often)	[4] stat	[4] coef,n	o([3] regularly)	[3] stat	[3] coef,n F	([2] sometimes	[2] stat	[2] coef,n	P([1] never)	[1] stat	[] coef,n F	P(Least) Le	ast stat Le	ast coef,n
6	Year constr.: < 1945	0.9961	0.5019	wi(-),80	0.4113	0.7944	wi(+),32	0.4013	0.7994	wi(+),26	0.4889	0.7556	wi(+),69	0.9767	0.5116	wi(+),38	0.8157	0.5922	wi(+),80
9	Year constr.: 1946-1970	0.5639	0.7181	wi(+),80	0.3438	0.8281	wi(+),32	0.4305	0.7847	wi(+),26	0.4001	0.8467	tt(+),69	0.5789	0.5599	tt(+),38	0.3842	0.8751	tt(+),80
÷	Year constr.: 1971-1985	0.9960	0.502	wi(+),80	0.7014	-0.387	tt(-),32	0.2550	1.1651	tt(+),26	0.1632	1.4098	tt(+),69	0.9062	0.5469	wi(+),38	0.4098	0.8286	tt(+),80
12	Year constr.: 1986-2000	0.9000	0.55	wi(-),80	0.5486	0.7257	wi(-),32	0.4704	0.7648	wi(+),26	0.4586	3 0.7706	wi(+),69	0.9024	-0.1235	tt(-),38	0.5860	0.707	wi(+),80
13	Year constr.: 2001-2022	0.6349	0.6825	wi(+),80	0.6534	0.6733	wi(+),32	0.9919	-0.0103	tt(-),26	0.7754	0.6123	wi(-),69	0.1609	1.4306	tt(+),38	0.7253	0.6373	wi(+),80
14	Traffic signals count	0.4658	0.7671	wi(-),80	0.8792	0.5604	wi(-),32	0.4971	0.7515	wi(+),26	0.6495	0.6752	wi(-),69	0.1497	1.4712	tt(+),38	0.7488	0.6256	wi(+),80
15	Stairs count	0.8446	0.5777	wi(+),80	0.5337	0.7331	wi(+),32	0.1848	-1.3636	tt(-),26	0.7984	9.2564	tt(-),69	0.7437	-0.3294	tt(-),38	0.2539	-1.1494	tt(-),80
16	Status: for construction	0.9978	0.5011	wi(-),80	0.7493	0.6254	wi(-),32	0.4757	0.7622	wi(+),26	0.9895	0.5052	wi(+),69	0.2446	0.8777	wi(+),38	0.4090	0.7955	wi(+),80
17	Status: unrealised	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
18	Status: under construction	0.9978	0.5011	wi(+),80	0.5111	0.7444	wi(+),32	0.4928	0.7536	wi(+),26	0.5051	0.7474	wi(-),69	0.7548	0.6226	wi(-),38	0.8341	0.5829	wi(-),80
19	Status: in use (n.m.)	0.5316	0.7342	wi(+),80	0.3377	0.8312	wi(+),32	0.7390	0.6305	wi(+),26	0.6414	0.6793	wi(-),69	1.0000	equal	n/a,38	0.9893	0.5053	wi(-),80
20	Status: in use	0.5825	0.7087	wi(-),80	0.9101	0.5449	wi(-),32	0.8588	0.5706	wi(+),26	0.4692	0.7654	wi(+),69	0.6321	0.6839	wi(+),38	0.7607	0.6197	wi(+),80
21	Status: for demolition	0.8262	0.5869	wi(+),80	0.7353	0.6323	wi(+),32	1.0000	equal	n/a,26	0.8160	0.592	wi(+),69	0.7548	0.6226	wi(+),38	0.6679	0.6661	wi(+),80
22	Status: demolished	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	edual	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
23	Status: not in use	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000) equa	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
24	Status: reconstruction	0.4870	0.7565	wi(-),80	0.8084	0.5958	wi(-),32	0.7238	0.3574	tt(+),26	0.1828	3 -1.3458	tt(-),69	0.2526	0.8737	wi(-),38	0.0358	0.9821	wi(-),80
25	Status: illegitimate	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
26	Function: residential	0.7278	0.6361	wi(+),80	0.9850	0.5075	wi(+),32	0.2793	0.8603	wi(+),26	0.843	0.5783	wi(+),69	0.2992	0.8504	wi(+),38	0.5420	0.729	wi(+),80
27	Function: gathering	0.9040	0.548	wi(-),80	0.5836	0.5539	tt(+),32	0.1666	-1.4249	tt(-),26	0.9950	3 0.006	tt(+),69	0.5337	0.6282	tt(+),38	0.7798	0.2805	tt(+),80
28	Function: prison	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	edual	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
59	Function: healthcare	1.0000	0.5	wi(+),80	1.0000	equal	n/a,32	0.7285	0.6358	wi(-),26	0.8233	0.5883	wi(-),69	0.7598	0.6201	wi(+),38	0.9916	0.5042	wi(+),80
30	Function: factory	0.2791	0.8604	wi(+),80	0.9206	0.1005	tt(+),32	0.7344	0.6328	wi(+),26	0.7908	3 0.6046	wi(+),69	0.7428	-0.3306	tt(-),38	0.9836	0.5082	wi(+),80
31	Function: office	0.9898	0.5051	wi(-),80	0.7465	0.6267	wi(-),32	0.1350	0.9325	wi(+),26	0.2287	-1.2146	tt(-),69	0.3402	-0.9662	tt(-),38	0.1298	-1.531	tt(-),80
32	Function: guesthouse	0.8341	0.5829	wi(-),80	0.7493	0.6254	wi(+),32	0.7495	0.6253	wi(-),26	0.8499	0.5751	wi(-),69	0.7783	0.6109	wi(-),38	0.5622	0.7189	wi(-),80
33	Function: education	0.6698	0.6651	wi(+),80	0.3377	0.8312	wi(+),32	1.0000	equal	n/a,26	0.2643	3 0.8679	wi(+),69	0.5554	0.7223	wi(+),38	0.2244	0.8878	wi(+),80
34	Function: sports	0.8262	0.5869	wi(-),80	1.0000	equal	n/a,32	0.7103	0.6448	wi(-),26	0.642(0.679	wi(-),69	0.7548	0.6226	wi(-),38	0.6644	0.6678	wi(-),80
35	Function: shops	0.7986	0.6007	wi(+),80	0.6952	0.6524	wi(+),32	0.7826	0.6087	wi(+),26	0.5237	0.6409	tt(+),69	0.0365	0.9817	wi(+),38	0.0449	0.9775	wi(+),80
36	Function: other	0.9681	0.516	wi(+),80	0.8228	0.5886	wi(-),32	0.6894	0.6553	wi(-),26	0:390	0.8643	tt(+),69	0.6376	0.4749	tt(+),38	0.6559	0.4473	tt(+),80
37	Green: tree cover	0.2150	0.8925	wi(+),80	0.1603	1.4386	tt(+),32	0.9375	0.0792	tt(+),26	0.8858	3 0.1441	tt(+),69	0.1432	-1.4956	tt(-),38	0.3801	-0.8826	tt(-),80
38	Green: bush cover	0.1754	0.9123	wi(+),80	0.0706	1.8727	tt(+),32	0.5664	0.581	tt(+),26	0.7545	5 -0.314	tt(-),69	0.3468	-0.953	tt(-),38	0.3990	-0.8479	tt(-),80
39	Green: grass cover	0.3106	0.8447	wi(+),80	0.0770	1.8291	tt(+),32	0.7143	0.3703	tt(+),26	0.9362	0.0803	tt(+),69	0.8484	-0.1925	tt(-),38	0.9776	0.0281	tt(+),80
4	Noise pollution: total	0.0603	0.9699	wi(+),80	0.1562	1.4533	tt(+),32	0.6842	0.6579	wi(+),26	0.6241	0.4923	tt(+),69	0.7400	-0.3344	tt(-),38	0.8236	0.2237	tt(+),80
41	Noise pollution: roads	0.0926	0.9537	wi(+),80	0.1972	1.3179	tt(+),32	0.6231	0.4976	tt(+),26	0.4382	9677.0	tt(+),69	0.6858	-0.4077	tt(-),38	0.6570	0.4458	tt(+),80
42	Noise pollution: railways	0.2098	0.8951	wi(+),80	0.0940	0.953	wi(+),32	0.5588	0.7206	wi(-),26	0.7294	0.3474	tt(+),69	0.1993	0.9003	wi(+),38	0.2731	0.8635	wi(+),80
4	Year constr.: mean	0.5846	0.7077	wi(-),80	0.6728	0.6636	wi(+),32	0.3113	-1.0333	tt(-),26	0.5496	3 0.7251	wi(+),69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
45	Landmarks: FSI	0.2185	0.8908	wi(-),80	0.7353	0.6323	wi(-),32	0.8519	0.574	wi(+),26	0.944/	0.5278	wi(-),69	0.7381	0.631	wi(-),38	0.9575	0.5213	wi(+),80
46	Landmarks: plot area	0.0046	0.9977	wi(-),80	0.1642	0.9179	wi(-),32	0.0603	0.9698	wi(-),26	0.5632	0.7184	wi(-),69	0.7284	0.6358	wi(+),38	0.8483	0.5759	wi(-),80
47	Landmarks: Year constr.	0.1101	0.9449	wi(-),80	0.7415	0.6293	wi(-),32	0.7447	0.6277	wi(-),26	0.7055	0.6472	wi(-),69	0.7706	0.6147	wi(+),38	0.9839	0.508	wi(+),80
48	Landmarks: 1 criterion	0.0173	0.9913	wi(-),80	0.1845	0.9077	wi(-),32	0.5654	0.7173	wi(-),26	0.8102	0.5949	wi(-),69	0.9761	0.5119	wi(-),38	0.8334	0.5833	wi(-),80
49	Landmarks: 2 criteria	0.1518	0.9241	wi(-),80	0.7353	0.6323	wi(-),32	0.2978	0.8511	wi(-),26	0.5005	0.7496	wi(-),69	1.0000	0.5	wi(+),38	0.8357	0.5821	wi(-),80
50	Landmarks: 3 criteria	1.0000	equal	n/a,80	1.0000	equal	n/a,32	1.0000	equal	n/a,26	1.0000	equal	n/a,69	1.0000	equal	n/a,38	1.0000	equal	n/a,80
Fig ised	ure 1.40: Rav l, baseline: sh	v resu. 10rtest	lts for 5 path.	route , direct	aggreg tion: e	cate a gress	nalysi	s, samp	le: ir	teracti	on - bik	e (ha	ve acce	sss), su	p-du€	stion	3, dati	a: star	ıdard-
			•)													

-uou	
data:	
ъ,	
, sub-question	
access	
no	
bike (
۔ ۲	
interaction	ess
e.	acc
sampl	ction: a
sis,	lire
aly	ъ, с.
an	atl
ate	l st
reg	Inc
9 <u>8</u> 6	lal i
te	tior
rou	rec
or	t di
ts J	leas
esul	e:
V L	elin
Rav	\mathbf{bas}
÷	ed,
1.4	rdis
lre	ıdaı
Figı	stan

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7669	0.4107	(+),25	0.8311	0.4594	(+),25
9	Year constr.: 1946-1970	0.4523	0.4955	(-),25	0.7367	0.6609	(-),25
Ξ	Year constr.: 1971-1985	0.7433	0.4134	(+),25	0.9274	0.4428	(-),25
12	Year constr.: 1986-2000	0.2300	0.4062	(+),25	0.1216	0.1891	(+),25
13	Year constr.: 2001-2022	0.2188	0.3020	(-),25	0.2564	0.3700	(-),25
4	Traffic signals count	0.1913	0.5561	(+),25	0.2511	0.8316	(+),25
15	Stairs count	0.0937	0.7241	(+),25	0.0507	0.6179	(+),25
16	Status: for construction	0.9835	0.2857	(-),25	0.1614	0.1685	(+),25
17	Status: unrealised	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
18	Status: under construction	0.9863	0.4589	(-),25	0.6280	0.3340	(+),25
19	Status: in use (n.m.)	0.9863	0.1512	(-),25	0.6681	0.7377	(+),25
20	Status: in use	0.8604	0.6318	(-),25	0.9455	0.5393	(-),25
21	Status: for demolition	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
22	Status: demolished	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
23	Status: not in use	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
24	Status: reconstruction	0.0370	0.5048	(-),25	0.2324	0.8340	(-),25
25	Status: illegitimate	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
26	Function: residential	0.2698	0.4181	(+),25	0.3359	0.4372	(+),25
27	Function: gathering	0.6958	0.5104	(-),25	0.9001	0.6007	(-),25
28	Function: prison	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
29	Function: healthcare	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
8	Function: factory	1.0000	0.5000	(-),25	1.0000	0.0000	(-),25
3	Function: office	0.5943	0.5620	(+),25	0.1581	0.1875	(+),25
32	Function: guesthouse	1.0000	0.7377	(-),25	0.5557	0.5000	(-),25
33	Function: education	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
34	Function: sports	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
35	Function: shops	0.8923	0.4909	(+),25	0.9732	0.4328	(-),25
36	Function: other	0.9751	0.4254	(-),25	0.6248	0.3280	(+),25
37	Green: tree cover	0.0004	0.5077	(+),25	0.0019	0.8061	(+),25
38	Green: bush cover	0.0023	0.5232	(+),25	0.0034	0.6402	(+),25
39	Green: grass cover	0.0059	0.4307	(+),25	0.0104	0.6828	(+),25
6	Noise pollution: total	0.0179	0.4768	(+),25	0.0199	0.6402	(+),25
41	Noise pollution: roads	0.0145	0.5000	(+),25	0.0145	0.5348	(+),25
42	Noise pollution: railways	0.6415	0.5655	(+),25	0.5605	0.4884	(+),25
4	Year constr.: mean	0.8382	0.5236	(-),25	0.9922	0.5930	(-),25
45	Landmarks: FSI	0.8454	0.5919	(+),25	0.4650	0.3616	(+),25
46	Landmarks: plot area	0.7089	0.4510	(+),25	0.5969	0.3811	(+),25
47	Landmarks: Year constr.	0.7609	0.5000	(+),25	0.7609	0.5000	(+),25
48	Landmarks: 1 criterion	0.8974	0.4860	(+),25	0.7555	0.3915	(+),25
49	Landmarks: 2 criteria	0.5714	0.0000	(+),25	0.5714	0.000	(+),25
50	Landmarks: 3 criteria	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25

-uou	
data:	
ю́.	
sub-question	
(no access),	
· bike (
e: interaction -	egress
alysis, sampl	h, direction: e
aggregate ar	nal turns pat
or route	directio
ts f	east
aw resul	seline: l
Ъ	, bε
Figure 1.42:	standardised

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7669	0.4107	(+),25	0.8153	0.4554	(+),25
9	Year constr.: 1946-1970	0.5104	0.5496	(-),25	0.6659	0.6089	(-),25
Ξ	Year constr.: 1971-1985	0.7433	0.4134	(+),25	0.9274	0.4428	(-),25
12	Year constr.: 1986-2000	0.2300	0.4062	(+),25	0.1216	0.1891	(+),25
13	Year constr.: 2001-2022	0.2188	0.3020	(-),25	0.3017	0.3945	(-),25
4	Traffic signals count	0.1657	0.5121	(+),25	0.7295	0.9179	(+),25
15	Stairs count	0.0937	0.7241	(+),25	0.1657	0.8155	(+),25
16	Status: for construction	0.9835	0.2857	(-),25	0.1614	0.1685	(+),25
17	Status: unrealised	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
18	Status: under construction	0.9863	0.4589	(-),25	0.6280	0.3340	(+),25
19	Status: in use (n.m.)	0.9863	0.1512	(-),25	0.6681	0.7377	(+),25
20	Status: in use	0.9222	0.6612	(-),25	0.9069	0.4529	(-),25
51	Status: for demolition	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
22	Status: demolished	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
33	Status: not in use	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
24	Status: reconstruction	0.0370	0.5048	(-),25	0.3984	0.9073	(-),25
25	Status: illegitimate	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
26	Function: residential	0.2256	0.3825	(+),25	0.3749	0.4685	(+),25
27	Function: gathering	0.6958	0.5104	(-),25	0.4416	0.3567	(-),25
28	Function: prison	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
29	Function: healthcare	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
8	Function: factory	1.0000	0.5000	(-),25	1.0000	0.0000	(-),25
3	Function: office	0.5943	0.5620	(+),25	0.1581	0.1875	(+),25
32	Function: guesthouse	1.0000	0.7377	(-),25	0.5557	0.5000	(-),25
33	Function: education	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
34	Function: sports	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25
35	Function: shops	0.8923	0.4909	(+),25	1.0000	0.4462	(-),25
36	Function: other	0.9751	0.4254	(-),25	0.6887	0.3961	(+),25
37	Green: tree cover	0.0006	0.5807	(+),25	0.0025	0.7546	(+),25
38	Green: bush cover	0.0030	0.5731	(+),25	0.0055	0.6758	(+),25
39	Green: grass cover	0.0070	0.4806	(+),25	0.0257	0.6896	(+),25
4	Noise pollution: total	0.0189	0.5425	(+),25	0.0220	0.5731	(+),25
41	Noise pollution: roads	0.0161	0.5655	(+),25	0.0145	0.5116	(+),25
42	Noise pollution: railways	0.6554	0.5770	(+),25	0.4492	0.3967	(+),25
4	Year constr.: mean	0.8382	0.5157	(-),25	0.8841	0.5776	(-),25
45	Landmarks: FSI	0.6014	0.4575	(+),25	0.6529	0.4818	(+),25
46	Landmarks: plot area	0.6466	0.4266	(+),25	0.5140	0.3431	(+),25
47	Landmarks: Year constr.	0.7609	0.5000	(+),25	0.7609	0.5000	(+),25
48	Landmarks: 1 criterion	0.8420	0.4580	(+),25	0.7014	0.3777	(+),25
49	Landmarks: 2 criteria	0.5714	0.0000	(+),25	0.5714	0.0000	(+),25
50	Landmarks: 3 criteria	1.0000	0.0000	(-),25	1.0000	0.0000	(-),25

-uou	
data:	
က်	
sub-question	
no access),	
ن ص	
- bike	
interaction	
sample:	
analysis,	access
aggregate	. direction:
route	t nath
or	tesi
ці S	hor
result	ne: sl
M	seli
\mathbf{Ra}	ba
1.43:	dised.
\mathbf{re}	Jar
igu	tanc
ш	5

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.8215	0.5972	(-),25	0.9188	0.5487	(-),25
9	Year constr.: 1946-1970	0.9910	0.5135	(+),25	0.6951	0.6609	(-),25
Ξ	Year constr.: 1971-1985	0.8268	0.5947	(-),25	0.8857	0.5653	(+),25
12	Year constr.: 1986-2000	0.8123	0.6018	(-),25	0.3782	0.8166	(-),25
13	Year constr.: 2001-2022	0.6039	0.7054	(+),25	0.7401	0.6380	(+),25
14	Traffic signals count	0.9037	0.5561	(+),25	0.3469	0.8316	(+),25
15	Stairs count	0.5675	0.7241	(+),25	0.7819	0.6179	(+),25
16	Status: for construction	0.5714	0.7301	(+),25	0.3371	0.8508	(-),25
17	Status: unrealised	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
18	Status: under construction	0.9178	0.5547	(+),25	0.6681	0.6794	(-),25
19	Status: in use (n.m.)	0.3023	0.8583	(+),25	0.5557	0.7377	(+),25
20	Status: in use	0.7514	0.6318	(-),25	0.9370	0.5393	(-),25
5	Status: for demolition	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
2	Status: demolished	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
8	Status: not in use	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
24	Status: reconstruction	0.9904	0.5048	(+),25	0.3448	0.8340	(-),25
25	Status: illegitimate	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
26	Function: residential	0.8361	0.5909	(-),25	0.8744	0.5717	(-),25
27	Function: gathering	1.0000	0.5104	(-),25	0.8194	0.6007	(-),25
28	Function: prison	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
29	Function: healthcare	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
8	Function: factory	1.0000	0.5228	(+),25	1.0000	0.0000	(+),25
31	Function: office	0.8936	0.5620	(+),25	0.3750	0.8187	(-),25
32	Function: guesthouse	0.5557	0.7377	(-),25	1.0000	0.5164	(+),25
33	Function: education	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
34	Function: sports	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
35	Function: shops	0.9818	0.5182	(-),25	0.8656	0.5760	(+),25
36	Function: other	0.8509	0.5827	(+),25	0.6560	0.6796	(-),25
37	Green: tree cover	1.0000	0.5077	(+),25	0.3986	0.8061	(+),25
38	Green: bush cover	0.9690	0.5232	(+),25	0.7341	0.6402	(+),25
39	Green: grass cover	0.8613	0.5769	(-),25	0.6483	0.6828	(+),25
6	Noise pollution: total	0.9536	0.5309	(-),25	0.7341	0.6402	(+),25
41	Noise pollution: roads	1.0000	0.5077	(-),25	0.9458	0.5348	(+),25
42	Noise pollution: railways	0.8843	0.5655	(+),25	0.9768	0.5193	(-),25
4	Year constr.: mean	0.9686	0.5236	(-),25	0.8293	0.5930	(-),25
45	Landmarks: FSI	0.8388	0.5919	(+),25	0.7233	0.6503	(-),25
46	Landmarks: plot area	0.9020	0.5587	(-),25	0.7622	0.6285	(-),25
47	Landmarks: Year constr.	1.0000	0.5121	(-),25	1.0000	0.5121	(-),25
48	Landmarks: 1 criterion	0.9719	0.5234	(-),25	0.7829	0.6177	(-),25
49	Landmarks: 2 criteria	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
50	Landmarks: 3 criteria	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25

non-	
data:	
а,	
sub-question	
o access),	
(nc	
- bike	
interaction -	
sample:	
analysis,	egress
aggregate	, direction:
· route	st path
for	orte
ults	$^{\mathrm{sp}}$
resi	ine:
Raw	basel
44:	sed,
e 1.	ardi
Figur	stand

	Variables	P(Most)	Most_stat	Most_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.8215	0.5972	(-),25	0.9108	0.5527	(-),25
9	Year constr.: 1946-1970	0.9188	0.5496	(-),25	0.8000	0.6089	(-),25
Ξ	Year constr.: 1971-1985	0.8268	0.5947	(-),25	0.8857	0.5653	(+),25
12	Year constr.: 1986-2000	0.8123	0.6018	(-),25	0.3782	0.8166	(-),25
13	Year constr.: 2001-2022	0.6039	0.7054	(+),25	0.7891	0.6137	(+),25
14	Traffic signals count	0.9919	0.5121	(+),25	0.1702	0.9179	(+),25
15	Stairs count	0.5675	0.7241	(+),25	0.3817	0.8155	(+),25
16	Status: for construction	0.5714	0.7301	(+),25	0.3371	0.8508	(-),25
17	Status: unrealised	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
18	Status: under construction	0.9178	0.5547	(+),25	0.6681	0.6794	(-),25
19	Status: in use (n.m.)	0.3023	0.8583	(+),25	0.5557	0.7377	(+),25
20	Status: in use	0.6921	0.6612	(-),25	0.9058	0.5549	(+),25
3	Status: for demolition	1.0000	0.0000	(+),25	1.0000	0.000	(+),25
2	Status: demolished	1.0000	0.0000	(+),25	1.0000	0.000	(+),25
8	Status: not in use	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
24	Status: reconstruction	0.9904	0.5048	(+),25	0.1943	0.9073	(-),25
25	Status: illegitimate	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
26	Function: residential	0.7651	0.6262	(-),25	0.9370	0.5405	(-),25
27	Function: gathering	1.0000	0.5104	(-),25	0.7135	0.6527	(+),25
28	Function: prison	1.0000	0.0000	(+),25	1.0000	0.000	(+),25
29	Function: healthcare	1.0000	0.0000	(+),25	1.0000	0.000	(+),25
8	Function: factory	1.0000	0.5228	(+),25	1.0000	0.0000	(+),25
31	Function: office	0.8936	0.5620	(+),25	0.3750	0.8187	(-),25
32	Function: guesthouse	0.5557	0.7377	(-),25	1.0000	0.5164	(+),25
33	Function: education	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
34	Function: sports	1.0000	0.0000	(+),25	1.0000	0.000	(+),25
35	Function: shops	0.9818	0.5182	(-),25	0.8923	0.5627	(+),25
36	Function: other	0.8509	0.5827	(+),25	0.7922	0.6120	(-),25
37	Green: tree cover	0.8537	0.5807	(+),25	0.5032	0.7546	(+),25
38	Green: bush cover	0.8690	0.5731	(+),25	0.6624	0.6758	(+),25
39	Green: grass cover	0.9613	0.5271	(-),25	0.6345	0.6896	(+),25
6	Noise pollution: total	0.9304	0.5425	(+),25	0.8690	0.5731	(+),25
41	Noise pollution: roads	0.8843	0.5655	(+),25	0.9923	0.5116	(+),25
42	Noise pollution: railways	0.8613	0.5770	(+),25	0.7933	0.6108	(-),25
4	Year constr.: mean	0.9843	0.5157	(-),25	0.8602	0.5776	(-),25
45	Landmarks: FSI	0.9151	0.5545	(-),25	0.9636	0.5303	(-),25
46	Landmarks: plot area	0.8532	0.5830	(-),25	0.6863	0.6661	(-),25
47	Landmarks: Year constr.	1.0000	0.5121	(-),25	1.0000	0.5121	(-),25
48	Landmarks: 1 criterion	0.9159	0.5513	(-),25	0.7554	0.6314	(-),25
49	Landmarks: 2 criteria	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25
20	Landmarks: 3 criteria	1.0000	0.0000	(+),25	1.0000	0.0000	(+),25

					L/regor/	רמסו סומו	
6	Year constr.: < 1945	0.1233	0.9383	wi(-),25	0.2366	-1.214	tt(-),25
우	Year constr.: 1946-1970	0.1728	0.9136	wi(+),25	0.2164	0.8918	wi(+),25
÷	Year constr.: 1971-1985	0.4285	0.7857	wi(-),25	0.8880	0.556	wi(-),25
12	Year constr.: 1986-2000	0.0327	0.9836	wi(-),25	0.0182	0.9909	wi(-),25
13	Year constr.: 2001-2022	0.0164	2.5811	tt(+),25	0.0864	0.9568	wi(+),25
14	Traffic signals count	0.1909	-1.3458	tt(-),25	0.4629	0.7685	wi(-),25
15	Stairs count	0.0961	-1.7321	tt(-),25	0.0308	-2.2953	tt(-),25
16	Status: for construction	1.0000	0.5	wi(+),25	0.4657	0.7671	wi(-),25
17	Status: unrealised	1.0000	equal	n/a,25	1.0000	equal	n/a,25
18	Status: under construction	0.9881	0.5059	wi(+),25	0.4658	0.7671	wi(-),25
19	Status: in use (n.m.)	1.0000	0.5	wi(+),25	0.9881	0.5059	wi(-),25
2	Status: in use	0.6862	0.6569	wi(+),25	0.9044	-0.1214	tt(-),25
5	Status: for demolition	1.0000	equal	n/a,25	1.0000	equal	n/a,25
2	Status: demolished	1.0000	equal	n/a,25	1.0000	equal	n/a,25
3	Status: not in use	1.0000	equal	n/a,25	1.0000	equal	n/a,25
24	Status: reconstruction	0.0308	2.2953	tt(+),25	0.2904	0.8548	wi(+),25
25	Status: illegitimate	1.0000	equal	n/a,25	1.0000	equal	n/a,25
26	Function: residential	0.0833	0.9584	wi(-),25	0.0052	0.9974	wi(-),25
5	Function: gathering	0.4658	0.7671	wi(+),25	0.7246	0.6377	wi(+),25
8	Function: prison	1.0000	equal	n/a,25	1.0000	equal	n/a,25
6	Function: healthcare	1.0000	equal	n/a,25	1.0000	equal	n/a,25
8	Function: factory	0.9881	0.5059	wi(+),25	1.0000	equal	n/a,25
5	Function: office	0.8473	-0.1947	tt(-),25	0.0901	-1.766	tt(-),25
N	Function: guesthouse	1.0000	equal	n/a,25	0.7055	0.6473	wi(+),25
22	Function: education	1.0000	equal	n/a,25	1.0000	equal	n/a,25
2	Function: sports	1.0000	equal	n/a,25	1.0000	equal	n/a,25
22	Function: shops	0.7414	0.6293	wi(-),25	0.5140	0.743	wi(+),25
36	Function: other	0.7997	0.6001	wi(-),25	0.2086	0.8957	wi(-),25
31	Green: tree cover	0.0000	-4.9465	tt(-),25	0.0000	-5.1401	tt(-),25
8	Green: bush cover	0.0000	-5.2514	tt(-),25	0.0000	-5.233	tt(-),25
33	Green: grass cover	0.0001	-4.7019	tt(-),25	0.0002	-4.3959	tt(-),25
4	Noise pollution: total	0.0000	-7.62	tt(-),25	0.0000	-6.5855	tt(-),25
41	Noise pollution: roads	0.0000	-6.8278	tt(-),25	0.0000	-5.4089	tt(-),25
42	Noise pollution: railways	0.0173	0.9914	wi(-),25	0.0214	-2.4627	tt(-),25
4	Year constr.: mean	1.0000	equal	n/a,25	1.0000	equal	n/a,25
5	Landmarks: FSI	0.2904	0.8548	wi(-),25	0.4658	0.7671	wi(-),25
46	Landmarks: plot area	0.4773	0.7613	wi(-),25	0.4657	0.7671	wi(-),25
47	Landmarks: Year constr.	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(-),25
48	Landmarks: 1 criterion	0.4773	0.7613	wi(-),25	0.4658	0.7671	wi(-),25
49	Landmarks: 2 criteria	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(-),25
20	Landmarks: 3 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25

Figure 1.45: Raw results for route aggregate analysis, sample: interaction - bike (no access), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

dised,		
tandaı		
data: s		
ion 3, e		
-quest		
s), sub		
o acces		
ike (ne		
tion - t		
nterac		
nple: i		
sis, sar	gress	
e analy	tion: e	
gregate	, direc	
ute agg	s path	
tor ro	al turn	
results	ection	
: Raw	ast dir	
e 1.46:	ine: le	
Figur	oasel.	

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.1233	0.9383	wi(-),25	0.1782	-1.3869	tt(-),25
9	Year constr.: 1946-1970	0.1728	0.9136	wi(+),25	0.2112	0.8944	wi(+),25
Ξ	Year constr.: 1971-1985	0.4285	0.7857	wi(-),25	0.8880	0.556	wi(-),25
12	Year constr.: 1986-2000	0.0327	0.9836	wi(-),25	0.0182	6066.0	wi(-),25
13	Year constr.: 2001-2022	0.0164	2.5811	tt(+),25	0.1492	0.9254	wi(+),25
4	Traffic signals count	0.1805	-1.3793	tt(-),25	0.6636	0.6682	wi(-),25
15	Stairs count	0.0961	-1.7321	tt(-),25	0.1034	-1.6928	tt(-),25
16	Status: for construction	1.0000	0.5	wi(+),25	0.4657	0.7671	wi(-),25
17	Status: unrealised	1.0000	equal	n/a,25	1.0000	equal	n/a,25
18	Status: under construction	0.9881	0.5059	wi(+),25	0.4658	0.7671	wi(-),25
19	Status: in use (n.m.)	1.0000	0.5	wi(+),25	0.9881	0.5059	wi(-),25
20	Status: in use	0.8928	0.5536	wi(+),25	0.9843	0.0199	tt(+),25
5	Status: for demolition	1.0000	equal	n/a,25	1.0000	equal	n/a,25
2	Status: demolished	1.0000	equal	n/a,25	1.0000	equal	n/a,25
33	Status: not in use	1.0000	equal	n/a,25	1.0000	equal	n/a,25
24	Status: reconstruction	0.0308	2.2953	tt(+),25	0.4953	0.7524	wi(+),25
25	Status: illegitimate	1.0000	equal	n/a,25	1.0000	equal	n/a,25
26	Function: residential	0.0323	0.9839	wi(-),25	0.0116	0.9942	wi(-),25
27	Function: gathering	0.4658	0.7671	wi(+),25	0.3222	0.8389	wi(+),25
28	Function: prison	1.0000	equal	n/a,25	1.0000	equal	n/a,25
29	Function: healthcare	1.0000	equal	n/a,25	1.0000	equal	n/a,25
8	Function: factory	0.9881	0.5059	wi(+),25	1.0000	equal	n/a,25
31	Function: office	0.8473	-0.1947	tt(-),25	0.0901	-1.766	tt(-),25
32	Function: guesthouse	1.0000	equal	n/a,25	0.7055	0.6473	wi(+),25
33	Function: education	1.0000	equal	n/a,25	1.0000	equal	n/a,25
3	Function: sports	1.0000	equal	n/a,25	1.0000	equal	n/a,25
35	Function: shops	0.7414	0.6293	wi(-),25	0.9884	0.5058	wi(+),25
36	Function: other	0.7997	0.6001	wi(-),25	0.2751	0.8625	wi(-),25
37	Green: tree cover	0.0000	-4.9523	tt(-),25	0.0000	-5.2628	tt(-),25
88	Green: bush cover	0.0000	-5.1562	tt(-),25	0.0000	-5.4069	tt(-),25
39	Green: grass cover	0.0001	-4.5434	tt(-),25	0.0000	-5.099	tt(-),25
4	Noise pollution: total	0.0000	-7.2834	tt(-),25	0.0000	-7.4786	tt(-),25
41	Noise pollution: roads	0.0000	-6.5941	tt(-),25	0.0000	-5.901	tt(-),25
42	Noise pollution: railways	0.0230	0.9885	wi(-),25	0.0117	-2.7291	tt(-),25
4	Year constr.: mean	1.0000	equal	n/a,25	1.0000	equal	n/a,25
45	Landmarks: FSI	0.1727	0.9136	wi(-),25	0.4658	0.7671	wi(-),25
46	Landmarks: plot area	0.2905	0.8548	wi(-),25	0.2905	0.8548	wi(-),25
47	Landmarks: Year constr.	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(-),25
48	Landmarks: 1 criterion	0.1728	0.9136	wi(-),25	0.4658	0.7671	wi(-),25
49	Landmarks: 2 criteria	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(-),25
50	Landmarks: 3 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25

ised,	
$\operatorname{standard}$	
data:	
, sub-question 3,	
ike (no access),	
interaction - b	
, sample:	
analysis	
lggregate	access
for route a	direction:
results	path,
47: Raw	shortest
⁷ igure 1.₄	aseline:

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0660.0	0.9505	wi(-),25	0.0990	0.9505	wi(-),25
10	Year constr.: 1946-1970	0.6774	0.6613	wi(+),25	0.4684	0.7658	wi(-),25
÷	Year constr.: 1971-1985	0.2905	0.8548	wi(-),25	0.7199	0.6401	wi(+),25
12	Year constr.: 1986-2000	0.7199	0.6401	wi(-),25	0.1195	0.9403	wi(-),25
13	Year constr.: 2001-2022	0.3085	0.8458	wi(+),25	0.5043	0.7478	wi(+),25
14	Traffic signals count	0.7353	0.6324	wi(+),25	0.1744	1.3996	tt(+),25
15	Stairs count	0.4657	0.7671	wi(+),25	0.7055	0.6473	wi(+),25
16	Status: for construction	0.7055	0.6473	wi(+),25	0.7055	0.6473	wi(-),25
17	Status: unrealised	1.0000	equal	n/a,25	1.0000	equal	n/a,25
18	Status: under construction	0.4658	0.7671	wi(+),25	0.9881	0.5059	wi(-),25
19	Status: in use (n.m.)	0.4658	0.7671	wi(+),25	0.7055	0.6473	wi(+),25
20	Status: in use	0.4286	0.7857	wi(-),25	0.1103	0.9449	wi(-),25
5	Status: for demolition	1.0000	equal	n/a,25	1.0000	equal	n/a,25
2	Status: demolished	1.0000	equal	n/a,25	1.0000	equal	n/a,25
33	Status: not in use	1.0000	equal	n/a,25	1.0000	equal	n/a,25
24	Status: reconstruction	1.0000	0.5	wi(+),25	0.2904	0.8548	wi(-),25
25	Status: illegitimate	1.0000	equal	n/a,25	1.0000	equal	n/a,25
26	Function: residential	0.7782	0.6109	wi(+),25	0.1147	0.9427	wi(-),25
27	Function: gathering	0.9881	0.5059	wi(-),25	1.0000	0.5	wi(+),25
28	Function: prison	1.0000	equal	n/a,25	1.0000	equal	n/a,25
29	Function: healthcare	1.0000	equal	n/a,25	1.0000	equal	n/a,25
30	Function: factory	0.9881	0.5059	wi(+),25	1.0000	equal	n/a,25
31	Function: office	0.7239	0.3574	tt(+),25	0.1828	-1.372	tt(-),25
32	Function: guesthouse	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(+),25
33	Function: education	1.0000	equal	n/a,25	1.0000	equal	n/a,25
34	Function: sports	1.0000	equal	n/a,25	1.0000	equal	n/a,25
35	Function: shops	0.7306	0.6347	wi(-),25	0.7414	0.6293	wi(+),25
36	Function: other	0.9537	0.5231	wi(+),25	0.6522	0.6739	wi(-),25
37	Green: tree cover	0.4199	0.8207	tt(+),25	0.1706	1.4127	tt(+),25
38	Green: bush cover	0.8965	-0.1315	tt(-),25	0.2553	1.1654	tt(+),25
39	Green: grass cover	0.8690	0.5655	wi(+),25	0.1598	1.4507	tt(+),25
4	Noise pollution: total	0.7416	0.6292	wi(-),25	0.4425	0.7808	tt(+),25
41	Noise pollution: roads	0.7835	0.6083	wi(-),25	0.4117	0.8355	tt(+),25
42	Noise pollution: railways	0.6888	0.6556	wi(-),25	0.9568	0.5216	wi(+),25
4	Year constr.: mean	1.0000	equal	n/a,25	1.0000	equal	n/a,25
45	Landmarks: FSI	0.7467	0.6267	wi(-),25	0.7055	0.6473	wi(-),25
46	Landmarks: plot area	0.4863	0.7569	wi(-),25	0.4658	0.7671	wi(-),25
47	Landmarks: Year constr.	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(-),25
48	Landmarks: 1 criterion	0.5140	0.743	wi(-),25	0.4658	0.7671	wi(-),25
49	Landmarks: 2 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25
50	Landmarks: 3 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25

	49	Landmarks: 2 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25		
	50	Landmarks: 3 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25		
nre 1.48: Raw results for route age	reg	ate analysis,	sample	: inter	action	ı - bik	e (no a	(ccess)), sub-question 3, data:	: standar
Jino: choutoct noth dimontion: or			•				-			

		sub-question 3, data: standardised,
n/a,25	n/a,25	access),
equal	equal	se (no
1.0000	1.0000	n - bil
n/a,25	n/a,25	eractio
equal	equal	le: int
1.0000	1.0000	samp
Landmarks: 2 criteria	Landmarks: 3 criteria	ate analysis,
49	50	Figure 1.48: Raw results for route aggree baseline: shortest path, direction: egres

	Variables	P(Most)	Most stat	Most coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.0990	0.9505	wi(-),25	0.0551	0.9724	wi(-),25
9	Year constr.: 1946-1970	0.7632	0.6184	wi(-),25	0.9537	0.5231	wi(-),25
÷	Year constr.: 1971-1985	0.2905	0.8548	wi(-),25	0.7199	0.6401	wi(+),25
12	Year constr.: 1986-2000	0.7199	0.6401	wi(-),25	0.1195	0.9403	wi(-),25
13	Year constr.: 2001-2022	0.3085	0.8458	wi(+),25	0.6933	0.6534	wi(+),25
4	Traffic signals count	0.9773	0.5113	wi(+),25	0.1187	1.6181	tt(+),25
15	Stairs count	0.4657	0.7671	wi(+),25	0.2904	0.8548	wi(+),25
16	Status: for construction	0.7055	0.6473	wi(+),25	0.7055	0.6473	wi(-),25
17	Status: unrealised	1.0000	equal	n/a,25	1.0000	equal	n/a,25
18	Status: under construction	0.4658	0.7671	wi(+),25	0.9881	0.5059	wi(-),25
19	Status: in use (n.m.)	0.4658	0.7671	wi(+),25	0.7055	0.6473	wi(+),25
20	Status: in use	0.1692	0.9154	wi(-),25	0.2191	0.8904	wi(-),25
21	Status: for demolition	1.0000	equal	n/a,25	1.0000	equal	n/a,25
23	Status: demolished	1.0000	equal	n/a,25	1.0000	equal	n/a,25
8	Status: not in use	1.0000	equal	n/a,25	1.0000	equal	n/a,25
24	Status: reconstruction	1.0000	0.5	wi(+),25	0.1726	0.9137	wi(-),25
25	Status: illegitimate	1.0000	equal	n/a,25	1.0000	equal	n/a,25
26	Function: residential	0.7353	0.6323	wi(-),25	0.3382	0.8309	wi(-),25
27	Function: gathering	0.9881	0.5059	wi(-),25	0.6164	0.5076	tt(+),25
28	Function: prison	1.0000	equal	n/a,25	1.0000	equal	n/a,25
29	Function: healthcare	1.0000	equal	n/a,25	1.0000	equal	n/a,25
30	Function: factory	0.9881	0.5059	wi(+),25	1.0000	equal	n/a,25
31	Function: office	0.7239	0.3574	tt(+),25	0.1828	-1.372	tt(-),25
32	Function: guesthouse	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(+),25
33	Function: education	1.0000	equal	n/a,25	1.0000	equal	n/a,25
34	Function: sports	1.0000	equal	n/a,25	1.0000	equal	n/a,25
35	Function: shops	0.7306	0.6347	wi(-),25	0.9660	0.517	wi(+),25
36	Function: other	0.9537	0.5231	wi(+),25	0.7142	0.6429	wi(-),25
37	Green: tree cover	0.1381	1.534	tt(+),25	0.3498	0.9535	tt(+),25
38	Green: bush cover	0.2877	0.8562	wi(+),25	0.2580	1.1588	tt(+),25
39	Green: grass cover	0.3135	0.8433	wi(+),25	0.2225	1.2523	tt(+),25
6	Noise pollution: total	0.6888	0.6556	wi(+),25	0.8343	0.2115	tt(+),25
4	Noise pollution: roads	0.6888	0.6556	wi(+),25	0.3520	0.824	wi(+),25
42	Noise pollution: railways	0.7284	0.6358	wi(+),25	0.4915	0.7542	wi(-),25
4	Year constr.: mean	1.0000	equal	n/a,25	1.0000	equal	n/a,25
45	Landmarks: FSI	0.4657	0.7671	wi(-),25	0.7356	0.6322	wi(-),25
46	Landmarks: plot area	0.2905	0.8548	wi(-),25	0.2905	0.8548	wi(-),25
47	Landmarks: Year constr.	0.7055	0.6473	wi(-),25	0.7055	0.6473	wi(-),25
48	Landmarks: 1 criterion	0.2905	0.8548	wi(-),25	0.4864	0.7568	wi(-),25
49	Landmarks: 2 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25
20	Landmarks: 3 criteria	1.0000	equal	n/a,25	1.0000	equal	n/a,25

	Variables	P(Most)	Most_stat	Most_coef,n	P([3] regularly)	[3]_stat	[3]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [[1]_coef,n	P(Least) L	Least_stat 1	east_coef,n	
6	Year constr.: < 1945	0.9670	0.5101	(-),53	0.7138	0.3722	(+),20	0.5981	0.2962	(+),45	0.6499	0.3013	(-),23	0.8114	0.4860	(+),53	
₽	Year constr.: 1946-1970	0.5935	0.4134	(-),53	0.6618	0.5056	(-),20	0.4277	0.3977	(-),45	0.6159	0.2988	(-),23	0.4619	0.3524	(-),53	
÷	Year constr.: 1971-1985	0.3977	0.5989	(+),53	0.5838	0.4671	(+),20	0.3948	0.6227	(+),45	0.4319	0.2572	(-),23	0.8927	0.8349	(+),53	
12	Year constr.: 1986-2000	0.3411	0.3351	(+),53	0.2904	0.4339	(+),20	0.4862	0.3298	(+),45	0.6897	0.1804	(-),23	0.7509	0.5064	(+),53	
13	Year constr.: 2001-2022	0.5568	0.5838	(-),53	0.7019	0.6354	(-),20	0.9220	0.7894	(-),45	0.6530	0.4271	(-),23	0.7565	0.7039	(-),53	
4	Traffic signals count	0.2684	0.4182	(+),53	0.8806	0.8730	(+),20	0.6077	0.1601	(-),45	0.5393	0.7351	(+),23	0.7203	0.1774	(-),53	
15	Stairs count	0.8119	0.1789	(-),53	0.2701	0.3699	(+),20	0.5876	0.5023	(+),45	0.2257	0.1789	(-),23	0.6472	0.5894	(+),53	
16	Status: for construction	0.2412	0.3572	(+),53	0.3496	0.0000	(+),20	0.5006	0.4837	(+),45	0.9883	0.6830	(+),23	0.7070	0.6264	(+),53	
17	Status: unrealised	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),45	1.0000	0.0000	(-),23	1.0000	0.0000	(-),53	
18	Status: under construction	1.0000	0.4851	(-),53	0.9382	0.5309	(+),20	0.9823	0.5118	(+),45	0.9641	0.4821	(+),23	0.9404	0.4950	(+),53	
19	Status: in use (n.m.)	0.7336	0.2687	(-),53	0.6826	0.6812	(+),20	0.5026	0.3511	(+),45	0.3388	0.0000	(+),23	0.4990	0.3514	(+),53	
20	Status: in use	0.7471	0.5038	(+),53	0.7762	0.3931	(+),20	0.6055	0.3477	(+),45	0.7249	0.1455	(-),23	0.9245	0.6618	(+),53	
21	Status: for demolition	0.5674	0.0000	(+),53	0.1624	0.0000	(+),20	0.1596	0.1641	(+),45	0.1619	0.0809	(-),23	0.9924	0.2800	(-),53	
ដ	Status: demolished	1.0000	0.000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),45	1.0000	0.0000	(-),23	1.0000	0.000	(-),53	
53	Status: not in use	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),45	1.0000	0.0000	(-),23	1.0000	0.0000	(-),53	
24	Status: reconstruction	0.3145	0.7762	(-),53	0.3234	0.7489	(-),20	0.7592	0.8813	(-),45	0.1062	0.7792	(-),23	0.5298	0.8733	(-),53	
25	Status: illegitimate	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),45	1.0000	0.0000	(-),23	1.0000	0.0000	(-),53	
26	Function: residential	0.3851	0.4452	(+),53	0.4686	0.4232	(+),20	0.6331	0.5049	(+),45	0.8859	0.1302	(-),23	0.8714	0.7237	(+),53	
27	Function: gathering	0.8997	0.3602	(-),53	0.9060	0.5353	(+),20	0.6946	0.4298	(+),45	0.5586	0.4838	(-),23	0.8904	0.5240	(+),53	
28	Function: prison	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),45	1.0000	0.0000	(-),23	1.0000	0.0000	(-),53	
29	Function: healthcare	0.5674	0.2837	(-),53	0.3421	0.0000	(+),20	0.5680	0.2840	(-),45	0.3388	0.5124	(-),23	0.5674	0.2837	(-),53	
30	Function: factory	0.8161	0.5535	(+),53	0.2969	0.3797	(+),20	0.9955	0.4300	(-),45	0.9511	0.4756	(-),23	0.8634	0.5866	(+),53	
31	Function: office	0.9079	0.4932	(+),53	1.0000	0.3644	(+),20	0.1261	0.0440	(+),45	0.3155	0.1728	(+),23	0.0640	0.0339	(+),53	
32	Function: guesthouse	0.5578	0.2925	(+),53	0.3486	0.0000	(+),20	0.7311	0.3906	(+),45	0.9821	0.2775	(-),23	0.7224	0.3864	(+),53	
33	Function: education	0.4210	0.9243	(+),53	1.0000	0.0000	(-),20	0.9804	0.9796	(+),45	1.0000	0.1694	(-),23	0.4119	0.9243	(+),53	
34	Function: sports	0.3265	0.1633	(+),53	0.3421	0.1711	(+),20	0.3282	0.1641	(+),45	1.0000	0.0000	(-),23	0.3265	0.1633	(+),53	
35	Function: shops	0.7590	0.4635	(-),53	0.3488	0.5172	(-),20	0.7069	0.3072	(+),45	0.2520	0.2884	(-),23	0.6015	0.3975	(-),53	
36	Function: other	0.8089	0.4726	(+),53	0.7692	0.3277	(+),20	0.5869	0.4212	(-),45	0.6787	0.4309	(+),23	0.8911	0.4701	(+),53	
37	Green: tree cover	0.0000	0.5214	(+),53	0.0008	0.5162	(+),20	0.0000	0.3141	(+),45	0.0157	0.5044	(+),23	0.0000	0.4137	(+),53	
88	Green: bush cover	0.0000	0.5038	(+),53	0.0040	0.4946	(+),20	0.0001	0.2338	(+),45	0.0166	0.5912	(+),23	0.0001	0.4310	(+),53	
39	Green: grass cover	0.0001	0.4585	(+),53	0.0051	0.4515	(+),20	0.0001	0.3857	(+),45	0.0250	0.5131	(+),23	0.0002	0.4685	(+),53	
4	Noise pollution: total	0.0022	0.4761	(+),53	0.0223	0.4302	(+),20	0.0007	0.3374	(+),45	0.0236	0.4869	(+),23	0.0009	0.4211	(+),53	
41	Noise pollution: roads	0.0017	0.4385	(+),53	0.0275	0.4623	(+),20	0.0008	0.3315	(+),45	0.0157	0.3918	(+),23	0.0006	0.3418	(+),53	
42	Noise pollution: railways	0.0161	0.5652	(+),53	0.0764	0.3933	(+),20	0.0088	0.4678	(+),45	0.3677	0.6082	(+),23	0.0247	0.5365	(+),53	
4	Year constr.: mean	0.8299	0.4051	(+),53	0.8392	0.4892	(-),20	0.9325	0.5370	(-),45	0.6445	0.5263	(+),23	0.9471	0.4075	(+),53	
45	Landmarks: FSI	0.5032	0.3604	(+),53	0.6338	0.3616	(+),20	0.5260	0.3489	(+),45	0.7754	0.4153	(-),23	0.7913	0.5110	(+),53	
46	Landmarks: plot area	0.3108	0.2031	(+),53	0.5939	0.1985	(+),20	0.5495	0.3258	(+),45	0.6169	0.2885	(+),23	0.5399	0.3178	(+),53	
47	Landmarks: Year constr.	0.6600	0.5695	(-),53	0.8361	0.5334	(-),20	0.7626	0.6478	(-),45	0.8191	0.4715	(-),23	0.7620	0.6268	(-),53	
48	Landmarks: 1 criterion	0.7351	0.2823	(+),53	0.7295	0.2491	(+),20	0.8029	0.3105	(+),45	0.8393	0.4955	(-),23	0.9872	0.4135	(+),53	
49	Landmarks: 2 criteria	0.5539	0.3512	(+),53	0.5536	0.2768	(+),20	0.5198	0.3377	(+),45	0.7508	0.3284	(+),23	0.5616	0.3601	(+),53	
50	Landmarks: 3 criteria	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),45	1.0000	0.0000	(-),23	1.0000	0.0000	(-),53	
										,				1			

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [[1]_coef,n	P(Least) I	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.9620	0.4645	(+),53	0.8162	0.4891	(-),20	0.7497	0.3920	(+),42	0.9671	0.5395	(+),28	0.6862	0.3727	(+),53
₽	Year constr.: 1946-1970	0.5471	0.3881	(-),53	0.7812	0.2594	(-),20	0.5237	0.3658	(-),42	0.5267	0.3680	(-),28	0.6387	0.4363	(-),53
÷	Year constr.: 1971-1985	0.2653	0.5013	(+),53	0.4754	0.7060	(+),20	0.5709	0.7347	(+),42	0.6508	0.3071	(-),28	0.9051	0.8284	(+),53
12	Year constr.: 1986-2000	0.3251	0.3223	(+),53	0.5619	0.4889	(+),20	0.5652	0.3961	(+),42	0.9733	0.3686	(-),28	0.6050	0.4322	(+),53
13	Year constr.: 2001-2022	0.5127	0.5523	(-),53	0.5113	0.6027	(-),20	0.9567	0.2426	(+),42	0.6225	0.4296	(-),28	0.9083	0.7761	(-),53
14	Traffic signals count	0.3140	0.4423	(+),53	0.7728	0.4945	(+),20	0.7319	0.2725	(-),42	0.9403	0.1120	(-),28	0.4807	0.0815	(-),53
15	Stairs count	0.8119	0.1789	(-),53	0.6963	0.7701	(+),20	0.7922	0.3007	(-),42	0.5775	0.3906	(-),28	0.3711	0.4158	(+),53
16	Status: for construction	0.2412	0.3572	(+),53	0.5536	0.2768	(+),20	0.3089	0.3372	(+),42	0.9735	0.7731	(+),28	0.9169	0.7249	(+),53
17	Status: unrealised	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),42	1.0000	0.0000	(-),28	1.0000	0.0000	(-),53
18	Status: under construction	1.0000	0.4851	(-),53	1.0000	0.0000	(+),20	0.9580	0.5000	(+),42	0.9878	0.4939	(+),28	0.9652	0.5050	(+),53
19	Status: in use (n.m.)	0.7336	0.2687	(-),53	0.6089	0.3642	(-),20	0.5044	0.3510	(+),42	0.3349	0.0000	(+),28	0.4990	0.3514	(+),53
20	Status: in use	0.7044	0.4647	(+),53	0.9676	0.5000	(-),20	0.8404	0.5534	(+),42	0.7931	0.6440	(+),28	0.6131	0.4861	(+),53
51	Status: for demolition	0.5674	0.0000	(+),53	0.9714	0.0000	(-),20	0.1598	0.1645	(+),42	0.3349	0.1675	(-),28	0.5824	0.5107	(+),53
52	Status: demolished	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),42	1.0000	0.0000	(-),28	1.0000	0.0000	(-),53
8	Status: not in use	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),42	1.0000	0.0000	(-),28	1.0000	0.0000	(-),53
24	Status: reconstruction	0.4385	0.8489	(-),53	0.6830	0.6286	(-),20	0.2518	0.6350	(-),42	0.7493	0.9205	(-),28	0.6745	0.9111	(-),53
25	Status: illegitimate	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),42	1.0000	0.0000	(-),28	1.0000	0.0000	(-),53
26	Function: residential	0.3646	0.4250	(+),53	0.7642	0.4727	(+),20	0.8088	0.6486	(+),42	0.9018	0.7438	(+),28	0.7727	0.6793	(+),53
27	Function: gathering	0.8066	0.3218	(-),53	0.5310	0.2184	(-),20	0.7217	0.3899	(+),42	0.9692	0.3946	(+),28	0.5435	0.3364	(+),53
28	Function: prison	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),42	1.0000	0.0000	(-),28	1.0000	0.000	(-),53
59	Function: healthcare	0.9893	0.0000	(-),53	1.0000	0.0000	(-),20	0.3142	0.1571	(-),42	0.3349	0.5102	(-),28	0.3149	0.1574	(-),53
8	Function: factory	0.8161	0.5535	(+),53	0.6994	0.4270	(-),20	0.8068	0.5563	(+),42	0.9608	0.5799	(-),28	0.6833	0.4944	(+),53
3	Function: office	1.0000	0.4581	(-),53	0.8143	0.5178	(+),20	0.1765	0.0915	(+),42	0.1798	0.0828	(+),28	0.0475	0.0248	(+),53
32	Function: guesthouse	0.5578	0.2925	(+),53	0.9826	0.6205	(-),20	0.9873	0.5064	(+),42	0.3838	0.2002	(+),28	0.3099	0.1664	(+),53
33	Function: education	0.1853	0.8459	(+),53	0.6147	0.8531	(+),20	0.6811	0.9614	(+),42	0.3040	0.0407	(-),28	0.7437	0.0116	(-),53
34	Function: sports	0.3265	0.1633	(+),53	1.0000	0.0000	(-),20	0.3290	0.1645	(+),42	1.0000	0.0000	(-),28	0.3265	0.1633	(+),53
35	Function: shops	0.8752	0.5190	(-),53	0.8949	0.4825	(-),20	0.8135	0.3059	(+),42	0.2060	0.1393	(-),28	0.3858	0.2858	(-),53
36	Function: other	0.9818	0.4274	(-),53	0.8889	0.4722	(-),20	0.9816	0.5441	(-),42	0.6392	0.3223	(+),28	0.5303	0.2991	(+),53
37	Green: tree cover	0.0000	0.5465	(+),53	0.0060	0.3830	(+),20	0.0000	0.3257	(+),42	0.0014	0.3261	(+),28	0.0000	0.2195	(+),53
8	Green: bush cover	0.0000	0.4937	(+),53	0.0385	0.5323	(+),20	0.0001	0.2850	(+),42	0.0017	0.3934	(+),28	0.0000	0.2485	(+),53
39	Green: grass cover	0.0001	0.4987	(+),53	0.0468	0.4677	(+),20	0.0002	0.3619	(+),42	0.0055	0.4189	(+),28	0.0001	0.3488	(+),53
4	Noise pollution: total	0.0021	0.4736	(+),53	0.0720	0.5323	(+),20	0.0008	0.4133	(+),42	0.0137	0.4381	(+),28	0.0011	0.4088	(+),53
4	Noise pollution: roads	0.0015	0.4335	(+),53	0.0601	0.5323	(+),20	0.0014	0.3959	(+),42	0.0130	0.4317	(+),28	0.0009	0:3990	(+),53
4	Noise pollution: railways	0.0155	0.5503	(+),53	0.1075	0.5645	(+),20	0.0116	0.4911	(+),42	0.2413	0.5747	(+),28	0.0264	0.5315	(+),53
4	Year constr.: mean	0.8795	0.4297	(+),53	0.8392	0.5538	(-),20	0.9429	0.3873	(+),42	0.8249	0.6500	(+),28	0.9421	0.5428	(-),53
5	Landmarks: FSI	0.5032	0.3604	(+),53	0.7076	0.0000	(+),20	0.5642	0.3445	(+),42	0.7731	0.4271	(+),28	0.5430	0.3772	(+),53
46	Landmarks: plot area	0.2542	0.1735	(+),53	1.0000	0.5752	(-),20	0.6048	0.3226	(+),42	0.5132	0.3679	(+),28	0.5530	0.3285	(+),53
47	Landmarks: Year constr.	0.6600	0.5695	(-),53	0.5423	0.4711	(-),20	0.7981	0.6466	(-),42	0.6606	0.4491	(-),28	0.6208	0.5526	(-),53
48	Landmarks: 1 criterion	0.7109	0.2610	(+),53	0.7927	0.5329	(-),20	0.8666	0.3043	(+),42	0.9198	0.4632	(+),28	0.8847	0.3569	(+),53
49	Landmarks: 2 criteria	0.5539	0.3512	(+),53	1.0000	0.0000	(-),20	0.5511	0.3429	(+),42	0.7673	0.4560	(+),28	0.7814	0.4748	(+),53
20	Landmarks: 3 criteria	1.0000	0.0000	(-),53	1.0000	0.0000	(-),20	1.0000	0.0000	(-),42	1.0000	0.0000	(-),28	1.0000	0.0000	(-),53

	month),	
	days /	
	8 \/	
	travel	
	train ess	
	/ of : egr	
	equency irection:	
	h, di	
	action ns pat	
	inter al turn	
	sample: direction	
	alysis, least	
	te an eline:	
	aggrega sed, base	
	route 1dardis	
	for -star	
	Raw results 3, data: non	
:	50:] sion 3	
	ure 1. quest	
	Figu sub-	

	Variables	P(Most)	Most_stat	Most_coef,n	P([3] regularly)	[3]_stat	[3]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [[1]_coef,n	P(Least) I	Least_stat	east_coef,n
6	Year constr.: < 1945	0.9848	0.5101	(-),53	0.7443	0.6381	(-),20	0.5924	0.7066	(-),45	0.6027	0.7063	(+),23	0.9721	0.5165	(-),53
₽	Year constr.: 1946-1970	0.8268	0.5892	(+),53	0.9888	0.5056	(+),20	0.7953	0.6055	(+),45	0.5976	0.7094	(+),23	0.7048	0.6500	(+),53
÷	Year constr.: 1971-1985	0.8072	0.5989	(+),53	0.9342	0.5438	(-),20	0.7609	0.6227	(+),45	0.5143	0.7503	(+),23	0.3335	0.8349	(+),53
12	Year constr.: 1986-2000	0.6702	0.6672	(-),53	0.8679	0.5769	(-),20	0.6595	0.6732	(-),45	0.3608	0.8255	(+),23	0.9923	0.5064	(+),53
13	Year constr.: 2001-2022	0.8373	0.5838	(-),53	0.7501	0.6354	(-),20	0.4259	0.7894	(-),45	0.8543	0.5819	(+),23	0.5965	0.7039	(-),53
14	Traffic signals count	0.8364	0.5843	(-),53	0.2657	0.8730	(+),20	0.3202	0.8419	(+),45	0.5445	0.7351	(+),23	0.3548	0.8243	(+),53
15	Stairs count	0.3578	0.8234	(+),53	0.7398	0.6432	(-),20	0.9954	0.5023	(+),45	0.3577	0.8281	(+),23	0.8277	0.5894	(+),53
16	Status: for construction	0.7144	0.6477	(-),53	1.0000	0.0000	(+),20	0.9674	0.5228	(-),45	0.6568	0.6830	(+),23	0.7562	0.6264	(+),53
17	Status: unrealised	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),45	1.0000	0.0000	(+),23	1.0000	0.0000	(+),53
18	Status: under construction	0.9702	0.5199	(+),53	0.9691	0.5309	(+),20	0.9882	0.5118	(+),45	0.9641	0.5358	(-),23	0.9901	0.5099	(-),53
19	Status: in use (n.m.)	0.5373	0.7354	(+),53	0.6716	0.6812	(+),20	0.7022	0.6553	(-),45	1.0000	0.0000	(+),23	0.7027	0.6541	(-),53
20	Status: in use	0.9975	0.5038	(+),53	0.7862	0.6173	(-),20	0.6954	0.6553	(-),45	0.2910	0.8595	(+),23	0.6811	0.6618	(+),53
21	Status: for demolition	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	0.3282	0.8467	(-),45	0.1619	0.9280	(+),23	0.5600	0.7274	(+),53
22	Status: demolished	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),45	1.0000	0.0000	(+),23	1.0000	0.000	(+),53
23	Status: not in use	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),45	1.0000	0.0000	(+),23	1.0000	0.0000	(+),53
24	Status: reconstruction	0.4522	0.7762	(-),53	0.5233	0.7489	(-),20	0.2413	0.8813	(-),45	0.4575	0.7792	(-),23	0.2567	0.8733	(-),53
25	Status: illegitimate	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),45	1.0000	0.0000	(+),23	1.0000	0.0000	(+),53
26	Function: residential	0.8904	0.5573	(-),53	0.8465	0.5876	(-),20	0.9968	0.5049	(+),45	0.2603	0.8745	(+),23	0.5569	0.7237	(+),53
27	Function: gathering	0.7204	0.6424	(+),53	0.9528	0.5353	(+),20	0.8596	0.5737	(-),45	0.9675	0.5270	(+),23	0.9577	0.5240	(+),53
28	Function: prison	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),45	1.0000	0.0000	(+),23	1.0000	0.0000	(+),53
59	Function: healthcare	0.5674	0.7237	(+),53	1.0000	0.0000	(+),20	0.5680	0.7247	(+),45	0.9752	0.5124	(+),23	0.5674	0.7237	(+),53
8	Function: factory	0.9004	0.5535	(+),53	0.7595	0.6381	(-),20	0.8601	0.5744	(+),45	0.9511	0.5366	(+),23	0.8339	0.5866	(+),53
31	Function: office	0.9864	0.5095	(-),53	0.7289	0.6464	(-),20	0.0879	0.9569	(-),45	0.3455	0.8335	(-),23	0.0677	0.9667	(-),53
32	Function: guesthouse	0.5850	0.7114	(-),53	1.0000	0.0000	(+),20	0.7811	0.6145	(-),45	0.5550	0.7395	(+),23	0.7727	0.6179	(-),53
33	Function: education	0.1593	0.9243	(+),53	1.0000	0.0000	(+),20	0.0430	0.9796	(+),45	0.3388	0.8516	(+),23	0.1593	0.9243	(+),53
34	Function: sports	0.3265	0.8459	(-),53	0.3421	0.8531	(-),20	0.3282	0.8467	(-),45	1.0000	0.0000	(+),23	0.3265	0.8459	(-),53
35	Function: shops	0.9271	0.5392	(+),53	0.9885	0.5172	(-),20	0.6143	0.6959	(-),45	0.5768	0.7196	(+),23	0.7950	0.6051	(+),53
36	Function: other	0.9452	0.5300	(-),53	0.6555	0.6823	(-),20	0.8425	0.5820	(+),45	0.8618	0.5782	(-),23	0.9402	0.5325	(-),53
37	Green: tree cover	0.9622	0.5214	(+),53	0.9892	0.5162	(+),20	0.6283	0.6887	(-),45	0.9912	0.5044	(+),23	0.8274	0.5887	(-),53
38	Green: bush cover	0.9975	0.5038	(+),53	0.9892	0.5162	(-),20	0.4677	0.7686	(-),45	0.8347	0.5912	(+),23	0.8621	0.5715	(-),53
39	Green: grass cover	0.9170	0.5440	(-),53	0.9031	0.5592	(-),20	0.7714	0.6174	(-),45	0.9912	0.5131	(+),23	0.9370	0.5340	(-),53
4	Noise pollution: total	0.9521	0.5264	(-),53	0.8604	0.5804	(-),20	0.6748	0.6656	(-),45	0.9737	0.5219	(-),23	0.8422	0.5814	(-),53
41	Noise pollution: roads	0.8770	0.5640	(-),53	0.9245	0.5485	(-),20	0.6630	0.6714	(-),45	0.7836	0.6166	(-),23	0.6836	0.6605	(-),53
42	Noise pollution: railways	0.8745	0.5652	(+),53	0.7867	0.6170	(-),20	0.9357	0.5354	(-),45	0.8005	0.6082	(+),23	0.9320	0.5365	(+),53
4	Year constr.: mean	0.8101	0.5974	(-),53	0.9784	0.5216	(+),20	0.9325	0.5370	(-),45	0.9649	0.5263	(+),23	0.8151	0.5949	(-),53
45	Landmarks: FSI	0.7207	0.6422	(-),53	0.7233	0.6498	(-),20	0.6978	0.6543	(-),45	0.8307	0.5939	(+),23	0.9835	0.5110	(+),53
46	Landmarks: plot area	0.4061	0.7988	(-),53	0.3971	0.8094	(-),20	0.6516	0.6773	(-),45	0.5769	0.7194	(-),23	0.6355	0.6846	(-),53
47	Landmarks: Year constr.	0.8666	0.5695	(-),53	0.9599	0.5334	(-),20	0.7111	0.6478	(-),45	0.9430	0.5380	(+),23	0.7518	0.6268	(-),53
48	Landmarks: 1 criterion	0.5647	0.7198	(-),53	0.4982	0.7596	(-),20	0.6211	0.6923	(-),45	0.9910	0.5135	(+),23	0.8269	0.5890	(-),53
49	Landmarks: 2 criteria	0.7024	0.6532	(-),53	0.5536	0.7427	(-),20	0.6755	0.6679	(-),45	0.6568	0.6830	(-),23	0.7202	0.6444	(-),53
20	Landmarks: 3 criteria	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),45	1.0000	0.0000	(+),23	1.0000	0.0000	(+),53

Figure 1.51: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (≤ 8 days / month), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least) I	Least_stat	_east_coef,n
6	Year constr.: < 1945	0.9291	0.5380	(-),53	0.9782	0.5218	(+),20	0.7840	0.6114	(-),42	0.9342	0.5395	(+),28	0.7455	0.6297	(-),53
₽	Year constr.: 1946-1970	0.7763	0.6144	(+),53	0.5188	0.7496	(+),20	0.7316	0.6376	(+),42	0.7361	0.6385	(+),28	0.8726	0.5663	(+),53
Ŧ	Year constr.: 1971-1985	0.9974	0.5013	(+),53	0.6073	0.7060	(+),20	0.5367	0.7347	(+),42	0.6142	0.6989	(+),28	0.3465	0.8284	(+),53
12	Year constr.: 1986-2000	0.6446	0.6800	(-),53	0.9779	0.5221	(-),20	0.7922	0.6074	(-),42	0.7373	0.6377	(+),28	0.8644	0.5704	(-),53
5	Year constr.: 2001-2022	0.9004	0.5523	(-),53	0.8159	0.6027	(-),20	0.4852	0.7602	(-),42	0.8592	0.5770	(+),28	0.4516	0.7761	(-),53
14	Traffic signals count	0.8845	0.5603	(-),53	0.9891	0.5164	(-),20	0.5450	0.7305	(+),42	0.2241	0.8911	(+),28	0.1631	0.9194	(+),53
15	Stairs count	0.3578	0.8234	(+),53	0.4820	0.7701	(+),20	0.6014	0.7037	(+),42	0.7812	0.6173	(+),28	0.8315	0.5874	(-),53
16	Status: for construction	0.7144	0.6477	(-),53	0.5536	0.7427	(-),20	0.6745	0.6696	(-),42	0.4688	0.7731	(+),28	0.5580	0.7249	(+),53
17	Status: unrealised	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),42	1.0000	0.0000	(+),28	1.0000	0.0000	(+),53
18	Status: under construction	0.9702	0.5199	(+),53	1.0000	0.0000	(+),20	1.0000	0.5070	(-),42	0.9878	0.5183	(-),28	1.0000	0.5050	(+),53
19	Status: in use (n.m.)	0.5373	0.7354	(+),53	0.7283	0.6511	(+),20	0.7020	0.6559	(-),42	1.0000	0.0000	(+),28	0.7027	0.6541	(-),53
20	Status: in use	0.9294	0.5378	(-),53	1.0000	0.5108	(+),20	0.9003	0.5534	(+),42	0.7243	0.6440	(+),28	0.9723	0.5164	(-),53
21	Status: for demolition	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	0.3290	0.8470	(-),42	0.3349	0.8498	(+),28	1.0000	0.5107	(+),53
52	Status: demolished	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),42	1.0000	0.0000	(+),28	1.0000	0.0000	(+),53
53	Status: not in use	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),42	1.0000	0.0000	(+),28	1.0000	0.0000	(+),53
24	Status: reconstruction	0.3058	0.8489	(-),53	0.7690	0.6286	(-),20	0.7380	0.6350	(-),42	0.1652	0.9205	(-),28	0.1803	0.9111	(-),53
25	Status: illegitimate	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),42	1.0000	0.0000	(+),28	1.0000	0.0000	(+),53
26	Function: residential	0.8501	0.5775	(-),53	0.9453	0.5382	(-),20	0.7094	0.6486	(+),42	0.5231	0.7438	(+),28	0.6460	0.6793	(+),53
27	Function: gathering	0.6436	0.6807	(+),53	0.4367	0.7903	(+),20	0.7797	0.6140	(-),42	0.7892	0.6127	(-),28	0.6728	0.6662	(-),53
28	Function: prison	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),42	1.0000	0.0000	(+),28	1.0000	0.0000	(+),53
29	Function: healthcare	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	0.3142	0.8487	(+),42	0.9797	0.5102	(+),28	0.3149	0.8471	(+),53
8	Function: factory	0.9004	0.5535	(+),53	0.8539	0.5861	(+),20	0.8972	0.5563	(+),42	0.8588	0.5799	(-),28	0.9889	0.5093	(-),53
3	Function: office	0.9161	0.5446	(+),53	0.9881	0.5178	(+),20	0.1830	0.9101	(-),42	0.1657	0.9199	(-),28	0.0496	0.9756	(-),53
32	Function: guesthouse	0.5850	0.7114	(-),53	0.7904	0.6205	(-),20	1.0000	0.5064	(+),42	0.4003	0.8083	(-),28	0.3328	0.8365	(-),53
33	Function: education	0.3265	0.8459	(+),53	0.3421	0.8531	(+),20	0.0820	0.9614	(+),42	0.0814	0.9629	(+),28	0.0232	0.9889	(+),53
34	Function: sports	0.3265	0.8459	(-),53	1.0000	0.0000	(+),20	0.3290	0.8470	(-),42	1.0000	0.0000	(+),28	0.3265	0.8459	(-),53
35	Function: shops	0.9675	0.5190	(-),53	0.9651	0.5291	(+),20	0.6118	0.6974	(-),42	0.2786	0.8646	(+),28	0.5716	0.7165	(+),53
36	Function: other	0.8548	0.5752	(+),53	0.9444	0.5389	(+),20	0.9192	0.5441	(-),42	0.6447	0.6838	(-),28	0.5982	0.7032	(-),53
37	Green: tree cover	0.9119	0.5465	(+),53	0.7660	0.6273	(-),20	0.6514	0.6775	(-),42	0.6523	0.6798	(-),28	0.4389	0.7824	(-),53
88	Green: bush cover	0.9874	0.5088	(-),53	0.9568	0.5323	(+),20	0.5700	0.7180	(-),42	0.7869	0.6129	(-),28	0.4970	0.7535	(-),53
39	Green: grass cover	0.9975	0.5038	(-),53	0.9353	0.5431	(-),20	0.7238	0.6414	(-),42	0.8377	0.5875	(-),28	0.6976	0.6535	(-),53
4	Noise pollution: total	0.9471	0.5290	(-),53	0.9568	0.5323	(+),20	0.8265	0.5902	(-),42	0.8763	0.5683	(-),28	0.8176	0.5937	(-),53
4	Noise pollution: roads	0.8670	0.5690	(-),53	0.9568	0.5323	(+),20	0.7918	0.6075	(-),42	0.8634	0.5747	(-),28	0.7980	0.6034	(-),53
42	Noise pollution: railways	0.9044	0.5503	(+),53	0.8924	0.5645	(+),20	0.9822	0.5125	(-),42	0.8634	0.5747	(+),28	0.9421	0.5315	(+),53
4	Year constr.: mean	0.8595	0.5727	(-),53	0.9138	0.5538	(-),20	0.7746	0.6161	(-),42	0.7123	0.6500	(+),28	0.9194	0.5428	(-),53
5	Landmarks: FSI	0.7207	0.6422	(-),53	1.0000	0.0000	(+),20	0.6890	0.6590	(-),42	0.8542	0.5797	(-),28	0.7544	0.6254	(-),53
46	Landmarks: plot area	0.3470	0.8282	(-),53	0.8724	0.5752	(-),20	0.6453	0.6807	(-),42	0.7357	0.6386	(-),28	0.6570	0.6739	(-),53
47	Landmarks: Year constr.	0.8666	0.5695	(-),53	0.9421	0.5405	(+),20	0.7139	0.6466	(-),42	0.8981	0.5582	(+),28	0.9005	0.5526	(-),53
8	Landmarks: 1 criterion	0.5220	0.7411	(-),53	0.9560	0.5329	(-),20	0.6087	0.6988	(-),42	0.9264	0.5435	(-),28	0.7138	0.6455	(-),53
49	Landmarks: 2 criteria	0.7024	0.6532	(-),53	1.0000	0.0000	(+),20	0.6858	0.6627	(-),42	0.9120	0.5537	(-),28	0.9496	0.5298	(-),53
50	Landmarks: 3 criteria	1.0000	0.0000	(+),53	1.0000	0.0000	(+),20	1.0000	0.0000	(+),42	1.0000	0.0000	(+),28	1.0000	0.0000	(+),53

month),	
ravel (≤ 8 days /	
y of train t	
ı - frequenc	gress
interaction	direction: e
sis, sample:	ortest path,
egate analy	baseline: sh
route aggr	ndardised, l
v results for	ata: non-sta
• 1.52: Rav	lestion 3, d
Figure	ıb-qns

	Variables	P(Most)	Most stat	Most coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.6285	0.6857	wi(-),53	0.2865	0.8568	wi(-),20	0.2285	0.8858	wi(-),45	0.4639	0.7681	wi(+),23	0.5372	0.7314	wi(-),53
₽	Year constr.: 1946-1970	0.0197	0.9901	wi(+),53	0.0718	0.9641	wi(+),20	0.0377	0.9811	wi(+),45	0.5569	0.5965	tt(+),23	0.0897	0.9552	wi(+),53
÷	Year constr.: 1971-1985	0.2211	0.8894	wi(-),53	0.5348	0.7326	wi(-),20	0.4758	0.7621	wi(-),45	0.5290	0.7355	wi(+),23	0.8296	0.5852	wi(-),53
12	Year constr.: 1986-2000	0.3349	0.8325	wi(-),53	0.2447	0.8776	wi(-),20	0.3276	0.8362	wi(-),45	0.5970	0.5365	tt(+),23	0.2630	-1.1316	tt(-),53
13	Year constr.: 2001-2022	0.0269	2.2774	tt(+),53	0.0594	2.0055	tt(+),20	0.1020	1.6702	tt(+),45	0.1571	1.4651	tt(+),23	0.0794	1.7891	tt(+),53
14	Traffic signals count	0.0972	-1.6892	tt(-),53	0.5877	0.7061	wi(-),20	0.9845	0.0196	tt(+),45	0.7142	0.6429	wi(-),23	0.5029	0.7486	wi(+),53
15	Stairs count	0.7662	0.2989	tt(+),53	0.1864	-1.3708	tt(-),20	0.5331	-0.6282	tt(-),45	0.1035	1.6986	tt(+),23	0.5687	-0.5737	tt(-),53
16	Status: for construction	0.4538	0.7731	wi(-),53	0.6721	0.6639	wi(-),20	0.6017	0.6991	wi(-),45	0.5542	0.7229	wi(+),23	0.8318	0.5841	wi(+),53
17	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
18	Status: under construction	0.9843	0.5079	wi(+),53	0.4246	0.7877	wi(-),20	0.7914	0.6043	wi(-),45	0.4503	0.7748	wi(-),23	0.3104	0.8448	wi(-),53
19	Status: in use (n.m.)	0.7917	0.6041	wi(+),53	0.4246	0.7877	wi(-),20	0.9801	0.51	wi(-),45	0.6949	0.6526	wi(-),23	0.9843	0.5079	wi(-),53
20	Status: in use	0.2762	0.8619	wi(-),53	0.3835	-0.892	tt(-),20	0.1140	0.943	wi(-),45	0.2448	1.1952	tt(+),23	0.7332	0.6334	wi(-),53
51	Status: for demolition	0.7964	0.6018	wi(-),53	0.4245	0.7877	wi(-),20	0.5718	0.7141	wi(-),45	0.4503	0.7748	wi(+),23	0.9921	0.5039	wi(+),53
22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
23	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
24	Status: reconstruction	0.2186	1.2454	tt(+),53	0.2954	1.0761	tt(+),20	0.6142	0.5077	tt(+),45	0.0901	0.9549	wi(+),23	0.7718	0.6141	wi(+),53
25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
26	Function: residential	0.0183	0.9909	wi(-),53	0.0116	0.9942	wi(-),20	0.2223	0.8888	wi(-),45	0.5785	-0.564	tt(-),23	0.3058	0.8471	wi(-),53
27	Function: gathering	0.9126	0.5437	wi(-),53	0.6051	0.6975	wi(-),20	0.5541	-0.5962	tt(-),45	0.6915	0.6542	wi(+),23	0.7746	-0.2879	tt(-),53
28	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
29	Function: healthcare	0.7964	0.6018	wi(+),53	0.6767	0.6617	wi(-),20	0.7817	0.6091	wi(+),45	0.6949	0.6526	wi(+),23	0.7964	0.6018	wi(+),53
30	Function: factory	0.7388	-0.3353	tt(-),53	0.2121	-1.2913	tt(-),20	1.0000	0.5	wi(+),45	0.9614	0.049	tt(+),23	0.9811	0.5095	wi(-),53
31	Function: office	0.9724	-0.0348	tt(-),53	0.7601	0.3097	tt(+),20	0.0206	-2.4013	tt(-),45	0.1746	-1.403	tt(-),23	0.0124	-2.592	tt(-),53
32	Function: guesthouse	0.6237	0.6881	wi(-),53	0.2507	0.8747	wi(-),20	0.4637	0.7681	wi(-),45	0.9623	0.0478	tt(+),23	0.5042	0.7479	wi(-),53
33	Function: education	0.7888	0.6056	wi(-),53	1.0000	equal	n/a,20	0.7995	0.6002	wi(-),45	0.9866	0.5067	wi(+),23	0.4663	0.7669	wi(-),53
34	Function: sports	0.7893	0.6054	wi(-),53	0.6767	0.6617	wi(-),20	0.7728	0.6136	wi(-),45	1.0000	equal	n/a,23	0.7893	0.6054	wi(-),53
35	Function: shops	0.7212	0.3588	tt(+),53	0.2104	1.2964	tt(+),20	0.4877	-0.6998	tt(-),45	0.0141	0.9929	wi(+),23	0.5678	0.575	tt(+),53
36	Function: other	0.9425	0.5288	wi(-),53	0.4811	0.7595	wi(-),20	0.2961	0.8519	wi(+),45	0.4495	-0.77	tt(-),23	0.5434	0.7283	wi(-),53
37	Green: tree cover	0.0000	-8.188	tt(-),53	0.0000	-6.4271	tt(-),20	0.0000	-8.5914	tt(-),45	0.0001	-4.6079	tt(-),23	0.0000	-7.8659	tt(-),53
88	Green: bush cover	0.0000	-8.475	tt(-),53	0.0000	-6.5975	tt(-),20	0.0000	-9.6049	tt(-),45	0.0006	-4.0262	tt(-),23	0.0000	-7.7858	tt(-),53
39	Green: grass cover	0.0000	-7.9633	tt(-),53	0.0000	-5.5493	tt(-),20	0.0000	-9.3966	tt(-),45	0.0001	-4.8621	tt(-),23	0.0000	-8.4507	tt(-),53
4	Noise pollution: total	0.0000	-10.1638	tt(-),53	0.000	-9.5369	tt(-),20	0.0000	-10.5557	tt(-),45	0.0000	-6.2425	tt(-),23	0.0000	1.0	wi(-),53
41	Noise pollution: roads	0.0000	1.0	wi(-),53	0.0000	-8.772	tt(-),20	0.0000	-8.9341	tt(-),45	0.0000	-5.7628	tt(-),23	0.0000	1.0	wi(-),53
4	Noise pollution: railways	0.0000	1.0	wi(-),53	0.0000	-6.6745	tt(-),20	0.0000	1.0	wi(-),45	0.0192	0.9904	wi(-),23	0.0000	1.0	wi(-),53
4	Year constr.: mean	0.7100	0.645	wi(+),53	0.7776	-0.2866	tt(-),20	1.0000	equal	n/a,45	0.6539	-0.4545	tt(-),23	0.8979	0.5511	wi(-),53
5	Landmarks: FSI	0.0413	0.9793	wi(-),53	0.0769	0.9616	wi(-),20	0.1955	0.9022	wi(-),45	0.5288	0.7356	wi(+),23	0.6519	0.6741	wi(-),53
46	Landmarks: plot area	0.0565	0.9718	wi(-),53	0.4958	0.7521	wi(-),20	0.3344	0.8328	wi(-),45	0.9253	0.5374	wi(+),23	0.5041	0.748	wi(-),53
47	Landmarks: Year constr.	0.8545	0.5728	wi(-),53	0.7319	0.6341	wi(-),20	0.9608	0.5196	wi(+),45	0.9236	0.5382	wi(+),23	0.8712	0.5644	wi(-),53
48	Landmarks: 1 criterion	0.0774	0.9613	wi(-),53	0.4023	0.7989	wi(-),20	0.3892	0.8054	wi(-),45	0.6989	0.6505	wi(+),23	0.6222	0.6889	wi(-),53
49	Landmarks: 2 criteria	0.7888	0.6056	wi(-),53	0.6767	0.6617	wi(-),20	0.7721	0.614	wi(-),45	0.9870	0.5065	wi(-),23	0.7917	0.6041	wi(-),53
50	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) L	Least stat	Least coef,n
6	Year constr.: < 1945	0.6097	0.6951	wi(-),53	0.2693	0.8654	wi(+),20	0.3225	0.8388	wi(-),42	0.8103	0.5949	wi(-),28	0.1345	0.9328	wi(-),53
₽	Year constr.: 1946-1970	0.0071	0.9964	wi(+),53	0.1159	0.942	wi(+),20	0.0740	0.963	wi(+),42	0.5199	0.652	tt(+),28	0.3540	0.823	wi(+),53
÷	Year constr.: 1971-1985	0.1690	0.9155	wi(-),53	0.1727	-1.4171	tt(-),20	0.5926	0.7037	wi(-),42	0.9724	0.5138	wi(+),28	0.6903	0.6549	wi(-),53
12	Year constr.: 1986-2000	0.2044	0.8978	wi(-),53	0.1625	0.9188	wi(-),20	0.1546	-1.4502	tt(-),42	0.7726	-0.2919	tt(-),28	0.5253	0.7374	wi(-),53
13	Year constr.: 2001-2022	0.0245	2.3172	tt(+),53	0.5002	0.7499	wi(+),20	0.1584	1.4367	tt(+),42	0.1721	1.4026	tt(+),28	0.1023	1.6633	tt(+),53
14	Traffic signals count	0.1046	-1.6518	tt(-),53	0.9695	-0.0388	tt(-),20	0.5504	-0.6021	tt(-),42	0.9122	0.1113	tt(+),28	0.5837	0.5515	tt(+),53
15	Stairs count	0.7662	0.2989	tt(+),53	0.6663	-0.4381	tt(-),20	0.7670	0.2982	tt(+),42	0.4242	0.8115	tt(+),28	0.2520	-1.1584	tt(-),53
16	Status: for construction	0.4538	0.7731	wi(-),53	0.6869	0.6566	wi(-),20	0.4301	0.785	wi(-),42	0.8898	-0.1399	tt(-),28	0.6589	0.6705	wi(+),53
17	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
18	Status: under construction	0.9843	0.5079	wi(+),53	0.6767	0.6617	wi(-),20	0.5811	0.7095	wi(-),42	0.7194	0.6403	wi(-),28	0.4390	0.7805	wi(-),53
19	Status: in use (n.m.)	0.7917	0.6041	wi(+),53	0.4619	0.769	wi(+),20	0.9780	0.511	wi(-),42	0.7194	0.6403	wi(-),28	0.9843	0.5079	wi(-),53
20	Status: in use	0.2497	0.8751	wi(-),53	0.9419	-0.0738	tt(-),20	0.3646	0.8177	wi(-),42	0.4059	0.7971	wi(-),28	0.0850	0.9575	wi(-),53
21	Status: for demolition	0.7964	0.6018	wi(-),53	1.0000	0.5	wi(+),20	0.5598	0.7201	wi(-),42	0.7194	0.6403	wi(+),28	0.8041	0.598	wi(-),53
22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
23	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
24	Status: reconstruction	0.3585	0.9265	tt(+),53	0.6353	0.4821	tt(+),20	0.1093	1.6369	tt(+),42	0.6987	0.3912	tt(+),28	0.8057	0.5972	wi(+),53
25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
26	Function: residential	0.0166	0.9917	wi(-),53	0.5372	0.7314	wi(-),20	0.2523	0.8739	wi(-),42	0.6962	-0.3947	tt(-),28	0.2733	0.8633	wi(-),53
27	Function: gathering	0.7942	0.6029	wi(+),53	0.4480	0.776	wi(+),20	0.6902	-0.4014	tt(-),42	0.4354	0.7823	wi(-),28	0.3259	-0.9917	tt(-),53
28	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
29	Function: healthcare	1.0000	0.5	wi(+),53	1.0000	equal	n/a,20	0.5763	0.7119	wi(+),42	0.7194	0.6403	wi(+),28	0.6120	0.694	wi(+),53
8	Function: factory	0.7388	-0.3353	tt(-),53	0.6998	0.3915	tt(+),20	0.7432	-0.3298	tt(-),42	0.7693	0.6153	wi(+),28	0.5533	-0.5968	tt(-),53
31	Function: office	0.9667	0.042	tt(+),53	0.6420	-0.4724	tt(-),20	0.0741	-1.8326	tt(-),42	0.0485	-2.0668	tt(-),28	0.0066	-2.8299	tt(-),53
32	Function: guesthouse	0.6237	0.6881	wi(-),53	0.7018	0.6491	wi(+),20	0.8135	0.5933	wi(-),42	0.3118	0.8441	wi(-),28	0.2294	0.8853	wi(-),53
33	Function: education	0.6017	0.6992	wi(-),53	0.9837	0.5082	wi(-),20	0.5810	0.7095	wi(-),42	0.4867	0.7567	wi(+),28	0.9882	0.5059	wi(+),53
34	Function: sports	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,20	0.7656	0.6172	wi(-),42	1.0000	equal	n/a,28	0.7893	0.6054	wi(-),53
35	Function: shops	0.9465	0.0674	tt(+),53	0.9987	-0.0016	tt(-),20	0.6359	-0.4769	tt(-),42	0.0417	2.1384	tt(+),28	0.2013	1.2941	tt(+),53
36	Function: other	0.7116	0.6442	wi(+),53	0.5026	0.7487	wi(+),20	0.7676	0.2974	tt(+),42	0.4054	-0.8452	tt(-),28	0.4504	-0.7605	tt(-),53
37	Green: tree cover	0.0000	-8.1643	tt(-),53	0.0000	-5.5319	tt(-),20	0.0000	-8.5169	tt(-),42	0.0000	-6.1264	tt(-),28	0.0000	-8.5029	tt(-),53
38	Green: bush cover	0.0000	-8.5378	tt(-),53	0.0001	-4.8467	tt(-),20	0.0000	-9.3713	tt(-),42	0.0000	-5.7327	tt(-),28	0.0000	-8.8428	tt(-),53
39	Green: grass cover	0.0000	-7.9895	tt(-),53	0.0000	-5.3978	tt(-),20	0.0000	-9.6629	tt(-),42	0.0000	-6.4432	tt(-),28	0.0000	-9.3345	tt(-),53
4	Noise pollution: total	0.0000	-10.1368	tt(-),53	0.0000	-6.6501	tt(-),20	0.0000	-10.5536	tt(-),42	0.0000	-7.0685	tt(-),28	0.0000	-10.1055	tt(-),53
41	Noise pollution: roads	0.0000	-9.8148	tt(-),53	0.0000	-7.0462	tt(-),20	0.0000	-9.129	tt(-),42	0.0000	-5.918	tt(-),28	0.0000	-8.5751	tt(-),53
42	Noise pollution: railways	0.0000	-5.2068	tt(-),53	0.0136	-2.7194	tt(-),20	0.0000	-5.9971	tt(-),42	0.0131	0.9935	wi(-),28	0.0000	1.0	wi(-),53
4	Year constr.: mean	0.8386	0.5807	wi(+),53	0.8504	-0.1912	tt(-),20	0.5318	0.7341	wi(+),42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
45	Landmarks: FSI	0.0413	0.9793	wi(-),53	0.4246	0.7877	wi(-),20	0.2901	0.8549	wi(-),42	0.4205	0.7897	wi(-),28	0.1789	0.9106	wi(-),53
46	Landmarks: plot area	0.0362	0.9819	wi(-),53	0.4991	0.7505	wi(-),20	0.4481	0.776	wi(-),42	0.6907	0.6547	wi(-),28	0.3914	0.8043	wi(-),53
47	Landmarks: Year constr.	0.8545	0.5728	wi(-),53	0.6721	0.6639	wi(+),20	0.8503	0.5748	wi(-),42	0.4979	0.751	wi(+),28	0.7565	0.6217	wi(+),53
48	Landmarks: 1 criterion	0.0744	0.9628	wi(-),53	0.8319	0.584	wi(-),20	0.3794	0.8103	wi(-),42	0.9261	0.537	wi(-),28	0.3403	0.8299	wi(-),53
49	Landmarks: 2 criteria	0.7888	0.6056	wi(-),53	1.0000	equal	n/a,20	0.7647	0.6176	wi(-),42	0.9902	0.5049	wi(-),28	0.9961	0.502	wi(-),53
50	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53

Figure 1.54: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (≤ 8 days / month), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	east coef,n
6	Year constr.: < 1945	0.4102	0.7949	wi(-),53	0.3040	0.848	wi(-),20	0.5422	0.7289	wi(-),45	0.0724	0.9638	wi(+),23	0.4883	0.7558	wi(+),53
₽	Year constr.: 1946-1970	0.3591	0.8204	wi(+),53	0.7984	0.6008	wi(-),20	0.3757	0.8121	wi(+),45	0.1819	1.3786	tt(+),23	0.1778	0.9111	wi(+),53
÷	Year constr.: 1971-1985	0.9167	0.5417	wi(-),53	0.6573	0.6713	wi(-),20	0.6338	0.4797	tt(+),45	0.3393	0.9767	tt(+),23	0.2548	1.1514	tt(+),53
12	Year constr.: 1986-2000	0.5778	0.7111	wi(-),53	0.8320	0.584	wi(+),20	0.2280	-1.2225	tt(-),45	0.3529	0.949	tt(+),23	0.6872	-0.4049	tt(-),53
13	Year constr.: 2001-2022	0.7513	0.6244	wi(-),53	0.2496	-1.1876	tt(-),20	0.0474	0.9763	wi(-),45	0.6259	-0.4944	tt(-),23	0.0583	0.9708	wi(-),53
14	Traffic signals count	0.6384	0.6808	wi(-),53	0.0866	0.9567	wi(+),20	0.0267	0.9867	wi(+),45	0.6345	0.4821	tt(+),23	0.3643	0.9153	tt(+),53
15	Stairs count	0.3104	0.8448	wi(+),53	0.6767	0.6617	wi(-),20	1.0000	0.5	wi(+),45	0.1855	1.3667	tt(+),23	0.8151	0.5925	wi(+),53
16	Status: for construction	0.7926	0.6037	wi(-),53	1.0000	equal	n/a,20	0.7817	0.6091	wi(-),45	0.4726	0.7637	wi(+),23	0.7955	0.6022	wi(+),53
17	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
18 S	status: under construction	0.5995	0.7002	wi(+),53	0.6767	0.6617	wi(+),20	0.7728	0.6136	wi(+),45	0.4503	0.7748	wi(-),23	0.7888	0.6056	wi(-),53
19	Status: in use (n.m.)	0.5995	0.7002	wi(+),53	0.6767	0.6617	wi(+),20	0.7721	0.614	wi(-),45	1.0000	equal	n/a,23	0.7888	0.6056	wi(-),53
50	Status: in use	0.7601	0.62	wi(-),53	0.2864	0.8568	wi(-),20	0.3542	0.8229	wi(-),45	0.0232	0.9884	wi(+),23	0.2210	0.8895	wi(+),53
21	Status: for demolition	1.0000	equal	n/a,53	1.0000	equal	n/a,20	0.7728	0.6136	wi(-),45	0.4503	0.7748	wi(+),23	0.7926	0.6037	wi(+),53
22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
23	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
24	Status: reconstruction	0.2663	0.8669	wi(-),53	0.4245	0.7877	wi(-),20	0.1255	-1.5619	tt(-),45	0.2027	-1.3131	tt(-),23	0.0921	-1.7162	tt(-),53
25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
26	Function: residential	0.8920	0.554	wi(+),53	0.4212	0.7894	wi(-),20	0.8783	0.5608	wi(+),45	0.0280	0.986	wi(+),23	0.1656	0.9172	wi(+),53
27	Function: gathering	0.7826	0.6087	wi(+),53	0.9845	0.5078	wi(-),20	0.6533	-0.4523	tt(-),45	0.9887	0.0143	tt(+),23	0.8747	-0.1584	tt(-),53
28	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53
29	Function: healthcare	0.7893	0.6054	wi(+),53	1.0000	equal	n/a,20	0.7728	0.6136	wi(+),45	1.0000	0.5	wi(+),23	0.7964	0.6018	wi(+),53
30	Function: factory	0.5103	0.7449	wi(+),53	0.7319	0.6341	wi(+),20	0.9903	0.5048	wi(+),45	0.9614	0.049	tt(+),23	0.8226	0.5887	wi(+),53
31	Function: office	0.8300	0.585	wi(-),53	0.4499	0.775	wi(-),20	0.0056	-2.9145	tt(-),45	0.1290	-1.5774	tt(-),23	0.0073	-2.7928	tt(-),53
32	Function: guesthouse	0.7888	0.6056	wi(-),53	1.0000	equal	n/a,20	0.7914	0.6043	wi(-),45	0.7038	0.6481	wi(+),23	0.8031	0.5985	wi(-),53
33	Function: education	0.5995	0.7002	wi(+),53	1.0000	equal	n/a,20	0.2773	0.8614	wi(+),45	0.6949	0.6526	wi(+),23	0.5995	0.7002	wi(+),53
34	Function: sports	0.7893	0.6054	wi(-),53	0.6767	0.6617	wi(-),20	0.7728	0.6136	wi(-),45	1.0000	equal	n/a,23	0.7893	0.6054	wi(-),53
35	Function: shops	0.9554	0.5223	wi(+),53	0.6943	0.6529	wi(-),20	0.1307	0.9347	wi(-),45	0.3105	0.8448	wi(+),23	0.9230	0.5385	wi(-),53
36	Function: other	0.9851	0.5074	wi(-),53	0.4251	0.7874	wi(-),20	0.6502	0.6749	wi(+),45	0.5639	-0.5859	tt(-),23	0.7558	-0.3127	tt(-),53
37	Green: tree cover	0.4627	0.7687	wi(+),53	0.3282	0.8359	wi(+),20	0.3104	-1.0263	tt(-),45	0.8865	-0.1444	tt(-),23	0.4789	-0.7132	tt(-),53
88	Green: bush cover	0.6212	0.6894	wi(+),53	0.6791	0.6605	wi(+),20	0.1959	-1.3132	tt(-),45	0.6933	0.3996	tt(+),23	0.5040	-0.6728	tt(-),53
39	Green: grass cover	0.8478	-0.1929	tt(-),53	0.8508	0.5746	wi(+),20	0.5664	-0.5777	tt(-),45	0.8581	0.1809	tt(+),23	0.8055	-0.2474	tt(-),53
4	Noise pollution: total	0.2997	0.8502	wi(+),53	0.9700	0.515	wi(+),20	0.1883	-1.3365	tt(-),45	0.4979	-0.6892	tt(-),23	0.2729	-1.1082	tt(-),53
41	Noise pollution: roads	0.5420	0.729	wi(+),53	0.9700	0.515	wi(-),20	0.3396	-0.9655	tt(-),45	0.3181	-1.0215	tt(-),23	0.2620	-1.1341	tt(-),53
42	Noise pollution: railways	0.0632	0.9684	wi(+),53	0.7772	0.6114	wi(-),20	0.9775	0.5113	wi(+),45	0.0614	0.9693	wi(+),23	0.6138	0.6931	wi(+),53
4	Year constr.: mean	0.4439	0.778	wi(-),53	0.6372	0.6814	wi(+),20	1.0000	equal	n/a,45	0.4651	0.7674	wi(+),23	0.6260	0.687	wi(+),53
5	Landmarks: FSI	0.2124	0.8938	wi(-),53	0.2506	0.8747	wi(-),20	0.5800	0.71	wi(-),45	0.5224	0.7388	wi(+),23	0.5134	0.7433	wi(+),53
46	Landmarks: plot area	0.0790	0.9605	wi(-),53	0.1412	0.9294	wi(-),20	0.2795	0.8602	wi(-),45	0.8856	0.5572	wi(-),23	0.6181	0.6909	wi(-),53
47	Landmarks: Year constr.	0.7888	0.6056	wi(-),53	0.6767	0.6617	wi(-),20	0.5885	0.7058	wi(-),45	0.7469	0.6266	wi(+),23	0.7967	0.6016	wi(-),53
48	Landmarks: 1 criterion	0.1859	0.9071	wi(-),53	0.1412	0.9294	wi(-),20	0.4515	0.7743	wi(-),45	0.4162	0.7919	wi(+),23	0.9745	0.5127	wi(+),53
49	Landmarks: 2 criteria	0.4390	0.7805	wi(-),53	0.6767	0.6617	wi(-),20	0.4059	0.797	wi(-),45	0.4503	0.7748	wi(-),23	0.5995	0.7002	wi(-),53
50	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,45	1.0000	equal	n/a,23	1.0000	equal	n/a,53

/ month),	
$(\leq 8 \text{ days})$	
f train travel	
frequency o	
interaction -	tion: access
s, sample:	path, direc
te analysis	: shortest
e aggrega	l, baseline
is for rout	andardised
Raw result	3, data: sta
Figure 1.55:	sub-question (

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2736	0.8632	wi(-),53	0.3253	0.8374	wi(+),20	0.8303	0.5848	wi(-),42	0.5050	0.7475	wi(+),28	0.7546	0.6227	wi(-),53
9	Year constr.: 1946-1970	0.2682	0.8659	wi(+),53	0.0217	0.9891	wi(+),20	0.1913	0.9043	wi(+),42	0.2824	0.8588	wi(+),28	0.3666	0.8167	wi(+),53
÷	Year constr.: 1971-1985	0.5112	0.7444	wi(-),53	0.8098	0.2441	tt(+),20	0.5538	0.5969	tt(+),42	0.3860	0.807	wi(+),28	0.4222	0.809	tt(+),53
12	Year constr.: 1986-2000	0.4530	0.7735	wi(-),53	0.5400	0.73	wi(-),20	0.5357	-0.6246	tt(-),42	0.9443	-0.0705	tt(-),28	0.3749	-0.8949	tt(-),53
13	Year constr.: 2001-2022	0.7513	0.6244	wi(-),53	0.5195	0.7402	wi(-),20	0.0469	0.9765	wi(-),42	0.8874	-0.1429	tt(-),28	0.0481	0.9759	wi(-),53
4	Traffic signals count	0.7789	0.6105	wi(-),53	0.5653	0.7174	wi(+),20	0.2213	0.8893	wi(+),42	0.0785	1.8289	tt(+),28	0.0451	2.0531	tt(+),53
15	Stairs count	0.3104	0.8448	wi(+),53	0.4245	0.7877	wi(+),20	0.4861	0.7028	tt(+),42	0.7127	0.3721	tt(+),28	0.7662	-0.2989	tt(-),53
16	Status: for construction	0.7926	0.6037	wi(-),53	0.6869	0.6566	wi(-),20	0.5763	0.7118	wi(-),42	0.3118	0.8441	wi(+),28	0.6086	0.6957	wi(+),53
17	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
18	Status: under construction	0.5995	0.7002	wi(+),53	1.0000	equal	n/a,20	0.9944	0.5028	wi(-),42	0.7194	0.6403	wi(-),28	0.9960	0.502	wi(-),53
19	Status: in use (n.m.)	0.5995	0.7002	wi(+),53	0.6767	0.6617	wi(+),20	0.7647	0.6176	wi(-),42	1.0000	equal	n/a,28	0.7888	0.6056	wi(-),53
20	Status: in use	0.4559	0.772	wi(-),53	0.8055	0.5972	wi(+),20	0.9004	0.5498	wi(+),42	0.2313	0.8843	wi(+),28	0.7970	0.6015	wi(+),53
21	Status: for demolition	1.0000	equal	n/a,53	1.0000	equal	n/a,20	0.7656	0.6172	wi(-),42	0.7194	0.6403	wi(+),28	0.9960	0.502	wi(+),53
2	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
53	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
24	Status: reconstruction	0.1626	0.9187	wi(-),53	0.6767	0.6617	wi(-),20	0.5964	-0.5337	tt(-),42	0.1186	0.9407	wi(-),28	0.0612	-1.9137	tt(-),53
25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
26	Function: residential	0.8492	0.5754	wi(-),53	0.7607	0.6196	wi(+),20	0.6116	0.6942	wi(+),42	0.0050	0.9975	wi(+),28	0.0249	0.9875	wi(+),53
27	Function: gathering	0.4917	0.7542	wi(+),53	0.2507	0.8747	wi(+),20	0.6189	-0.5013	tt(-),42	0.6312	-0.4856	tt(-),28	0.4335	-0.7893	tt(-),53
28	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
29	Function: healthcare	1.0000	equal	n/a,53	1.0000	equal	n/a,20	0.5598	0.7201	wi(+),42	1.0000	0.5	wi(+),28	0.6120	0.694	wi(+),53
30	Function: factory	0.5103	0.7449	wi(+),53	0.4865	0.7568	wi(+),20	0.8240	0.588	wi(-),42	0.7282	-0.3511	tt(-),28	0.9849	0.5076	wi(-),53
31	Function: office	0.9886	0.5057	wi(+),53	0.9841	0.5079	wi(+),20	0.0452	-2.0661	tt(-),42	0.0224	-2.4219	tt(-),28	0.0033	-3.0856	tt(-),53
32	Function: guesthouse	0.7888	0.6056	wi(-),53	0.9837	0.5082	wi(-),20	0.9945	0.5028	wi(+),42	0.4867	0.7567	wi(-),28	0.4390	0.7805	wi(-),53
33	Function: education	0.7893	0.6054	wi(+),53	0.6767	0.6617	wi(+),20	0.3919	0.804	wi(+),42	0.3118	0.8441	wi(+),28	0.2124	0.8938	wi(+),53
34	Function: sports	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,20	0.7656	0.6172	wi(-),42	1.0000	equal	n/a,28	0.7893	0.6054	wi(-),53
35	Function: shops	0.8553	0.5724	wi(-),53	0.7383	0.6308	wi(+),20	0.2473	0.8764	wi(-),42	0.2869	0.8566	wi(+),28	0.9489	0.5255	wi(+),53
36	Function: other	0.8187	0.5906	wi(+),53	0.4742	0.7629	wi(+),20	0.8893	0.5553	wi(-),42	0.3385	-0.9744	tt(-),28	0.4839	-0.7051	tt(-),53
37	Green: tree cover	0.2834	0.8583	wi(+),53	0.9830	-0.0216	tt(-),20	0.5421	-0.6148	tt(-),42	0.1216	-1.5985	tt(-),28	0.1322	-1.5296	tt(-),53
38	Green: bush cover	0.8412	0.5794	wi(+),53	0.9414	0.0745	tt(+),20	0.3664	-0.9134	tt(-),42	0.3059	-1.0437	tt(-),28	0.1400	-1.4986	tt(-),53
39	Green: grass cover	0.7997	0.6001	wi(-),53	0.6289	0.4913	tt(+),20	0.6539	-0.4517	tt(-),42	0.7662	-0.3003	tt(-),28	0.6774	-0.4183	tt(-),53
4	Noise pollution: total	0.4360	0.782	wi(+),53	0.6689	0.4343	tt(+),20	0.4848	-0.705	tt(-),42	0.2643	-1.1401	tt(-),28	0.2533	-1.1552	tt(-),53
41	Noise pollution: roads	0.7251	0.6375	wi(+),53	0.7771	0.2871	tt(+),20	0.6529	-0.4531	tt(-),42	0.3029	-1.0503	tt(-),28	0.3550	-0.9332	tt(-),53
42	Noise pollution: railways	0.1799	0.9101	wi(+),53	0.2103	0.8949	wi(+),20	0.6481	0.676	wi(+),42	0.1215	0.9392	wi(+),28	0.5325	0.7337	wi(+),53
4	Year constr.: mean	0.4439	0.778	wi(-),53	0.8804	0.5598	wi(+),20	0.7028	0.6486	wi(+),42	1.0000	equal	n/a,28	1.0000	equal	n/a,53
45	Landmarks: FSI	0.2124	0.8938	wi(-),53	1.0000	equal	n/a,20	0.5685	0.7157	wi(-),42	0.7322	0.6339	wi(-),28	0.7795	0.6102	wi(-),53
46	Landmarks: plot area	0.0292	0.9854	wi(-),53	0.6721	0.664	wi(-),20	0.3454	0.8273	wi(-),42	0.8684	0.5658	wi(+),28	0.7594	0.6203	wi(-),53
47	Landmarks: Year constr.	0.7888	0.6056	wi(-),53	0.6767	0.6617	wi(+),20	0.5778	0.7111	wi(-),42	0.7415	0.6292	wi(+),28	0.9962	0.5019	wi(+),53
48	Landmarks: 1 criterion	0.0865	0.9567	wi(-),53	0.9841	0.5079	wi(-),20	0.4933	0.7534	wi(-),42	0.7583	0.6209	wi(+),28	0.6594	0.6703	wi(-),53
49	Landmarks: 2 criteria	0.4390	0.7805	wi(-),53	1.0000	equal	n/a,20	0.3920	0.804	wi(-),42	0.7360	0.632	wi(-),28	0.7964	0.6018	wi(-),53
50	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,20	1.0000	equal	n/a,42	1.0000	equal	n/a,28	1.0000	equal	n/a,53

/ month),	
frequency of train travel (≤ 8 days	
aggregate analysis, sample: interaction -	baseline: shortest path, direction: egress
Figure 1.56: Raw results for route	sub-question 3, data: standardised,

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2] stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n	P(Least) I	Least_stat	east_coef,n
6	Year constr.: < 1945	0.7028	0.5078	(+),52	0.8694	0.4546	(+),21	0.9760	0.5833	(+),39	0.6616	0.3773	(+),29	0.6765	0.4494	(+),52
₽	Year constr.: 1946-1970	0.9270	0.6393	(-),52	0.8746	0.6713	(-),21	0.7685	0.2142	(+),39	0.8632	0.6283	(-),29	0.9429	0.6512	(-),52
÷	Year constr.: 1971-1985	0.7465	0.6235	(+),52	0.6500	0.5520	(-),21	0.4652	0.0932	(-),39	0.5381	0.4515	(+),29	0.8589	0.2028	(-),52
12	Year constr.: 1986-2000	0.1180	0.5878	(+),52	0.2086	0.6277	(+),21	0.4174	0.8579	(+),39	0.5330	0.3868	(+),29	0.2076	0.6576	(+),52
13	Year constr.: 2001-2022	0.9345	0.7896	(+),52	0.8681	0.2131	(-),21	0.8399	0.9253	(+),39	0.3068	0.1077	(-),29	0.5829	0.0503	(-),52
14	Traffic signals count	0.8979	0.3271	(+),52	1.0000	0.5457	(-),21	0.8084	0.2540	(+),39	0.8625	0.2410	(-),29	0.8334	0.5653	(-),52
15	Stairs count	0.8310	0.5897	(-),52	0.4846	0.3617	(-),21	0.6216	0.1529	(+),39	0.9920	0.6208	(-),29	0.8343	0.2583	(+),52
16	Status: for construction	0.6556	0.7367	(+),52	0.3040	0.7415	(+),21	0.9478	0.8586	(+),39	0.4098	0.3707	(-),29	0.6632	0.7424	(+),52
17	Status: unrealised	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),39	1.0000	0.0000	(-),29	1.0000	0.0000	(-),52
18	Status: under construction	0.9746	0.4873	(-),52	0.6227	0.1556	(-),21	0.9546	0.4773	(+),39	0.5843	0.2922	(+),29	0.9899	0.4949	(+),52
19	Status: in use (n.m.)	0.7768	0.1959	(-),52	0.7558	0.1975	(-),21	0.3962	0.2938	(+),39	0.7103	0.0000	(+),29	0.6674	0.5516	(+),52
30	Status: in use	0.3407	0.4277	(+),52	0.6504	0.3764	(+),21	0.6746	0.6554	(+),39	0.6407	0.4721	(+),29	0.5540	0.5774	(+),52
51	Status: for demolition	1.0000	0.1634	(-),52	1.0000	0.1705	(-),21	0.3078	0.0410	(-),39	1.0000	0.0000	(-),29	0.5599	0.0797	(-),52
53	Status: demolished	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),39	1.0000	0.0000	(-),29	1.0000	0.0000	(-),52
53	Status: not in use	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),39	1.0000	0.0000	(-),29	1.0000	0.0000	(-),52
24	Status: reconstruction	0.1060	0.3547	(-),52	0.1464	0.3269	(-),21	0.7751	0.8721	(-),39	1.0000	0.7494	(-),29	0.9962	0.8871	(-),52
25	Status: illegitimate	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),39	1.0000	0.0000	(-),29	1.0000	0.0000	(-),52
26	Function: residential	0.2866	0.3569	(+),52	0.7423	0.4049	(+),21	0.5281	0.5020	(+),39	0.3021	0.3039	(+),29	0.2692	0.3304	(+),52
27	Function: gathering	0.9383	0.4123	(+),52	0.8463	0.5412	(+),21	0.9406	0.5291	(-),39	0.2237	0.1900	(-),29	0.3606	0.2314	(-),52
28	Function: prison	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),39	1.0000	0.0000	(-),29	1.0000	0.0000	(-),52
29	Function: healthcare	0.5674	0.6790	(-),52	0.3409	0.0000	(-),21	0.3299	0.0409	(+),39	1.0000	0.1671	(-),29	1.0000	0.8402	(-),52
8	Function: factory	0.8018	0.2342	(-),52	0.5913	0.4901	(+),21	1.0000	0.6451	(+),39	0.7285	0.5519	(-),29	0.7791	0.5861	(+),52
3	Function: office	0.8285	0.4640	(+),52	0.3986	0.5233	(+),21	0.6057	0.2473	(+),39	0.7321	0.1923	(-),29	0.7999	0.3684	(-),52
32	Function: guesthouse	0.2014	0.3486	(+),52	1.0000	0.1705	(-),21	1.0000	0.3584	(-),39	0.7252	0.7416	(+),29	0.5978	0.6431	(+),52
33	Function: education	0.7025	0.3512	(-),52	0.1622	0.0811	(-),21	0.7013	0.3507	(-),39	0.5704	0.2852	(+),29	0.9936	0.5032	(-),52
34	Function: sports	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	0.3299	0.1649	(+),39	0.3343	0.1671	(+),29	0.3267	0.1634	(+),52
35	Function: shops	0.9709	0.6460	(+),52	0.6669	0.4195	(-),21	0.6777	0.2309	(-),39	0.3292	0.2132	(-),29	0.4629	0.1194	(-),52
36	Function: other	0.4466	0.3235	(+),52	0.4728	0.2876	(+),21	0.7378	0.5976	(+),39	0.3220	0.2512	(-),29	0.9698	0.3498	(-),52
37	Green: tree cover	0.0008	0.6661	(+),52	0.0442	0.6747	(+),21	0.0051	0.7641	(+),39	0.0086	0.5495	(+),29	0.0035	0.7927	(+),52
38	Green: bush cover	0.0050	0.7186	(+),52	0.1074	0.7014	(+),21	0.0105	0.6984	(+),39	0.0223	0.4938	(+),29	0.0094	0.7064	(+),52
39	Green: grass cover	0.0061	0.7647	(+),52	0.1378	0.7186	(+),21	0.0102	0.7851	(+),39	0.0189	0.6397	(+),29	0.0073	0.7717	(+),52
4	Noise pollution: total	0.0208	0.6323	(+),52	0.1516	0.5699	(+),21	0.0227	0.6292	(+),39	0.0519	0.5618	(+),29	0.0208	0.7019	(+),52
41	Noise pollution: roads	0.0144	0.7627	(+),52	0.1665	0.7014	(+),21	0.0099	0.6254	(+),39	0.0262	0.5495	(+),29	0.0069	0.6649	(+),52
4	Noise pollution: railways	0.1090	0.4844	(+),52	0.3786	0.5301	(+),21	0.0875	0.5986	(+),39	0.1968	0.3545	(+),29	0.0993	0.5453	(+),52
4	Year constr.: mean	0.5411	0.5013	(+),52	0.6506	0.5401	(+),21	0.5791	0.6292	(+),39	0.7147	0.5310	(+),29	0.8709	0.6649	(+),52
5	Landmarks: FSI	0.3706	0.3830	(+),52	0.6998	0.0000	(+),21	0.8654	0.5384	(+),39	0.3626	0.2851	(+),29	0.3012	0.3133	(+),52
46	Landmarks: plot area	0.2164	0.1973	(+),52	0.4840	0.3929	(+),21	0.5247	0.3699	(+),39	0.6716	0.4192	(+),29	0.3176	0.2750	(+),52
47	Landmarks: Year constr.	0.1735	0.2583	(+),52	0.3459	0.3168	(+),21	0.6833	0.5625	(+),39	0.6843	0.6979	(+),29	0.6415	0.6035	(+),52
1 8	Landmarks: 1 criterion	0.2312	0.2113	(+),52	0.6869	0.3062	(+),21	0.7033	0.4858	(+),39	0.5585	0.3609	(+),29	0.4442	0.3622	(+),52
49	Landmarks: 2 criteria	0.2214	0.2557	(+),52	0.3230	0.0000	(+),21	0.4824	0.3584	(+),39	0.9689	0.6603	(+),29	0.5443	0.4891	(+),52
20	Landmarks: 3 criteria	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),39	1.0000	0.0000	(-),29	1.0000	0.0000	(-),52

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2] stat	[2]_coef,n	P([1] never)	[1]_stat [[1]_coef,n	P(Least) I	Least_stat	-east_coef,n
6	Year constr.: < 1945	0.6551	0.4507	(+),52	0.6950	0.5000	(+),21	0.7588	0.5687	(+),43	0.7257	0.3147	(+),27	0.6765	0.4714	(+),52
₽	Year constr.: 1946-1970	0.9269	0.2890	(+),52	0.8857	0.3111	(+),21	0.6501	0.2230	(+),43	0.3248	0.5000	(-),27	0.5785	0.4018	(-),52
÷	Year constr.: 1971-1985	0.7852	0.6437	(+),52	0.8928	0.5835	(-),21	0.4501	0.0646	(-),43	0.8986	0.5289	(-),27	0.9518	0.2334	(-),52
12	Year constr.: 1986-2000	0.1440	0.6674	(+),52	0.0789	0.4122	(+),21	0.3298	0.7785	(+),43	0.6957	0.4177	(+),27	0.1945	0.6212	(+),52
13	Year constr.: 2001-2022	0.9476	0.8034	(+),52	0.9694	0.8026	(+),21	0.8823	0.0817	(-),43	0.1179	0.1061	(-),27	0.5650	0.0510	(-),52
14	Traffic signals count	0.8901	0.3343	(+),52	0.9697	0.4494	(+),21	1.0000	0.7162	(-),43	0.8541	0.6466	(+),27	0.5991	0.5052	(-),52
15	Stairs count	0.8310	0.5897	(-),52	0.4846	0.3617	(-),21	0.6272	0.2288	(+),43	0.7719	0.6183	(+),27	0.8310	0.5897	(-),52
16	Status: for construction	0.6556	0.7367	(+),52	0.3040	0.7415	(+),21	0.7260	0.7634	(+),43	0.6298	0.3335	(-),27	0.4754	0.6449	(+),52
17	Status: unrealised	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),43	1.0000	0.0000	(-),27	1.0000	0.0000	(-),52
18	Status: under construction	0.9746	0.4873	(-),52	0.6227	0.1556	(-),21	0.7024	0.3512	(+),43	0.5859	0.2930	(+),27	0.7239	0.3619	(+),52
19	Status: in use (n.m.)	0.9924	0.2798	(-),52	0.7558	0.1975	(-),21	0.1715	0.2083	(+),43	0.9665	0.3390	(-),27	0.6674	0.5516	(+),52
20	Status: in use	0.2862	0.3749	(+),52	0.4888	0.4201	(+),21	0.5744	0.6593	(+),43	0.9931	0.4620	(+),27	0.5805	0.6139	(+),52
51	Status: for demolition	1.0000	0.1634	(-),52	1.0000	0.1705	(-),21	0.5591	0.0799	(-),43	1.0000	0.0000	(-),27	0.5599	0.0797	(-),52
52	Status: demolished	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),43	1.0000	0.0000	(-),27	1.0000	0.0000	(-),52
33	Status: not in use	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),43	1.0000	0.0000	(-),27	1.0000	0.0000	(-),52
24	Status: reconstruction	0.0708	0.2892	(-),52	0.2465	0.4432	(-),21	0.7532	0.0505	(+),43	0.9873	0.7803	(-),27	0.5896	0.0402	(+),52
25	Status: illegitimate	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),43	1.0000	0.0000	(-),27	1.0000	0.0000	(-),52
26	Function: residential	0.3047	0.3791	(+),52	0.4947	0.3951	(+),21	0.4804	0.5156	(+),43	0.4120	0.2423	(+),27	0.2807	0.3460	(+),52
27	Function: gathering	0.7700	0.3285	(+),52	0.8161	0.3931	(+),21	0.9330	0.5311	(-),43	0.0667	0.0534	(-),27	0.2478	0.1553	(-),52
28	Function: prison	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),43	1.0000	0.0000	(-),27	1.0000	0.0000	(-),52
29	Function: healthcare	0.3148	0.5032	(-),52	0.9728	0.0000	(-),21	0.3287	0.0410	(+),43	0.3356	0.1678	(-),27	1.0000	0.8402	(-),52
8	Function: factory	0.9811	0.3090	(-),52	0.3518	0.4901	(+),21	0.8467	0.2237	(-),43	0.3997	0.5280	(-),27	0.9244	0.6574	(+),52
31	Function: office	0.8482	0.4827	(+),52	0.3986	0.5233	(+),21	0.6264	0.2710	(+),43	0.9842	0.2448	(-),27	0.9628	0.4585	(-),52
32	Function: guesthouse	0.2014	0.3486	(+),52	1.0000	0.1705	(-),21	0.0956	0.2057	(+),43	0.1612	0.2855	(-),27	0.4075	0.5168	(+),52
33	Function: education	0.7025	0.3512	(-),52	0.1622	0.0811	(-),21	0.6817	0.3409	(-),43	0.5709	0.2854	(+),27	0.9872	0.4936	(-),52
34	Function: sports	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	0.3287	0.1643	(+),43	0.3356	0.1678	(+),27	0.3267	0.1634	(+),52
35	Function: shops	0.8895	0.6072	(+),52	0.6570	0.4140	(-),21	0.7599	0.2214	(-),43	0.1723	0.2001	(-),27	0.4815	0.1300	(-),52
36	Function: other	0.5437	0.3873	(+),52	0.3785	0.2737	(+),21	0.8880	0.6232	(+),43	0.4221	0.1769	(-),27	0.8722	0.3047	(-),52
37	Green: tree cover	0.0010	0.7262	(+),52	0.0416	0.6747	(+),21	0.0031	0.8073	(+),43	0.0085	0.7473	(+),27	0.0031	0.7546	(+),52
8	Green: bush cover	0.0066	0.7516	(+),52	0.0741	0.7186	(+),21	0.0080	0.7777	(+),43	0.0256	0.6642	(+),27	0.0099	0.7186	(+),52
39	Green: grass cover	0.0076	0.7871	(+),52	0.1130	0.7594	(+),21	0.0026	0.8073	(+),43	0.0319	0.7189	(+),27	0.0069	0.7359	(+),52
4	Noise pollution: total	0.0243	0.6554	(+),52	0.1378	0.5896	(+),21	0.0184	0.7230	(+),43	0060.0	0.5585	(+),27	0.0216	0.6871	(+),52
4	Noise pollution: roads	0.0166	0.7736	(+),52	0.1516	0.6926	(+),21	0.0078	0.7802	(+),43	0.0333	0.5448	(+),27	0.0089	0.7008	(+),52
4	Noise pollution: railways	0.1105	0.4909	(+),52	0.4065	0.5301	(+),21	0.0442	0.5498	(+),43	0.3157	0.3745	(+),27	0.0644	0.4844	(+),52
4	Year constr.: mean	0.5761	0.5220	(+),52	0.7532	0.5351	(+),21	0.6975	0.6238	(+),43	0.8626	0.3743	(-),27	0.8914	0.6506	(+),52
5	Landmarks: FSI	0.2987	0.3248	(+),52	0.4309	0.4038	(+),21	0.7192	0.4943	(+),43	0.3669	0.2979	(+),27	0.3899	0.3797	(+),52
46	Landmarks: plot area	0.1742	0.1641	(+),52	0.3299	0.2874	(+),21	0.7000	0.4121	(+),43	0.5621	0.3503	(+),27	0.3435	0.2902	(+),52
47	Landmarks: Year constr.	0.1628	0.2494	(+),52	0.2308	0.3390	(+),21	0.6614	0.5693	(+),43	0.9621	0.5924	(+),27	0.6415	0.6035	(+),52
48	Landmarks: 1 criterion	0.1955	0.1722	(+),52	0.4823	0.2493	(+),21	0.6431	0.5470	(+),43	0.6441	0.3034	(+),27	0.4829	0.4041	(+),52
49	Landmarks: 2 criteria	0.2214	0.2557	(+),52	0.1794	0.2962	(+),21	0.7659	0.3943	(+),43	0.9848	0.2854	(-),27	0.5618	0.4978	(+),52
20	Landmarks: 3 criteria	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),43	1.0000	0.0000	(-),27	1.0000	0.0000	(-),52

Figure 1.58: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (\geq 8 days / month), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least) I	Least_stat I	east_coef,n
6	Year constr.: < 1945	0.9896	0.5078	(+),52	0.9092	0.5554	(-),21	0.8412	0.5833	(+),39	0.7545	0.6287	(-),29	0.8988	0.5532	(-),52
₽	Year constr.: 1946-1970	0.7265	0.6393	(-),52	0.6764	0.6713	(-),21	0.4284	0.7888	(-),39	0.7562	0.6283	(-),29	0.7027	0.6512	(-),52
÷	Year constr.: 1971-1985	0.7582	0.6235	(+),52	0.9167	0.5520	(-),21	0.1863	0.9085	(+),39	0.9031	0.5549	(-),29	0.4057	0.7991	(+),52
12	Year constr.: 1986-2000	0.8296	0.5878	(+),52	0.7644	0.6277	(+),21	0.2888	0.8579	(+),39	0.7736	0.6193	(-),29	0.6898	0.6576	(+),52
13	Year constr.: 2001-2022	0.4247	0.7896	(+),52	0.4263	0.7942	(+),21	0.1524	0.9253	(+),39	0.2154	0.8952	(+),29	0.1006	0.9504	(+),52
14	Traffic signals count	0.6543	0.6752	(-),52	0.9289	0.5457	(-),21	0.5080	0.7492	(-),39	0.4819	0.7639	(+),29	0.8747	0.5653	(-),52
15	Stairs count	0.8272	0.5897	(-),52	0.7234	0.6515	(+),21	0.3059	0.8502	(-),39	0.7741	0.6208	(-),29	0.5166	0.7444	(-),52
16	Status: for construction	0.5343	0.7367	(+),52	0.5541	0.7415	(+),21	0.2903	0.8586	(+),39	0.7414	0.6396	(+),29	0.5228	0.7424	(+),52
17	Status: unrealised	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),39	1.0000	0.0000	(+),29	1.0000	0.0000	(+),52
18	Status: under construction	0.9746	0.5177	(+),52	0.3113	0.8559	(+),21	0.9546	0.5303	(-),39	0.5843	0.7216	(-),29	0.9899	0.5101	(-),52
19	Status: in use (n.m.)	0.3919	0.8067	(+),52	0.3950	0.8138	(+),21	0.5877	0.7116	(-),39	1.0000	0.0000	(+),29	0.9051	0.5516	(+),52
20	Status: in use	0.8554	0.5748	(-),52	0.7527	0.6332	(-),21	0.6965	0.6554	(+),39	0.9441	0.5341	(-),29	0.8504	0.5774	(+),52
51	Status: for demolition	0.3267	0.8460	(+),52	0.3409	0.8526	(+),21	0.0819	0.9616	(+),39	1.0000	0.0000	(+),29	0.1593	0.9243	(+),52
52	Status: demolished	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),39	1.0000	0.0000	(+),29	1.0000	0.0000	(+),52
8	Status: not in use	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),39	1.0000	0.0000	(+),29	1.0000	0.0000	(+),52
24	Status: reconstruction	0.7095	0.6482	(+),52	0.6537	0.6842	(+),21	0.2614	0.8721	(-),39	0.5154	0.7494	(-),29	0.2291	0.8871	(-),52
25	Status: illegitimate	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),39	1.0000	0.0000	(+),29	1.0000	0.0000	(+),52
26	Function: residential	0.7139	0.6455	(-),52	0.8097	0.6049	(-),21	0.9960	0.5020	(+),39	0.6078	0.7016	(-),29	0.6609	0.6719	(-),52
27	Function: gathering	0.8246	0.5908	(-),52	0.9506	0.5412	(+),21	0.9523	0.5291	(-),39	0.3800	0.8150	(+),29	0.4628	0.7709	(+),52
28	Function: prison	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),39	1.0000	0.0000	(+),29	1.0000	0.0000	(+),52
59	Function: healthcare	0.6546	0.6790	(-),52	1.0000	0.0000	(+),21	0.0819	0.9616	(-),39	0.3343	0.8495	(+),29	0.3292	0.8402	(-),52
8	Function: factory	0.4685	0.7687	(+),52	0.9803	0.5295	(-),21	0.7222	0.6451	(+),39	0.9151	0.5519	(-),29	0.8357	0.5861	(+),52
3	Function: office	0.9279	0.5389	(-),52	0.9767	0.5233	(+),21	0.4946	0.7563	(-),39	0.3847	0.8124	(+),29	0.7367	0.6343	(+),52
32	Function: guesthouse	0.6971	0.6570	(-),52	0.3409	0.8526	(+),21	0.7167	0.6491	(+),39	0.5433	0.7416	(+),29	0.7239	0.6431	(+),52
33	Function: education	0.7025	0.6543	(+),52	0.1622	0.9287	(+),21	0.7013	0.6568	(+),39	0.5704	0.7284	(-),29	0.9936	0.5032	(+),52
34	Function: sports	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	0.3299	0.8475	(-),39	0.3343	0.8495	(-),29	0.3267	0.8460	(-),52
35	Function: shops	0.7135	0.6460	(+),52	0.8390	0.5927	(+),21	0.4618	0.7725	(+),39	0.4263	0.7917	(+),29	0.2388	0.8820	(+),52
36	Function: other	0.6470	0.6790	(-),52	0.5751	0.7217	(-),21	0.8130	0.5976	(+),39	0.5025	0.7540	(+),29	0.6996	0.6527	(+),52
37	Green: tree cover	0.6726	0.6661	(+),52	0.6688	0.6747	(+),21	0.4780	0.7641	(+),39	0.9133	0.5495	(+),29	0.4183	0.7927	(+),52
8	Green: bush cover	0.5672	0.7186	(+),52	0.6148	0.7014	(+),21	0.6103	0.6984	(+),39	0.9876	0.5124	(-),29	0.5917	0.7064	(+),52
39	Green: grass cover	0.4745	0.7647	(+),52	0.5799	0.7186	(+),21	0.4357	0.7851	(+),39	0.7322	0.6397	(+),29	0.4606	0.7717	(+),52
4	Noise pollution: total	0.7402	0.6323	(+),52	0.8800	0.5699	(+),21	0.7491	0.6292	(+),39	0.8887	0.5618	(+),29	0.6007	0.7019	(+),52
4	Noise pollution: roads	0.4785	0.7627	(+),52	0.6148	0.7014	(+),21	0.7567	0.6254	(+),39	0.9133	0.5495	(+),29	0.6750	0.6649	(+),52
4	Noise pollution: railways	0.9689	0.5181	(-),52	0.9599	0.5301	(+),21	0.8104	0.5986	(+),39	0.7089	0.6513	(-),29	0.9146	0.5453	(+),52
4	Year constr.: mean	0.9974	0.5013	(+),52	0.9398	0.5401	(+),21	0.7491	0.6292	(+),39	0.9504	0.5310	(+),29	0.6749	0.6649	(+),52
45	Landmarks: FSI	0.7661	0.6198	(-),52	1.0000	0.0000	(+),21	0.9323	0.5384	(+),39	0.5702	0.7209	(-),29	0.6267	0.6893	(-),52
46	Landmarks: plot area	0.3946	0.8046	(-),52	0.7858	0.6175	(-),21	0.7398	0.6340	(-),39	0.8384	0.5874	(-),29	0.5500	0.7273	(-),52
47	Landmarks: Year constr.	0.5166	0.7443	(-),52	0.6336	0.6941	(-),21	0.8841	0.5625	(+),39	0.6188	0.6979	(+),29	0.7989	0.6035	(+),52
8	Landmarks: 1 criterion	0.4226	0.7906	(-),52	0.6124	0.7029	(-),21	0.9716	0.5182	(-),39	0.7217	0.6452	(-),29	0.7245	0.6403	(-),52
49	Landmarks: 2 criteria	0.5113	0.7481	(-),52	1.0000	0.0000	(+),21	0.7167	0.6491	(-),39	0.6996	0.6603	(+),29	0.9781	0.5153	(-),52
20	Landmarks: 3 criteria	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),39	1.0000	0.0000	(+),29	1.0000	0.0000	(+),52

Figure 1.59: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (\geq 8 days / month), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [[1]_coef,n	P(Least) I	Least_stat	_east_coef,n
6	Year constr.: < 1945	0.9014	0.5519	(-),52	1.0000	0.5101	(-),21	0.8694	0.5687	(+),43	0.6294	0.6915	(-),27	0.9428	0.5312	(-),52
₽	Year constr.: 1946-1970	0.5781	0.7133	(-),52	0.6222	0.6980	(-),21	0.4459	0.7797	(-),43	1.0000	0.5077	(+),27	0.8036	0.6008	(+),52
÷	Year constr.: 1971-1985	0.7176	0.6437	(+),52	0.8536	0.5835	(-),21	0.1293	0.9365	(+),43	0.9567	0.5289	(-),27	0.4669	0.7686	(+),52
12	Year constr.: 1986-2000	0.6701	0.6674	(+),52	0.8245	0.5979	(-),21	0.4483	0.7785	(+),43	0.8354	0.5893	(-),27	0.7627	0.6212	(+),52
13	Year constr.: 2001-2022	0.3969	0.8034	(+),52	0.4093	0.8026	(+),21	0.1633	0.9196	(+),43	0.2123	0.8971	(+),27	0.1020	0.9497	(+),52
14	Traffic signals count	0.6685	0.6681	(-),52	0.8989	0.5606	(-),21	0.5736	0.7162	(-),43	0.7199	0.6466	(+),27	0.9948	0.5052	(-),52
15	Stairs count	0.8272	0.5897	(-),52	0.7234	0.6515	(+),21	0.4576	0.7747	(-),43	0.7798	0.6183	(+),27	0.8272	0.5897	(-),52
16	Status: for construction	0.5343	0.7367	(+),52	0.5541	0.7415	(+),21	0.4821	0.7634	(+),43	0.6671	0.6789	(+),27	0.7193	0.6449	(+),52
17	Status: unrealised	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),43	1.0000	0.0000	(+),27	1.0000	0.0000	(+),52
18	Status: under construction	0.9746	0.5177	(+),52	0.3113	0.8559	(+),21	0.7024	0.6548	(-),43	0.5859	0.7219	(-),27	0.7239	0.6431	(-),52
19	Status: in use (n.m.)	0.5596	0.7235	(+),52	0.3950	0.8138	(+),21	0.4166	0.7957	(-),43	0.6780	0.6718	(+),27	0.9051	0.5516	(+),52
20	Status: in use	0.7499	0.6275	(-),52	0.8402	0.5897	(-),21	0.6877	0.6593	(+),43	0.9239	0.5449	(-),27	0.7772	0.6139	(+),52
51	Status: for demolition	0.3267	0.8460	(+),52	0.3409	0.8526	(+),21	0.1597	0.9249	(+),43	1.0000	0.0000	(+),27	0.1593	0.9243	(+),52
53	Status: demolished	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),43	1.0000	0.0000	(+),27	1.0000	0.0000	(+),52
23	Status: not in use	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),43	1.0000	0.0000	(+),27	1.0000	0.0000	(+),52
24	Status: reconstruction	0.5784	0.7135	(+),52	0.8865	0.5693	(+),21	0.1010	0.9507	(-),43	0.4563	0.7803	(-),27	0.0804	0.9606	(-),52
25	Status: illegitimate	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),43	1.0000	0.0000	(+),27	1.0000	0.0000	(+),52
26	Function: residential	0.7583	0.6234	(-),52	0.7902	0.6146	(-),21	0.9758	0.5156	(+),43	0.4846	0.7633	(-),27	0.6920	0.6564	(-),52
27	Function: gathering	0.6570	0.6744	(-),52	0.7861	0.6218	(-),21	0.9461	0.5311	(-),43	0.1067	0.9489	(+),27	0.3106	0.8465	(+),52
28	Function: prison	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),43	1.0000	0.0000	(+),27	1.0000	0.0000	(+),52
59	Function: healthcare	0.9936	0.5032	(+),52	1.0000	0.0000	(+),21	0.0820	0.9613	(-),43	0.3356	0.8501	(+),27	0.3292	0.8402	(-),52
8	Function: factory	0.6179	0.6945	(+),52	0.9803	0.5295	(-),21	0.4473	0.7802	(+),43	0.9664	0.5280	(-),27	0.6924	0.6574	(+),52
31	Function: office	0.9654	0.5202	(-),52	0.9767	0.5233	(+),21	0.5420	0.7322	(-),43	0.4896	0.7616	(+),27	0.9170	0.5443	(+),52
32	Function: guesthouse	0.6971	0.6570	(-),52	0.3409	0.8526	(+),21	0.4114	0.7998	(-),43	0.5711	0.7291	(+),27	0.9775	0.5168	(+),52
33	Function: education	0.7025	0.6543	(+),52	0.1622	0.9287	(+),21	0.6817	0.6658	(+),43	0.5709	0.7292	(-),27	0.9872	0.5128	(+),52
34	Function: sports	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	0.3287	0.8469	(-),43	0.3356	0.8501	(-),27	0.3267	0.8460	(-),52
35	Function: shops	0.7912	0.6072	(+),52	0.8281	0.5980	(+),21	0.4429	0.7814	(+),43	0.4002	0.8055	(+),27	0.2601	0.8715	(+),52
36	Function: other	0.7745	0.6154	(-),52	0.5475	0.7353	(-),21	0.7605	0.6232	(+),43	0.3539	0.8279	(+),27	0.6094	0.6977	(+),52
37	Green: tree cover	0.5519	0.7262	(+),52	0.6688	0.6747	(+),21	0.3901	0.8073	(+),43	0.5165	0.7473	(+),27	0.4948	0.7546	(+),52
38	Green: bush cover	0.5010	0.7516	(+),52	0.5799	0.7186	(+),21	0.4498	0.7777	(+),43	0.6843	0.6642	(+),27	0.5672	0.7186	(+),52
39	Green: grass cover	0.4296	0.7871	(+),52	0.4969	0.7594	(+),21	0.3901	0.8073	(+),43	0.5739	0.7189	(+),27	0.5325	0.7359	(+),52
4	Noise pollution: total	0.6941	0.6554	(+),52	0.8405	0.5896	(+),21	0.5599	0.7230	(+),43	0.8968	0.5585	(+),27	0.6304	0.6871	(+),52
41	Noise pollution: roads	0.4566	0.7736	(+),52	0.6326	0.6926	(+),21	0.4446	0.7802	(+),43	0.9242	0.5448	(+),27	0.6030	0.7008	(+),52
42	Noise pollution: railways	0.9818	0.5117	(-),52	0.9599	0.5301	(+),21	0.9072	0.5498	(+),43	0.7489	0.6321	(-),27	0.9689	0.5181	(-),52
4	Year constr.: mean	0.9611	0.5220	(+),52	0.9498	0.5351	(+),21	0.7591	0.6238	(+),43	0.7487	0.6322	(+),27	0.7037	0.6506	(+),52
45	Landmarks: FSI	0.6497	0.6778	(-),52	0.8076	0.6072	(-),21	0.9886	0.5095	(-),43	0.5957	0.7099	(-),27	0.7593	0.6232	(-),52
46	Landmarks: plot area	0.3282	0.8376	(-),52	0.5749	0.7218	(-),21	0.8242	0.5914	(-),43	0.7005	0.6570	(-),27	0.5805	0.7121	(-),52
47	Landmarks: Year constr.	0.4987	0.7532	(-),52	0.6779	0.6722	(-),21	0.8693	0.5693	(+),43	0.8344	0.5924	(+),27	0.7989	0.6035	(+),52
48	Landmarks: 1 criterion	0.3443	0.8295	(-),52	0.4985	0.7589	(-),21	0.9129	0.5470	(+),43	0.6068	0.7031	(-),27	0.8082	0.5985	(-),52
49	Landmarks: 2 criteria	0.5113	0.7481	(-),52	0.5925	0.7229	(-),21	0.7887	0.6114	(-),43	0.5709	0.7292	(+),27	0.9956	0.5066	(-),52
50	Landmarks: 3 criteria	1.0000	0.0000	(+),52	1.0000	0.0000	(+),21	1.0000	0.0000	(+),43	1.0000	0.0000	(+),27	1.0000	0.0000	(+),52

	Variables	P(Most)	Most stat	Most coet,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coet,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.4600	0.77	wi(-),52	0.9026	0.5487	wi(-),21	0.9055	0.5472	wi(-),39	0.0433	0.9783	wi(-),29	0.1467	0.9267	wi(-),52
₽	Year constr.: 1946-1970	0.4026	0.7987	wi(-),52	0.6083	0.6959	wi(+),21	0.6807	-0.4147	tt(-),39	0.6957	0.3951	tt(+),29	0.9438	0.0708	tt(+),52
Ŧ	Year constr.: 1971-1985	0.9482	0.5259	wi(-),52	0.4564	0.7718	wi(+),21	0.1261	1.5639	tt(+),39	0.1196	0.9402	wi(-),29	0.7648	0.6176	wi(-),52
12	Year constr.: 1986-2000	0.0239	0.9881	wi(-),52	0.0565	0.9718	wi(-),21	0.3936	-0.8629	tt(-),39	0.1430	0.9285	wi(-),29	0.0081	0.996	wi(-),52
13	Year constr.: 2001-2022	0.6158	0.5049	tt(+),52	0.9117	0.1123	tt(+),21	0.7850	0.6075	wi(+),39	0.0163	0.9919	wi(+),29	0.0624	0.9688	wi(+),52
4	Traffic signals count	0.7910	0.6045	wi(-),52	0.7941	0.6029	wi(-),21	0.3471	0.8265	wi(-),39	0.6172	0.6914	wi(+),29	0.7977	0.6011	wi(+),52
15	Stairs count	0.7845	0.2749	tt(+),52	0.4276	0.8098	tt(+),21	0.4866	-0.7025	tt(-),39	1.0000	0.0	tt(+),29	0.7845	-0.2749	tt(-),52
16	Status: for construction	0.6045	-0.5212	tt(-),52	0.2391	-1.2134	tt(-),21	0.9044	-0.1209	tt(-),39	0.4309	0.7991	tt(+),29	0.6231	-0.4944	tt(-),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
18	Status: under construction	0.9959	0.5021	wi(+),52	0.6831	0.6585	wi(+),21	0.7684	0.6158	wi(-),39	0.7237	0.6382	wi(-),29	0.9919	0.504	wi(-),52
19	Status: in use (n.m.)	0.7888	0.6056	wi(+),52	0.9848	0.5076	wi(+),21	0.3929	0.8035	wi(-),39	0.5415	0.7292	wi(-),29	0.6289	0.6855	wi(-),52
20	Status: in use	0.3164	0.8418	wi(-),52	0.4125	-0.837	tt(-),21	0.5972	-0.5329	tt(-),39	0.3644	-0.9219	tt(-),29	0.2628	-1.1323	tt(-),52
21	Status: for demolition	1.0000	equal	n/a,52	1.0000	equal	n/a,21	0.5467	0.7266	wi(+),39	1.0000	equal	n/a,29	0.7874	0.6063	wi(+),52
22	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
23	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
24	Status: reconstruction	0.0470	2.036	tt(+),52	0.0932	1.7627	tt(+),21	0.7716	0.2924	tt(+),39	0.9822	0.0225	tt(+),29	0.9872	0.0161	tt(+),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
26	Function: residential	0.0295	0.9852	wi(-),52	0.5534	0.7233	wi(-),21	0.2978	0.8511	wi(-),39	0.0018	0.9991	wi(-),29	0.0007	0.9996	wi(-),52
27	Function: gathering	0.8853	0.5573	wi(+),52	1.0000	0.5	wi(+),21	0.5972	0.7014	wi(+),39	0.0377	0.9812	wi(+),29	0.0675	0.9663	wi(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
29	Function: healthcare	0.7947	0.6026	wi(+),52	0.6831	0.6585	wi(+),21	0.7576	0.6212	wi(-),39	0.9904	0.5048	wi(+),29	0.9959	0.5021	wi(+),52
30	Function: factory	0.6714	0.6643	wi(+),52	0.5848	-0.5554	tt(-),21	0.8105	0.5948	wi(+),39	0.7395	0.6303	wi(+),29	0.9801	0.51	wi(-),52
31	Function: office	0.9252	-0.0944	tt(-),52	0.2735	-1.126	tt(-),21	0.4630	-0.7413	tt(-),39	0.4733	0.727	tt(+),29	0.5851	0.5494	tt(+),52
32	Function: guesthouse	0.3065	0.8468	wi(-),52	1.0000	equal	n/a,21	0.7803	0.6099	wi(-),39	0.7379	-0.338	tt(-),29	0.5303	0.7349	wi(-),52
33	Function: education	0.7947	0.6026	wi(+),52	0.4335	0.7832	wi(+),21	0.7684	0.6158	wi(+),39	0.7237	0.6382	wi(-),29	1.0000	0.5	wi(+),52
34	Function: sports	1.0000	equal	n/a,52	1.0000	equal	n/a,21	0.7576	0.6212	wi(-),39	0.7237	0.6382	wi(-),29	0.7874	0.6063	wi(-),52
35	Function: shops	0.8375	0.2062	tt(+),52	0.5054	0.6782	tt(+),21	0.2870	1.08	tt(+),39	0.2124	0.8938	wi(+),29	0.0874	1.7426	tt(+),52
36	Function: other	0.2677	0.8661	wi(-),52	0.1524	0.9238	wi(-),21	0.9552	0.0565	tt(+),39	0.0821	0.9589	wi(+),29	0.6573	0.4463	tt(+),52
37	Green: tree cover	0.0000	1.0	wi(-),52	0.0019	-3.5819	tt(-),21	0.0000	-5.4918	tt(-),39	0.0000	-4.9695	tt(-),29	0.0000	-6.4816	tt(-),52
38	Green: bush cover	0.0000	-5.8489	tt(-),52	0.0140	-2.6935	tt(-),21	0.0000	1.0	wi(-),39	0.0001	-4.6173	tt(-),29	0.0000	-6.0114	tt(-),52
39	Green: grass cover	0.0000	-6.226	tt(-),52	0.0143	-2.6837	tt(-),21	0.000	-5.8503	tt(-),39	0.0001	-4.5204	tt(-),29	0.0000	-6.1622	tt(-),52
4	Noise pollution: total	0.0000	-7.6297	tt(-),52	0.0003	-4.4242	tt(-),21	0.000	-7.1384	tt(-),39	0.0000	-5.3471	tt(-),29	0.0000	-7.5484	tt(-),52
41	Noise pollution: roads	0.0000	-6.6524	tt(-),52	0.0009	-3.8953	tt(-),21	0.0000	-6.7467	tt(-),39	0.0000	-4.9986	tt(-),29	0.0000	-6.6708	tt(-),52
42	Noise pollution: railways	0.0000	1.0	wi(-),52	0.0253	-2.4178	tt(-),21	0.0000	1.0	wi(-),39	0.0258	-2.3541	tt(-),29	0.0000	1.0	wi(-),52
4	Year constr.: mean	1.0000	equal	n/a,52	0.7022	0.6489	wi(+),21	0.1587	0.9207	wi(-),39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
45	Landmarks: FSI	0.0270	0.9865	wi(-),52	0.4336	0.7832	wi(-),21	0.6223	0.6888	wi(-),39	0.1204	0.9398	wi(-),29	0.0433	0.9784	wi(-),52
46	Landmarks: plot area	0.0355	0.9822	wi(-),52	0.1258	0.9371	wi(-),21	0.5689	0.7155	wi(-),39	0.2222	0.8889	wi(-),29	0.0734	0.9633	wi(-),52
47	Landmarks: Year constr.	0.0233	0.9884	wi(-),52	0.0813	0.9593	wi(-),21	0.4246	0.7877	wi(-),39	0.2311	0.8845	wi(-),29	0.1264	0.9368	wi(-),52
48	Landmarks: 1 criterion	0.0134	0.9933	wi(-),52	0.2101	0.895	wi(-),21	0.5321	0.734	wi(-),39	0.0252	0.9874	wi(-),29	0.0262	0.9869	wi(-),52
49	Landmarks: 2 criteria	0.0889	0.9556	wi(-),52	0.4336	0.7832	wi(-),21	0.3770	0.8115	wi(-),39	0.7485	0.6257	wi(-),29	0.2280	0.886	wi(-),52
50	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52

Figure 1.61: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (≥ 8 days / month), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least) I	Least stat	Least coef,n
6	Year constr.: < 1945	0.4222	0.7889	wi(-),52	0.6626	0.6687	wi(-),21	0.3460	0.827	wi(-),43	0.1877	0.9061	wi(-),27	0.2015	0.8993	wi(-),52
₽	Year constr.: 1946-1970	0.9424	0.0725	tt(+),52	0.6986	0.6507	wi(-),21	0.6492	-0.4582	tt(-),43	0.1315	1.5572	tt(+),27	0.3935	0.8606	tt(+),52
÷	Year constr.: 1971-1985	0.9741	0.513	wi(-),52	0.5250	0.7375	wi(+),21	0.1078	1.6431	tt(+),43	0.9513	0.5244	wi(-),27	0.5712	0.7144	wi(-),52
12	Year constr.: 1986-2000	0.0247	0.9876	wi(-),52	0.0317	0.9841	wi(-),21	0.2096	-1.2742	tt(-),43	0.5816	-0.558	tt(-),27	0.0734	-1.8281	tt(-),52
13	Year constr.: 2001-2022	0.6009	0.5264	tt(+),52	0.9907	-0.0118	tt(-),21	0.4906	0.7547	wi(+),43	0.0027	3.317	tt(+),27	0.0852	0.9574	wi(+),52
4	Traffic signals count	0.8051	0.5975	wi(-),52	0.7807	0.6096	wi(-),21	0.4420	0.779	wi(-),43	0.6984	0.6508	wi(-),27	0.9306	0.5347	wi(+),52
15	Stairs count	0.7845	0.2749	tt(+),52	0.4276	0.8098	tt(+),21	0.5334	-0.628	tt(-),43	0.7130	-0.3719	tt(-),27	0.7663	0.2989	tt(+),52
16	Status: for construction	0.6045	-0.5212	tt(-),52	0.2391	-1.2134	tt(-),21	0.6347	-0.4786	tt(-),43	0.6252	0.4943	tt(+),27	0.7821	0.6089	wi(-),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
18	Status: under construction	0.9959	0.5021	wi(+),52	0.6831	0.6585	wi(+),21	0.5800	0.71	wi(-),43	0.7150	0.6425	wi(-),27	0.7861	0.607	wi(-),52
19	Status: in use (n.m.)	0.9921	0.5039	wi(+),52	0.9848	0.5076	wi(+),21	0.1171	0.9414	wi(-),43	0.9896	0.5052	wi(+),27	0.6289	0.6855	wi(-),52
20	Status: in use	0.1897	0.9052	wi(-),52	0.2376	-1.2176	tt(-),21	0.5397	-0.6184	tt(-),43	0.9532	-0.0593	tt(-),27	0.3559	-0.9318	tt(-),52
21	Status: for demolition	1.0000	equal	n/a,52	1.0000	equal	n/a,21	0.7681	0.616	wi(+),43	1.0000	equal	n/a,27	0.7874	0.6063	wi(+),52
22	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
23	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
24	Status: reconstruction	0.0286	2.2522	tt(+),52	0.1670	1.4342	tt(+),21	0.7511	-0.3192	tt(-),43	1.0000	0.5	wi(+),27	0.5247	-0.6405	tt(-),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
26	Function: residential	0.0347	0.9827	wi(-),52	0.5494	-0.6089	tt(-),21	0.0617	0.9691	wi(-),43	0.0072	0.9964	wi(-),27	0.0007	0.9997	wi(-),52
27	Function: gathering	0.9275	0.5362	wi(-),52	0.9852	0.5074	wi(-),21	0.9948	0.5026	wi(+),43	0.0183	0.9908	wi(+),27	0.1116	0.9442	wi(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
58	Function: healthcare	0.6091	0.6954	wi(+),52	1.0000	0.5	wi(+),21	0.7681	0.616	wi(-),43	0.7150	0.6425	wi(+),27	0.9959	0.5021	wi(+),52
8	Function: factory	0.9862	-0.0173	tt(-),52	0.3783	-0.9011	tt(-),21	0.9948	0.5026	wi(+),43	0.4799	0.76	wi(+),27	0.8016	0.5992	wi(-),52
31	Function: office	0.9604	-0.0499	tt(-),52	0.2735	-1.126	tt(-),21	0.6236	-0.4944	tt(-),43	0.9898	0.5051	wi(+),27	0.8665	0.1689	tt(+),52
32	Function: guesthouse	0.3065	0.8468	wi(-),52	1.0000	equal	n/a,21	0.2038	0.8981	wi(-),43	0.4800	0.76	wi(+),27	0.5239	0.7381	wi(-),52
33	Function: education	0.7947	0.6026	wi(+),52	0.4335	0.7832	wi(+),21	0.5845	0.7077	wi(+),43	0.7150	0.6425	wi(-),27	0.7987	0.6007	wi(+),52
34	Function: sports	1.0000	equal	n/a,52	1.0000	equal	n/a,21	0.7681	0.616	wi(-),43	0.7150	0.6425	wi(-),27	0.7874	0.6063	wi(-),52
35	Function: shops	0.9083	0.1158	tt(+),52	0.4844	0.7125	tt(+),21	0.2778	1.0994	tt(+),43	0.0610	0.9695	wi(+),27	0.1350	1.5189	tt(+),52
36	Function: other	0.2906	0.8547	wi(-),52	0.0785	0.9608	wi(-),21	0.7217	0.3586	tt(+),43	0.0616	1.9538	tt(+),27	0.4078	0.8347	tt(+),52
37	Green: tree cover	0.0000	-6.7393	tt(-),52	0.0015	-3.6838	tt(-),21	0.0000	-5.912	tt(-),43	0.0000	-5.5979	tt(-),27	0.0000	-6.9331	tt(-),52
8	Green: bush cover	0.0000	-5.7907	tt(-),52	0.0081	-2.9406	tt(-),21	0.000	-5.4428	tt(-),43	0.0000	-5.1802	tt(-),27	0.0000	-6.1833	tt(-),52
39	Green: grass cover	0.0000	-6.0879	tt(-),52	0.0079	-2.9503	tt(-),21	0.0000	-6.3032	tt(-),43	0.0000	-5.7109	tt(-),27	0.0000	-6.9365	tt(-),52
4	Noise pollution: total	0.0000	-7.5101	tt(-),52	0.000	-5.1695	tt(-),21	0.000	-7.6487	tt(-),43	0.0000	-6.2173	tt(-),27	0.0000	-7.9869	tt(-),52
41	Noise pollution: roads	0.0000	-6.5682	tt(-),52	0.0003	-4.3617	tt(-),21	0.0000	-6.6938	tt(-),43	0.0000	-4.9188	tt(-),27	0.0000	-6.7073	tt(-),52
42	Noise pollution: railways	0.0000	1.0	wi(-),52	0.0190	-2.5531	tt(-),21	0.000	1.0	wi(-),43	0.0415	-2.145	tt(-),27	0.0002	-3.9537	tt(-),52
4	Year constr.: mean	1.0000	equal	n/a,52	0.6021	0.699	wi(+),21	0.1296	-1.5462	tt(-),43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
5	Landmarks: FSI	0.0165	0.9918	wi(-),52	0.2591	0.8705	wi(-),21	0.2366	0.8817	wi(-),43	0.4827	0.7587	wi(-),27	0.1043	0.9479	wi(-),52
46	Landmarks: plot area	0.0139	0.993	wi(-),52	0.1171	0.9414	wi(-),21	0.4764	0.7618	wi(-),43	0.2071	0.8965	wi(-),27	0.0757	0.9621	wi(-),52
47	Landmarks: Year constr.	0.0140	0.993	wi(-),52	0.0813	0.9593	wi(-),21	0.2005	0.8998	wi(-),43	0.5241	0.7379	wi(-),27	0.0858	0.9571	wi(-),52
8	Landmarks: 1 criterion	0.0032	0.9984	wi(-),52	0.1972	0.9014	wi(-),21	0.1683	0.9158	wi(-),43	0.1981	0.9009	wi(-),27	0.0393	0.9804	wi(-),52
49	Landmarks: 2 criteria	0.0889	0.9556	wi(-),52	0.2590	0.8705	wi(-),21	0.5639	0.7181	wi(-),43	1.0000	0.5	wi(+),27	0.3254	0.8373	wi(-),52
50	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52

Figure 1.62: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (≥ 8 days / month), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.7575	0.6213	wi(+),52	0.8951	0.1336	tt(+),21	0.8389	0.5805	wi(+),39	0.6611	0.6694	wi(-),29	0.8331	0.5834	wi(-),52
₽	Year constr.: 1946-1970	0.9370	0.5315	wi(-),52	0.3157	0.8422	wi(-),21	0.3218	-1.0038	tt(-),39	0.5045	-0.6761	tt(-),29	0.4689	-0.7298	tt(-),52
÷	Year constr.: 1971-1985	0.7896	0.6052	wi(+),52	0.3130	0.8435	wi(-),21	0.0599	0.9701	wi(+),39	0.2825	0.8588	wi(-),29	0.4835	0.7583	wi(+),52
12	Year constr.: 1986-2000	0.9812	0.5094	wi(+),52	0.9715	0.5143	wi(+),21	0.0672	0.9664	wi(+),39	0.4010	0.7995	wi(-),29	0.5838	0.7081	wi(+),52
13	Year constr.: 2001-2022	0.1146	0.9427	wi(+),52	0.0905	0.9548	wi(+),21	0.1280	0.936	wi(+),39	0.0067	2.9279	tt(+),29	0.0247	0.9877	wi(+),52
4	Traffic signals count	0.6652	0.6674	wi(-),52	0.6828	0.6586	wi(-),21	0.2855	0.8572	wi(-),39	0.2716	0.8642	wi(+),29	0.8397	0.5801	wi(-),52
15	Stairs count	0.8138	0.5931	wi(-),52	0.7067	0.6467	wi(+),21	0.2702	0.8649	wi(-),39	0.7395	0.6303	wi(-),29	0.4799	0.76	wi(-),52
16	Status: for construction	0.5964	0.7018	wi(+),52	0.6831	0.6585	wi(+),21	0.3856	0.8072	wi(+),39	0.7575	0.6212	wi(+),29	0.6141	0.693	wi(+),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
18	Status: under construction	0966.0	0.502	wi(+),52	0.4336	0.7832	wi(+),21	0.7684	0.6158	wi(-),39	0.7237	0.6382	wi(-),29	0.9919	0.504	wi(-),52
19	Status: in use (n.m.)	0.2089	0.8955	wi(+),52	0.4335	0.7832	wi(+),21	0.7724	0.6138	wi(-),39	1.0000	equal	n/a,29	0.6127	0.6937	wi(+),52
20	Status: in use	0.9162	0.5419	wi(-),52	0.2860	0.857	wi(-),21	0.7214	0.6393	wi(+),39	0.5495	0.7252	wi(-),29	0.6352	0.6824	wi(-),52
21	Status: for demolition	0.7874	0.6063	wi(+),52	0.6831	0.6585	wi(+),21	0.3770	0.8115	wi(+),39	1.0000	equal	n/a,29	0.5964	0.7018	wi(+),52
53	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
23	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
24	Status: reconstruction	0.7896	0.6052	wi(+),52	0.6790	0.6605	wi(+),21	0.1855	0.9072	wi(-),39	0.3647	0.8177	wi(-),29	0.1251	0.9374	wi(-),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
26	Function: residential	0.7344	0.6328	wi(+),52	0.8474	0.5763	wi(-),21	0.9776	0.5112	wi(-),39	0.0761	0.9619	wi(-),29	0.0942	0.9529	wi(-),52
27	Function: gathering	0.5188	0.7406	wi(-),52	0.9244	0.096	tt(+),21	0.8129	0.5935	wi(+),39	0.1232	0.9384	wi(+),29	0.1229	0.9386	wi(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
29	Function: healthcare	0.7947	0.6026	wi(-),52	1.0000	equal	n/a,21	0.3770	0.8115	wi(-),39	0.7237	0.6382	wi(+),29	0.6198	0.6901	wi(-),52
30	Function: factory	0.3539	0.8231	wi(+),52	0.9414	-0.0745	tt(-),21	0.5467	0.7266	wi(+),39	0.7395	0.6302	wi(-),29	0.9881	0.506	wi(+),52
31	Function: office	0.8740	0.563	wi(+),52	0.7208	0.6396	wi(+),21	0.2387	0.8807	wi(-),39	0.3314	0.9885	tt(+),29	0.6106	0.5123	tt(+),52
32	Function: guesthouse	0.7947	0.6026	wi(-),52	0.6831	0.6585	wi(+),21	0.7684	0.6158	wi(+),39	0.7217	0.6392	wi(+),29	0.7850	0.6075	wi(+),52
33	Function: education	0.7947	0.6026	wi(+),52	0.4335	0.7832	wi(+),21	0.7576	0.6212	wi(+),39	0.7237	0.6382	wi(-),29	1.0000	0.5	wi(+),52
34	Function: sports	1.0000	equal	n/a,52	1.0000	equal	n/a,21	0.7576	0.6212	wi(-),39	0.7237	0.6382	wi(-),29	0.7874	0.6063	wi(-),52
35	Function: shops	0.7693	0.6154	wi(+),52	0.9704	0.5148	wi(+),21	0.2112	1.2718	tt(+),39	0.0377	0.9812	wi(+),29	0.0128	0.9936	wi(+),52
36	Function: other	0.7567	0.6217	wi(-),52	0.2961	0.8519	wi(-),21	0.6336	0.6832	wi(+),39	0.2420	1.1952	tt(+),29	0.5475	0.6055	tt(+),52
37	Green: tree cover	0.2042	0.8979	wi(+),52	0.0138	2.6998	tt(+),21	0.2916	1.0695	tt(+),39	0.6335	0.4821	tt(+),29	0.0970	1.6904	tt(+),52
38	Green: bush cover	0.1623	0.9189	wi(+),52	0.0263	2.3998	tt(+),21	0.1353	0.9323	wi(+),39	0.9429	-0.0723	tt(-),29	0.2505	1.1622	tt(+),52
39	Green: grass cover	0.1272	0.9364	wi(+),52	0.0156	2.6427	tt(+),21	0.0389	0.9806	wi(+),39	0.5353	0.6276	tt(+),29	0.1159	1.5996	tt(+),52
4	Noise pollution: total	0.0789	1.7931	tt(+),52	0.1837	1.377	tt(+),21	0.0402	0.9799	wi(+),39	0.4961	0.6897	tt(+),29	0.0987	1.6821	tt(+),52
41	Noise pollution: roads	0.1060	0.947	wi(+),52	0.1277	1.5893	tt(+),21	0.2825	0.8587	wi(+),39	0.4210	0.8167	tt(+),29	0.1556	1.4413	tt(+),52
42	Noise pollution: railways	0.9127	0.5436	wi(+),52	0.3836	0.8082	wi(+),21	0.1247	0.9376	wi(+),39	0.5280	-0.639	tt(-),29	0.3768	0.8116	wi(+),52
4	Year constr.: mean	1.0000	equal	n/a,52	0.8749	0.5625	wi(+),21	0.2638	0.8681	wi(+),39	1.0000	equal	n/a,29	1.0000	equal	n/a,52
45	Landmarks: FSI	0.6141	0.693	wi(-),52	1.0000	equal	n/a,21	0.7873	0.6063	wi(+),39	0.6726	0.6637	wi(-),29	0.7584	0.6208	wi(-),52
46	Landmarks: plot area	0.0929	0.9536	wi(-),52	0.2099	0.895	wi(-),21	0.9768	0.5116	wi(-),39	0.9541	0.523	wi(-),29	0.4542	0.7729	wi(-),52
47	Landmarks: Year constr.	0.0889	0.9556	wi(-),52	0.2590	0.8705	wi(-),21	0.8378	0.5811	wi(-),39	0.5417	0.7292	wi(+),29	0.9733	0.5134	wi(+),52
48	Landmarks: 1 criterion	0.1283	0.9358	wi(-),52	0.1302	0.9349	wi(-),21	0.8978	0.5511	wi(-),39	0.5382	0.7309	wi(-),29	0.5557	0.7221	wi(-),52
49	Landmarks: 2 criteria	0.3065	0.8468	wi(-),52	1.0000	equal	n/a,21	0.7576	0.6212	wi(-),39	0.7237	0.6382	wi(+),29	0.7987	0.6007	wi(-),52
50	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,39	1.0000	equal	n/a,29	1.0000	equal	n/a,52

/ month),	
frequency of train travel (≥ 8 days ,	
aggregate analysis, sample: interaction -	baseline: shortest path, direction: access
Figure 1.63: Raw results for route	sub-question 3, data: standardised,

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	-east coef,n
6	Year constr.: < 1945	0.9522	0.5239	wi(-),52	0.8663	-0.1706	tt(-),21	0.8132	0.5934	wi(+),43	0.1530	0.9235	wi(-),27	0.7383	0.6308	wi(-),52
우	Year constr.: 1946-1970	0.6351	0.6825	wi(-),52	0.4613	0.7694	wi(-),21	0.3153	-1.0163	tt(-),43	0.8315	-0.215	tt(-),27	0.9881	0.0149	tt(+),52
÷	Year constr.: 1971-1985	0.9307	0.5346	wi(+),52	0.4564	0.7718	wi(-),21	0.0927	0.9536	wi(+),43	0.5896	0.7052	wi(-),27	0.7243	0.6379	wi(+),52
12	Year constr.: 1986-2000	0.6920	0.654	wi(+),52	0.4136	0.7932	wi(-),21	0.1716	0.9142	wi(+),43	0.6444	0.6778	wi(-),27	0.7261	0.637	wi(+),52
13	Year constr.: 2001-2022	0.1092	0.9454	wi(+),52	0.0905	0.9548	wi(+),21	0.1162	0.9419	wi(+),43	0.0084	2.854	tt(+),27	0.0132	0.9934	wi(+),52
4	Traffic signals count	0.5631	0.7185	wi(-),52	0.6569	0.6716	wi(-),21	0.4476	0.7762	wi(-),43	0.1789	0.9106	wi(+),27	0.7485	0.6258	wi(+),52
15	Stairs count	0.8138	0.5931	wi(-),52	0.7067	0.6467	wi(+),21	0.4340	0.783	wi(-),43	0.6632	0.4405	tt(+),27	0.7663	-0.2989	tt(-),52
16	Status: for construction	0.5964	0.7018	wi(+),52	0.6831	0.6585	wi(+),21	0.5724	0.7138	wi(+),43	0.7150	0.6425	wi(+),27	0.7899	0.605	wi(+),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
18	Status: under construction	0966.0	0.502	wi(+),52	0.4336	0.7832	wi(+),21	0.5800	0.71	wi(-),43	0.7150	0.6425	wi(-),27	0.7861	0.607	wi(-),52
19	Status: in use (n.m.)	0.4509	0.7746	wi(+),52	0.4335	0.7832	wl(+),21	0.7559	0.622	wi(-),43	0.7150	0.6425	wi(+),27	0.6127	0.6937	wi(+),52
20	Status: in use	0.4557	0.7722	wi(-),52	0.3924	0.8038	wi(-),21	0.8846	0.5577	wi(+),43	0.3158	0.8421	wi(-),27	0.7950	0.6025	wi(-),52
21	Status: for demolition	0.7874	0.6063	wi(+),52	0.6831	0.6585	wi(+),21	0.5639	0.7181	wi(+),43	1.0000	equal	n/a,27	0.5964	0.7018	wi(+),52
2	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
53	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
24	Status: reconstruction	0.6189	0.6906	wi(+),52	0.9267	0.0932	tt(+),21	0.0446	0.9777	wi(-),43	0.4799	0.76	wi(-),27	0.0369	0.9815	wi(-),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
26	Function: residential	0.7240	0.638	wi(+),52	0.6375	0.6813	wi(-),21	0.8221	0.5889	wi(-),43	0.0414	0.9793	wi(-),27	0.1079	0.9461	wi(-),52
27	Function: gathering	0.3874	0.8063	wi(-),52	0.7353	-0.3428	tt(-),21	0.9745	0.5128	wi(-),43	0.0374	0.9813	wi(+),27	0.0872	0.9564	wi(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
59	Function: healthcare	1.0000	0.5	wi(+),52	1.0000	equal	n/a,21	0.3967	0.8016	wi(-),43	0.7150	0.6425	wi(+),27	0.6198	0.6901	wi(-),52
8	Function: factory	0.4812	0.7594	wi(+),52	0.9414	-0.0745	tt(-),21	0.5664	0.7168	wi(+),43	0.9894	0.5053	wi(-),27	0.9881	0.506	wi(+),52
31	Function: office	0.8664	0.5668	wi(+),52	0.7208	0.6396	wi(+),21	0.4522	-0.7588	tt(-),43	0.4502	0.7667	tt(+),27	0.8504	0.1896	tt(+),52
32	Function: guesthouse	0.7947	0.6026	wi(-),52	0.6831	0.6585	wi(+),21	0.5995	0.7002	wi(-),43	0.4800	0.76	wi(+),27	0.8041	0.5979	wi(+),52
33	Function: education	0.7947	0.6026	wi(+),52	0.4335	0.7832	wi(+),21	0.5639	0.7181	wi(+),43	0.7150	0.6425	wi(-),27	0.7987	0.6007	wi(+),52
34	Function: sports	1.0000	equal	n/a,52	1.0000	equal	n/a,21	0.7681	0.616	wi(-),43	0.7150	0.6425	wi(-),27	0.7874	0.6063	wi(-),52
35	Function: shops	0.7803	0.6098	wi(+),52	0.7973	0.6014	wi(-),21	0.1520	1.459	tt(+),43	0.0610	0.9695	wi(+),27	0.0473	2.033	tt(+),52
36	Function: other	0.9356	0.5322	wi(-),52	0.4420	0.779	wi(-),21	0.5437	0.6122	tt(+),43	0.0643	1.9324	tt(+),27	0.3354	0.9724	tt(+),52
37	Green: tree cover	0.1339	0.933	wi(+),52	0.1433	0.9284	wi(+),21	0.0475	2.0413	tt(+),43	0.6665	0.4359	tt(+),27	0.1927	1.32	tt(+),52
88	Green: bush cover	0.0434	0.9783	wi(+),52	0.0389	2.2108	tt(+),21	0.1541	1.4513	tt(+),43	0.4331	0.7963	tt(+),27	0.2468	1.1717	tt(+),52
39	Green: grass cover	0.0415	0.9792	wi(+),52	0.0437	2.1528	tt(+),21	0.0333	2.2012	tt(+),43	0.4873	0.7046	tt(+),27	0.1750	1.3756	tt(+),52
4	Noise pollution: total	0.0663	1.8769	tt(+),52	0.1817	1.3838	tt(+),21	0.0436	2.0808	tt(+),43	0.3275	0.9979	tt(+),27	0.0738	1.8254	tt(+),52
41	Noise pollution: roads	0.0585	0.9707	wi(+),52	0.1288	1.5845	tt(+),21	0.0834	1.7733	tt(+),43	0.5107	0.667	tt(+),27	0.0936	1.7087	tt(+),52
42	Noise pollution: railways	0.6943	0.6528	wi(+),52	0.4433	0.7784	wi(+),21	0.3132	0.8434	wi(+),43	0.4434	-0.7783	tt(-),27	0.7665	-0.2985	tt(-),52
4	Year constr.: mean	1.0000	equal	n/a,52	0.7272	0.3537	tt(+),21	0.5414	0.7293	wi(+),43	1.0000	equal	n/a,27	1.0000	equal	n/a,52
45	Landmarks: FSI	0.4389	0.7806	wi(-),52	0.6831	0.6585	wi(-),21	0.6543	0.6728	wi(+),43	0.7091	0.6455	wi(-),27	0.9165	0.5418	wi(+),52
46	Landmarks: plot area	0.0364	0.9818	wi(-),52	0.1970	0.9015	wi(-),21	0.9550	0.5225	wi(-),43	0.4993	0.7503	wi(-),27	0.5752	0.7124	wi(-),52
47	Landmarks: Year constr.	0.0557	0.9721	wi(-),52	0.4336	0.7832	wi(-),21	0.8451	0.5774	wi(-),43	0.7673	0.6163	wi(-),27	0.8675	0.5663	wi(-),52
48	Landmarks: 1 criterion	0.0501	0.975	wi(-),52	0.1213	0.9393	wi(-),21	0.8584	0.5708	wi(+),43	0.3501	0.8249	wi(-),27	0.8196	0.5902	wi(-),52
49	Landmarks: 2 criteria	0.3065	0.8468	wi(-),52	0.6831	0.6585	wi(-),21	0.9946	0.5027	wi(-),43	0.7150	0.6425	wi(+),27	0.9960	0.502	wi(-),52
50	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,21	1.0000	equal	n/a,43	1.0000	equal	n/a,27	1.0000	equal	n/a,52

Figure 1.64: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (\geq 8 days / month), sub-question 3, data: standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	_
6	Year constr.: < 1945	0.8559	0.6770	(+),52	0.8919	0.7228	(+),41	0.5722	0.2547	(-),32	0.8769	0.2211	(-),52	
₽	Year constr.: 1946-1970	0.9666	0.5153	(-),52	0.7625	0.5000	(-),41	0.5264	0.3160	(-),32	0.4628	0.2780	(-),52	
Ŧ	Year constr.: 1971-1985	0.7741	0.5041	(+),52	0.5927	0.5307	(+),41	0.7916	0.4494	(-),32	0.7761	0.2581	(-),52	
12	Year constr.: 1986-2000	0.1836	0.3246	(+),52	0.3335	0.5150	(+),41	0.8847	0.6682	(+),32	0.6072	0.6576	(+),52	
13	Year constr.: 2001-2022	0.7784	0.3659	(-),52	0.7851	0.2382	(-),41	0.5419	0.0932	(-),32	0.3415	0.1255	(-),52	
14	Traffic signals count	0.3721	0.3516	(+),52	0.8296	0.5056	(+),41	0.6252	0.6614	(+),32	0.6790	0.5538	(+),52	
15	Stairs count	0.8176	0.3232	(-),52	0.4389	0.2194	(+),41	0.7856	0.5036	(-),32	0.3811	0.2583	(+),52	
16	Status: for construction	0.3077	0.3850	(+),52	0.8723	0.6407	(+),41	0.8357	0.4646	(-),32	0.7480	0.6498	(+),52	
17	Status: unrealised	1.0000	0.0000	(-),52	1.0000	0.0000	(-),41	1.0000	0.0000	(-),32	1.0000	0.0000	(-),52	
18	Status: under construction	1.0000	0.5032	(-),52	0.6628	0.3355	(-),41	0.6340	0.3170	(+),32	0.9807	0.4904	(+),52	
19	Status: in use (n.m.)	0.7769	0.6244	(+),52	0.3087	0.2382	(+),41	0.4178	0.0000	(+),32	0.3769	0.3821	(+),52	
20	Status: in use	0.5471	0.5941	(+),52	0.6066	0.6871	(+),41	0.7828	0.1889	(-),32	0.9715	0.7987	(+),52	
51	Status: for demolition	1.0000	0.0000	(-),52	0.1599	0.0799	(-),41	0.3327	0.1663	(-),32	0.1593	0.0796	(-),52	
52	Status: demolished	1.0000	0.0000	(-),52	1.0000	0.0000	(-),41	1.0000	0.0000	(-),32	1.0000	0.0000	(-),52	
33	Status: not in use	1.0000	0.0000	(-),52	1.0000	0.0000	(-),41	1.0000	0.0000	(-),32	1.0000	0.0000	(-),52	
24	Status: reconstruction	0.0945	0.2620	(-),52	0.4538	0.6822	(-),41	0.1888	0.5690	(-),32	0.4562	0.6105	(-),52	
25	Status: illegitimate	1.0000	0.0000	(-),52	1.0000	0.0000	(-),41	1.0000	0.0000	(-),32	1.0000	0.000	(-),52	
26	Function: residential	0.2775	0.4933	(+),52	0.5195	0.6691	(+),41	0.6992	0.6185	(+),32	0.4726	0.6148	(+),52	
27	Function: gathering	0.6492	0.4252	(+),52	0.6975	0.4724	(+),41	0.0544	0.0596	(-),32	0.3713	0.1239	(-),52	
28	Function: prison	1.0000	0.0000	(-),52	1.0000	0.0000	(-),41	1.0000	0.0000	(-),32	1.0000	0.000	(-),52	
29	Function: healthcare	0.1739	0.2035	(-),52	0.9862	0.7254	(-),41	0.9822	0.5089	(-),32	0.9891	0.7238	(-),52	
8	Function: factory	0.9906	0.4743	(-),52	0.7067	0.3823	(+),41	0.4603	0.5255	(-),32	0.8119	0.3884	(-),52	
3	Function: office	0.9971	0.3876	(-),52	0.3988	0.2699	(+),41	0.8630	0.4197	(-),32	0.9679	0.3971	(-),52	
32	Function: guesthouse	0.0942	0.0000	(+),52	0.1689	0.0000	(+),41	0.9872	0.0803	(-),32	0.4772	0.8495	(+),52	
33	Function: education	0.4071	0.5039	(+),52	0.9928	0.2025	(-),41	0.5698	0.2849	(+),32	0.4071	0.5039	(+),52	
34	Function: sports	1.0000	0.0000	(-),52	0.3293	0.1646	(+),41	0.3327	0.1663	(+),32	0.3267	0.1634	(+),52	
35	Function: shops	0.4456	0.3481	(-),52	0.6545	0.5294	(-),41	0.0910	0.1461	(-),32	0.2520	0.2133	(-),52	
36	Function: other	0.6217	0.4163	(+),52	0.9581	0.2464	(-),41	0.3261	0.2270	(-),32	0.7552	0.2983	(-),52	
37	Green: tree cover	0.0000	0.5181	(+),52	0.0002	0.6516	(+),41	0.0035	0.4599	(+),32	0.0003	0.6348	(+),52	
88	Green: bush cover	0.0002	0.4870	(+),52	0.0003	0.4557	(+),41	0.0094	0.4386	(+),32	0.0009	0.5773	(+),52	
39	Green: grass cover	0.0004	0.5620	(+),52	0.005	0.6096	(+),41	0600.0	0.4813	(+),32	0.0010	0.5875	(+),52	
4	Noise pollution: total	0.0049	0.4560	(+),52	0:0030	0.3553	(+),41	0.0213	0.5401	(+),32	0.0046	0.5233	(+),52	
4	Noise pollution: roads	0.0013	0.4922	(+),52	0.0019	0.3623	(+),41	0.0071	0.4652	(+),32	0.0008	0.4303	(+),52	
4	Noise pollution: railways	0.1274	0.4676	(+),52	0.0804	0.4741	(+),41	0.2192	0.4652	(+),32	0.1298	0.5052	(+),52	
4	Year constr.: mean	0.7549	0.3848	(+),52	0.7808	0.3780	(+),41	0.3827	0.4070	(+),32	0.7624	0.3070	(+),52	
5	Landmarks: FSI	0.5765	0.3332	(+),52	0.9741	0.5345	(+),41	0.8156	0.4273	(+),32	0.8036	0.4591	(+),52	
46	Landmarks: plot area	0.4475	0.4957	(+),52	0.5197	0.5665	(+),41	0.7596	0.5061	(+),32	0.5975	0.5605	(+),52	
47	Landmarks: Year constr.	0.3094	0.3708	(+),52	0.8131	0.6021	(+),41	0.8721	0.6865	(+),32	0.7681	0.6643	(+),52	
8	Landmarks: 1 criterion	0.5225	0.3765	(+),52	0.7539	0.5077	(+),41	0.9541	0.5487	(+),32	0.8036	0.5454	(+),52	
49	Landmarks: 2 criteria	0.3576	0.3421	(+),52	0.3339	0.3403	(+),41	0.7896	0.4907	(+),32	0.5616	0.4772	(+),52	
20	Landmarks: 3 criterla	1.0000	0.0000	(-),52	1.0000	0.0000	(-),41	1.0000	0.0000	(-),32	1.0000	0.0000	(-),52	

Figure 1.65: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	
6	Year constr.: < 1945	0.8044	0.6578	(+),52	0.9305	0.1888	(-),40	0.7931	0.3992	(-),33	0.9501	0.7170	(+),52	
₽	Year constr.: 1946-1970	0.9110	0.4986	(-),52	0.8182	0.4205	(-),40	0.5657	0.4878	(-),33	0.7217	0.4021	(-),52	
Ŧ	Year constr.: 1971-1985	0.6323	0.4229	(+),52	0.6716	0.1876	(-),40	0.9614	0.4891	(-),33	0.7037	0.2259	(-),52	
12	Year constr.: 1986-2000	0.1707	0.3139	(+),52	0.5788	0.7079	(+),40	0.6793	0.4365	(+),33	0.4603	0.5385	(+),52	
13	Year constr.: 2001-2022	0.7306	0.3424	(-),52	0.6933	0.1787	(-),40	0.2811	0.0816	(-),33	0.3533	0.1219	(-),52	
14	Traffic signals count	0.4103	0.3491	(+),52	0.6771	0.4536	(+),40	0.5559	0.6396	(+),33	0.8671	0.6787	(+),52	
15	Stairs count	0.8176	0.3232	(-),52	0.7912	0.2917	(+),40	0.6006	0.3996	(+),33	0.2784	0.1956	(+),52	
16	Status: for construction	0.3077	0.3850	(+),52	0.4667	0.3985	(+),40	0.8411	0.3463	(-),33	0.7480	0.6498	(+),52	
17	Status: unrealised	1.0000	0.0000	(-),52	1.0000	0.0000	(-),40	1.0000	0.0000	(-),33	1.0000	0.0000	(-),52	
18	Status: under construction	1.0000	0.5032	(-),52	1.0000	0.4958	(+),40	0.9876	0.4938	(+),33	0.9936	0.4968	(+),52	
19	Status: in use (n.m.)	0.7769	0.6244	(+),52	0.1936	0.2382	(+),40	0.6648	0.0000	(+),33	0.3769	0.3821	(+),52	
20	Status: in use	0.4964	0.5660	(+),52	0.9233	0.8176	(+),40	0.9131	0.6922	(+),33	0.7598	0.7309	(+),52	
21	Status: for demolition	1.0000	0.0000	(-),52	0.3296	0.1648	(-),40	0.3322	0.1661	(-),33	0.1593	0.0796	(-),52	
52	Status: demolished	1.0000	0.0000	(-),52	1.0000	0.0000	(-),40	1.0000	0.0000	(-),33	1.0000	0.0000	(-),52	
23	Status: not in use	1.0000	0.0000	(-),52	1.0000	0.0000	(-),40	1.0000	0.0000	(-),33	1.0000	0.0000	(-),52	
24	Status: reconstruction	0.1476	0.3481	(-),52	0.3374	0.5680	(-),40	0.5097	0.7182	(-),33	0.6284	0.7137	(-),52	
25	Status: illegitimate	1.0000	0.0000	(-),52	1.0000	0.0000	(-),40	1.0000	0.0000	(-),33	1.0000	0.0000	(-),52	
26	Function: residential	0.2617	0.4718	(+),52	0.6215	0.7093	(+),40	0.6054	0.5485	(+),33	0.4691	0.6235	(+),52	
27	Function: gathering	0.7043	0.4536	(+),52	0.6902	0.3157	(-),40	0.1472	0.0387	(-),33	0.3525	0.1149	(-),52	
28	Function: prison	1.0000	0.0000	(-),52	1.0000	0.0000	(-),40	1.0000	0.0000	(-),33	1.0000	0.000	(-),52	
29	Function: healthcare	0.3148	0.3273	(-),52	0.5686	0.5051	(-),40	0.3322	0.5086	(-),33	0.5674	0.5039	(-),52	
8	Function: factory	0.9906	0.4743	(-),52	0.7903	0.3951	(-),40	0.4177	0.6227	(-),33	0.8119	0.3884	(-),52	
31	Function: office	0.9131	0.3492	(-),52	0.8239	0.5087	(+),40	0.4757	0.2408	(+),33	0.6427	0.3957	(+),52	
32	Function: guesthouse	0.0942	0.0000	(+),52	0.4292	0.9252	(+),40	0.5577	0.0000	(+),33	0.2583	0.7275	(+),52	
33	Function: education	0.1739	0.2837	(+),52	0.9926	0.2024	(-),40	0.9876	0.5062	(-),33	0.9944	0.2035	(-),52	
34	Function: sports	1.0000	0.0000	(-),52	0.3296	0.1648	(+),40	0.3322	0.1661	(+),33	0.3267	0.1634	(+),52	
35	Function: shops	0.5548	0.4122	(-),52	0.3402	0.2924	(-),40	0.0606	0.1034	(-),33	0.1544	0.1488	(-),52	
36	Function: other	0.8201	0.5217	(+),52	0.9525	0.5475	(+),40	0.2896	0.1164	(-),33	0.8709	0.3445	(-),52	
37	Green: tree cover	0.0001	0.5887	(+),52	0.0002	0.5876	(+),40	0.0006	0.4262	(+),33	0.0001	0.4689	(+),52	
88	Green: bush cover	0.0003	0.4831	(+),52	0.0005	0.4962	(+),40	0.0019	0.4566	(+),33	0.0005	0.4741	(+),52	
39	Green: grass cover	0.0005	0.5988	(+),52	0.0003	0.5345	(+),40	0.0032	0.5332	(+),33	0.0011	0.5440	(+),52	
4	Noise pollution: total	0.0046	0.4470	(+),52	0.0063	0.5383	(+),40	0.0092	0.5179	(+),33	0.0045	0.5414	(+),52	
4	Noise pollution: roads	0.0012	0.4883	(+),52	0.0051	0.5422	(+),40	0.0026	0.4212	(+),33	0.0011	0.4483	(+),52	
42	Noise pollution: railways	0.1242	0.4534	(+),52	0.0555	0.4731	(+),40	0.2989	0.5026	(+),33	0.1641	0.5337	(+),52	
4	Year constr.: mean	0.8453	0.4251	(+),52	0.6304	0.2850	(+),40	0.7533	0.6404	(+),33	0.9637	0.3973	(+),52	
5	Landmarks: FSI	0.5765	0.3332	(+),52	0.9468	0.4933	(+),40	0.8281	0.4140	(+),33	0.7701	0.4388	(+),52	
46	Landmarks: plot area	0.3836	0.4639	(+),52	0.9466	0.6804	(+),40	0.5750	0.5706	(+),33	0.6775	0.6095	(+),52	
47	Landmarks: Year constr.	0.3094	0.3708	(+),52	0.9286	0.6827	(+),40	0.9592	0.4864	(+),33	0.7896	0.6687	(+),52	
8	Landmarks: 1 criterion	0.5047	0.3557	(+),52	0.8859	0.5958	(+),40	0.9106	0.4748	(+),33	0.7770	0.5289	(+),52	
49	Landmarks: 2 criteria	0.3576	0.3421	(+),52	0.7721	0.4816	(+),40	0.7879	0.6361	(+),33	0.7814	0.5939	(+),52	
50	Landmarks: 3 criteria	1.0000	0.0000	(-),52	1.0000	0.0000	(-),40	1.0000	0.0000	(-),33	1.0000	0.0000	(-),52	

Figure 1.66: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	
6	Year constr.: < 1945	0.6508	0.6770	(+),52	0.5607	0.7228	(+),41	0.5093	0.7497	(+),32	0.4422	0.7809	(+),52	
₽	Year constr.: 1946-1970	0.9749	0.5153	(-),52	1.0000	0.5039	(+),41	0.6319	0.6895	(+),32	0.5560	0.7243	(+),52	
÷	Year constr.: 1971-1985	0.9973	0.5041	(+),52	0.9463	0.5307	(+),41	0.8988	0.5562	(+),32	0.5163	0.7441	(+),52	
12	Year constr.: 1986-2000	0.6492	0.6778	(-),52	0.9775	0.5150	(+),41	0.6736	0.6682	(+),32	0.6898	0.6576	(+),52	
13	Year constr.: 2001-2022	0.7318	0.6366	(+),52	0.4764	0.7647	(+),41	0.1864	0.9091	(+),32	0.2511	0.8758	(+),52	
14	Traffic signals count	0.7032	0.6509	(-),52	0.9963	0.5056	(+),41	0.6871	0.6614	(+),32	0.8976	0.5538	(+),52	
15	Stairs count	0.6464	0.6800	(+),52	0.4389	0.7843	(-),41	0.9929	0.5036	(+),32	0.5166	0.7444	(-),52	
16	Status: for construction	0.7700	0.6196	(-),52	0.7304	0.6407	(+),41	0.9292	0.5432	(+),32	0.7088	0.6498	(+),52	
17	Status: unrealised	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	1.0000	0.0000	(+),32	1.0000	0.0000	(+),52	
18	Status: under construction	0.9936	0.5032	(+),52	0.6709	0.6726	(+),41	0.6340	0.6932	(-),32	0.9807	0.5160	(-),52	
19	Status: in use (n.m.)	0.7605	0.6244	(+),52	0.4764	0.7673	(-),41	1.0000	0.0000	(+),32	0.7641	0.6230	(-),52	
30	Status: in use	0.8169	0.5941	(+),52	0.6324	0.6871	(+),41	0.3779	0.8147	(+),32	0.4062	0.7987	(+),52	
21	Status: for demolition	1.0000	0.0000	(+),52	0.1599	0.9251	(+),41	0.3327	0.8488	(+),32	0.1593	0.9243	(+),52	
8	Status: demolished	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	1.0000	0.0000	(+),32	1.0000	0.0000	(+),52	
83	Status: not in use	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	1.0000	0.0000	(+),32	1.0000	0.0000	(+),52	
24	Status: reconstruction	0.5240	0.7406	(+),52	0.6442	0.6822	(-),41	0.8758	0.5690	(-),32	0.7855	0.6105	(-),52	
25	Status: illegitimate	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	1.0000	0.0000	(+),32	1.0000	0.0000	(+),52	
26	Function: residential	0.9865	0.5094	(-),52	0.6686	0.6691	(+),41	0.7737	0.6185	(+),32	0.7755	0.6148	(+),52	
27	Function: gathering	0.8505	0.5783	(-),52	0.9448	0.5326	(-),41	0.1193	0.9426	(+),32	0.2479	0.8778	(+),52	
28	Function: prison	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	1.0000	0.0000	(+),32	1.0000	0.0000	(+),52	
59	Function: healthcare	0.4071	0.8010	(+),52	0.5684	0.7254	(-),41	0.9822	0.5089	(+),32	0.5674	0.7238	(-),52	
8	Function: factory	0.9486	0.5304	(+),52	0.7645	0.6242	(-),41	0.9660	0.5255	(-),32	0.7769	0.6159	(+),52	
31	Function: office	0.7752	0.6152	(+),52	0.5398	0.7336	(-),41	0.8395	0.5861	(+),32	0.7941	0.6058	(+),52	
32	Function: guesthouse	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	0.1606	0.9261	(+),32	0.3102	0.8495	(+),52	
33	Function: education	0.9922	0.5039	(+),52	0.4050	0.8032	(+),41	0.5698	0.7274	(-),32	0.9922	0.5039	(+),52	
34	Function: sports	1.0000	0.0000	(+),52	0.3293	0.8472	(-),41	0.3327	0.8488	(-),32	0.3267	0.8460	(-),52	
35	Function: shops	0.6963	0.6546	(+),52	0.9496	0.5294	(-),41	0.2921	0.8573	(+),32	0.4266	0.7888	(+),52	
36	Function: other	0.8326	0.5864	(-),52	0.4928	0.7566	(+),41	0.4540	0.7772	(+),32	0.5966	0.7040	(+),52	
37	Green: tree cover	0.9689	0.5181	(+),52	0.7038	0.6516	(+),41	0.9198	0.5454	(-),32	0.7353	0.6348	(+),52	
38	Green: bush cover	0.9741	0.5156	(-),52	0.9114	0.5480	(-),41	0.8773	0.5667	(-),32	0.8505	0.5773	(+),52	
39	Green: grass cover	0.8811	0.5620	(+),52	0.7880	0.6096	(+),41	0.9625	0.5241	(-),32	0.8301	0.5875	(+),52	
4	Noise pollution: total	0.9120	0.5466	(-),52	0.7107	0.6481	(-),41	0.9304	0.5401	(+),32	0.9585	0.5233	(+),52	
41	Noise pollution: roads	0.9844	0.5104	(-),52	0.7245	0.6412	(-),41	0.9304	0.5401	(-),32	0.8607	0.5722	(-),52	
42	Noise pollution: railways	0.9352	0.5350	(-),52	0.9482	0.5296	(-),41	0.9304	0.5401	(-),32	0.9948	0.5052	(+),52	
4	Year constr.: mean	0.7696	0.6177	(-),52	0.7559	0.6256	(-),41	0.8140	0.5982	(-),32	0.6141	0.6952	(-),52	
5	Landmarks: FSI	0.6664	0.6697	(-),52	0.9397	0.5345	(+),41	0.8546	0.5792	(-),32	0.9182	0.5440	(-),52	
46	Landmarks: plot area	0.9913	0.5072	(-),52	0.8750	0.5665	(+),41	1.0000	0.5061	(+),32	0.8847	0.5605	(+),52	
47	Landmarks: Year constr.	0.7415	0.6325	(-),52	0.8044	0.6021	(+),41	0.6397	0.6865	(+),32	0.6774	0.6643	(+),52	
48	Landmarks: 1 criterion	0.7531	0.6261	(-),52	0.9923	0.5077	(+),41	0.9141	0.5487	(+),32	0.9147	0.5454	(+),52	
49	Landmarks: 2 criteria	0.6842	0.6628	(-),52	0.6807	0.6666	(-),41	0.9814	0.5186	(-),32	0.9544	0.5279	(-),52	
20	Landmarks: 3 criteria	1.0000	0.0000	(+),52	1.0000	0.0000	(+),41	1.0000	0.0000	(+),32	1.0000	0.0000	(+),52	

Figure 1.67: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.6893	0.6578	(+),52	0.3776	0.8138	(+),40	0.7983	0.6059	(+),33	0.5704	0.7170	(+),52
9	Year constr.: 1946-1970	0.9972	0.5042	(+),52	0.8410	0.5834	(+),40	0.9756	0.5183	(+),33	0.8042	0.6006	(+),52
÷	Year constr.: 1971-1985	0.8459	0.5797	(-),52	0.3752	0.8151	(+),40	0.9782	0.5164	(+),33	0.4519	0.7761	(+),52
12	Year constr.: 1986-2000	0.6277	0.6885	(-),52	0.5909	0.7079	(+),40	0.8730	0.5687	(-),33	0.9282	0.5385	(+),52
13	Year constr.: 2001-2022	0.6848	0.6601	(+),52	0.3573	0.8239	(+),40	0.1631	0.9204	(+),33	0.2437	0.8795	(+),52
14	Traffic signals count	0.6981	0.6534	(-),52	0.9072	0.5502	(-),40	0.7305	0.6396	(+),33	0.6472	0.6787	(+),52
15	Stairs count	0.6464	0.6800	(+),52	0.5833	0.7131	(-),40	0.7993	0.6065	(-),33	0.3912	0.8067	(-),52
16	Status: for construction	0.7700	0.6196	(-),52	0.7970	0.6077	(-),40	0.6925	0.6610	(+),33	0.7088	0.6498	(+),52
17	Status: unrealised	1.0000	0.0000	(+),52	1.0000	0.0000	(+),40	1.0000	0.0000	(+),33	1.0000	0.0000	(+),52
18	Status: under construction	0.9936	0.5032	(+),52	0.9916	0.5126	(-),40	0.9876	0.5186	(-),33	0.9936	0.5096	(-),52
19	Status: in use (n.m.)	0.7605	0.6244	(+),52	0.4764	0.7675	(-),40	1.0000	0.0000	(+),33	0.7641	0.6230	(-),52
20	Status: in use	0.8731	0.5660	(+),52	0.3699	0.8176	(+),40	0.6248	0.6922	(+),33	0.5425	0.7309	(+),52
51	Status: for demolition	1.0000	0.0000	(+),52	0.3296	0.8473	(+),40	0.3322	0.8486	(+),33	0.1593	0.9243	(+),52
52	Status: demolished	1.0000	0.0000	(+),52	1.0000	0.0000	(+),40	1.0000	0.0000	(+),33	1.0000	0.0000	(+),52
23	Status: not in use	1.0000	0.0000	(+),52	1.0000	0.0000	(+),40	1.0000	0.0000	(+),33	1.0000	0.0000	(+),52
24	Status: reconstruction	0.6963	0.6548	(+),52	0.8733	0.5680	(-),40	0.5759	0.7182	(-),33	0.5783	0.7137	(-),52
25	Status: illegitimate	1.0000	0.0000	(+),52	1.0000	0.0000	(+),40	1.0000	0.0000	(+),33	1.0000	0.0000	(+),52
26	Function: residential	0.9435	0.5309	(-),52	0.5882	0.7093	(+),40	0.9137	0.5485	(+),33	0.7581	0.6235	(+),52
27	Function: gathering	0.9071	0.5500	(-),52	0.6314	0.6887	(+),40	0.0774	0.9628	(+),33	0.2298	0.8867	(+),52
28	Function: prison	1.0000	0.0000	(+),52	1.0000	0.0000	(+),40	1.0000	0.0000	(+),33	1.0000	0.0000	(+),52
29	Function: healthcare	0.6546	0.6790	(+),52	0.9898	0.5051	(+),40	0.9828	0.5086	(+),33	0.9922	0.5039	(+),52
8	Function: factory	0.9486	0.5304	(+),52	0.7903	0.6110	(+),40	0.7711	0.6227	(-),33	0.7769	0.6159	(+),52
3	Function: office	0.6984	0.6535	(+),52	0.9913	0.5087	(+),40	0.4817	0.7638	(-),33	0.7915	0.6071	(-),52
32	Function: guesthouse	1.0000	0.0000	(+),52	0.1599	0.9252	(+),40	1.0000	0.0000	(+),33	0.5599	0.7275	(+),52
33	Function: education	0.5674	0.7238	(-),52	0.4048	0.8035	(+),40	0.9876	0.5062	(+),33	0.4071	0.8010	(+),52
34	Function: sports	1.0000	0.0000	(+),52	0.3296	0.8473	(-),40	0.3322	0.8486	(-),33	0.3267	0.8460	(-),52
35	Function: shops	0.8244	0.5907	(+),52	0.5848	0.7113	(+),40	0.2068	0.8992	(+),33	0.2976	0.8529	(+),52
36	Function: other	0.9620	0.5217	(+),52	0.9130	0.5475	(+),40	0.2328	0.8862	(+),33	0.6890	0.6580	(+),52
37	Green: tree cover	0.8276	0.5887	(+),52	0.8323	0.5876	(+),40	0.8525	0.5788	(-),33	0.9378	0.5337	(-),52
38	Green: bush cover	0.9663	0.5194	(-),52	0.9923	0.5077	(-),40	0.9132	0.5485	(-),33	0.9482	0.5285	(-),52
39	Green: grass cover	0.8074	0.5988	(+),52	0.9386	0.5345	(+),40	0.9438	0.5332	(+),33	0.9172	0.5440	(+),52
4	Noise pollution: total	0.8940	0.5556	(-),52	0.9310	0.5383	(+),40	0.9744	0.5179	(+),33	0.9223	0.5414	(+),52
4	Noise pollution: roads	0.9767	0.5143	(-),52	0.9233	0.5422	(+),40	0.8424	0.5838	(-),33	0.8965	0.5543	(-),52
4	Noise pollution: railways	0.9068	0.5492	(-),52	0.9463	0.5307	(-),40	0.9949	0.5026	(+),33	0.9378	0.5337	(+),52
4	Year constr.: mean	0.8503	0.5774	(-),52	0.5699	0.7183	(-),40	0.7289	0.6404	(+),33	0.7947	0.6052	(-),52
5	Landmarks: FSI	0.6664	0.6697	(-),52	0.9867	0.5111	(-),40	0.8281	0.5922	(-),33	0.8775	0.5643	(-),52
46	Landmarks: plot area	0.9277	0.5390	(-),52	0.6466	0.6804	(+),40	0.8705	0.5706	(+),33	0.7865	0.6095	(+),52
47	Landmarks: Year constr.	0.7415	0.6325	(-),52	0.6427	0.6827	(+),40	0.9728	0.5204	(-),33	0.6685	0.6687	(+),52
84	Landmarks: 1 criterion	0.7114	0.6469	(-),52	0.8161	0.5958	(+),40	0.9497	0.5308	(-),33	0.9477	0.5289	(+),52
49	Landmarks: 2 criteria	0.6842	0.6628	(-),52	0.9631	0.5258	(-),40	0.7459	0.6361	(+),33	0.8217	0.5939	(+),52
20	Landmarks: 3 criteria	1.0000	0.0000	(+),52	1.0000	0.0000	(+),40	1.0000	0.0000	(+),33	1.0000	0.0000	(+),52

Figure 1.68: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: non-standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.1151	0.9425	wi(-),52	0.6259	0.687	wi(-),41	0.3411	0.8294	wi(+),32	0.7237	0.6381	wi(+),52
9	Year constr.: 1946-1970	0.7292	0.6354	wi(-),52	0.6457	0.4633	tt(+),41	0.3472	0.8264	wi(+),32	0.0823	0.9588	wi(+),52
Ŧ	Year constr.: 1971-1985	0.7103	0.6448	wi(+),52	0.6259	0.687	wi(-),41	0.7909	0.6045	wi(-),32	0.9225	0.5388	wi(+),52
12	Year constr.: 1986-2000	0.0482	0.9759	wi(-),52	0.2096	0.8952	wi(-),41	0.4452	0.7774	wi(-),32	0.4406	0.7797	wi(-),52
13	Year constr.: 2001-2022	0.1580	1.433	tt(+),52	0.1851	1.3486	tt(+),41	0.0388	0.9806	wi(+),32	0.0114	0.9943	wi(+),52
4	Traffic signals count	0.1142	0.9429	wi(-),52	0.3844	0.8078	wi(-),41	0.5112	0.7444	wi(-),32	0.4727	0.7637	wi(-),52
15	Stairs count	0.8110	0.2403	tt(+),52	0.3722	-0.9025	tt(-),41	0.7683	0.2972	tt(+),32	0.3220	-1.0	tt(-),52
16	Status: for construction	0.2543	-1.1529	tt(-),52	0.8644	-0.1719	tt(-),41	0.8401	0.2035	tt(+),32	0.7063	-0.379	tt(-),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
18	Status: under construction	0.7874	0.6063	wi(+),52	0.5555	0.7222	wi(+),41	0.3377	0.8311	wi(-),32	0.6162	0.6919	wi(-),52
19	Status: in use (n.m.)	0.6198	0.6901	wi(-),52	0.3954	0.8023	wi(-),41	0.3850	0.8075	wi(-),32	0.4689	0.7656	wi(-),52
20	Status: in use	0.3696	0.8152	wi(-),52	0.3816	0.8092	wi(-),41	0.6267	0.6866	wi(+),32	0.9274	0.5363	wi(+),52
21	Status: for demolition	1.0000	equal	n/a,52	0.5555	0.7222	wi(+),41	0.7353	0.6323	wi(+),32	0.5964	0.7018	wi(+),52
22	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
23	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
24	Status: reconstruction	0.0326	2.197	tt(+),52	0.4356	0.7875	tt(+),41	0.1974	1.3172	tt(+),32	0.4296	0.7963	tt(+),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
26	Function: residential	0.0791	-1.7919	tt(-),52	0.4515	-0.7603	tt(-),41	0.1085	0.9457	wi(-),32	0.0464	0.9768	wi(-),52
27	Function: gathering	0.6189	0.6905	wi(-),52	0.9664	0.5168	wi(-),41	0.0438	0.9781	wi(+),32	0.1733	0.9134	wi(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
29	Function: healthcare	0.4508	0.7746	wi(+),52	1.0000	0.5	wi(+),41	1.0000	0.5	wi(+),32	1.0000	0.5	wi(+),52
30	Function: factory	0.8234	0.5883	wi(+),52	0.7715	0.6143	wi(-),41	0.5337	0.7331	wi(+),32	0.8233	0.5883	wi(+),52
31	Function: office	0.6427	0.6786	wi(-),52	0.1671	-1.4071	tt(-),41	0.9044	0.1211	tt(+),32	0.9120	-0.1111	tt(-),52
32	Function: guesthouse	0.2089	0.8956	wi(-),52	0.2591	0.8705	wi(-),41	0.9837	0.5081	wi(+),32	0.4842	0.7579	wi(-),52
33	Function: education	0.5964	0.7018	wi(-),52	1.0000	0.5	wi(+),41	0.7353	0.6323	wi(-),32	0.6091	0.6954	wi(-),52
34	Function: sports	1.0000	equal	n/a,52	0.7630	0.6185	wi(-),41	0.7353	0.6323	wi(-),32	0.7874	0.6063	wi(-),52
35	Function: shops	0.2159	1.253	tt(+),52	0.4414	0.7776	tt(+),41	0.0167	0.9916	wi(+),32	0.0764	1.8088	tt(+),52
36	Function: other	0.6509	0.6745	wi(-),52	0.8493	0.5754	wi(+),41	0.1754	0.9123	wi(+),32	0.7113	0.6444	wi(+),52
37	Green: tree cover	0.0000	-7.7995	tt(-),52	0.0000	-6.8727	tt(-),41	0.0000	-5.5854	tt(-),32	0.0000	-6.954	tt(-),52
38	Green: bush cover	0.0000	-8.2383	tt(-),52	0.0000	-7.5644	tt(-),41	0.000	-4.9795	tt(-),32	0.000	-6.8272	tt(-),52
39	Green: grass cover	0.0000	-7.4197	tt(-),52	0.0000	-7.1191	tt(-),41	0.0000	-5.54	tt(-),32	0.0000	-6.8896	tt(-),52
4	Noise pollution: total	0.0000	-9.3849	tt(-),52	0.0000	-8.464	tt(-),41	0.0000	-6.3629	tt(-),32	0.0000	-7.965	tt(-),52
41	Noise pollution: roads	0.0000	-8.7293	tt(-),52	0.0000	-8.2214	tt(-),41	0.0000	-5.9404	tt(-),32	0.0000	-7.5275	tt(-),52
42	Noise pollution: railways	0.0000	1.0	wi(-),52	0.0006	-3.7417	tt(-),41	0.0132	-2.6305	tt(-),32	0.0001	-4.1711	tt(-),52
4	Year constr.: mean	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
45	Landmarks: FSI	0.2205	0.8898	wi(-),52	0.8017	0.5991	wi(-),41	0.9362	0.5319	wi(-),32	0.6293	0.6854	wi(-),52
46	Landmarks: plot area	0.1406	0.9297	wi(-),52	0.5646	0.7177	wi(-),41	0.5809	0.7096	wi(-),32	0.3759	0.812	wi(-),52
47	Landmarks: Year constr.	0.0717	0.9641	wi(-),52	0.4613	0.7694	wi(-),41	0.2537	0.8731	wi(-),32	0.1241	0.938	wi(-),52
48	Landmarks: 1 criterion	0.0783	0.9608	wi(-),52	0.5218	0.7391	wi(-),41	0.4567	0.7716	wi(-),32	0.2389	0.8806	wi(-),52
49	Landmarks: 2 criteria	0.4389	0.7806	wi(-),52	0.5581	0.721	wi(-),41	0.9919	0.5041	wi(-),32	0.6071	0.6965	wi(-),52
20	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52

Figure 1.69: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.1068	0.9466	wi(-),52	0.8293	0.5854	wi(-),40	0.7049	0.6475	wi(+),33	0.7445	0.6278	wi(-),52
₽	Year constr.: 1946-1970	0.9853	0.5074	wi(-),52	0.6568	0.4477	tt(+),40	0.2019	0.8991	wi(+),33	0.5470	0.7265	wi(+),52
Ŧ	Year constr.: 1971-1985	0.8454	0.5773	wi(+),52	0.7597	0.6201	wi(+),40	0.9346	0.5327	wi(-),33	0.7770	0.6115	wi(+),52
12	Year constr.: 1986-2000	0.0231	0.9884	wi(-),52	0.7107	0.6446	wi(-),40	0.1457	0.9271	wi(-),33	0.1766	0.9117	wi(-),52
13	Year constr.: 2001-2022	0.1460	1.4764	tt(+),52	0.1512	0.9244	wi(+),40	0.0142	2.5942	tt(+),33	0.0033	3.0886	tt(+),52
14	Traffic signals count	0.1111	0.9445	wi(-),52	0.2803	-1.0949	tt(-),40	0.3989	0.8005	wi(-),33	0.6806	0.6597	wi(-),52
15	Stairs count	0.8110	0.2403	tt(+),52	0.7854	-0.2741	tt(-),40	0.5354	-0.6266	tt(-),33	0.1996	-1.2995	tt(-),52
16	Status: for construction	0.2543	-1.1529	tt(-),52	0.4201	-0.8148	tt(-),40	0.8400	0.2036	tt(+),33	0.7063	-0.379	tt(-),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
18	Status: under construction	0.7874	0.6063	wi(+),52	0.9941	0.503	wi(-),40	0.7389	0.6306	wi(-),33	0.7987	0.6007	wi(-),52
19	Status: in use (n.m.)	0.6198	0.6901	wi(-),52	0.2622	0.8689	wi(-),40	0.5582	0.7209	wi(-),33	0.4689	0.7656	wi(-),52
20	Status: in use	0.3366	0.8317	wi(-),52	0.9678	0.5161	wi(+),40	0.7955	0.6022	wi(-),33	0.4361	0.782	wi(-),52
21	Status: for demolition	1.0000	equal	n/a,52	0.7604	0.6198	wi(+),40	0.7389	0.6306	wi(+),33	0.5964	0.7018	wi(+),52
22	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
53	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
24	Status: reconstruction	0.0763	1.8095	tt(+),52	0.3054	1.0386	tt(+),40	0.4837	0.7086	tt(+),33	0.5667	0.5767	tt(+),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
26	Function: residential	0.0765	-1.8079	tt(-),52	0.7176	-0.3643	tt(-),40	0.1748	0.9126	wi(-),33	0.0553	0.9723	wi(-),52
27	Function: gathering	0.9495	0.5253	wi(-),52	0.4224	0.7888	wi(+),40	0.0957	1.7167	tt(+),33	0.2059	1.2812	tt(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
29	Function: healthcare	0.6091	0.6954	wi(+),52	0.7708	0.6146	wi(+),40	0.7389	0.6306	wi(+),33	0.7947	0.6026	wi(+),52
30	Function: factory	0.8234	0.5883	wi(+),52	0.7973	0.6014	wi(+),40	0.5167	0.7416	wi(+),33	0.8132	0.5934	wi(+),52
3	Function: office	0.8172	0.5914	wi(-),52	0.7637	-0.3028	tt(-),40	0.2617	-1.1425	tt(-),33	0.4146	-0.8226	tt(-),52
32	Function: guesthouse	0.2089	0.8956	wi(-),52	0.6051	0.6974	wi(-),40	0.5167	0.7416	wi(-),33	0.3353	0.8324	wi(-),52
33	Function: education	0.4351	0.7824	wi(-),52	1.0000	0.5	wi(+),40	1.0000	0.5	wi(+),33	1.0000	0.5	wi(+),52
34	Function: sports	1.0000	equal	n/a,52	0.7604	0.6198	wi(-),40	0.7389	0.6306	wi(-),33	0.7874	0.6063	wi(-),52
35	Function: shops	0.3683	0.9077	tt(+),52	0.1233	1.5753	tt(+),40	0.0153	2.5637	tt(+),33	0.0186	2.4315	tt(+),52
36	Function: other	0.9814	0.5093	wi(-),52	0.9236	-0.0965	tt(-),40	0.0641	0.968	wi(+),33	0.6166	0.6917	wi(+),52
37	Green: tree cover	0.0000	-7.8683	tt(-),52	0.0000	-6.8694	tt(-),40	0.0000	-6.805	tt(-),33	0.0000	-7.5009	tt(-),52
38	Green: bush cover	0.0000	-8.3443	tt(-),52	0.0000	-7.3027	tt(-),40	0.0000	1.0	wi(-),33	0.0000	1.0	wi(-),52
39	Green: grass cover	0.0000	-7.4465	tt(-),52	0.0000	-7.2735	tt(-),40	0.0000	-7.2004	tt(-),33	0.0000	-7.754	tt(-),52
6	Noise pollution: total	0.0000	-9.3828	tt(-),52	0.0000	-8.4901	tt(-),40	0.0000	-7.999	tt(-),33	0.0000	-8.6742	tt(-),52
41	Noise pollution: roads	0.0000	-8.7303	tt(-),52	0.0000	-7.936	tt(-),40	0.0000	-6.5583	tt(-),33	0.0000	-7.5396	tt(-),52
42	Noise pollution: railways	0.0000	1.0	wi(-),52	0.0000	-5.0153	tt(-),40	0.0322	-2.24	tt(-),33	0.0014	-3.3892	tt(-),52
4	Year constr.: mean	1.0000	equal	n/a,52	0.1949	-1.3188	tt(-),40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
45	Landmarks: FSI	0.2205	0.8898	wi(-),52	0.7836	0.6082	wi(-),40	0.7718	0.6141	wi(-),33	0.4772	0.7614	wi(-),52
46	Landmarks: plot area	0.0963	0.9518	wi(-),52	0.9943	0.5028	wi(+),40	0.2819	0.8591	wi(-),33	0.2838	0.8581	wi(-),52
47	Landmarks: Year constr.	0.0717	0.9641	wi(-),52	0.3219	0.839	wi(-),40	0.3843	0.8079	wi(-),33	0.1241	0.938	wi(-),52
48	Landmarks: 1 criterion	0.0783	0.9608	wi(-),52	0.4401	0.7799	wi(-),40	0.2992	0.8504	wi(-),33	0.1127	0.9436	wi(-),52
49	Landmarks: 2 criteria	0.4389	0.7806	wi(-),52	0.9940	0.503	wi(-),40	0.9922	0.5039	wi(-),33	0.7938	0.6031	wi(-),52
20	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52

Figure 1.70: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.4093	0.7953	wi(+),52	0.2639	0.868	wi(+),41	0.1241	0.9379	wi(+),32	0.0463	0.9769	wi(+),52
9	Year constr.: 1946-1970	0.8545	0.5727	wi(+),52	0.4869	0.7566	wi(+),41	0.4465	0.7711	tt(+),32	0.2266	0.8867	wi(+),52
Ŧ	Year constr.: 1971-1985	0.9923	0.5039	wi(+),52	0.7718	0.6141	wi(-),41	0.6464	0.6768	wi(-),32	0.6358	0.6821	wi(+),52
12	Year constr.: 1986-2000	0.2587	0.8707	wi(-),52	0.6044	0.6978	wi(+),41	0.5968	0.7016	wi(+),32	0.5434	0.7283	wi(+),52
13	Year constr.: 2001-2022	0.9243	0.5378	wi(+),52	0.9422	0.5289	wi(-),41	0.0974	1.7093	tt(+),32	0.5158	0.7421	wi(+),52
4	Traffic signals count	0.3601	0.8199	wi(-),52	0.9371	0.5314	wi(-),41	0.4810	0.7595	wi(+),32	0.5294	0.7353	wi(+),52
15	Stairs count	0.6211	0.6895	wi(+),52	0.4261	0.7869	wi(-),41	1.0000	0.0	tt(+),32	0.4799	0.76	wi(-),52
16	Status: for construction	0.7874	0.6063	wi(-),52	0.7731	0.6134	wi(+),41	0.7696	0.6152	wi(+),32	0.6176	0.6912	wi(+),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
18	Status: under construction	1.0000	0.5	wi(+),52	0.7630	0.6185	wi(+),41	0.3377	0.8311	wi(-),32	0.6162	0.6919	wi(-),52
19	Status: in use (n.m.)	0.7874	0.6063	wi(+),52	0.7621	0.6189	wi(-),41	1.0000	equal	n/a,32	0.9959	0.5021	wi(-),52
20	Status: in use	0.6208	0.6896	wi(+),52	0.6633	0.6684	wi(+),41	0.1070	0.9465	wi(+),32	0.1042	0.9479	wi(+),52
51	Status: for demolition	1.0000	equal	n/a,52	0.5555	0.7222	wi(+),41	0.7353	0.6323	wi(+),32	0.5964	0.7018	wi(+),52
53	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
53	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
24	Status: reconstruction	0.6012	0.6994	wi(+),52	0.4612	0.7694	wi(-),41	0.8116	0.5942	wi(+),32	0.6122	-0.51	tt(-),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
26	Function: residential	0.8927	0.5537	wi(+),52	0.8343	0.5828	wi(+),41	0.8137	0.5931	wi(+),32	0.8833	0.5583	wi(+),52
27	Function: gathering	0.8041	0.5979	wi(-),52	0.6425	0.6788	wi(+),41	0.0438	0.9781	wi(+),32	0.0516	0.9742	wi(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
29	Function: healthcare	0.5964	0.7018	wi(+),52	0.7630	0.6185	wi(-),41	1.0000	0.5	wi(+),32	0.7947	0.6026	wi(-),52
30	Function: factory	0.6162	0.6919	wi(+),52	0.9886	0.5057	wi(-),41	0.7571	0.6214	wi(-),32	0.7977	0.6012	wi(+),52
31	Function: office	0.6324	0.6838	wi(+),52	0.2254	0.8873	wi(-),41	0.9077	-0.1169	tt(-),32	0.9972	-0.0036	tt(-),52
32	Function: guesthouse	1.0000	equal	n/a,52	1.0000	equal	n/a,41	0.5111	0.7444	wi(+),32	0.5964	0.7018	wi(+),52
33	Function: education	1.0000	0.5	wi(+),52	0.5555	0.7222	wi(+),41	0.7353	0.6323	wi(-),32	1.0000	0.5	wi(+),52
3	Function: sports	1.0000	equal	n/a,52	0.7630	0.6185	wi(-),41	0.7353	0.6323	wi(-),32	0.7874	0.6063	wi(-),52
35	Function: shops	0.7611	0.6194	wi(+),52	0.6909	0.4006	tt(+),41	0.0246	0.9877	wi(+),32	0.0694	0.9653	wi(+),52
36	Function: other	0.9656	0.5172	wi(-),52	0.2531	0.8734	wi(+),41	0.5603	0.5887	tt(+),32	0.8654	0.1703	tt(+),52
37	Green: tree cover	0.5175	0.7413	wi(-),52	0.9723	0.0349	tt(+),41	0.9720	-0.0354	tt(-),32	0.6740	0.4232	tt(+),52
æ	Green: bush cover	0.7654	0.6173	wi(-),52	0.9380	0.531	wi(+),41	0.9633	-0.0464	tt(-),32	0.8073	0.2452	tt(+),52
39	Green: grass cover	0.4655	0.7673	wi(-),52	0.6878	0.6561	wi(+),41	0.9206	0.1005	tt(+),32	0.6683	0.6659	wi(+),52
6	Noise pollution: total	0.8364	0.5818	wi(-),52	0.8866	0.5567	wi(+),41	0.3992	0.8004	wi(+),32	0.3524	0.8238	wi(+),52
41	Noise pollution: roads	0.9014	0.5493	wi(-),52	0.7954	0.6023	wi(-),41	0.6263	0.4918	tt(+),32	0.5057	0.7472	wi(+),52
42	Noise pollution: railways	0.8867	0.5566	wi(+),52	0.5100	0.6648	tt(+),41	0.9983	-0.0022	tt(-),32	0.7852	0.2739	tt(+),52
4	Year constr.: mean	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52
45	Landmarks: FSI	0.3065	0.8468	wi(-),52	0.8179	0.591	wi(-),41	0.8085	0.5958	wi(+),32	0.6751	0.6624	wi(+),52
46	Landmarks: plot area	0.5410	0.7295	wi(-),52	0.7438	0.6281	wi(+),41	0.5682	0.7159	wi(+),32	0.4939	0.753	wi(+),52
47	Landmarks: Year constr.	0.4351	0.7824	wi(-),52	0.9668	0.5166	wi(+),41	0.7389	0.6306	wi(+),32	0.9611	0.5194	wi(+),52
48	Landmarks: 1 criterion	0.6293	0.6854	wi(-),52	0.9304	0.5348	wi(+),41	0.7000	0.389	tt(+),32	0.6247	0.6876	wi(+),52
49	Landmarks: 2 criteria	0.3065	0.8468	wi(-),52	0.3871	0.8064	wi(-),41	0.7353	0.6323	wi(-),32	0.5964	0.7018	wi(-),52
20	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,41	1.0000	equal	n/a,32	1.0000	equal	n/a,52

Figure 1.71: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.5442	0.7279	wi(+),52	0.0571	0.9715	wi(+),40	0.7846	0.6077	wi(+),33	0.2392	0.8804	wi(+),52
우	Year constr.: 1946-1970	0.7094	0.6453	wi(+),52	0.5643	0.5814	tt(+),40	0.9217	0.0991	tt(+),33	0.6201	0.69	wi(+),52
Ŧ	Year constr.: 1971-1985	0.5251	0.7375	wi(-),52	0.4338	0.7831	wi(+),40	0.9119	0.5441	wi(-),33	0.4066	0.7967	wi(+),52
12	Year constr.: 1986-2000	0.1749	0.9126	wi(-),52	0.2285	0.8857	wi(+),40	0.7306	0.6347	wi(-),33	0.8575	0.5712	wi(+),52
13	Year constr.: 2001-2022	0.9243	0.5378	wi(+),52	0.8491	0.5755	wi(+),40	0.0668	1.8973	tt(+),33	0.0399	2.1086	tt(+),52
4	Traffic signals count	0.3471	0.8265	wi(-),52	0.6939	0.653	wi(-),40	0.3519	0.824	wi(+),33	0.3303	0.8348	wi(+),52
15	Stairs count	0.6211	0.6895	wi(+),52	0.5849	0.7076	wi(-),40	0.7445	-0.3288	tt(-),33	0.2521	-1.1585	tt(-),52
16	Status: for construction	0.7874	0.6063	wi(-),52	0.8030	0.5985	wi(-),40	0.5167	0.7416	wi(+),33	0.6056	0.6972	wi(+),52
17	Status: unrealised	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
18	Status: under construction	1.0000	0.5	wi(+),52	0.7765	0.6117	wi(-),40	0.7389	0.6306	wi(-),33	0.7987	0.6007	wi(-),52
19	Status: in use (n.m.)	0.7874	0.6063	wi(+),52	0.7594	0.6203	wi(-),40	1.0000	equal	n/a,33	0.9959	0.5021	wi(-),52
20	Status: in use	0.9226	0.5387	wi(+),52	0.1128	0.9436	wi(+),40	0.5960	0.702	wi(+),33	0.3327	0.8337	wi(+),52
5	Status: for demolition	1.0000	equal	n/a,52	0.7604	0.6198	wi(+),40	0.7389	0.6306	wi(+),33	0.5964	0.7018	wi(+),52
2	Status: demolished	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
33	Status: not in use	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
24	Status: reconstruction	0.7850	0.6075	wi(+),52	0.7638	-0.3026	tt(-),40	0.7374	0.6313	wi(-),33	0.6464	0.6768	wi(-),52
25	Status: illegitimate	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
26	Function: residential	0.8342	0.5829	wi(-),52	0.7451	0.6274	wi(+),40	0.5279	0.736	wi(+),33	0.5393	0.7303	wi(+),52
27	Function: gathering	0.8195	0.5903	wi(+),52	0.2172	0.8914	wi(+),40	0.0331	2.2273	tt(+),33	0.0985	1.683	tt(+),52
28	Function: prison	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
59	Function: healthcare	0.7874	0.6063	wi(+),52	1.0000	0.5	wi(+),40	1.0000	0.5	wi(+),33	1.0000	0.5	wi(+),52
8	Function: factory	0.6162	0.6919	wi(+),52	0.9882	0.5059	wi(+),40	0.9844	0.5078	wi(-),33	0.8041	0.598	wi(+),52
3	Function: office	0.4832	0.7584	wi(+),52	0.5574	0.7213	wi(-),40	0.2502	-1.1712	tt(-),33	0.5229	-0.6434	tt(-),52
32	Function: guesthouse	1.0000	equal	n/a,52	0.5512	0.7244	wi(+),40	1.0000	equal	n/a,33	0.7874	0.6063	wi(+),52
33	Function: education	0.7874	0.6063	wi(-),52	0.5512	0.7244	wi(+),40	1.0000	0.5	wi(+),33	0.6091	0.6954	wi(+),52
34	Function: sports	1.0000	equal	n/a,52	0.7604	0.6198	wi(-),40	0.7389	0.6306	wi(-),33	0.7874	0.6063	wi(-),52
35	Function: shops	0.9567	0.5216	wi(+),52	0.1471	1.4792	tt(+),40	0.1405	0.9297	wi(+),33	0.0681	0.9659	wi(+),52
36	Function: other	0.8363	0.5819	wi(+),52	0.9804	-0.0248	tt(-),40	0.1227	1.5854	tt(+),33	0.7635	0.3026	tt(+),52
37	Green: tree cover	0.9085	0.5457	wi(-),52	0.2655	1.1297	tt(+),40	0.2501	-1.1713	tt(-),33	0.6470	-0.4606	tt(-),52
8	Green: bush cover	0.7166	0.6417	wi(-),52	0.6398	0.4717	tt(+),40	0.6437	-0.4669	tt(-),33	0.8309	-0.2146	tt(-),52
39	Green: grass cover	0.5594	0.7203	wi(-),52	0.6093	0.6954	wi(+),40	0.8199	0.2296	tt(+),33	0.8198	0.5901	wi(+),52
4	Noise pollution: total	0.7029	0.6486	wi(-),52	0.1966	0.9017	wi(+),40	0.9219	-0.0988	tt(-),33	0.4442	0.7779	wi(+),52
41	Noise pollution: roads	0.7512	0.6244	wi(-),52	0.2760	0.862	wi(+),40	0.8038	-0.2505	tt(-),33	0.9291	-0.0894	tt(-),52
42	Noise pollution: railways	0.7754	0.6123	wi(-),52	0.8031	0.251	tt(+),40	0.7102	0.3749	tt(+),33	0.5530	0.5972	tt(+),52
4	Year constr.: mean	1.0000	equal	n/a,52	0.2932	0.8534	wi(-),40	1.0000	equal	n/a,33	1.0000	equal	n/a,52
5	Landmarks: FSI	0.3065	0.8468	wi(-),52	0.9943	0.5029	wi(+),40	0.9920	0.504	wi(-),33	0.8427	0.5786	wi(+),52
46	Landmarks: plot area	0.2924	0.8538	wi(-),52	0.3934	0.8033	wi(+),40	0.5718	0.7141	wi(+),33	0.3691	0.8154	wi(+),52
47	Landmarks: Year constr.	0.4351	0.7824	wi(-),52	0.7537	0.6232	wi(+),40	0.7570	0.6215	wi(-),33	0.9500	0.525	wi(+),52
48	Landmarks: 1 criterion	0.3593	0.8204	wi(-),52	0.4297	0.7852	wi(+),40	0.7465	0.6268	wi(-),33	0.6587	0.6706	wi(+),52
49	Landmarks: 2 criteria	0.3065	0.8468	wi(-),52	0.5512	0.7244	wi(-),40	0.9920	0.504	wi(+),33	0.8026	0.5987	wi(-),52
50	Landmarks: 3 criteria	1.0000	equal	n/a,52	1.0000	equal	n/a,40	1.0000	equal	n/a,33	1.0000	equal	n/a,52

Figure 1.72: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x}$ / week), sub-question 3, data: standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	-east_coef,n
6	Year constr.: < 1945	0.9019	0.5986	(-),53	0.7498	0.6499	(-),23	0.7821	0.2515	(+),43	0.5695	0.2986	(+),20	0.5354	0.2424	(+),53
₽	Year constr.: 1946-1970	0.5369	0.4910	(-),53	0.7520	0.5359	(-),23	0.9158	0.6808	(-),43	0.9444	0.3432	(+),20	0.9742	0.6992	(-),53
÷	Year constr.: 1971-1985	0.3403	0.7035	(+),53	0.5985	0.2131	(-),23	0.7704	0.0745	(-),43	0.7702	0.7094	(+),20	0.7608	0.8667	(+),53
12	Year constr.: 1986-2000	0.2345	0.6034	(+),53	0.5453	0.6277	(+),23	0.5301	0.8071	(+),43	0.9553	0.6100	(+),20	0.2736	0.5931	(+),53
13	Year constr.: 2001-2022	0.8436	0.3725	(-),53	0.3636	0.3452	(-),23	0.7018	0.4809	(+),43	0.3457	0.3855	(-),20	0.9847	0.5102	(+),53
14	Traffic signals count	0.7683	0.3718	(+),53	0.2902	0.4201	(+),23	0.5761	0.3279	(-),43	0.6013	0.1708	(-),20	0.3248	0.2570	(-),53
15	Stairs count	0.8277	0.4138	(-)"23	0.7251	0.5061	(+),23	0.8007	0.4004	(+),43	0.3414	0.2616	(-),20	0.8277	0.4138	(-),53
16	Status: for construction	0.5762	0.7334	(+),53	0.6842	0.7138	(+),23	0.5708	0.7695	(+),43	0.6546	0.1682	(-),20	0.6364	0.7415	(+),53
17	Status: unrealised	1.0000	0.0000	(-),53	1.0000	0.0000	(-),23	1.0000	0.0000	(-),43	1.0000	0.0000	(-),20	1.0000	0.0000	(-),53
18	Status: under construction	0.9657	0.4615	(-),53	0.6350	0.3112	(-),23	0.6876	0.3749	(+),43	1.0000	0.0000	(-),20	0.9486	0.5021	(+),53
6	Status: in use (n.m.)	0.4242	0.1482	(-),53	0.2317	0.2475	(-),23	0.5906	0.3829	(+),43	1.0000	0.0000	(-),20	0.8225	0.5107	(+),53
20	Status: in use	0.6176	0.3893	(+),53	0.8518	0.6250	(-),23	0.6317	0.3282	(+),43	0.7557	0.5805	(+),20	0.6065	0.4460	(+),53
21	Status: for demolition	0.6546	0.7237	(+),53	0.5721	0.2861	(-),23	0.3143	0.5066	(+),43	0.3421	0.1711	(-),20	0.6546	0.7237	(+),53
22	Status: demolished	1.0000	0.0000	(-),53	1.0000	0.0000	(-),23	1.0000	0.0000	(-),43	1.0000	0.0000	(-),20	1.0000	0.0000	(-),53
53	Status: not in use	1.0000	0.0000	(-)"23	1.0000	0.0000	(-),23	1.0000	0.0000	(-),43	1.0000	0.0000	(-),20	1.0000	0.0000	(-),53
24	Status: reconstruction	0.3546	0.8387	(-),53	0.5960	0.6429	(-),23	0.9126	0.0370	(+),43	0.9652	0.9308	(-),20	0.9260	0.0181	(+),53
25	Status: illegitimate	1.0000	0.0000	(-),53	1.0000	0.0000	(-),23	1.0000	0.0000	(-),43	1.0000	0.0000	(-),20	1.0000	0.0000	(-),53
26	Function: residential	0.3708	0.2718	(+),53	0.9561	0.3499	(+),23	0.5252	0.2989	(+),43	0.7148	0.6325	(+),20	0.4536	0.4124	(+),53
27	Function: gathering	0.7442	0.4050	(-),53	0.6648	0.2070	(-),23	0.9137	0.4113	(+),43	0.9881	0.3043	(+),20	0.9093	0.4092	(+),53
28	Function: prison	1.0000	0.0000	(-),53	1.0000	0.0000	(-),23	1.0000	0.0000	(-),43	1.0000	0.0000	(-),20	1.0000	0.0000	(-),53
29	Function: healthcare	0.3265	0.0796	(+),53	1.0000	0.0000	(-),23	0.9868	0.7250	(-),43	0.3421	0.1711	(-),20	0.5600	0.4962	(-),53
30	Function: factory	0.9431	0.2420	(-),53	0.6165	0.3696	(-),23	0.7666	0.2688	(-),43	0.8210	0.5071	(+),20	0.5863	0.5526	(+),53
31	Function: office	0.7378	0.3566	(+),53	0.7898	0.5279	(+),23	0.2074	0.0369	(+),43	0.3726	0.3804	(+),20	0.1061	0.0463	(+),53
32	Function: guesthouse	0.6225	0.2426	(+),53	0.6915	0.5644	(-),23	0.6283	0.4951	(-),43	0.7595	0.5517	(+),20	0.7779	0.3230	(+),53
33	Function: education	0.7027	0.0857	(-)"23	0.3227	0.0405	(-),23	0.7291	0.0863	(-),43	1.0000	0.1711	(-),20	1.0000	0.8493	(+),53
34	Function: sports	0.3265	0.1633	(+),53	1.0000	0.0000	(-),23	0.3287	0.1643	(+),43	1.0000	0.0000	(-),20	0.3265	0.1633	(+),53
35	Function: shops	0.7652	0.5484	(+),53	0.7474	0.3425	(-),23	0.6618	0.5312	(+),43	0.7190	0.4083	(-),20	0.8678	0.2800	(-),53
36	Function: other	0.6385	0.3649	(+),53	0.9817	0.3785	(+),23	0.9077	0.5863	(-),43	0.6293	0.3878	(+),20	0.7037	0.4155	(+),53
37	Green: tree cover	0.0003	0.6923	(+),53	0.0166	0.5088	(+),23	0.0005	0.4656	(+),43	0.0256	0.6674	(+),20	0.0003	0.6143	(+),53
38	Green: bush cover	0.0032	0.7055	(+),53	0.1533	0.7086	(+),23	0.0031	0.4246	(+),43	0.0294	0.6066	(+),20	0.0009	0.5652	(+),53
68	Green: grass cover	0.0019	0.6945	(+),53	0.0907	0.7380	(+),23	0.0033	0.5413	(+),43	0.0439	0.6674	(+),20	0.0020	0.6383	(+),53
40	Noise pollution: total	0.0072	0.6651	(+),53	0.1137	0.5437	(+),23	0.0047	0.5515	(+),43	0.0565	0.4355	(+),20	0.0020	0.5076	(+),53
41	Noise pollution: roads	0.0117	0.7033	(+),53	0.1732	0.5870	(+),23	0.0040	0.5584	(+),43	0.0720	0.4249	(+),20	0.0022	0.5327	(+),53
42	Noise pollution: railways	0.0103	0.6180	(+),53	0.1241	0.5698	(+),23	0.0149	0.5955	(+),43	0.2184	0.4355	(+),20	0.0123	0.6022	(+),53
4	Year constr.: mean	0.5782	0.4861	(+),53	0.9038	0.5870	(+),23	0.8765	0.6464	(+),43	0.9031	0.2989	(-),20	0.9446	0.2805	(-),53
45	Landmarks: FSI	0.2278	0.3628	(+),53	0.4669	0.4614	(+),23	0.4382	0.3578	(+),43	0.4700	0.4711	(+),20	0.2560	0.3616	(+),53
46	Landmarks: plot area	0.1161	0.0411	(+),53	0.3492	0.1805	(+),23	0.4972	0.1616	(+),43	0.5033	0.2115	(+),20	0.2591	0.1145	(+),53
47	Landmarks: Year constr.	0.9833	0.2864	(+),53	0.8630	0.7280	(-),23	0.8666	0.6694	(-),43	0.9767	0.5058	(+),20	0.8974	0.6447	(-) , 53
48	Landmarks: 1 criterion	0.3124	0.1410	(+),53	0.7295	0.1714	(+),23	0.7296	0.2889	(+),43	0.5379	0.3158	(+),20	0.5166	0.2400	(+),53
49	Landmarks: 2 criteria	0.3503	0.2664	(+),53	0.6399	0.0000	(+),23	0.7205	0.3633	(+),43	0.8919	0.4767	(+),20	0.5458	0.3850	(+),53
20	Landmarks: 3 criteria	1.0000	0.0000	(-),53	1.0000	0.0000	(-),23	1.0000	0.0000	(-),43	1.0000	0.0000	(-),20	1.0000	0.0000	(-),53
2																

Figure 1.73: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\geq 6 \text{ x}$ / week), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access
	Variables	P(Most)	Most_stat M	lost_coef,n	([4] often)	[4]_stat [4	t]_coef,n P	([3] regularly)	[3]_stat [3]_coef,n Pl	[2] sometimes) [2]_sta	t [2]_coef,n	P([1] never)	[1]_stat [1]	coef,n P	(Least) Lea	ast_stat Lea	st_coef,n
6	Year constr.: < 1945	0.9571	0.6454	(-),53	0.7176	0.5657	(-),24	0.5074	0.4196	(+),20	0.608	0.209	7 (+),45	0.6805	0.2781	(+),22	0.5522	0.2326	(+),53
9	Year constr.: 1946-1970	0.6733	0.5701	(-),53	0.9744	0.6094	(-),24	0.9890	0.5548	(-),20	0.960	0.309	t (+),45	0.2702	0.3001	(-),22	0.4362	0.4249	(-),53
÷	Year constr.: 1971-1985	0.3621	0.7167	(+),53	0.9916	0.2702	(-),24	0.3310	0.7257	(+),20	0.621	0.8660	3 (+),45	0.5981	0.2660	(-),22	0.5046	0.7842	(+),53
12	Year constr.: 1986-2000	0.2956	0.6767	(+),53	0.3958	0.5678	(+),24	0.3371	0.6713	(+),20	0.260	2 0.5847	7 (+),45	0.9040	0.2858	(-),22	0.2849	0.6205	(+),53
13	Year constr.: 2001-2022	0.8213	0.3558	(-),53	0.5812	0.3697	(-),24	0.8386	0.4459	(-),20	0.823	2 0.4708	3 (+),45	0.4670	0.5434	(-),22	0.8708	0.4403	(+),53
14	Traffic signals count	0.7732	0.3864	(+),53	0.3206	0.3568	(+),24	0.9891	0.4891	(-),20	0.472	7 0.4002	2 (-),45	0.3832	0.0751	(-),22	0.1740	0.1651	(-),53
15	Stairs count	0.8277	0.4138	(-),53	0.9890	0.3790	(-),24	0.5233	0.1627	(+),20	0.995	7 0.407	l (-),45	0.3345	0.1672	(-),22	0.6562	0.3281	(-),53
16	Status: for construction	0.5762	0.7334	(+),53	0.6829	0.7140	(+),24	0.6974	0.1855	(-),20	0.570	t 0.769	l (+),45	0.9843	0.1673	(-),22	0.6364	0.7415	(+),53
17	Status: unrealised	1.0000	0.0000	(-),53	1.0000	0.0000	(-),24	1.0000	0.0000	(-),20	1.000	0.0000	0 (-),45	1.0000	0.0000	(-),22	1.0000	0.0000	(-),53
18 S	status: under construction	0.9657	0.4615	(-),53	0.6407	0.3134	(-),24	0.4858	0.2024	(-),20	0.686	0.369	t (+),45	0.6547	0.3273	(+),22	0.7268	0.3844	(+),53
19	Status: in use (n.m.)	0.5849	0.2128	(-),53	0.2328	0.2472	(-),24	0.7437	0.5347	(+),20	0.412	9 0.283(0 (+),45	0.9812	0.2773	(-),22	0.8225	0.5107	(+),53
20	Status: in use	0.5295	0.3418	(+),53	0.9507	0.5696	(-),24	0.3720	0.3424	(+),20	0.521	0.3492	2 (+),45	0.7424	0.4579	(+),22	0.4830	0.3441	(+),53
21	Status: for demolition	0.6546	0.7237	(+),53	0.9828	0.2859	(-),24	0.3421	0.0000	(+),20	0.314	4 0.5063	3 (+),45	1.0000	0.000	(-),22	0.3149	0.5053	(+),53
22	Status: demolished	1.0000	0.0000	(-),53	1.0000	0.0000	(-),24	1.0000	0.0000	(-),20	1.000	00000	0 (-),45	1.0000	0.0000	(-),22	1.0000	0.000	(-),53
23	Status: not in use	1.0000	0.0000	(-),53	1.0000	0.0000	(-),24	1.0000	0.0000	(-),20	1.000	0.0000	0 (-),45	1.0000	0.0000	(-),22	1.0000	0.0000	(-),53
24	Status: reconstruction	0.2605	0.7880	(-),53	0.4068	0.5474	(-),24	0.3823	0.5869	(-),20	0.961	0.036	3 (+),45	0.7119	0.0441	(+),22	0.5611	0.0056	(+),53
25	Status: illegitimate	1.0000	0.0000	(-),53	1.0000	0.0000	(-),24	1.0000	0.0000	(-),20	1.000	0.0000	0 (-),45	1.0000	0.0000	(-),22	1.0000	0.0000	(-),53
26	Function: residential	0.4074	0.3041	(+),53	0.7567	0.3026	(+),24	0.4013	0.4838	(+),20	0.558	2 0.4027	7 (+),45	0.6052	0.4672	(+),22	0.4403	0.3855	(+),53
27	Function: gathering	0.8833	0.4810	(-),53	0.7080	0.2060	(-),24	0.7625	0.2302	(+),20	0.431	1 0.1855	5 (+),45	0.6899	0.5947	(-),22	0.6989	0.3179	(+),53
28	Function: prison	1.0000	0.0000	(-),53	1.0000	0.0000	(-),24	1.0000	0.0000	(-),20	1.000	00000	0 (-),45	1.0000	0.0000	(-),22	1.0000	0.000	(-),53
29	Function: healthcare	0.9893	0.7237	(-),53	1.0000	0.0000	(-),24	0.9714	0.7332	(-),20	0.987	4 0.7247	7 (-),45	0.3398	0.1699	(-),22	0.5600	0.4962	(-),53
30	Function: factory	0.9012	0.6957	(+),53	0.9697	0.5308	(+),24	0.1445	0.3904	(+),20	0.827	7 0.7113	3 (+),45	0.9486	0.5064	(-),22	0.5365	0.5340	(+),53
31	Function: office	0.7764	0.3769	(+),53	0.7924	0.5528	(+),24	0.9662	0.4218	(-),20	0.114	4 0.0312	2 (+),45	0.5162	0.4360	(+),22	0.1397	0.0589	(+),53
32	Function: guesthouse	0.6225	0.2426	(+),53	0.9747	0.4557	(-),24	0.3364	0.1682	(+),20	0.355	3 0.1298	3 (+),45	0.5943	0.6301	(-),22	0.4040	0.1525	(+),53
33	Function: education	0.7027	0.0857	(-),53	0.3225	0.0405	(-),24	1.0000	0.0000	(-),20	1.000	0.850	3 (+),45	0.5546	0.0810	(-),22	0.7027	0.0844	(-),53
34	Function: sports	0.3265	0.1633	(+),53	1.0000	0.0000	(-),24	0.3421	0.1711	(+),20	0.328	2 0.164	l (+),45	1.0000	0.0000	(-),22	0.3265	0.1633	(+),53
35	Function: shops	0.6622	0.4987	(+),53	0.3414	0.2658	(-),24	0.9326	0.4218	(+),20	0.456	5 0.3913	3 (+),45	0.3727	0.2250	(-),22	0.7876	0.2486	(-),53
36	Function: other	0.7828	0.4322	(+),53	0.5588	0.3163	(+),24	0.8553	0.6746	(+),20	0.970	0.551	5 (+),45	0.2708	0.1285	(+),22	0.5348	0.3345	(+),53
37	Green: tree cover	0.0003	0.6878	(+),53	0.0227	0.4508	(+),24	0.0028	0.5804	(+),20	0.000	5 0.5925	5 (+),45	0.0172	0.6243	(+),22	0.0001	0.5063	(+),53
38	Green: bush cover	0.0035	0.7184	(+),53	0.1349	0.6524	(+),24	0.0106	0.5377	(+),20	0.002	3 0.5289	9 (+),45	0.0235	0.5140	(+),22	0.0004	0.4585	(+),53
39	Green: grass cover	0.0021	0.7120	(+),53	0.1147	0.6897	(+),24	0.0144	0.5377	(+),20	0.002	0.6143	3 (+),45	0.0588	0.5606	(+),22	0.0010	0.5340	(+),53
4	Noise pollution: total	0.0081	0.6788	(+),53	0.1195	0.5165	(+),24	0.0315	0.5485	(+),20	0.002	2 0.5673	3 (+),45	0.1079	0.5047	(+),22	0:0030	0.5440	(+),53
41	Noise pollution: roads	0.0130	0.7141	(+),53	0.1640	0.5817	(+),24	0.0275	0.5909	(+),20	0.002	1 0.608	1 (+),45	0.1771	0.5421	(+),22	0.0050	0.6228	(+),53
42	Noise pollution: railways	0.0101	0.6156	(+),53	0.1768	0.5897	(+),24	0.0531	0.6014	(+),20	0.007	0.583	1 (+),45	0.3787	0.4394	(+),22	0.0075	0.5139	(+),53
44	Year constr.: mean	0.6266	0.5038	(+),53	0.8046	0.5615	(+),24	0.6750	0.3474	(-),20	0.935	7 0.6418	3 (+),45	0.9906	0.3624	(-),22	1.0000	0.3246	(-),53
45	Landmarks: FSI	0.1865	0.3145	(+),53	0.4605	0.0000	(+),24	0.1565	0.3269	(+),20	0.342	9 0.3374	t (+),45	0.3390	0.3576	(+),22	0.2058	0.3120	(+),53
46	Landmarks: plot area	0.0869	0.0289	(+),53	0.6509	0.3175	(+),24	0.1233	0.0709	(+),20	0.363	3 0.1217	7 (+),45	0.4972	0.1871	(+),22	0.2482	0.1101	(+),53
47	Landmarks: Year constr.	0.9444	0.2679	(+),53	0.8434	0.6356	(-),24	0.9875	0.6751	(-),20	0.958	3 0.270	7 (+),45	0.6150	0.3969	(-),22	0.7974	0.6026	(-),53
48	Landmarks: 1 criterion	0.2494	0.1069	(+),53	0.9332	0.2932	(+),24	0.3110	0.2545	(+),20	0.589	4 0.2560	3 (+),45	0.5917	0.3646	(+),22	0.4983	0.2339	(+),53
49	Landmarks: 2 criteria	0.3503	0.2664	(+),53	0.6743	0.0000	(+),24	0.1883	0.1911	(+),20	0.564	§ 0.293	1 (+),45	0.9686	0.4843	(+),22	0.5629	0.3951	(+),53
50	Landmarks: 3 criteria	1.0000	0.0000	(-),53	1.0000	0.0000	(-),24	1.0000	0.0000	(-),20	1.000	0.0000	0 (-),45	1.0000	0.0000	(-),22	1.0000	0.0000	(-),53
Eig 3. o	ure 1.74: Ra [.] lata: non-sta	w resu ndard	lts for lised, b	route aseline	aggreg : least	ate al direc	nalysis tional	s, sampl turns 1	le: int oath,	eractic directic	m - frec on: egre	luenc	y of wa	ulking (≥ 6 x	/ wee	k), su	b-quest	ion
			-					-)								

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4] stat	[4]_coef,n	P([2] sometimes)	[2] stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	.east_coef,n
6	Year constr.: < 1945	0.8077	0.5986	(-),53	0.7166	0.6499	(-),23	0.5030	0.7512	(-),43	0.5972	0.7108	(-),20	0.4847	0.7596	(-),53
₽	Year constr.: 1946-1970	0.9821	0.5115	(+),53	0.9461	0.5359	(-),23	0.6446	0.6808	(-),43	0.6864	0.6670	(-),20	0.6062	0.6992	(-),53
÷	Year constr.: 1971-1985	0.5974	0.7035	(+),53	0.4262	0.7934	(+),23	0.1490	0.9267	(+),43	0.6008	0.7094	(+),20	0.2694	0.8667	(+),53
12	Year constr.: 1986-2000	0.7982	0.6034	(+),53	0.7616	0.6277	(+),23	0.3906	0.8071	(+),43	0.8015	0.6100	(+),20	0.8187	0.5931	(+),53
13	Year constr.: 2001-2022	0.7450	0.6299	(+),53	0.6903	0.6630	(+),23	0.9617	0.5226	(-),43	0.7709	0.6251	(+),20	0.9847	0.5102	(+),53
14	Traffic signals count	0.7436	0.6306	(-),53	0.8402	0.5886	(-),23	0.6557	0.6753	(+),43	0.3416	0.8361	(+),20	0.5140	0.7451	(+),53
15	Stairs count	0.8277	0.5894	(+),53	0.9877	0.5061	(+),23	0.8007	0.6043	(-),43	0.5233	0.7489	(+),20	0.8277	0.5894	(+),53
16	Status: for construction	0.5414	0.7334	(+),53	0.6078	0.7138	(+),23	0.4714	0.7695	(+),43	0.3364	0.8445	(+),20	0.5251	0.7415	(+),53
17	Status: unrealised	1.0000	0.0000	(+),53	1.0000	0.0000	(+),23	1.0000	0.0000	(+),43	1.0000	0.0000	(+),20	1.0000	0.0000	(+),53
18	Status: under construction	0.9230	0.5428	(+),53	0.6224	0.7011	(+),23	0.7498	0.6304	(-),43	1.0000	0.0000	(+),20	0.9957	0.5021	(+),53
19	Status: in use (n.m.)	0.2964	0.8540	(+),53	0.4950	0.7629	(+),23	0.7659	0.6227	(-),43	1.0000	0.0000	(+),20	0.9871	0.5107	(+),53
30	Status: in use	0.7785	0.6132	(-),53	0.7667	0.6250	(-),23	0.6564	0.6749	(-),43	0.8603	0.5805	(+),20	0.8919	0.5565	(-),53
5	Status: for demolition	0.5674	0.7237	(+),53	0.5721	0.7312	(+),23	0.9868	0.5066	(+),43	0.3421	0.8531	(+),20	0.5674	0.7237	(+),53
22	Status: demolished	1.0000	0.0000	(+),53	1.0000	0.0000	(+),23	1.0000	0.0000	(+),43	1.0000	0.0000	(+),20	1.0000	0.0000	(+),53
8	Status: not in use	1.0000	0.0000	(+),53	1.0000	0.0000	(+),23	1.0000	0.0000	(+),43	1.0000	0.0000	(+),20	1.0000	0.0000	(+),53
24	Status: reconstruction	0.3264	0.8387	(-),53	0.7346	0.6429	(-),23	0.0739	0.9639	(-),43	0.1482	0.9308	(-),20	0.0361	0.9823	(-),53
25	Status: illegitimate	1.0000	0.0000	(+),53	1.0000	0.0000	(+),23	1.0000	0.0000	(+),43	1.0000	0.0000	(+),20	1.0000	0.0000	(+),53
26	Function: residential	0.5435	0.7303	(-),53	0.6998	0.6582	(-),23	0.5979	0.7041	(-),43	0.7555	0.6325	(+),20	0.8247	0.5901	(-),53
27	Function: gathering	0.8101	0.5976	(+),53	0.4139	0.7999	(+),23	0.8226	0.5923	(-),43	0.6085	0.7059	(-),20	0.8183	0.5935	(-),53
28	Function: prison	1.0000	0.0000	(+),53	1.0000	0.0000	(+),23	1.0000	0.0000	(+),43	1.0000	0.0000	(+),20	1.0000	0.0000	(+),53
59	Function: healthcare	0.1593	0.9243	(-),53	1.0000	0.0000	(+),23	0.5682	0.7250	(-),43	0.3421	0.8531	(+),20	0.9924	0.5115	(+),53
8	Function: factory	0.4840	0.7606	(+),53	0.7392	0.6408	(+),23	0.5376	0.7350	(+),43	0.9857	0.5071	(+),20	0.9016	0.5526	(+),53
31	Function: office	0.7131	0.6459	(-),53	0.9627	0.5279	(+),23	0.0737	0.9639	(-),43	0.7608	0.6312	(-),20	0.0925	0.9544	(-),53
32	Function: guesthouse	0.4851	0.7605	(-),53	0.8945	0.5644	(-),23	0.9903	0.5097	(+),43	0.9379	0.5517	(+),20	0.6459	0.6805	(-),53
33	Function: education	0.1714	0.9170	(+),53	0.0809	0.9638	(+),23	0.1727	0.9170	(+),43	0.3421	0.8531	(+),20	0.3104	0.8493	(+),53
34	Function: sports	0.3265	0.8459	(-)"53	1.0000	0.0000	(+),23	0.3287	0.8469	(-),43	1.0000	0.0000	(+),20	0.3265	0.8459	(-),53
35	Function: shops	0.9085	0.5484	(+),53	0.6850	0.6662	(+),23	0.9450	0.5312	(+),43	0.8166	0.6029	(+),20	0.5601	0.7222	(+),53
36	Function: other	0.7298	0.6376	(-)"53	0.7570	0.6302	(-),23	0.8344	0.5863	(-),43	0.7755	0.6231	(-),20	0.8310	0.5871	(-),53
37	Green: tree cover	0.6199	0.6923	(+),53	1.0000	0.5088	(+),23	0.9312	0.5378	(-),43	0.6849	0.6674	(+),20	0.7762	0.6143	(+),53
38	Green: bush cover	0.5934	0.7055	(+),53	0.5979	0.7086	(+),23	0.8493	0.5787	(-),43	0.8076	0.6066	(+),20	0.8745	0.5652	(+),53
39	Green: grass cover	0.6154	0.6945	(+),53	0.5384	0.7380	(+),23	0.9243	0.5413	(+),43	0.6849	0.6674	(+),20	0.7282	0.6383	(+),53
4	Noise pollution: total	0.6743	0.6651	(+),53	0.9300	0.5437	(+),23	0.9038	0.5515	(+),43	0.8711	0.5751	(-),20	0.9899	0.5076	(+),53
41	Noise pollution: roads	0.5978	0.7033	(+),53	0.8432	0.5870	(+),23	0.8901	0.5584	(+),43	0.8498	0.5857	(-),20	0.9396	0.5327	(+),53
42	Noise pollution: railways	0.7689	0.6180	(+),53	0.8778	0.5698	(+),23	0.8156	0.5955	(+),43	0.8711	0.5751	(-),20	0.8005	0.6022	(+),53
4	Year constr.: mean	0.9723	0.5164	(-),53	0.8432	0.5870	(+),23	0.7135	0.6464	(+),43	0.5978	0.7104	(+),20	0.5610	0.7216	(+),53
5	Landmarks: FSI	0.7255	0.6398	(-),53	0.9228	0.5482	(-),23	0.7156	0.6456	(-),43	0.9423	0.5404	(-),20	0.7233	0.6409	(-),53
46	Landmarks: plot area	0.0822	0.9595	(-),53	0.3609	0.8255	(-),23	0.3232	0.8406	(-),43	0.4231	0.7966	(-),20	0.2290	0.8868	(-),53
47	Landmarks: Year constr.	0.5728	0.7159	(-),53	0.5598	0.7280	(-),23	0.6680	0.6694	(-),43	0.9884	0.5058	(+),20	0.7157	0.6447	(-),53
1 8	Landmarks: 1 criterion	0.2821	0.8604	(-),53	0.3427	0.8343	(-),23	0.5778	0.7141	(-),43	0.6316	0.6939	(-),20	0.4800	0.7620	(-),53
64	Landmarks: 2 criteria	0.5329	0.7371	(-),53	1.0000	0.0000	(+),23	0.7266	0.6428	(-),43	0.9534	0.5388	(-),20	0.7701	0.6189	(-),53
50	Landmarks: 3 criteria	1.0000	0.0000	(+),53	1.0000	0.0000	(+),23	1.0000	0.0000	(+),43	1.0000	0.0000	(+),20	1.0000	0.0000	(+),53

Figure 1.75: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\geq 6 \text{ x}$ / week), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

0 mwconu::::::::::::::::::::::::::::::::::::									00000	0 5010			010							
WereWe	6	Year constr.: < 1945	0.7138	0.6454	£C'(-)	0.8849	1696.0	(-),24	0.6392	0.000	(-),20	0.41	43 U./9	27 (-),45	0.5562	0.7297	(-),22	0.4652	0.7693	(-),53
11Wursene:::::::::::::::::::::::::::::::::::	10 Ye.	ar constr.: 1946-1970	0.8648	0.5701	(-),53	0.7977	0.6094	(-),24	0.9123	0.5548	(-),20	0.61	39 0.69	34 (-),45	0.6001	0.7082	(+),22	0.8499	0.5776	(+),53
1011 <th< th=""><th>11 Ye</th><th>ar constr.: 1971-1985</th><th>0.5710</th><th>0.7167</th><th>(+),53</th><th>0.5404</th><th>0.7367</th><th>(+),24</th><th>0.5674</th><th>0.7257</th><th>(+),20</th><th>0.27</th><th>10 0.86</th><th>53 (+),45</th><th>0.5319</th><th>0.7419</th><th>(+),22</th><th>0.4355</th><th>0.7842</th><th>(+),53</th></th<>	11 Ye	ar constr.: 1971-1985	0.5710	0.7167	(+),53	0.5404	0.7367	(+),24	0.5674	0.7257	(+),20	0.27	10 0.86	53 (+),45	0.5319	0.7419	(+),22	0.4355	0.7842	(+),53
1 meroeme:0:13:1 0.160 (1)3 0.130 0.131 0.241 0.243	12 Yei	ar constr.: 1986-2000	0.6512	0.6767	(+),53	0.8813	0.5678	(+),24	0.6775	0.6713	(+),20	0.83	59 0.58	47 (+),45	0.5717	0.7223	(+),22	0.7640	0.6205	(+),53
11110.0000.0100.0100.0100.0100.0000.	13 Ye	ar constr.: 2001-2022	0.7116	0.6466	(+),53	0.7393	0.6382	(+),24	0.8917	0.5649	(+),20	0.94	16 0.53	24 (-),45	0.9324	0.5434	(-),22	0.8806	0.5622	(-),53
101010001001 </th <th>14</th> <th>Traffic signals count</th> <th>0.7729</th> <th>0.6160</th> <th>(-),53</th> <th>0.7136</th> <th>0.6510</th> <th>(-),24</th> <th>0.9781</th> <th>0.5219</th> <th>(+),20</th> <th>0.80</th> <th>0.60</th> <th>29 (+),45</th> <th>0.1503</th> <th>3 0.9282</th> <th>(+),22</th> <th>0.3302</th> <th>0.8365</th> <th>(+),53</th>	14	Traffic signals count	0.7729	0.6160	(-),53	0.7136	0.6510	(-),24	0.9781	0.5219	(+),20	0.80	0.60	29 (+),45	0.1503	3 0.9282	(+),22	0.3302	0.8365	(+),53
10 2014 0.534 0.5	15	Stairs count	0.8277	0.5894	(+),53	0.7581	0.6311	(+),24	0.3254	0.8453	(-),20	0.81	42 0.59	70 (+),45	0.3345	0.8401	(+),22	0.6562	0.6749	(+),53
13mm. runnine1000(-)32(-)300(-)32(-)300 </th <th>16 St</th> <th>atus: for construction</th> <th>0.5414</th> <th>0.7334</th> <th>(+),53</th> <th>0.6059</th> <th>0.7140</th> <th>(+),24</th> <th>0.3710</th> <th>0.8260</th> <th>(+),20</th> <th>0.47</th> <th>18 0.76</th> <th>91 (+),45</th> <th>0.3346</th> <th>0.8442</th> <th>(+),22</th> <th>0.5251</th> <th>0.7415</th> <th>(+),53</th>	16 St	atus: for construction	0.5414	0.7334	(+),53	0.6059	0.7140	(+),24	0.3710	0.8260	(+),20	0.47	18 0.76	91 (+),45	0.3346	0.8442	(+),22	0.5251	0.7415	(+),53
1 Similar undercontinution 0.203 0.123 0.1243 <	17	Status: unrealised	1.0000	0.0000	(+),53	1.0000	0.0000	(+),24	1.0000	0.0000	(+),20	1.00	00.0	00 (+),45	1.0000	0.0000	(+),22	1.0000	0.0000	(+),53
10 Statue insertion 0.425 0.780 0.783 0.784 0.780 0.784	18 Statu:	s: under construction	0.9230	0.5428	(+),53	0.6268	0.7002	(+),24	0.4047	0.8084	(+),20	0.73	38 0.63	59 (-),45	0.6547	0.6879	(-),22	0.7688	0.6198	(-),53
Matrix Matrix<	19	Status: in use (n.m.)	0.4255	0.7901	(+),53	0.4943	0.7628	(+),24	0.9652	0.5347	(+),20	0.56	50 0.72	16 (-),45	0.5546	0.7404	(+),22	0.9871	0.5107	(+),53
21Samster for elementie0.5070.7370.7300	20	Status: in use	0.6835	0.6606	(-),53	0.8770	0.5696	(-),24	0.6848	0.6675	(-),20	0.69	35 0.65	38 (-),45	0.9158	3 0.5514	(-),22	0.6882	0.6582	(-),53
2Shaak: effectively10000000(-)310000000(-)310000000(-)4100000000(-)4100000000(-)41000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)441000000000(-)44100000000000000(-)441000	21	Status: for demolition	0.5674	0.7237	(+),53	0.5718	0.7306	(+),24	1.0000	0.0000	(+),20	0.98	74 0.50	53 (+),45	1.0000	0.0000	(+),22	0.9893	0.5053	(+),53
32Status: recti rule10000000(-)310000000(-)310000000(-)4100	52	Status: demolished	1.0000	0.0000	(+),53	1.0000	0.0000	(+),24	1.0000	0.000	(+),20	1.00	00.0	00 (+),45	1.0000	0.0000	(+),22	1.0000	0.0000	(+),53
3 Statuc moorthrotion 0.436 0.780 0.740 0.780 0.780 0.740 0.780 0.780 0.740 0.780 0.740 0.740 0.780 0.740	23	Status: not in use	1.0000	0.0000	(+),53	1.0000	0.0000	(+),24	1.0000	0.0000	(+),20	1.00	00.0 00	00 (+),45	1.0000	0.0000	(+),22	1.0000	0.0000	(+),53
3Status: imigriture10000000(-)310000000(-)310000000(-)451.0000000(-)451.00002Function: residential0.6830.683(-)30.60320.6830.6930.633<	24 8	Status: reconstruction	0.4284	0.7880	(-),53	0.9262	0.5474	(-),24	0.8527	0.5869	(-),20	0.07	26 0.96	45 (-),45	0.0883	3 0.9587	(-),22	0.0112	0.9945	(-),53
6Function: residential0.6050.6961(-).530.60620.70400.70400.70300.6064(-).540.60300.7037Function: residential0.80110.5170.41200.40000.7120.41000.7030	25	Status: illegitimate	1.0000	0.0000	(+),53	1.0000	0.0000	(+),24	1.0000	0.0000	(+),20	1.00	00.0 00	00 (+),45	1.0000	0.0000	(+),22	1.0000	0.0000	(+),53
11	26	Function: residential	0.6083	0.6981	(-),53	0.6052	0.7046	(-),24	0.9676	0.5270	(-),20	0.80	54 0.60	04 (-),45	0.934	0.5422	(-),22	0.7710	0.6169	(-),53
16Function: prison1.0000.000(+).331.0000.000(+).331.0000.000(+).341.0000.000(+).451.0000.000(+).451.0000.000(+).451.0000.000(+).451.0000.000(+).451.0000.000(+).450.000(+).450.0000.000(+).450.000 <th>27</th> <th>Function: gathering</th> <th>0.9621</th> <th>0.5217</th> <th>(+),53</th> <th>0.4120</th> <th>0.8007</th> <th>(+),24</th> <th>0.4605</th> <th>0.7783</th> <th>(-),20</th> <th>0.37</th> <th>10 0.81</th> <th>38 (-),45</th> <th>0.8302</th> <th>0.5947</th> <th>(-),22</th> <th>0.6358</th> <th>0.6845</th> <th>(-),53</th>	27	Function: gathering	0.9621	0.5217	(+),53	0.4120	0.8007	(+),24	0.4605	0.7783	(-),20	0.37	10 0.81	38 (-),45	0.8302	0.5947	(-),22	0.6358	0.6845	(-),53
16 Function: factor0.56740.7247(.153)(.153(.153)	28	Function: prison	1.0000	0.000	(+),53	1.0000	0.0000	(+),24	1.0000	0.0000	(+),20	1.00	00.0	00 (+),45	1.0000	0.0000	(+),22	1.0000	0.000	(+),53
1 Function: metrol 0645 (+)3 0595 (5)24 0578 (5)26 (5)46 (7)13 (5)46 (7)45 0577 0 1 Function: metrol 0535 (5)37 05363 (5)47 05847 (5)47 05892 (7)47 (7)45 0577 0 <	29	Function: healthcare	0.5674	0.7237	(-),53	1.0000	0.0000	(+),24	0.5734	0.7332	(-),20	0.56	30 0.72	47 (-),45	0.3398	3 0.8521	(+),22	0.9924	0.5115	(+),53
1 Function: diversione 0.553 (+)35 0.573 0.513 0.5843 (+)36 0.5636 (+)45 0.573 <th>30</th> <th>Function: factory</th> <th>0.6145</th> <th>0.6957</th> <th>(+),53</th> <th>0.9589</th> <th>0.5308</th> <th>(+),24</th> <th>0.7808</th> <th>0.6238</th> <th>(-),20</th> <th>0.58</th> <th>46 0.71</th> <th>13 (+),45</th> <th>0.9872</th> <th>0.5064</th> <th>(+),22</th> <th>0.9388</th> <th>0.5340</th> <th>(+),53</th>	30	Function: factory	0.6145	0.6957	(+),53	0.9589	0.5308	(+),24	0.7808	0.6238	(-),20	0.58	46 0.71	13 (+),45	0.9872	0.5064	(+),22	0.9388	0.5340	(+),53
2 Function: guesthouse 0.4651 0.763 0.814 0.3363 0.8446 (),20 0.729 0.7373 0.	31	Function: office	0.7538	0.6257	(-),53	0.9119	0.5528	(+),24	0.8437	0.5892	(+),20	0.06	23 0.96	95 (-),45	0.8720	0.5746	(-),22	0.1178	0.9419	(-),53
3 Function: education 0.1714 0.8170 (+)53 0.8956 (+)24 1.0000 0.0000 (+)20 0.3187 0.	32	Function: guesthouse	0.4851	0.7605	(-),53	0.9114	0.5569	(+),24	0.3363	0.8446	(-),20	0.25	96 0.87	29 (-),45	0.7679	9 0.6301	(-),22	0.3050	0.8499	(-),53
34 Function: sports 0.3265 0.459 (.)5 1.000 0.00 (.)42 0.3421 0.8511 (.)20 0.3467 (.)45 1.000 0 35 Function: shops 0.8973 0.5040 (.)53 0.716 (.)20 0.7265 0.8475 (.)46 1.000 0 36 Function: shops 0.8973 0.5040 (.)53 0.8315 0.7165 (.)21 0.8436 (.)22 0.8126 (.)45 0.4495 0.7165 0.4495 0.7165 0.813 0.8147 (.)20 0.7265 0.1265 0.4495 0.2571 0.1265 0.4495 0.2571 0.1265 0.4495 0.7282 0.8125 0.7416 0.7282 0.8125 0.4495 0.2571 0.1267 0.4495 0.2576 0.7426 0.7426 0.7382 0.7426 0.7425 0.7426 0.7426 0.7426 0.7476 0.7426 0.7436 0.7426 0.7426 0.7426 0.7426 0.7426 0.7436 0.7426 0.7436 </th <th>33</th> <th>Function: education</th> <th>0.1714</th> <th>0.9170</th> <th>(+),53</th> <th>0.0810</th> <th>0.9636</th> <th>(+),24</th> <th>1.0000</th> <th>0.0000</th> <th>(+),20</th> <th>0.30</th> <th>91 0.85</th> <th>38 (+),45</th> <th>0.1621</th> <th>0.9283</th> <th>(+),22</th> <th>0.1688</th> <th>0.9182</th> <th>(+),53</th>	33	Function: education	0.1714	0.9170	(+),53	0.0810	0.9636	(+),24	1.0000	0.0000	(+),20	0.30	91 0.85	38 (+),45	0.1621	0.9283	(+),22	0.1688	0.9182	(+),53
36 Function: shops 0.59/3 0.5301 (1,31 0.5436 0.5392 (1,22 0.7436 0.7531 0.7531 0.7531 0.7531 0.7531 0.7531 0.7531 0.7531 0.7531 0.7532 0.75	34	Function: sports	0.3265	0.8459	(-),53	1.0000	0.0000	(+),24	0.3421	0.8531	(-),20	0.32	32 0.84	57 (-),45	1.0000	0.0000	(+),22	0.3265	0.8459	(-),53
6 Function: other 0.664 0.573 0.6871 0.6713 0.6773 0.6774 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7271 0.7282 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7492 0.7482 0.7492 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7482 0.7442 0.7492 0.7442 0.749	35	Function: shops	0.9973	0.5040	(-),53	0.5315	0.7416	(+),24	0.8436	0.5892	(-),20	0.78	26 0.61	20 (-),45	0.4495	0.7824	(+),22	0.4972	0.7535	(+),53
37 Green: tree cover 0.6288 0.6878 (+)53 0.5574 (-)24 0.8604 0.5604 (+)20 0.8225 (+)45 0.7622 0.7162 0.7162 0.7162 0.7162 0.7162 0.7162 0.7162 0.7162 0.7162 0.7163 0.71	36	Function: other	0.8644	0.5704	(-),53	0.6327	0.6914	(-),24	0.6713	0.6746	(+),20	0.90	36 0.55	15 (+),45	0.2571	0.8766	(-),22	0.6690	0.6679	(-),53
36 Green: bush cover 0.577 0.7105 0.5747 (+).24 0.3471 (+).20 0.3485 0.5283 (+).45 0.3906 0.1 37 Green: grass cover 0.3703 0.1700 (+).53 0.6837 (+).24 0.3461 0.5377 (+).20 0.3475 0.143 0.143 0.3475 0.3906 0.1 40 Noise pollutor: rubul 0.6493 0.5738 (+).53 0.5837 (+).24 0.3461 0.5485 (+).27 0.3717 0.141 0.145 0.3937 0.1 41 Noise pollutor: rubusy 0.5760 0.5783 0.5817 (+).24 0.3836 0.5618 (+).45 0.3936 0.1 42 Noise pollutor: rubusy 0.7737 0.5760 0.5783 0.5827 0.5817 (+).24 0.3936 0.2747 0.1<76	37	Green: tree cover	0.6288	0.6878	(+),53	0.9015	0.5574	(-),24	0.8604	0.5804	(+),20	0.82	12 0.59	25 (+),45	0.7692	0.6243	(+),22	0.9924	0.5063	(+),53
36 Green: grass cover 0.5803 0.6837 0.6837 0.6847 (+).24 0.5447 (+).20 0.7176 0.6143 (+).45 0.8973 0.1 40 Noise pollution: total 0.6489 0.6788 (+).53 0.8973 0.5495 (+).20 0.8717 (+).45 0.8973 0.145 0.8973 0.145 0.8973 0.145 0.8973 0.145 0.8973 0.145 0.8973 0.145 0.8973 0.145 0.8973 0.147 0.8496 0.8749 0.8741 0.8741 0.8741 0.8741 0.8741 0.8741 0.8741 0.8741 0.8741 0.8	38	Green: bush cover	0.5674	0.7184	(+),53	0.7105	0.6524	(+),24	0.9461	0.5377	(+),20	0.94	35 0.52	39 (+),45	0.9906	0.5140	(+),22	0.9170	0.5440	(-),53
40 Noise pollution: rotal 0.6469 0.578 (+),53 0.9835 0.5165 (+),24 0.8246 0.5485 (+),20 0.8718 0.5673 (+),45 0.3906 0.1 41 Noise pollution: railways 0.7737 0.6156 (+),53 0.8827 0.5817 (+),24 0.8382 0.5906 (+),20 0.6161 (+),45 0.3345 0.3476 0.3476 0.3476 0.3476 0.3476 0.3747 0.3176 0.3747 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741	39	Green: grass cover	0.5803	0.7120	(+),53	0.6353	0.6897	(+),24	0.9461	0.5377	(+),20	0.77	76 0.61	t3 (+),45	0.8973	3 0.5606	(+),22	0.9370	0.5340	(+),53
41 Noise pollution: raikways 0.5760 0.7141 (+),53 0.8857 0.5817 (+),24 0.8382 0.5908 (+),20 0.6081 (+),45 0.3345 0.1 42 Noise pollution: raikways 0.7737 0.6156 (+),53 0.8367 (+),24 0.8181 0.6014 (+),20 0.6331 (+),45 0.3787 0.1 43 Vear constr.: raikways 0.7737 0.6156 (+),53 0.8363 0.5615 (+),24 0.8181 0.6014 (+),20 0.8311 (+),45 0.7247 0.1 44 Year constr.: main 0.9375 0.5038 0.5615 (+),20 0.7726 0.6418 (+),45 0.7247 0.1 45 Landmarks: FSI 0.6239 0.5615 (+),24 0.6625 (+),20 0.7726 0.6418 (+),45 0.7247 0.1 46 Landmarks: FSI 0.6239 0.5715 0.6651 (+),45 0.7152 0.414 0.8000 (+),45 0.7142 0.1122	40	Noise pollution: total	0.6469	0.6788	(+),53	0.9835	0.5165	(+),24	0.9246	0.5485	(+),20	0.87	18 0.56	73 (+),45	0.9906	0.5047	(+),22	0.9170	0.5440	(+),53
42 Noise pollution: railways 0.7737 0.6156 (+),53 0.8366 0.5897 (+),24 0.8181 0.6014 (+),20 0.8311 (+),45 0.8787 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747 0.3741 0.3741 0.3741 0.3743 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.3741 0.37741 0.3741	41	Noise pollution: roads	0.5760	0.7141	(+),53	0.8527	0.5817	(+),24	0.8392	0.5909	(+),20	0.79	09.0 00	31 (+),45	0.9345	0.5421	(+),22	0.7593	0.6228	(+),53
44 Year constr. mean 0.9975 0.5038 (+),53 0.8833 0.5615 (+),24 0.66948 0.6625 (+),20 0.7275 0.6418 (+),45 0.7247 0.1 45 Landmarks: FSI 0.6289 0.6879 (-),53 1.0000 0.0000 (+),24 0.6538 0.6831 (-),20 0.6748 0.6657 (-),45 0.132 0.1 46 Landmarks: plot area 0.0579 0.9715 (-),53 0.6031 (-),24 0.1417 0.8330 (-),20 0.2434 0.8800 (-),45 0.3741 0.1	42 No	ise pollution: railways	0.7737	0.6156	(+),53	0.8366	0.5897	(+),24	0.8181	0.6014	(+),20	0.84	01 0.58	31 (+),45	0.8787	0.5699	(-),22	0.9773	0.5139	(+),53
45 Landmarks: FSI 0.6289 0.6879 (-),53 1.0000 0.0000 (+),24 0.6538 0.6631 (-),20 0.6748 0.6657 (-),45 0.7152 0.1 46 Landmarks: piot area 0.0579 0.9715 (-),53 0.6331 0.6901 (-),24 0.1417 0.3330 (-),20 0.2434 0.8800 (-),45 0.3741 0.1	44	Year constr.: mean	0.9975	0.5038	(+),53	0.8933	0.5615	(+),24	0.6948	0.6625	(+),20	0.72	25 0.64	18 (+),45	0.7247	0.6464	(+),22	0.6491	0.6777	(+),53
46 Landmarks: potrarea 0.0579 0.9715 (-),53 0.6351 0.6901 (-),24 0.1417 0.9330 (-),20 0.2434 0.8800 (-),45 0.3741 0.1	45	Landmarks: FSI	0.6289	0.6879	(-),53	1.0000	0.0000	(+),24	0.6538	0.6831	(-),20	0.67	48 0.66	57 (-),45	0.7152	0.6518	(-),22	0.6239	0.6904	(-),53
	46	Landmarks: plot area	0.0579	0.9715	(-),53	0.6351	0.6901	(-),24	0.1417	0.9330	(-),20	0.24	34 0.88	00 (-),45	0.3741	0.8195	(-),22	0.2202	0.8911	(-),53
47 Landmarks: Year constr. 0.5559 0.7343 (-),53 0.7452 0.6356 (-),24 0.6717 0.6751 (-),20 0.5414 0.7321 (-),45 0.7338 0.1	47 Lai	ndmarks: Year constr.	0.5359	0.7343	(-),53	0.7452	0.6356	(-),24	0.6717	0.6751	(-),20	0.54	14 0.73	21 (-),45	0.7938	3 0.6131	(+),22	0.8001	0.6026	(-),53
48 Landmarks: 1 criterion 0.2138 0.8943 (-),53 0.5964 0.7139 (-),24 0.5089 0.7543 (-),20 0.5125 0.7464 (-),45 0.7283 0.1	48 L	andmarks: 1 criterion	0.2138	0.8943	(-),53	0.5864	0.7139	(-),24	0.5089	0.7543	(-),20	0.51	25 0.74	54 (-),45	0.7293	3 0.6443	(-),22	0.4679	0.7680	(-),53
48 Landmarks: 2 criteria 0.5329 0.7371 (-),53 1.0000 0.0000 (+).24 0.3821 0.8193 (-).20 0.5963 0.7112 (-),45 0.9668 0.	49	Landmarks: 2 criteria	0.5329	0.7371	(-),53	1.0000	0.0000	(+),24	0.3821	0.8193	(-),20	0.58	53 0.71	12 (-),45	0.9686	0.5314	(-),22	0.7902	0.6089	(-),53
50 Landmarks: 3 criteria 1.0000 0.0000 (+),53 1.0000 0.0000 (+),24 1.0000 0.0000 (+),20 1.0000 0.0000 (+),45 1.0000 0.	50	Landmarks: 3 criteria	1.0000	0.0000	(+),53	1.0000	0.0000	(+),24	1.0000	0.0000	(+),20	1.00	00.0	00 (+),45	1.0000	0.0000	(+),22	1.0000	0.000	(+),53
Figure 1.76: Raw results for route aggregate analysis, sample: interaction - frequency of walking (\geq 3, data: non-standardised, baseline: shortest path, direction: egress	Figur	e 1.76: Ra	w resi	ults for	route	aceree	rate a	nalvsis	umes s	le. in	-aracti	- fro	uono	ar of m	مرااد	- - - /)	· / ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ation

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.7465	0.6268	wi(+),53	0.4967	0.6912	tt(+),23	0.3683	0.8159	wi(-),43	0.0057	0.9972	wi(-),20	0.0256	0.9872	wi(-),53
₽	Year constr.: 1946-1970	0.0719	0.9641	wi(+),53	0.0308	0.9846	wi(+),23	0.9237	0.0964	tt(+),43	0.7663	-0.3014	tt(-),20	0.9091	-0.1147	tt(-),53
÷	Year constr.: 1971-1985	0.2448	-1.1765	tt(-),53	0.5567	0.7216	wi(+),23	0.3370	0.9711	tt(+),43	0.4671	-0.7421	tt(-),20	0.6175	-0.5023	tt(-),53
12	Year constr.: 1986-2000	0.1421	0.9289	wi(-),53	0.1643	-1.4387	tt(-),23	0.1220	-1.5785	tt(-),43	0.4161	-0.8313	tt(-),20	0.0122	-2.597	tt(-),53
13	Year constr.: 2001-2022	0.1836	1.3478	tt(+),53	0.1336	1.5575	tt(+),23	0.3362	0.9728	tt(+),43	0.0833	1.828	tt(+),20	0.2319	1.2097	tt(+),53
14	Traffic signals count	0.4526	-0.7567	tt(-),53	0.1406	-1.5288	tt(-),23	0.3074	0.8463	wi(+),43	0.2299	0.8851	wi(+),20	0.0708	0.9646	wi(+),53
15	Stairs count	0.8093	0.5954	wi(+),53	0.6647	-0.4393	tt(-),23	0.7942	0.6029	wi(-),43	0.2505	0.8748	wi(+),20	0.8151	0.5925	wi(+),53
16	Status: for construction	0.6382	0.6809	wi(-),53	0.7140	-0.3712	tt(-),23	0.7643	0.6178	wi(-),43	0.4246	0.7877	wi(+),20	0.9729	0.5136	wi(-),53
17	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
18	Status: under construction	0.8182	0.5909	wi(-),53	0.6915	0.6542	wi(+),23	0.2684	0.8658	wi(-),43	1.0000	equal	n/a,20	0.6155	0.6923	wi(-),53
19	Status: in use (n.m.)	0.3183	0.8408	wi(+),53	0.2795	0.8602	wi(+),23	0.9686	0.5157	wi(-),43	1.0000	equal	n/a,20	0.8144	0.5928	wi(+),53
20	Status: in use	0.2507	-1.1616	tt(-),53	0.4152	0.8304	tt(+),23	0.3104	0.8448	wi(-),43	0.1234	-1.6123	tt(-),20	0.1043	0.9479	wi(-),53
21	Status: for demolition	0.7964	0.6018	wi(-),53	0.6949	0.6526	wi(+),23	0.5639	0.7181	wi(-),43	0.6767	0.6617	wi(+),20	0.7964	0.6018	wi(-),53
22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
23	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
24	Status: reconstruction	0.2839	1.0829	tt(+),53	0.6436	0.4691	tt(+),23	0.9293	-0.0892	tt(-),43	0.6767	0.6617	wi(+),20	0.8115	0.5943	wi(-),53
25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
26	Function: residential	0.0937	0.9531	wi(-),53	0.5523	0.7239	wi(+),23	0.2080	0.896	wi(-),43	0.1003	0.9498	wi(-),20	0.0348	0.9826	wi(-),53
27	Function: gathering	0.4242	0.8054	tt(+),53	0.5928	0.5427	tt(+),23	0.9443	-0.0703	tt(-),43	0.7319	0.6341	wi(+),20	0.7013	0.6494	wi(-),53
28	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
29	Function: healthcare	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,23	1.0000	0.5	wi(+),43	0.6767	0.6617	wi(+),20	0.7926	0.6037	wi(+),53
8	Function: factory	0.9760	-0.0303	tt(-),53	0.4999	0.6859	tt(+),23	0.6089	0.6955	wi(+),43	0.9683	0.5159	wi(-),20	0.7783	0.6109	wi(-),53
31	Function: office	0.7415	-0.3316	tt(-),53	0.5548	0.7226	wi(-),23	0.0745	-1.8288	tt(-),43	0.3239	-1.0127	tt(-),20	0.0415	-2.0905	tt(-),53
32	Function: guesthouse	0.8031	0.5985	wi(-),53	0.4503	0.7748	wi(+),23	0.9634	0.5183	wi(+),43	0.7409	-0.3356	tt(-),20	0.5488	0.7256	wi(-),53
33	Function: education	0.6155	0.6923	wi(+),53	0.2752	0.8624	wi(+),23	0.9946	0.5027	wi(+),43	0.9837	0.5082	wi(+),20	0.8041	0.598	wi(-),53
34	Function: sports	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,23	0.7681	0.616	wi(-),43	1.0000	equal	n/a,20	0.7893	0.6054	wi(-),53
35	Function: shops	0.6131	-0.5087	tt(-),53	0.4615	0.7496	tt(+),23	0.5900	-0.543	tt(-),43	0.2711	0.8644	wi(+),20	0.6470	0.4606	tt(+),53
36	Function: other	0.4424	0.7788	wi(-),53	0.3937	-0.8701	tt(-),23	0.5278	0.6367	tt(+),43	0.8719	-0.1634	tt(-),20	0.9355	0.0813	tt(+),53
37	Green: tree cover	0.0000	-6.9634	tt(-),53	0.0005	-4.0582	tt(-),23	0.0000	-7.1207	tt(-),43	0.0012	-3.8007	tt(-),20	0.0000	-7.0446	tt(-),53
38	Green: bush cover	0.0000	-6.0806	tt(-),53	0.0184	-2.5467	tt(-),23	0.0000	-7.0156	tt(-),43	0.0021	-3.5685	tt(-),20	0.0000	-6.9134	tt(-),53
39	Green: grass cover	0.0000	-6.8467	tt(-),53	0.0083	-2.8995	tt(-),23	0.0000	-8.3692	tt(-),43	0.0014	-3.7463	tt(-),20	0.0000	-7.7687	tt(-),53
4	Noise pollution: total	0.0000	-8.6205	tt(-),53	0.0000	-5.48	tt(-),23	0.0000	-9.7917	tt(-),43	0.0000	-5.3565	tt(-),20	0.0000	-9.9507	tt(-),53
41	Noise pollution: roads	0.0000	-7.7934	tt(-),53	0.0001	-5.0005	tt(-),23	0.0000	-7.6624	tt(-),43	0.0001	-4.9762	tt(-),20	0.0000	-8.0795	tt(-),53
42	Noise pollution: railways	0.0000	1.0	wi(-),53	0.0001	1.0	wi(-),23	0.000	-5.7337	tt(-),43	0.0479	0.9761	wi(-),20	0.0000	1.0	wi(-),53
4	Year constr.: mean	0.9154	0.5423	wi(+),53	0.9636	0.5182	wi(+),23	0.9326	0.5337	wi(+),43	0.0880	1.7984	tt(+),20	0.5075	0.6674	tt(+),53
45	Landmarks: FSI	0.0039	0.998	wi(-),53	0.1604	0.9198	wi(-),23	0.1328	0.9336	wi(-),43	0.3128	0.8436	wi(-),20	0.0476	0.9762	wi(-),53
46	Landmarks: plot area	0.0112	0.9944	wi(-),53	0.0265	0.9867	wi(-),23	0.3553	0.8223	wi(-),43	0.6572	0.6714	wi(-),20	0.1229	0.9386	wi(-),53
47	Landmarks: Year constr.	0.4901	0.755	wi(-),53	0.7714	0.6143	wi(-),23	0.9895	0.5052	wi(+),43	1.0000	0.5	wi(+),20	0.8613	0.5693	wi(-),53
48	Landmarks: 1 criterion	0.0138	0.9931	wi(-),53	0.1947	0.9026	wi(-),23	0.4091	0.7954	wi(-),43	0.3467	0.8266	wi(-),20	0.1282	0.9359	wi(-),53
49	Landmarks: 2 criteria	0.2125	0.8938	wi(-),53	0.6949	0.6526	wi(-),23	0.5639	0.7181	wi(-),43	0.7018	0.6491	wi(-),20	0.3265	0.8367	wi(-),53
50	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53

: / week), sub-question	
6 х	
$\underline{\mathbb{N}}$	
equency of walking	
- II	ess
interaction -	rection: acc
le:	, di
1.77: Raw results for route aggregate analysis, samp	: standardised, baseline: least directional turns path.
igure	, data
Щ	\mathfrak{r}

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] sta	t [3] coef,n	P([2] sometimes) [2] sta	t [2] coef,i	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	east coef,n
	Year constr.: < 1945	0.8007	0.5996	wi(+),53	0.4451	0.7769	tt(+),24	0.0565	-2.030	5 tt(-),20	0.078	0.960	9 wi(-),4	0.0405	0.9797	wi(-),22	0.0268	0.9866	wi(-),53
₽	Year constr.: 1946-1970	0.0926	0.9537	wi(+),53	0.2685	0.8657	wi(+),24	0.9698	0.515	1 wi(+),20	0.985	3 0.018	5 tt(+),4!	0.1523	1.4855	tt(+),22	0.3575	0.9284	tt(+),53
Ξ	Year constr.: 1971-1985	0.2551	-1.1507	tt(-),53	0.7426	-0.3324	tt(-),24	0.1665	-1.438	5 tt(-),20	0.693	1 -0.396	9 tt(-),4!	0.7183	0.3656	tt(+),22	0.3948	-0.858	tt(-),53
12	Year constr.: 1986-2000	0.1534	0.9233	wi(-),53	0.1274	-1.5815	tt(-),24	0.2306	0.884	7 wi(-),20	0.036	2.160	7 tt(-),4!	0.4529	-0.7648	tt(-),22	0600.0	-2.714	tt(-),53
13	Year constr.: 2001-2022	0.1766	1.3698	tt(+),53	0.2653	1.1417	tt(+),24	0.0836	1.825	9 tt(+),20	0.358	0.928	3 tt(+),4!	0.0978	1.7327	tt(+),22	0.2634	1.1307	tt(+),53
14	Traffic signals count	0.4836	-0.7057	tt(-),53	0.2326	-1.2259	tt(-),24	0.4760	0.76	2 wi(+),20	0.395	0.802	5 wi(+),4	0.1762	0.9119	wi(+),22	0.0547	0.9726	wi(+),53
15	Stairs count	0.8093	0.5954	wi(+),53	1.0000	0.0	tt(+),24	0.4245	0.787	7 wi(-),20	1.000	0.0	5 wi(+),4	0.2671	0.8664	wi(+),22	0.6347	0.6827	wi(+),53
16	Status: for construction	0.6382	0.6809	wi(-),53	0.7136	-0.3716	tt(-),24	0.7018	0.649	1 wi(+),20	0.769	1 0.615	3 wi(-),4	0.7247	0.6377	wi(+),22	0.9729	0.5136	wi(-),53
11	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	mbe	al n/a,20	1.000	anpa (il n/a,4!	1.0000	equal	n/a,22	1.0000	equal	n/a,53
18	Status: under construction	0.8182	0.5909	wi(-),53	0.9874	0.5063	wi(+),24	0.9366	0.531	7 wi(+),20	0.2773	3 0.861	3 wi(-),4	0.6892	0.6554	wi(-),22	0.4544	0.7728	wi(-),53
19	Status: in use (n.m.)	0.4684	0.7658	wi(+),53	0.2874	0.8563	wi(+),24	0.7018	0.649	1 wi(-),20	0.575	3 0.712	1 wi(-),4	0.6892	0.6554	wi(+),22	0.8144	0.5928	wi(+),53
20	Status: in use	0.1568	-1.4366	tt(-),53	0.6299	0.4884	tt(+),24	0.0162	-2.637	1 tt(-),20	0.092	4 -1.720	1 tt(-),4!	0.6736	-0.4272	tt(-),22	0.1047	-1.6515	tt(-),53
2	Status: for demolition	0.7964	0.6018	wi(-),53	1.0000	0.5	wi(+),24	0.6767	0.661	7 wi(-),20	0.571	3 0.714	1 wi(-),4	1.0000	equal	n/a,22	0.5995	0.7002	wi(-),53
22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	inbə	il n/a,20	1.000	edus	il n/a,4	1.0000	equal	n/a,22	1.0000	equal	n/a,53
5	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	mbe	il n/a,20	1.000	edus	il n/a,4	1.0000	equal	n/a,22	1.0000	equal	n/a,53
54	Status: reconstruction	0.1969	1.3073	tt(+),53	0.3754	0.9039	tt(+),24	0.2405	1.211	6 tt(+),20	0.980	0.509	7 wi(-),4	0.7181	0.6409	wi(-),22	0.4876	0.7562	wi(-),53
22	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	nbə	al n/a,20	1.000	edus	il n/a,4	1.0000	equal	n/a,22	1.0000	equal	n/a,53
90	Function: residential	0.1046	0.9477	wi(-),53	0.8975	0.5512	wi(+),24	0.0130	0.993	5 wi(-),20	0.083	3 0.958	1 wi(-),4	0.1994	0.9003	wi(-),22	0.0224	0.9888	wi(-),53
1	Function: gathering	0.6385	0.4726	tt(+),53	0.6179	0.5057	tt(+),24	0.7064	-0.382	4 tt(-),20	0.506	-0.670	4 tt(-),4	0.6801	0.66	wi(+),22	0.1941	0.903	wi(-),53
8	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	inbə	il n/a,20	1.000	edus	il n/a,4	1.0000	equal	n/a,22	1.0000	equal	n/a,53
6	Function: healthcare	1.0000	0.5	wi(+),53	1.0000	equal	n/a,24	1.0000	0	5 wi(+),20	1.000	0.0	5 wi(+),4	0.6892	0.6554	wi(+),22	0.7926	0.6037	wi(+),53
ø	Function: factory	0.7786	-0.2826	tt(-),53	0.9131	-0.1103	tt(-),24	0.0210	-2.516	5 tt(-),20	0.745	-0.32	5 tt(-),4{	0.9614	0.049	tt(+),22	0.4874	0.7563	wi(-),53
Ē	Function: office	0.7717	-0.2917	tt(-),53	0.6291	-0.4895	tt(-),24	0.7729	0.292	8 tt(+),20	0.063	3 -1.901	4 tt(-),4!	0.2399	-1.2096	tt(-),22	0.0641	-1.8914	tt(-),53
22	Function: guesthouse	0.8031	0.5985	wi(-),53	0.7204	0.6398	wi(+),24	0.4246	0.787	7 wi(-),20	0.325	7 0.837	1 wi(-),4	0.6855	0.6573	wi(+),22	0.3774	0.8113	wi(-),53
23	Function: education	0.6155	0.6923	wi(+),53	0.2829	0.8585	wi(+),24	1.0000	edu	al n/a,20	0.995(0.502	5 wi(-),4	0.6892	0.6554	wi(+),22	0.7964	0.6018	wi(+),53
34	Function: sports	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,24	0.6767	0.661	7 wi(-),20	0.772	3 0.613	5 wi(-),4	1.0000	equal	n/a,22	0.7893	0.6054	wi(-),53
35	Function: shops	0.5388	-0.6188	tt(-),53	0.1461	1.5043	tt(+),24	0.4545	-0.763	5 tt(-),20	0.380	9-0.885	7 tt(-),4!	0.0563	0.9719	wi(+),22	0.6133	0.5084	tt(+),53
36	Function: other	0.4669	0.7665	wi(-),53	0.4041	-0.8501	tt(-),24	0.5677	-0.581	6 tt(-),20	0.482	0.708	1 tt(+),4!	0.3674	-0.9212	tt(-),22	0.9846	-0.0194	tt(-),53
37	Green: tree cover	0.0000	-6.9067	tt(-),53	0.0001	-4.9284	tt(-),24	0.0000	-5.767	9 tt(-),20	0.000	-7.323	2 tt(-),4	0.0001	-4.7999	tt(-),22	0.0000	-7.4543	tt(-),53
38	Green: bush cover	0.0000	-5.9762	tt(-),53	0.0047	-3.1344	tt(-),24	0.0001	-5.021	5 tt(-),20	0.000	-6.916	5 tt(-),4	0.0001	-5.0326	tt(-),22	0.0000	-7.4738	tt(-),53
39	Green: grass cover	0.0000	-6.6729	tt(-),53	0.0008	-3.838	tt(-),24	0.0000	-5.466	5 tt(-),20	0.000	-8.637	7 tt(-),4!	0.0001	-4.8054	tt(-),22	0.0000	-8.374	tt(-),53
ç	Noise pollution: total	0.0000	-8.449	tt(-),53	0.000	-5.5914	tt(-),24	0.0000	-5.994	2 tt(-),20	0.000	9.647	e tt(-),4	0.0000	-5.2441	tt(-),22	0.0000	-9.3974	tt(-),53
Ŧ	Noise pollution: roads	0.0000	-7.655	tt(-),53	0.0000	-5.2516	tt(-),24	0.0001	-4.925	9 tt(-),20	0.000	-7.721	3 tt(-),4!	0.0002	-4.5507	tt(-),22	0.0000	-8.0272	tt(-),53
ğ	Noise pollution: railways	0.0000	1.0	wi(-),53	0.0005	0.9998	wi(-),24	0.0000	-6.24	5 tt(-),20	0.000	-5.880	7 tt(-),4!	0.3694	-0.9173	tt(-),22	0.0000	1.0	wi(-),53
4	Year constr.: mean	0.7034	0.6483	wi(+),53	0.9431	0.5285	wi(+),24	0.0206	0.989	7 wi(+),20	0.473	5 0.763	2 wi(+),4	0.9958	-0.0054	tt(-),22	0.7759	0.2861	tt(+),53
ş	Landmarks: FSI	0.0023	0.9989	wi(-),53	0.1666	0.9167	wi(-),24	0.0102	0.994	9 wi(-),20	0.057	5 0.971	2 wi(-),4	0.1643	0.9178	wi(-),22	0.0247	0.9877	wi(-),53
46	Landmarks: plot area	0.0037	0.9981	wi(-),53	0.2228	0.8886	wi(-),24	0.0217	0.989	1 wi(-),20	0.156	0.921	9 wi(-),4	0.6532	0.6734	wi(-),22	0.1229	0.9386	wi(-),53
4	Landmarks: Year constr.	0.3646	0.8177	wi(-),53	0.7728	0.6136	wi(-),24	0.3259	0.837	1 wi(-),20	0.618	0690	5 wi(-),4	0.2945	0.8528	wi(+),22	0.9513	0.5244	wi(+),53
8	Landmarks: 1 criterion	0.0033	0.9983	wi(-),53	0.4442	0.7779	wi(-),24	0.0574	0.971	3 wi(-),20	0.145	0.927	2 wi(-),4	0.7170	0.6415	wi(-),22	0.1477	0.9262	wi(-),53
1 9	Landmarks: 2 criteria	0.2125	0.8938	wi(-),53	0.7003	0.6498	wi(-),24	0.0770	0.961	5 wi(-),20	0.405	0.79	7 wi(-),4	0.9857	0.5071	wi(-),22	0.4514	0.7743	wi(-),53
0	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	edu	al n/a,20	1.000	edua	il n/a,4!	1.0000	equal	n/a,22	1.0000	equal	n/a,53
2	1 78. Dan		ff	* *****			متامية		2	104 0 m 0 0	ti on fao		JC to	and little of			(-100	5 	1001

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.8005	-0.254	tt(-),53	0.7089	-0.3782	tt(-),23	0.1675	0.9162	wi(-),43	0.4984	0.7508	wi(-),20	0.1277	0.9362	wi(-),53
₽	Year constr.: 1946-1970	0.5038	0.7481	wi(+),53	0.7580	0.621	wi(+),23	0.8782	-0.1541	tt(-),43	0.7176	0.6412	wi(-),20	0.7577	0.6212	wi(-),53
÷	Year constr.: 1971-1985	0.8983	0.5508	wi(+),53	0.5090	0.6714	tt(+),23	0.0479	2.038	tt(+),43	0.5822	0.5597	tt(+),20	0.2128	1.2614	tt(+),53
12	Year constr.: 1986-2000	0.7183	0.6408	wi(+),53	0.8985	-0.129	tt(-),23	0.5323	-0.6297	tt(-),43	0.4106	-0.8414	tt(-),20	0.2258	-1.2257	tt(-),53
13	Year constr.: 2001-2022	0.2903	0.8548	wi(+),53	0.2808	0.8596	wi(+),23	0.5966	0.7017	wi(-),43	0.8356	0.5822	wi(+),20	0.8166	0.5917	wi(-),53
4	Traffic signals count	0.8543	0.5728	wi(-),53	0.9637	-0.046	tt(-),23	0.1862	0.9069	wi(+),43	0.3586	0.9409	tt(+),20	0.5438	0.6111	tt(+),53
15	Stairs count	0.8093	0.5954	wi(+),53	1.0000	0.5	wi(+),23	0.7942	0.6029	wi(-),43	0.4245	0.7877	wi(+),20	0.8151	0.5925	wi(+),53
16	Status: for construction	0.6224	0.6888	wi(+),53	0.7409	0.6295	wi(+),23	0.7660	0.617	wi(+),43	0.4246	0.7877	wi(+),20	0.7842	0.6079	wi(+),53
17	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
18	Status: under construction	0.6155	0.6923	wi(+),53	0.4503	0.7748	wi(+),23	0.7673	0.6164	wi(-),43	1.0000	equal	n/a,20	0.8041	0.598	wi(+),53
19	Status: in use (n.m.)	0.1411	0.9294	wi(+),53	0.4503	0.7748	wl(+),23	0.7812	0.6094	wi(-),43	1.0000	equal	n/a,20	0.8069	0.5966	wi(+),53
20	Status: in use	0.4549	-0.7529	tt(-),53	0.6022	-0.5288	tt(-),23	0.2932	0.8534	wi(-),43	0.9186	-0.1035	tt(-),20	0.4199	-0.813	tt(-),53
21	Status: for demolition	0.7893	0.6054	wi(+),53	0.6949	0.6526	wi(+),23	1.0000	0.5	wi(+),43	0.6767	0.6617	wi(+),20	0.7964	0.6018	wi(+),53
22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
53	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
24	Status: reconstruction	0.1400	-1.4988	tt(-),53	0.4899	-0.7022	tt(-),23	0.0269	-2.294	tt(-),43	0.0409	0.9796	wi(-),20	0.0057	0.9971	wi(-),53
25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
26	Function: residential	0.7515	0.6243	wi(+),53	0.9513	0.5244	wi(+),23	0.7948	0.6026	wi(-),43	0.8689	-0.1673	tt(-),20	0.6068	0.6966	wi(-),53
27	Function: gathering	0.9376	0.5312	wi(-),53	0.3518	0.9512	tt(+),23	0.6317	-0.4829	tt(-),43	0.2887	0.8557	wi(-),20	0.4611	-0.7425	tt(-),53
28	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53
29	Function: healthcare	0.5995	0.7002	wi(-),53	1.0000	equal	n/a,23	0.7776	0.6112	wi(-),43	0.6767	0.6617	wi(+),20	0.9921	0.5039	wi(+),53
30	Function: factory	0.3300	0.9834	tt(+),53	0.6301	0.4884	tt(+),23	0.5769	0.7115	wi(+),43	1.0000	0.0	tt(+),20	1.0000	0.5	wi(+),53
31	Function: office	0.6480	0.676	wi(-),53	0.9872	0.5064	wi(+),23	0.0089	-2.7444	tt(-),43	0.6797	-0.4193	tt(-),20	0.0312	-2.2149	tt(-),53
32	Function: guesthouse	0.6169	0.6916	wi(-),53	1.0000	0.5	wi(+),23	0.9948	0.5026	wi(+),43	0.9268	0.093	tt(+),20	0.6659	0.6671	wi(-),53
33	Function: education	0.4390	0.7805	wi(+),53	0.2752	0.8624	wi(+),23	0.3967	0.8016	wi(+),43	0.6767	0.6617	wi(+),20	0.5995	0.7002	wi(+),53
34	Function: sports	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,23	0.7681	0.616	wi(-),43	1.0000	equal	n/a,20	0.7893	0.6054	wi(-),53
35	Function: shops	0.9707	0.5146	wi(+),53	0.3254	1.0059	tt(+),23	0.6954	0.3942	tt(+),43	0.4835	0.7582	wi(+),20	0.4720	0.764	wi(+),53
36	Function: other	0.7630	0.6185	wi(-),53	0.8888	0.5556	wi(-),23	0.8544	0.5728	wi(-),43	0.9199	-0.102	tt(-),20	0.9078	0.1163	tt(+),53
37	Green: tree cover	0.0266	0.9867	wi(+),53	0.3988	0.8605	tt(+),23	0.7983	-0.2572	tt(-),43	0.7335	0.3455	tt(+),20	0.8992	0.1273	tt(+),53
88	Green: bush cover	0.0380	0.981	wi(+),53	0.1475	1.5013	tt(+),23	0.6325	-0.4817	tt(-),43	0.6291	0.4909	tt(+),20	0.9951	0.0062	tt(+),53
39	Green: grass cover	0.0705	1.8464	tt(+),53	0.1040	1.6958	tt(+),23	0.9027	0.123	tt(+),43	0.4442	0.7815	tt(+),20	0.5802	0.5566	tt(+),53
40	Noise pollution: total	0.0147	0.9926	wi(+),53	0.6559	0.4517	tt(+),23	0.7232	0.3565	tt(+),43	0.5574	-0.5973	tt(-),20	0.8201	0.2285	tt(+),53
41	Noise pollution: roads	0.0291	0.9854	wi(+),53	0.7791	0.2839	tt(+),23	0.7225	0.3575	tt(+),43	0.6180	-0.507	tt(-),20	0.8084	0.2437	tt(+),53
42	Noise pollution: railways	0.0791	0.9605	wi(+),53	0.3661	0.9229	tt(+),23	0.8610	0.5695	wi(+),43	0.4666	0.7667	wi(+),20	0.5011	0.7495	wi(+),53
4	Year constr.: mean	0.7155	0.6422	wi(-),53	0.1509	0.9246	wi(+),23	0.0497	0.9752	wi(+),43	0.1506	0.9247	wi(+),20	0.0417	0.9791	wi(+),53
45	Landmarks: FSI	0.4691	0.7655	wi(-),53	0.6949	0.6526	wi(-),23	0.9634	0.5183	wi(-),43	0.9085	0.5458	wi(-),20	0.9221	0.539	wi(-),53
46	Landmarks: plot area	0.0053	0.9974	wi(-),53	0.0509	0.9746	wi(-),23	0.1614	0.9193	wi(-),43	0.4027	0.7987	wi(-),20	0.0762	0.9619	wi(-),53
47	Landmarks: Year constr.	0.2221	0.889	wi(-),53	0.2941	0.853	wi(-),23	0.4325	0.7837	wi(-),43	0.5595	0.7203	wi(+),20	0.7754	0.6123	wi(-),53
48	Landmarks: 1 criterion	0.0229	0.9885	wi(-),53	0.0666	0.9667	wi(-),23	0.3483	0.8259	wi(-),43	0.8055	0.5973	wi(-),20	0.3103	0.8449	wi(-),53
49	Landmarks: 2 criteria	0.4390	0.7805	wi(-),53	1.0000	equal	n/a,23	0.7681	0.616	wi(-),43	0.9837	0.5082	wi(-),20	0.7926	0.6037	wi(-),53
50	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,23	1.0000	equal	n/a,43	1.0000	equal	n/a,20	1.0000	equal	n/a,53

Figure 1.79: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\geq 6 \text{ x}$ / week), sub-question 3, data: standardised, baseline: shortest path, direction: access

Macueuncirsing off and a costa worked and a costa worked a co		Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n F	o([2] sometimes	[2] sta	t [2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	east coef,n
MonomeMonom		Year constr.: < 1945	0.5901	-0.5421	tt(-),53	0.6017	0.6992	wi(+),24	0.6698	-0.4331	tt(-),20	0.0748	0.962	5 wi(-),45	0.2334	0.8833	wi(-),22	0.0811	0.9595	wi(-),53
Werewersensione 000 001	~	Year constr.: 1946-1970	0.7933	0.6033	wi(+),53	0.9420	0.529	wi(+),24	0.4960	0.752	wi(+),20	0.8747	-0.158	5 tt(-),45	0.1820	0.909	wi(+),22	0.6541	0.4506	tt(+),53
Marcuestications 0.01	-	Year constr.: 1971-1985	0.9818	0.5091	wi(+),53	0.9708	-0.0369	tt(-),24	0.2615	1.1572	tt(+),20	0.1269	1.555	3 tt(+),45	0.5218	0.6515	tt(+),22	0.3503	0.9424	tt(+),53
0 0.00 0.01 0.	2	Year constr.: 1986-2000	0.4960	0.752	wi(+),53	0.9026	-0.1237	tt(-),24	0.2975	0.8512	wi(+),20	0.2663	-1.12	5 tt(-),45	0.4310	-0.8029	tt(-),22	0.1419	-1.4913	tt(-),53
ImbordImbor	3	Year constr.: 2001-2022	0.2760	0.862	wi(+),53	0.5293	0.7354	wi(+),24	0.6593	0.4478	tt(+),20	0.5209	0.739	5 wi(-),45	0.6575	0.6712	wi(-),22	0.4595	0.7703	wi(-),53
Image	4	Traffic signals count	0.8967	0.5517	wi(-),53	0.9420	0.529	wi(+),24	0.7621	-0.3071	tt(-),20	0.4302	0.784	9 wi(+),45	0.1300	1.5758	tt(+),22	0.2258	1.2259	tt(+),53
Matter verticationeColor	15	Stairs count	0.8093	0.5954	wi(+),53	0.7204	0.6398	wi(+),24	0.1864	-1.3708	tt(-),20	0.7430	0.3	3 tt(+),45	0.2671	0.8664	wi(+),22	0.5322	0.6288	tt(+),53
Mat. Mat. <th< th=""><th>9</th><th>Status: for construction</th><th>0.6224</th><th>0.6888</th><th>wi(+),53</th><th>0.7438</th><th>0.6281</th><th>wi(+),24</th><th>0.4246</th><th>0.7877</th><th>wi(+),20</th><th>0.7710</th><th>0.614</th><th>5 wi(+),45</th><th>0.4421</th><th>0.7789</th><th>wi(+),22</th><th>0.7842</th><th>0.6079</th><th>wi(+),53</th></th<>	9	Status: for construction	0.6224	0.6888	wi(+),53	0.7438	0.6281	wi(+),24	0.4246	0.7877	wi(+),20	0.7710	0.614	5 wi(+),45	0.4421	0.7789	wi(+),22	0.7842	0.6079	wi(+),53
Model Model <th< th=""><th>11</th><th>Status: unrealised</th><th>1.0000</th><th>equal</th><th>n/a,53</th><th>1.0000</th><th>equal</th><th>n/a,24</th><th>1.0000</th><th>equal</th><th>n/a,20</th><th>1.0000</th><th>inpe (</th><th>ll n/a,45</th><th>1.0000</th><th>equal</th><th>n/a,22</th><th>1.0000</th><th>equal</th><th>n/a,53</th></th<>	11	Status: unrealised	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	equal	n/a,20	1.0000	inpe (ll n/a,45	1.0000	equal	n/a,22	1.0000	equal	n/a,53
Model Model <th< th=""><th>18</th><th>Status: under construction</th><th>0.6155</th><th>0.6923</th><th>wi(+),53</th><th>0.7003</th><th>0.6498</th><th>wi(+),24</th><th>0.2507</th><th>0.8747</th><th>wi(+),20</th><th>0.7721</th><th>0.61</th><th>4 wi(-),45</th><th>0.6892</th><th>0.6554</th><th>wi(-),22</th><th>0.9843</th><th>0.5079</th><th>wi(-),53</th></th<>	18	Status: under construction	0.6155	0.6923	wi(+),53	0.7003	0.6498	wi(+),24	0.2507	0.8747	wi(+),20	0.7721	0.61	4 wi(-),45	0.6892	0.6554	wi(-),22	0.9843	0.5079	wi(-),53
Model Model <th< th=""><th>19</th><th>Status: in use (n.m.)</th><th>0.3265</th><th>0.8367</th><th>wi(+),53</th><th>0.4582</th><th>0.7709</th><th>wi(+),24</th><th>0.7168</th><th>0.6416</th><th>wi(+),20</th><th>0.7710</th><th>0.614</th><th>5 wi(-),45</th><th>0.6892</th><th>0.6554</th><th>wi(+),22</th><th>0.8069</th><th>0.5966</th><th>wi(+),53</th></th<>	19	Status: in use (n.m.)	0.3265	0.8367	wi(+),53	0.4582	0.7709	wi(+),24	0.7168	0.6416	wi(+),20	0.7710	0.614	5 wi(-),45	0.6892	0.6554	wi(+),22	0.8069	0.5966	wi(+),53
Image: bold Constructione Constructi	20	Status: in use	0.1957	-1.3108	tt(-),53	0.9402	0.0758	tt(+),24	0.3462	-0.9659	tt(-),20	0.2332	-1.208	7 tt(-),45	0.8940	-0.1348	tt(-),22	0.2702	0.8649	wi(-),53
2 1000 01000 0100 0100 0	5	Status: for demolition	0.7893	0.6054	wi(+),53	0.7003	0.6498	wi(+),24	1.0000	equal	n/a,20	1.0000	0.	5 wi(+),45	1.0000	equal	n/a,22	1.0000	0.5	wi(+),53
Matter functione 1000 equal 0430 0400 <th>22</th> <th>Status: demolished</th> <th>1.0000</th> <th>equal</th> <th>n/a,53</th> <th>1.0000</th> <th>equal</th> <th>n/a,24</th> <th>1.0000</th> <th>equal</th> <th>n/a,20</th> <th>1.0000</th> <th>inpe (</th> <th>il n/a,45</th> <th>1.0000</th> <th>equal</th> <th>n/a,22</th> <th>1.0000</th> <th>equal</th> <th>n/a,53</th>	22	Status: demolished	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	equal	n/a,20	1.0000	inpe (il n/a,45	1.0000	equal	n/a,22	1.0000	equal	n/a,53
Model Billion Color <	33	Status: not in use	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	equal	n/a,20	1.0000	inpe (ll n/a,45	1.0000	equal	n/a,22	1.0000	equal	n/a,53
Shutik implicatione C100 Quadi Total Total <th>24</th> <th>Status: reconstruction</th> <th>0.2795</th> <th>0.8602</th> <th>wi(-),53</th> <th>0.7393</th> <th>-0.3369</th> <th>tt(-),24</th> <th>0.9251</th> <th>-0.0952</th> <th>tt(-),20</th> <th>0.0196</th> <th>066.0</th> <th>2 wi(-),45</th> <th>0.0189</th> <th>-2.5433</th> <th>tt(-),22</th> <th>0.0024</th> <th>0.9988</th> <th>wi(-),53</th>	24	Status: reconstruction	0.2795	0.8602	wi(-),53	0.7393	-0.3369	tt(-),24	0.9251	-0.0952	tt(-),20	0.0196	066.0	2 wi(-),45	0.0189	-2.5433	tt(-),22	0.0024	0.9988	wi(-),53
Pertuncimente Current contractive	25	Status: illegitimate	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	equal	n/a,20	1.0000	inpe (il n/a,45	1.0000	equal	n/a,22	1.0000	equal	n/a,53
Trunctioner 100 11,30 0.301	26	Function: residential	0.7279	0.636	wi(+),53	0.9309	0.5345	wi(+),24	0.8957	0.5521	wi(+),20	0.8475	0.576	3 wi(-),45	0.8836	0.5582	wi(+),22	0.8485	0.5757	wi(-),53
Matrix Function: regione under under <th>27</th> <th>Function: gathering</th> <th>0.9992</th> <th>-0.001</th> <th>tt(-),53</th> <th>0.3451</th> <th>0.964</th> <th>tt(+),24</th> <th>0.1304</th> <th>-1.5811</th> <th>tt(-),20</th> <th>0.3007</th> <th>-1.047</th> <th>3 tt(-),45</th> <th>0.7231</th> <th>0.6384</th> <th>wi(-),22</th> <th>0.3598</th> <th>-0.9239</th> <th>tt(-),53</th>	27	Function: gathering	0.9992	-0.001	tt(-),53	0.3451	0.964	tt(+),24	0.1304	-1.5811	tt(-),20	0.3007	-1.047	3 tt(-),45	0.7231	0.6384	wi(-),22	0.3598	-0.9239	tt(-),53
0 Function: Tubeline 0.0010 0.010 0.011	58	Function: prison	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	equal	n/a,20	1.0000	inpe (il n/a,45	1.0000	equal	n/a,22	1.0000	equal	n/a,53
Monterior Function Garder Wirdly Garder Garder Garder Garder Wirdly Wi	59	Function: healthcare	0.7964	0.6018	wi(-),53	1.0000	equal	n/a,24	0.7017	0.6492	wi(-),20	0.7817	0.609	1 wi(-),45	0.6892	0.6554	wi(+),22	0.9921	0.5039	wi(+),53
Image: control contro control contro contro control control control control control con	õ	Function: factory	0.4752	0.7193	tt(+),53	0.9516	0.0613	tt(+),24	0.7235	0.6383	wi(-),20	0.7601	0.619	9 wi(+),45	1.0000	0.0	tt(+),22	0.8263	0.5869	wi(-),53
2 Function: guestiones 0.616 wig.35 0.638 wig.35 0.737 wig.35 0.731 wig.35 0.731 wig.35 0.731 wig.35 0.731 wig.35 0.733 wig.35 0.733 wig.35 0.733 wig.35 wig.35 </th <th>E</th> <th>Function: office</th> <th>0.6547</th> <th>0.6726</th> <th>wi(-),53</th> <th>0.7267</th> <th>0.6367</th> <th>wi(+),24</th> <th>0.8806</th> <th>0.1523</th> <th>tt(+),20</th> <th>0.0211</th> <th>-2.392</th> <th>2 tt(-),45</th> <th>0.7453</th> <th>-0.3292</th> <th>tt(-),22</th> <th>0.0473</th> <th>-2.0318</th> <th>tt(-),53</th>	E	Function: office	0.6547	0.6726	wi(-),53	0.7267	0.6367	wi(+),24	0.8806	0.1523	tt(+),20	0.0211	-2.392	2 tt(-),45	0.7453	-0.3292	tt(-),22	0.0473	-2.0318	tt(-),53
3 Function: education 0.436 0.746 0.843 0.744 0.743 0.743 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.743 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.744 0.743 0.744	32	Function: guesthouse	0.6169	0.6916	wi(-),53	0.7204	0.6398	wi(+),24	0.4245	0.7877	wi(-),20	0.3317	0.834	1 wi(-),45	1.0000	0.5	wi(+),22	0.4772	0.7614	wi(-),53
4 Function: goods 0.003 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.013 0.014 0.014 0.013 0.014 0.014 0.013 0.014 0.014 0.013 0.014 0.014 0.013 0.014	g	Function: education	0.4390	0.7805	wi(+),53	0.2829	0.8585	wi(+),24	1.0000	equal	n/a,20	0.4059	0.79	7 wi(+),45	0.4421	0.7789	wi(+),22	0.3104	0.8448	wi(+),53
Function: 0880 0505 w(+).5 0.323 0.843 w(+).2 0.324 0.443 0.314 0.440 0.778 w(+).2 0.440 0.778 w(+).2 Function: 0.941 0.2253 w(+).3 0.847 w(+).24 0.527 0.747 w(+).26 0.492 0.402 0.403 0.403 Function: 0.941 0.423 0.943 w(+).24 0.943 0.443 0.943 0.444 0.423 0.444 0.443 0.444 0.444 0.443 0.444 <th>34</th> <th>Function: sports</th> <th>0.7893</th> <th>0.6054</th> <th>wi(-),53</th> <th>1.0000</th> <th>equal</th> <th>n/a,24</th> <th>0.6767</th> <th>0.6617</th> <th>wi(-),20</th> <th>0.7728</th> <th>0.613</th> <th>5 wi(-),45</th> <th>1.0000</th> <th>equal</th> <th>n/a,22</th> <th>0.7893</th> <th>0.6054</th> <th>wi(-),53</th>	34	Function: sports	0.7893	0.6054	wi(-),53	1.0000	equal	n/a,24	0.6767	0.6617	wi(-),20	0.7728	0.613	5 wi(-),45	1.0000	equal	n/a,22	0.7893	0.6054	wi(-),53
6 Function: other 03411 0.2361 0.44/30 0.5647 0.44/30 0.5647 0.44/30 0.5647 0.44/30 0.5647 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5647 0.44/30 0.5647 0.44/30 0.5647 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 0.44/30 0.5643 </th <th>35</th> <th>Function: shops</th> <th>0.9890</th> <th>0.5055</th> <th>wi(+),53</th> <th>0.3320</th> <th>0.834</th> <th>wi(+),24</th> <th>0.6713</th> <th>0.6644</th> <th>wi(-),20</th> <th>0.8070</th> <th>-0.245</th> <th>7 tt(-),45</th> <th>0.1596</th> <th>0.9202</th> <th>wi(+),22</th> <th>0.4440</th> <th>0.778</th> <th>wi(+),53</th>	35	Function: shops	0.9890	0.5055	wi(+),53	0.3320	0.834	wi(+),24	0.6713	0.6644	wi(-),20	0.8070	-0.245	7 tt(-),45	0.1596	0.9202	wi(+),22	0.4440	0.778	wi(+),53
7 Gene: tree cove 0.266 0.967 0.193 0.4912 0.4946 0.4946 0.4916 0.4912 0.4916 0.4946 0.4912 0.4946 0.4946 0.4912 0.4947 0.4946 0.4946 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4912 0.4916 0.4916 0.4912 0.4916 0.4916 0.4912 0.4916 0.4916 0.4912 0.4916 0.4916 0.4912 0.4916 0.4916 0.4912 0.4916	36	Function: other	0.9411	0.5295	wi(-),53	0.8706	0.5647	wi(-),24	0.5027	0.7487	wi(+),20	0.3945	0.859	2 tt(+),45	0.3433	-0.9695	tt(-),22	0.9825	0.0221	tt(+),53
B Gener bush cover 0.011 0.9843 W(+)3 0.322 0.9843 H(+)24 0.8426 H(+)2 0.8426 H(+)24 0.8436 H(+)26 0.8446 H(+)26 0.8446 H(+)26 0.8436	37	Green: tree cover	0.0266	0.9867	wi(+),53	0.9062	0.1191	tt(+),24	0.7305	0.3496	tt(+),20	0.8421	0.200	4 tt(+),45	0.8458	0.1969	tt(+),22	0.9753	-0.0312	tt(-),53
See Game gass cover 0.037 1.143 U(x)2 0.238 U(x)2 0.843 U(x)2 U(x)2 U(x)2 U(x)2 U(x)3 U(x)3 U(x)3 <th>8</th> <th>Green: bush cover</th> <th>0.0115</th> <th>0.9943</th> <th>wi(+),53</th> <th>0.3325</th> <th>0.9899</th> <th>tt(+),24</th> <th>0.4284</th> <th>0.8092</th> <th>tt(+),20</th> <th>0.9977</th> <th>0.002</th> <th>9 tt(+),45</th> <th>0.8726</th> <th>0.1624</th> <th>tt(+),22</th> <th>0.8046</th> <th>-0.2487</th> <th>tt(-),53</th>	8	Green: bush cover	0.0115	0.9943	wi(+),53	0.3325	0.9899	tt(+),24	0.4284	0.8092	tt(+),20	0.9977	0.002	9 tt(+),45	0.8726	0.1624	tt(+),22	0.8046	-0.2487	tt(-),53
0 Noise pollution: total 0.0091 0.984 w(+).3 0.6431 0.471 0.6436 0.474 0.547 0.516 0.472 0.6625 0.433 0.433 0.433 0.433 0.433 0.433 0.433 0.433 0.431 0.433 0.433 0.433 0.433 0.431 0.433 0.433 0.433 0.433 0.433 0.434 0.433 0.434 0.434 0.434 0.434 0.434 0.434 0.434 0.43	39	Green: grass cover	0.0367	2.1448	tt(+),53	0.2582	1.1593	tt(+),24	0.3130	0.8435	wi(+),20	0.5526	0.598	4 tt(+),45	0.8146	0.2374	tt(+),22	0.8031	0.2506	tt(+),53
I Noise pollution: ranks 0.013 0.0683 (H)24 0.4313 0.6637 0.4043 0.4124 0.8435 (H)420 0.8435 (H)420 0.6737 (H)432 0.4131 0.1033 (H)22 0.4131 0.2033 (H)420 0.4114 0.1033 (H)422 0.4131 0.4132 0.4132 0.4133 0.4133 0.4133 0.4133 0.4123 0.4143 <th< th=""><th>6</th><th>Noise pollution: total</th><th>0.0091</th><th>0.9954</th><th>wi(+),53</th><th>0.5405</th><th>0.6213</th><th>tt(+),24</th><th>0.3698</th><th>0.8151</th><th>wi(+),20</th><th>0.5277</th><th>0.636</th><th>5 tt(+),45</th><th>0.7547</th><th>-0.3166</th><th>tt(-),22</th><th>0.6625</th><th>0.439</th><th>tt(+),53</th></th<>	6	Noise pollution: total	0.0091	0.9954	wi(+),53	0.5405	0.6213	tt(+),24	0.3698	0.8151	wi(+),20	0.5277	0.636	5 tt(+),45	0.7547	-0.3166	tt(-),22	0.6625	0.439	tt(+),53
K2 Noise polition: raiking 0.027 0.473 0.6827 0.6823 0.6823 0.6914 0.6823 0.6914 0.6823 0.6914 0.6823 0.6914 0.6823 0.6914 0.6917 0.6912 0.6913 0.6142 0.6823 0.6143 0.6912 0.6142 0.6823 0.6143 0.6123 0.6143 0.6132 0.6133	41	Noise pollution: roads	0.0183	0.9908	wi(+),53	0.6637	0.4405	tt(+),24	0.3130	0.8435	wi(+),20	0.5010	0.678	5 tt(+),45	0.9171	-0.1053	tt(-),22	0.4131	0.825	tt(+),53
Mater constr.:mean 0.8373 0.8473 0.153 0.06471 0.0471 0.0674 0.0674 0.9633 0.1446 0.1530 0.1540 <	4	Noise pollution: railways	0.0521	0.9739	wi(+),53	0.0756	0.9622	wi(+),24	0.6271	0.6864	wi(+),20	0.6928	0.653	5 wi(+),45	0.6612	0.6694	wi(+),22	0.8525	0.5737	wi(+),53
Landmarks: F3 0.3417 0.8476 0.8476 0.8476 0.8476 0.8476 0.8476 0.8476 0.8476 0.8476 0.8476 0.8477	4	Year constr.: mean	0.9575	0.5213	wi(+),53	0.1538	0.9231	wi(+),24	0.0477	0.9762	wi(+),20	0.0674	0.966	3 wi(+),45	0.3730	0.9103	tt(+),22	0.1540	0.923	wi(+),53
46 Landmarks: pictares 0.0014 0.9833 wi(-),33 0.2871 0.8645 wi(-),24 0.0410 0.9735 0.4975 0.4975 0.1612 1.4,221 (1),22 0.1031 0.4755 wi(-),33 7 Landmarks: Year constr. 0.1501 0.2825 0.6456 wi(-),20 0.7886 wi(-),20 0.7886 wi(-),35 wi(-),22 0.3024 0.3937 wi(-),35 wi(-),35 wi(-),35 wi(-),32 wi(-),22 0.3026 wi(-),35 wi(-),35 wi(-),35 wi(-),35 wi(-),32 wi(-),32 wi(-),35 wi(-	5	Landmarks: FSI	0.3147	0.8427	wi(-),53	1.0000	equal	n/a,24	0.6293	0.6853	wi(-),20	0.9420	0.52	9 wi(-),45	0.5244	0.7378	wi(-),22	0.7454	0.6273	wi(-),53
47 Landmarks: Year constr. 0.1501 0.825 0.6456 w(i),20 0.3061 0.8495 w(i),45 0.837 w(i),22 0.8024 0.8037 w(i),53 48 Landmarks: 1 criterion 0.0067 0.8966 w(i),24 0.4215 0.7884 w(i),20 0.8024 0.6957 w(i),22 0.8024 0.8037 w(i),22 0.8034 w(i),33 48 Landmarks: 1 criterion 0.0067 0.8966 w(i),22 0.8024 0.8037 w(i),22 0.8047 w(i),33 49 Landmarks: 2 criteria 0.4360 0.7805 w(i),20 0.8147 w(i),20 0.8147 w(i),32 0.8147 w(i),32 40 Landmarks: 3 criteria 0.4360 0.7805 w(i),20 0.8147 w(i),20 0.8147 w(i),32 40 Landmarks: 3 criteria 0.4360 o.7805 w(i),20 0.8147 w(i),22 0.8057 0.8177 0.8147 w(i),35 40 Landmarks: 3 criteria 0.0300 oqual n'a,24 <th>46</th> <td>Landmarks: plot area</td> <td>0.0014</td> <td>0.9993</td> <td>wi(-),53</td> <td>0.2871</td> <td>0.8564</td> <td>wi(-),24</td> <td>0.0410</td> <td>0.9795</td> <td>wi(-),20</td> <td>060.0</td> <td>0.954</td> <td>9 wi(-),45</td> <td>0.1612</td> <td>-1.4521</td> <td>tt(-),22</td> <td>0.1051</td> <td>0.9475</td> <td>wi(-),53</td>	46	Landmarks: plot area	0.0014	0.9993	wi(-),53	0.2871	0.8564	wi(-),24	0.0410	0.9795	wi(-),20	060.0	0.954	9 wi(-),45	0.1612	-1.4521	tt(-),22	0.1051	0.9475	wi(-),53
48 Landmarks: 1 criterion 0.0067 0.9166 wi(-),53 0.3100 0.345 wi(-),24 0.4212 0.7894 wi(-),20 0.1909 -1.3284 tt(-),45 0.615 wi(-),22 0.3059 0.847 wi(-),53 49 Landmarks: 2 criteria 0.4390 0.7805 wi(-),20 0.8147 wi(-),20 0.817 wi(-),22 0.3059 0.847 wi(-),53 49 Landmarks: 2 criteria 0.4390 0.7805 equal n/a,24 0.2507 0.8747 wi(-),20 0.815 0.5071 wi(-),22 0.3082 0.5059 0.847 wi(-),53 50 Landmarks: 2 criteria 0.4390 0.7800 equal n/a,24 1.0000 equal n/a,22 0.3059 0.847 m/a,53 50 Landmarks: 3 criteria 1.0000 equal n/a,24 1.0000 equal n/a,22 1.0000 equal n/a,53	47	Landmarks: Year constr.	0.1501	0.925	wi(-),53	0.7088	0.6456	wi(-),24	0.4265	0.7868	wi(-),20	0.3081	0.845	9 wi(-),45	0.6927	0.6537	wi(+),22	0.8024	0.5988	wi(-),53
49 Landmarks: 2 criteria 0.4390 0.7805 wi(-),53 1.0000 equal n/a,24 0.2507 0.8747 wi(-),20 0.614 wi(-),45 0.9887 0.5071 wi(-),22 0.9882 0.5059 wi(-),53 50 Landmarks: 3 criteria 1.0000 equal n/a,24 1.0000 equal n/a,24 1.0000 equal n/a,23 1.0000 equal n/a,24 1.0000 equal n/a,23 1.0000 equal n/a,24 1.0000 equal n/a,33 1.0000 equal n/a,22 1.0000 equal n/a,33	48	Landmarks: 1 criterion	0.0067	0.9966	wi(-),53	0.3100	0.845	wi(-),24	0.4212	0.7894	wi(-),20	0.1909	-1.328	4 tt(-),45	0.7169	0.6415	wi(-),22	0.3059	0.847	wi(-),53
50 Landmarks: 3 criteria 1.0000 equal n/a,53 1.0000 equal n/a,24 1.0000 equal n/a,20 1.0000 equal n/a,45 1.0000 equal n/a,22 1.0000 equal n/a,53	49	Landmarks: 2 criteria	0.4390	0.7805	wi(-),53	1.0000	equal	n/a,24	0.2507	0.8747	wi(-),20	0.7721	0.61	4 wi(-),45	0.9857	0.5071	wi(-),22	0.9882	0.5059	wi(-),53
	20	Landmarks: 3 criteria	1.0000	equal	n/a,53	1.0000	equal	n/a,24	1.0000	equal	n/a,20	1.0000	edu?	il n/a,45	1.0000	equal	n/a,22	1.0000	equal	n/a,53

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	- 1
6	Year constr.: < 1945	0.4917	0.4113	(+),48	0.6077	0.5045	(+),36	0.7606	0.5148	(+),30	0.5151	0.4868	(+),48	
₽	Year constr.: 1946-1970	0.9970	0.5182	(-),48	0.7909	0.3160	(-),36	0.6578	0.4658	(-),30	0.5122	0.2764	(-),48	
÷	Year constr.: 1971-1985	0.2764	0.6157	(+),48	0.5580	0.7823	(+),36	0.9637	0.6954	(+),30	0.9203	0.9078	(+),48	
12	Year constr.: 1986-2000	0.3104	0.3393	(+),48	0.6616	0.1011	(-),36	0.3049	0.1331	(-),30	0.5969	0.1142	(-),48	
13	Year constr.: 2001-2022	0.5657	0.5606	(+),48	0.7247	0.7329	(+),36	0.6897	0.0703	(-),30	0.9823	0.7864	(+),48	
14	Traffic signals count	0.8239	0.5501	(-),48	0.3265	0.2535	(-),36	0.9701	0.3878	(-),30	0.3858	0.3021	(-),48	
15	Stairs count	0.4785	0.4050	(-),48	0.7888	0.1959	(+),36	0.4259	0.6155	(-),30	0.9962	0.6822	(-),48	
16	Status: for construction	0.1116	0.3422	(+),48	0.7801	0.7714	(+),36	0.8024	0.6788	(+),30	0.4301	0.6414	(+),48	
17	Status: unrealised	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	1.0000	0.0000	(-),30	1.0000	0.0000	(-),48	
18	Status: under construction	1.0000	0.4807	(-),48	0.7762	0.3583	(-),36	0.5703	0.2852	(+),30	0.9669	0.5110	(+),48	
19	Status: in use (n.m.)	0.7954	0.2048	(-),48	0.3316	0.2413	(+),36	0.6658	0.0000	(+),30	0.4483	0.4057	(+),48	
20	Status: in use	0.2498	0.4258	(+),48	0.5543	0.5247	(+),36	0.9234	0.7726	(+),30	0.6734	0.6896	(+),48	
51	Status: for demolition	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	0.3337	0.1669	(-),30	0.3275	0.1637	(-),48	
3	Status: demolished	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	1.0000	0.0000	(-),30	1.0000	0.0000	(-),48	
33	Status: not in use	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	1.0000	0.0000	(-),30	1.0000	0.0000	(-),48	
24	Status: reconstruction	0.6139	0.7015	(-),48	0.6059	0.7376	(-),36	0.4968	0.5120	(-),30	0.6071	0.6918	(-),48	
25	Status: illegitimate	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	1.0000	0.0000	(-),30	1.0000	0.0000	(-),48	
26	Function: residential	0.2086	0.4326	(+),48	0.3408	0.4797	(+),36	0.6238	0.6485	(+),30	0.3396	0.5308	(+),48	
27	Function: gathering	0.6682	0.3503	(+),48	0.5141	0.2814	(+),36	0.0856	0.1030	(-),30	0.4996	0.2143	(-),48	
28	Function: prison	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	1.0000	0.0000	(-),30	1.0000	0.0000	(-),48	
29	Function: healthcare	0.5677	0.5042	(-),48	0.9842	0.7264	(-),36	0.5571	0.2785	(-),30	0.5596	0.4958	(-),48	
30	Function: factory	0.6426	0.6101	(+),48	0.9464	0.3040	(-),36	0.7750	0.4480	(+),30	0.5043	0.5547	(+),48	
31	Function: office	0.6980	0.3435	(+),48	0.9185	0.7185	(-),36	0.5688	0.2984	(-),30	0.5603	0.2766	(-),48	
32	Function: guesthouse	0.1562	0.2760	(+),48	0.7490	0.6307	(+),36	0.7227	0.7408	(+),30	0.3934	0.5127	(+),48	
33	Function: education	0.7145	0.5139	(+),48	0.5416	0.1465	(-),36	0.9864	0.4932	(-),30	0.7442	0.2267	(-),48	
34	Function: sports	1.0000	0.000	(-),48	0.3309	0.1655	(+),36	0.3337	0.1669	(+),30	0.3275	0.1637	(+),48	
35	Function: shops	0.7049	0.4967	(+),48	0.5497	0.4668	(+),36	0.1706	0.1468	(-),30	0.4942	0.1657	(-),48	
36	Function: other	0.7844	0.5801	(+),48	0.8209	0.3340	(-),36	0.3963	0.2445	(-),30	0.7873	0.2514	(-),48	
37	Green: tree cover	0.0040	0.7137	(+),48	0.0035	0.5515	(+),36	0.0261	0.4705	(+),30	0.0051	0.5554	(+),48	
88	Green: bush cover	0.0077	0.6320	(+),48	0.0071	0.5292	(+),36	0.0748	0.4705	(+),30	0.0112	0.5350	(+),48	
39	Green: grass cover	0.0107	0.7137	(+),48	0.0000	0.7152	(+),36	0.0451	0.4882	(+),30	0.0083	0.6012	(+),48	
4	Noise pollution: total	0.0247	0.5984	(+),48	0.0203	0.5381	(+),36	0.0773	0.5177	(+),30	0.0236	0.5525	(+),48	
4	Noise pollution: roads	0.0129	0.5841	(+),48	0.0236	0.5157	(+),36	0.0271	0.5059	(+),30	0.0087	0.5379	(+),48	
4	Noise pollution: railways	0.0857	0.4854	(+),48	0.0681	0.5292	(+),36	0.3042	0.5000	(+),30	0.1135	0.5554	(+),48	
4	Year constr.: mean	0.7694	0.4519	(+),48	0.7611	0.5157	(+),36	0.5542	0.5907	(+),30	0.7778	0.4591	(+),48	
5	Landmarks: FSI	0.1866	0.2278	(+),48	0.7001	0.4584	(+),36	0.3002	0.2717	(+),30	0.2670	0.2947	(+),48	
46	Landmarks: plot area	0.1300	0.1274	(+),48	0.3478	0.3021	(+),36	0.5098	0.3027	(+),30	0.3748	0.2833	(+),48	
47	Landmarks: Year constr.	0.2439	0.3403	(+),48	0.5952	0.5076	(+),36	0.8276	0.6629	(+),30	0.5998	0.5853	(+),48	
48	Landmarks: 1 criterion	0.1211	0.1386	(+),48	0.4254	0.3556	(+),36	0.4867	0.4044	(+),30	0.3134	0.3398	(+),48	
49	Landmarks: 2 criteria	0.1730	0.1353	(+),48	0.2454	0.2021	(+),36	1.0000	0.4800	(+),30	0.5528	0.3702	(+),48	
50	Landmarks: 3 criteria	1.0000	0.0000	(-),48	1.0000	0.0000	(-),36	1.0000	0.0000	(-),30	1.0000	0.0000	(-),48	

Figure 1.81: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	
6	Year constr.: < 1945	0.4779	0.3970	(+),48	0.4237	0.4635	(+),40	0.7664	0.4102	(+),27	0.3815	0.4055	(+),48	
9	Year constr.: 1946-1970	0.8755	0.4140	(+),48	0.9059	0.3595	(-),40	0.4497	0.4091	(-),27	0.5334	0.2709	(-),48	
÷	Year constr.: 1971-1985	0.3289	0.6511	(+),48	0.7302	0.8534	(+),40	0.9857	0.6098	(+),27	0.8063	0.8532	(+),48	
12	Year constr.: 1986-2000	0.3364	0.3617	(+),48	0.7334	0.1291	(-),40	0.2131	0.1666	(-),27	0.6955	0.1505	(-),48	
13	Year constr.: 2001-2022	0.5939	0.5824	(+),48	0.9112	0.8056	(+),40	0.5816	0.1126	(-),27	0.8532	0.7397	(+),48	
14	Traffic signals count	0.8152	0.5413	(-),48	0.3226	0.2938	(-),40	0.5998	0.2703	(-),27	0.1513	0.1471	(-),48	
15	Stairs count	0.4785	0.4050	(-),48	0.6123	0.5027	(-),40	0.9919	0.8044	(-),27	0.6584	0.1816	(+),48	
16	Status: for construction	0.1116	0.3422	(+),48	0.3884	0.6306	(+),40	0.7894	0.7090	(+),27	0.2697	0.5122	(+),48	
17	Status: unrealised	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	1.0000	0.0000	(-),27	1.0000	0.0000	(-),48	
18	Status: under construction	1.0000	0.4807	(-),48	0.9853	0.5148	(+),40	1.0000	0.5000	(+),27	0.9669	0.5110	(+),48	
19	Status: in use (n.m.)	0.9820	0.7109	(+),48	0.2643	0.2760	(+),40	0.9848	0.0000	(-),27	0.4483	0.4057	(+),48	
20	Status: in use	0.2293	0.4087	(+),48	0.5734	0.6427	(+),40	0.6713	0.5789	(+),27	0.3891	0.5102	(+),48	
51	Status: for demolition	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	0.3356	0.1678	(-),27	0.3275	0.1637	(-),48	
53	Status: demolished	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	1.0000	0.0000	(-),27	1.0000	0.0000	(-),48	
8	Status: not in use	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	1.0000	0.0000	(-),27	1.0000	0.0000	(-),48	
24	Status: reconstruction	0.6139	0.7015	(-),48	0.6737	0.7711	(-),40	0.7485	0.2609	(+),27	0.8267	0.1117	(+),48	
25	Status: illegitimate	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	1.0000	0.0000	(-),27	1.0000	0.0000	(-),48	
26	Function: residential	0.2100	0.4326	(+),48	0.4104	0.6284	(+),40	0.6316	0.5246	(+),27	0.2505	0.4386	(+),48	
27	Function: gathering	0.4989	0.2573	(+),48	0.8993	0.4913	(+),40	0.1497	0.1094	(-),27	0.6530	0.2866	(-),48	
28	Function: prison	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	1.0000	0.0000	(-),27	1.0000	0.000	(-),48	
29	Function: healthcare	0.3146	0.3273	(-),48	0.9858	0.7256	(-),40	0.1612	0.2781	(-),27	0.5596	0.4958	(-),48	
30	Function: factory	0.4848	0.5206	(+),48	0.8208	0.7200	(+),40	0.9897	0.6585	(-),27	0.4587	0.5325	(+),48	
3	Function: office	0.7226	0.3557	(+),48	0.9659	0.4037	(+),40	0.9441	0.4720	(-),27	0.8775	0.4437	(-),48	
32	Function: guesthouse	0.1562	0.2760	(+),48	0.2387	0.3894	(+),40	0.9848	0.2781	(-),27	0.2563	0.3929	(+),48	
33	Function: education	0.7145	0.5139	(+),48	0.5239	0.1419	(-),40	0.9848	0.4924	(-),27	0.7279	0.2199	(-),48	
34	Function: sports	1.0000	0.0000	(-),48	0.3296	0.1648	(+),40	0.3356	0.1678	(+),27	0.3275	0.1637	(+),48	
35	Function: shops	0.7049	0.4967	(+),48	0.8784	0.5760	(+),40	0.1115	0.0580	(-),27	0.3368	0.1085	(-),48	
36	Function: other	0.8973	0.6298	(+),48	0.8937	0.3608	(-),40	0.5853	0.2830	(-),27	0.8461	0.6023	(+),48	
37	Green: tree cover	0.0042	0.7087	(+),48	0.0021	0.5913	(+),40	0.0070	0.3140	(+),27	0.0015	0.3570	(+),48	
88	Green: bush cover	0.0081	0.6264	(+),48	0.0071	0.5650	(+),40	0.0245	0.3647	(+),27	0.0047	0.4016	(+),48	
39	Green: grass cover	0.0121	0.7187	(+),48	0.0038	0.6882	(+),40	0.0412	0.4793	(+),27	0.0076	0.5554	(+),48	
4	Noise pollution: total	0.0266	0.6153	(+),48	0.0157	0.6246	(+),40	0.0693	0.4931	(+),27	0.0290	0.5813	(+),48	
41	Noise pollution: roads	0.0151	0.5984	(+),48	0.0166	0.6534	(+),40	0.0147	0.4313	(+),27	0.0110	0.5755	(+),48	
42	Noise pollution: railways	0.0884	0.4795	(+),48	0.0519	0.5269	(+),40	0.4363	0.5276	(+),27	0.1239	0.5525	(+),48	
4	Year constr.: mean	0.7863	0.4577	(+),48	0.8062	0.4655	(+),40	0.9242	0.7969	(+),27	0.9766	0.4490	(-),48	
5	Landmarks: FSI	0.1441	0.1836	(+),48	0.4552	0.3718	(+),40	0.3938	0.2581	(+),27	0.2611	0.2894	(+),48	
46	Landmarks: plot area	0.1090	0.1106	(+),48	0.3916	0.3237	(+),40	0.2828	0.2817	(+),27	0.3215	0.2578	(+),48	
47	Landmarks: Year constr.	0.2439	0.3403	(+),48	0.4459	0.5106	(+),40	0.8627	0.4234	(-),27	0.6028	0.5853	(+),48	
48	Landmarks: 1 criterion	0.1049	0.1175	(+),48	0.3797	0.3798	(+),40	0.4834	0.2887	(+),27	0.2566	0.2858	(+),48	
49	Landmarks: 2 criteria	0.1730	0.1353	(+),48	0.3342	0.2434	(+),40	1.0000	0.6279	(+),27	0.7719	0.4873	(+),48	
50	Landmarks: 3 criteria	1.0000	0.0000	(-),48	1.0000	0.0000	(-),40	1.0000	0.0000	(-),27	1.0000	0.0000	(-),48	

Figure 1.82: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

Mutucherit: Visit Cubic Cubic <thcubic< th=""> Cubic Cubic</thcubic<>		Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coet,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n
10 warconerr: 1346-1301 0.000 0.121 0.143 0.143 0.143 0.143 0.143 0.143 11 warconerr: 1307-1306 0.143 0.143 0.143 0.143 0.143 0.143 13 warconerr: 107-1030 0.143 0.143 0.143 0.143 0.143 0.143 14 Warconerr: 2012-000 0.140 0.143 0.143 0.143 0.143 0.143 14 Warconerr: 2012-000 0.140 0.143 0.143 0.143 0.143 0.143 14 Warconerr: 2012-000 0.140 0.143 0.143 0.143 0.143 0.143 14 Warconerr: 2012-000 0.140 0.143 0.144 0.143 0.143 0.143 14 Warconerr: 2012-000 0.140 0.143 0.143 0.143 0.143 0.143 14 Warconerri: 100-000 0.0000 0.144 0.143 0.143 0.143 0.143 15 Warconerri: 100-000	6	Year constr.: < 1945	0.8225	0.5916	(-),48	1.0000	0.5045	(+),36	0.9822	0.5148	(+),30	0.9736	0.5161	(-),48
1 warconer: 197-196 0.13 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.613 0.713 0.713 0.713 0.713 1 Traine synes court 0.806 0.630 0.630 0.631 0.714 0.713 0.713 1 Traine synes court 0.801 0.801 0.801 0.714 0.714 0.714 1 Sanse court 0.801 0.801 0.714 0.714 0.714 0.714 1 Sanse court 0.801 0.703 0.714 0.714 0.714 0.714 1 Sanse court 0.801 0.703 0.714 0.714 0.714 0.714 1 Sanse court 0.801 0.703 0.714 0.714 0.714 0.714 0.714 1 Sanse court 0.801 0.701 0.714 0.714 0.714 0.714 0.714 0.714 0.714	₽	Year constr.: 1946-1970	0.9696	0.5182	(-),48	0.6319	0.6881	(+),36	0.9315	0.5404	(+),30	0.5528	0.7261	(+),48
12Nar constr. 1968-20000.58410.58430.58440.5346 <th>÷</th> <td>Year constr.: 1971-1985</td> <td>0.7743</td> <td>0.6157</td> <td>(+),48</td> <td>0.4421</td> <td>0.7823</td> <td>(+),36</td> <td>0.6200</td> <td>0.6954</td> <td>(+),30</td> <td>0.1869</td> <td>0.9078</td> <td>(+),48</td>	÷	Year constr.: 1971-1985	0.7743	0.6157	(+),48	0.4421	0.7823	(+),36	0.6200	0.6954	(+),30	0.1869	0.9078	(+),48
31 Nar centr. 2001-2022 0.806 0.506 0.40 0.7220 0.501 0.7320 0.7320 11 Turtin supprate curret 0.001 0.001 0.001 0.001 0.001 0.001 12 Sature curretriction 0.001 0.000 0.440 0.440 0.701 0.703 13 Sature tronstruction 0.001 0.000 0.440 0.701 0.703 0.703 14 Sature tronstruction 0.001 0.000 0.740 0.701 0.701 0.703 15 Sature tronstruction 0.801 0.701 0.701 0.701 0.701 0.701 16 Sature tronstruction 0.801 0.701 0.701 0.701 0.701 0.701 17 Sature tronstruction 0.801 0.701 0.701 0.701 0.701 0.701 18 Sature tronstruction 0.701 0.701 0.701 0.701 0.701 0.701 18 Sature troterrottion 0.7	12	Year constr.: 1986-2000	0.6787	0.6634	(-),48	0.2022	0.9009	(+),36	0.2662	0.8701	(+),30	0.2284	0.8873	(+),48
1 Traffic signals court 0.3050 0.3501 0.3060 0.3502 0.3605 <	13	Year constr.: 2001-2022	0.8846	0.5606	(+),48	0.5417	0.7329	(+),36	0.1406	0.9317	(+),30	0.4315	0.7864	(+),48
16Statistic for construction(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	14	Traffic signals count	0.9056	0.5501	(-),48	0.5069	0.7502	(+),36	0.7757	0.6179	(+),30	0.6041	0.7005	(+),48
16Statust for construction0.60410.60400.60400.7714(.).3017Statust unrealised1.00000.0000(.).400.70160.0000(.).3018Statust unrealised0.01010.01040.70410.7041(.).3019Statust in use (mm)0.01010.70140.7041(.).3010Statust in use (mm)0.00100.0100(.).400.7041(.).3012Statust interdemition1.00000.0000(.).400.70000.7000(.).3013Statust interdemition1.00000.0000(.).400.70000.7000(.).3014Statust interdemition1.00000.0000(.).400.7000(.).30(.).3015Function: gathering0.70000.00000.0000(.).40(.).30(.).3016Function: gathering0.70000.00000.0000(.).40(.).30(.).3017Function: gathering0.70000.00000.0000(.).40(.).30(.).3016Function: gathering0.70000.00000.0000(.).40(.).30(.).3017Function: gathering0.70000.00000.0000(.).40(.).3018Function: gathering0.70000.00000.0000(.).40(.).4019Function: gathering0.70000.00000.0000(.).40(.).4019Function: gathering0.70000.70000.	15	Stairs count	0.8100	0.5990	(+),48	0.3917	0.8085	(-),36	0.7836	0.6155	(-),30	0.6426	0.6822	(-),48
1 Status: urnealised 1.000 0.000 $(+,)$ 0.000 $(+,)$ 1 Status: inue (m) 0.014 0.204 0.244 0.761 0.540 $(+,)$ 1 Status: inue (m) 0.017 0.017 0.018 0.016 $(+,)$	16	Status: for construction	0.6844	0.6638	(-),48	0.4698	0.7714	(+),36	0.6616	0.6788	(+),30	0.7280	0.6414	(+),48
16 Status: under construction 0.3014 0.3244 0.4367 0.5460 (.)36 17 Status: in use (m.m) 0.407 0.7964 0.487 0.7651 0.570 (.)36 28 Status: in use (m.m) 0.407 0.7964 0.487 0.7651 (.)36 28 Status: in use (m.m) 0.400 0.400 (.)46 0.436 0.436 (.)43 28 Status: in use (m.m) 0.400 0.400 (.)46 0.436 0.436 (.)36 29 Status: inclution 0.000 0.400 (.)46 (.)46 0.336 (.)36 20 Status: inclution 0.000 0.000 (.)46 (.)46 (.)36 21 Status: inclution 0.000 0.000 (.)46 (.)36 (.)36 21 Status: inclution 0.000 0.000 (.)46 (.)36 (.)36 21 Status: inclution 0.000 0.000 (.)46 (.)36 <th(.)36< th=""> 21</th(.)36<>	17	Status: unrealised	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	1.0000	0.0000	(+),30	1.0000	0.0000	(+),48
16 Status: Inuse (nm) 0.407 0.7081 (+,48 0.4827 0.7651 (+,38 27 Status: Inuse (nm) 0.8517 0.5770 (+,48 0.8247 (+,38 28 Status: Inuse (nm) 0.8001 0.8000 0.8496 0.8247 (+,38 29 Status: Incentinue 1.000 0.0000 (+,48 0.936 0.5247 (+,38 20 Status: Incentinue 1.000 0.0000 (+,48 0.936 0.5246 (+,38 21 Status: Inclutinue 1.000 0.0000 (+,48 0.7568 0.7576 (+,38 21 Function: relation 0.0000 0.400 0.768 0.7568 0.7576 (+,38 21 Function: relation 0.0000 0.768 0.7586 0.7586 0.7586 0.7586 21 Function: relation 0.0000 0.0000 0.7686 0.7586 0.7586 0.7586 21 Function: relation 0.0000 0.7486 0.7586	18 S	itatus: under construction	0.9614	0.5248	(+),48	0.7166	0.6490	(+),36	0.5703	0.7280	(-),30	0.9890	0.5110	(+),48
3 Status: frame 0.517 0.570 (.)48 0.2647 (.)30 21 Status: for demolition 1.0000 0.0000 (.)48 (.)400 (.)400 22 Status: for demolition 1.0000 0.0000 (.)48 (.)400 (.)43 24 Status: redmolithed 1.0000 0.0000 (.)48 (.)400 (.)43 24 Status: redmonitue 0.0000 (.)48 0.1000 0.0000 (.)43 24 Status: redmonitue 0.0000 0.0000 (.)48 0.1300 0.0000 (.)43 24 Status: redmonitue 0.0000 0.0000 (.)48 (.)43 (.)43 24 Function: restorent 0.0000 0.0000 (.)48 (.)43 24 Function: restorent 0.0000 0.0000 (.)48 (.)43 24 Function: restorent 0.0000 0.0000 (.)48 (.)43 24 Function: restorent 0.0000 0.0000 0.0000 (.)43 <th>19</th> <th>Status: in use (n.m.)</th> <th>0.4097</th> <th>0.7984</th> <th>(+),48</th> <th>0.4827</th> <th>0.7651</th> <th>(-),36</th> <th>1.0000</th> <th>0.0000</th> <th>(+),30</th> <th>0.8114</th> <th>0.5994</th> <th>(-),48</th>	19	Status: in use (n.m.)	0.4097	0.7984	(+),48	0.4827	0.7651	(-),36	1.0000	0.0000	(+),30	0.8114	0.5994	(-),48
21Status: for demolition1.0000.000(+).481.0000.000(+).5022Status: demolithed1.0000.000(+).481.0000.000(+).5023Status: rectin tuse1.0000.000(+).481.0000.000(+).5024Status: reconstruction0.6030.7015(+).480.705(+).5025Status: reconstruction0.6030.7015(+).480.705(+).5026Function: residential0.80500.5703(+).480.7526(+).5027Function: residential0.80500.5603(+).480.7526(+).5028Function: residential0.80100.6653(+).480.7626(+).5029Function: residential0.80100.50000.70000.7000(+).5029Function: residential0.80100.5020(+).480.7526(+).5029Function: residential0.80100.5010(+).480.756(+).5029Function: residential0.80100.5010(+).480.756(+).5029Function: residential0.80100.756(+).480.756(+).5029Function: residential0.80100.70000.756(+).5029Function: residential0.80100.756(+).480.756(+).5029Function: residential0.80100.756(+).480.756(+).5029Function: reside	20	Status: in use	0.8517	0.5770	(-),48	0.9596	0.5247	(+),36	0.4639	0.7726	(+),30	0.6259	0.6896	(+),48
22Status: dernoiished1.0000.000($+,34$ 1.0000.000($+,36$ 23Status: rectin use1.0000.000($+,34$ 0.7376($+,36$ 24Status: reconstruction0.0530.7015($+,48$ 0.7376($+,36$ 25Status: reconstruction0.05030.7015($+,48$ 0.7376($+,36$ 26Function: residential0.05020.5703($+,48$ 0.7376($+,36$ 27Function: residential0.0000.0000.0000.000($+,36$ 28Function: residential0.0010.000($+,48$ 0.7526($+,36$ 29Function: residential0.0010.000($+,48$ 0.7526($+,36$ 29Function: residential0.05010.000($+,48$ ($+,48$ ($+,36$ 29Function: residentia0.05010.0000.0000.000($+,36$ 29Function: residentia0.05010.7480.746($+,36$ 29Function: residentia0.05010.7480.746($+,36$ 29Function: residentia0.00010.0000.0000.000($+,48$ 29Function: residentia0.00110.00100.00100.000($+,48$ 29Function: residentia0.00110.00110.0011($+,48$ 0.748($+,58$ 29Function: residentia0.00110.00110.00110.0011($+,48$ 0.748($+,58$ 29	51	Status: for demolition	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	0.3337	0.8493	(+),30	0.3275	0.8463	(+),48
23Status: rotin use1.0000.000(+).3(+).324Status: reconstruction0.0030.7015(+).40.7376(+).3625Status: reconstruction0.0030.7015(+).40.7376(+).3626Function: residential0.0000.000(+).40.7376(+).3627Function: residential0.0000.000(+).40.7529(-).3628Function: residential0.0000.000(+).40.7529(-).3629Function: residential0.0000.000(+).40.7529(-).3629Function: residential0.0010.000(+).40.7529(-).3629Function: residential0.0010.000(+).40.753(-).3629Function: residential0.05010.718(-).36(-).3629Function: residential0.05010.718(-).36(-).3629Function: residential0.05010.718(-).36(-).3629Function: residential0.05010.716(-).46(-).3629Function: residential0.05010.718(-).36(-).3629Function: residential0.0010.0000.0000.000(-).3629Function: residential0.0010.0010.001(-).36(-).3629Function: residential0.0010.0000.0010.000(-).3629Function: residential <td< th=""><th>22</th><th>Status: demolished</th><th>1.0000</th><th>0.0000</th><th>(+),48</th><th>1.0000</th><th>0.0000</th><th>(+),36</th><th>1.0000</th><th>0.0000</th><th>(+),30</th><th>1.0000</th><th>0.0000</th><th>(+),48</th></td<>	22	Status: demolished	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	1.0000	0.0000	(+),30	1.0000	0.0000	(+),48
24Status: inconstruction0.6030.701($,,14$ 0.53400.736($,,136$ 25status: inconstruction100000.0000($,14$ 0.0000($,136$ ($,136$ 26Function: residential0.86520.5703($,14$ 0.96520.5703($,136$ 27Function: residential0.86500.5703($,14$ 0.95630.7243($,136$ 28Function: residential0.80160.6503($,14$ 0.76230.7063($,136$ 29Function: residential0.80160.5003($,14$ 0.76330.7043($,136$ 29Function: residential0.80160.5013($,14$ 0.76330.7043($,136$ 29Function: residential0.80160.5013($,14$ 0.76330.7043($,136$ 29Function: residential0.80160.5013($,14$ 0.76330.7043($,136$ 29Function: residential0.80130.5013($,14$ 0.76330.7043($,136$ 29Function: residential0.80130.7013($,14$ 0.76330.7033($,136$ 29Function: residential0.80140.71230.71230.73230.7323($,136$ 29Function: residential0.80140.71240.71230.73230.7324($,136$ 29Function: residential0.80130.71240.71230.7324($,136$ 29Function: residential0.80130.7124 <t< th=""><th>53</th><th>Status: not in use</th><th>1.0000</th><th>0.0000</th><th>(+),48</th><th>1.0000</th><th>0.0000</th><th>(+),36</th><th>1.0000</th><th>0.0000</th><th>(+),30</th><th>1.0000</th><th>0.0000</th><th>(+),48</th></t<>	53	Status: not in use	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	1.0000	0.0000	(+),30	1.0000	0.0000	(+),48
36Status illegitmate1.00000.0000(+).36(+).3636Function: residential0.86520.5703(+).480.36520.5736(+).3637Function: residential0.86520.5703(+).480.36530.5736(+).3636Function: residential0.80160.5623(+).480.7526(+).3637Function: residential0.80160.5002(+).480.7563(+).3636Function: restrice0.89160.5012(+).480.7563(+).3637Function: restrice0.86170.5103(+).480.75230.500(+).3638Function: restrice0.86170.5103(+).480.75230.500(+).3639Function: restrice0.86170.5103(+).480.75230.500(+).3631Function: restrice0.86170.5103(+).480.7530.5003(+).3634Function: restrice0.86170.713(+).480.77630.756(+).3635Function: restrice0.89340.5103(+).480.77630.756(+).3636Function: restrice0.89340.7137(+).480.766(+).3636Function: restrice0.7120.7120.71230.752(+).3636Function: restrice0.713(+).480.96630.756(+).3636Function: restrice0.7120.7120.712(+).36	24	Status: reconstruction	0.6035	0.7015	(-),48	0.5340	0.7376	(-),36	0.9920	0.5120	(-),30	0.6229	0.6918	(-),48
Model function: residential 0.8622 0.5703 (.),48 0.9563 0.5436 (.),36 Purction: residential 0.7006 0.6528 (.),48 0.7229 (.),36 Purction: residential 0.7006 0.6528 (.),48 0.7293 (.),36 Purction: residential 0.9016 0.5002 (.),48 0.7526 (.),36 Purction: resultice 0.8916 0.5012 (.),48 0.7523 (.),36 Purction: resultice 0.8670 0.5630 (.),48 0.7163 (.),36 Purction: resultice 0.8610 0.513 (.),48 0.7163 (.),48 Purction: resultice 0.8610 0.513 (.),48 0.7163 (.),48 Purction: resultice 0.861 0.713 (.),48 0.7763 (.),49 Purction: resultice 0.893 0.5801 (.),48 0.7363 (.),49 Purction: resultice 0.893 0.713 (.),48 0.7363 (.),49 Purction: resultice 0.894	25	Status: illegitimate	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	1.0000	0.0000	(+),30	1.0000	0.0000	(+),48
ZiFunction: gathering0.70060.6528(-)480.7228(-)3626Function: prison1.00000.0000(-)36(-)3627Function: relatives0.39160.5042(-)480.561(-)3628Function: ration0.8170.6101(-)480.753(-)3629Function: ration0.8770.6101(-)480.718(-)3629Function: ration0.86100.6595(-)480.778(-)3629Function: ration0.86100.6109(-)480.778(-)3629Function: ration0.86100.5139(-)480.732(-)3629Function: ration0.86100.5139(-)480.732(-)3629Function: ration0.86100.5139(-)480.732(-)3629Function: ration0.86100.71460.746(-)36(-)3629Function: ration0.89340.5010(-)48(-)36(-)3629Function: ration0.89340.5137(-)48(-)36(-)3629Function: ration0.89340.5137(-)48(-)36(-)3629Function: ration0.89340.5601(-)48(-)36(-)3629Function: ration0.7120.712(-)48(-)48(-)4829Function: ration0.7120.712(-)48(-)48(-)4829Function: ration0.712(-)4	26	Function: residential	0.8652	0.5703	(-),48	0.9595	0.5248	(-),36	0.7140	0.6485	(+),30	0.9442	0.5308	(+),48
26 Function: prison 10000 0.0001 (.).36 (.).36 27 Function: rating 0.5014 0.48 0.561 0.754 (.).36 36 Function: rating 0.517 0.6101 (.).48 0.754 (.).36 36 Function: rating 0.517 0.6101 (.).48 0.7185 (.).36 37 Function: guesthouse 0.5520 0.5130 (.).48 0.7185 (.).36 36 Function: guesthouse 0.5520 0.5130 (.).48 0.7135 0.5301 (.).36 37 Function: shout 0.3661 0.5130 (.).48 0.7353 0.5301 (.).36 36 Function: shout 0.3661 0.7140 0.748 0.7353 0.5303 (.).36 36 Function: shout 0.5161 (.).48 0.748 0.7353 0.5303 (.).36 36 Function: shout 0.5161 (.).48 0.748 0.735 0.732 37 0.712	27	Function: gathering	0.7006	0.6528	(-),48	0.5629	0.7229	(-),36	0.2061	0.9001	(+),30	0.4286	0.7881	(+),48
26 Function: healthcare 0.501 0.504 0.504 0.504 0.504 30 Function: factory 0.517 0.6101 (+).48 0.753 (+).36 31 Function: factory 0.5717 0.6101 (+).48 0.5714 (-).36 32 Function: guesthouse 0.5520 0.5203 0.5714 0.7153 (-).36 34 Function: guesthouse 0.5520 0.5139 (+).48 0.7153 0.5307 (+).36 34 Function: spont 0.566 (+).48 0.7333 0.5303 (-).36 36 Function: spont 0.506 (+).48 0.7333 0.5333 (-).36 36 Function: spont 0.506 (+).48 0.7333 0.5333 (-).36 36 Function: spont 0.5176 0.7137 (+).48 (-).36 (-).36 36 Function: spont 0.5164 (+).48 0.7128 0.7128 (+).36 36 Green: uses cover 0.7137	58	Function: prison	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	1.0000	0.0000	(+),30	1.0000	0.0000	(+),48
Model matrix Model matrix<	59	Function: healthcare	0.9916	0.5042	(+),48	0.5691	0.7264	(-),36	0.5571	0.7345	(+),30	0.9916	0.5127	(+),48
Jit Function: officies 0.6570 0.6587 (.).48 0.7163 (.).36 Zit Function: guesthouse 0.5520 0.5723 0.5071 (.).36 (.).36 Zit Function: guesthouse 0.5520 0.7233 0.5071 (.).36 (.).36 Zit Function: sports 0.3661 0.5139 (.).48 0.2323 0.5301 (.).36 Zit Function: sports 0.3034 0.5000 (.).48 0.3336 0.3333 (.).36 Zit Function: shorts 0.3458 0.5301 (.).48 0.3336 0.3333 (.).36 Zit Function: shorts 0.3458 0.5301 (.).48 0.3336 (.).36 Zit Function: shorts 0.3458 0.5301 (.).48 0.3336 (.).36 Zit Function: shorts 0.3416 0.7137 (.).48 0.3636 (.).36 Zit Function: shorts 0.3716 0.7137 (.).48 0.3636 (.).36 Zit Function: shorts 0.3716 0.7137 (.).48 0.3676 (.).36	8	Function: factory	0.7877	0.6101	(+),48	0.6080	0.7014	(+),36	0.8961	0.5599	(-)'30	0.8987	0.5547	(+),48
32 Function: guesthouse 0.5220 0.7323 0.607 (+)36 33 Function: guesthouse 0.5139 (+)48 0.7523 0.6307 (+)36 34 Function: sports 1.0000 0.5139 (+)48 0.2329 0.5600 (+)36 36 Function: sports 1.0000 0.0000 (+)48 0.3336 0.3430 (+)36 36 Function: shops 0.3458 0.5600 (+)48 0.3336 0.3430 (+)36 36 Function: shops 0.3458 0.5600 (+)48 0.3636 (+)36 36 Function: shops 0.3416 0.5176 (+)48 0.3636 (+)36 37 Jersen: user core 0.7146 0.748 0.3636 (+)36 36 Jersen: user core 0.7137 (+)48 0.3676 (+)36 36 Jersen: user core 0.7137 (+)48 0.3776 0.7132 (+)36 36 Jersen: user core 0.7148 0.3676 0.	31	Function: office	0.6870	0.6595	(-),48	0.5714	0.7185	(-),36	0.5968	0.7072	(+),30	0.5532	0.7261	(+),48
Turction: solucition 0.5861 0.5139 (+).48 0.28920 0.5800 (+).36 Hurction: sports 1.0000 0.0000 (+).48 0.2330 0.4400 (+).36 Function: sports 1.0000 0.0000 (+).48 0.3330 0.3430 (+).36 Function: shops 0.3458 0.5600 (+).48 0.3335 0.5333 (+).36 Function: shops 0.3458 0.5801 (+).48 0.3336 0.5333 (+).36 Function: shops 0.3458 0.5117 (+).48 0.3635 0.515 (+).36 More pollution: rotal 0.3716 0.713 (+).48 0.3576 0.5157 (+).36 More pollution: rotal 0.3716 0.713 (+).48 0.3576 0.5176 (+).36 More pollution: rotal 0.3716 0.5137 (+).48 0.3576 (+).36 More pollution: rotal 0.3691 0.5136 (+).48 0.3776 0.5172 (+).36 More pollution: rotal 0.3691	32	Function: guesthouse	0.5520	0.7286	(-),48	0.7523	0.6307	(+),36	0.5440	0.7408	(+),30	0.9847	0.5127	(+),48
34 Function: sponts 10000 0.400 (+)36 (+)36 35 Function: sponts 0.8034 0.5066 (+)48 0.3336 0.3430 (+)36 36 Function: shops 0.3458 0.5601 (+)48 0.3336 0.3335 (+)36 36 Function: shops 0.3458 0.5801 0.516 (+)36 (+)36 37 Circen: trace over 0.5176 0.7137 (+)48 0.9505 0.5155 (+)36 36 Green: trace over 0.716 0.7137 (+)48 0.9505 0.5156 (+)36 36 Green: trace over 0.716 0.7137 (+)48 0.9575 0.7132 (+)36 36 Green: transver 0.5516 (+)48 0.9756 0.5756 (+)36 36 Noise pollution: rainvas 0.5517 (+)48 0.9756 0.5756 (+)36 37 Noise pollution: rainvas 0.5617 (+)48 0.9756 0.5756 (+)36 36 <th>33</th> <th>Function: education</th> <th>0.9861</th> <th>0.5139</th> <th>(+),48</th> <th>0.2929</th> <th>0.8580</th> <th>(+),36</th> <th>0.9864</th> <th>0.5205</th> <th>(+),30</th> <th>0.4534</th> <th>0.7779</th> <th>(+),48</th>	33	Function: education	0.9861	0.5139	(+),48	0.2929	0.8580	(+),36	0.9864	0.5205	(+),30	0.4534	0.7779	(+),48
36 Function: shoas 0.506 (),48 0.3336 0.5333 (),38 36 Function: shoas 0.3458 0.5601 (),48 0.3335 (),36 (),36 37 Cheen: tree cover 0.5458 0.5801 (),48 0.6600 0.6702 (),36 37 Cheen: tree cover 0.716 0.713 (),48 0.9505 0.515 (),36 38 Cheen: tree cover 0.716 0.713 (),48 0.9505 0.515 (),36 39 Cheen: transcover 0.716 0.713 (),48 0.9575 0.7122 (),36 40 Noise pollution: railways 0.376 0.5384 (),48 0.3772 0.3772 0.3772 (),36 41 Noise pollution: railways 0.3704 0.541 (),48 0.3753 0.3753 (),36 42 Noise pollution: railways 0.3704 0.3817 0.3775 0.3753 0.3753 (),36 43 View constr: mean 0.3037	34	Function: sports	1.0000	0.0000	(+),48	0.3309	0.8480	(-),36	0.3337	0.8493	(-)"30	0.3275	0.8463	(-),48
36 Function: other 0.8458 0.5801 (+)48 0.6600 0.6702 (+)36 37 Green: tree cover 0.7716 0.713 (+)48 0.5615 (+)36 38 Green: tree cover 0.716 0.713 (+)48 0.9056 0.515 (+)36 38 Green: tree cover 0.716 0.713 (+)48 0.9950 0.515 (+)36 30 Green: grass cover 0.716 0.713 (+)48 0.3572 0.7132 (+)36 40 Noise pollution: rotal 0.8909 0.5914 (+)48 0.3772 0.7132 (+)36 41 Noise pollution: rotal 0.8914 0.448 0.9375 0.5172 (+)36 42 Noise pollution: rotal 0.8374 0.5176 (+)48 0.9375 0.5172 (+)36 43 Noise pollution: rotal 0.8374 0.514 (+)48 0.9375 0.5172 (+)36 44 Noise pollution: rotal 0.5510 (+)48 0.9456	35	Function: shops	0.9934	0.5066	(-),48	0.9336	0.5383	(-),36	0.2937	0.8568	(+),30	0.3314	0.8363	(+),48
37 Green: tree cover 0.7776 0.7137 (+).48 0.5055 0.5155 (+).36 38 Green: bush cover 0.7146 0.6320 (+).48 0.3926 (+).36 39 Green: bush cover 0.7146 0.6320 (+).48 0.3926 (+).36 30 Green: grass cover 0.5716 0.7137 (+).48 0.5926 (+).36 40 Noise pollution: rotal 0.8089 0.5984 (+).48 0.3371 0.5172 (+).36 41 Noise pollution: rainways 0.3708 0.5176 (+).48 0.3975 0.5175 (+).36 42 Noise pollution: rainways 0.3708 0.5176 (+).48 0.3975 0.5175 (+).36 43 Noise pollution: rainways 0.5716 0.5176 (+).48 (+).36 44 Noise pollution: rainways 0.5716 (-).48 0.3975 0.5175 (+).36 45 Noise pollution: rainways 0.5510 (+).48 0.3975 0.5176 (+).36 </th <th>36</th> <th>Function: other</th> <th>0.8458</th> <th>0.5801</th> <th>(+),48</th> <th>0.6680</th> <th>0.6702</th> <th>(+),36</th> <th>0.4889</th> <th>0.7604</th> <th>(+),30</th> <th>0.5029</th> <th>0.7510</th> <th>(+),48</th>	36	Function: other	0.8458	0.5801	(+),48	0.6680	0.6702	(+),36	0.4889	0.7604	(+),30	0.5029	0.7510	(+),48
38 Green: bush cover 0.5116 0.6320 (+)48 0.3926 (-)323 39 Green: grass cover 0.5716 0.713 (+)48 0.5926 (+)36 40 Noise pollution: total 0.8989 0.713 (+)48 0.5715 0.7132 (+)36 41 Noise pollution: railways 0.8089 0.5884 (+)48 0.3937 0.5317 (+)36 42 Noise pollution: railways 0.8070 0.510 (+)48 0.3975 0.5175 (+)36 43 Vear constr.: mean 0.8037 0.5510 (+)48 0.3975 0.5177 (+)36 44 Year constr.: mean 0.8037 0.510 (+)48 0.3975 0.5177 (+)36 45 Landmarks: FS1 0.5610 (+)48 0.3976 0.5726 (+)36 46 Landmarks: Vear constr. 0.8742 (+)48 0.3976 0.5926 (+)36 47 Landmarks: Vear constr. 0.8742 (+)48 0.9967 (+)36 <th>37</th> <th>Green: tree cover</th> <th>0.5776</th> <th>0.7137</th> <th>(+),48</th> <th>0.9059</th> <th>0.5515</th> <th>(+),36</th> <th>0.9411</th> <th>0.5353</th> <th>(-),30</th> <th>0.8951</th> <th>0.5554</th> <th>(+),48</th>	37	Green: tree cover	0.5776	0.7137	(+),48	0.9059	0.5515	(+),36	0.9411	0.5353	(-),30	0.8951	0.5554	(+),48
36 Green: grass cover 0.7776 0.7175 0.7192 0.7192 0.7192 40 Noise pollution: total 0.8089 0.5984 (+),48 0.5717 0.51122 (+),36 41 Noise pollution: railways 0.8374 0.5841 (+),48 0.3937 0.5317 (+),36 42 Noise pollution: railways 0.3708 0.5107 (+),48 0.3975 0.5107 (+),36 43 Vear constr.: main 0.3037 0.5107 (+),48 0.3975 0.5107 (+),36 44 Vear constr.: railways 0.3708 0.5175 (+),48 0.3975 0.5177 (+),36 45 Landmarks: FSI 0.4566 (-),48 0.3976 0.5177 (+),36 46 Landmarks: Vear constr. 0.8377 0.5617 (+),48 0.3976 0.5176 (+),36 47 Landmarks: Vear constr. 0.6607 0.6628 (+),48 0.3076 0.5176 (+),36 48 Landmarks: Vear constr. 0.6607 <th>88</th> <th>Green: bush cover</th> <th>0.7416</th> <th>0.6320</th> <th>(+),48</th> <th>0.9506</th> <th>0.5292</th> <th>(+),36</th> <th>0.9411</th> <th>0.5353</th> <th>(-)'30</th> <th>0.9358</th> <th>0.5350</th> <th>(+),48</th>	88	Green: bush cover	0.7416	0.6320	(+),48	0.9506	0.5292	(+),36	0.9411	0.5353	(-)'30	0.9358	0.5350	(+),48
40 Noise pollution: total 0.8089 0.5844 (+)48 0.3327 0.5331 (+)36 41 Noise pollution: railways 0.8374 0.5441 (+)48 0.3375 0.5157 (+)36 42 Noise pollution: railways 0.8708 0.5175 (+)48 0.3975 0.5157 (+)36 44 Year constr.: mean 0.9037 0.510 (+)48 0.3975 0.5177 (+)36 45 Landmarks: Fol 0.4556 0.510 (+)48 0.3975 0.5177 (+)36 46 Landmarks: Fol 0.4556 0.7746 (-)48 0.3976 0.7375 (-)36 47 Landmarks: Vertorint 0.8607 0.6623 (+)48 0.3946 0.5066 (-)36 48 Landmarks: Vertorint 0.8607 0.8607 (-)48 0.3946 (-)36 49 Landmarks: Vertorint 0.8607 0.8617 (-)48 0.3946 (-)36 49 Landmarks: Sertorint 0.8607 0.8617 <t< th=""><th>39</th><th>Green: grass cover</th><th>0.5776</th><th>0.7137</th><th>(+),48</th><th>0.5772</th><th>0.7152</th><th>(+),36</th><th>0.9764</th><th>0.5177</th><th>(-),30</th><th>0.8032</th><th>0.6012</th><th>(+),48</th></t<>	39	Green: grass cover	0.5776	0.7137	(+),48	0.5772	0.7152	(+),36	0.9764	0.5177	(-),30	0.8032	0.6012	(+),48
i Noise pollution: railways 0.5874 0.5841 (+)48 0.9775 0.5177 (+),36 2 Noise pollution: railways 0.3708 0.5175 (+)48 0.9976 (+)36 4 Year constr.: railways 0.3708 0.510 (+)48 0.9975 0.517 (+)36 4 Year constr.: railways 0.3708 0.510 (+)48 0.9175 0.517 (+)36 4 Vear constr.: railways 0.5510 (+)48 0.9176 0.517 (+)36 4 Landmarks: Fol area 0.5745 0.5172 0.5146 (+)48 (+)36 4 Landmarks: Vear constr. 0.5607 0.5628 (+)48 0.5042 (+)36 4 Landmarks: Vear constr. 0.5607 0.5628 (+)48 0.5045 (+)36 4 Landmarks: Vear constr. 0.5607 0.5617 (+)48 0.5016 (+)36 4 Landmarks: Vear constr. 0.5607 0.5617 (+)48 0.5016 (+)36	đ	Noise pollution: total	0.8089	0.5984	(+),48	0.9327	0.5381	(+),36	0.9764	0.5177	(+),30	0.9009	0.5525	(+),48
42 Noise pollution: railways 0.3708 0.5175 (.),48 0.3926 (.),36 44 Year constr: mean 0.3037 0.5510 (.),48 0.3975 0.5177 (.),36 45 Landmarks: FS1 0.4556 0.5746 (.),48 0.3975 0.5177 (.),36 46 Landmarks: rolet area 0.2546 0.3746 (.),48 0.5042 (.),36 47 Landmarks: rolet area 0.2548 0.6627 (.),48 0.5042 (.),36 48 Landmarks: rolet area 0.2543 0.8677 (.),48 0.5043 0.5056 (.),36 49 Landmarks: 2 criteria 0.2050 0.3676 (.),48 0.4042 0.3056 (.),36 49 Landmarks: 3 criteria 0.0000 0.4000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000	41	Noise pollution: roads	0.8374	0.5841	(+),48	0.9775	0.5157	(+),36	1.0000	0.5059	(+),30	0.9299	0.5379	(+),48
44 Year constr.: mean 0.9037 0.510 (+)48 0.9175 0.5157 (+),36 45 Landmarks: FS1 0.4556 0.7746 (+),48 0.9168 0.3465 (+),36 46 Landmarks: plot area 0.2746 (+),48 0.9042 0.7020 (+),36 47 Landmarks: vert constr. 0.6607 0.6628 (+),48 0.9043 0.5076 (+),36 48 Landmarks: 1 criterion 0.2772 0.8637 (+),48 0.7111 0.6487 (+),48 49 Landmarks: 3 criteria 0.2006 0.8678 (+),48 0.4042 0.9045 (+),36 40 Dadmarks: 3 criteria 0.2000 0.8017 (+),48 0.4042 (+),36 41 Landmarks: 3 criteria 0.2000 0.8007 (+),48 0.4042 (+),36 42 Landmarks: 3 criteria 0.2000 0.8007 (+),48 0.4042 (+),36 43 Landmarks: 3 criteria 0.2000 0.4048 (+),46 0	5	Noise pollution: railways	0.9708	0.5175	(-),48	0.9506	0.5292	(+),36	1.0000	0.5059	(-)'30	0.8951	0.5554	(+),48
45 Landmarks: FSI 0.4556 0.7745 (.),48 0.3166 (.),36 46 Landmarks: year constr. 0.2548 0.8742 (.),48 0.5042 (.),36 47 Landmarks: rear constr. 0.6607 0.6628 (.),48 0.5076 (.),36 48 Landmarks: 1 criterion 0.2772 0.8631 (.),48 0.4071 0.6437 (.),36 49 Landmarks: 3 criteria 0.2706 0.8678 (.),48 0.4072 (.),36 49 Landmarks: 3 criteria 0.0000 0.406 0.4065 (.),48 0.4042 (.),36 50 Landmarks: 3 criteria 0.0000 0.4000 0.0000 0.4000 (.),48	4	Year constr.: mean	0.9037	0.5510	(-),48	0.9775	0.5157	(+),36	0.8302	0.5907	(+),30	0.9183	0.5438	(-),48
46 Landmarks: pot area 0.2548 0.8742 (+)48 0.6042 0.7020 (+),36 47 Landmarks: vert constr. 0.6607 0.6628 (+),48 0.5076 (+),36 48 Landmarks: 1 criterion 0.2772 0.8631 (+),48 0.7111 0.6487 (+),36 49 Landmarks: 2 criteria 0.2776 0.8678 (+),48 0.4042 0.8045 (+),36 50 Landmarks: 3 criteria 0.2706 0.8678 (+),48 0.4042 0.8055 (+),36 50 Landmarks: 3 criteria 0.0000 0.4060 0.4042 0.3005 (+),36	\$	Landmarks: FSI	0.4556	0.7746	(-),48	0.9168	0.5465	(-),36	0.5433	0.7338	(-)'30	0.5895	0.7080	(-),48
47 Landmarks: Year constr. 0.6807 0.6628 (-),48 0.3076 (-),36 48 Landmarks: 1 criterion 0.2772 0.8631 (-),48 0.7111 0.6487 (-),36 49 Landmarks: 2 criteria 0.2776 0.8678 (-),48 0.4042 0.8045 (-),36 50 Landmarks: 3 criteria 0.2706 0.8678 (-),48 0.4042 0.9045 (-),36 50 Landmarks: 3 criteria 0.0000 0.4048 1.0000 0.0000 (-),36	46	Landmarks: plot area	0.2548	0.8742	(-),48	0.6042	0.7020	(-),36	0.6054	0.7028	(-),30	0.5667	0.7193	(-),48
48 Landmarks: 1 criterion 0.2772 0.8631 (-),48 0.7111 0.6487 (-),36 49 Landmarks: 2 criteria 0.2706 0.8678 (-),48 0.4042 0.8045 (-),36 50 Landmarks: 3 criteria 1.0000 0.0000 (+),48 1.0000 0.0005 (-),36	47	Landmarks: Year constr.	0.6807	0.6628	(-),48	0.9949	0.5076	(+),36	0.6868	0.6629	(+),30	0.8360	0.5853	(+),48
48 Landmarks: 2 criteria 0.2706 0.8678 (-),48 0.4042 0.8045 (-),36 50 Landmarks: 3 criteria 1.0000 0.0000 (+),48 1.0000 0.0000 (+),36	8	Landmarks: 1 criterion	0.2772	0.8631	(-),48	0.7111	0.6487	(-),36	0.8088	0.6015	(-),30	0.6796	0.6629	(-),48
50 Landmarks: 3 criteria 1.0000 0.0000 (+),48 1.0000 0.0000 (+),36	6	Landmarks: 2 criteria	0.2706	0.8678	(-),48	0.4042	0.8045	(-),36	0.9601	0.5299	(-)'30	0.7404	0.6348	(-),48
	20	Landmarks: 3 criterla	1.0000	0.0000	(+),48	1.0000	0.0000	(+),36	1.0000	0.0000	(+),30	1.0000	0.0000	(+),48

Figure 1.83: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

		r (musu	MOST_STAL	Most_coet,n	P([2] sometimes)	[2] stat	[2]_coet,n	P([1] never)	[1]_stan	[1]_coet,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7940	0.6058	(-),48	0.9270	0.5403	(-),40	0.8205	0.5965	(-),27	0.8111	0.5973	(-),48
₽	Year constr.: 1946-1970	0.8280	0.5890	(-),48	0.7190	0.6442	(+),40	0.8183	0.5980	(+),27	0.5418	0.7316	(+),48
÷	Year constr.: 1971-1985	0.7034	0.6511	(+),48	0.2978	0.8534	(+),40	0.7942	0.6098	(+),27	0.2971	0.8532	(+),48
12	Year constr.: 1986-2000	0.7234	0.6411	(-),48	0.2583	0.8729	(+),40	0.3332	0.8379	(+),27	0.3011	0.8512	(+),48
13	Year constr.: 2001-2022	0.8409	0.5824	(+),48	0.3942	0.8056	(+),40	0.2253	0.8907	(+),27	0.5253	0.7397	(+),48
14	Traffic signals count	0.9232	0.5413	(-),48	0.5875	0.7096	(+),40	0.5406	0.7355	(+),27	0.2941	0.8546	(+),48
15	Stairs count	0.8100	0.5990	(+),48	0.9947	0.5027	(+),40	0.4029	0.8044	(-),27	0.3633	0.8209	(-),48
16	Status: for construction	0.6844	0.6638	(-),48	0.7521	0.6306	(+),40	0.6057	0602.0	(+),27	0.9878	0.5122	(+),48
17	Status: unrealised	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	1.0000	0.0000	(+),27	1.0000	0.0000	(+),48
18	Status: under construction	0.9614	0.5248	(+),48	0.9852	0.5148	(+),40	1.0000	0.5152	(-),27	0.9890	0.5110	(+),48
19	Status: in use (n.m.)	0.5865	0.7109	(+),48	0.5520	0.7296	(-),40	1.0000	0.0000	(+),27	0.8114	0.5994	(-),48
20	Status: in use	0.8173	0.5942	(-),48	0.7217	0.6427	(+),40	0.8557	0.5789	(+),27	0.9854	0.5102	(+),48
5	Status: for demolition	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	0.3356	0.8501	(+),27	0.3275	0.8463	(+),48
22	Status: demolished	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	1.0000	0.0000	(+),27	1.0000	0.0000	(+),48
33	Status: not in use	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	1.0000	0.0000	(+),27	1.0000	0.0000	(+),48
24	Status: reconstruction	0.6035	0.7015	(-),48	0.4650	0.7711	(-),40	0.5218	0.7473	(-),27	0.2234	0.8901	(-),48
25	Status: illegitimate	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	1.0000	0.0000	(+),27	1.0000	0.0000	(+),48
26	Function: residential	0.8652	0.5703	(-),48	0.7505	0.6284	(+),40	0.9648	0.5246	(+),27	0.8771	0.5643	(-),48
27	Function: gathering	0.5147	0.7454	(-),48	0.9825	0.5131	(-),40	0.2188	0.8943	(+),27	0.5732	0.7162	(+),48
28	Function: prison	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	1.0000	0.0000	(+),27	1.0000	0.0000	(+),48
29	Function: healthcare	0.6546	0.6796	(+),48	0.5686	0.7256	(-),40	0.5563	0.7363	(+),27	0.9916	0.5127	(+),48
8	Function: factory	0.9670	0.5206	(+),48	0.5685	0.7200	(+),40	0.7013	0.6585	(-),27	0.9431	0.5325	(+),48
3	Function: office	0.7114	0.6474	(-),48	0.8073	0.6004	(-),40	0.9441	0.5359	(+),27	0.8874	0.5595	(+),48
32	Function: guesthouse	0.5520	0.7286	(-),48	0.7788	0.6173	(-),40	0.5563	0.7363	(+),27	0.7857	0.6122	(-),48
33	Function: education	0.9861	0.5139	(+),48	0.2839	0.8620	(+),40	0.9848	0.5228	(+),27	0.4399	0.7846	(+),48
34	Function: sports	1.0000	0.0000	(+),48	0.3296	0.8473	(-),40	0.3356	0.8501	(-),27	0.3275	0.8463	(-),48
35	Function: shops	0.9934	0.5066	(-),48	0.8564	0.5760	(+),40	0.1160	0.9442	(+),27	0.2170	0.8930	(+),48
36	Function: other	0.7461	0.6298	(+),48	0.7216	0.6429	(+),40	0.5661	0.7231	(+),27	0.8012	0.6023	(+),48
37	Green: tree cover	0.5876	0.7087	(+),48	0.8248	0.5913	(+),40	0.6281	0.6921	(-),27	0.7141	0.6457	(-),48
88	Green: bush cover	0.7527	0.6264	(+),48	0.8776	0.5650	(+),40	0.7293	0.6418	(-),27	0.8033	0.6012	(-),48
39	Green: grass cover	0.5676	0.7187	(+),48	0.6304	0.6882	(+),40	0.9586	0.5276	(-),27	0.8951	0.5554	(+),48
4	Noise pollution: total	0.7750	0.6153	(+),48	0.7581	0.6246	(+),40	0.9862	0.5138	(-),27	0.8432	0.5813	(+),48
41	Noise pollution: roads	0.8089	0.5984	(+),48	0.7003	0.6534	(+),40	0.8626	0.5755	(-),27	0.8546	0.5755	(+),48
42	Noise pollution: railways	0.9591	0.5234	(-),48	0.9540	0.5269	(+),40	0.9586	0.5276	(+),27	0.9009	0.5525	(+),48
4	Year constr.: mean	0.9154	0.5452	(-),48	0.9310	0.5383	(-),40	0.4160	0.7969	(+),27	0.8980	0.5539	(+),48
5	Landmarks: FSI	0.3671	0.8186	(-),48	0.7437	0.6321	(-),40	0.5162	0.7482	(-),27	0.5788	0.7133	(-),48
46	Landmarks: plot area	0.2212	0.8909	(-),48	0.6474	0.6799	(-),40	0.5633	0.7248	(-),27	0.5155	0.7447	(-),48
47	Landmarks: Year constr.	0.6807	0.6628	(-),48	0.9873	0.5106	(+),40	0.8467	0.5846	(+),27	0.8361	0.5853	(+),48
48	Landmarks: 1 criterion	0.2350	0.8840	(-),48	0.7596	0.6239	(-),40	0.5775	0.7174	(-),27	0.5717	0.7167	(-),48
49	Landmarks: 2 criteria	0.2706	0.8678	(-),48	0.4868	0.7618	(-),40	0.7668	0.6279	(+),27	0.9745	0.5178	(-),48
20	Landmarks: 3 criteria	1.0000	0.0000	(+),48	1.0000	0.0000	(+),40	1.0000	0.0000	(+),27	1.0000	0.0000	(+),48

Figure 1.84: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: non-standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.0171	0.9914	wi(-),48	0.5347	0.7327	wi(-),36	0.2235	0.8883	wi(-),30	0.0650	0.9675	wi(-),48
우	Year constr.: 1946-1970	0.8026	0.5987	wi(+),48	0.3167	1.0158	tt(+),36	0.3862	0.8797	tt(+),30	0.0476	0.9762	wi(+),48
÷	Year constr.: 1971-1985	0.2766	0.8617	wi(-),48	0.7332	0.6334	wi(-),36	0.3773	0.8113	wi(-),30	0.3449	0.8276	wi(-),48
12	Year constr.: 1986-2000	0.2859	0.857	wi(-),48	0.2537	0.8732	wi(+),36	0.2478	0.8761	wi(+),30	0.4506	0.7747	wi(+),48
33	Year constr.: 2001-2022	0.8730	0.5635	wi(-),48	0.5735	0.5682	tt(+),36	0.0849	1.7839	tt(+),30	0.1343	1.5237	tt(+),48
4	Traffic signals count	0.5250	0.7375	wi(+),48	0.1510	0.9245	wi(+),36	0.8042	0.5979	wi(+),30	0.1030	0.9485	wi(+),48
15	Stairs count	0.3712	0.9028	tt(+),48	0.7440	-0.3292	tt(-),36	0.3256	1.0	tt(+),30	1.0000	0.0	tt(+),48
16	Status: for construction	0.2179	0.891	wi(-),48	0.7434	-0.3299	tt(-),36	0.7932	-0.2646	tt(-),30	0.6187	0.6906	wi(-),48
17	Status: unrealised	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
18	Status: under construction	0.9819	0.5091	wi(+),48	0.9725	0.5137	wi(+),36	0.4993	0.7503	wi(-),30	0.4462	0.7769	wi(-),48
19	Status: in use (n.m.)	0.9732	0.5134	wi(+),48	0.5422	0.7289	wi(-),36	0.5458	0.7271	wi(-),30	0.6109	0.6946	wi(-),48
20	Status: in use	0.0262	-2.2964	tt(-),48	0.2203	0.8898	wi(-),36	0.6993	0.3901	tt(+),30	0.2791	0.8605	wi(-),48
5	Status: for demolition	1.0000	equal	n/a,48	1.0000	equal	n/a,36	0.7277	0.6361	wi(+),30	0.7794	0.6103	wi(+),48
53	Status: demolished	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
33	Status: not in use	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
24	Status: reconstruction	0.5460	0.6082	tt(+),48	0.5777	0.5621	tt(+),36	0.4606	0.7477	tt(+),30	0.5705	0.5714	tt(+),48
25	Status: illegitimate	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
26	Function: residential	0.0028	0.9986	wi(-),48	0.1178	0.9411	wi(-),36	0.1582	0.9209	wi(-),30	0.0265	0.9867	wi(-),48
27	Function: gathering	0.7384	0.6308	wi(-),48	0.4219	0.7891	wi(-),36	0.0459	0.977	wi(+),30	0.4057	0.839	tt(+),48
28	Function: prison	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
59	Function: healthcare	0.7876	0.6062	wi(+),48	1.0000	0.5	wi(+),36	0.7344	0.6328	wi(+),30	0.7832	0.6084	wi(+),48
8	Function: factory	0.4051	-0.8401	tt(-),48	0.7816	0.6092	wi(+),36	0.7564	0.6218	wi(-),30	0.6030	0.6985	wi(-),48
3	Function: office	0.5415	-0.615	tt(-),48	0.7644	0.302	tt(+),36	0.6098	0.516	tt(+),30	0.8740	0.563	wi(+),48
32	Function: guesthouse	0.2947	0.8526	wi(-),48	0.4396	0.7802	wi(-),36	0.8075	0.5963	wi(-),30	0.3001	-1.0477	tt(-),48
33	Function: education	0.9954	0.5023	wi(-),48	0.7521	0.6239	wi(+),36	0.9909	0.5046	wi(+),30	0.9864	0.5068	wi(+),48
34	Function: sports	1.0000	equal	n/a,48	0.7488	0.6256	wi(-),36	0.7277	0.6361	wi(-),30	0.7794	0.6103	wi(-),48
35	Function: shops	0.5534	-0.5969	tt(-),48	0.4654	-0.7381	tt(-),36	0.0272	0.9864	wi(+),30	0.2507	1.163	tt(+),48
36	Function: other	0.7644	0.6178	wi(+),48	0.7226	0.3579	tt(+),36	0.3276	0.9957	tt(+),30	0.6236	0.6882	wi(+),48
37	Green: tree cover	0.0000	-5.9975	tt(-),48	0.0000	-6.0497	tt(-),36	0.0003	-4.1239	tt(-),30	0.0000	-5.7685	tt(-),48
88	Green: bush cover	0.0000	-6.689	tt(-),48	0.0000	-6.1586	tt(-),36	0.0002	0.9999	wi(-),30	0.0000	-5.544	tt(-),48
39	Green: grass cover	0.0000	-5.6912	tt(-),48	0.0000	-6.3876	tt(-),36	0.0004	-3.985	tt(-),30	0.0000	-5.9434	tt(-),48
6	Noise pollution: total	0.0000	-8.7208	tt(-),48	0.0000	-7.1974	tt(-),36	0.0000	-5.2496	tt(-),30	0.0000	-7.3372	tt(-),48
4	Noise pollution: roads	0.0000	-8.2696	tt(-),48	0.0000	-6.8011	tt(-),36	0.0000	-5.2042	tt(-),30	0.0000	-7.0185	tt(-),48
42	Noise pollution: railways	0.0004	-3.8525	tt(-),48	0.0008	-3.6572	tt(-),36	0.2534	-1.1652	tt(-),30	0.0006	0.9997	wi(-),48
4	Year constr.: mean	0.4602	0.7699	wi(+),48	1.0000	equal	n/a,36	0.8612	0.5694	wi(+),30	0.9591	0.5205	wi(-),48
45	Landmarks: FSI	0.0052	0.9974	wi(-),48	0.2481	0.876	wi(-),36	0.1249	0.9376	wi(-),30	0.0418	0.9791	wi(-),48
46	Landmarks: plot area	0.0143	0.9929	wi(-),48	0.1845	0.9078	wi(-),36	0.3606	0.8197	wi(-),30	0.0992	0.9504	wi(-),48
47	Landmarks: Year constr.	0.0208	0.9896	wi(-),48	0.1991	0.9005	wi(-),36	0.2751	0.8624	wi(-),30	0.0732	0.9634	wi(-),48
48	Landmarks: 1 criterion	0.0012	0.9994	wi(-),48	0.0905	0.9547	wi(-),36	0.0340	0.983	wi(-),30	0.0060	0.997	wi(-),48
49	Landmarks: 2 criteria	0.1943	0.9029	wi(-),48	0.2346	0.8827	wi(-),36	0.7601	0.62	wi(+),30	0.6023	0.6989	wi(-),48
50	Landmarks: 3 criteria	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48

Figure 1.85: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.0167	0.9917	wi(-),48	0.0850	0.9575	wi(-),40	0.3923	0.8039	wi(-),27	0.0282	0.9859	wi(-),48
₽	Year constr.: 1946-1970	0.8228	0.5886	wi(+),48	0.5306	0.6328	tt(+),40	0.1530	0.9235	wi(+),27	0.1462	0.9269	wi(+),48
Ξ	Year constr.: 1971-1985	0.3609	0.8196	wi(-),48	0.6256	-0.4919	tt(-),40	0.6006	0.6997	wi(-),27	0.2493	0.8754	wi(-),48
12	Year constr.: 1986-2000	0.2979	0.8511	wi(-),48	0.3597	0.8202	wi(+),40	0.2022	0.8989	wi(+),27	0.8239	0.588	wi(+),48
33	Year constr.: 2001-2022	0.9097	0.5452	wi(-),48	0.3068	1.0356	tt(+),40	0.1513	1.4786	tt(+),27	0.2085	1.2751	tt(+),48
4	Traffic signals count	0.5150	0.7425	wi(+),48	0.3151	0.8425	wi(+),40	0.2835	0.8583	wi(+),27	0.0264	0.9868	wi(+),48
15	Stairs count	0.3712	0.9028	tt(+),48	0.5703	0.5725	tt(+),40	1.0000	0.0	tt(+),27	0.5692	-0.5733	tt(-),48
16	Status: for construction	0.2179	0.891	wi(-),48	0.3357	-0.9747	tt(-),40	0.7884	-0.2712	tt(-),27	0.4612	0.7694	wi(-),48
17	Status: unrealised	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
18	Status: under construction	0.9819	0.5091	wi(+),48	0.7973	0.6014	wi(-),40	0.7150	0.6425	wi(-),27	0.4462	0.7769	wi(-),48
19	Status: in use (n.m.)	0.8195	0.5903	wi(-),48	0.3938	0.8031	wi(-),40	0.7522	0.6239	wi(-),27	0.6109	0.6946	wi(-),48
20	Status: in use	0.0108	0.9946	wi(-),48	0.3070	0.8465	wi(-),40	0.3937	0.8031	wi(-),27	0.0312	0.9844	wi(-),48
21	Status: for demolition	1.0000	equal	n/a,48	1.0000	equal	n/a,40	0.7150	0.6425	wi(+),27	0.7794	0.6103	wi(+),48
22	Status: demolished	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
33	Status: not in use	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
24	Status: reconstruction	0.5460	0.6082	tt(+),48	0.6256	0.4919	tt(+),40	0.7517	-0.3198	tt(-),27	0.8133	-0.2374	tt(-),48
25	Status: illegitimate	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
26	Function: residential	0.0033	0.9984	wi(-),48	0.0890	0.9555	wi(-),40	0.1551	0.9225	wi(-),27	0.0087	0.9957	wi(-),48
27	Function: gathering	0.5587	0.7206	wi(-),48	0.7685	-0.2964	tt(-),40	0.0587	1.9776	tt(+),27	0.5386	0.6194	tt(+),48
28	Function: prison	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
29	Function: healthcare	0.5969	0.7015	wi(+),48	1.0000	0.5	wi(+),40	0.4800	0.76	wi(+),27	0.7832	0.6084	wi(+),48
8	Function: factory	0.2704	-1.1154	tt(-),48	0.7148	-0.3681	tt(-),40	1.0000	0.5	wi(+),27	0.3302	0.8349	wi(-),48
3	Function: office	0.5749	-0.5648	tt(-),48	0.9128	0.1102	tt(+),40	0.8593	-0.179	tt(-),27	0.8393	0.2039	tt(+),48
32	Function: guesthouse	0.2947	0.8526	wi(-),48	0.2457	-1.1786	tt(-),40	0.9894	0.5053	wi(+),27	0.2118	-1.266	tt(-),48
33	Function: education	0.9954	0.5023	wi(-),48	0.5800	0.71	wi(+),40	0.9894	0.5053	wi(+),27	0.7908	0.6046	wi(+),48
34	Function: sports	1.0000	equal	n/a,48	0.7604	0.6198	wi(-),40	0.7150	0.6425	wi(-),27	0.7794	0.6103	wi(-),48
35	Function: shops	0.5534	-0.5969	tt(-),48	0.8835	-0.1474	tt(-),40	0.0281	2.3253	tt(+),27	0.1020	1.668	tt(+),48
36	Function: other	0.7326	0.6337	wi(+),48	0.7753	0.2875	tt(+),40	0.4398	0.7846	tt(+),27	0.9353	-0.0816	tt(-),48
37	Green: tree cover	0.0000	-6.0017	tt(-),48	0.0000	-6.7491	tt(-),40	0.0000	1.0	wi(-),27	0.0000	-6.2294	tt(-),48
88	Green: bush cover	0.0000	-6.6089	tt(-),48	0.0000	-6.8259	tt(-),40	0.0000	1.0	wi(-),27	0.0000	1.0	wi(-),48
39	Green: grass cover	0.0000	-5.5704	tt(-),48	0.0000	-7.5396	tt(-),40	0.0001	-4.5085	tt(-),27	0.0000	-6.8343	tt(-),48
6	Noise pollution: total	0.0000	-8.4911	tt(-),48	0.0000	-8.4413	tt(-),40	0.0000	-6.119	tt(-),27	0.0000	-8.0461	tt(-),48
41	Noise pollution: roads	0.0000	-8.0686	tt(-),48	0.0000	-7.6161	tt(-),40	0.0000	-4.9297	tt(-),27	0.0000	-6.6923	tt(-),48
42	Noise pollution: railways	0.0004	-3.8302	tt(-),48	0.0001	-4.3246	tt(-),40	0.5721	-0.5722	tt(-),27	0.0018	0.9991	wi(-),48
4	Year constr.: mean	0.3401	0.8299	wi(+),48	0.5652	-0.5801	tt(-),40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
45	Landmarks: FSI	0.0030	0.9985	wi(-),48	0.0442	0.9779	wi(-),40	0.2052	0.8974	wi(-),27	0.0272	0.9864	wi(-),48
46	Landmarks: plot area	0.0075	0.9963	wi(-),48	0.0779	0.9611	wi(-),40	0.1348	0.9326	wi(-),27	0.0418	0.9791	wi(-),48
47	Landmarks: Year constr.	0.0208	0.9896	wi(-),48	0.0283	0.9859	wi(-),40	0.7970	0.6015	wi(-),27	0.0741	0.963	wi(-),48
48	Landmarks: 1 criterion	0.0004	0.9998	wi(-),48	0.0086	0.9957	wi(-),40	0.1055	0.9473	wi(-),27	0.0035	0.9983	wi(-),48
49	Landmarks: 2 criteria	0.1943	0.9029	wi(-),48	0.2544	0.8728	wi(-),40	0.7522	0.6239	wi(+),27	0.7908	0.6046	wi(-),48
50	Landmarks: 3 criteria	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48

Figure 1.86: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2230	0.8885	wi(-),48	0.9119	0.544	wi(+),36	0.8604	0.5698	wi(+),30	0.9384	0.5308	wi(+),48
₽	Year constr.: 1946-1970	0.7786	0.6107	wi(+),48	0.3491	0.949	tt(+),36	0.8475	0.194	tt(+),30	0.2621	1.1351	tt(+),48
Ξ	Year constr.: 1971-1985	0.7113	0.6444	wi(-),48	0.3357	0.8321	wi(+),36	0.8167	0.2339	tt(+),30	0.1503	1.4622	tt(+),48
12	Year constr.: 1986-2000	0.1924	0.9038	wi(-),48	0.2193	0.8904	wi(+),36	0.1104	0.9448	wi(+),30	0.1757	0.9121	wi(+),48
33	Year constr.: 2001-2022	0.5567	0.7216	wi(+),48	0.4327	0.7836	wi(+),36	0.0509	2.037	tt(+),30	0.2187	0.8906	wi(+),48
4	Traffic signals count	0.9625	0.5188	wi(-),48	0.2253	0.8873	wi(+),36	0.8336	-0.212	tt(-),30	0.3191	0.8404	wi(+),48
15	Stairs count	0.7952	0.6024	wi(+),48	0.3838	0.8081	wi(-),36	0.7564	0.6218	wi(-),30	0.6223	0.6888	wi(-),48
16	Status: for construction	0.7794	0.6103	wi(-),48	0.7475	0.6262	wi(+),36	0.5311	0.7345	wi(+),30	0.7952	0.6024	wi(+),48
11	Status: unrealised	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
18	Status: under construction	0.6048	0.6976	wi(+),48	0.5324	0.7338	wi(+),36	0.4993	0.7503	wi(-),30	0.9955	0.5023	wi(-),48
19	Status: in use (n.m.)	0.2902	0.8549	wi(+),48	0.5465	0.7267	wi(-),36	1.0000	equal	n/a,30	1.0000	0.5	wi(+),48
20	Status: in use	0.3014	0.8493	wi(-),48	0.9498	0.5251	wi(+),36	0.3279	0.8361	wi(+),30	0.4085	0.7958	wi(+),48
5	Status: for demolition	1.0000	equal	n/a,48	1.0000	equal	n/a,36	0.7277	0.6361	wi(+),30	0.7794	0.6103	wi(+),48
ដ	Status: demolished	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
8	Status: not in use	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
24	Status: reconstruction	0.3248	0.8376	wi(-),48	0.3068	0.8466	wi(-),36	1.0000	0.5	wi(+),30	0.5005	0.7497	wi(-),48
25	Status: illegitimate	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
26	Function: residential	0.9215	0.5393	wi(+),48	0.8872	0.5564	wi(-),36	0.7650	0.6175	wi(+),30	0.9304	0.5348	wi(-),48
27	Function: gathering	0.7707	0.6146	wi(-),48	0.3176	-1.0139	tt(-),36	0.0635	1.9294	tt(+),30	0.4814	0.7097	tt(+),48
28	Function: prison	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48
59	Function: healthcare	1.0000	0.5	wi(+),48	0.7488	0.6256	wi(-),36	0.7344	0.6328	wi(+),30	0.9909	0.5045	wi(+),48
8	Function: factory	0.6180	0.691	wi(+),48	0.5465	0.7267	wi(+),36	0.7565	0.6218	wi(-),30	0.9956	0.5022	wi(+),48
5	Function: office	0.9477	0.5262	wi(-),48	0.2879	0.8561	wi(-),36	0.6223	0.4979	tt(+),30	0.5969	0.7015	wi(+),48
32	Function: guesthouse	0.7788	0.6106	wi(-),48	0.9930	0.5035	wi(+),36	0.7259	0.6371	wi(+),30	0.8214	0.5893	wi(-),48
33	Function: education	0.9954	0.5023	wi(+),48	0.3610	0.8195	wi(+),36	0.9909	0.5046	wi(+),30	0.5930	0.7035	wi(+),48
34	Function: sports	1.0000	equal	n/a,48	0.7488	0.6256	wi(-),36	0.7277	0.6361	wi(-),30	0.7794	0.6103	wi(-),48
35	Function: shops	0.9698	0.5151	wi(+),48	0.8151	0.2356	tt(+),36	0.0654	1.9148	tt(+),30	0.0954	0.9523	wi(+),48
36	Function: other	0.5110	0.7445	wi(+),48	0.2006	0.8997	wi(+),36	0.6460	0.4641	tt(+),30	0.6448	0.4639	tt(+),48
37	Green: tree cover	0.1060	0.947	wi(+),48	0.7313	-0.3461	tt(-),36	0.5494	-0.6058	tt(-),30	0.9586	-0.0522	tt(-),48
8	Green: bush cover	0.1951	1.3143	tt(+),48	0.6041	0.698	wi(+),36	0.7197	-0.3624	tt(-),30	0.5795	0.7102	wi(+),48
39	Green: grass cover	0.1118	1.6204	tt(+),48	0.7329	0.344	tt(+),36	0.9755	0.0309	tt(+),30	0.4355	0.7822	wi(+),48
4	Noise pollution: total	0.1288	1.5462	tt(+),48	0.3789	0.8106	wi(+),36	0.9157	0.1068	tt(+),30	0.7839	0.2758	tt(+),48
4	Noise pollution: roads	0.7109	0.6445	wi(+),48	0.8876	0.1423	tt(+),36	0.9257	0.094	tt(+),30	0.7715	0.2922	tt(+),48
42	Noise pollution: railways	0.2752	0.8624	wi(+),48	0.7099	0.375	tt(+),36	0.4222	0.7889	wi(+),30	0.2463	0.8769	wi(+),48
4	Year constr.: mean	0.3293	0.8353	wi(-),48	1.0000	equal	n/a,36	0.7495	0.6252	wi(+),30	0.8173	0.5914	wi(-),48
45	Landmarks: FSI	0.0968	0.9516	wi(-),48	0.6056	0.6972	wi(-),36	0.6292	0.6854	wi(-),30	0.5735	0.7133	wi(-),48
46	Landmarks: plot area	0.0554	0.9723	wi(-),48	0.6037	0.6982	wi(-),36	0.9140	0.543	wi(-),30	0.5735	0.7133	wi(-),48
47	Landmarks: Year constr.	0.2902	0.8549	wi(-),48	0.8359	0.582	wi(-),36	0.4086	0.7957	wi(+),30	0.6455	0.6773	wi(+),48
48	Landmarks: 1 criterion	0.0497	0.9752	wi(-),48	0.5301	0.7349	wi(-),36	0.8422	0.5789	wi(-),30	0.6064	0.6968	wi(-),48
49	Landmarks: 2 criteria	0.1943	0.9028	wi(-),48	0.3610	0.8195	wi(-),36	0.9909	0.5046	wi(-),30	0.7832	0.6084	wi(-),48
50	Landmarks: 3 criteria	1.0000	equal	n/a,48	1.0000	equal	n/a,36	1.0000	equal	n/a,30	1.0000	equal	n/a,48

Figure 1.87: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2114	0.8943	wi(-),48	0.9784	0.5108	wi(+),40	0.3702	0.8149	wi(-),27	0.5297	0.7352	wi(-),48
우	Year constr.: 1946-1970	0.8610	0.5695	wi(-),48	0.4979	0.6842	tt(+),40	0.3514	0.8243	wi(+),27	0.0859	0.9571	wi(+),48
÷	Year constr.: 1971-1985	0.8937	0.5531	wi(-),48	0.3936	0.8032	wi(+),40	0.7452	-0.3284	tt(-),27	0.2990	0.8505	wi(+),48
12	Year constr.: 1986-2000	0.1961	0.902	wi(-),48	0.1971	0.9014	wi(+),40	0.2024	0.8988	wi(+),27	0.3236	0.8382	wi(+),48
13	Year constr.: 2001-2022	0.5460	0.727	wi(+),48	0.3437	0.8282	wi(+),40	0.1187	1.6136	tt(+),27	0.0726	1.8369	tt(+),48
4	Traffic signals count	0.9875	0.5063	wi(-),48	0.6198	0.6901	wi(+),40	0.2467	0.8767	wi(+),27	0.0940	0.953	wi(+),48
15	Stairs count	0.7952	0.6024	wi(+),48	1.0000	0.5	wi(+),40	0.2646	-1.1402	tt(-),27	0.2093	-1.2731	tt(-),48
16	Status: for construction	0.7794	0.6103	wi(-),48	0.9882	0.5059	wi(+),40	0.4800	0.76	wi(+),27	1.0000	0.5	wi(+),48
17	Status: unrealised	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
18	Status: under construction	0.6048	0.6976	wi(+),48	0.7765	0.6117	wi(+),40	0.7150	0.6425	wi(-),27	0.9955	0.5023	wi(-),48
19	Status: in use (n.m.)	0.5969	0.7015	wi(+),48	0.7691	0.6154	wi(-),40	1.0000	equal	n/a,27	1.0000	0.5	wi(+),48
20	Status: in use	0.1568	0.9216	wi(-),48	0.6618	0.6691	wi(+),40	0.7915	0.6043	wi(+),27	0.9264	0.5368	wi(+),48
5	Status: for demolition	1.0000	equal	n/a,48	1.0000	equal	n/a,40	0.7150	0.6425	wi(+),27	0.7794	0.6103	wi(+),48
22	Status: demolished	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
33	Status: not in use	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
24	Status: reconstruction	0.3248	0.8376	wi(-),48	0.4027	-0.8461	tt(-),40	0.7126	0.6437	wi(-),27	0.1513	0.9243	wi(-),48
25	Status: illegitimate	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
26	Function: residential	0.9215	0.5393	wi(+),48	0.9356	0.5322	wi(+),40	0.3856	0.8072	wi(+),27	0.8491	0.5754	wi(+),48
27	Function: gathering	0.5845	0.7077	wi(-),48	0.7062	-0.3798	tt(-),40	0.1401	1.5221	tt(+),27	0.6178	0.5022	tt(+),48
28	Function: prison	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
29	Function: healthcare	0.7876	0.6062	wi(+),48	0.7604	0.6198	wi(-),40	0.7225	0.6388	wi(+),27	0.9909	0.5045	wi(+),48
8	Function: factory	0.8039	0.5981	wi(+),48	0.7450	0.6275	wi(+),40	0.7225	0.6388	wi(-),27	0.8152	0.5924	wi(-),48
æ	Function: office	0.9520	0.524	wi(-),48	0.4981	0.751	wi(-),40	0.8539	-0.186	tt(-),27	0.9525	0.0599	tt(+),48
32	Function: guesthouse	0.7788	0.6106	wi(-),48	0.8086	0.5957	wi(-),40	0.7150	0.6425	wi(+),27	0.8083	0.5959	wi(-),48
33	Function: education	0.9954	0.5023	wi(+),48	0.2543	0.8728	wi(+),40	0.9894	0.5053	wi(+),27	0.4361	0.7819	wi(+),48
34	Function: sports	1.0000	equal	n/a,48	0.7604	0.6198	wi(-),40	0.7150	0.6425	wi(-),27	0.7794	0.6103	wi(-),48
35	Function: shops	0.9698	0.5151	wi(+),48	0.4250	0.8062	tt(+),40	0.0651	0.9675	wi(+),27	0.0500	0.975	wi(+),48
8	Function: other	0.3760	0.812	wi(+),48	0.6964	0.393	tt(+),40	0.5362	0.6268	tt(+),27	0.8024	0.2516	tt(+),48
37	Green: tree cover	0.1775	0.9113	wi(+),48	0.4707	0.7284	tt(+),40	0.0443	-2.1134	tt(-),27	0.3349	-0.9742	tt(-),48
8	Green: bush cover	0.1868	1.3397	tt(+),48	0.5215	0.6468	tt(+),40	0.1355	-1.5408	tt(-),27	0.5063	-0.6698	tt(-),48
39	Green: grass cover	0.0846	1.7621	tt(+),48	0.1890	1.3369	tt(+),40	0.5605	-0.5897	tt(-),27	0.5765	0.5624	tt(+),48
4	Noise pollution: total	0.1071	1.6427	tt(+),48	0.2017	1.2985	tt(+),40	0.6610	-0.4437	tt(-),27	0.6736	0.4238	tt(+),48
41	Noise pollution: roads	0.5300	0.735	wi(+),48	0.1590	1.4359	tt(+),40	0.7120	-0.3732	tt(-),27	0.5466	0.6073	tt(+),48
42	Noise pollution: railways	0.2167	0.8916	wi(+),48	0.2913	0.8544	wi(+),40	0.3605	0.9308	tt(+),27	0.1316	0.9342	wi(+),48
4	Year constr.: mean	0.5323	0.7339	wi(-),48	0.6814	0.6593	wi(-),40	1.0000	equal	n/a,27	1.0000	equal	n/a,48
45	Landmarks: FSI	0.0489	0.9755	wi(-),48	0.6003	0.6999	wi(-),40	0.3498	0.8251	wi(-),27	0.4736	0.7632	wi(-),48
46	Landmarks: plot area	0.0323	0.9838	wi(-),48	0.4589	0.7705	wi(-),40	0.6628	0.6686	wi(-),27	0.4448	0.7776	wi(-),48
47	Landmarks: Year constr.	0.2902	0.8549	wi(-),48	0.8435	0.5783	wi(-),40	0.7521	0.624	wi(+),27	0.8001	0.6	wi(+),48
48	Landmarks: 1 criterion	0.0257	0.9871	wi(-),48	0.6252	0.6874	wi(-),40	0.4395	0.7802	wi(-),27	0.3938	0.8031	wi(-),48
49	Landmarks: 2 criteria	0.1943	0.9028	wi(-),48	0.3821	0.8089	wi(-),40	0.7522	0.6239	wi(+),27	0.9909	0.5045	wi(-),48
20	Landmarks: 3 criteria	1.0000	equal	n/a,48	1.0000	equal	n/a,40	1.0000	equal	n/a,27	1.0000	equal	n/a,48

Figure 1.88: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 3, data: standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4] stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n	P(Least) I	Least_stat I	east_coef,n	
6	Year constr.: < 1945	0.7604	0.4021	(-),57	0.8491	0.4441	(-),28	0.7936	0.3997	(+),48	0.9245	0.4108	(-),22	0.9048	0.4886	(+),57	
₽	Year constr.: 1946-1970	0.5292	0.5093	(-),57	0.7924	0.5837	(-),28	0.9696	0.7415	(-),48	0.8862	0.4786	(-),22	0.9387	0.6762	(-),57	
÷	Year constr.: 1971-1985	0.9132	0.5921	(+),57	0.6427	0.4527	(-),28	0.7608	0.2544	(-),48	0.8878	0.4540	(-),22	0.8876	0.3367	(-),57	
12	Year constr.: 1986-2000	0.1238	0.5278	(+),57	0.2127	0.4069	(+),28	0.0831	0.3177	(+),48	0.2193	0.3144	(+),22	0.0566	0.2562	(+),57	
13	Year constr.: 2001-2022	0.2957	0.2944	(-),57	0.3029	0.3148	(-),28	0.8530	0.5000	(-),48	0.2878	0.4424	(-),22	0.4100	0.3932	(-),57	
14	Traffic signals count	0.1240	0.2980	(+),57	0.3746	0.3947	(+),28	0.5176	0.4554	(+),48	0.5431	0.8674	(+),22	0.7004	0.6395	(+),57	
15	Stairs count	0.8294	0.6654	(+),57	0.9908	0.2740	(-),28	0.4644	0.4079	(+),48	0.7425	0.1672	(-),22	0.5231	0.5015	(+),57	
16	Status: for construction	0.8727	0.7163	(+),57	0.6908	0.7356	(+),28	0.6583	0.6373	(+),48	0.4120	0.3570	(-),22	0.9380	0.7361	(+),57	
17	Status: unrealised	1.0000	0.0000	(-),57	1.0000	0.0000	(-),28	1.0000	0.0000	(-),48	1.0000	0.0000	(-),22	1.0000	0.0000	(-),57	
18	Status: under construction	0.9678	0.4839	(-),57	0.5566	0.2783	(-),28	0.7171	0.3586	(+),48	0.9812	0.4906	(+),22	0.9678	0.4839	(+),57	
19	Status: in use (n.m.)	0.7427	0.2737	(-),57	0.4183	0.3553	(-),28	0.5657	0.3853	(+),48	0.5725	0.0000	(+),22	0.7854	0.5042	(+),57	
20	Status: in use	0.9525	0.5384	(+),57	0.9804	0.4836	(+),28	0.6895	0.4606	(+),48	0.8972	0.5562	(+),22	0.7942	0.5125	(+),57	
21	Status: for demolition	0.6546	0.7233	(+),57	0.5706	0.2853	(-),28	0.9861	0.1548	(-),48	0.3398	0.1699	(-),22	0.9883	0.1554	(-),57	
ដ	Status: demolished	1.0000	0.0000	(-),57	1.0000	0.0000	(-),28	1.0000	0.0000	(-),48	1.0000	0.0000	(-),22	1.0000	0.0000	(-),57	
33	Status: not in use	1.0000	0.0000	(-),57	1.0000	0.0000	(-),28	1.0000	0.0000	(-),48	1.0000	0.0000	(-),22	1.0000	0.0000	(-),57	
24	Status: reconstruction	0.0440	0.4497	(-),57	0.1593	0.3137	(-),28	0.8990	0.9484	(-),48	0.3547	0.9306	(-),22	0.8715	0.9680	(-),57	
25	Status: illegitimate	1.0000	0.0000	(-),57	1.0000	0.0000	(-),28	1.0000	0.0000	(-),48	1.0000	0.0000	(-),22	1.0000	0.0000	(-),57	
26	Function: residential	0.5180	0.3892	(+),57	0.8883	0.4439	(+),28	0.8453	0.5382	(+),48	0.7480	0.5429	(+),22	0.6576	0.4931	(+),57	
27	Function: gathering	0.6527	0.3383	(-),57	0.8369	0.2519	(-),28	0.8218	0.4312	(-),48	0.9880	0.6368	(-),22	0.9031	0.4690	(-),57	
28	Function: prison	1.0000	0.0000	(-),57	1.0000	0.0000	(-),28	1.0000	0.0000	(-),48	1.0000	0.0000	(-),22	1.0000	0.0000	(-),57	
59	Function: healthcare	0.5671	0.5035	(-),57	0.1610	0.2853	(-),28	0.9882	0.7243	(-),48	1.0000	0.0000	(-),22	0.9901	0.7233	(-),57	
8	Function: factory	0.5795	0.2806	(-),57	0.9902	0.4902	(-),28	0.9666	0.5000	(+),48	0.3002	0.4843	(-),22	0.8189	0.3988	(-),57	
3	Function: office	0.9685	0.5653	(+),57	0.5665	0.5599	(+),28	0.0435	0.0358	(+),48	0.2120	0.2445	(+),22	0.0412	0.0254	(+),57	
32	Function: guesthouse	0.7389	0.3649	(+),57	0.6309	0.4939	(-),28	1.0000	0.3722	(+),48	0.9812	0.2773	(-),22	0.9908	0.4954	(-),57	
33	Function: education	0.9942	0.0412	(-),57	0.3125	0.0406	(-),28	0.6546	0.9246	(+),48	0.3398	0.0000	(+),22	0.0823	0.0000	(+),57	
34	Function: sports	0.3259	0.1629	(+),57	1.0000	0.0000	(-),28	0.3275	0.1637	(+),48	1.0000	0.0000	(-),22	0.3259	0.1629	(+),57	
35	Function: shops	0.5551	0.3224	(-),57	0.6657	0.3898	(-),28	0.6615	0.3973	(-),48	0.4686	0.3953	(-),22	0.5822	0.3235	(-),57	
36	Function: other	0.4939	0.2378	(+),57	0.4817	0.2324	(+),28	0.9667	0.4773	(-),48	0.6558	0.3868	(+),22	0.7877	0.3904	(+),57	
37	Green: tree cover	0.0000	0.4989	(+),57	0.0005	0.4093	(+),28	0.0000	0.5452	(+),48	0.0035	0.7013	(+),22	0.0000	0.7068	(+),57	
88	Green: bush cover	0.0000	0.5664	(+),57	0.0070	0.5261	(+),28	0.0001	0.3368	(+),48	0.0054	0.6243	(+),22	0.0001	0.6050	(+),57	
39	Green: grass cover	0.0000	0.5079	(+),57	0.0052	0.4673	(+),28	0.0003	0.4519	(+),48	0.0043	0.6332	(+),22	0.0001	0.6479	(+),57	
4	Noise pollution: total	0.0025	0.5350	(+),57	0.0430	0.4478	(+),28	0.0012	0.4461	(+),48	0.0133	0.4579	(+),22	0.0009	0.5158	(+),57	
41	Noise pollution: roads	0.0034	0.6573	(+),57	0.0754	0.6034	(+),28	0.0003	0.4201	(+),48	0.0142	0.3936	(+),22	0.0004	0.4955	(+),57	
42	Noise pollution: railways	0.0117	0.5563	(+),57	0.0868	0.5327	(+),28	0.0164	0.5539	(+),48	0.1079	0.4486	(+),22	0.0176	0.5608	(+),57	
4	Year constr.: mean	0.6380	0.4436	(+),57	0.9608	0.5000	(+),28	0.9708	0.5941	(+),48	0.8234	0.5047	(+),22	0.9368	0.4147	(-),57	
5	Landmarks: FSI	0.7090	0.5013	(+),57	0.6689	0.0000	(+),28	0.6872	0.4398	(+),48	0.6757	0.3869	(-),22	0.7888	0.5358	(+),57	
46	Landmarks: plot area	0.4594	0.2999	(+),57	0.5052	0.4682	(+),28	0.7255	0.3845	(+),48	0.8202	0.4199	(+),22	0.4728	0.3097	(+),57	
47	Landmarks: Year constr.	0.9064	0.6785	(-),57	1.0000	0.2796	(+),28	0.7244	0.6155	(-),48	0.9659	0.4830	(-),22	0.7820	0.6218	(-),57	
8	Landmarks: 1 criterion	0.9094	0.3967	(+),57	0.9933	0.3713	(+),28	0.8872	0.5193	(-),48	0.7935	0.5099	(-),22	0.8842	0.5070	(-),57	
49	Landmarks: 2 criteria	0.5573	0.4782	(+),57	0.4011	0.0000	(+),28	0.7909	0.4945	(+),48	0.7134	0.4861	(+),22	0.5541	0.4782	(+),57	
50	Landmarks: 3 criteria	1.0000	0.0000	(-),57	1.0000	0.0000	(-),28	1.0000	0.0000	(-),48	1.0000	0.0000	(-),22	1.0000	0.0000	(-),57	

Figure 1.89: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n	P(Least) I	Least_stat	east_coef,n
6	Year constr.: < 1945	0.8777	0.4682	(-),57	0.8872	0.4374	(-),29	0.9354	0.4709	(+),45	1.0000	0.5066	(-),28	0.9568	0.4920	(+),57
₽	Year constr.: 1946-1970	0.5519	0.5163	(-),57	0.7508	0.6116	(-),29	1.0000	0.7041	(-),45	0.3725	0.4216	(-),28	0.6172	0.5304	(-),57
Ŧ	Year constr.: 1971-1985	0.7457	0.4800	(+),57	0.7971	0.5286	(-),29	0.7414	0.1816	(-),45	0.5219	0.3587	(-),28	0.8945	0.3196	(-),57
12	Year constr.: 1986-2000	0.1306	0.5508	(+),57	0.1814	0.3622	(+),29	0.0610	0.3043	(+),45	0.1801	0.2340	(+),28	0.0407	0.2137	(+),57
33	Year constr.: 2001-2022	0.2776	0.2749	(-),57	0.3290	0.2692	(-),29	0.8132	0.5277	(-),45	0.1987	0.4396	(-),28	0.4179	0.4098	(-),57
14	Traffic signals count	0.1357	0.2979	(+),57	0.3230	0.4874	(+),29	0.4851	0.4015	(+),45	0.4240	0.8327	(+),28	0.7242	0.6753	(+),57
15	Stairs count	0.8294	0.6654	(+),57	0.7631	0.7233	(+),29	0.4444	0.4043	(+),45	0.7479	0.0688	(-),28	0.8294	0.6654	(+),57
16	Status: for construction	0.8727	0.7163	(+),57	0.6895	0.7350	(+),29	0.6419	0.5206	(+),45	0.6704	0.2576	(-),28	0.8722	0.1939	(-),57
17	Status: unrealised	1.0000	0.0000	(-),57	1.0000	0.0000	(-),29	1.0000	0.0000	(-),45	1.0000	0.0000	(-),28	1.0000	0.000	(-),57
8	Status: under construction	0.9678	0.4839	(-),57	0.6316	0.3158	(-),29	0.6812	0.3406	(+),45	0.6786	0.3393	(+),28	0.7389	0.3694	(+),57
19	Status: in use (n.m.)	0.7427	0.2737	(-),57	0.7103	0.3552	(-),29	0.3451	0.2551	(+),45	0.6908	0.7356	(+),28	0.7854	0.5042	(+),57
8	Status: in use	0.8427	0.4751	(+),57	0.9380	0.5218	(-),29	0.7437	0.5097	(+),45	0.9935	0.4902	(-),28	0.8382	0.5215	(+),57
51	Status: for demolition	0.6546	0.7233	(+),57	0.9859	0.2852	(-),29	0.6768	0.7290	(+),45	1.0000	0.0000	(-),28	0.6721	0.7267	(+),57
22	Status: demolished	1.0000	0.0000	(-),57	1.0000	0.0000	(-),29	1.0000	0.0000	(-),45	1.0000	0.0000	(-),28	1.0000	0.0000	(-),57
53	Status: not in use	1.0000	0.0000	(-),57	1.0000	0.0000	(-),29	1.0000	0.0000	(-),45	1.0000	0.0000	(-),28	1.0000	0.000	(-),57
24	Status: reconstruction	0.0467	0.4755	(-),57	0.1757	0.4408	(-),29	0.6191	0.8928	(-),45	0.4748	0.9388	(-),28	0.8715	0.9680	(-),57
25	Status: illegitimate	1.0000	0.0000	(-),57	1.0000	0.0000	(-),29	1.0000	0.0000	(-),45	1.0000	0.0000	(-),28	1.0000	0.0000	(-),57
26	Function: residential	0.5235	0.3815	(+),57	0.8135	0.3671	(+),29	0.8266	0.5469	(+),45	0.6467	0.4967	(+),28	0.7337	0.5785	(+),57
27	Function: gathering	0.5672	0.3029	(-),57	0.6842	0.2444	(-),29	0.8825	0.3668	(+),45	0.7463	0.4478	(-),28	0.9491	0.4813	(-),57
28	Function: prison	1.0000	0.0000	(-),57	1.0000	0.0000	(-),29	1.0000	0.0000	(-),45	1.0000	0.0000	(-),28	1.0000	0.0000	(-),57
59	Function: healthcare	0.9901	0.7233	(-),57	0.3343	0.0000	(-),29	0.5680	0.5045	(-),45	1.0000	0.0000	(-),28	0.5671	0.5035	(-),57
8	Function: factory	0.5795	0.2806	(-),57	0.7157	0.4737	(-),29	0.8065	0.4032	(-),45	0.4011	0.4624	(-),28	0.8189	0.3988	(-),57
3	Function: office	0.9324	0.3887	(-),57	0.5670	0.5137	(+),29	0.0728	0.0466	(+),45	0.1728	0.1749	(+),28	0.0488	0.0305	(+),57
32	Function: guesthouse	0.7389	0.3649	(+),57	0.9883	0.3273	(-),29	0.6893	0.3383	(+),45	1.0000	0.7952	(-),28	0.4855	0.2427	(+),57
33	Function: education	0.6546	0.9241	(+)*21	0.5704	0.0804	(-),29	0.3144	0.8467	(+),45	0.5706	0.0805	(-),28	0.9942	0.0412	(-),57
34	Function: sports	0.3259	0.1629	(+),57	1.0000	0.0000	(-),29	0.3282	0.1641	(+),45	1.0000	0.0000	(-),28	0.3259	0.1629	(+),57
35	Function: shops	0.7343	0.4170	(-),57	0.5486	0.4251	(-),29	0.8424	0.4586	(-),45	0.2986	0.3130	(-),28	0.5572	0.3158	(-),57
36	Function: other	0.7153	0.3489	(+),57	0.7634	0.3187	(+),29	0.8246	0.4633	(+),45	0.7176	0.3814	(+),28	0.8084	0.3962	(+),57
37	Green: tree cover	0.0000	0.5808	(+),57	0.0006	0.4907	(+),29	0.0000	0.6235	(+),45	0.0019	0.7439	(+),28	0.0000	0.6170	(+),57
38	Green: bush cover	0.0001	0.5853	(+),57	0.0082	0.5710	(+),29	0.0002	0.4518	(+),45	0.0033	0.6709	(+),28	0.0001	0.5373	(+),57
39	Green: grass cover	0.0000	0.5586	(+)*21	0.0094	0.5771	(+),29	0.0001	0.4871	(+),45	0.0033	0.5780	(+),28	0.0001	0.5124	(+),57
4	Noise pollution: total	0.0025	0.5316	(+),57	0.0401	0.4597	(+),29	0.0013	0.5354	(+),45	0.0223	0.5196	(+),28	0.0011	0.5170	(+),57
4	Noise pollution: roads	0.0034	0.6416	(+),57	0.0620	0.5892	(+),29	0.0005	0.5641	(+),45	0.0312	0.5131	(+),28	0.0009	0.5507	(+),57
42	Noise pollution: railways	0.0111	0.5418	(+),57	0.1058	0.5403	(+),29	0.0056	0.5418	(+),45	0.1871	0.4414	(+),28	0.0121	0.4853	(+),57
4	Year constr.: mean	0.7338	0.4887	(+),57	0.8825	0.4752	(-),29	0.9004	0.5177	(+),45	0.9935	0.4902	(-),28	0.9277	0.5474	(+),57
5	Landmarks: FSI	0.7090	0.5013	(+),57	0.7337	0.0000	(+),29	0.7857	0.4625	(+),45	0.8897	0.5336	(+),28	0.6721	0.4678	(+),57
46	Landmarks: plot area	0.3615	0.2464	(+),57	0.7356	0.5000	(+),29	0.9089	0.4014	(+),45	0.9234	0.4721	(+),28	0.5850	0.3682	(+),57
47	Landmarks: Year constr.	0.9411	0.6959	(-),57	0.9512	0.6321	(-),29	0.6087	0.6216	(-),45	0.7924	0.4918	(-),28	0.6718	0.5670	(-),57
8	Landmarks: 1 criterion	0.8404	0.3657	(+),57	0.9104	0.5731	(-),29	0.8470	0.5163	(-),45	0.8625	0.4588	(-),28	0.8293	0.4907	(-),57
49	Landmarks: 2 criteria	0.5573	0.4782	(+),57	0.4015	0.0000	(+),29	0.9782	0.5000	(-),45	0.7212	0.4939	(+),28	0.5732	0.4861	(+),57
50	Landmarks: 3 criteria	1.0000	0.0000	(-),57	1.0000	0.0000	(-),29	1.0000	0.0000	(-),45	1.0000	0.0000	(-),28	1.0000	0.000	(-),57

Figure 1.90: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	-east_coef,n	
6	Year constr.: < 1945	0.8042	0.6001	(+),57	0.8881	0.5625	(+),28	0.7994	0.6031	(-),48	0.8216	0.5984	(+),22	0.9773	0.5136	(-),57	
₽	Year constr.: 1946-1970	0.9860	0.5093	(-),57	0.8459	0.5837	(-),28	0.5219	0.7415	(-),48	0.9573	0.5320	(+),22	0.6518	0.6762	(-),57	
÷	Year constr.: 1971-1985	0.8204	0.5921	(+),57	0.9053	0.5541	(+),28	0.5087	0.7480	(+),48	0.9080	0.5562	(+),22	0.6734	0.6654	(+),57	
12	Year constr.: 1986-2000	0.9490	0.5278	(+),57	0.8137	0.5996	(-),28	0.6355	0.6849	(-),48	0.6288	0.6941	(-),22	0.5124	0.7457	(-),57	
13	Year constr.: 2001-2022	0.5888	0.7076	(+),57	0.6296	0.6911	(+),28	1.0000	0.5030	(+),48	0.8849	0.5671	(+),22	0.7863	0.6090	(+),57	
14	Traffic signals count	0.5959	0.7040	(-),57	0.7893	0.6118	(-),28	0.9109	0.5475	(-),48	0.2756	0.8674	(+),22	0.7252	0.6395	(+),57	
15	Stairs count	0.6746	0.6654	(+),57	0.5480	0.7332	(+),28	0.8158	0.5959	(-),48	0.3345	0.8401	(+),22	0.9971	0.5015	(+),57	
16	Status: for construction	0.5742	0.7163	(+),57	0.5566	0.7356	(+),28	0.7354	0.6373	(+),48	0.7140	0.6554	(+),22	0.5343	0.7361	(+),57	
17	Status: unrealised	1.0000	0.0000	(+),57	1.0000	0.0000	(+),28	1.0000	0.0000	(+),48	1.0000	0.0000	(+),22	1.0000	0.0000	(+),57	
18	Status: under construction	0.9678	0.5207	(+),57	0.5566	0.7356	(+),28	0.7171	0.6468	(-),48	0.9812	0.5282	(-),22	0.9678	0.5207	(-),57	
19	Status: in use (n.m.)	0.5474	0.7296	(+),57	0.7105	0.6553	(+),28	0.7705	0.6198	(-),48	1.0000	0.0000	(+),22	1.0000	0.5042	(+),57	
20	Status: in use	0.9276	0.5384	(+),57	0.9673	0.5229	(-),28	0.9211	0.5423	(-),48	0.9062	0.5562	(+),22	0.9796	0.5125	(+),57	
5	Status: for demolition	0.5671	0.7233	(+),57	0.5706	0.7288	(+),28	0.3096	0.8502	(+),48	0.3398	0.8521	(+),22	0.3109	0.8488	(+),57	
ដ	Status: demolished	1.0000	0.000	(+),57	1.0000	0.0000	(+),28	1.0000	0.0000	(+),48	1.0000	0.0000	(+),22	1.0000	0.000	(+),57	
23	Status: not in use	1.0000	0.0000	(+),57	1.0000	0.0000	(+),28	1.0000	0.0000	(+),48	1.0000	0.0000	(+),22	1.0000	0.0000	(+),57	
24	Status: reconstruction	0.8994	0.5530	(+),57	0.6274	0.6938	(+),28	0.1051	0.9484	(-),48	0.1468	0.9306	(-),22	0.0651	0.9680	(-),57	
25	Status: illegitimate	1.0000	0.0000	(+),57	1.0000	0.0000	(+),28	1.0000	0.0000	(+),48	1.0000	0.0000	(+),22	1.0000	0.0000	(+),57	
26	Function: residential	0.7783	0.6130	(-),57	0.8879	0.5626	(-),28	0.9295	0.5382	(+),48	0.9332	0.5429	(+),22	0.9863	0.5092	(-),57	
27	Function: gathering	0.6767	0.6641	(+),57	0.5037	0.7550	(+),28	0.8624	0.5722	(+),48	0.7484	0.6368	(-),22	0.9380	0.5337	(+),57	
28	Function: prison	1.0000	0.0000	(+),57	1.0000	0.0000	(+),28	1.0000	0.0000	(+),48	1.0000	0.0000	(+),22	1.0000	0.0000	(+),57	
29	Function: healthcare	0.9929	0.5035	(+),57	0.5706	0.7288	(+),28	0.5677	0.7243	(-),48	1.0000	0.0000	(+),22	0.5671	0.7233	(-),57	
30	Function: factory	0.5612	0.7224	(+),57	0.9804	0.5196	(+),28	1.0000	0.5048	(-),48	0.9686	0.5314	(+),22	0.7976	0.6047	(+),57	
3	Function: office	0.8742	0.5653	(+),57	0.8942	0.5599	(+),28	0.0716	0.9649	(-),48	0.4891	0.7639	(-),22	0.0507	0.9750	(-),57	
32	Function: guesthouse	0.7297	0.6397	(-),57	0.9878	0.5183	(+),28	0.7443	0.6333	(-),48	0.5546	0.7404	(+),22	0.9908	0.5092	(+),57	
33	Function: education	0.0823	0.9606	(+),57	0.0813	0.9629	(+),28	0.1595	0.9246	(+),48	1.0000	0.0000	(+),22	1.0000	0.0000	(+),57	
34	Function: sports	0.3259	0.8456	(-),57	1.0000	0.0000	(+),28	0.3275	0.8463	(-),48	1.0000	0.0000	(+),22	0.3259	0.8456	(-),57	
35	Function: shops	0.6449	0.6798	(+),57	0.7797	0.6173	(+),28	0.7947	0.6057	(+),48	0.7907	0.6144	(+),22	0.6471	0.6787	(+),57	
36	Function: other	0.4756	0.7640	(-),57	0.4648	0.7728	(-),28	0.9546	0.5257	(+),48	0.7737	0.6227	(-),22	0.7808	0.6119	(-),57	
37	Green: tree cover	0.9977	0.5034	(-),57	0.8185	0.5971	(-),28	0.9154	0.5452	(+),48	0.6137	0.7013	(+),22	0.5903	0.7068	(+),57	
8	Green: bush cover	0.8717	0.5664	(+),57	0.9608	0.5261	(+),28	0.6735	0.6659	(-),48	0.7692	0.6243	(+),22	0.7943	0.6050	(+),57	
39	Green: grass cover	0.9887	0.5079	(+),57	0.9347	0.5392	(-),28	0.9038	0.5510	(-),48	0.7513	0.6332	(+),22	0.7084	0.6479	(+),57	
4	Noise pollution: total	0.9345	0.5350	(+),57	0.8957	0.5586	(-),28	0.8922	0.5568	(-),48	0.9159	0.5514	(-),22	0.9729	0.5158	(+),57	
41	Noise pollution: roads	0.6895	0.6573	(+),57	0.8058	0.6034	(+),28	0.8403	0.5827	(-),48	0.7872	0.6154	(-),22	0.9910	0.5068	(-),57	
42	Noise pollution: railways	0.8918	0.5563	(+),57	0.9477	0.5327	(+),28	0.8980	0.5539	(+),48	0.8973	0.5606	(-),22	0.8829	0.5608	(+),57	
4	Year constr.: mean	0.8872	0.5586	(-),57	1.0000	0.5065	(-),28	0.8174	0.5941	(+),48	0.9906	0.5047	(+),22	0.8294	0.5875	(+),57	
45	Landmarks: FSI	0.9974	0.5013	(+),57	1.0000	0.0000	(+),28	0.8797	0.5634	(-),48	0.7738	0.6231	(+),22	0.9335	0.5358	(+),57	
46	Landmarks: plot area	0.5998	0.7022	(-),57	0.9365	0.5388	(-),28	0.7690	0.6184	(-),48	0.8398	0.5899	(-),22	0.6193	0.6925	(-),57	
47	Landmarks: Year constr.	0.6478	0.6785	(-),57	0.5592	0.7265	(-),28	0.7753	0.6155	(-),48	0.9659	0.5284	(+),22	0.7614	0.6218	(-),57	
8	Landmarks: 1 criterion	0.7935	0.6055	(-),57	0.7426	0.6350	(-),28	0.9673	0.5193	(-),48	1.0000	0.5099	(-),22	0.9907	0.5070	(-),57	
49	Landmarks: 2 criteria	0.9564	0.5258	(-),57	1.0000	0.0000	(+),28	0.9890	0.5110	(-),48	0.9721	0.5279	(-),22	0.9564	0.5258	(-),57	
20	Landmarks: 3 criteria	1.0000	0.0000	(+),57	1.0000	0.0000	(+),28	1.0000	0.0000	(+),48	1.0000	0.0000	(+),22	1.0000	0.0000	(+),57	

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [[1]_coef,n	P(Least)	Least_stat	_east_coef,n
6	Year constr.: < 1945	0.9364	0.5341	(+),57	0.8748	0.5688	(+),29	0.9419	0.5323	(-),45	1.0000	0.5066	(-),28	0.9841	0.5102	(-),57
9	Year constr.: 1946-1970	0.9720	0.5163	(-),57	0.7893	0.6116	(-),29	0.5976	0.7041	(-),45	0.8431	0.5855	(+),28	0.9438	0.5304	(-),57
÷	Year constr.: 1971-1985	0.9600	0.5224	(-),57	0.9555	0.5286	(-),29	0.3631	0.8206	(+),45	0.7175	0.6477	(+),28	0.6392	0.6825	(+),57
12	Year constr.: 1986-2000	0.9029	0.5508	(+),57	0.7245	0.6437	(-),29	0.6085	0.6986	(-),45	0.4680	0.7712	(-),28	0.4274	0.7880	(-),57
13	Year constr.: 2001-2022	0.5499	0.7270	(+),57	0.5384	0.7360	(+),29	0.9511	0.5277	(-),45	0.8791	0.5671	(+),28	0.8196	0.5925	(+),57
14	Traffic signals count	0.5958	0.7041	(-),57	0.9749	0.5188	(-),29	0.8029	0.6017	(-),45	0.3430	0.8327	(+),28	0.6535	0.6753	(+),57
15	Stairs count	0.6746	0.6654	(+),57	0.5670	0.7233	(+),29	0.8085	0.6000	(-),45	0.1377	0.9340	(+),28	0.6746	0.6654	(+),57
16	Status: for construction	0.5742	0.7163	(+),57	0.5568	0.7350	(+),29	0.9705	0.5206	(+),45	0.5153	0.7502	(+),28	0.3877	0.8088	(+),57
17	Status: unrealised	1.0000	0.0000	(+),57	1.0000	0.0000	(+),29	1.0000	0.0000	(+),45	1.0000	0.0000	(+),28	1.0000	0.0000	(+),57
18	Status: under construction	0.9678	0.5207	(+),57	0.6316	0.6955	(+),29	0.6812	0.6651	(-),45	0.6786	0.6728	(-),28	0.7389	0.6351	(-),57
19	Status: in use (n.m.)	0.5474	0.7296	(+),57	0.7103	0.6550	(+),29	0.5101	0.7497	(-),45	0.5566	0.7356	(+),28	1.0000	0.5042	(+),57
20	Status: in use	0.9502	0.5272	(-),57	0.9689	0.5218	(-),29	0.9871	0.5097	(+),45	0.9803	0.5164	(+),28	0.9615	0.5215	(+),57
5	Status: for demolition	0.5671	0.7233	(+),57	0.5704	0.7284	(+),29	0.5593	0.7290	(+),45	1.0000	0.0000	(+),28	0.5602	0.7267	(+),57
ដ	Status: demolished	1.0000	0.0000	(+),57	1.0000	0.0000	(+),29	1.0000	0.0000	(+),45	1.0000	0.0000	(+),28	1.0000	0.0000	(+),57
23	Status: not in use	1.0000	0.0000	(+),57	1.0000	0.0000	(+),29	1.0000	0.0000	(+),45	1.0000	0.0000	(+),28	1.0000	0.0000	(+),57
24	Status: reconstruction	0.9509	0.5273	(+),57	0.8817	0.5670	(+),29	0.2184	0.8928	(-),45	0.1276	0.9388	(-),28	0.0651	0.9680	(-),57
25	Status: illegitimate	1.0000	0.0000	(+),57	1.0000	0.0000	(+),29	1.0000	0.0000	(+),45	1.0000	0.0000	(+),28	1.0000	0.0000	(+),57
26	Function: residential	0.7630	0.6207	(-),57	0.7342	0.6388	(-),29	0.9126	0.5469	(+),45	0.9933	0.5100	(-),28	0.8475	0.5785	(+),57
27	Function: gathering	0.6058	0.6994	(+),57	0.4888	0.7618	(+),29	0.7336	0.6367	(-),45	0.8956	0.5602	(+),28	0.9625	0.5214	(+),57
28	Function: prison	1.0000	0.0000	(+),57	1.0000	0.0000	(+),29	1.0000	0.0000	(+),45	1.0000	0.0000	(+),28	1.0000	0.0000	(+),57
29	Function: healthcare	0.5671	0.7233	(-),57	1.0000	0.0000	(+),29	0.9910	0.5045	(+),45	1.0000	0.0000	(+),28	0.9929	0.5035	(+),57
8	Function: factory	0.5612	0.7224	(+),57	0.9474	0.5351	(+),29	0.8065	0.6019	(+),45	0.9248	0.5483	(+),28	0.7976	0.6047	(+),57
31	Function: office	0.7774	0.6136	(+),57	0.9863	0.5137	(+),29	0.0932	0.9543	(-),45	0.3498	0.8299	(-),28	0.0610	0.9699	(-),57
32	Function: guesthouse	0.7297	0.6397	(-),57	0.6547	0.6841	(+),29	0.6766	0.6680	(-),45	0.4272	0.7952	(-),28	0.4855	0.7612	(-),57
33	Function: education	0.1591	0.9241	(+),57	0.1609	0.9267	(+),29	0.3282	0.8467	(+),45	0.1610	0.9269	(+),28	0.0823	0.9606	(+),57
34	Function: sports	0.3259	0.8456	(-),57	1.0000	0.0000	(+),29	0.3282	0.8467	(-),45	1.0000	0.0000	(+),28	0.3259	0.8456	(-),57
35	Function: shops	0.8339	0.5855	(+),57	0.8501	0.5820	(+),29	0.9173	0.5448	(+),45	0.6259	0.6933	(+),28	0.6317	0.6863	(+),57
36	Function: other	0.6979	0.6532	(-),57	0.6375	0.6870	(-),29	0.9266	0.5400	(-),45	0.7628	0.6251	(-),28	0.7923	0.6061	(-),57
37	Green: tree cover	0.8428	0.5808	(+),57	0.9814	0.5155	(-),29	0.7591	0.6235	(+),45	0.5227	0.7439	(+),28	0.7704	0.6170	(+),57
8	Green: bush cover	0.8339	0.5853	(+),57	0.8703	0.5710	(+),29	0.9037	0.5514	(-),45	0.6700	0.6709	(+),28	0.9300	0.5373	(+),57
39	Green: grass cover	0.8873	0.5586	(+),57	0.8580	0.5771	(+),29	0.9742	0.5161	(-),45	0.8569	0.5780	(+),28	0.9797	0.5124	(+),57
4	Noise pollution: total	0.9413	0.5316	(+),57	0.9195	0.5464	(-),29	0.9357	0.5354	(+),45	0.9739	0.5196	(+),28	0.9706	0.5170	(+),57
4	Noise pollution: roads	0.7211	0.6416	(+),57	0.8337	0.5892	(+),29	0.8781	0.5641	(+),45	0.9869	0.5131	(+),28	0:9030	0.5507	(+),57
4	Noise pollution: railways	0.9210	0.5418	(+),57	0.9318	0.5403	(+),29	0.9229	0.5418	(+),45	0.8827	0.5651	(-),28	0.9706	0.5170	(-),57
4	Year constr.: mean	0.9774	0.5136	(-),57	0.9503	0.5310	(+),29	0.9710	0.5177	(+),45	0.9804	0.5164	(+),28	0.9097	0.5474	(+),57
5	Landmarks: FSI	0.9974	0.5013	(+),57	1.0000	0.0000	(+),29	0.9250	0.5411	(-),45	0.9478	0.5336	(+),28	0.9357	0.5347	(-),57
46	Landmarks: plot area	0.4928	0.7555	(-),57	1.0000	0.5068	(-),29	0.8027	0.6019	(-),45	0.9441	0.5349	(-),28	0.7363	0.6341	(-),57
47	Landmarks: Year constr.	0.6127	0.6959	(-),57	0.7489	0.6321	(-),29	0.7637	0.6216	(-),45	0.9836	0.5164	(+),28	0.8711	0.5670	(-),57
8	Landmarks: 1 criterion	0.7314	0.6365	(-),57	0.8663	0.5731	(-),29	0.9738	0.5163	(-),45	0.9177	0.5480	(+),28	0.9815	0.5116	(+),57
49	Landmarks: 2 criteria	0.9564	0.5258	(-),57	1.0000	0.0000	(+),29	1.0000	0.5055	(+),45	0.9878	0.5183	(-),28	0.9722	0.5178	(-),57
20	Landmarks: 3 criteria	1.0000	0.0000	(+),57	1.0000	0.0000	(+),29	1.0000	0.0000	(+),45	1.0000	0.0000	(+),28	1.0000	0.0000	(+),57

Figure 1.92: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: non-standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2498	0.8751	wi(+),57	0.1965	0.9018	wi(+),28	0.4785	0.7608	wi(-),48	0.9090	0.5455	wi(-),22	0.8452	0.5774	wi(-),57
6	Year constr.: 1946-1970	0.3253	0.8374	wi(+),57	0.3396	0.8302	wi(+),28	0.7293	-0.3481	tt(-),48	0.8679	0.5661	wi(-),22	0.7894	-0.2684	tt(-),57
÷	Year constr.: 1971-1985	0.7945	0.6028	wi(-),57	0.4804	0.7598	wi(+),28	0.2766	1.1009	tt(+),48	0.8968	0.1313	tt(+),22	0.7440	0.3281	tt(+),57
12	Year constr.: 1986-2000	0.0243	0.9879	wi(-),57	0.0635	-1.9349	tt(-),28	0.0014	-3.4036	tt(-),48	0.0227	0.9887	wi(-),22	0.0003	-3.8452	tt(-),57
13	Year constr.: 2001-2022	0.0152	2.5054	tt(+),57	0.0986	1.7107	tt(+),28	0.1019	1.6685	tt(+),48	0.0165	2.6068	tt(+),22	0.0550	0.9725	wi(+),57
14	Traffic signals count	0.0322	-2.196	tt(-),57	0.0972	-1.7184	tt(-),28	0.2732	0.8634	wi(-),48	0.9610	0.5195	wi(-),22	0.6754	0.6623	wi(-),57
15	Stairs count	0.7843	-0.2751	tt(-),57	1.0000	0.0	tt(+),28	0.4676	0.7662	wi(-),48	0.6652	0.4389	tt(+),22	0.4102	-0.8298	tt(-),57
16	Status: for construction	0.9898	0.5051	wi(+),57	0.7386	-0.3372	tt(-),28	0.9695	0.5153	wi(-),48	0.1541	0.923	wi(+),22	0.5220	0.739	wi(+),57
17	Status: unrealised	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
18	Status: under construction	0.9964	0.5018	wi(+),57	0.7194	0.6403	wi(+),28	0.5828	0.7086	wi(-),48	0.6892	0.6554	wi(-),22	0.8027	0.5986	wi(-),57
19	Status: in use (n.m.)	0.6275	0.6863	wi(+),57	0.7173	0.6414	wi(+),28	0.7735	0.6133	wi(-),48	0.6892	0.6554	wi(-),22	0.9894	0.5053	wi(-),57
20	Status: in use	0.7296	0.6352	wi(+),57	0.9265	0.0931	tt(+),28	0.4822	0.7589	wi(-),48	0.5918	0.7041	wi(-),22	0.5889	0.7055	wi(-),57
51	Status: for demolition	0.8027	0.5986	wi(-),57	0.7194	0.6403	wi(+),28	0.9909	0.5045	wi(+),48	0.6892	0.6554	wi(+),22	0.9929	0.5035	wi(+),57
22	Status: demolished	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
23	Status: not in use	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
24	Status: reconstruction	0.0126	2.5769	tt(+),57	0.0826	1.8025	tt(+),28	0.8359	0.2082	tt(+),48	0.2673	0.8664	wi(+),22	0.8482	0.5759	wi(-),57
25	Status: illegitimate	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
26	Function: residential	0.1102	0.9449	wi(-),57	0.8372	0.5814	wi(-),28	0.5041	0.7479	wi(-),48	0.0733	0.9633	wi(-),22	0.0547	0.9726	wi(-),57
27	Function: gathering	0.7508	0.6246	wi(+),57	0.8771	0.1562	tt(+),28	0.9529	0.5235	wi(+),48	0.6892	0.6554	wi(+),22	0.6813	0.6594	wi(+),57
28	Function: prison	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
29	Function: healthcare	0.8027	0.5986	wi(+),57	0.4867	0.7567	wi(+),28	1.0000	0.5	wi(+),48	1.0000	equal	n/a,22	1.0000	0.5	wi(+),57
30	Function: factory	0.5234	0.7383	wi(+),57	0.9455	0.069	tt(+),28	0.9866	0.5067	wi(-),48	0.2672	0.8664	wi(+),22	0.6656	0.6672	wi(+),57
31	Function: office	0.6748	0.4218	tt(+),57	0.3717	-0.9085	tt(-),28	0.0020	-3.2753	tt(-),48	0.1838	-1.3744	tt(-),22	0.0060	-2.8553	tt(-),57
32	Function: guesthouse	0.6324	0.6838	wi(-),57	0.7194	0.6403	wi(+),28	0.7964	0.6018	wi(-),48	0.9623	0.0478	tt(+),22	0.8382	0.5809	wi(-),57
33	Function: education	1.0000	0.5	wi(+),57	0.4867	0.7567	wi(+),28	0.7876	0.6062	wi(-),48	0.6892	0.6554	wi(-),22	0.4536	0.7732	wi(-),57
34	Function: sports	0.7963	0.6019	wi(-),57	1.0000	equal	n/a,28	0.7794	0.6103	wi(-),48	1.0000	equal	n/a,22	0.7963	0.6019	wi(-),57
35	Function: shops	0.3113	1.0218	tt(+),57	0.4808	0.7149	tt(+),28	0.3543	0.9355	tt(+),48	0.1578	0.9211	wi(+),22	0.2766	1.0987	tt(+),57
36	Function: other	0.1478	0.9261	wi(-),57	0.1371	-1.532	tt(-),28	0.6844	0.6578	wi(-),48	0.8016	0.2544	tt(+),22	0.9449	0.0694	tt(+),57
37	Green: tree cover	0.0000	-8.7103	tt(-),57	0.0000	-5.342	tt(-),28	0.000	-7.773	tt(-),48	0.0000	-5.749	tt(-),22	0.0000	-8.2067	tt(-),57
88	Green: bush cover	0.0000	-7.5834	tt(-),57	0.0004	-4.0285	tt(-),28	0.000	-8.1235	tt(-),48	0.0000	-5.4014	tt(-),22	0.0000	-8.1824	tt(-),57
39	Green: grass cover	0.0000	-8.4341	tt(-),57	0.0001	-4.469	tt(-),28	0.0000	-8.5209	tt(-),48	0.0000	-5.8365	tt(-),22	0.0000	-8.5505	tt(-),57
4	Noise pollution: total	0.0000	-9.3143	tt(-),57	0.0000	-6.6331	tt(-),28	0.0000	-10.1813	tt(-),48	0.0000	-6.5091	tt(-),22	0.0000	1.0	wi(-),57
41	Noise pollution: roads	0.0000	-8.4664	tt(-),57	0.0000	-6.022	tt(-),28	0.0000	-9.0749	tt(-),48	0.0000	-5.658	tt(-),22	0.0000	1.0	wi(-),57
42	Noise pollution: railways	0.0000	1.0	wi(-),57	0.0002	-4.2595	tt(-),28	0.0000	-5.7071	tt(-),48	0.0003	-4.384	tt(-),22	0.0000	-7.9897	tt(-),57
4	Year constr.: mean	1.0000	equal	n/a,57	0.7412	0.6294	wi(+),28	0.9673	0.5164	wi(+),48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
45	Landmarks: FSI	0.1668	0.9166	wi(-),57	0.3118	0.8441	wi(-),28	0.5868	0.7066	wi(-),48	0.4438	0.7781	wi(+),22	0.6444	0.6778	wi(-),57
46	Landmarks: plot area	0.1096	0.9452	wi(-),57	0:0930	0.9535	wi(-),28	0.7959	0.602	wi(-),48	0.9599	0.52	wi(-),22	0.3849	0.8076	wi(-),57
47	Landmarks: Year constr.	0.8348	0.5826	wi(-),57	0.5777	0.7111	wi(-),28	0.6023	0.6989	wi(+),48	0.9861	0.5069	wi(+),22	0.9591	0.5205	wi(+),57
48	Landmarks: 1 criterion	0.3187	0.8406	wi(-),57	0.5076	0.7462	wi(-),28	0.8764	0.5618	wi(+),48	0.4438	0.7781	wi(+),22	0.9768	0.5116	wi(-),57
49	Landmarks: 2 criteria	0.4598	0.7701	wi(-),57	0.4867	0.7567	wi(-),28	0.9954	0.5023	wi(-),48	0.4869	0.7566	wi(-),22	0.3405	0.8297	wi(-),57
50	Landmarks: 3 criteria	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57

Figure 1.93: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2770	0.8615	wi(+),57	0.1177	0.9412	wi(+),29	0.8124	0.5938	wi(-),45	0.4490	0.7755	wi(-),28	0.6268	0.6866	wi(-),57
₽	Year constr.: 1946-1970	0.2069	0.8966	wi(+),57	0.1661	0.917	wi(+),29	0.8544	-0.1845	tt(-),45	0.2909	1.0772	tt(+),28	0.6352	0.4771	tt(+),57
÷	Year constr.: 1971-1985	0.6146	0.6927	wi(-),57	0.5570	0.7215	wi(+),29	0.4863	0.7021	tt(+),45	0.7115	0.6443	wi(+),28	0.7394	0.3343	tt(+),57
12	Year constr.: 1986-2000	0.0127	0.9937	wi(-),57	0.0470	-2.0778	tt(-),29	0.0008	-3.5812	tt(-),45	0.0237	0.9881	wi(-),28	0.0001	-4.1209	tt(-),57
13	Year constr.: 2001-2022	0.0141	2.5347	tt(+),57	0.0937	1.7352	tt(+),29	0.1034	1.6633	tt(+),45	0.0045	3.0959	tt(+),28	0.0424	0.9788	wi(+),57
4	Traffic signals count	0.0340	-2.1728	tt(-),57	0.1531	-1.4687	tt(-),29	0.1164	-1.6015	tt(-),45	0.3597	0.8201	wi(-),28	0.5028	0.7486	wi(-),57
15	Stairs count	0.7843	-0.2751	tt(-),57	0.7452	-0.3282	tt(-),29	0.3228	-1.0	tt(-),45	0.6629	0.4407	tt(+),28	0.7660	-0.2991	tt(-),57
16	Status: for construction	0.9898	0.5051	wi(+),57	0.7384	-0.3374	tt(-),29	0.9806	0.5097	wi(-),45	0.5482	0.6081	tt(+),28	0.3949	0.8026	wi(+),57
17	Status: unrealised	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
18	Status: under construction	0.9964	0.5018	wi(+),57	0.7237	0.6382	wi(+),29	0.4059	0.797	wi(-),45	0.7194	0.6403	wi(-),28	0.7958	0.6021	wi(-),57
19	Status: in use (n.m.)	0.6275	0.6863	wi(+),57	0.9719	0.514	wi(+),29	0.4100	0.795	wi(-),45	0.9899	0.505	wi(-),28	0.9894	0.5053	wi(-),57
20	Status: in use	0.9272	0.5364	wi(+),57	0.6910	0.4017	tt(+),29	0.5774	-0.5613	tt(-),45	0.8198	0.5901	wi(-),28	0.5459	0.7271	wi(-),57
21	Status: for demolition	0.8027	0.5986	wi(-),57	1.0000	0.5	wi(+),29	0.7914	0.6043	wi(-),45	1.0000	equal	n/a,28	0.8096	0.5952	wi(-),57
22	Status: demolished	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
23	Status: not in use	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
24	Status: reconstruction	0.0200	2.3938	tt(+),57	0.1413	1.5138	tt(+),29	0.6272	0.6864	wi(+),45	0.5211	0.7394	wi(+),28	1.0000	0.5	wi(+),57
25	Status: illegitimate	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
26	Function: residential	0.1120	0.944	wi(-),57	0.9308	0.5346	wi(-),29	0.2603	0.8699	wi(-),45	0.1852	0.9074	wi(-),28	0.0895	0.9552	wi(-),57
27	Function: gathering	0.4935	0.7532	wi(+),57	0.7148	0.6426	wi(+),29	0.5004	0.7498	wi(-),45	0.9421	0.5289	wi(+),28	0.7181	0.641	wi(-),57
28	Function: prison	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
29	Function: healthcare	1.0000	0.5	wi(+),57	0.7237	0.6382	wi(+),29	0.7817	0.6091	wi(+),45	1.0000	equal	n/a,28	0.8027	0.5986	wi(+),57
30	Function: factory	0.5234	0.7383	wi(+),57	0.6680	0.4335	tt(+),29	0.8165	0.5918	wi(+),45	0.3118	0.8441	wi(+),28	0.6656	0.6672	wi(+),57
31	Function: office	0.6272	0.4884	tt(+),57	0.4354	-0.7914	tt(-),29	0.0271	-2.2866	tt(-),45	0.0317	-2.2655	tt(-),28	0.0058	-2.8716	tt(-),57
32	Function: guesthouse	0.6324	0.6838	wi(-),57	0.9904	0.5048	wi(+),29	0.7769	0.6115	wi(-),45	0.7549	0.6225	wi(-),28	0.4787	0.7607	wi(-),57
33	Function: education	0.8088	0.5956	wi(-),57	0.7395	0.6303	wi(+),29	0.5718	0.7141	wi(-),45	0.7194	0.6403	wi(+),28	1.0000	0.5	wi(+),57
34	Function: sports	0.7963	0.6019	wi(-),57	1.0000	equal	n/a,29	0.7728	0.6136	wi(-),45	1.0000	equal	n/a,28	0.7963	0.6019	wi(-),57
35	Function: shops	0.5022	0.6754	tt(+),57	0.4633	0.7437	tt(+),29	0.5005	0.6794	tt(+),45	0.0357	0.9822	wi(+),28	0.2526	1.1559	tt(+),57
36	Function: other	0.3070	0.8465	wi(-),57	0.5800	-0.5599	tt(-),29	0.7122	0.3713	tt(+),45	0.8475	0.1941	tt(+),28	0.7710	0.2924	tt(+),57
37	Green: tree cover	0.0000	-8.7358	tt(-),57	0.0000	-5.6091	tt(-),29	0.0000	-7.4001	tt(-),45	0.0000	-7.569	tt(-),28	0.0000	-8.6701	tt(-),57
88	Green: bush cover	0.0000	-7.5994	tt(-),57	0.0002	-4.2732	tt(-),29	0.0000	-7.3713	tt(-),45	0.0000	-7.3414	tt(-),28	0.0000	-8.5127	tt(-),57
39	Green: grass cover	0.0000	-8.4474	tt(-),57	0.0001	-4.7078	tt(-),29	0.0000	-8.0082	tt(-),45	0.0000	-8.2498	tt(-),28	0.0000	-9.2141	tt(-),57
4	Noise pollution: total	0.0000	-9.3292	tt(-),57	0.0000	-7.0998	tt(-),29	0.0000	-9.5242	tt(-),45	0.0000	-6.9568	tt(-),28	0.0000	-9.7572	tt(-),57
41	Noise pollution: roads	0.0000	-8.4847	tt(-),57	0.0000	-6.6202	tt(-),29	0.0000	-8.3218	tt(-),45	0.0000	-5.9265	tt(-),28	0.0000	-8.5311	tt(-),57
42	Noise pollution: railways	0.0000	1.0	wi(-),57	0.0003	-4.1489	tt(-),29	0.0000	-7.7178	tt(-),45	0.0001	-4.5966	tt(-),28	0.0000	-7.8785	tt(-),57
4	Year constr.: mean	1.0000	equal	n/a,57	0.9655	0.5172	wi(-),29	0.9775	0.5113	wi(+),45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
5	Landmarks: FSI	0.1668	0.9166	wi(-),57	0.4931	0.7534	wi(-),29	0.9657	0.5172	wi(-),45	0.7508	0.6246	wi(-),28	0.4703	0.7648	wi(-),57
46	Landmarks: plot area	0.0523	0.9739	wi(-),57	0.4240	0.788	wi(-),29	0.8393	0.5803	wi(+),45	0.9905	0.5048	wi(-),28	0.5088	0.7456	wi(-),57
47	Landmarks: Year constr.	0.6720	0.664	wi(-),57	0.7803	0.6098	wi(-),29	0.4171	0.7914	wi(+),45	0.7323	0.6339	wi(+),28	0.7724	0.6138	wi(+),57
48	Landmarks: 1 criterion	0.2382	0.8809	wi(-),57	0.9278	0.5361	wi(+),29	0.7542	0.6229	wi(+),45	0.7098	0.6451	wi(+),28	0.9467	0.5267	wi(-),57
49	Landmarks: 2 criteria	0.4598	0.7701	wi(-),57	0.4931	0.7534	wi(-),29	0.7728	0.6136	wi(+),45	0.7360	0.632	wi(-),28	0.4651	0.7674	wi(-),57
50	Landmarks: 3 criteria	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57

Figure 1.94: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.4452	0.7774	wi(+),57	0.3535	0.8233	wi(+),28	0.7176	0.6412	wi(-),48	0.1832	0.9084	wi(+),22	0.6300	0.685	wi(+),57
우	Year constr.: 1946-1970	0.6153	0.6924	wi(+),57	0.7904	0.6048	wi(+),28	0.2584	0.8708	wi(-),48	0.7339	0.3445	tt(+),22	0.5670	0.7165	wi(-),57
÷	Year constr.: 1971-1985	0.6520	0.674	wi(+),57	0.9905	0.5048	wi(+),28	0.2694	1.1175	tt(+),48	0.9864	0.5068	wi(+),22	0.5389	0.6182	tt(+),57
12	Year constr.: 1986-2000	0.5605	0.7197	wi(+),57	0.5682	0.7159	wi(-),28	0.0336	-2.1892	tt(-),48	0.2675	0.8662	wi(-),22	0.2232	0.8884	wi(-),57
13	Year constr.: 2001-2022	0.5219	0.7391	wi(+),57	0.6678	0.6661	wi(+),28	0.2010	0.8995	wi(-),48	0.6609	0.445	tt(+),22	0.4669	0.7665	wi(-),57
4	Traffic signals count	0.4004	0.7998	wi(-),57	0.6592	0.6704	wi(-),28	0.8849	0.5575	wi(+),48	0.0870	1.7952	tt(+),22	0.4640	0.768	wi(+),57
15	Stairs count	0.6437	0.6781	wi(+),57	0.5128	0.7436	wi(+),28	0.7427	-0.3302	tt(-),48	0.2671	0.8664	wi(+),22	1.0000	0.5	wi(+),57
16	Status: for construction	0.6198	0.6901	wi(+),57	0.7266	0.6367	wi(+),28	0.7908	0.6046	wi(+),48	0.6984	0.6508	wi(+),22	0.6151	0.6925	wi(+),57
17	Status: unrealised	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
18	Status: under construction	0.9964	0.5018	wi(+),57	0.7194	0.6403	wi(+),28	0.5828	0.7086	wi(-),48	0.6892	0.6554	wi(-),22	0.8027	0.5986	wi(-),57
19	Status: in use (n.m.)	0.4536	0.7732	wi(+),57	0.7194	0.6403	wi(+),28	0.9955	0.5023	wi(-),48	1.0000	equal	n/a,22	0.8062	0.5969	wi(+),57
20	Status: in use	0.5907	0.7047	wi(+),57	0.7656	0.6172	wi(+),28	0.5174	0.7413	wi(-),48	0.6458	0.4662	tt(+),22	0.9207	0.5397	wi(-),57
21	Status: for demolition	0.7963	0.6019	wi(+),57	0.7194	0.6403	wi(+),28	0.5930	0.7035	wi(+),48	0.6892	0.6554	wi(+),22	0.6198	0.6901	wi(+),57
22	Status: demolished	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
23	Status: not in use	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
24	Status: reconstruction	0.9566	0.0546	tt(+),57	0.6958	0.6521	wi(+),28	0.0333	-2.1924	tt(-),48	0.0218	-2.4788	tt(-),22	0.0118	-2.604	tt(-),57
25	Status: illegitimate	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
26	Function: residential	0.6839	0.6581	wi(+),57	0.6293	0.6853	wi(+),28	0.9015	0.5492	wi(+),48	0.9216	0.5392	wi(-),22	0.8198	0.5901	wi(-),57
27	Function: gathering	0.9333	0.5333	wi(-),57	0.3873	0.8786	tt(+),28	0.7681	0.2965	tt(+),48	0.4421	0.7789	wi(-),22	0.9833	0.5084	wi(+),57
28	Function: prison	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
29	Function: healthcare	1.0000	0.5	wi(+),57	0.7194	0.6403	wi(+),28	0.7876	0.6062	wi(-),48	1.0000	equal	n/a,22	0.8027	0.5986	wi(-),57
30	Function: factory	0.2913	0.8543	wi(+),57	0.7881	0.6059	wi(+),28	0.9955	0.5022	wi(-),48	0.7247	0.6377	wi(+),22	0.8077	0.5961	wi(+),57
31	Function: office	0.9662	0.5169	wi(+),57	0.9710	0.5145	wi(+),28	0.0133	-2.574	tt(-),48	0.3853	-0.8867	tt(-),22	0.0150	-2.5098	tt(-),57
32	Function: guesthouse	0.8027	0.5986	wi(-),57	0.9899	0.505	wi(+),28	0.9909	0.5045	wi(-),48	0.6984	0.6508	wi(+),22	0.8212	0.5894	wi(+),57
33	Function: education	0.4536	0.7732	wi(+),57	0.3118	0.8441	wi(+),28	0.5828	0.7086	wi(+),48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
34	Function: sports	0.7963	0.6019	wi(-),57	1.0000	equal	n/a,28	0.7794	0.6103	wi(-),48	1.0000	equal	n/a,22	0.7963	0.6019	wi(-),57
35	Function: shops	0.7569	0.6215	wi(+),57	0.6323	0.4839	tt(+),28	0.9323	0.5338	wi(-),48	0.2790	0.8605	wi(+),22	0.4150	0.7925	wi(+),57
36	Function: other	0.3727	0.8137	wi(-),57	0.3561	0.822	wi(-),28	0.8008	0.5996	wi(-),48	0.9384	-0.0783	tt(-),22	0.9005	-0.1255	tt(-),57
37	Green: tree cover	0.6987	0.6507	wi(+),57	0.7232	0.3578	tt(+),28	0.9149	0.1075	tt(+),48	0.3402	0.976	tt(+),22	0.5924	0.5384	tt(+),57
88	Green: bush cover	0.5791	0.7104	wi(+),57	0.5107	0.6666	tt(+),28	0.5410	-0.6158	tt(-),48	0.3815	0.894	tt(+),22	0.9141	0.1083	tt(+),57
33	Green: grass cover	0.6520	0.674	wi(+),57	0.7667	0.2997	tt(+),28	0.8656	-0.1702	tt(-),48	0.4382	0.7902	tt(+),22	0.7194	0.3611	tt(+),57
40	Noise pollution: total	0.0771	0.9615	wi(+),57	0.1597	0.9201	wi(+),28	0.6167	-0.5039	tt(-),48	0.8843	0.1473	tt(+),22	0.4599	0.77	wi(+),57
41	Noise pollution: roads	0.0647	0.9677	wi(+),57	0.6734	0.4262	tt(+),28	0.4706	-0.7274	tt(-),48	0.9615	-0.0488	tt(-),22	0.4745	0.7627	wi(+),57
42	Noise pollution: railways	0.4504	0.7748	wi(+),57	0.7926	0.6037	wi(+),28	0.6891	0.6554	wi(+),48	0.8137	0.2386	tt(+),22	0.7566	0.6217	wi(+),57
4	Year constr.: mean	1.0000	equal	n/a,57	0.3354	0.8323	wi(+),28	0.2698	0.8651	wi(+),48	1.0000	equal	n/a,22	1.0000	equal	n/a,57
45	Landmarks: FSI	1.0000	0.5	wi(+),57	1.0000	equal	n/a,28	0.8195	0.5903	wi(+),48	0.4653	0.7674	wi(+),22	0.3854	0.8073	wi(+),57
46	Landmarks: plot area	0.1287	0.9356	wi(-),57	0.5776	0.7112	wi(-),28	0.5458	0.7271	wi(-),48	0.9446	0.5277	wi(-),22	0.5064	0.7468	wi(-),57
47	Landmarks: Year constr.	0.3361	0.8319	wi(-),57	0.3284	0.8358	wi(-),28	0.6148	0.6926	wi(-),48	0.9857	0.5071	wi(+),22	0.5042	0.7479	wi(-),57
48	Landmarks: 1 criterion	0.3877	0.8062	wi(-),57	0.5675	0.7163	wi(-),28	0.7833	0.6083	wi(-),48	0.6772	0.4221	tt(+),22	0.9248	0.5376	wi(-),57
49	Landmarks: 2 criteria	0.6115	0.6942	wi(-),57	1.0000	equal	n/a,28	0.7794	0.6103	wi(-),48	0.6892	0.6554	wi(-),22	0.6115	0.6942	wi(-),57
50	Landmarks: 3 criteria	1.0000	equal	n/a,57	1.0000	equal	n/a,28	1.0000	equal	n/a,48	1.0000	equal	n/a,22	1.0000	equal	n/a,57

Figure 1.95: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	-east coef,n
6	Year constr.: < 1945	0.8547	0.5727	wi(+),57	0.1209	0.9396	wi(+),29	0.9141	0.5429	wi(+),45	0.7451	-0.3284	tt(-),28	0.9011	0.5495	wi(+),57
우	Year constr.: 1946-1970	0.5184	0.7408	wi(+),57	0.5964	0.7018	wi(+),29	0.3537	0.8232	wi(-),45	0.6291	0.4886	tt(+),28	0.7812	0.6094	wi(-),57
÷	Year constr.: 1971-1985	0.6569	0.6716	wi(-),57	0.7319	0.634	wi(-),29	0.2368	1.1993	tt(+),45	0.9525	0.5237	wi(+),28	0.6397	0.6801	wi(+),57
12	Year constr.: 1986-2000	0.4504	0.7748	wi(+),57	0.4100	0.795	wi(-),29	0.3634	0.8183	wi(-),45	0.2971	0.8515	wi(-),28	0.2167	0.8916	wi(-),57
13	Year constr.: 2001-2022	0.5219	0.7391	wi(+),57	0.7076	0.6462	wi(+),29	0.1819	0.9091	wi(-),45	0.7718	0.6141	wi(+),28	0.7360	0.632	wi(-),57
4	Traffic signals count	0.4099	0.7951	wi(-),57	0.6575	0.6713	wi(+),29	0.9232	0.5384	wi(-),45	0.2248	1.2422	tt(+),28	0.4431	0.7784	wi(+),57
15	Stairs count	0.6437	0.6781	wi(+),57	0.5183	0.7408	wi(+),29	0.7430	-0.33	tt(-),45	0.1120	0.944	wi(+),28	0.5683	0.5739	tt(+),57
16	Status: for construction	0.6198	0.6901	wi(+),57	0.7306	0.6347	wi(+),29	0.9853	0.5074	wi(+),45	0.4867	0.7567	wi(+),28	0.4598	0.7701	wi(+),57
17	Status: unrealised	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
18	Status: under construction	0.9964	0.5018	wi(+),57	0.7237	0.6382	wi(+),29	0.4059	0.797	wi(-),45	0.7194	0.6403	wi(-),28	0.7958	0.6021	wi(-),57
19	Status: in use (n.m.)	0.4536	0.7732	wi(+),57	0.7237	0.6382	wi(+),29	0.7721	0.614	wl(-),45	0.7194	0.6403	wi(+),28	0.8062	0.5969	wi(+),57
20	Status: in use	0.8851	0.5574	wi(-),57	0.6462	0.6769	wi(+),29	0.9324	0.5338	wi(-),45	0.7827	0.6087	wi(-),28	0.7834	0.6083	wi(-),57
21	Status: for demolition	0.7963	0.6019	wi(+),57	0.7237	0.6382	wi(+),29	0.7769	0.6115	wi(+),45	1.0000	equal	n/a,28	0.7993	0.6004	wi(+),57
22	Status: demolished	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
23	Status: not in use	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
24	Status: reconstruction	0.9829	0.5085	wi(+),57	0.9625	0.5187	wi(+),29	0.0702	-1.8561	tt(-),45	0.0640	0.968	wi(-),28	0.0131	-2.5615	tt(-),57
25	Status: illegitimate	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
26	Function: residential	0.8910	0.5545	wi(+),57	0.9651	0.5174	wi(+),29	0.8602	0.5699	wi(+),45	0.9633	0.5183	wi(-),28	0.7520	0.624	wi(+),57
27	Function: gathering	0.7538	0.6231	wi(+),57	0.3807	0.8907	tt(+),29	0.7611	-0.3059	tt(-),45	1.0000	0.5	wi(+),28	0.7326	0.6337	wi(-),57
28	Function: prison	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
29	Function: healthcare	0.7963	0.6019	wi(-),57	1.0000	equal	n/a,29	1.0000	0.5	wi(+),45	1.0000	equal	n/a,28	1.0000	0.5	wi(+),57
30	Function: factory	0.2913	0.8543	wi(+),57	0.5883	0.7058	wi(+),29	0.9900	0.505	wi(+),45	0.5694	0.7153	wi(+),28	0.8131	0.5934	wi(+),57
31	Function: office	0.7970	0.6015	wi(+),57	0.9908	0.5046	wi(+),29	0.0433	-2.0805	tt(-),45	0.2036	-1.3029	tt(-),28	0.0151	-2.5074	tt(-),57
32	Function: guesthouse	0.8027	0.5986	wi(-),57	0.7237	0.6382	wi(+),29	0.7757	0.6121	wi(-),45	0.7173	0.6414	wi(-),28	0.8020	0.599	wi(-),57
33	Function: education	0.6115	0.6942	wi(+),57	0.4931	0.7534	wi(+),29	0.7728	0.6136	wi(+),45	0.4867	0.7567	wi(+),28	0.4536	0.7732	wi(+),57
34	Function: sports	0.7963	0.6019	wi(-),57	1.0000	equal	n/a,29	0.7728	0.6136	wi(-),45	1.0000	equal	n/a,28	0.7963	0.6019	wi(-),57
35	Function: shops	0.9431	0.5285	wi(+),57	0.7537	0.6232	wi(+),29	0.8201	0.2287	tt(+),45	0.3192	0.8404	wi(+),28	0.5143	0.7429	wi(+),57
36	Function: other	0.5035	0.7483	wi(-),57	0.7063	0.6469	wi(-),29	0.6697	0.4295	tt(+),45	0.8722	-0.1625	tt(-),28	0.9384	0.0776	tt(+),57
37	Green: tree cover	0.2293	0.8853	wi(+),57	0.5924	0.5415	tt(+),29	0.6375	0.4746	tt(+),45	0.2471	1.183	tt(+),28	0.7007	0.3864	tt(+),57
88	Green: bush cover	0.4408	0.7796	wi(+),57	0.4767	0.7213	tt(+),29	0.8973	-0.1298	tt(-),45	0.2415	1.1975	tt(+),28	0.8877	0.1418	tt(+),57
33	Green: grass cover	0.3480	0.826	wi(+),57	0.5001	0.6832	tt(+),29	0.9610	-0.0492	tt(-),45	0.3210	1.0109	tt(+),28	0.8280	0.2182	tt(+),57
4	Noise pollution: total	0.0974	0.9513	wi(+),57	0.2877	0.8562	wi(+),29	0.8901	0.139	tt(+),45	0.8696	0.1657	tt(+),28	0.9812	-0.0236	tt(-),57
41	Noise pollution: roads	0.0867	0.9567	wi(+),57	0.5929	0.5408	tt(+),29	0.8712	0.1631	tt(+),45	0.9294	0.0894	tt(+),28	0.4648	0.7676	wi(+),57
42	Noise pollution: railways	0.7071	0.6464	wi(+),57	0.9827	0.5087	wi(+),29	0.6394	0.6803	wi(+),45	0.7265	-0.3534	tt(-),28	0.6467	-0.4608	tt(-),57
4	Year constr.: mean	1.0000	equal	n/a,57	0.4398	0.7801	wi(+),29	0.2038	0.8981	wi(+),45	1.0000	equal	n/a,28	1.0000	equal	n/a,57
45	Landmarks: FSI	1.0000	0.5	wi(+),57	1.0000	equal	n/a,29	0.6361	0.6819	wi(+),45	0.7360	0.632	wi(+),28	0.5220	0.739	wi(+),57
46	Landmarks: plot area	0.0325	0.9838	wi(-),57	0.7575	0.6212	wi(-),29	0.7874	0.6063	wi(-),45	0.9807	0.5097	wi(-),28	0.9071	0.5464	wi(-),57
47	Landmarks: Year constr.	0.2372	0.8814	wi(-),57	0.7306	0.6347	wi(-),29	0.6061	0.6969	wi(-),45	0.7549	0.6225	wi(-),28	0.6597	0.6702	wi(-),57
48	Landmarks: 1 criterion	0.1470	0.9265	wi(-),57	0.7714	0.6143	wi(-),29	0.9815	0.5093	wi(-),45	0.9325	0.5338	wi(+),28	0.8430	0.5785	wi(+),57
49	Landmarks: 2 criteria	0.6115	0.6942	wi(-),57	1.0000	equal	n/a,29	0.9949	0.5025	wi(+),45	0.7194	0.6403	wi(-),28	0.7993	0.6004	wi(-),57
50	Landmarks: 3 criteria	1.0000	equal	n/a,57	1.0000	equal	n/a,29	1.0000	equal	n/a,45	1.0000	equal	n/a,28	1.0000	equal	n/a,57

Figure 1.96: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 3, data: standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([3] regularly)	[3] sta	t [3]_coef,n	P([2] sometimes	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]	_coef,n F	P(Least) Le	ast_stat Le	ast_coef,n
6	Year constr.: < 1945	0.7837	0.5560	(+),64	0.8612	0.4382	(-),25	0.6136	0.481	3 (+),22	0.5415	0.4322	(+),53	0.9190	0.6346	(+),29	0.5830	0.5607	(+),64
₽	Year constr.: 1946-1970	0.9981	0.5336	(-),64	0.9922	0.3619	(-),25	0.7173	0.500	0 (-),22	0.6547	0.4303	(-),53	0.4955	0.2520	(-),29	0.3598	0.2188	(-),64
÷	Year constr.: 1971-1985	0.4578	0.7423	(+),64	0.9598	0.2085	(-),25	0.4049	0.500	0 (+),22	0.8796	0.8972	(+),53	0.7352	0.3980	(-),29	0.9088	0.8933	(+),64
12	Year constr.: 1986-2000	0.6573	0.5221	(+),64	0.5559	0.6383	(+),25	0.5065	0.626	3 (+),22	0.8962	0.3301	(-),53	0.2640	0.1756	(-),29	0.8549	0.2840	(-),64
13	Year constr.: 2001-2022	0.8589	0.5182	(-),64	0.7985	0.5039	(-),25	0.9249	0.514	1 (-),22	0.9975	0.5013	(+),53	0.3995	0.3408	(-),29	0.8458	0.5038	(-),64
14	Traffic signals count	0.5995	0.2039	(+),64	0.8745	0.2905	(+),25	0.7226	0.598	1 (+),22	0.9949	0.3107	(+),53	0.8072	0.6410	(+),29	0.4787	0.4981	(-),64
15	Stairs count	0.1677	0.3400	(-),64	0.4927	0.3632	(-),25	0.9886	0.912	1 (-),22	0.6562	0.6848	(-),53	0.1095	0.2901	(-),29	0.4426	0.5810	(-),64
16	Status: for construction	0.4925	0.4950	(+),64	0.4597	0.3341	(+),25	0.9880	0.255	5 (-),22	0.9836	0.7046	(+),53	0.8950	0.4737	(-),29	0.7314	0.6114	(+),64
17	Status: unrealised	1.0000	0.0000	(-),64	1.0000	0.0000	(-),25	1.0000	0.000	0 (-),22	1.0000	0.0000	(-),53	1.0000	0.0000	(-),29	1.0000	0.0000	(-),64
18	Status: under construction	0.7352	0.3694	(-),64	0.6546	0.1512	(-),25	0.5015	0.143	1 (-),22	0.9945	0.0000	(-),53	0.6318	0.3159	(+),29	0.9714	0.4877	(+),64
19	Status: in use (n.m.)	0.5962	0.2343	(-),64	0.3073	0.1808	(-),25	0.9165	0.335	7 (-),22	0.4212	0.1981	(+),53	0.4749	0.0000	(+),29	0.6787	0.4152	(+),64
50	Status: in use	0.6235	0.4971	(+),64	0.9613	0.4691	(-),25	0.4596	0.362;	3 (+),22	0.8348	0.5290	(+),53	0.7557	0.1876	(-),29	0.9886	0.7361	(+),64
51	Status: for demolition	0.6546	0.7228	(+),64	0.5714	0.2857	(-),25	0.1620	0.000	0 (+),22	0.6734	0.7274	(+),53	0.1609	0.0805	(-),29	0.6764	0.0853	(-),64
22	Status: demolished	1.0000	0.0000	(-),64	1.0000	0.0000	(-),25	1.0000	0.000	0 (-),22	1.0000	0.0000	(-),53	1.0000	0.0000	(-),29	1.0000	0.0000	(-),64
53	Status: not in use	1.0000	0.0000	(-),64	1.0000	0.0000	(-),25	1.0000	0.000	0 (-),22	1.0000	0.0000	(-),53	1.0000	0.0000	(-),29	1.0000	0.0000	(-),64
24	Status: reconstruction	0.9223	0.4335	(+),64	0.7214	0.4173	(-),25	0.6520	0.412	8 (-),22	0.1459	0.0701	(+),53	0.8949	0.6495	(-),29	0.2161	0.0978	(+),64
25	Status: illegitimate	1.0000	0.0000	(-),64	1.0000	0.0000	(-),25	1.0000	0.000	0 (-),22	1.0000	0.0000	(-),53	1.0000	0.0000	(-),29	1.0000	0.0000	(-),64
26	Function: residential	0.4893	0.4535	(+),64	0.9149	0.4003	(-),25	0.3721	0.434	7 (+),22	0.9395	0.6229	(+),53	0.7733	0.1895	(-),29	0.9278	0.7017	(+),64
27	Function: gathering	0.6553	0.4731	(+),64	0.9746	0.3242	(-),25	0.6905	0.314	4 (+),22	0.652(0.4972	(+),53	0.3278	0.3093	(-),29	0.7305	0.2477	(-),64
28	Function: prison	1.0000	0.000	(-),64	1.0000	0.0000	(-),25	1.0000	0.000	0 (-),22	1.0000	0.0000	(-),53	1.0000	0.0000	(-),29	1.0000	0.000	(-),64
29	Function: healthcare	0.1750	0.5023	(-),64	0.1614	0.2857	(-),25	0.3396	0.0810	0 (+),22	0.5674	0.8008	(-),53	0.1609	0.2784	(-),29	0.3116	0.6439	(-),64
30	Function: factory	0.6844	0.2523	(-),64	0.9216	0.3715	(-),25	0.6788	0.482	5 (+),22	0.8456	0.3498	(-),53	0.5217	0.6404	(-),29	0.8569	0.5414	(+),64
31	Function: office	0.9463	0.4528	(+),64	0.5255	0.4751	(+),25	0.6841	0.475	5 (-),22	0.5233	0.1405	(+),53	0.7960	0.4589	(-),29	0.5647	0.2573	(+),64
32	Function: guesthouse	0.2428	0.3315	(+),64	0.6759	0.5861	(-),25	0.3975	0.000	0 (+),22	0.7252	0.5020	(+),53	0.5415	0.7065	(+),29	0.3028	0.4073	(+),64
33	Function: education	0.7648	0.8809	(+),64	0.4090	0.0206	(-),25	1.0000	0.000	0 (-),22	0.8025	0.0420	(-),53	0.5983	0.5196	(+),29	0.5186	0.8030	(+),64
34	Function: sports	0.5667	0.2834	(+),64	1.0000	0.0000	(-),25	0.5725	0.286	2 (+),22	0.1593	0.0796	(+)"53	0.3343	0.1671	(+),29	0.1589	0.0795	(+),64
35	Function: shops	0.7955	0.5487	(+),64	0.9830	0.3493	(-),25	0.5760	0.470	3 (-),22	0.5222	0.3680	(+),53	0.3113	0.2132	(-),29	0.7743	0.2333	(-),64
36	Function: other	0.8965	0.3012	(+),64	0.4427	0.2174	(+),25	0.9902	0.728	8 (-),22	0.2806	0.2187	(-),53	0.3340	0.4837	(-),29	0.5643	0.4390	(-),64
37	Green: tree cover	0.0000	0.6378	(+),64	0.0041	0.4961	(+),25	0.0016	0.628	8 (+),22	0.0001	0.5302	(+),53	0.0033	0.4351	(+),29	0.0000	0.4876	(+),64
38	Green: bush cover	0.0002	0.6325	(+),64	0.0328	0.6758	(+),25	0.0077	0.610	9 (+),22	0.0006	0.4199	(+),53	0.0123	0.5526	(+),29	0.0002	0.5010	(+),64
39	Green: grass cover	0.0001	0.6216	(+),64	0.0170	0.5348	(+),25	0.0067	0.672	2 (+),22	0.0006	0.5553	(+),53	0.0030	0.4659	(+),29	0.0001	0.5162	(+),64
6	Noise pollution: total	0.0003	0.6342	(+),64	0.0220	0.6182	(+),25	0.0109	0.565	3 (+),22	0000	0.5503	(+),53	0.0022	0.4351	(+),29	0.0001	0.5427	(+),64
41	Noise pollution: roads	0.0005	0.6555	(+),64	0.0220	0.6546	(+),25	0.0378	0.628	8 (+),22	0000	0.5428	(+),53	0.0007	0.3516	(+),29	0.0000	0.5029	(+),64
42	Noise pollution: railways	0.0020	0.5737	(+),64	0.0170	0.5731	(+),25	0.0845	0.565	3 (+),22	0.0016	0.5352	(+),53	0.1163	0.4290	(+),29	0.0026	0.5427	(+),64
44	Year constr.: mean	0.8920	0.6378	(-),64	0.8386	0.5463	(-),25	0.7872	0.528	1 (-),22	0.8645	0.5900	(-),53	0.7855	0.4628	(+),29	0.8694	0.6387	(-),64
45	Landmarks: FSI	0.4175	0.3481	(+),64	0.6502	0.0000	(+),25	0.3771	0.397(5 (+),22	0.6655	0.3935	(+),53	0.9409	0.4380	(+),29	0.5409	0.4226	(+),64
46	Landmarks: plot area	0.1040	0.0942	(+),64	0.5433	0.3611	(+),25	0.3621	0.193	8 (+),22	0.6634	0.3890	(+),53	0.9096	0.3764	(+),29	0.4151	0.3042	(+),64
47	Landmarks: Year constr.	0.7215	0.2831	(+),64	0.9562	0.7005	(-),25	1.0000	0.456	5 (+),22	0.7142	0.5384	(-),53	0.9932	0.4392	(-),29	0.8490	0.5176	(-),64
48	Landmarks: 1 criterion	0.3744	0.1959	(+),64	0.9370	0.2908	(+),25	0.5529	0.320	e (+),22	0.9745	0.4644	(+),53	0.9372	0.4686	(+),29	0.8321	0.4760	(+),64
49	Landmarks: 2 criteria	0.2960	0.2655	(+),64	0.5714	0.0000	(+),25	0.3549	0.302	8 (+),22	0.5875	0.3655	(+),53	0.9586	0.4463	(+),29	0.4607	0.3752	(+),64
20	Landmarks: 3 criteria	1.0000	0.0000	(-),64	1.0000	0.0000	(-),25	1.0000	0.000	0 (-),22	1.0000	0.0000	(-),53	1.0000	0.0000	(-),29	1.0000	0.0000	(-),64
o. T	ure 1.97. Ba	W res	ults fr	ronte	e aoore	arte	analv	sis san	nole.	intera	ction - lo	n la	esident	(ves)	p-dus	nestic	n 3. (data.	-uou

Figure 1.97: Raw results for route aggregate analysis, sample: http://www.standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([4] often)	[4]_stat	[4]_coef,n	P([3] regularly)	[3]_stat	[3]_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]_	coef,n P	P(Least) Le	ast_stat Lea	ast_coef,n
6	Year constr.: < 1945	0.7078	0.5057	(+),64	0.9051	0.4817	(-),26	0.3751	0.4143	(+),24	0.6342	0.5215	(+),55	0.6594	0.5000	(+),30	0.4349	0.4336	(+),64
₽	Year constr.: 1946-1970	0.9329	0.5173	(-),64	0.6978	0.2990	(-),26	0.9329	0.5543	(-),24	0.9471	0.4687	(-),55	0.2844	0.2104	(-),30	0.4826	0.2628	(-),64
÷	Year constr.: 1971-1985	0.3875	0.7268	(+),64	0.7489	0.6645	(+),26	0.3101	0.6484	(+),24	0.8766	0.8905	(+),55	0.7180	0.3337	(-),30	0.9126	0.8794	(+),64
12	Year constr.: 1986-2000	0.6715	0.5308	(+),64	0.5360	0.6445	(+),26	0.4599	0.5909	(+),24	0.9735	0.3341	(-),55	0.3160	0.3370	(-),30	0.9865	0.3401	(-),64
13	Year constr.: 2001-2022	0.7842	0.4665	(-),64	0.8033	0.4341	(-),26	0.7877	0.6180	(-),24	0.7887	0.3793	(+),55	0.2328	0.1853	(-),30	0.7567	0.4732	(-),64
14	Traffic signals count	0.6822	0.2337	(+),64	0.7674	0.3492	(+),26	0.7787	0.4337	(-),24	0.7198	0.6489	(-),55	0.4907	0.4642	(+),30	0.5733	0.5125	(-),64
15	Stairs count	0.1677	0.3400	(-),64	0.4943	0.2471	(-),26	0.5634	0.8359	(-),24	0.2719	0.5017	(-),55	0.2999	0.3976	(-),30	0.5681	0.6561	(-),64
16	Status: for construction	0.4925	0.4950	(+),64	0.4578	0.3338	(+),26	0.9892	0.2563	(-),24	0.5947	0.4835	(+),55	0.6811	0.2557	(-),30	0.9058	0.6959	(+),64
17	Status: unrealised	1.0000	0.0000	(-),64	1.0000	0.0000	(-),26	1.0000	0.0000	(-),24	1.0000	0.0000	(-),55	1.0000	0.0000	(-),30	1.0000	0.0000	(-),64
18	Status: under construction	0.7352	0.3694	(-),64	0.6883	0.1955	(-),26	0.4647	0.2179	(-),24	0.7389	0.3671	(+),55	0.9864	0.4932	(+),30	0.9877	0.4939	(+),64
19	Status: in use (n.m.)	0.7758	0.3132	(-),64	0.4933	0.1809	(-),26	0.9493	0.4747	(-),24	0.3341	0.2216	(+),55	0.7102	0.0000	(+),30	0.6787	0.4152	(+),64
20	Status: in use	0.5577	0.4403	(+),64	0.9416	0.5110	(-),26	0.3025	0.3030	(+),24	0.9619	0.3067	(-),55	0.8475	0.6579	(+),30	0.6645	0.5606	(+),64
51	Status: for demolition	0.6546	0.7228	(+),64	0.9842	0.2856	(-),26	0.3379	0.0000	(+),24	0.6727	0.7270	(+),55	0.3337	0.1669	(-),30	0.9740	0.1539	(-),64
22	Status: demolished	1.0000	0.0000	(-),64	1.0000	0.0000	(-),26	1.0000	0.0000	(-),24	1.0000	0.0000	(-),55	1.0000	0.0000	(-),30	1.0000	0.0000	(-),64
53	Status: not in use	1.0000	0.0000	(-),64	1.0000	0.0000	(-),26	1.0000	0.0000	(-),24	1.0000	0.0000	(-),55	1.0000	0.0000	(-),30	1.0000	0.0000	(-),64
24	Status: reconstruction	0.7442	0.3468	(+),64	0.5973	0.4419	(-),26	0.9133	0.4566	(+),24	0.3816	0.1704	(+),55	0.7838	0.3587	(+),30	0.2161	0.0978	(+),64
25	Status: illegitimate	1.0000	0.0000	(-),64	1.0000	0.0000	(-),26	1.0000	0.0000	(-),24	1.0000	0.0000	(-),55	1.0000	0.0000	(-),30	1.0000	0.0000	(-),64
26	Function: residential	0.4803	0.4374	(+),64	0.9708	0.4781	(-),26	0.4093	0.5082	(+),24	0.8859	0.2534	(-),55	0.8940	0.6980	(+),30	0.8245	0.6799	(+),64
27	Function: gathering	0.6083	0.4390	(+),64	0.8301	0.3098	(-),26	0.6606	0.3079	(+),24	0.5748	0.3720	(+),55	0.5155	0.3507	(-),30	0.8235	0.5594	(+),64
28	Function: prison	1.0000	0.000	(-),64	1.0000	0.0000	(-),26	1.0000	0.0000	(-),24	1.0000	0.0000	(-)"25	1.0000	0.0000	(-),30	1.0000	0.0000	(-),64
29	Function: healthcare	0.1750	0.5023	(-),64	0.3363	0.0000	(-),26	0.9762	0.7306	(-),24	0.3150	0.6539	(-),55	0.1608	0.2785	(-),30	0.1728	0.4932	(-),64
30	Function: factory	0.8168	0.3102	(-),64	0.8571	0.4597	(-),26	0.3664	0.4422	(+),24	0.8957	0.3405	(-),55	0.5398	0.5721	(-),30	0.8075	0.5207	(+),64
31	Function: office	0.9422	0.4835	(-),64	0.4098	0.4053	(+),26	0.3478	0.1918	(-),24	0.4698	0.1696	(+),55	0.9396	0.4662	(+),30	0.4666	0.2012	(+),64
32	Function: guesthouse	0.2428	0.3315	(+),64	0.9767	0.4593	(-),26	0.1394	0.2095	(+),24	0.1845	0.2937	(+),55	0.6658	0.3441	(+),30	0.0647	0.1346	(+),64
33	Function: education	0.5252	0.8030	(+),64	0.6546	0.0406	(-),26	1.0000	0.0000	(-),24	1.0000	0.9308	(+),55	0.6324	0.1525	(-),30	0.7640	0.0412	(-),64
34	Function: sports	0.5667	0.2834	(+),64	1.0000	0.0000	(-),26	0.5718	0.2859	(+),24	0.1592	0.0796	(+),55	0.3337	0.1669	(+),30	0.1589	0.0795	(+),64
35	Function: shops	0.7005	0.4969	(+),64	0.9174	0.4301	(-),26	0.8561	0.4150	(-),24	0.5268	0.4215	(+),55	0.1344	0.1178	(-),30	0.5715	0.1560	(-),64
36	Function: other	0.8496	0.5788	(-),64	0.9387	0.6732	(-),26	0.7324	0.3079	(+),24	0.2484	0.2605	(-),55	0.5419	0.3986	(-),30	0.5236	0.4128	(-),64
37	Green: tree cover	0.0000	0.6573	(+),64	0.0062	0.5401	(+),26	0.0007	0.5082	(+),24	0.000	0.4218	(+),55	0.0028	0.4151	(+),30	0.0000	0.3194	(+),64
38	Green: bush cover	0.0002	0.6253	(+),64	0.0431	0.6926	(+),26	0.0033	0.5000	(+),24	0.0001	0.3532	(+),55	0.0064	0.4676	(+),30	0.0001	0.3143	(+),64
39	Green: grass cover	0.0002	0.6538	(+),64	0.0413	0.6530	(+),26	0.0031	0.5329	(+),24	0.001	0.3894	(+),55	0.0091	0.4971	(+),30	0.0001	0.4068	(+),64
4	Noise pollution: total	0.0002	0.6271	(+),64	0.0187	0.5690	(+),26	0.0052	0.5164	(+),24	0.000	0.5500	(+),55	0.0207	0.5088	(+),30	0.0001	0.5672	(+),64
41	Noise pollution: roads	0.0005	0.6467	(+),64	0.0206	0.6256	(+),26	0.0071	0.6370	(+),24	0.000	0.6243	(+),55	0.0127	0.4325	(+),30	0.0001	0.5690	(+),64
42	Noise pollution: railways	0.0019	0.5531	(+),64	0.0301	0.5690	(+),26	0.0402	0.4836	(+),24	0.0007	0.5191	(+),55	0.2062	0.4794	(+),30	0.0023	0.5048	(+),64
4	Year constr.: mean	0.8432	0.6216	(-),64	0.7837	0.5000	(-),26	0.6876	0.5897	(-),24	0.8765	0.6567	(-),55	0.9352	0.6303	(+),30	0.7101	0.5681	(-),64
45	Landmarks: FSI	0.4175	0.3481	(+),64	0.7130	0.0000	(+),26	0.2160	0.3456	(+),24	0.6561	0.3738	(+),55	0.7817	0.3943	(+),30	0.4579	0.3639	(+),64
46	Landmarks: plot area	0.0778	0.0740	(+),64	0.7082	0.3718	(+),26	0.1779	0.1170	(+),24	0.6919	0.3632	(+),55	0.7514	0.4722	(+),30	0.4879	0.3424	(+),64
47	Landmarks: Year constr.	0.7215	0.2831	(+),64	0.9440	0.6322	(-),26	0.7576	0.3628	(+),24	0.9305	0.5625	(-)"55	0.5846	0.3941	0£"(-)	0.7414	0.4630	(-),64
48	Landmarks: 1 criterion	0.3490	0.1778	(+),64	1.0000	0.6821	(-),26	0.2653	0.2615	(+),24	0.8965	0.4675	(+),55	0.9640	0.4790	(+),30	0.8226	0.4569	(+),64
49	Landmarks: 2 criteria	0.2960	0.2655	(+),64	0.6417	0.0000	(+),26	0.2226	0.2118	(+),24	0.4843	0.2999	(+),55	0.9920	0.4469	(-),30	0.6189	0.4668	(+),64
20	Landmarks: 3 criteria	1.0000	0.0000	(-),64	1.0000	0.0000	(-),26	1.0000	0.0000	(-),24	1.0000	0.0000	(-),55	1.0000	0.0000	(-),30	1.0000	0.0000	(-),64
ы. То	ure 1.98: Ra	w res	ults fo	or route	ager(ecate	analv	sis. san	nle:	interac	stion - le	cal re	sident	(ves).	up-dus	lestic	on 3. (lata: 1	-uot

	Variables	P(Most) N	fost_stat N	fost_coef,n	P([4] often)	[4]_stat [4]_coef,n	o[[3] regularly)	[3]_stat	[3]_coef,n	P([2] sometimes) [2]_stat	[2]_coef,n	P([1] never)	[1]_stat [1]_coef,n F	o(Least) Le	east_stat Le	ast_coef,n
6	Year constr.: < 1945	0.8918	0.5560	(+),64	0.8764	0.5694	(+),25	0.9625	0.5281	(-),22	0.864	4 0.5703	(-),53	0.7425	0.6346	(+),29	0.8824	0.5607	(+),64
₽	Year constr.: 1946-1970	0.9367	0.5336	(-),64	0.7238	0.6454	(+),25	1.0000	0.5096	(+),22	0.860	5 0.5722	(+),53	0.5039	0.7531	(+),29	0.4375	0.7827	(+),64
÷	Year constr.: 1971-1985	0.5187	0.7423	(+),64	0.4170	0.7973	(+),25	1.0000	0.5096	(-),22	0.208	0.8972	(+),53	0.7960	0.6082	(+),29	0.2153	0.8933	(+),64
12	Year constr.: 1986-2000	0.9596	0.5221	(+),64	0.7382	0.6383	(+),25	0.7655	0.6263	(+),22	0.660	0.6722	(+),53	0.3511	0.8285	(+),29	0.5681	0.7176	(+),64
13	Year constr.: 2001-2022	0.9674	0.5182	(-),64	0.9922	0.5039	(+),25	0.9906	0.5141	(-),22	0.997	5 0.5013	(+),53	0.6815	0.6650	(+),29	0.9962	0.5038	(-),64
14	Traffic signals count	0.4078	0.7975	(-),64	0.5810	0.7162	(-),25	0.8221	0.5981	(+),22	0.621	4 0.6916	(-),53	0.7298	0.6410	(+),29	0.9962	0.5038	(+),64
15	Stairs count	0.6800	0.6624	(+),64	0.7265	0.6476	(+),25	0.1857	0.9121	(-),22	0.636	3 0.6848	(-),53	0.5802	0.7165	(+),29	0.8429	0.5810	(-),64
16	Status: for construction	0.9901	0.5083	(-),64	0.6682	0.6793	(-),25	0.5110	0.7547	(+),22	0.598	3 0.7046	(+),53	0.9474	0.5350	(+),29	0.7835	0.6114	(+),64
17	Status: unrealised	1.0000	0.0000	(+),64	1.0000	0.0000	(+),25	1.0000	0.0000	(+),22	1.000	0.0000	(+),53	1.0000	0.0000	(+),29	1.0000	0.0000	(+),64
18	Status: under construction	0.7389	0.6343	(+),64	0.3023	0.8583	(+),25	0.2862	0.8643	(+),22	1.000	0.0000	(+),53	0.6318	0.6954	(-),29	0.9755	0.5163	(-),64
19	Status: in use (n.m.)	0.4686	0.7680	(+),64	0.3616	0.8262	(+),25	0.6715	0.6776	(+),22	0.396	1 0.8050	(-),53	1.0000	0.0000	(+),29	0.8304	0.5880	(-),64
20	Status: in use	0.9943	0.5048	(-),64	0.9381	0.5387	(+),25	0.7246	0.6465	(-),22	0.947	0.5290	(+),53	0.3751	0.8166	(+),29	0.5308	0.7361	(+),64
21	Status: for demolition	0.5667	0.7228	(+),64	0.5714	0.7301	(+),25	1.0000	0.0000	(+),22	0.560	0.7274	(+),53	0.1609	0.9266	(+),29	0.1706	0.9169	(+),64
22	Status: demolished	1.0000	0.0000	(+),64	1.0000	0.0000	(+),25	1.0000	0.0000	(+),22	1.000	0.0000	(+),53	1.0000	0.0000	(+),29	1.0000	0.0000	(+),64
23	Status: not in use	1.0000	0.0000	(+),64	1.0000	0.0000	(+),25	1.0000	0.0000	(+),22	1.000	0.0000	(+),53	1.0000	0.0000	(+),29	1.0000	0.0000	(+),64
24	Status: reconstruction	0.8669	0.5689	(-),64	0.8345	0.5923	(+),25	0.8257	0.5986	(+),22	0.140	1 0.9311	(-),53	0.7168	0.6495	(-),29	0.1957	0.9033	(-),64
25	Status: illegitimate	1.0000	0.0000	(+),64	1.0000	0.0000	(+),25	1.0000	0.0000	(+),22	1.000	0.0000	(+),53	1.0000	0.0000	(+),29	1.0000	0.0000	(+),64
26	Function: residential	0.9069	0.5484	(-),64	0.8005	0.6072	(+),25	0.8693	0.5746	(-),22	0.759	0.6229	(+),53	0.3789	0.8147	(+),29	0.5998	0.7017	(+),64
27	Function: gathering	0.9462	0.5289	(-),64	0.6485	0.6835	(+),25	0.6288	0.6943	(-),22	0.994	1 0.5056	(-),53	0.6186	0.6966	(+),29	0.4954	0.7539	(+),64
28	Function: prison	1.0000	0.0000	(+),64	1.0000	0.0000	(+),25	1.0000	0.0000	(+),22	1.000	0.0000	(+),53	1.0000	0.0000	(+),29	1.0000	0.0000	(+),64
29	Function: healthcare	0.9955	0.5023	(+),64	0.5714	0.7301	(+),25	0.1620	0.9283	(-),22	0.407	2 0.8008	(-),53	0.5568	0.7350	(+),29	0.7212	0.6439	(-),64
30	Function: factory	0.5045	0.7496	(+),64	0.7430	0.6380	(+),25	0.9650	0.5291	(-),22	0.699	7 0.6532	(+),53	0.7333	0.6404	(-),29	0.9221	0.5414	(+),64
31	Function: office	0.9055	0.5493	(-),64	0.9503	0.5331	(-),25	0.9513	0.5341	(+),22	0.280	9 0.8611	(-),53	0.9178	0.5479	(+),29	0.5146	0.7444	(-),64
32	Function: guesthouse	0.6630	0.6715	(-),64	0.8505	0.5861	(-),25	1.0000	0.0000	(+),22	0.995	9 0.5020	(+),53	0.6092	0.7065	(+),29	0.8145	0.5959	(-),64
33	Function: education	0.2430	0.8809	(+),64	0.0411	0.9814	(+),25	1.0000	0.0000	(+),22	0.084	1 0.9591	(+),53	1.0000	0.5196	(+),29	0.4012	0.8030	(+),64
34	Function: sports	0.5667	0.7228	(-),64	1.0000	0.0000	(+),25	0.5725	0.7318	(-),22	0.159	3 0.9243	(-),53	0.3343	0.8495	(-),29	0.1589	0.9238	(-),64
35	Function: shops	0.9067	0.5487	(+),64	0.6986	0.6586	(+),25	0.9405	0.5396	(+),22	0.735	9 0.6347	(-),53	0.4264	0.7916	(+),29	0.4667	0.7682	(+),64
36	Function: other	0.6023	0.7006	(-),64	0.4348	0.7886	(-),25	0.5587	0.7288	(-),22	0.437	4 0.7832	(+),53	0.9673	0.5229	(+),29	0.8780	0.5630	(+),64
37	Green: tree cover	0.7279	0.6378	(+),64	0.9923	0.5116	(-),25	0.7602	0.6288	(+),22	0.944	5 0.5302	(+),53	0.8703	0.5710	(-),29	0.9753	0.5143	(-),64
38	Green: bush cover	0.7387	0.6325	(+),64	0.6624	0.6758	(+),25	0.7962	0.6109	(+),22	0.839	3 0.5826	(-),53	0.9071	0.5526	(+),29	0.9981	0.5010	(+),64
39	Green: grass cover	0.7604	0.6216	(+),64	0.9459	0.5348	(+),25	0.6726	0.6722	(+),22	0.894	4 0.5553	(+),53	0.9318	0.5403	(-),29	0.9715	0.5162	(+),64
4	Noise pollution: total	0.7351	0.6342	(+),64	0.7784	0.6182	(+),25	0.8880	0.5653	(+),22	0.904	4 0.5503	(+),53	0.8703	0.5710	(-),29	0.9184	0.5427	(+),64
41	Noise pollution: roads	0.6924	0.6555	(+),64	0.7051	0.6546	(+),25	0.7602	0.6288	(+),22	0.919	5 0.5428	(+),53	0.7032	0.6542	(-),29	0.9981	0.5029	(+),64
4	Noise pollution: railways	0.8563	0.5737	(+),64	0.8690	0.5731	(+),25	0.8880	0.5653	(+),22	0.934	5 0.5352	(+),53	0.8581	0.5771	(-),29	0.9184	0.5427	(+),64
44	Year constr.: mean	0.7279	0.6378	(-),64	0.9227	0.5463	(-),25	0.9626	0.5281	(-),22	0.825	0.5900	(-),53	0.9256	0.5434	(-),29	0.7261	0.6387	(-),64
45	Landmarks: FSI	0.6962	0.6538	(-),64	1.0000	0.0000	(+),25	0.7953	0.6119	(-),22	0.787	0.6091	(-),53	0.8761	0.5684	(-),29	0.8453	0.5793	(-),64
46	Landmarks: plot area	0.1883	0.9067	(-),64	0.7223	0.6464	(-),25	0.3877	0.8130	(-),22	0.778	0.6135	(-),53	0.7529	0.6297	(-),29	0.6084	0.6975	(-),64
47	Landmarks: Year constr.	0.5661	0.7187	(-),64	0.6141	0.7005	(-),25	0.9131	0.5543	(-),22	0.928	7 0.5384	(-),53	0.8784	0.5675	(+),29	0.9690	0.5176	(-),64
48	Landmarks: 1 criterion	0.3917	0.8055	(-),64	0.5817	0.7159	(-),25	0.6419	0.6875	(-),22	0.928	3 0.5381	(-),53	0.9372	0.5376	(-),29	0.9520	0.5259	(-),64
49	Landmarks: 2 criteria	0.5311	0.7369	(-),64	1.0000	0.0000	(+),25	0.6057	0.7099	(-),22	0.731	0.6387	(-),53	0.8926	0.5619	(-),29	0.7505	0.6276	(-),64
20	Landmarks: 3 criteria	1.0000	0.0000	(+),64	1.0000	0.0000	(+),25	1.0000	0.0000	(+),22	1.000	0.0000	(+),53	1.0000	0.0000	(+),29	1.0000	0.0000	(+),64
Fig	çure 1.99: Ra	W rest	ults fo	r route	aggre	egate	analy	sis, sam	ple: j	interad	ction - lo	ocal r	esident	(ses)	sub-c	luestic	on 3,	data: 1	-non
sta	ndardised, ba	seline	: shor	test pa	th, dir	ectior	1: acc	SSS											

	Variables	P(Most) M.	lost_stat Mc	st_coef,n F	([4] often)	[4]_stat [4]_coef,n F	([3] regularly)	[3]_stat	[3]_coef,n	P([2] sometime:	() [2]_sta	t [2]_coef,n	P([1] never)	[1]_stat [1]_coef,n F	(Least) Le	east_stat Lea	ist_coef,n
6	Year constr.: < 1945	0.9924	0.5057	(+),64	0.9634	0.5256	(+),26	0.8285	0.5938	(-),24	0.961	8 0.5215	5 (+),55	1.0000	0.5060	(-),30	0.8673	0.5682	(-),64
9	Year constr.: 1946-1970	0.9693	0.5173	(-),64	0.5979	0.7074	(+),26	0.9081	0.5543	(-),24	0.937	5 0.5337	7 (+),55	0.4208	0.7939	(+),30	0.5255	0.7388	(+),64
÷	Year constr.: 1971-1985	0.5497	0.7268	(+),64	0.6848	0.6645	(+),26	0.7189	0.6484	(+),24	0.221	3 0.890	5 (+),55	0.6673	0.6719	(+),30	0.2431	0.8794	(+),64
12	Year constr.: 1986-2000	0.9423	0.5308	(+),64	0.7248	0.6445	(+),26	0.8346	0.5909	(+),24	0.668	2 0.668	1 (+),55	0.6741	0.6684	(+),30	0.6802	0.6617	(+),64
13	Year constr.: 2001-2022	0.9330	0.5354	(+),64	0.8682	0.5731	(+),26	0.7798	0.6180	(-),24	0.758	6 0.623(),55	0.3705	0.8187	(+),30	0.9463	0.5287	(+),64
14	Traffic signals count	0.4674	0.7678	(-),64	0.6984	0.6576	(-),26	0.8675	0.5745	(+),24	0.706	6 0.6489	9),55	0.9284	0.5418	0£"(-)	0.9789	0.5125	(-),64
15	Stairs count	0.6800	0.6624	(+),64	0.4943	0.7613	(+),26	0.3417	0.8359	(-),24	0.996	6 0.5017	7 (+),55	0.7953	0.6092	(+),30	0.6924	0.6561	(-),64
16	Status: for construction	0.9901	0.5083	(-),64	0.6677	0.6791	(-),26	0.5125	0.7530	(+),24	0.967	0 0.5206	5 (-),55	0.5113	0.7511	(+),30	0.6137	0.6959	(+),64
17	Status: unrealised	1.0000	0.0000	(+),64	1.0000	0.0000	(+),26	1.0000	0.0000	(+),24	1.000	00000	0 (+),55	1.0000	0.0000	(+),30	1.0000	0.0000	(+),64
18	Status: under construction	0.7389	0.6343	(+),64	0.3909	0.8135	(+),26	0.4358	0.7913	(+),24	0.734	1 0.6377	7 (-),55	0.9864	0.5205	(-),30	0.9877	0.5102	(-),64
19	Status: in use (n.m.)	0.6264	0.6895	(+),64	0.3618	0.8258	(+),26	0.9493	0.5380	(+),24	0.443	1 0.7814	4 (-),55	1.0000	0.0000	(+),30	0.8304	0.5880	(-),64
20	Status: in use	0.8807	0.5616	(-),64	0.9927	0.5110	(-),26	0.6061	0.7041	(-),24	0.613	4 0.6954	4 (+),55	0.6950	0.6579	(+),30	0.8825	0.5606	(+),64
21	Status: for demolition	0.5667	0.7228	(+),64	0.5711	0.7296	(+),26	1.0000	0.0000	(+),24	0.560	1 0.7270),55 (+),55	0.3337	0.8493	(+),30	0.3078	0.8498	(+),64
22	Status: demolished	1.0000	0.0000	(+),64	1.0000	0.0000	(+),26	1.0000	0.0000	(+),24	1.000	0.0000	0 (+),55	1.0000	0.0000	(+),30	1.0000	0.0000	(+),64
23	Status: not in use	1.0000	0.0000	(+),64	1.0000	0.0000	(+),26	1.0000	0.0000	(+),24	1.000	00000	0 (+),55	1.0000	0.0000	(+),30	1.0000	0.0000	(+),64
24	Status: reconstruction	0.6937	0.6554	(-),64	0.8839	0.5669	(+),26	0.9133	0.5541	(-),24	0.340	8 0.8316	5 (-),55	0.7174	0.6495	05,(-)	0.1957	0.9033	(-),64
25	Status: illegitimate	1.0000	0.0000	(+),64	1.0000	0.0000	(+),26	1.0000	0.0000	(+),24	1.000	00000	c (+),55	1.0000	0.0000	(+),30	1.0000	0.0000	(+),64
26	Function: residential	0.8749	0.5644	(-),64	0.9561	0.5292	(+),26	1.0000	0.5082	(+),24	0.506	8 0.748	5 (+),55	0.6143	0.6980	(+),30	0.6436	0.6799	(+),64
27	Function: gathering	0.8780	0.5630	(-),64	0.6195	0.6975	(+),26	0.6158	0.6996	(-),24	0.743	9 0.630	5 (-),55	0.7014	0.6553	(+),30	0.8853	0.5594	(+),64
28	Function: prison	1.0000	0.0000	(+),64	1.0000	0.0000	(+),26	1.0000	0.0000	(+),24	1.000	00000	0 (+),55	1.0000	0.0000	(+),30	1.0000	0.0000	(+),64
29	Function: healthcare	0.9955	0.5023	(+),64	1.0000	0.0000	(+),26	0.5718	0.7306	(-),24	0.702	6 0.6539	9;(-) 6	0.5571	0.7345	(+),30	0.9864	0.5113	(+),64
90	Function: factory	0.6205	0.6919	(+),64	0.9194	0.5492	(+),26	0.8844	0.5682	(-),24	0.680	9 0.6623	3 (+),55	0.8701	0.5721	05;(-)	0.9634	0.5207	(+),64
31	Function: office	0.9671	0.5185	(+),64	0.8105	0.6025	(-),26	0.3836	0.8140	(+),24	0.339	2 0.832	1 (-),55	0.9324	0.5406	(-)°30	0.4024	0.8003	(-),64
32	Function: guesthouse	0.6630	0.6715	(-),64	0.9187	0.5522	(+),26	0.4190	0.8007	(-),24	0.587	4 0.7099	9°.55	0.6883	0.6671	0£°(-)	0.2693	0.8673	(-),64
33	Function: education	0.4012	0.8030	(+),64	0.0812	0.9632	(+),26	1.0000	0.0000	(+),24	0.142	1 0.9308	8 (+),55	0.3049	0.8555	(+),30	0.0824	0.9598	(+),64
34	Function: sports	0.5667	0.7228	(-),64	1.0000	0.0000	(+),26	0.5718	0.7306	(-),24	0.159	2 0.9242	2 (-),55	0.3337	0.8493	(-)°30	0.1589	0.9238	(-),64
35	Function: shops	0.9937	0.5052	(-),64	0.8603	0.5780	(+),26	0.8300	0.5933	(+),24	0.843	0 0.5810),55	0.2355	0.8854	(+),30	0.3120	0.8452	(+),64
36	Function: other	0.8462	0.5788	(-),64	0.6674	0.6732	(-),26	0.6157	0.6996	(-),24	0.521	0 0.741	5 (+),55	0.7972	0.6074	(+),30	0.8257	0.5891	(+),64
37	Green: tree cover	0.6889	0.6573	(+),64	0.9344	0.5401	(+),26	1.0000	0.5082	(+),24	0.843	6 0.580	5 (-),55	0.8303	0.5906	02"(-)	0.6388	0.6823	(-),64
38	Green: bush cover	0.7531	0.6253	(+),64	0.6277	0.6926	(+),26	1.0000	0.5082	(-),24	0.706	5 0.6490),55 (-),55	0.9352	0.5383	(-)°30	0.6286	0.6874	(-),64
39	Green: grass cover	0.6960	0.6538	(+),64	0.7075	0.6530	(+),26	0.9507	0.5329	(+),24	0.778	7 0.6129	9 (-)"55	0.9941	0.5088	(-),30	0.8135	0.5951	(-),64
4	Noise pollution: total	0.7495	0.6271	(+),64	0.8764	0.5690	(+),26	0.9835	0.5164	(+),24	0.904	8 0.550(0 (+),55	0.9941	0.5088	(+),30	0.8694	0.5672	(+),64
41	Noise pollution: roads	0.7101	0.6467	(+),64	0.7627	0.6256	(+),26	0.7414	0.6370	(+),24	0.755	9 0.6243	3 (+),55	0.8650	0.5733	(-),30	0.8657	0.5690	(+),64
42	Noise pollution: railways	0.8976	0.5531	(+),64	0.8764	0.5690	(+),26	0.9671	0.5247	(-),24	0.966	6 0.519	1 (+),55	0.9587	0.5265	(-),30	0.9943	0.5048	(+),64
4	Year constr.: mean	0.7604	0.6216	(-),64	1.0000	0.5073	(+),26	0.8366	0.5897	(-),24	0.691	0 0.6567	7 (-),55	0.7505	0.6303	(+),30	0.8675	0.5681	(-),64
45	Landmarks: FSI	0.6962	0.6538	(-),64	1.0000	0.0000	(+),26	0.6912	0.6623	(-),24	0.747	5 0.628(5 (-),55	0.7885	0.6118	(-),30	0.7278	0.6380	(-),64
46	Landmarks: plot area	0.1481	0.9267	(-),64	0.7436	0.6355	(-),26	0.2339	0.8872	(-),24	0.726	4 0.639	1 (-),55	0.9444	0.5340	(-),30	0.6847	0.6594	(-),64
47	Landmarks: Year constr.	0.5661	0.7187	(-),64	0.7507	0.6322	(-),26	0.7255	0.6460	(-),24	0.880	1 0.5625	5 (-),55	0.7882	0.6121	(+),30	0.9259	0.5391	(+),64
48	Landmarks: 1 criterion	0.3556	0.8235	(-),64	0.6490	0.6821	(-),26	0.5231	0.7452	(-),24	0.934	9 0.5349	e,(-),55	0.9581	0.5270	(-),30	0.9137	0.5451	(-),64
49	Landmarks: 2 criteria	0.5311	0.7369	(-),64	1.0000	0.0000	(+),26	0.4235	0.7966	(-),24	0.599	9 0.703	3 (-),55	0.8937	0.5612	(+),30	0.9335	0.5361	(-),64
20	Landmarks: 3 criteria	1.0000	0.0000	(+),64	1.0000	0.0000	(+),26	1.0000	0.0000	(+),24	1.000	00000	0 (+),55	1.0000	0.0000	(+),30	1.0000	0.0000	(+),64
Fig staı	ure 1.100: Ra ndardised, ba	aw res seline:	sults fc : short	r rout est pat	e aggr ih, dir	egate ection	analy : egre	sis, san ss	nple:	intera	ction - l	ocal	residen	t (yes)	, sub-e	questi	on 3,	data: 1	-non
	(L L			0												

	Variables	P(Most)	Most stat M	lost coef,n	often)	[4] stat	(4) coef,n F	([3] regularly)	[3] stat	[3] coef,n	P([2] sometime	s) [2] sta	t [2] coef,i	P([1] never)	[1] stat	[1] coef,n	P(Least) L	east stat Le	east coef,n
6	Year constr.: < 1945	0.8018	0.5991	wi(-),64	0.5445	0.7277	wi(+),25	0.7210	0.6395	wi(-),22	0.838	6 0.580	7 wi(-),5;	0.9914	0.5043	wi(+),29	0.5830	0.7085	wi(-),64
₽	Year constr.: 1946-1970	0.5746	0.7127	wi(+),64	0.7557	0.6222	wi(+),25	0.2874	0.8563	wi(+),22	0.273	5 1.106	3 tt(+),5;	0.4701	0.7322	tt(+),29	0.1360	1.51	tt(+),64
÷	Year constr.: 1971-1985	0.5065	0.7467	wi(-),64	0.6926	0.6537	wi(+),25	0.3330	-0.9909	tt(-),22	0.565	6 0.578	3 tt(+),5;	0.9689	0.0394	tt(+),29	0.8705	-0.1637	tt(-),64
12	Year constr.: 1986-2000	0.7794	0.6103	wi(-),64	0.3156	0.8422	wi(-),25	0.5151	0.7425	wi(-),22	0.699	7 0.650	2 wi(+),5;	0.0723	1.868	tt(+),29	0.9040	0.548	wi(+),64
13	Year constr.: 2001-2022	0.3546	0.9325	tt(+),64	0.7863	0.6068	wi(+),25	0.7453	0.6273	wi(+),22	0.251	3 1.160	1 tt(+),5;	0.0247	2.3737	tt(+),29	0.1079	1.6307	tt(+),64
14	Traffic signals count	0.4895	0.7552	wi(-),64	0.9354	0.5323	wi(-),25	0.7818	0.6091	wi(-),22	0.859	1 0.570	5 wi(-),5;	0.6493	0.6753	wi(-),29	0.4274	0.7863	wi(+),64
15	Stairs count	0.1466	0.9267	wi(+),64	0.4953	0.7524	wi(+),25	1.0000	0.0	tt(+),22	0.532	2 0.628	3 tt(+),5;	0.0562	1.9921	tt(+),29	0.2886	1.0703	tt(+),64
16	Status: for construction	0.6512	0.6744	wi(-),64	0.5234	0.7383	wi(-),25	0.9706	0.0373	tt(+),22	1.000	0.0	0 tt(+),5;	0.8619	0.1756	tt(+),29	0.8769	0.5616	wi(+),64
11	Status: unrealised	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	equal	n/a,22	1.000	o eque	ll n/a,5;	1.0000	equal	n/a,29	1.0000	equal	n/a,64
18	Status: under construction	0.8066	0.5967	wi(+),64	0.9881	0.5059	wi(+),25	0.6855	0.6573	wi(+),22	0.996	0 0.50	2 wi(+),5;	0.3186	0.8407	wi(-),29	0.4962	0.7519	wi(-),64
19	Status: in use (n.m.)	0.6354	0.6823	wi(+),64	0.2950	0.8525	wi(+),25	0.7115	0.6442	wi(+),22	0.604	4 0.697	3 wi(-),5;	0.3708	0.8146	wi(-),29	0.8159	0.592	wi(-),64
20	Status: in use	0.2542	0.8729	wi(-),64	0.9810	-0.0241	tt(-),25	0.4589	-0.7545	tt(-),22	0.770	2 0.614	9 wi(-),5;	0.1170	1.6176	tt(+),29	0.8567	0.5716	wi(-),64
51	Status: for demolition	0.8125	0.5938	wi(-),64	0.7055	0.6473	wi(+),25	0.4421	0.779	wi(-),22	0.804	1 0.59	3 wi(-),5;	0.4931	0.7534	wi(+),29	0.8061	0.5969	wi(+),64
22	Status: demolished	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	equal	n/a,22	1.000	o edua	il n/a,50	1.0000	equal	n/a,29	1.0000	equal	n/a,64
23	Status: not in use	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	equal	n/a,22	1.000	o edua	l n/a,5(1.0000	equal	n/a,29	1.0000	equal	n/a,64
24	Status: reconstruction	0.8116	-0.2394	tt(-),64	0.3673	0.8164	wi(+),25	0.4742	0.7287	tt(+),22	0.066	9 -1.871	5 tt(-),5(0.9110	0.1129	tt(+),29	0.1194	0.9403	wi(-),64
25	Status: illegitimate	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	equal	n/a,22	1.000	o edua	ll n/a,5(1.0000	equal	n/a,29	1.0000	equal	n/a,64
26	Function: residential	0.1039	0.948	wi(-),64	0.9463	0.5268	wi(+),25	0.0348	0.9826	wi(-),22	0.529	4 0.735	3 wi(+),5;	0.9569	0.5216	wi(+),29	0.6807	0.6597	wi(-),64
27	Function: gathering	0.5143	-0.6558	tt(-),64	0.8118	-0.2407	tt(-),25	0.4629	-0.7477	tt(-),22	0.525	2 -0.639	5 tt(-),5;	0.0809	0.9596	wi(+),29	0.7006	0.3863	tt(+),64
28	Function: prison	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	equal	n/a,22	1.000	o equa	ll n/a,5;	1.0000	equal	n/a,29	1.0000	equal	n/a,64
29	Function: healthcare	0.4892	0.7554	wi(+),64	0.4657	0.7671	wi(+),25	0.6892	0.6554	wi(-),22	0.796	4 0.601	3 wi(+),5;	0.4931	0.7534	wi(+),29	0.6374	0.6813	wi(+),64
30	Function: factory	0.6781	0.4169	tt(+),64	0.8803	0.1522	tt(+),25	0.4588	-0.7548	tt(-),22	0.796	2 0.259	5 tt(+),5;	0.4011	0.8527	tt(+),29	0.7680	-0.2962	tt(-),64
31	Function: office	0.8348	-0.2095	tt(-),64	0.2190	0.8905	wi(-),25	0.6482	0.4629	tt(+),22	0.272	5 -1.109	1 tt(-),5;	0.9543	0.0578	tt(+),29	0.3437	-0.954	tt(-),64
32	Function: guesthouse	0.2752	0.8624	wi(-),64	0.4658	0.7671	wi(+),25	0.2673	0.8664	wi(-),22	0.362	0 0.81	9 wi(-),5;	0.5446	-0.6133	tt(-),29	0.1791	0.9104	wi(-),64
33	Function: education	0.9912	0.5044	wi(-),64	0.2905	0.8548	wi(+),25	1.0000	equal	n/a,22	0.984	7 0.507	7 wi(+),5;	0.7575	0.6212	wi(-),29	0.5153	0.7424	wi(-),64
34	Function: sports	0.8070	0.5965	wi(-),64	1.0000	equal	n/a,25	0.6892	0.6554	wi(-),22	0.599	5 0.700	2 wi(-),5;	0.7237	0.6382	wi(-),29	0.6302	0.6849	wi(-),64
35	Function: shops	0.8036	-0.2498	tt(-),64	0.8773	0.1561	tt(+),25	0.3561	0.9437	tt(+),22	0.423	6 -0.806	5 tt(-),5:	0.0513	0.9743	wi(+),29	0.5814	0.5542	tt(+),64
36	Function: other	0.9127	0.5437	wi(+),64	0.3767	0.8116	wi(-),25	0.8821	0.5589	wi(-),22	0.039	3 0.980	4 wi(+),5;	0.3017	1.0522	tt(+),29	0.3246	0.9927	tt(+),64
37	Green: tree cover	0.0000	-9.1776	tt(-),64	0.0000	-5.6417	tt(-),25	0.000	-6.7521	tt(-),22	0.000	0 -7.744	5 tt(-),5;	0.0000	-6.0474	tt(-),29	0.0000	-8.3126	tt(-),64
38	Green: bush cover	0.0000	-8.2351	tt(-),64	0.0009	-3.8069	tt(-),25	0.0000	-5.7365	tt(-),22	0.000	0 -8.146	4 tt(-),5;	0.0000	-5.1753	tt(-),29	0.0000	-7.8513	tt(-),64
39	Green: grass cover	0.0000	-8.1374	tt(-),64	0.0002	-4.3678	tt(-),25	0.000	-5.499	tt(-),22	0.000	0 -8.613	7 tt(-),5;	0.0000	-5.883	tt(-),29	0.0000	-8.6764	tt(-),64
4	Noise pollution: total	0.0000	-9.7112	tt(-),64	0.0000	-6.0712	tt(-),25	0.000	-7.8179	tt(-),22	0.000	0 -9.381	e tt(-),5;	0.0000	-6.6356	tt(-),29	0.0000	-9.6269	tt(-),64
41	Noise pollution: roads	0.0000	-8.9945	tt(-),64	0.0000	-5.9803	tt(-),25	0.000	-6.3304	tt(-),22	0.000	0 -8.420	3 tt(-),5(0.0000	-6.2091	tt(-),29	0.0000	-8.6426	tt(-),64
42	Noise pollution: railways	0.0000	1.0	wi(-),64	0.0001	0.9999	wi(-),25	0.0000	-5.4772	tt(-),22	0.000	0 -6.198	2 tt(-),5;	0.1266	-1.5747	tt(-),29	0.0000	1.0	wi(-),64
4	Year constr.: mean	0.3613	0.8193	wi(+),64	0.5509	0.6049	tt(+),25	0.6651	-0.439	tt(-),22	0.430	8 0.784	5 wi(+),5;	0.9327	-0.0852	tt(-),29	0.5540	0.723	wi(+),64
45	Landmarks: FSI	0.0187	0.9907	wi(-),64	0.2905	0.8548	wi(-),25	0.0607	0.9697	wi(-),22	0.349	9 0.82	5 wi(-),5;	0.8586	0.5707	wi(+),29	0.2975	0.8512	wi(-),64
46	Landmarks: plot area	0.0100	0.995	wi(-),64	0.0879	0.956	wi(-),25	0.3362	0.8319	wi(-),22	0.574	2 0.712	9 wi(-),5;	0.8063	0.5968	wi(+),29	0.2743	0.8629	wi(-),64
47	Landmarks: Year constr.	0.1201	0.94	wi(-),64	0.7742	0.6129	wi(-),25	0.2143	0.8929	wi(-),22	0.947	0 0.526	5 wi(+),5;	0.8306	0.5847	wi(-),29	0.6373	0.6813	wi(-),64
48	Landmarks: 1 criterion	0.0200	0.99	wi(-),64	0.3844	0.8078	wi(-),25	0.2800	0.86	wi(-),22	0.747	2 0.626	4 wi(-),5	0.8184	0.5908	wi(-),29	0.3666	0.8167	wi(-),64
49	Landmarks: 2 criteria	0.1773	0.9114	wi(-),64	0.7055	0.6473	wi(-),25	0.2672	0.8664	wi(-),22	0.608	6 0.695	7 wi(-),5;	3066.0	0.5046	wi(+),29	0.2830	0.8585	wi(-),64
50	Landmarks: 3 criteria	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	equal	n/a,22	1.000	o equa	il n/a,5;	1.0000	equal	n/a,29	1.0000	equal	n/a,64
Fig dar	çure 1.101: Rí dised, baselin	aw res ie: lea	sults fo st dire	or rout ctiona	e aggr l turns	egate 5 patl	analy 1, dire	rsis, sar ction: a	nple: tccess	intera	action -	local	reside	int (yes	s), sul	o-quest	tion 3.	, data:	stan-

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	east stat	east coef,n
6	Year constr.: < 1945	0.7556	0.6222	wi(-),64	0.3666	0.8167	wi(+),26	0.2591	0.8705	wi(-),24	1.0000	0.5	wi(+),55	0.5491	0.7254	wi(-),30	0.1871	0.9064	wi(-),64
6	Year constr.: 1946-1970	0.3877	0.8061	wi(+),64	0.3717	0.8141	wi(+),26	0.8741	0.563	wi(+),24	0.5468	0.6063	tt(+),55	0.2153	1.2669	tt(+),30	0.3719	0.814	wi(+),64
÷	Year constr.: 1971-1985	0.5279	0.736	wi(-),64	0.6125	-0.5129	tt(-),26	0.2943	-1.0733	tt(-),24	0.8924	0.1359	tt(+),55	0.9613	0.0489	tt(+),30	0.7339	-0.3415	tt(-),64
12	Year constr.: 1986-2000	0.6126	0.6937	wi(-),64	0.1484	0.9258	wi(-),26	0.3516	0.8242	wi(-),24	0.9267	0.0924	tt(+),55	0.1217	0.9392	wi(+),30	0.9840	0.508	wi(-),64
13	Year constr.: 2001-2022	0.3194	1.0036	tt(+),64	0.9288	0.5356	wi(-),26	0.4487	0.7757	wi(+),24	0.4713	0.7255	tt(+),55	0.0114	2.7019	tt(+),30	0.0479	2.0176	tt(+),64
14	Traffic signals count	0.5087	0.7457	wi(-),64	0.7025	0.6487	wi(-),26	0.3152	0.8424	wi(+),24	0.7181	-0.3628	tt(-),55	0.4033	0.7984	wi(-),30	0.5028	0.7486	wi(+),64
15	Stairs count	0.1466	0.9267	wi(+),64	0.4250	0.8111	tt(+),26	0.4890	0.7555	wi(+),24	0.1676	1.3988	tt(+),55	0.1608	1.4392	tt(+),30	0.4097	0.83	tt(+),64
16	Status: for construction	0.6512	0.6744	wi(-),64	0.5281	0.736	wi(-),26	0.9705	0.0374	tt(+),24	0.7744	0.6128	wi(-),55	0.6057	0.522	tt(+),30	0.7252	0.6374	wi(+),64
17	Status: unrealised	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
18	Status: under construction	0.8066	0.5967	wi(+),64	0.9888	0.5056	wi(+),26	0.6973	0.6514	wi(+),24	0.6143	0.6928	wi(-),55	0.7277	0.6361	wi(-),30	0.6454	0.6773	wi(-),64
19	Status: in use (n.m.)	0.8092	0.5954	wi(+),64	0.4930	0.7535	wi(+),26	0.7321	0.634	wi(+),24	0.4554	0.7723	wi(-),55	0.5458	0.7271	wi(-),30	0.8159	0.592	wi(-),64
20	Status: in use	0.2223	0.8889	wi(-),64	0.8676	0.1684	tt(+),26	0.0350	-2.2407	tt(-),24	0.9466	0.5267	wi(-),55	0.9181	0.541	wi(+),30	0.2641	0.868	wi(-),64
51	Status: for demolition	0.8125	0.5938	wi(-),64	1.0000	0.5	wi(+),26	0.7003	0.6498	wi(-),24	0.8069	0.5965	wi(-),55	0.7277	0.6361	wi(+),30	0.9881	0.506	wi(+),64
22	Status: demolished	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
53	Status: not in use	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
24	Status: reconstruction	0.6083	-0.5151	tt(-),64	0.6275	0.4913	tt(+),26	0.9404	-0.0756	tt(-),24	0.2391	-1.1905	tt(-),55	0.7513	-0.3199	tt(-),30	0.1592	0.9204	wi(-),64
25	Status: illegitimate	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
26	Function: residential	0.1392	0.9304	wi(-),64	0.7993	0.6003	wi(+),26	0.0184	0.9908	wi(-),24	0.8373	0.5814	wi(+),55	0.8208	0.5896	wi(+),30	0.5314	0.7343	wi(-),64
27	Function: gathering	0.4005	-0.8464	tt(-),64	0.7425	0.6287	wi(+),26	0.3198	-1.0169	tt(-),24	0.5944	-0.5357	tt(-),55	0.2968	1.0624	tt(+),30	0.8867	-0.1431	tt(-),64
28	Function: prison	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
29	Function: healthcare	0.4892	0.7554	wi(+),64	0.7103	0.6448	wi(+),26	1.0000	0.5	wi(+),24	0.6176	0.6912	wi(+),55	0.4993	0.7503	wi(+),30	0.4868	0.7566	wi(+),64
30	Function: factory	0.8655	0.1701	tt(+),64	0.8699	0.1654	tt(+),26	0.1133	-1.6464	tt(-),24	0.8441	0.1976	tt(+),55	0.4007	0.8528	tt(+),30	0.7357	-0.3391	tt(-),64
31	Function: office	0.9179	-0.1035	tt(-),64	0.0958	-1.731	tt(-),26	0.2998	1.0609	tt(+),24	0.3612	-0.921	tt(-),55	0.6135	-0.5106	tt(-),30	0.2757	-1.0996	tt(-),64
32	Function: guesthouse	0.2752	0.8624	wi(-),64	0.7286	0.6357	wi(+),26	0.0945	0.9527	wi(-),24	0.1382	-1.5047	tt(-),55	0.5458	0.7271	wi(-),30	0.0653	0.9674	wi(-),64
33	Function: education	0.8111	0.5944	wi(-),64	0.5102	0.7449	wi(+),26	1.0000	equal	n/a,24	0.9964	0.5018	wi(-),55	0.7344	0.6328	wi(+),30	0.8169	0.5916	wi(+),64
34	Function: sports	0.8070	0.5965	wi(-),64	1.0000	equal	n/a,26	0.7003	0.6498	wi(-),24	0.6057	0.6972	wi(-),55	0.7277	0.6361	wi(-),30	0.6302	0.6849	wi(-),64
35	Function: shops	0.6393	-0.4709	tt(-),64	0.8736	0.1608	tt(+),26	0.6756	0.4239	tt(+),24	0.4004	-0.8477	tt(-),55	0.0210	2.4417	tt(+),30	0.2793	1.0913	tt(+),64
36	Function: other	0.5930	0.7035	wi(+),64	0.8851	0.5575	wi(+),26	0.6344	0.6828	wi(-),24	0.0407	2.0966	tt(+),55	0.3645	0.9214	tt(+),30	0.1851	1.34	tt(+),64
37	Green: tree cover	0.0000	-9.2405	tt(-),64	0.0000	-6.3614	tt(-),26	0.0000	-6.7972	tt(-),24	0.0000	-8.7566	tt(-),55	0.0000	-6.56	tt(-),30	0.0000	-8.8893	tt(-),64
38	Green: bush cover	0.0000	-8.3065	tt(-),64	0.0005	-4.0063	tt(-),26	0.0000	-5.9632	tt(-),24	0.000	-8.3868	tt(-),55	0.0000	-6.4612	tt(-),30	0.0000	-8.6529	tt(-),64
39	Green: grass cover	0.0000	-8.1873	tt(-),64	0.0001	-4.6711	tt(-),26	0.0000	-5.951	tt(-),24	0.000	-9.3175	tt(-),55	0.0000	-6.7364	tt(-),30	0.0000	-9.334	tt(-),64
6	Noise pollution: total	0.0000	-9.6978	tt(-),64	0.0000	-7.0407	tt(-),26	0.0000	-6.9148	tt(-),24	0.000	-10.6822	tt(-),55	0.0000	-6.1701	tt(-),30	0.0000	-9.7294	tt(-),64
41	Noise pollution: roads	0.0000	-8.9791	tt(-),64	0.0000	-6.9056	tt(-),26	0.0000	-5.7659	tt(-),24	0.0000	-9.4685	tt(-),55	0.0000	-5.4349	tt(-),30	0.0000	-8.4796	tt(-),64
42	Noise pollution: railways	0.0000	1.0	wi(-),64	0.0007	0.9997	wi(-),26	0.0000	-6.3393	tt(-),24	0.000	-6.1646	tt(-),55	0.0140	0.993	wi(-),30	0.0000	1.0	wi(-),64
44	Year constr.: mean	0.3406	0.8297	wi(+),64	0.9458	-0.0686	tt(-),26	0.5949	0.5392	tt(+),24	0.6300	0.4844	tt(+),55	0.1386	0.9307	wi(+),30	0.0907	0.9547	wi(+),64
45	Landmarks: FSI	0.0187	0.9907	wi(-),64	0.4730	0.7635	wi(-),26	0.0090	-2.8526	tt(-),24	0.3633	0.8184	wi(-),55	0.7393	0.6303	wi(-),30	0.1950	0.9025	wi(-),64
46	Landmarks: plot area	0.0066	0.9967	wi(-),64	0.3021	0.8489	wi(-),26	0.0366	0.9817	wi(-),24	0.5466	0.7267	wi(-),55	0.9916	0.5042	wi(+),30	0.2810	0.8595	wi(-),64
47	Landmarks: Year constr.	0.1201	0.94	wi(-),64	0.7757	0.6122	wi(-),26	0.1318	0.9341	wi(-),24	0.6982	0.6509	wi(-),55	0.6522	0.6739	wi(+),30	0.8088	0.5956	wi(-),64
48	Landmarks: 1 criterion	0.0192	0.9904	wi(-),64	0.7048	0.6476	wi(-),26	0.0863	0.9568	wi(-),24	0.5204	0.7398	wi(-),55	0.9417	0.5291	wi(-),30	0.2417	0.8791	wi(-),64
49	Landmarks: 2 criteria	0.1773	0.9114	wi(-),64	0.7103	0.6448	wi(-),26	0.0946	0.9527	wi(-),24	0.4556	0.7722	wi(-),55	0.7649	0.6175	wi(+),30	0.5056	0.7472	wi(-),64
50	Landmarks: 3 criteria	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
ŕ									-			-	-		-			-	

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	east coef,n
6	Year constr.: < 1945	0.3988	0.8006	wi(+),64	0.1850	0.9075	wi(+),25	0.4348	0.7826	wi(+),22	0.3673	0.8164	wi(+),53	0.1343	0.9328	wi(+),29	0.1705	0.9148	wi(+),64
ę	Year constr.: 1946-1970	0.4625	0.7687	wi(+),64	0.2663	0.8669	wi(+),25	0.7358	0.6321	wi(+),22	0.3694	0.9055	tt(+),53	0.3717	0.9079	tt(+),29	0.1570	1.4323	tt(+),64
Ξ	Year constr.: 1971-1985	0.4098	0.7951	wi(+),64	0.3781	0.898	tt(+),25	0.9194	-0.1024	tt(-),22	0.1611	1.4217	tt(+),53	0.9918	0.0103	tt(+),29	0.3402	0.9611	tt(+),64
12	Year constr.: 1986-2000	0.9294	0.5353	wi(-),64	0.7962	0.6019	wi(-),25	0.3128	0.8436	wi(+),22	0.7172	0.6414	wi(+),53	0.1721	0.914	wi(+),29	0.6266	0.6867	wi(+),64
13	Year constr.: 2001-2022	0.9918	0.5041	wi(+),64	0.9023	0.5488	wi(+),25	0.7282	-0.3522	tt(-),22	0.4865	0.7568	wi(-),53	0.6211	0.4998	tt(+),29	0.5707	0.7146	wi(-),64
14	Traffic signals count	0.1623	0.9188	wi(-),64	0.1749	0.9126	wi(-),25	0.3477	0.8261	wi(+),22	0.4220	0.789	wi(-),53	0.8410	-0.2025	tt(-),29	0.6869	0.6565	wi(-),64
15	Stairs count	0.6665	0.6668	wi(+),64	0.7245	0.6377	wi(+),25	0.1538	0.9231	wi(-),22	0.5687	-0.5737	tt(-),53	0.4238	0.8117	tt(+),29	0.7985	-0.2563	tt(-),64
16	Status: for construction	0.9970	0.5015	wi(-),64	0.7246	0.6377	wi(-),25	0.6855	0.6573	wi(+),22	0.7993	0.6004	wi(+),53	0.7625	0.6187	wi(+),29	0.8140	0.593	wi(+),64
17	Status: unrealised	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	edua	n/a,22	1.0000	edual	n/a,53	1.0000	equal	n/a,29	1.0000	equal	n/a,64
18	Status: under construction	0.8096	0.5952	wi(+),64	0.4658	0.7671	wi(+),25	0.2672	0.8664	wi(+),22	1.0000	equal	n/a,53	0.3186	0.8407	wi(-),29	0.6454	0.6773	wi(-),64
19	Status: in use (n.m.)	0.2490	0.8755	wi(+),64	0.2904	0.8548	wi(+),25	0.4421	0.7785	wi(+),22	0.6033	0.6984	wi(-),53	1.0000	equal	n/a,29	0.8235	0.5883	wi(+),64
20	Status: in use	0.7373	0.6314	wi(+),64	0.4414	0.7793	wi(+),25	0.8834	0.5583	wi(-),22	0.3783	0.8109	wi(+),53	0.0614	0.9693	wi(+),29	0.1265	0.9368	wi(+),64
5	Status: for demolition	0.8070	0.5965	wi(+),64	0.7055	0.6473	wi(+),25	1.0000	edna	n/a,22	0.7926	0.6037	wi(+),53	0.4931	0.7534	wi(+),29	0.4845	0.7577	wi(+),64
2	Status: demolished	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	edna	n/a,22	1.0000	equal	n/a,53	1.0000	equal	n/a,29	1.0000	equal	n/a,64
ŝ	Status: not in use	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	edna	n/a,22	1.0000	equal	n/a,53	1.0000	equal	n/a,29	1.0000	equal	n/a,64
24	Status: reconstruction	0.7937	-0.2627	tt(-),64	0.9097	0.1146	tt(+),25	0.6900	0.4044	tt(+),22	0.0716	-1.8389	tt(-),53	0.7404	0.6298	wi(-),29	0.1160	0.942	wi(-),64
25	Status: illegitimate	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	edua	n/a,22	1.0000	equal	n/a,53	1.0000	equal	n/a,29	1.0000	equal	n/a,64
26	Function: residential	0.3245	0.8378	wi(+),64	0.2400	0.88	wi(+),25	0.9870	0.5065	wi(-),22	0.2002	0.8999	wi(+),53	0.2175	0.8913	wi(+),29	0.2996	0.8502	wi(+),64
27	Function: gathering	0.5976	0.7012	wi(-),64	0.5693	0.577	tt(+),25	0.2213	-1.2605	tt(-),22	0.8574	-0.1806	tt(-),53	0.4069	0.842	tt(+),29	0.4985	0.6807	tt(+),64
88	Function: prison	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	edna	n/a,22	1.0000	equal	n/a,53	1.0000	equal	n/a,29	1.0000	equal	n/a,64
58	Function: healthcare	1.0000	0.5	wi(+),64	0.7055	0.6473	wi(+),25	0.4421	0.779	wi(-),22	0.6120	0.694	wi(-),53	0.7306	0.6347	wi(+),29	0.8340	0.583	wi(-),64
30	Function: factory	0.1825	0.9087	wi(+),64	0.6292	0.4891	tt(+),25	0.7310	0.6345	wi(+),22	0.6453	0.6774	wi(+),53	0.6387	-0.4746	tt(-),29	0.9972	0.5014	wi(+),64
E	Function: office	0.8344	0.5828	wi(-),64	0.7306	0.6347	wi(-),25	0.7872	0.6064	wi(+),22	0.0472	-2.0325	tt(-),53	0.9995	-0.0007	tt(-),29	0.3117	-1.0199	tt(-),64
32	Function: guesthouse	0.8177	0.5912	wi(-),64	1.0000	0.5	wi(+),25	1.0000	edna	n/a,22	0.8182	0.5909	wi(-),53	0.7186	0.6407	wi(+),29	0.6985	0.6507	wi(-),64
33	Function: education	0.4868	0.7566	wi(+),64	0.1727	0.9136	wi(+),25	1.0000	edua	n/a,22	0.2124	0.8938	wi(+),53	0.9904	0.5048	wi(+),29	0.6374	0.6813	wi(+),64
34	Function: sports	0.8070	0.5965	wi(-),64	1.0000	equal	n/a,25	0.6892	0.6554	wi(-),22	0.5995	0.7002	wi(-),53	0.7237	0.6382	wi(-),29	0.6302	0.6849	wi(-),64
35	Function: shops	0.7946	0.6027	wi(+),64	0.6566	0.6717	wi(+),25	0.7311	0.6344	wi(+),22	0.1984	0.9008	wi(-),53	0.0404	0.9798	wi(+),29	0.2892	0.8554	wi(+),64
36	Function: other	0.6281	0.686	wi(-),64	0.4475	0.7762	wi(-),25	0.4120	0.794	wi(-),22	0.1324	1.5288	tt(+),53	0.8132	0.2385	tt(+),29	0.7105	0.3728	tt(+),64
37	Green: tree cover	0.5096	0.7452	wi(+),64	0.7000	0.39	tt(+),25	0.7290	0.3511	tt(+),22	0.6542	-0.4505	tt(-),53	0.6896	-0.4035	tt(-),29	0.5895	-0.5423	tt(-),64
æ	Green: bush cover	0.2856	0.8572	wi(+),64	0.2078	1.2946	tt(+),25	0.5322	0.6352	tt(+),22	0.6076	-0.5167	tt(-),53	0.8613	-0.1763	tt(-),29	0.6446	-0.4634	tt(-),64
39	Green: grass cover	0.4809	0.7091	tt(+),64	0.3770	0.9	tt(+),25	0.4689	0.7376	tt(+),22	0.9889	0.014	tt(+),53	0.7904	-0.2684	tt(-),29	0.8564	-0.1817	tt(-),64
ç	Noise pollution: total	0.2295	0.8852	wi(+),64	0.3698	0.9141	tt(+),25	0.3801	0.81	wi(+),22	0.6840	-0.4093	tt(-),53	0.5965	-0.5356	tt(-),29	0.5863	-0.547	tt(-),64
Ŧ	Noise pollution: roads	0.3267	0.8366	wi(+),64	0.4127	0.8337	tt(+),25	0.3894	0.8785	tt(+),22	0.7166	-0.3649	tt(-),53	0.4191	-0.8201	tt(-),29	0.5073	-0.6668	tt(-),64
42	Noise pollution: railways	0.2022	0.8989	wi(+),64	0.3598	0.8201	wi(+),25	0.3980	0.801	wi(+),22	0.7286	0.3488	tt(+),53	0.3136	1.0261	tt(+),29	0.4888	0.7556	wi(+),64
4	Year constr.: mean	0.3294	0.8353	wi(-),64	0.6755	0.6623	wi(+),25	0.8038	-0.2516	tt(-),22	0.3171	0.8415	wi(+),53	0.5790	0.5614	tt(+),29	0.7105	0.6448	wi(+),64
5	Landmarks: FSI	0.3554	0.8223	wi(-),64	1.0000	equal	n/a,25	0.9446	0.5277	wi(-),22	0.9694	0.5153	wi(-),53	0.9014	0.5493	wi(+),29	0.6349	0.6826	wi(+),64
46	Landmarks: plot area	0.0155	0.9922	wi(-),64	0.3884	0.8058	wi(-),25	0.1541	0.9229	wi(-),22	0.6144	0.6928	wi(-),53	0.8659	0.5671	wi(+),29	0.6397	0.6801	wi(-),64
47	Landmarks: Year constr.	0.1797	0.9102	wi(-),64	0.4773	0.7613	wi(-),25	0.4421	0.7785	wi(-),22	1.0000	0.5	wi(+),53	0.5709	0.7146	wi(+),29	0.8521	0.574	wi(+),64
\$	Landmarks: 1 criterion	0.0905	0.9547	wi(-),64	0.3865	0.8068	wi(-),25	0.4749	0.7626	wi(-),22	0.9604	0.5198	wi(+),53	0.7663	0.6168	wi(+),29	0.8435	0.5782	wi(+),64
4 9	Landmarks: 2 criteria	0.1726	0.9137	wi(-),64	1.0000	equal	n/a,25	0.4421	0.7785	wi(-),22	0.4390	0.7805	wi(-),53	0.7395	0.6302	wi(-),29	0.4915	0.7542	wi(-),64
20	Landmarks: 3 criteria	1.0000	equal	n/a,64	1.0000	equal	n/a,25	1.0000	edua	n/a,22	1.0000	equal	n/a,53	1.0000	equal	n/a,29	1.0000	equal	n/a,64
5	ura 1 103. B.	POT THE	inlte f	or rout	າຫຼາຍ ດ.	orat.	lene o	teie eet	aluu	. inter	action - 1	[000	مارتمه	nt fine	1112	שפווטיינ	tion 3	data	· ctan_

	Variables	P(Most)	Most stat	Most coef,n	P([4] often)	[4] stat	[4] coef,n	P([3] regularly)	[3] stat	[3] coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat L	east coef,n
6	Year constr.: < 1945	0.5476	0.7262	wi(+),64	0.1704	0.9148	wi(+),26	0.7857	0.6072	wi(+),24	0.2006	0.8997	wi(+),55	0.5554	0.7223	wi(+),30	0.6343	0.6829	wi(+),64
ę	Year constr.: 1946-1970	0.3721	0.814	wi(+),64	0.1465	0.9267	wi(+),26	0.5940	0.703	wi(+),24	0.4213	0.8103	tt(+),55	0.3003	1.0546	tt(+),30	0.2215	0.8892	wi(+),64
Ŧ	Year constr.: 1971-1985	0.6122	0.6939	wi(+),64	0.9620	-0.0482	tt(-),26	0.4532	0.763	tt(+),24	0.1706	1.3888	tt(+),55	0.9271	-0.0923	tt(-),30	0.4027	0.8425	tt(+),64
12	Year constr.: 1986-2000	0.8138	0.5931	wi(-),64	0.9076	0.5462	wi(-),26	0.6220	0.689	wi(+),24	0.8359	0.5821	wi(+),55	0.4091	0.7954	wi(+),30	0.7146	0.6427	wi(+),64
13	Year constr.: 2001-2022	0.9646	0.5177	wi(+),64	0.8974	0.5513	wi(+),26	0.4309	-0.8018	tt(-),24	0.3049	0.8475	wi(-),55	0.1779	1.3808	tt(+),30	0.9652	0.5174	wi(-),64
14	Traffic signals count	0.2372	0.8814	wi(-),64	0.5628	0.7186	wi(-),26	0.4184	0.7908	wi(+),24	0.3349	0.8325	wi(-),55	0.5623	0.7189	wi(-),30	0.5659	0.717	wi(-),64
15	Stairs count	0.6665	0.6668	wi(+),64	0.5013	0.7493	wi(+),26	0.1853	-1.3656	tt(-),24	1.0000	0.0	tt(+),55	0.7122	0.3725	tt(+),30	0.6209	-0.4971	tt(-),64
16	Status: for construction	0.9970	0.5015	wi(-),64	0.7286	0.6357	wi(-),26	0.6973	0.6514	wi(+),24	0.8155	0.5923	wi(-),55	0.3251	0.8374	wi(+),30	0.6440	0.678	wi(+),64
17	Status: unrealised	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
18	Status: under construction	0.8096	0.5952	wi(+),64	0.4730	0.7635	wi(+),26	0.4796	0.7602	wi(+),24	0.6057	0.6972	wi(-),55	0.7277	0.6361	wi(-),30	0.8154	0.5923	wi(-),64
19	Status: in use (n.m.)	0.4915	0.7542	wi(+),64	0.2977	0.8511	wi(+),26	0.7321	0.634	wi(+),24	0.7837	0.6082	wi(-),55	1.0000	equal	n/a,30	0.8235	0.5883	wi(+),64
50	Status: in use	0.9519	0.5241	wi(-),64	0.7789	0.6105	wi(+),26	0.6370	0.6815	wi(-),24	0.1897	0.9051	wi(+),55	0.0976	0.9512	wi(+),30	0.3474	0.8263	wi(+),64
5	Status: for demolition	0.8070	0.5965	wi(+),64	0.7103	0.6448	wi(+),26	1.0000	equal	n/a,24	0.7960	0.602	wi(+),55	0.7277	0.6361	wi(+),30	0.6347	0.6827	wi(+),64
52	Status: demolished	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	edua	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
ŝ	Status: not in use	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
24	Status: reconstruction	0.4571	0.7715	wi(-),64	0.9562	0.5219	wi(+),26	0.9508	-0.0624	tt(-),24	0.2645	-1.1275	tt(-),55	0.7344	0.6328	wi(-),30	0.1161	0.942	wi(-),64
25	Status: illegitimate	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	equal	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
26	Function: residential	0.3082	0.8459	wi(+),64	0.4288	0.7856	wi(+),26	0.5099	0.7451	wi(+),24	0.2830	0.8585	wi(+),55	0.0437	0.9781	wi(+),30	0.1640	0.918	wi(+),64
27	Function: gathering	0.7066	0.6467	wi(-),64	0.5506	0.605	tt(+),26	0.1333	-1.5564	tt(-),24	0.7282	-0.3493	tt(-),55	0.5357	0.6268	tt(+),30	0.8413	0.201	tt(+),64
88	Function: prison	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	edua	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
58	Function: healthcare	1.0000	0.5	wi(+),64	1.0000	equal	n/a,26	0.7204	0.6398	wi(-),24	0.8060	0.597	wi(-),55	0.7344	0.6328	wi(+),30	0.9883	0.5058	wi(+),64
8	Function: factory	0.2504	0.8748	wi(+),64	0.9210	0.1001	tt(+),26	1.0000	0.5	wi(+),24	0.9462	0.5269	wi(+),55	0.7441	-0.3296	tt(-),30	0.8538	0.5731	wi(-),64
E	Function: office	0.9915	0.5042	wi(-),64	0.7242	0.6379	wi(-),26	0.2137	0.8932	wi(+),24	0.1675	-1.3992	tt(-),55	0.7918	-0.2664	tt(-),30	0.2511	-1.1583	tt(-),64
32	Function: guesthouse	0.8177	0.5912	wi(-),64	0.7286	0.6357	wi(+),26	0.4582	0.7709	wi(-),24	0.6525	0.6738	wi(-),55	0.7601	0.62	wi(-),30	0.3842	0.8079	wi(-),64
33	Function: education	0.6374	0.6813	wi(+),64	0.2978	0.8511	wi(+),26	1.0000	equal	n/a,24	0.2194	0.8903	wi(+),55	0.5164	0.7418	wi(+),30	0.1844	0.9078	wi(+),64
34	Function: sports	0.8070	0.5965	wi(-),64	1.0000	equal	n/a,26	0.7003	0.6498	wi(-),24	0.6057	0.6972	wi(-),55	0.7277	0.6361	wi(-),30	0.6302	0.6849	wi(-),64
35	Function: shops	0.9606	0.5197	wi(+),64	0.7189	0.6405	wi(+),26	0.7203	0.6399	wi(+),24	0.6015	0.6993	wi(-),55	0.0766	0.9617	wi(+),30	0.1900	0.905	wi(+),64
36	Function: other	0.9333	0.5333	wi(-),64	0.8531	0.5735	wi(-),26	0.3012	0.8494	wi(-),24	0.2219	1.2356	tt(+),55	0.6568	0.4489	tt(+),30	0.5133	0.6575	tt(+),64
37	Green: tree cover	0.5226	0.7387	wi(+),64	0.3691	0.9147	tt(+),26	0.8582	-0.1807	tt(-),24	0.5802	-0.5564	tt(-),55	0.2086	-1.2862	tt(-),30	0.2387	-1.1896	tt(-),64
8	Green: bush cover	0.3897	0.8052	wi(+),64	0.1339	1.549	tt(+),26	0.8631	0.1744	tt(+),24	0.4402	-0.7776	tt(-),55	0.6115	-0.5135	tt(-),30	0.3007	-1.0435	tt(-),64
39	Green: grass cover	0.4006	0.8463	tt(+),64	0.1187	1.6159	tt(+),26	0.8888	0.1414	tt(+),24	0.6483	-0.4587	tt(-),55	0.8853	0.1455	tt(+),30	0.7907	-0.2665	tt(-),64
ç	Noise pollution: total	0.3202	0.8399	wi(+),64	0.3868	0.8809	tt(+),26	0.6370	0.6815	wi(+),24	0.8434	-0.1985	tt(-),55	0.6715	-0.4284	tt(-),30	0.7305	-0.3459	tt(-),64
Ŧ	Noise pollution: roads	0.4315	0.7842	wi(+),64	0.4117	0.8349	tt(+),26	0.5523	0.6032	tt(+),24	0.9212	0.0993	tt(+),55	0.4481	-0.769	tt(-),30	0.7705	-0.293	tt(-),64
5	Noise pollution: railways	0.4276	0.7862	wi(+),64	0.2802	0.8599	wi(+),26	0.6167	0.6916	wi(-),24	0.5161	0.6537	tt(+),55	0.4130	0.8307	tt(+),30	0.4743	0.7629	wi(+),64
4	Year constr.: mean	0.3854	0.8073	wi(-),64	0.8287	0.5857	wi(+),26	0.5370	-0.6267	tt(-),24	0.6968	0.6516	wi(+),55	0.0977	0.9512	wi(+),30	0.1956	0.9022	wi(+),64
5	Landmarks: FSI	0.3554	0.8223	wi(-),64	1.0000	equal	n/a,26	0.6816	0.6592	wi(-),24	0.9396	0.5302	wi(-),55	0.9213	0.5393	wi(-),30	0.7869	0.6066	wi(+),64
46	Landmarks: plot area	0.0054	0.9973	wi(-),64	0.3576	0.8212	wi(-),26	0.0283	0.9859	wi(-),24	0.5540	0.723	wi(-),55	0.5173	0.7414	wi(+),30	0.8875	0.5563	wi(-),64
47	Landmarks: Year constr.	0.1797	0.9102	wi(-),64	0.7181	0.6409	wi(-),26	0.2830	0.8585	wi(-),24	0.9859	0.507	wi(-),55	0.5452	0.7274	wi(+),30	0.6893	0.6553	wi(+),64
48	Landmarks: 1 criterion	0.0435	0.9783	wi(-),64	0.3929	0.8036	wi(-),26	0.2246	0.8877	wi(-),24	0.9255	0.5373	wi(+),55	0.7114	0.6443	wi(+),30	0.9349	0.5326	wi(+),64
6	Landmarks: 2 criteria	0.1726	0.9137	wi(-),64	1.0000	equal	n/a,26	0.2830	0.8585	wi(-),24	0.4584	0.7708	wi(-),55	1.0000	0.5	wi(+),30	0.8197	0.5901	wi(-),64
20	Landmarks: 3 criteria	1.0000	equal	n/a,64	1.0000	equal	n/a,26	1.0000	equal	n/a,24	1.0000	edual	n/a,55	1.0000	equal	n/a,30	1.0000	equal	n/a,64
5	ure 1 104 [.] B;	n re	enlts f	for rout	-0,00 P	erat.	- ana	veis sar	nnle.	inter	- l - l	lead	reside	nt (ves	lus (.setto-(tion 5	data	ctan-

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.7064	0.4288	(+),41	0.6485	0.4209	(+),31	0.7149	0.4336	(+),23	0.6757	0.3832	(+),41
₽	Year constr.: 1946-1970	0.5073	0.5128	(-),41	0.8069	0.2347	(+),31	0.9271	0.7016	(-),23	0.7269	0.1725	(+),41
÷	Year constr.: 1971-1985	0.7727	0.3782	(+),41	0.9145	0.4886	(-),31	0.7972	0.5422	(+),23	0.7677	0.4128	(-),41
12	Year constr.: 1986-2000	0.0241	0.3113	(+),41	0.0453	0.4971	(+),31	0.1446	0.2965	(+),23	0.0407	0.3342	(+),41
13	Year constr.: 2001-2022	0.6992	0.1641	(-),41	0.9943	0.1904	(-),31	0.5138	0.0640	(-),23	0.4093	0.0831	(-),41
14	Traffic signals count	0.2786	0.5535	(+),41	0.8752	0.1159	(-),31	1.0000	0.1327	(-),23	0.7237	0.8657	(+),41
15	Stairs count	0.1578	0.6016	(+),41	0.0571	0.2855	(+),31	0.4891	0.5058	(+),23	0.0589	0.4058	(+),41
16	Status: for construction	0.3208	0.6767	(+),41	0.3946	0.7094	(+),31	0.5970	0.1559	(-),23	0.6069	0.8142	(+),41
17	Status: unrealised	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.0000	(-),41
18	Status: under construction	0.7583	0.3988	(+),41	0.8863	0.4737	(+),31	1.0000	0.0000	(-),23	0.9609	0.5033	(+),41
19	Status: in use (n.m.)	0.9935	0.2244	(-),41	0.4753	0.5219	(+),31	1.0000	0.0000	(-),23	0.4764	0.5164	(+),41
20	Status: in use	0.5989	0.3895	(+),41	0.4256	0.3619	(+),31	0.4473	0.4601	(+),23	0.5518	0.4424	(+),41
5	Status: for demolition	1.0000	0.0000	(-),41	0.3332	0.1666	(-),31	1.0000	0.0000	(-),23	1.0000	0.000	(-),41
52	Status: demolished	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.0000	(-),41
8	Status: not in use	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.0000	(-),41
24	Status: reconstruction	0.0004	0.5889	(-),41	0.0030	0.7761	(-),31	0.0837	0.8754	(-),23	0.0065	0.8508	(-),41
25	Status: illegitimate	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.0000	(-),41
26	Function: residential	0.1187	0.3013	(+),41	0.1655	0.3109	(+),31	0.1976	0.3654	(+),23	0.1122	0.2869	(+),41
27	Function: gathering	0.3774	0.3663	(-),41	0.9104	0.6715	(-),31	0.2908	0.2985	(-),23	0.6719	0.5521	(-),41
28	Function: prison	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.000	(-),41
29	Function: healthcare	0.3293	0.0000	(+),41	0.3332	0.0000	(+),31	0.3388	0.0000	(+),23	0.3293	0.000	(+),41
8	Function: factory	0.3325	0.5138	(+),41	0.5700	0.0000	(+),31	0.5721	0.8516	(+),23	0.6545	0.7254	(+),41
31	Function: office	0.7199	0.5393	(+),41	0.0821	0.0637	(+),31	0.3051	0.3860	(+),23	0.2186	0.1703	(+),41
32	Function: guesthouse	0.5684	0.2794	(+),41	0.9868	0.5000	(-),31	0.3388	0.1694	(-),23	0.6227	0.3233	(-),41
33	Function: education	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.000	(-),41
34	Function: sports	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.000	(-),41
35	Function: shops	0.5154	0.3578	(-),41	0.4385	0.2562	(-),31	0.2725	0.2923	(-),23	0.3175	0.2350	(-),41
36	Function: other	0.3590	0.5058	(+),41	0.1916	0.2496	(+),31	0.7753	0.7041	(+),23	0.4755	0.5328	(+),41
37	Green: tree cover	0.0006	0.5718	(+),41	0.0003	0.5726	(+),31	0.0682	0.6619	(+),23	0.0018	0.7313	(+),41
88	Green: bush cover	0.0018	0.6007	(+),41	0.0004	0.4607	(+),31	0.0349	0.5698	(+),23	0.0018	0.5935	(+),41
39	Green: grass cover	0.0059	0.5572	(+),41	0.0027	0.5726	(+),31	0.1088	0.6778	(+),23	0.0070	0.6901	(+),41
4	Noise pollution: total	0.0345	0.5608	(+),41	0.0261	0.4496	(+),31	0.0994	0.6698	(+),23	0.0353	0.6669	(+),41
4	Noise pollution: roads	0.0204	0.6220	(+),41	0.0187	0.4054	(+),31	0.0826	0.6619	(+),23	0.0194	0.6114	(+),41
4	Noise pollution: railways	0.3165	0.5148	(+),41	0.2260	0.5946	(+),31	0.3448	0.5350	(+),23	0.2426	0.5461	(+),41
4	Year constr.: mean	0.4718	0.5464	(+),41	0.6420	0.6406	(+),31	0.5526	0.6128	(+),23	0.7807	0.6486	(+),41
45	Landmarks: FSI	0.3232	0.3622	(+),41	0.7056	0.5170	(+),31	0.4561	0.4226	(+),23	0.3974	0.4135	(+),41
46	Landmarks: plot area	0.5345	0.3722	(+),41	0.3502	0.2718	(+),31	0.3430	0.2830	(+),23	0.3413	0.2512	(+),41
47	Landmarks: Year constr.	0.4329	0.3791	(+),41	0.5211	0.4418	(+),31	0.7245	0.6483	(+),23	0.5669	0.4694	(+),41
48	Landmarks: 1 criterion	0.4103	0.2822	(+),41	0.4770	0.3070	(+),31	0.6575	0.4074	(+),23	0.4639	0.3084	(+),41
49	Landmarks: 2 criteria	0.3141	0.2842	(+),41	0.3130	0.2850	(+),31	0.5721	0.0000	(+),23	0.6545	0.000	(+),41
50	Landmarks: 3 criteria	1.0000	0.0000	(-),41	1.0000	0.0000	(-),31	1.0000	0.0000	(-),23	1.0000	0.0000	(-),41

Figure 1.105: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n
6	Year constr.: < 1945	0.6786	0.4103	(+),41	0.5400	0.4054	(+),30	0.7685	0.4141	(+),25	0.7567	0.4420	(+),41
₽	Year constr.: 1946-1970	0.6593	0.6143	(-),41	0.9867	0.3039	(+),30	0.5535	0.6313	(-),25	0.7498	0.6049	(-),41
÷	Year constr.: 1971-1985	0.7179	0.3400	(+),41	0.4765	0.2939	(-),30	0.7586	0.5530	(-),25	0.9163	0.4789	(-),41
12	Year constr.: 1986-2000	0.0292	0.3600	(+),41	0.0599	0.4722	(+),30	0.1170	0.3094	(+),25	0.0319	0.2818	(+),41
13	Year constr.: 2001-2022	0.7169	0.1701	(-),41	0.6289	0.0700	(-),30	0.4860	0.2888	(-),25	0.6922	0.1630	(-),41
14	Traffic signals count	0.2503	0.5288	(+),41	0.8574	0.7602	(+),30	0.5019	0.0342	(-),25	0.5074	0.0391	(-),41
15	Stairs count	0.1578	0.6016	(+),41	0.0562	0.3918	(+),30	0.2807	0.6300	(+),25	0.0979	0.5024	(+),41
16	Status: for construction	0.3208	0.6767	(+),41	0.3976	0.7106	(+),30	0.7372	0.7377	(+),25	0.3739	0.7004	(+),41
17	Status: unrealised	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.0000	(-),41
18	Status: under construction	0.7583	0.3988	(+),41	0.8905	0.4750	(+),30	0.6547	0.3273	(+),25	0.6942	0.3630	(+),41
19	Status: in use (n.m.)	0.9935	0.2244	(-),41	0.2269	0.3272	(+),30	1.0000	0.1685	(-),25	0.4764	0.5164	(+),41
50	Status: in use	0.5087	0.3506	(+),41	0.4816	0.4175	(+),30	0.5727	0.4147	(+),25	0.5995	0.4702	(+),41
5	Status: for demolition	1.0000	0.0000	(-),41	1.0000	0.0000	(-)'30	1.0000	0.0000	(-),25	1.0000	0.000	(-),41
53	Status: demolished	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.0000	(-),41
8	Status: not in use	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.0000	(-),41
24	Status: reconstruction	0.0002	0.5022	(-),41	0.0027	0.8534	(-),30	0.3984	0.9702	(-),25	0.0435	0.9699	(-),41
25	Status: illegitimate	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.0000	(-),41
26	Function: residential	0.1210	0.3135	(+),41	0.1028	0.2858	(+),30	0.2610	0.3267	(+),25	0.1421	0.3214	(+),41
27	Function: gathering	0.3774	0.3663	(-),41	0.6928	0.5775	(-),30	0.2452	0.1415	(-),25	0.3486	0.3444	(-),41
28	Function: prison	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.000	(-),41
29	Function: healthcare	0.3293	0.0000	(+),41	0.3337	0.0000	(+),30	1.0000	0.0000	(-),25	0.3293	0.000	(+),41
30	Function: factory	0.3325	0.5138	(+),41	0.6543	0.7281	(+),30	1.0000	0.0000	(-),25	0.6545	0.7254	(+),41
31	Function: office	0.7199	0.5393	(+),41	0.1806	0.1403	(+),30	0.1444	0.1754	(+),25	0.1556	0.1213	(+),41
32	Function: guesthouse	0.5684	0.2794	(+),41	1.0000	0.5190	(-),30	0.5557	0.5000	(-),25	0.6227	0.3233	(-),41
33	Function: education	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.000	(-),41
34	Function: sports	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.000	(-),41
35	Function: shops	0.5831	0.4044	(-),41	0.3077	0.2539	(-),30	0.3116	0.2287	(-),25	0.3301	0.2445	(-),41
36	Function: other	0.4087	0.5385	(+),41	0.0880	0.2217	(+),30	0.6319	0.4959	(+),25	0.1995	0.3468	(+),41
37	Green: tree cover	0.0009	0.6343	(+),41	0.0032	0.8044	(+),30	0.0030	0.6474	(+),25	0.0008	0.6550	(+),41
88	Green: bush cover	0.0021	0.6447	(+),41	0.0037	0.7327	(+),30	0.0043	0.5039	(+),25	0.0014	0.5736	(+),41
39	Green: grass cover	0.0059	0.6025	(+),41	0.0076	0.7746	(+),30	0.0232	0.5502	(+),25	0.0066	0.6237	(+),41
4	Noise pollution: total	0.0361	0.5953	(+),41	0.0724	0.6442	(+),30	0.0457	0.6329	(+),25	0.0322	0.6273	(+),41
4	Noise pollution: roads	0.0225	0.6516	(+),41	0.0575	0.6106	(+),30	0.0344	0.5958	(+),25	0.0236	0.5772	(+),41
4	Noise pollution: railways	0.3210	0.5351	(+),41	0.1624	0.5588	(+),30	0.4849	0.5193	(+),25	0.2352	0.4926	(+),41
4	Year constr.: mean	0.4718	0.5575	(+),41	0.7786	0.7035	(+),30	0.9768	0.6296	(+),25	0.8166	0.6294	(+),41
45	Landmarks: FSI	0.2279	0.2785	(+),41	0.6061	0.5035	(+),30	0.4076	0.4430	(+),25	0.4370	0.4500	(+),41
46	Landmarks: plot area	0.4737	0.3386	(+),41	0.5989	0.3515	(+),30	0.3125	0.2492	(+),25	0.3175	0.2377	(+),41
47	Landmarks: Year constr.	0.4147	0.3692	(+),41	0.6867	0.4673	(+),30	0.7609	0.4879	(+),25	0.5753	0.4770	(+),41
48	Landmarks: 1 criterion	0.3551	0.2411	(+),41	0.5429	0.3528	(+),30	0.6004	0.3523	(+),25	0.4576	0.3065	(+),41
49	Landmarks: 2 criteria	0.3141	0.2842	(+),41	1.0000	0.0000	(-)'30	0.3371	0.0000	(+),25	0.6545	0.000	(+),41
50	Landmarks: 3 criteria	1.0000	0.0000	(-),41	1.0000	0.0000	(-),30	1.0000	0.0000	(-),25	1.0000	0.0000	(-),41

Figure 1.106: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: non-standardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	
6	Year constr.: < 1945	0.8576	0.5749	(-),41	0.8418	0.5847	(-),31	0.8672	0.5752	(-),23	0.7664	0.6204	(-),41	
₽	Year constr.: 1946-1970	0.9830	0.5128	(-),41	0.4694	0.7701	(-),31	0.6174	0.7016	(-),23	0.3449	0.8303	(-),41	
÷	Year constr.: 1971-1985	0.7564	0.6255	(-),41	0.9771	0.5172	(+),31	0.9343	0.5422	(+),23	0.8257	0.5909	(+),41	
12	Year constr.: 1986-2000	0.6226	0.6922	(-),41	0.9942	0.5087	(-),31	0.5931	0.7115	(-),23	0.6685	0.6693	(-),41	
13	Year constr.: 2001-2022	0.3282	0.8383	(+),41	0.3808	0.8136	(+),31	0.1280	0.9388	(+),23	0.1663	0.9183	(+),41	
14	Traffic signals count	0.9006	0.5535	(+),41	0.2317	0.8869	(+),31	0.2653	0.8721	(+),23	0.2728	0.8657	(+),41	
15	Stairs count	0.8062	0.6016	(+),41	0.5711	0.7207	(-),31	0.9885	0.5058	(+),23	0.8116	0.5988	(-),41	
16	Status: for construction	0.6628	0.6767	(+),41	0.6018	0.7094	(+),31	0.3118	0.8546	(+),23	0.3827	0.8142	(+),41	
17	Status: unrealised	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	
18	Status: under construction	0.7976	0.6078	(-),41	0.9474	0.5351	(-),31	1.0000	0.0000	(+),23	0.9935	0.5033	(+),41	
19	Status: in use (n.m.)	0.4488	0.7810	(+),41	0.9781	0.5219	(+),31	1.0000	0.0000	(+),23	0.9836	0.5164	(+),41	
20	Status: in use	0.7789	0.6141	(-),41	0.7237	0.6434	(-),31	0.9203	0.5487	(-),23	0.8849	0.5612	(-),41	
21	Status: for demolition	1.0000	0.0000	(+),41	0.3332	0.8490	(+),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	
52	Status: demolished	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	
53	Status: not in use	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	
24	Status: reconstruction	0.8307	0.5889	(-),41	0.4579	0.7761	(-),31	0.2606	0.8754	(-),23	0.3037	0.8508	(-),41	
25	Status: illegitimate	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.000	(+),41	
26	Function: residential	0.6027	0.7021	(-),41	0.6217	0.6942	(-),31	0.7309	0.6434	(-),23	0.5739	0.7164	(-),41	
27	Function: gathering	0.7326	0.6386	(+),41	0.6711	0.6715	(-),31	0.5970	0.7155	(+),23	0.9067	0.5521	(-),41	
28	Function: prison	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	
29	Function: healthcare	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.000	(+),41	
30	Function: factory	1.0000	0.5138	(+),41	1.0000	0.0000	(+),31	0.3388	0.8516	(+),23	0.5684	0.7254	(+),41	
31	Function: office	0.9296	0.5393	(+),41	0.1273	0.9383	(-),31	0.7719	0.6236	(-),23	0.3405	0.8324	(-),41	
32	Function: guesthouse	0.5589	0.7301	(-),41	1.0000	0.5132	(+),31	0.3388	0.8516	(+),23	0.6467	0.6847	(+),41	
33	Function: education	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.000	(+),41	
34	Function: sports	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.000	(+),41	
35	Function: shops	0.7156	0.6460	(+),41	0.5124	0.7488	(+),31	0.5846	0.7162	(+),23	0.4699	0.7682	(+),41	
36	Function: other	0.9961	0.5058	(+),41	0.4992	0.7550	(-),31	0.6077	0.7041	(+),23	0.9421	0.5328	(+),41	
37	Green: tree cover	0.8638	0.5718	(+),41	0.8658	0.5726	(+),31	0.6924	0.6619	(+),23	0.5435	0.7313	(+),41	
38	Green: bush cover	0.8058	0.6007	(+),41	0.9215	0.5448	(-),31	0.8777	0.5698	(+),23	0.8202	0.5935	(+),41	
39	Green: grass cover	0.8930	0.5572	(+),41	0.8658	0.5726	(+),31	0.6603	0.6778	(+),23	0.6263	0.6901	(+),41	
6	Noise pollution: total	0.8857	0.5608	(+),41	0.8992	0.5560	(-),31	0.6763	0.6698	(+),23	0.6730	0.6669	(+),41	
41	Noise pollution: roads	0.7631	0.6220	(+),41	0.8108	0.6000	(-),31	0.6924	0.6619	(+),23	0.7844	0.6114	(+),41	
42	Noise pollution: railways	0.9778	0.5148	(+),41	0.8218	0.5946	(+),31	0.9474	0.5350	(+),23	0.9151	0.5461	(+),41	
4	Year constr.: mean	0.9145	0.5464	(+),41	0.7295	0.6406	(+),31	0.7914	0.6128	(+),23	0.7097	0.6486	(+),41	
45	Landmarks: FSI	0.7244	0.6423	(-),41	0.9796	0.5170	(+),31	0.8452	0.5883	(-),23	0.8270	0.5912	(-),41	
46	Landmarks: plot area	0.7443	0.6318	(-),41	0.5435	0.7334	(-),31	0.5659	0.7262	(-),23	0.5024	0.7522	(-),41	
47	Landmarks: Year constr.	0.7583	0.6258	(-),41	0.8835	0.5655	(-),31	0.7270	0.6483	(+),23	0.9387	0.5357	(-),41	
48	Landmarks: 1 criterion	0.5645	0.7212	(-),41	0.6140	0.6982	(-),31	0.8149	0.6021	(-),23	0.6168	0.6952	(-),41	
49	Landmarks: 2 criteria	0.5684	0.7254	(-),41	0.5700	0.7277	(-),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	
50	Landmarks: 3 criteria	1.0000	0.0000	(+),41	1.0000	0.0000	(+),31	1.0000	0.0000	(+),23	1.0000	0.0000	(+),41	

Figure 1.107: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: non-standardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most_stat	Most_coef,n	P([2] sometimes)	[2]_stat	[2]_coef,n	P([1] never)	[1]_stat	[1]_coef,n	P(Least)	Least_stat	Least_coef,n	_
6	Year constr.: < 1945	0.8207	0.5933	(-),41	0.8107	0.6004	(-),30	0.8282	0.5936	(-),25	0.8840	0.5617	(-),41	
₽	Year constr.: 1946-1970	0.7797	0.6143	(-),41	0.6078	0.7019	(-),30	0.7555	0.6313	(-),25	0.7985	0.6049	(-),41	
÷	Year constr.: 1971-1985	0.6801	0.6635	(-),41	0.5879	0.7112	(+),30	0.9102	0.5530	(-),25	0.9579	0.5249	(+),41	
12	Year constr.: 1986-2000	0.7200	0.6437	(-),41	0.9445	0.5339	(-),30	0.6188	0.6979	(-),25	0.5635	0.7216	(-),41	
13	Year constr.: 2001-2022	0.3403	0.8323	(+),41	0.1399	0.9321	(+),30	0.5776	0.7182	(+),25	0.3259	0.8394	(+),41	
14	Traffic signals count	0.9501	0.5288	(+),41	0.4890	0.7602	(+),30	0.0684	0.9673	(+),25	0.0782	0.9617	(+),41	
15	Stairs count	0.8062	0.6016	(+),41	0.7836	0.6155	(-),30	0.7593	0.6300	(+),25	0.9952	0.5024	(+),41	
16	Status: for construction	0.6628	0.6767	(+),41	0.6000	0.7106	(+),30	0.5557	0.7377	(+),25	0.6149	0.7004	(+),41	
17	Status: unrealised	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.0000	(+),41	
18	Status: under construction	0.7976	0.6078	(-),41	0.9501	0.5349	(-),30	0.6547	0.6860	(-),25	0.7260	0.6434	(-),41	
19	Status: in use (n.m.)	0.4488	0.7810	(+),41	0.6543	0.6839	(-),30	0.3371	0.8508	(+),25	0.9836	0.5164	(+),41	
20	Status: in use	0.7013	0.6528	(-),41	0.8350	0.5883	(-),30	0.8293	0.5930	(-),25	0.9405	0.5335	(-),41	
5	Status: for demolition	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.000	(+),41	
52	Status: demolished	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.0000	(+),41	
33	Status: not in use	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.0000	(+),41	
24	Status: reconstruction	0.9957	0.5022	(+),41	0.3015	0.8534	(-),30	0.0631	0.9702	(-),25	0.0617	0.9699	(-),41	
25	Status: illegitimate	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.0000	(+),41	
26	Function: residential	0.6271	0.6900	(-),41	0.5717	0.7193	(-),30	0.6535	0.6809	(-),25	0.6429	0.6821	(-),41	
27	Function: gathering	0.7326	0.6386	(+),41	0.8611	0.5775	(-),30	0.2830	0.8649	(+),25	0.6888	0.6604	(+),41	
28	Function: prison	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.000	(+),41	
29	Function: healthcare	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.000	(+),41	
8	Function: factory	1.0000	0.5138	(+),41	0.5702	0.7281	(+),30	1.0000	0.0000	(+),25	0.5684	0.7254	(+),41	
31	Function: office	0.9296	0.5393	(+),41	0.2806	0.8634	(-),30	0.3509	0.8303	(-),25	0.2426	0.8809	(-),41	
32	Function: guesthouse	0.5589	0.7301	(-),41	1.0000	0.5190	(-),30	1.0000	0.5164	(+),25	0.6467	0.6847	(+),41	
33	Function: education	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.000	(+),41	
34	Function: sports	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.000	(+),41	
35	Function: shops	0.8088	0.5996	(+),41	0.5077	0.7513	(+),30	0.4574	0.7779	(+),25	0.4891	0.7587	(+),41	
36	Function: other	0.9306	0.5385	(+),41	0.4433	0.7829	(-)'30	0.9919	0.5122	(-),25	0.6936	0.6568	(-),41	
37	Green: tree cover	0.7385	0.6343	(+),41	0.3993	0.8044	(+),30	0.7196	0.6474	(+),25	0.6969	0.6550	(+),41	
88	Green: bush cover	0.7176	0.6447	(+),41	0.5444	0.7327	(+),30	0.9923	0.5039	(+),25	0.8601	0.5736	(+),41	
39	Green: grass cover	0.8023	0.6025	(+),41	0.4597	0.7746	(+),30	0.9150	0.5502	(+),25	0.7596	0.6237	(+),41	
4	Noise pollution: total	0.8166	0.5953	(+),41	0.7227	0.6442	(+),30	0.7488	0.6329	(+),25	0.7525	0.6273	(+),41	
4	Noise pollution: roads	0.7037	0.6516	(+),41	0.7901	0.6106	(+),30	0.8234	0.5958	(+),25	0.8528	0.5772	(+),41	
4	Noise pollution: railways	0.9372	0.5351	(+),41	0.8941	0.5588	(+),30	0.9768	0.5193	(+),25	0.9852	0.5111	(-),41	
4	Year constr.: mean	0.8924	0.5575	(+),41	0.6033	0.7035	(+),30	0.7555	0.6296	(+),25	0.7483	0.6294	(+),41	
5	Landmarks: FSI	0.5570	0.7257	(-),41	0.9929	0.5035	(+),30	0.8859	0.5673	(-),25	0.9000	0.5547	(-),41	
46	Landmarks: plot area	0.6771	0.6653	(-),41	0.7029	0.6545	(-),30	0.4983	0.7586	(-),25	0.4754	0.7656	(-),41	
47	Landmarks: Year constr.	0.7384	0.6357	(-),41	0.9345	0.5400	(-),30	0.9757	0.5242	(-),25	0.9540	0.5281	(-),41	
8	Landmarks: 1 criterion	0.4821	0.7621	(-),41	0.7055	0.6530	(-),30	0.7047	0.6559	(-),25	0.6131	0.6970	(-),41	
49	Landmarks: 2 criteria	0.5684	0.7254	(-),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.0000	(+),41	
20	Landmarks: 3 criteria	1.0000	0.0000	(+),41	1.0000	0.0000	(+),30	1.0000	0.0000	(+),25	1.0000	0.0000	(+),41	

Figure 1.108: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: non-standardised, baseline: shortest path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2739	0.8631	wi(-),41	0.1515	0.9243	wi(-),31	0.1024	-1.7045	tt(-),23	0.0934	0.9533	wi(-),41
9	Year constr.: 1946-1970	0.4336	0.7832	wi(+),41	0.5276	-0.639	tt(-),31	0.7714	0.6143	wi(+),23	0.9408	0.5296	wi(+),41
Ξ	Year constr.: 1971-1985	0.5151	0.7424	wi(-),41	0.9444	0.5278	wi(-),31	0.2709	0.8645	wi(-),23	0.8207	0.5896	wi(-),41
5	Year constr.: 1986-2000	0.0132	-2.5938	tt(-),41	0.0015	0.9992	wi(-),31	0.0040	0.998	wi(-),23	0.0002	0.9999	wi(-),41
33	Year constr.: 2001-2022	0.0632	1.9107	tt(+),41	0.2453	1.1851	tt(+),31	0.0644	0.9678	wi(+),23	0.0261	0.9869	wi(+),41
4	Traffic signals count	0.0773	-1.8131	tt(-),41	0.9111	0.1126	tt(+),31	0.4231	0.7885	wi(+),23	0.8289	0.5855	wi(+),41
15	Stairs count	0.1334	-1.5321	tt(-),41	0.0314	-2.2571	tt(-),31	0.4825	0.7587	wi(-),23	0.0330	-2.2081	tt(-),41
16	Status: for construction	0.4468	0.7766	wi(-),41	0.7395	0.6303	wi(-),31	0.4828	0.7586	wi(+),23	0.9779	0.5111	wi(-),41
1	Status: unrealised	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
8	Status: under construction	0.7731	0.6134	wi(-),41	0.5359	0.7321	wi(-),31	1.0000	equal	n/a,23	0.7731	0.6134	wi(-),41
6	Status: in use (n.m.)	1.0000	0.5	wi(+),41	0.7299	0.6351	wi(-),31	1.0000	equal	n/a,23	0.7621	0.6189	wi(-),41
8	Status: in use	0.3340	0.833	wi(-),41	0.1036	0.9482	wi(-),31	0.0914	-1.7651	tt(-),23	0.0757	-1.8237	tt(-),41
5	Status: for demolition	1.0000	equal	n/a,41	0.7316	0.6342	wi(+),31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
ន	Status: demolished	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
ន	Status: not in use	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
54	Status: reconstruction	0.0004	3.897	tt(+),41	0.0126	0.9937	wi(+),31	0.1603	0.9198	wi(+),23	0.0218	0.9891	wi(+),41
52	Status: illegitimate	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
26	Function: residential	0.0020	0.999	wi(-),41	0.0004	0.9998	wi(-),31	0.0047	-3.1423	tt(-),23	0.0000	1.0	wi(-),41
27	Function: gathering	0.3993	0.8003	wi(+),41	0.7462	0.6269	wi(+),31	0.4503	0.7748	wi(+),23	0.5677	0.7161	wi(+),41
88	Function: prison	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
63	Function: healthcare	0.7630	0.6185	wi(-),41	0.7316	0.6342	wi(-),31	0.6949	0.6526	wi(-),23	0.7630	0.6185	wi(-),41
8	Function: factory	0.5872	0.7064	wi(-),41	0.7316	0.6342	wi(-),31	0.6949	0.6526	wi(-),23	0.7630	0.6185	wi(-),41
3	Function: office	0.9064	0.1184	tt(+),41	0.0224	-2.407	tt(-),31	0.2969	-1.0684	tt(-),23	0.1415	-1.5	tt(-),41
g	Function: guesthouse	0.7630	0.6185	wi(-),41	0.9913	0.5044	wi(+),31	0.6949	0.6526	wi(+),23	0.7621	0.6189	wi(+),41
33	Function: education	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
3	Function: sports	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
35	Function: shops	0.3257	0.995	tt(+),41	0.1348	1.537	tt(+),31	0.0900	0.955	wi(+),23	0.0293	0.9854	wi(+),41
36	Function: other	0.1113	0.9444	wi(-),41	0.0126	0.9937	wi(-),31	0.2123	-1.2844	tt(-),23	0.0477	0.9762	wi(-),41
37	Green: tree cover	0.0000	-5.8432	tt(-),41	0.0000	-6.1774	tt(-),31	0.0003	0.9998	wi(-),23	0.0000	-5.5964	tt(-),41
æ	Green: bush cover	0.0000	-6.0311	tt(-),41	0.0000	-6.4031	tt(-),31	0.0002	6666.0	wi(-),23	0.0000	1.0	wi(-),41
39	Green: grass cover	0.0000	-5.8629	tt(-),41	0.0000	-6.2997	tt(-),31	0.0021	-3.494	tt(-),23	0.0000	-5.5991	tt(-),41
ç	Noise pollution: total	0.0000	-7.7922	tt(-),41	0.0000	-8.0435	tt(-),31	0.0000	-5.0632	tt(-),23	0.0000	-7.8868	tt(-),41
÷	Noise pollution: roads	0.0000	-6.9788	tt(-),41	0.0000	-7.2244	tt(-),31	0.0001	-4.6929	tt(-),23	0.0000	1.0	wi(-),41
鉒	Noise pollution: railways	0.0002	0.9999	wi(-),41	0.0004	0.9998	wi(-),31	0.0358	-2.2369	tt(-),23	0.0000	1.0	wi(-),41
4	Year constr.: mean	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
\$	Landmarks: FSI	0.0635	0.9683	wi(-),41	0.4059	0.7971	wi(-),31	0.1604	0.9198	wi(-),23	0.1223	0.9389	wi(-),41
46	Landmarks: plot area	0.2027	0.8987	wi(-),41	0.3340	0.833	wi(-),31	0.1604	0.9198	wi(-),23	0.1715	0.9142	wi(-),41
41	Landmarks: Year constr.	0.3993	0.8003	wi(-),41	0.3579	0.8211	wi(-),31	0.2752	0.8624	wi(-),23	0.1673	0.9164	wi(-),41
\$	Landmarks: 1 criterion	0.0790	0.9605	wi(-),41	0.2523	0.8738	wi(-),31	0.0901	0.9549	wi(-),23	0.0681	0.966	wi(-),41
4 9	Landmarks: 2 criteria	0.5555	0.7222	wi(-),41	0.5053	0.7473	wi(-),31	0.6949	0.6526	wi(-),23	0.7630	0.6185	wi(-),41
20	Landmarks: 3 criteria	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41

Figure 1.109: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: stan-dardised, baseline: least directional turns path, direction: access
	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.2626	0.8687	wi(-),41	0.0118	0.9941	wi(-),30	0.2909	0.8545	wi(-),25	0.1496	0.9252	wi(-),41
₽	Year constr.: 1946-1970	0.4831	0.7584	wi(+),41	0.7889	-0.2703	tt(-),30	0.2112	0.8944	wi(+),25	0.3901	0.805	wi(+),41
÷	Year constr.: 1971-1985	0.4154	0.7923	wi(-),41	0.8762	0.5619	wi(+),30	0.9889	0.5055	wi(-),25	0.4064	0.7968	wi(-),41
12	Year constr.: 1986-2000	0.0144	-2.5585	tt(-),41	0.0011	0.9994	wi(-),30	0.0025	0.9987	wi(-),25	0.0002	0.9999	wi(-),41
13	Year constr.: 2001-2022	0.0644	1.9021	tt(+),41	0.3070	0.8465	wi(+),30	0.1149	1.6358	tt(+),25	0.0363	2.166	tt(+),41
4	Traffic signals count	0.0747	-1.8303	tt(-),41	0.6949	0.6525	wi(-),30	0.2447	0.8777	wi(+),25	0.3580	0.821	wi(+),41
15	Stairs count	0.1334	-1.5321	tt(-),41	0.0314	-2.2622	tt(-),30	0.1850	-1.3646	tt(-),25	0.0567	-1.9622	tt(-),41
16	Status: for construction	0.4468	0.7766	wi(-),41	0.7358	0.6321	wi(-),30	1.0000	0.5	wi(+),25	0.7695	0.6153	wi(-),41
17	Status: unrealised	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
18	Status: under construction	0.7731	0.6134	wi(-),41	0.5311	0.7345	wi(-),30	0.7055	0.6473	wi(-),25	0.5677	0.7161	wi(-),41
19	Status: in use (n.m.)	1.0000	0.5	wi(+),41	0.3251	0.8375	wi(-),30	0.7055	0.6473	wi(+),25	0.7621	0.6189	wi(-),41
20	Status: in use	0.1795	0.9102	wi(-),41	0.0765	-1.837	tt(-),30	0.2414	0.8793	wi(-),25	0.0944	0.9528	wi(-),41
51	Status: for demolition	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
22	Status: demolished	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
23	Status: not in use	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
24	Status: reconstruction	0.0002	4.1319	tt(+),41	0.0218	0.9891	wi(+),30	0.4953	0.7524	wi(+),25	0.1171	0.9414	wi(+),41
25	Status: illegitimate	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
26	Function: residential	0.0009	0.9995	wi(-),41	0.0001	0.9999	wi(-),30	0.0010	0.9995	wi(-),25	0.0000	1.0	wi(-),41
27	Function: gathering	0.3993	0.8003	wi(+),41	0.7259	0.6371	wi(+),30	0.1728	0.9136	wi(+),25	0.2760	0.862	wi(+),41
28	Function: prison	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
29	Function: healthcare	0.7630	0.6185	wi(-),41	0.7277	0.6361	wi(-),30	1.0000	equal	n/a,25	0.7630	0.6185	wi(-),41
30	Function: factory	0.5872	0.7064	wi(-),41	0.7277	0.6361	wi(-),30	1.0000	equal	n/a,25	0.7630	0.6185	wi(-),41
31	Function: office	0.9064	0.1184	tt(+),41	0.1284	-1.5649	tt(-),30	0.0589	-1.9834	tt(-),25	0.0813	-1.7881	tt(-),41
32	Function: guesthouse	0.7630	0.6185	wi(-),41	0.9909	0.5046	wi(+),30	0.7055	0.6473	wi(+),25	0.7621	0.6189	wi(+),41
33	Function: education	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
34	Function: sports	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
35	Function: shops	0.3655	0.9153	tt(+),41	0.0802	1.8129	tt(+),30	0.1769	0.9115	wi(+),25	0.0648	1.8988	tt(+),41
36	Function: other	0.1188	0.9406	wi(-),41	0.0080	0.996	wi(-),30	0.3174	0.8413	wi(-),25	0.0540	0.973	wi(-),41
37	Green: tree cover	0.0000	-5.7778	tt(-),41	0.0000	-5.1336	tt(-),30	0.0001	-4.9188	tt(-),25	0.0000	-5.9065	tt(-),41
38	Green: bush cover	0.0000	-5.8993	tt(-),41	0.0000	-5.4922	tt(-),30	0.0000	1.0	wi(-),25	0.0000	1.0	wi(-),41
39	Green: grass cover	0.0000	-5.6882	tt(-),41	0.0000	-5.8213	tt(-),30	0.0000	-5.2979	tt(-),25	0.0000	-6.5213	tt(-),41
4	Noise pollution: total	0.0000	-7.6249	tt(-),41	0.0000	-6.7933	tt(-),30	0.0000	-7.603	tt(-),25	0.0000	-8.3061	tt(-),41
41	Noise pollution: roads	0.0000	-6.8583	tt(-),41	0.0000	-5.7895	tt(-),30	0.0000	-5.5478	tt(-),25	0.0000	-6.6505	tt(-),41
42	Noise pollution: railways	0.0003	0.9998	wi(-),41	0.0001	-4.7122	tt(-),30	0.1190	-1.6166	tt(-),25	0.0002	0.9999	wi(-),41
4	Year constr.: mean	1.0000	equal	n/a,41	0.1811	0.9095	wi(-),30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
45	Landmarks: FSI	0.0376	0.9812	wi(-),41	0.1539	0.9231	wi(-),30	0.1728	0.9136	wi(-),25	0.0791	0.9605	wi(-),41
46	Landmarks: plot area	0.0803	0.9599	wi(-),41	0.3298	0.8351	wi(-),30	0660.0	0.9505	wi(-),25	0.1079	0.946	wi(-),41
47	Landmarks: Year constr.	0.2730	0.8635	wi(-),41	0.2023	0.8989	wi(-),30	0.7055	0.6473	wi(-),25	0.1673	0.9164	wi(-),41
48	Landmarks: 1 criterion	0.0165	0.9918	wi(-),41	0.0783	0.9609	wi(-),30	0.1728	0.9136	wi(-),25	0.0660	0.967	wi(-),41
49	Landmarks: 2 criteria	0.5555	0.7222	wi(-),41	1.0000	equal	n/a,30	0.7055	0.6473	wi(-),25	0.7630	0.6185	wi(-),41
50	Landmarks: 3 criteria	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41

Figure 1.110: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: stan-dardised, baseline: least directional turns path, direction: egress

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.1326	0.9337	wi(-),41	0.1155	0.9423	wi(-),31	0.4001	-0.8581	tt(-),23	0.1032	-1.6676	tt(-),41
우	Year constr.: 1946-1970	0.9838	0.5081	wi(-),41	0.3617	-0.9262	tt(-),31	0.4920	0.754	wi(-),23	0.2968	0.8516	wi(-),41
Ŧ	Year constr.: 1971-1985	0.2922	0.8539	wi(-),41	0.5965	0.7018	wi(+),31	0.9479	0.526	wi(+),23	0.4126	0.7937	wi(+),41
12	Year constr.: 1986-2000	0.5746	0.7127	wi(-),41	0.3045	-1.0447	tt(-),31	0.3145	0.8428	wi(-),23	0.1577	-1.4399	tt(-),41
13	Year constr.: 2001-2022	0.1839	0.9081	wi(+),41	0.8259	0.587	wi(+),31	0.0931	0.9535	wi(+),23	0.1725	0.9138	wi(+),41
4	Traffic signals count	0.3640	0.818	wi(+),41	0.0499	2.0429	tt(+),31	0.0914	1.7652	tt(+),23	0.0848	1.7674	tt(+),41
15	Stairs count	0.7731	0.6134	wi(+),41	0.5053	0.7473	wi(-),31	1.0000	0.5	wi(+),23	0.7731	0.6134	wi(-),41
16	Status: for construction	0.7630	0.6185	wi(+),41	0.7299	0.6351	wi(+),31	0.4503	0.7748	wi(+),23	0.5629	0.7186	wi(+),41
17	Status: unrealised	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
18	Status: under construction	0.7842	0.6079	wi(+),41	0.9830	0.5085	wi(-),31	1.0000	equal	n/a,23	0.7842	0.6079	wi(+),41
19	Status: in use (n.m.)	0.5555	0.7222	wi(+),41	0.9913	0.5044	wi(+),31	1.0000	equal	n/a,23	0.9942	0.5029	wi(+),41
20	Status: in use	0.3648	0.8176	wi(-),41	0.0860	0.957	wi(-),31	0.2837	0.8582	wi(-),23	0.1428	0.9286	wi(-),41
5	Status: for demolition	1.0000	equal	n/a,41	0.7316	0.6342	wi(+),31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
53	Status: demolished	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
33	Status: not in use	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
24	Status: reconstruction	0.7769	0.6115	wi(-),41	0.3658	0.8171	wi(-),31	0.1300	-1.5732	tt(-),23	0.1147	-1.6126	tt(-),41
25	Status: illegitimate	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
26	Function: residential	0.4808	0.7596	wi(-),41	0.0729	0.9635	wi(-),31	0.0740	0.963	wi(-),23	0.0208	0.9896	wi(-),41
27	Function: gathering	0.7715	0.6142	wi(+),41	0.9749	0.5125	wi(-),31	0.4503	0.7748	wi(+),23	0.6080	0.696	wi(+),41
28	Function: prison	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
29	Function: healthcare	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
30	Function: factory	0.9942	0.5029	wi(+),41	1.0000	equal	n/a,31	0.6949	0.6526	wi(+),23	0.7630	0.6185	wi(+),41
31	Function: office	0.8017	0.5992	wi(+),41	0.0281	-2.3081	tt(-),31	0.6040	-0.5263	tt(-),23	0.1677	-1.4052	tt(-),41
32	Function: guesthouse	0.7630	0.6185	wi(-),41	0.7316	0.6342	wi(+),31	0.6949	0.6526	wi(+),23	0.5555	0.7222	wi(+),41
33	Function: education	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
34	Function: sports	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
35	Function: shops	0.9509	0.5246	wi(+),41	0.1415	1.5099	tt(+),31	0.3167	0.8416	wi(+),23	0.1199	1.589	tt(+),41
36	Function: other	0.7830	0.6085	wi(+),41	0.3859	0.8071	wi(-),31	0.5650	0.7175	wi(+),23	0.7897	0.6051	wi(+),41
37	Green: tree cover	0.1707	0.9147	wi(+),41	0.7395	0.3356	tt(+),31	0.2581	0.8709	wi(+),23	0.0901	1.737	tt(+),41
8	Green: bush cover	0.4066	0.7967	wi(+),41	0.9922	0.5039	wi(-),31	0.2215	0.8893	wi(+),23	0.2473	1.1741	tt(+),41
39	Green: grass cover	0.4066	0.7967	wi(+),41	0.4157	0.7922	wi(+),31	0.1181	1.6264	tt(+),23	0.0462	2.0573	tt(+),41
6	Noise pollution: total	0.1877	0.9061	wi(+),41	0.2851	0.8574	wi(+),31	0.0790	1.8419	tt(+),23	0.0249	2.331	tt(+),41
4	Noise pollution: roads	0.1877	0.9061	wi(+),41	0.6590	0.6705	wi(+),31	0.0096	2.8389	tt(+),23	0.0362	2.1679	tt(+),41
42	Noise pollution: railways	0.5006	0.7497	wi(+),41	0.2678	0.8661	wi(+),31	0.3754	0.8123	wi(+),23	0.3667	0.8167	wi(+),41
4	Year constr.: mean	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
45	Landmarks: FSI	0.4153	0.7923	wi(-),41	0.7916	0.6042	wi(-),31	0.9740	0.513	wi(-),23	0.7802	0.6099	wi(-),41
46	Landmarks: plot area	0.4305	0.7848	wi(-),41	0.5366	0.7317	wi(-),31	0.6915	0.6542	wi(-),23	0.4025	0.7987	wi(-),41
47	Landmarks: Year constr.	0.5555	0.7222	wi(-),41	0.3690	0.8155	wi(-),31	0.7161	0.642	wi(+),23	0.5884	0.7058	wi(-),41
48	Landmarks: 1 criterion	0.2891	0.8555	wi(-),41	0.2654	0.8673	wi(-),31	0.7105	0.6448	wi(-),23	0.3078	0.8461	wi(-),41
49	Landmarks: 2 criteria	0.7630	0.6185	wi(-),41	0.7316	0.6342	wi(-),31	1.0000	equal	n/a,23	1.0000	equal	n/a,41
20	Landmarks: 3 criteria	1.0000	equal	n/a,41	1.0000	equal	n/a,31	1.0000	equal	n/a,23	1.0000	equal	n/a,41

Figure 1.111: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: stan-dardised, baseline: shortest path, direction: access

	Variables	P(Most)	Most stat	Most coef,n	P([2] sometimes)	[2] stat	[2] coef,n	P([1] never)	[1] stat	[1] coef,n	P(Least)	Least stat	Least coef,n
6	Year constr.: < 1945	0.0511	0.9745	wi(-),41	0.1748	-1.3911	tt(-),30	0.0948	0.9526	wi(-),25	0.1533	0.9233	wi(-),41
우	Year constr.: 1946-1970	0.6019	0.699	wi(-),41	0.5596	-0.5902	tt(-),30	0.9434	0.5283	wi(-),25	0.9034	0.5483	wi(+),41
Ŧ	Year constr.: 1971-1985	0.1274	0.9363	wi(-),41	0.5030	0.7485	wi(+),30	1.0000	0.5	wi(+),25	0.9558	0.5221	wi(+),41
12	Year constr.: 1986-2000	0.9448	0.5276	wi(-),41	0.2474	-1.1804	tt(-),30	0.3291	0.8355	wi(-),25	0.3875	0.8063	wi(-),41
13	Year constr.: 2001-2022	0.1839	0.9081	wi(+),41	0.4223	0.7889	wi(+),30	0.2427	1.1979	tt(+),25	0.4967	0.7517	wi(+),41
4	Traffic signals count	0.4917	0.7542	wi(+),41	0.0503	0.9749	wi(+),30	0.0228	2.4337	tt(+),25	0.0093	2.7314	tt(+),41
15	Stairs count	0.7731	0.6134	wi(+),41	0.7277	0.6361	wi(-),30	0.6639	0.4399	tt(+),25	1.0000	0.5	wi(+),41
16	Status: for construction	0.7630	0.6185	wi(+),41	0.7259	0.6371	wi(+),30	0.7055	0.6473	wi(+),25	0.7621	0.6189	wi(+),41
17	Status: unrealised	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
18	Status: under construction	0.7842	0.6079	wi(+),41	0.9822	0.5089	wi(-),30	0.7055	0.6473	wi(-),25	0.9772	0.5114	wi(-),41
19	Status: in use (n.m.)	0.5555	0.7222	wi(+),41	0.7277	0.6361	wi(-),30	0.7055	0.6473	wi(+),25	0.9942	0.5029	wi(+),41
20	Status: in use	0.0808	0.9596	wi(-),41	0.1149	0.9425	wi(-),30	0.0513	0.9744	wi(-),25	0.1081	0.9459	wi(-),41
5	Status: for demolition	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
3	Status: demolished	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
33	Status: not in use	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
24	Status: reconstruction	1.0000	0.5	wi(+),41	0.2108	0.8946	wi(-),30	0.0111	-2.753	tt(-),25	0.0398	0.9801	wi(-),41
25	Status: illegitimate	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
26	Function: residential	0.2509	0.8745	wi(-),41	0.1273	-1.5697	tt(-),30	0.0182	0.9909	wi(-),25	0.0389	0.9806	wi(-),41
27	Function: gathering	0.7715	0.6142	wi(+),41	0.9737	0.5131	wi(-),30	0.1728	0.9136	wi(+),25	0.3117	0.8442	wi(+),41
28	Function: prison	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
29	Function: healthcare	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
33	Function: factory	0.9942	0.5029	wi(+),41	0.7277	0.6361	wi(+),30	1.0000	equal	n/a,25	0.7630	0.6185	wi(+),41
3	Function: office	0.8017	0.5992	wi(+),41	0.1557	-1.4575	tt(-),30	0.1779	-1.388	tt(-),25	0.0969	-1.7002	tt(-),41
32	Function: guesthouse	0.7630	0.6185	wi(-),41	0.9909	0.5046	wi(-),30	0.7055	0.6473	wi(+),25	0.5555	0.7222	wi(+),41
33	Function: education	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
34	Function: sports	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
35	Function: shops	0.9618	0.5191	wi(+),41	0.1415	1.5113	tt(+),30	0.2949	0.8525	wi(+),25	0.1175	1.6	tt(+),41
36	Function: other	0.7830	0.6085	wi(+),41	0.1895	0.9053	wi(-),30	0.9890	0.5055	wi(-),25	0.6980	0.651	wi(-),41
37	Green: tree cover	0.0420	0.979	wi(+),41	0.0182	2.5035	tt(+),30	0.9202	-0.1012	tt(-),25	0.3696	0.9075	tt(+),41
8	Green: bush cover	0.0704	0.9648	wi(+),41	0.0757	1.8421	tt(+),30	0.9597	0.051	tt(+),25	0.4012	0.8486	tt(+),41
39	Green: grass cover	0.0645	0.9678	wi(+),41	0.0044	3.0895	tt(+),30	0.7604	0.3084	tt(+),25	0.1702	1.3967	tt(+),41
4	Noise pollution: total	0.0704	0.9648	wi(+),41	0.0077	2.8623	tt(+),30	0.3888	0.8056	wi(+),25	0.0609	0.9695	wi(+),41
4	Noise pollution: roads	0.0746	0.9627	wi(+),41	0.0594	1.9621	tt(+),30	0.1121	0.944	wi(+),25	0.0221	0.989	wi(+),41
42	Noise pollution: railways	0.2307	0.8846	wi(+),41	0.2795	0.8602	wi(+),30	0.7670	0.6165	wi(+),25	0.6452	0.6774	wi(+),41
4	Year constr.: mean	1.0000	equal	n/a,41	0.6709	0.6645	wi(+),30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
45	Landmarks: FSI	0.2591	0.8704	wi(-),41	1.0000	0.5	wi(+),30	0.5140	0.743	wi(-),25	0.6227	0.6887	wi(-),41
46	Landmarks: plot area	0.1944	0.9028	wi(-),41	0.7397	0.6301	wi(-),30	0.1728	0.9136	wi(-),25	0.3947	0.8026	wi(-),41
47	Landmarks: Year constr.	0.3871	0.8064	wi(-),41	0.3638	0.8181	wi(-),30	0.4658	0.7671	wi(-),25	0.4154	0.7923	wi(-),41
48	Landmarks: 1 criterion	0.1110	0.9445	wi(-),41	0.4020	0.799	wi(-),30	0.2061	0.8969	wi(-),25	0.3243	0.8379	wi(-),41
49	Landmarks: 2 criteria	0.7630	0.6185	wi(-),41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41
50	Landmarks: 3 criteria	1.0000	equal	n/a,41	1.0000	equal	n/a,30	1.0000	equal	n/a,25	1.0000	equal	n/a,41

Figure 1.112: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 3, data: stan-dardised, baseline: shortest path, direction: egress

Chapter 2

Route aggregate analysis results: Sub-question 4

- 2.1 Full sample results
- 2.2 Interaction effect results

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.8875	0.5573	(+),98	0.8325	0.5884	(+),35	0.7524	0.6248	(+),97	0.6886	0.6595	(+),38
1	Year constr.: 1946-1970	0.6680	0.6669	(-),98	0.8179	0.5956	(+),35	0.9078	0.5472	(-),97	0.7456	0.6311	(-),38
2	Year constr.: 1971-1985	0.9405	0.5308	(-),98	0.7430	0.6332	(+),35	0.6863	0.6578	(-),97	0.9445	0.5320	(-),38
3	Year constr.: 1986-2000	0.4851	0.7583	(-),98	0.8670	0.5712	(+),35	0.3295	0.8359	(-),97	0.8329	0.5877	(-),38
4	Year constr.: 2001-2022	0.8095	0.5963	(-),98	0.2084	0.8979	(+),35	0.7259	0.6380	(-),97	0.2412	0.8815	(+),38
5	Traffic signals count	0.1200	0.9403	(-),98	0.4629	0.7722	(-),35	0.1758	0.9125	(-),97	0.6574	0.6751	(-),38
6	Stairs count	0.8624	0.5702	(-),98	0.7669	0.6232	(-),35	0.7247	0.6390	(-),97	0.3946	0.8069	(-),38
7	Status: for construction	0.3750	0.8137	(-),98	0.6516	0.6823	(+),35	0.4871	0.7579	(-),97	0.9823	0.5177	(+),38
8	Status: unrealised	1.0000	0.0000	(-),98	1.0000	0.0000	(-),35	1.0000	0.0000	(-),97	1.0000	0.0000	(-),38
9	Status: under construction	0.9522	0.5258	(+).98	0.6898	0.6619	(+).35	0.8906	0.5566	(-).97	0.6710	0.6706	(+).38
10	Status: in use (n.m.)	0.3028	0.8496	(+).98	0.3169	0.8454	(+).35	0.1361	0.9325	(+).97	0.2677	0.8694	(+).38
11	Status: in use	0.8928	0.5546	(-) 98	0.6766	0.6660	(+) 35	0.9694	0.5163	(-) 97	0.7631	0.6224	(+) 38
12	Status: for demolition	0.0020	0.5040	(-),98	0.3135	0.8502	(+),00	0.6648	0.6710	(+) 97	0.0818	0.9617	(+),38
12	Status: domalished	1.0000	0.0000	(-),50	1.0000	0.0002	() 25	1 0000	0.0000	() 07	1.0000	0.0000	(+),30
13	Status, demonshed	1.0000	0.0000	(-),98	1.0000	0.0000	(-),35	1.0000	0.0000	(-),97	1.0000	0.0000	(-),38
14	Status: not in use	1.0000	0.0000	(-),98	1.0000	0.0000	(-),35	1.0000	0.0000	(-),97	1.0000	0.0000	(-),38
15	Status: reconstruction	0.2169	0.8922	(+),98	0.4628	0.7737	(+),35	0.2845	0868.0	(+),97	0.6680	0.6712	(+),38
16	Status: illegitimate	1.0000	0.0000	(-),98	1.0000	0.0000	(-),35	1.0000	0.0000	(-),97	1.0000	0.0000	(-),38
17	Function: residential	0.9545	0.5238	(-),98	0.7733	0.6178	(+),35	0.9794	0.5113	(+),97	0.9543	0.5270	(+),38
18	Function: gathering	0.5693	0.7163	(-),98	0.7334	0.6381	(+),35	0.6745	0.6638	(-),97	0.4118	0.7974	(+),38
19	Function: prison	1.0000	0.0000	(-),98	1.0000	0.0000	(-),35	1.0000	0.0000	(-),97	1.0000	0.0000	(-),38
20	Function: healthcare	0.6953	0.6553	(+),98	0.3067	0.8535	(+),35	0.6952	0.6553	(+),97	0.3076	0.8525	(+),38
21	Function: factory	0.8790	0.5619	(+),98	0.6781	0.6663	(+),35	0.7508	0.6259	(-),97	0.9367	0.5369	(-),38
22	Function: office	0.7706	0.6157	(+),98	0.6594	0.6749	(+),35	0.8358	0.5832	(-),97	0.6953	0.6566	(+),38
23	Function: guesthouse	0.7012	0.6512	(+),98	0.3028	0.8533	(+),35	0.8176	0.5931	(+),97	0.4762	0.7670	(+),38
24	Function: education	0.1180	0.9417	(-),98	0.6357	0.6915	(-),35	0.5022	0.7510	(-),97	0.6785	0.6683	(-),38
25	Function: sports	0.3223	0.8438	(+),98	1.0000	0.0000	(-),35	0.3223	0.8438	(+),97	1.0000	0.0000	(-),38
26	Function: shops	0.2474	0.8769	(-),98	0.9108	0.5496	(-),35	0.3899	0.8058	(-),97	0.3146	0.8455	(+),38
27	Function: other	0.9738	0.5141	(-),98	0.9854	0.5121	(+),35	0.8685	0.5668	(-),97	0.6881	0.6599	(-),38
28	Green: tree cover	0.8305	0.5857	(-),98	0.8925	0.5584	(-),35	0.7013	0.6503	(-),97	0.7553	0.6263	(-),38
29	Green: bush cover	0.8978	0.5521	(+),98	0.7114	0.6487	(+),35	0.9084	0.5468	(-),97	0.8598	0.5742	(+),38
30	Green: grass cover	0.8819	0.5601	(-),98	0.9391	0.5351	(+),35	0.6880	0.6569	(-),97	0.9008	0.5537	(-),38
31	Noise pollution: total	0.9598	0.5211	(-),98	0.8463	0.5814	(-),35	0.9104	0.5458	(-),97	0.8435	0.5823	(-),38
32	Noise pollution: roads	0.8819	0.5601	(+),98	0.6259	0.6912	(-),35	0.8339	0.5841	(+),97	0.8354	0.5864	(-),38
33	Noise pollution: railways	0.7702	0.6159	(+),98	0.6767	0.6659	(+),35	0.7013	0.6503	(+),97	0.7317	0.6380	(+),38
34	Subjective: fastest	0.0000	1.0000	(+),98	0.0000	1.0000	(+),35	0.0000	1.0000	(+),97	0.0000	1.0000	(+),38
35	Subjective: easy to remember	0.0000	1.0000	(+),98	0.0018	0.9991	(+),35	0.0000	1.0000	(+),97	0.0036	0.9983	(+),38
36	Subjective: no obstructions	0.0166	0.9918	(+),98	0.1352	0.9340	(+),35	0.0344	0.9829	(+),97	0.3011	0.8520	(+),38
37	Subjective: steep slopes	0.2369	0.8820	(-),98	0.4425	0.7824	(-),35	0.2216	0.8897	(-),97	0.6843	0.6618	(-),38
38	Subjective: lot of seating	0.0012	0.9994	(-),98	0.5415	0.7333	(-),35	0.0067	0.9967	(-),97	0.5030	0.7520	(-),38
39	Subjective: weather protected	0.0376	0.9813	(-).98	0.3022	0.8519	(-).35	0.0279	0.9862	(-).97	0.1115	0.9455	(-).38
40	Subjective: safe vs.traffic	0.1306	0.9350	(+).98	0.3541	0.8262	(+).35	0.0188	0.9907	(+).97	0.1799	0.9119	(+).38
41	Subjective: safe vs. social risk	0.0067	0.9967	(+).98	0.0638	0.9690	(+).35	0.0279	0.9861	(+).97	0.0678	0.9669	(+).38
42	Subjective: like when dark	0.0000	1 0000	(+) 98	0.0309	0.9850	(+) 35	0.0000	1 0000	(+) 97	0.0134	0 9935	(+) 38
42	Subjective: well lit	0.0217	0.0802	(+) 98	0.1255	0.0000	(1),00	0.0300	0.9802	(+) 97	0.2676	0.0000	(1),38
40	Subjective, wen in	0.0217	0.0002	(+),98	0.1255	0.5300	(+),00	0.0399	0.0048	(+),07	0.2070	0.0000	(+),30
44	Subjective. Other people	0.0195	0.9903	(+),98	0.0490	0.0790	(+),35	0.0105	0.9946	(+),97	0.2235	0.8903	(+),38
45	Subjective: well maintained	0.0871	0.9567	(+),98	0.0192	0.9908	(+),35	0.1701	0.9154	(+),97	0.3302	0.8377	(+),38
46	Year constr.: mean	0.7866	0.6077	(-),98	0.7961	0.6065	(+),35	0.6297	0.6861	(-),97	0.9544	0.5269	(+),38
47	Landmarks: FSI	0.6452	0.6784	(-),98	0.9241	0.5430	(-),35	0.7952	0.6035	(-),97	0.9261	0.5416	(-),38
48	Landmarks: plot area	0.5016	0.7501	(-),98	0.6129	0.6979	(-),35	0.6369	0.6825	(-),97	0.7427	0.6328	(-),38
49	Landmarks: Year constr.	0.7349	0.6337	(-),98	0.9793	0.5155	(+),35	0.9438	0.5293	(-),97	0.9009	0.5545	(+),38
50	Landmarks: 1 criterion	0.3252	0.8380	(-),98	0.4829	0.7622	(-),35	0.4280	0.7868	(-),97	0.5127	0.7470	(-),38
51	Landmarks: 2 criteria	0.6969	0.6532	(-),98	0.7666	0.6238	(-),35	0.8199	0.5919	(-),97	0.7482	0.6337	(+),38
52	Landmarks: 3 criteria	1.0000	0.0000	(-),98	1.0000	0.0000	(-),35	1.0000	0.0000	(-),97	1.0000	0.0000	(-),38

Figure 2.1: Raw results for route aggregate analysis, sample: full, sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.3531	0.8234	wi(-),93	0.5254	0.7373	wi(-),33	0.4502	0.7749	wi(-),93	0.5136	0.7432	wi(-),36
1	Year constr.: 1946-1970	0.5461	0.273	wi(+),95	0.6467	0.3234	wi(+),33	0.6696	0.6652	wi(-),93	0.5577	0.2789	wi(+),34
2	Year constr.: 1971-1985	0.7109	0.6446	wi(-),93	0.1618	0.9191	wi(-),33	0.7978	0.3989	wi(+),94	0.6549	0.3274	wi(+),34
3	Year constr.: 1986-2000	0.6165	0.3082	wi(+),94	0.4347	0.7826	wi(-),33	0.7258	0.3629	wi(+),92	0.8092	0.4046	wi(+),36
4	Year constr.: 2001-2022	0.3411	0.1706	wi(+),94	0.3425	0.8288	wi(-),33	0.8710	0.4355	wi(+),93	0.0618	0.9691	wi(-),36
5	Traffic signals count	0.0225	0.0113	wi(+),95	0.1214	0.0607	wi(+),32	0.0379	0.0189	wi(+),94	0.3494	0.1747	wi(+),36
6	Stairs count	0.8518	0.4259	wi(+),95	1.0000	equal	n/a,31	1.0000	equal	n/a,86	1.0000	equal	n/a,35
7	Status: for construction	0.8330	0.4165	wi(+),87	1.0000	equal	n/a,31	0.8339	0.417	wi(+),88	1.0000	equal	n/a,35
8	Status: unrealised	1.0000	equal	n/a,95	1.0000	equal	n/a,34	1.0000	equal	n/a,94	1.0000	equal	n/a,37
9	Status: under construction	0.6767	0.6617	wi(-),87	0.7811	0.6095	wi(-),34	0.5361	0.7319	wi(-),87	0.5221	0.7389	wi(-),34
10	Status: in use (n.m.)	0.9981	0.5009	wi(-),88	0.5567	0.7217	wi(-),34	0.9981	0.501	wi(-),87	0.7389	0.3694	wi(+),33
11	Status: in use	0.8311	0.4155	wi(+),94	0.5809	-0.5575	tt(-),34	0.9379	0.4689	wi(+),92	0.9819	0.491	wi(+),37
12	Status: for demolition	1.0000	equal	n/a,89	0.5432	0.7284	wi(-),34	1.0000	equal	n/a,89	1.0000	equal	n/a,34
13	Status: demolished	1.0000	equal	n/a,95	1.0000	equal	n/a,34	1.0000	equal	n/a,94	1.0000	equal	n/a,37
14	Status: not in use	1.0000	equal	n/a,95	1.0000	equal	n/a,34	1.0000	equal	n/a,94	1.0000	equal	n/a,37
15	Status: reconstruction	0.2290	0.8855	wi(-),95	0.5263	0.7369	wi(-),34	0.3682	0.8159	wi(-),94	0.6810	-0.4145	tt(-),37
16	Status: illegitimate	1.0000	equal	n/a,95	1.0000	equal	n/a,34	1.0000	equal	n/a,94	1.0000	equal	n/a,37
17	Function: residential	0.8245	0.4122	wi(+),90	0.8465	-0.1952	tt(-),33	0.9755	0.4877	wi(+),89	0.8414	0.2016	tt(+),35
18	Function: gathering	0.3222	0.9953	tt(+),95	0.8628	0.1742	tt(+),34	0.4300	0.7927	tt(+),94	0.4066	-0.8398	tt(-),37
19	Function: prison	1.0000	equal	n/a,95	1.0000	equal	n/a,34	1.0000	equal	n/a,94	1.0000	equal	n/a,37
20	Function: healthcare	1.0000	equal	n/a,90	1.0000	equal	n/a,32	1.0000	equal	n/a,90	1.0000	equal	n/a,35
21	Function: factory	0.8333	0.5834	wi(-),95	0.3089	-1.0335	tt(-),34	0.8639	0.432	wi(+),94	0.8349	0.2099	tt(+),37
22	Function: office	0.6324	-0.4799	tt(-),95	0.5748	0.7126	wi(-),34	0.9552	-0.0563	tt(-),94	0.8644	0.4322	wi(+),34
23	Function: guesthouse	0.2426	0.8787	wi(-),90	0.1746	0.9127	wi(-),34	0.5667	0.7167	wi(-),90	0.7761	0.6119	wi(-),35
24	Function: education	0.8339	0.417	WI(+),88	0.7316	0.3658	WI(+),31	0.8339	0.417	WI(+),88	0.5854	0.2927	WI(+),37
25	Function: sports	1.0000	equal	n/a,94	1.0000	equal	n/a,34	1.0000	equal	n/a,93	1.0000	equal	n/a,37
26	Function: shops	0.0620	0.031	WI(+),95	0.7661	0.2999	tt(+),34	0.2663	0.1331	WI(+),94	0.0634	-1.9156	tt(-),37
27	Function: other	0.3646	0.911	tt(+),95	0.2086	1.2826	π(+),34	0.5757	0.5617	π(+),94	0.2439	1.1846	π(+),37
20	Green: tree cover	0.0150	0.0040	tt(+),94	0.7665	-0.2967	tt(-),34	0.0314	0.4014	tt(+),93	0.7940	-0.2031	tt(-),37
29	Green: green cover	0.8323	0.0001	tt(+),94	0.2447	-1.1044	++() 24	0.7071	0.2971	tt(+),93	0.3027	-0.0030	tt(-),37
30	Noise pollution: total	0.4109	0.7055	u(+),95	0.0691	-0.0391	tt(-),34	0.5775	0.3591	tt(+),93	0.0452	-0.4045	tt(-),37
32	Noise pollution: roads	0.9241	0.0955	tt(+),55	0.6907	0.4016	tt(+),00	0.9940	0.0076	tt(+),00	0.9401	-0.0012	tt(-),36
33	Noise pollution: railways	0.4412	0.2206	wi(+) 93	0.6746	0.4238	tt(+),00	0.4137	0.2068	wi(+),00	0.6400	-0.4718	tt(-) 36
34	Subjective: fastest	0.0000	-13 0836	tt(-) 95	0.0000	1.0	wi(-) 31	0.0000	-14 4772	tt(-) 94	0.0000	-8 1051	tt(-),34
35	Subjective: easy to remember	0.0000	-6.4313	tt(-),92	0.0120	-2.6595	tt(-).34	0.0000	-6.6349	tt(-),91	0.0132	-2.6088	tt(-).37
36	Subjective: no obstructions	0.0514	0.9743	wi(-).94	0.0751	-1.8379	tt(-).34	0.0376	-2.1092	tt(-).93	0.3387	0.8307	wi(-).37
37	Subjective: steep slopes	0.0605	1.8997	tt(+),95	0.4298	0.7994	tt(+).34	0.0464	2.019	tt(+).94	0.3844	0.8805	tt(+).37
38	Subjective: lot of seating	0.0028	3.0754	tt(+),93	0.4472	0.7764	wi(-),33	0.0060	2.8141	tt(+),93	0.5054	0.6728	tt(+),37
39	Subjective: weather protected	0.0232	2.3075	tt(+),95	0.2859	1.0846	tt(+),34	0.0127	2.5427	tt(+),94	0.0751	1.8331	tt(+),37
40	Subjective: safe vs.traffic	0.0317	-2.1816	tt(-),94	0.4104	-0.8337	tt(-),34	0.0056	-2.8394	tt(-),93	0.5894	-0.5446	tt(-),37
41	Subjective: safe vs. social risk	0.0197	-2.374	tt(-),93	0.0256	-2.3388	tt(-),34	0.0715	-1.8236	tt(-),93	0.0434	-2.0941	tt(-),37
42	Subjective: like when dark	0.0000	-5.1442	tt(-),95	0.0238	-2.3699	tt(-),34	0.0000	-5.1785	tt(-),91	0.0223	-2.3876	tt(-),37
43	Subjective: well lit	0.0362	-2.127	tt(-),90	0.0654	-1.9059	tt(-),34	0.0142	0.9929	wi(-),92	0.3436	-0.9596	tt(-),37
44	Subjective: other people	0.0300	-2.203	tt(-),95	0.9361	0.0808	tt(+),34	0.0224	-2.323	tt(-),94	0.1972	-1.314	tt(-),37
45	Subjective: well maintained	0.0468	0.9766	wi(-),93	0.0088	-2.7849	tt(-),34	0.0961	0.952	wi(-),91	0.1406	0.9297	wi(-),37
46	Year constr.: mean	0.4525	0.2263	wi(+),93	0.3160	-1.0183	tt(-),34	0.3120	1.0166	tt(+),93	0.6092	-0.5159	tt(-),36
47	Landmarks: FSI	0.1559	0.078	wi(+),87	0.2756	1.1106	tt(+),31	0.2234	0.1117	wi(+),88	0.1904	0.0952	wi(+),36
48	Landmarks: plot area	0.0144	0.0072	wi(+),88	0.2565	0.1283	wi(+),31	0.0224	0.0112	wi(+),87	0.0845	0.0422	wi(+),35
49	Landmarks: Year constr.	0.6987	0.3493	wi(+),90	0.5139	0.257	wi(+),32	0.8228	0.4114	wi(+),89	0.5249	0.2624	wi(+),34
50	Landmarks: 1 criterion	0.0473	2.0105	tt(+),93	0.2667	1.1311	tt(+),32	0.0810	1.7648	tt(+),92	0.0822	1.7895	tt(+),36
51	Landmarks: 2 criteria	0.8466	0.4233	wi(+),91	0.5053	0.2527	wi(+),31	0.6966	0.3483	wi(+),92	0.5324	0.2662	wi(+),36
52	Landmarks: 3 criteria	1.0000	equal	n/a,95	1.0000	equal	n/a,34	1.0000	equal	n/a,94	1.0000	equal	n/a,37

Figure 2.2: Raw results for route aggregate analysis, sample: full, sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.9468	0.5291	(+),53			n < 20	0.8293	0.5879	(+),52			n < 20
1	Year constr.: 1946-1970	0.9486	0.5283	(-),53			n < 20	0.9814	0.5119	(+),52			n < 20
2	Year constr.: 1971-1985	0.6393	0.6828	(-),53			n < 20	0.7130	0.6461	(-),52			n < 20
3	Year constr.: 1986-2000	0.2234	0.8895	(-),53			n < 20	0.3143	0.8444	(-),52			n < 20
4	Year constr.: 2001-2022	0.6840	0.6603	(-),53			n < 20	0.6683	0.6682	(-),52			n < 20
5	Traffic signals count	0.3681	0.8177	(-),53			n < 20	0.3123	0.8454	(-),52			n < 20
6	Stairs count	0.8119	0.5976	(+),53			n < 20	0.8116	0.5978	(+),52			n < 20
7	Status: for construction	0.4101	0.7979	(-),53			n < 20	0.5576	0.7249	(-),52			n < 20
8	Status: unrealised	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20
9	Status: under construction	0.7974	0.6059	(-),53			n < 20	0.7981	0.6057	(-),52			n < 20
10	Status: in use (n.m.)	0.4457	0.7803	(+),53			n < 20	0.2650	0.8699	(+),52			n < 20
11	Status: in use	0.8077	0.5986	(-),53			n < 20	0.8453	0.5799	(-),52			n < 20
12	Status: for demolition	0.6423	0.6850	(-),53			n < 20	0.9922	0.5117	(-),52			n < 20
13	Status: demolished	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20
14	Status: not in use	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20
15	Status: reconstruction	0.3801	0.8123	(+),53			n < 20	0.4730	0.7663	(+),52			n < 20
16	Status: illegitimate	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20
17	Function: residential	1.0000	0.5025	(-),53			n < 20	0.9086	0.5483	(-),52			n < 20
18	Function: gathering	0.5121	0.7462	(-),53			n < 20	0.7706	0.6175	(-),52			n < 20
19	Function: prison	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20
20	Function: healthcare	0.9924	0.5115	(+),53			n < 20	0.9922	0.5117	(+),52			n < 20
21	Function: factory	0.6402	0.6830	(-),53			n < 20	0.6393	0.6835	(-),52			n < 20
22	Function: office	0.9419	0.5318	(+),53			n < 20	0.9715	0.5171	(-),52			n < 20
23	Function: guesthouse	0.6543	0.6781	(-),53			n < 20	0.9487	0.5321	(-),52			n < 20
24	Function: education	0.0823	0.9608	(-),53			n < 20	0.5599	0.7275	(-),52			n < 20
25	Function: sports	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20
26	Function: shops	0.2633	0.8698	(-),53			n < 20	0.4452	0.7795	(-),52			n < 20
27	Function: other	0.8120	0.5965	(-),53			n < 20	0.6540	0.6755	(-),52			n < 20
28	Green: tree cover	0.4733	0.7653	(-),53			n < 20	0.5541	0.7251	(-),52			n < 20
29	Green: bush cover	0.7689	0.6180	(-),53			n < 20	0.8863	0.5594	(-),52			n < 20
30	Green: grass cover	0.5803	0.7120	(-),53			n < 20	0.6304	0.6871	(-),52			n < 20
31	Noise pollution: total	0.6790	0.6628	(-),53			n < 20	0.8760	0.5646	(-),52			n < 20
32	Noise pollution: roads	0.7401	0.6323	(-),53			n < 20	0.9637	0.5207	(+),52			n < 20
33	Noise pollution: railways	0.5050	0.7495	(+),53			n < 20	0.5717	0.7164	(+),52			n < 20
34	Subjective: fastest	0.0000	1.0000	(+),53			n < 20	0.0000	1.0000	(+),52			n < 20
35	Subjective: easy to remember	0.0000	1.0000	(+),53			n < 20	0.0000	1.0000	(+),52			n < 20
36	Subjective: no obstructions	0.1318	0.9350	(+),53			n < 20	0.1304	0.9357	(+),52			n < 20
37	Subjective: steep slopes	0.7766	0.6142	(-),53			n < 20	0.8248	0.5902	(-),52			n < 20
38	Subjective: lot of seating	0.0100	0.9951	(-),53			n < 20	0.0255	0.9875	(-),52			n < 20
39	Subjective: weather protected	0.0402	0.9802	(-),53			n < 20	0.0188	0.9908	(-),52			n < 20
40	Subjective: safe vs.traffic	0.6408	0.6820	(+),53			n < 20	0.2027	0.8999	(+),52			n < 20
41	Subjective: safe vs. social risk	0.3485	0.8275	(+).53			n < 20	0.3648	0.8194	(+).52			n < 20
42	Subjective: like when dark	0.0016	0.9992	(+).53			n < 20	0.0029	0.9986	(+).52			n < 20
43	Subjective: well lit	0.3864	0.8087	(+).53			n < 20	0.3205	0.8415	(+).52			n < 20
44	Subjective: other people	0.3604	0.8216	(+),53			n < 20	0.1668	0.9176	(+),52			n < 20
45	Subjective: well maintained	0.3174	0.8430	(+).53			n < 20	0.4288	0.7877	(+).52			n < 20
46	Year constr.: mean	0.8005	0.6022	(-),53			n < 20	0.7085	0.6482	(-),52		•	n < 20
47	Landmarks: FSI	0.5754	0.7147	(-),53			n < 20	0.6504	0.6774	(-).52			n < 20
48	Landmarks: plot area	0.4139	0.7950	(-),53			n < 20	0.5119	0.7463	(-),52			n < 20
49	Landmarks: Year constr	0.9647	0.5206	(-) 53			n < 20	0.8375	0.5843	(+) 52			n < 20
50	Landmarks: 1 criterion	0.3908	0.8064	(-),53			n < 20	0.4771	0.7635	(-),52	•	•	n < 20
51	Landmarks: 2 criteria	0.5946	0.7064	(-),53			n < 20	0.7901	0.6093	(-),52			n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-),53			n < 20	1.0000	0.0000	(-),52			n < 20

Figure 2.3: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.8414	0.4207	wi(+),49			n < 20	0.9840	0.492	wi(+),49			n < 20
1	Year constr.: 1946-1970	0.2999	0.15	wi(+),51			n < 20	0.9180	0.1034	tt(+),50			n < 20
2	Year constr.: 1971-1985	0.9847	0.4923	wi(+),51			n < 20	0.6529	0.4526	tt(+),50			n < 20
3	Year constr.: 1986-2000	0.0553	0.0277	wi(+),49			n < 20	0.1832	0.0916	wi(+),49			n < 20
4	Year constr.: 2001-2022	0.3982	0.1991	wi(+),50			n < 20	0.5649	0.2825	wi(+),49			n < 20
5	Traffic signals count	0.1389	1.504	tt(+),51			n < 20	0.2196	1.2435	tt(+),50			n < 20
6	Stairs count	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,47			n < 20
7	Status: for construction	0.3483	0.1741	wi(+),51			n < 20	0.6018	0.3009	wi(+),47			n < 20
8	Status: unrealised	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20
9	Status: under construction	0.7751	0.6125	wi(-),46			n < 20	0.9909	0.4955	wi(+),48			n < 20
10	Status: in use (n.m.)	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,46			n < 20
11	Status: in use	0.8052	0.2479	tt(+),50			n < 20	0.9651	0.044	tt(+),49			n < 20
12	Status: for demolition	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,46			n < 20
13	Status: demolished	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20
14	Status: not in use	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20
15	Status: reconstruction	0.3510	0.8245	wi(-),51			n < 20	0.4788	0.7606	wi(-),50			n < 20
16	Status: illegitimate	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20
17	Function: residential	0.6609	0.6696	wi(-),49			n < 20	0.9088	0.5456	wi(-),49			n < 20
18	Function: gathering	0.4642	0.7376	tt(+),51			n < 20	0.8411	0.2015	tt(+),50			n < 20
19	Function: prison	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20
20	Function: healthcare	1.0000	equal	n/a,47			n < 20	1.0000	equal	n/a,46			n < 20
21	Function: factory	0.6373	0.3186	wi(+),51			n < 20	0.6350	0.3175	wi(+),50			n < 20
22	Function: office	0.9377	-0.0785	tt(-),51			n < 20	0.8773	0.1552	tt(+),50			n < 20
23	Function: guesthouse	1.0000	equal	n/a,46			n < 20	0.4147	0.7927	wi(-),47			n < 20
24	Function: education	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,47			n < 20
25	Function: sports	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20
26	Function: shops	0.1629	1.4163	tt(+),51			n < 20	0.3397	0.9642	tt(+),50			n < 20
27	Function: other	0.8860	-0.1441	tt(-),51			n < 20	0.9624	-0.0473	tt(-),50			n < 20
28	Green: tree cover	0.1131	1.6133	tt(+),50			n < 20	0.3493	0.9453	tt(+),49			n < 20
29	Green: bush cover	0.2670	1.1228	tt(+),50			n < 20	0.6676	0.4321	tt(+),49			n < 20
30	Green: grass cover	0.1295	1.5415	tt(+),51			n < 20	0.2996	1.0483	tt(+),50			n < 20
31	Noise pollution: total	0.2748	0.1374	wi(+),51			n < 20	0.6570	0.3285	wi(+),50			n < 20
32	Noise pollution: roads	0.1819	1.3541	tt(+),50			n < 20	0.6868	0.4057	tt(+),49			n < 20
33	Noise pollution: railways	0.0349	0.0175	wi(+),49			n < 20	0.3532	0.1766	wi(+),48			n < 20
34	Subjective: fastest	0.0000	-10.8512	tt(-),51			n < 20	0.0000	-11.1901	tt(-),50			n < 20
35	Subjective: easy to remember	0.0000	-4.6173	tt(-),51			n < 20	0.0000	-4.9511	tt(-),50			n < 20
36	Subjective: no obstructions	0.1194	-1.5845	tt(-),51			n < 20	0.1670	0.9165	wi(-),50			n < 20
37	Subjective: steep slopes	0.4343	0.7882	tt(+),51			n < 20	0.4048	0.8403	tt(+),50			n < 20
38	Subjective: lot of seating	0.0081	2.7595	tt(+),51			n < 20	0.0207	2.3913	tt(+),50			n < 20
39	Subjective: weather protected	0.0242	2.324	tt(+),51			n < 20	0.0097	2.6901	tt(+),50			n < 20
40	Subjective: safe vs.traffic	0.1961	-1.3107	tt(-),50			n < 20	0.0385	-2.128	tt(-),49			n < 20
41	Subjective: safe vs. social risk	0.5509	-0.6005	tt(-),50			n < 20	0.4615	-0.7422	tt(-),50			n < 20
42	Subjective: like when dark	0.0038	-3.0373	tt(-),51			n < 20	0.0059	-2.8778	tt(-),50			n < 20
43	Subjective: well lit	0.1895	-1.3309	tt(-),49			n < 20	0.2255	-1.2278	tt(-),49			n < 20
44	Subjective: other people	0.5936	-0.537	tt(-),51			n < 20	0.3177	-1.0095	tt(-),50			n < 20
45	Subjective: well maintained	0.3088	-1.0285	tt(-),50			n < 20	0.3314	0.8343	wi(-),49			n < 20
46	Year constr.: mean	0.7209	0.3605	wi(+),50			n < 20	0.6544	0.3272	wi(+),49			n < 20
47	Landmarks: FSI	0.3202	1.0049	tt(+),47			n < 20	0.5399	0.6177	tt(+),46			n < 20
48	Landmarks: plot area	0.0536	0.0268	wi(+),47			n < 20	0.0536	0.0268	wi(+),47			n < 20
49	Landmarks: Year constr.	0.7890	0.3945	wi(+),47			n < 20	0.8185	0.5907	wi(-),47			n < 20
50	Landmarks: 1 criterion	0.0841	1.7633	tt(+),50			n < 20	0.1693	1.3955	tt(+),49			n < 20
51	Landmarks: 2 criteria	0.7857	0.3929	wi(+),47			n < 20	0.7857	0.3929	wi(+),47			n < 20
52	Landmarks: 3 criteria	1.0000	equal	n/a,51			n < 20	1.0000	equal	n/a,50			n < 20

Figure 2.4: Raw results for route aggregate analysis, sample: interaction - age (19-30), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.5383	0.7365	(+),27			n < 20	0.6523	0.6801	(+),27			n < 20
1	Year constr.: 1946-1970	0.7477	0.6329	(-),27			n < 20	0.8662	0.5738	(-),27			n < 20
2	Year constr.: 1971-1985	0.4350	0.7877	(+),27			n < 20	0.6908	0.6611	(+),27			n < 20
3	Year constr.: 1986-2000	0.3985	0.8057	(+),27			n < 20	0.5706	0.7207	(+),27			n < 20
4	Year constr.: 2001-2022	0.9859	0.5141	(+),27			n < 20	1.0000	0.5070	(-),27			n < 20
5	Traffic signals count	0.2254	0.8906	(-),27			n < 20	0.1679	0.9187	(-),27			n < 20
6	Stairs count	0.5244	0.7456	(-),27			n < 20	0.3213	0.8453	(-),27			n < 20
7	Status: for construction	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
8	Status: unrealised	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
9	Status: under construction	0.5563	0.7363	(+),27			n < 20	0.9848	0.5076	(-),27			n < 20
10	Status: in use (n.m.)	0.5147	0.7508	(+),27			n < 20	0.3109	0.8508	(+),27			n < 20
11	Status: in use	0.7224	0.6453	(+),27			n < 20	0.6523	0.6801	(+),27			n < 20
12	Status: for demolition	0.3356	0.8501	(+),27			n < 20	0.3356	0.8501	(+),27			n < 20
13	Status: demolished	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
14	Status: not in use	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
15	Status: reconstruction	0.1691	0.9191	(+),27			n < 20	0.0989	0.9529	(+),27			n < 20
16	Status: illegitimate	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
17	Function: residential	0.6683	0.6722	(+),27			n < 20	0.6811	0.6659	(+),27			n < 20
18	Function: gathering	0.5131	0.7497	(-),27			n < 20	0.8620	0.5766	(-),27			n < 20
19	Function: prison	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
20	Function: healthcare	0.5709	0.7292	(+),27			n < 20	0.5709	0.7292	(+),27			n < 20
21	Function: factory	0.4169	0.7983	(+),27			n < 20	0.8392	0.5897	(+),27			n < 20
22	Function: office	0.7165	0.6489	(+),27			n < 20	0.8793	0.5678	(+),27			n < 20
23	Function: guesthouse	0.4752	0.7710	(+),27			n < 20	0.6247	0.6981	(+),27			n < 20
24	Function: education	0.9848	0.5076	(-),27			n < 20	0.9848	0.5076	(-),27			n < 20
25	Function: sports	0.3356	0.8501	(+),27			n < 20	0.3356	0.8501	(+),27			n < 20
26	Function: shops	0.4749	0.7683	(-),27			n < 20	0.8285	0.5931	(-),27			n < 20
27	Function: other	0.9854	0.5146	(-),27			n < 20	0.8556	0.5793	(+),27			n < 20
28	Green: tree cover	0.7099	0.6515	(+),27			n < 20	0.8695	0.5721	(-),27			n < 20
29	Green: bush cover	0.6843	0.6642	(+),27			n < 20	0.9105	0.5516	(-),27			n < 20
30	Green: grass cover	0.7753	0.6190	(+),27			n < 20	0.9931	0.5104	(-),27			n < 20
31	Noise pollution: total	0.9931	0.5104	(+),27			n < 20	0.9655	0.5241	(+),27			n < 20
32	Noise pollution: roads	0.7886	0.6124	(+),27			n < 20	0.7621	0.6255	(+),27			n < 20
33	Noise pollution: railways	0.8968	0.5585	(-),27			n < 20	0.9379	0.5379	(-),27			n < 20
34	Subjective: fastest	0.0000	1.0000	(+),27			n < 20	0.0000	1.0000	(+),27			n < 20
35	Subjective: easy to remember	0.0003	0.9999	(+),27			n < 20	0.0015	0.9993	(+),27			n < 20
36	Subjective: no obstructions	0.1450	0.9300	(+),27			n < 20	0.4070	0.8016	(+),27			n < 20
37	Subjective: steep slopes	0.2396	0.8837	(-),27			n < 20	0.3014	0.8535	(-),27			n < 20
38	Subjective: lot of seating	0.0939	0.9549	(-),27			n < 20	0.1725	0.9166	(-),27			n < 20
39	Subjective: weather protected	0.7009	0.6563	(-),27			n < 20	0.7782	0.6179	(-),27			n < 20
40	Subjective: safe vs.traffic	0.1307	0.9370	(+),27			n < 20	0.0745	0.9642	(+),27			n < 20
41	Subjective: safe vs. social risk	0.0107	0.9949	(+),27			n < 20	0.0403	0.9808	(+),27			n < 20
42	Subjective: like when dark	0.0001	1.0000	(+),27			n < 20	0.0014	0.9994	(+),27			n < 20
43	Subjective: well lit	0.0058	0.9973	(+),27			n < 20	0.0060	0.9971	(+),27			n < 20
44	Subjective: other people	0.0360	0.9828	(+),27			n < 20	0.0358	0.9829	(+),27			n < 20
45	Subjective: well maintained	0.0592	0.9716	(+),27			n < 20	0.1457	0.9297	(+),27			n < 20
46	Year constr.: mean	0.9931	0.5104	(-),27			n < 20	0.9931	0.5104	(-),27			n < 20
47	Landmarks: FSI	0.5738	0.7202	(+),27			n < 20	0.5243	0.7444	(+),27			n < 20
48	Landmarks: plot area	0.7623	0.6260	(+),27			n < 20	0.4685	0.7715	(+),27			n < 20
49	Landmarks: Year constr.	0.9914	0.5043	(-),27			n < 20	0.9914	0.5043	(-),27			n < 20
50	Landmarks: 1 criterion	0.8027	0.6056	(+),27			n < 20	0.6760	0.6685	(+),27			n < 20
51	Landmarks: 2 criteria	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-),27			n < 20	1.0000	0.0000	(-),27			n < 20

Figure 2.5: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.2297	-1.2312	tt(-),26			n < 20	0.2729	-1.1212	tt(-),26			n < 20
1	Year constr.: 1946-1970	0.5882	0.5482	tt(+),27			n < 20	0.3915	0.8042	wi(-),26			n < 20
2	Year constr.: 1971-1985	0.1568	-1.458	tt(-),27			n < 20	0.3689	-0.9145	tt(-),27			n < 20
3	Year constr.: 1986-2000	0.0763	-1.8458	tt(-),27			n < 20	0.1463	-1.4974	tt(-),27			n < 20
4	Year constr.: 2001-2022	0.8844	0.4422	wi(+),27			n < 20	0.8274	0.5863	wi(-),27			n < 20
5	Traffic signals count	0.0003	0.0001	wi(+),25			n < 20	0.0003	0.0001	wi(+),25			n < 20
6	Stairs count	0.4246	0.8113	tt(+),27			n < 20	0.3343	0.1672	wi(+),27			n < 20
7	Status: for construction	1.0000	equal	n/a,27			n < 20	1.0000	equal	n/a,27			n < 20
8	Status: unrealised	1.0000	equal	n/a,27			n < 20	1.0000	equal	n/a,27			n < 20
9	Status: under construction	1.0000	0.5	wi(+),26			n < 20	1.0000	equal	n/a,25			n < 20
10	Status: in use (n.m.)	0.9881	0.5059	wi(-),25			n < 20	0.7027	0.6487	wi(-),25			n < 20
11	Status: in use	0.4930	0.7535	wi(-),27			n < 20	0.4759	-0.7239	tt(-),26			n < 20
12	Status: for demolition	1.0000	equal	n/a,26			n < 20	1.0000	equal	n/a,26			n < 20
13	Status: demolished	1.0000	equal	n/a,27			n < 20	1.0000	equal	n/a,27			n < 20
14	Status: not in use	1.0000	equal	n/a,27			n < 20	1.0000	equal	n/a,27			n < 20
15	Status: reconstruction	0.1512	-1.479	tt(-),27			n < 20	0.0904	-1.7588	tt(-),27			n < 20
16	Status: illegitimate	1.0000	equal	n/a,27			n < 20	1.0000	equal	n/a,27			n < 20
17	Function: residential	0.7999	-0.2561	tt(-),26			n < 20	0.4527	0.7737	wi(-),26			n < 20
18	Function: gathering	0.1972	1.3235	tt(+),27			n < 20	0.4679	0.7368	tt(+),27			n < 20
19	Function: prison	1.0000	equal	n/a,27			n < 20	1.0000	equal	n/a,27			n < 20
20	Function: healthcare	1.0000	equal	n/a,26			n < 20	1.0000	equal	n/a,26			n < 20
21	Function: factory	0.3283	0.8359	wi(-),27			n < 20	0.7284	0.6358	wi(-),27			n < 20
22	Function: office	0.5253	-0.6439	tt(-),27			n < 20	0.7335	-0.3442	tt(-),27			n < 20
23	Function: guesthouse	0.2360	0.882	wi(-),27			n < 20	0.5191	0.7404	wi(-),26			n < 20
24	Function: education	1.0000	equal	n/a,25			n < 20	1.0000	equal	n/a,25			n < 20
25	Function: sports	1.0000	equal	n/a,26			n < 20	1.0000	equal	n/a,26			n < 20
26	Function: shops	0.7758	0.3879	wi(+),27			n < 20	0.3792	0.8104	wi(-),27			n < 20
27	Function: other	0.1928	1.3372	tt(+),27			n < 20	0.5571	0.5949	tt(+),27			n < 20
28	Green: tree cover	0.4547	-0.759	tt(-),27			n < 20	0.9464	-0.0679	tt(-),27			n < 20
29	Green: bush cover	0.4832	-0.7114	tt(-),27			n < 20	0.8047	0.2498	tt(+),27			n < 20
30	Green: grass cover	0.7201	-0.3623	tt(-),27			n < 20	0.8180	0.2325	tt(+),27			n < 20
31	Noise pollution: total	0.8640	-0.173	tt(-),27			n < 20	0.7484	-0.3242	tt(-),27			n < 20
32	Noise pollution: roads	0.5296	-0.6371	tt(-),27			n < 20	0.4204	-0.8187	tt(-),27			n < 20
33	Noise pollution: railways	0.3878	0.8061	wi(-),26			n < 20	0.5763	0.7118	wi(-),26			n < 20
34	Subjective: fastest	0.0000	-7.4117	tt(-),27			n < 20	0.0000	-8.1068	tt(-),24			n < 20
35	Subjective: easy to remember	0.0006	-3.9142	tt(-),27			n < 20	0.0015	-3.537	tt(-),27			n < 20
36	Subjective: no obstructions	0.1047	-1.6814	tt(-),27			n < 20	0.3991	-0.8574	tt(-),27			n < 20
37	Subjective: steep slopes	0.1219	1.5989	tt(+),27			n < 20	0.1712	1.4071	tt(+),27			n < 20
38	Subjective: lot of seating	0.0772	1.8433	tt(+),26			n < 20	0.1832	1.3689	tt(+),26			n < 20
39	Subjective: weather protected	0.5791	0.5617	tt(+),27			n < 20	0.6279	0.4904	tt(+),27			n < 20
40	Subjective: safe vs.traffic	0.2214	-1.2529	tt(-),27			n < 20	0.2714	-1.1237	tt(-),27			n < 20
41	Subjective: safe vs. social risk	0.0258	-2.3702	tt(-),26			n < 20	0.0381	-2.1847	tt(-),27			n < 20
42	Subjective: like when dark	0.0020	-3.4384	tt(-),27			n < 20	0.0065	-2.9712	tt(-),26			n < 20
43	Subjective: well lit	0.0194	-2.491	tt(-),27			n < 20	0.0078	0.9961	wi(-),26			n < 20
44	Subjective: other people	0.0231	-2.4144	tt(-),27			n < 20	0.0460	-2.0958	tt(-),27			n < 20
45	Subjective: well maintained	0.0136	-2.6558	tt(-),26			n < 20	0.0411	0.9795	wi(-),25			n < 20
46	Year constr.: mean	0.5805	0.7098	wi(-),27			n < 20	0.8890	-0.1409	tt(-),27			n < 20
47	Landmarks: FSI	0.7091	0.6455	wi(-).27			n < 20	1.0000	0.5	wi(+).25			n < 20
48	Landmarks: plot area	0.2873	0.1437	wi(+).24			n < 20	0.3248	0.8376	wi(-),27			n < 20
49	Landmarks: Year constr.	1.0000	equal	n/a.25			n < 20	1.0000	equal	n/a.25			n < 20
50	Landmarks: 1 criterion	0.8614	-0.1765	tt(-),26			n < 20	0.3889	-0.877	tt(-).26			n < 20
51	Landmarks: 2 criteria	1.0000	equal	n/a.27			n < 20	1.0000	equal	n/a.27			n < 20
52	Landmarks: 3 criteria	1.0000	equal	n/a.27			n < 20	1.0000	equal	n/a.27			n < 20
				.,=.									

Figure 2.6: Raw results for route aggregate analysis, sample: interaction - age (31-40), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945			n < 20									
1	Year constr.: 1946-1970			n < 20									
2	Year constr.: 1971-1985			n < 20									
3	Year constr.: 1986-2000			n < 20									
4	Year constr.: 2001-2022			n < 20									
5	Traffic signals count			n < 20									
6	Stairs count			n < 20									
7	Status: for construction			n < 20									
8	Status: unrealised			n < 20									
9	Status: under construction			n < 20									
10	Status: in use (n.m.)			n < 20									
11	Status: in use			n < 20									
12	Status: for demolition			n < 20									
13	Status: demolished			n < 20									
14	Status: not in use			n < 20									
15	Status: reconstruction			n < 20		•	n < 20			n < 20			n < 20
16	Status: illegitimate			n < 20									
17	Eurotion: megidimate			n < 20									
10	Function: residential			11 < 20			11 < 20			11 < 20			n < 20
10	Function, gathering	•	•	11 < 20	•	•	11 < 20	•	•	11 < 20	•	•	11 < 20
19	Function: prison			n < 20			n < 20			n < 20			h < 20
20	Function: healthcare	•		n < 20			n < 20			n < 20			n < 20
21	Function: factory			n < 20									
22	Function: office	•		n < 20		•	n < 20			n < 20	•		n < 20
23	Function: guesthouse			n < 20									
24	Function: education	•		n < 20		•	n < 20		•	n < 20			n < 20
25	Function: sports			n < 20									
26	Function: shops			n < 20									
27	Function: other			n < 20									
28	Green: tree cover			n < 20									
29	Green: bush cover			n < 20									
30	Green: grass cover			n < 20									
31	Noise pollution: total			n < 20									
32	Noise pollution: roads			n < 20									
33	Noise pollution: railways			n < 20									
34	Subjective: fastest			n < 20									
35	Subjective: easy to remember			n < 20									
36	Subjective: no obstructions			n < 20									
37	Subjective: steep slopes			n < 20									
38	Subjective: lot of seating			n < 20									
39	Subjective: weather protected			n < 20									
40	Subjective: safe vs.traffic			n < 20									
41	Subjective: safe vs. social risk			n < 20									
42	Subjective: like when dark			n < 20									
43	Subjective: well lit			n < 20									
44	Subjective: other people			n < 20									
45	Subjective: well maintained			n < 20									
46	Year constr.: mean			n < 20									
47	Landmarks: FSI			n < 20									
48	Landmarks: plot area			n < 20			n < 20			n < 20		·	n < 20
49	Landmarks: Year constr			n < 20									
50	Landmarke: 1 oritorion			n < 20									
51	Landmarke: 2 critoria			n < 20									
52	Landmarke: 3 oritoria			n < 20									
52	Lanundiks. 5 chteria			11 < 20			11 < 20			11 < 20			11 < 20

Figure 2.7: Raw results for route aggregate analysis, sample: interaction - age (41+), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945			n < 20									
1	Year constr.: 1946-1970			n < 20									
2	Year constr.: 1971-1985			n < 20									
3	Year constr.: 1986-2000			n < 20									
4	Year constr.: 2001-2022			n < 20									
5	Traffic signals count			n < 20									
6	Stairs count			n < 20									
7	Status: for construction			n < 20									
8	Status: unrealised			n < 20									
9	Status: under construction			n < 20									
10	Status: in use (n.m.)			n < 20									
11	Status: in use			n < 20									
12	Status: for demolition			n < 20									
13	Status: demolished			n < 20									
14	Status: not in use			n < 20									
15	Status: reconstruction			n < 20		•	n < 20			n < 20			n < 20
16	Status: illegitimate			n < 20									
17	Eurotion: megidimate			n < 20									
10	Function: residential			11 < 20			11 < 20			11 < 20			n < 20
10	Function, gathering	•	•	11 < 20	•	•	11 < 20	•	•	11 < 20	•	•	11 < 20
19	Function: prison			n < 20			n < 20			n < 20			h < 20
20	Function: healthcare	•		n < 20			n < 20			n < 20			n < 20
21	Function: factory			n < 20									
22	Function: office	•		n < 20		•	n < 20			n < 20	•		n < 20
23	Function: guesthouse			n < 20									
24	Function: education	•		n < 20		•	n < 20		•	n < 20			n < 20
25	Function: sports			n < 20									
26	Function: shops			n < 20									
27	Function: other			n < 20									
28	Green: tree cover			n < 20									
29	Green: bush cover			n < 20									
30	Green: grass cover			n < 20									
31	Noise pollution: total			n < 20									
32	Noise pollution: roads			n < 20									
33	Noise pollution: railways			n < 20									
34	Subjective: fastest			n < 20									
35	Subjective: easy to remember			n < 20									
36	Subjective: no obstructions			n < 20									
37	Subjective: steep slopes			n < 20									
38	Subjective: lot of seating			n < 20									
39	Subjective: weather protected			n < 20									
40	Subjective: safe vs.traffic			n < 20									
41	Subjective: safe vs. social risk			n < 20									
42	Subjective: like when dark			n < 20									
43	Subjective: well lit			n < 20									
44	Subjective: other people			n < 20									
45	Subjective: well maintained			n < 20									
46	Year constr.: mean			n < 20									
47	Landmarks: FSI			n < 20									
48	Landmarks: plot area			n < 20			n < 20			n < 20		·	n < 20
49	Landmarks: Year constr			n < 20									
50	Landmarke: 1 criterion			n < 20									
51	Landmarke: 2 critoria			n < 20									
52	Landmarke: 3 oritoria			n < 20									
52	Lanundiks. 5 chteria			11 < 20			11 < 20			11 < 20			11 < 20

Figure 2.8: Raw results for route aggregate analysis, sample: interaction - age (41+), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.9281	0.5375	(+),75	0.9938	0.5093	(-),29	0.7414	0.6308	(+),74	0.7147	0.6484	(+),29
1	Year constr.: 1946-1970	0.5837	0.7095	(-),75	0.9254	0.5435	(+),29	0.7229	0.6400	(-),74	0.5955	0.7076	(-),29
2	Year constr.: 1971-1985	0.9443	0.5294	(-),75	0.8002	0.6062	(+),29	0.7290	0.6370	(-),74	0.9039	0.5544	(-),29
3	Year constr.: 1986-2000	0.4043	0.7989	(-),75	0.8748	0.5688	(+),29	0.2614	0.8701	(-),74	0.7778	0.6171	(-),29
4	Year constr.: 2001-2022	0.9336	0.5347	(-),75	0.1792	0.9129	(+),29	0.8864	0.5583	(-),74	0.1942	0.9055	(+),29
5	Traffic signals count	0.1427	0.9292	(-),75	0.3600	0.8241	(-),29	0.1925	0.9044	(-),74	0.5735	0.7186	(-),29
6	Stairs count	0.9978	0.5011	(-),75	0.7485	0.6344	(-),29	0.8387	0.5828	(-),74	0.4982	0.7584	(-),29
7	Status: for construction	0.3498	0.8267	(-),75	0.6092	0.7065	(+),29	0.4614	0.7712	(-),74	0.9859	0.5212	(+),29
8	Status: unrealised	1.0000	0.0000	(-),75	1.0000	0.0000	(-),29	1.0000	0.0000	(-),74	1.0000	0.0000	(-),29
9	Status: under construction	0.6332	0.6859	(-),75	0.9528	0.5330	(+),29	0.6462	0.6795	(-),74	0.9586	0.5310	(+),29
10	Status: in use (n.m.)	0.3560	0.8237	(+),75	0.4236	0.7943	(+),29	0.2470	0.8778	(+),74	0.3626	0.8247	(+),29
11	Status: in use	0.9985	0.5007	(-),75	0.8825	0.5649	(+),29	0.9328	0.5351	(+),74	0.8095	0.6013	(+),29
12	Status: for demolition	0.6460	0.6813	(-),75	0.5704	0.7284	(+),29	0.9946	0.5082	(-),74	0.1609	0.9267	(+),29
13	Status: demolished	1.0000	0.0000	(-),75	1.0000	0.0000	(-),29	1.0000	0.0000	(-),74	1.0000	0.0000	(-),29
14	Status: not in use	1.0000	0.0000	(-),75	1.0000	0.0000	(-),29	1.0000	0.0000	(-),74	1.0000	0.0000	(-),29
15	Status: reconstruction	0.2916	0.8554	(+),75	0.4141	0.7997	(+),29	0.3883	0.8074	(+),74	0.4409	0.7860	(+),29
16	Status: illegitimate	1.0000	0.0000	(-),75	1.0000	0.0000	(-),29	1.0000	0.0000	(-),74	1.0000	0.0000	(-),29
17	Function: residential	0.9985	0.5008	(-),75	0.7675	0.6222	(+),29	0.9418	0.5306	(+),74	0.9752	0.5186	(-),29
18	Function: gathering	0.6972	0.6530	(-),75	0.9732	0.5201	(-),29	0.7491	0.6271	(-),74	0.6499	0.6812	(+),29
19	Function: prison	1.0000	0.0000	(-),75	1.0000	0.0000	(-),29	1.0000	0.0000	(-),74	1.0000	0.0000	(-),29
20	Function: healthcare	0.6921	0.6578	(+),75	0.3045	0.8560	(+),29	0.6919	0.6579	(+),74	0.3045	0.8560	(+),29
21	Function: factory	0.8766	0.5636	(+),75	0.4888	0.7614	(+),29	0.7379	0.6329	(-),74	0.8608	0.5768	(+),29
22	Function: office	0.7081	0.6475	(+),75	0.5479	0.7315	(+),29	0.7997	0.6018	(-),74	0.5869	0.7123	(+),29
23	Function: guesthouse	0.4902	0.7571	(+),75	0.2997	0.8558	(+),29	0.8057	0.5998	(+),74	0.4284	0.7926	(+),29
24	Function: education	0.1139	0.9440	(-),75	0.6316	0.6955	(-),29	0.4944	0.7556	(-),74	0.6696	0.6752	(-),29
25	Function: sports	0.3238	0.8445	(+),75	1.0000	0.0000	(-),29	0.3239	0.8446	(+),74	1.0000	0.0000	(-),29
26	Function: shops	0.1819	0.9097	(-),75	0.6490	0.6813	(-),29	0.2815	0.8602	(-),74	0.3974	0.8060	(+),29
27	Function: other	0.9085	0.5473	(-),75	0.8470	0.5828	(-),29	0.8545	0.5743	(-),74	0.5072	0.7515	(-),29
28	Green: tree cover	0.9446	0.5292	(-),75	0.9814	0.5155	(+),29	0.9801	0.5115	(-),74	0.8035	0.6043	(-),29
29	Green: bush cover	0.8377	0.5826	(+),75	0.6689	0.6712	(+),29	0.8524	0.5753	(+),74	0.7915	0.6102	(+),29
30	Green: grass cover	0.9685	0.5172	(-),75	0.8216	0.5952	(+),29	0.8796	0.5617	(-),74	0.9504	0.5310	(-),29
31	Noise pollution: total	0.9177	0.5427	(-),75	0.7617	0.6251	(-),29	0.9312	0.5359	(-),74	0.7206	0.6455	(-),29
32	Noise pollution: roads	0.9446	0.5292	(+),75	0.5598	0.7253	(-),29	0.8434	0.5798	(+),74	0.7795	0.6162	(-),29
33	Noise pollution: railways	0.6973	0.6528	(+),75	0.6024	0.7042	(+),29	0.6661	0.6683	(+),74	0.6746	0.6684	(+),29
34	Subjective: fastest	0.0000	1.0000	(+),75	0.0000	1.0000	(+),29	0.0000	1.0000	(+),74	0.0000	1.0000	(+),29
35	Subjective: easy to remember	0.0000	1.0000	(+),75	0.0099	0.9953	(+),29	0.0000	1.0000	(+),74	0.0352	0.9831	(+),29
36	Subjective: no obstructions	0.0358	0.9823	(+),75	0.0559	0.9731	(+),29	0.0332	0.9836	(+),74	0.1929	0.9063	(+),29
37	Subjective: steep slopes	0.6020	0.7004	(-),75	0.6812	0.6653	(-),29	0.4537	0.7743	(-),74	0.9171	0.5478	(-),29
38	Subjective: lot of seating	0.0040	0.9980	(-),75	0.6833	0.6643	(-),29	0.0231	0.9886	(-),74	0.9674	0.5228	(-),29
39	Subjective: weather protected	0.2220	0.8897	(-),75	0.5100	0.7504	(-),29	0.1450	0.9281	(-),74	0.4116	0.7989	(-),29
40	Subjective: safe vs.traffic	0.0123	0.9939	(+),75	0.1070	0.9484	(+),29	0.0011	0.9995	(+),74	0.0181	0.9914	(+),29
41	Subjective: safe vs. social risk	0.0257	0.9873	(+),75	0.1151	0.9443	(+),29	0.1197	0.9407	(+),74	0.1395	0.9324	(+),29
42	Subjective: like when dark	0.0000	1.0000	(+),75	0.0877	0.9577	(+),29	0.0000	1.0000	(+),74	0.0223	0.9893	(+),29
43	Subjective: well lit	0.0400	0.9802	(+),75	0.2295	0.8884	(+),29	0.0634	0.9686	(+),74	0.1694	0.9179	(+),29
44	Subjective: other people	0.0437	0.9784	(+),75	0.8325	0.5901	(-),29	0.0174	0.9914	(+),74	0.3869	0.8110	(+),29
45	Subjective: well maintained	0.2210	0.8902	(+),75	0.0653	0.9686	(+),29	0.2858	0.8581	(+),74	0.2869	0.8603	(+),29
46	Year constr.: mean	0.5883	0.7071	(-),75	0.8703	0.5710	(+),29	0.4206	0.7908	(-),74	0.9133	0.5495	(-),29
47	Landmarks: FSI	0.6893	0.6568	(-),75	0.8628	0.5750	(-),29	0.7793	0.6119	(-),74	0.9396	0.5369	(-),29
48	Landmarks: plot area	0.4894	0.7565	(-),75	0.5715	0.7197	(-),29	0.5259	0.7383	(-),74	0.7835	0.6144	(-),29
49	Landmarks: Year constr.	0.6155	0.6938	(-),75	0.8931	0.5601	(-),29	0.8314	0.5860	(-),74	0.9501	0.5321	(-),29
50	Landmarks: 1 criterion	0.2558	0.8729	(-),75	0.3488	0.8296	(-),29	0.3099	0.8460	(-),74	0.4391	0.7851	(-),29
51	Landmarks: 2 criteria	0.6888	0.6578	(-),75	0.7483	0.6352	(-),29	0.8096	0.5978	(-),74	0.7253	0.6493	(+),29
52	Landmarks: 3 criteria	1.0000	0.0000	(-),75	1.0000	0.0000	(-),29	1.0000	0.0000	(-),74	1.0000	0.0000	(-),29

Figure 2.9: Raw results for route aggregate analysis, sample: interaction - bike (have access), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.2870	0.8565	wi(-),71	0.3744	0.8128	wi(-),28	0.7032	0.6484	wi(-),70	0.3864	-0.8805	tt(-),28
1	Year constr.: 1946-1970	0.5608	0.5843	tt(+),73	0.7148	0.3574	wi(+),28	0.6772	0.418	tt(+),72	0.1707	0.0853	wi(+),28
2	Year constr.: 1971-1985	0.7150	0.6425	wi(-),73	0.3030	0.8485	wi(-),29	0.9524	0.5238	wi(-),72	0.4561	0.2281	wi(+),29
3	Year constr.: 1986-2000	0.5189	0.2595	wi(+),73	0.6083	0.6958	wi(-),29	0.5801	0.2901	wi(+),72	0.7999	0.3999	wi(+),28
4	Year constr.: 2001-2022	0.4027	0.2013	wi(+),72	0.2742	0.8629	wi(-),28	0.9908	0.4954	wi(+),71	0.0769	0.9615	wi(-),28
5	Traffic signals count	0.0379	0.0189	wi(+),73	0.1087	1.6612	tt(+),27	0.0647	0.0323	wi(+),72	0.1690	0.0845	wi(+),28
6	Stairs count	1.0000	equal	n/a,65	1.0000	equal	n/a,26	1.0000	equal	n/a,65	1.0000	equal	n/a,27
7	Status: for construction	0.4886	0.2443	wi(+),68	0.7150	0.3575	wi(+),27	0.6374	0.3187	wi(+),67	1.0000	equal	n/a,27
8	Status: unrealised	1.0000	equal	n/a,73	1.0000	equal	n/a,29	1.0000	equal	n/a,72	1.0000	equal	n/a,29
9	Status: under construction	0.8111	0.5945	wi(-),67	0.7713	0.6143	wi(-),29	0.6351	0.6825	wi(-),66	0.7150	0.6425	wi(-),27
10	Status: in use (n.m.)	0.9972	0.5014	wi(-),67	0.5340	0.733	wi(-),29	0.9972	0.5014	wi(-),67	0.7103	0.3552	wi(+),26
11	Status: in use	0.6233	0.6883	wi(-),72	0.4791	-0.7173	tt(-),29	0.9087	0.5456	wi(-),71	0.3859	-0.8809	tt(-),29
12	Status: for demolition	1.0000	equal	n/a,68	1.0000	equal	n/a,26	1.0000	equal	n/a,68	1.0000	equal	n/a,27
13	Status: demolished	1.0000	equal	n/a,73	1.0000	equal	n/a,29	1.0000	equal	n/a,72	1.0000	equal	n/a,29
14	Status: not in use	1.0000	equal	n/a,73	1.0000	equal	n/a,29	1.0000	equal	n/a,72	1.0000	equal	n/a,29
15	Status: reconstruction	0.3273	0.8364	wi(-),73	0.3735	-0.9044	tt(-),29	0.3141	-1.0138	tt(-),72	0.4432	-0.7778	tt(-),29
16	Status: illegitimate	1.0000	equal	n/a,73	1.0000	equal	n/a,29	1.0000	equal	n/a,72	1.0000	equal	n/a,29
17	Function: residential	0.8435	0.4218	wi(+),69	0.6180	-0.5045	tt(-),28	0.8425	0.4213	wi(+),68	0.3684	0.1842	wi(+),28
18	Function: gathering	0.4160	0.8181	tt(+),73	0.6242	0.4954	tt(+),29	0.4958	0.6846	tt(+),72	0.8280	-0.2193	tt(-),29
19	Function: prison	1.0000	equal	n/a,73	1.0000	equal	n/a,29	1.0000	equal	n/a,72	1.0000	equal	n/a,29
20	Function: healthcare	1.0000	equal	n/a,69	1.0000	equal	n/a,27	1.0000	equal	n/a,68	1.0000	equal	n/a,27
21	Function: factory	0.8224	0.5888	wi(-),73	0.3101	-1.0337	tt(-),29	0.8328	0.4164	wi(+),72	0.8641	-0.1727	tt(-),29
22	Function: office	0.5285	-0.6334	tt(-),73	0.5237	-0.6457	tt(-),29	0.9061	0.1183	tt(+),72	0.8692	0.5654	wi(-),28
23	Function: guesthouse	0.1944	0.9028	wi(-),70	0.1567	0.9216	wi(-),29	0.5625	0.7188	wi(-),72	0.3550	0.8225	wi(-),29
24	Function: education	0.8097	0.4049	wi(+),66	0.7103	0.3552	wi(+),26	0.8097	0.4049	wi(+),66	0.6314	0.4851	tt(+),29
25	Function: sports	1.0000	equal	n/a,72	1.0000	equal	n/a,29	1.0000	equal	n/a,71	1.0000	equal	n/a,29
26	Function: shops	0.0606	1.9066	tt(+),73	0.7670	0.2992	tt(+),29	0.2096	1.2661	tt(+),72	0.1063	-1.669	tt(-),29
27	Function: other	0.3186	1.0043	tt(+),73	0.2094	1.2848	tt(+),29	0.5526	0.5967	tt(+),72	0.1101	1.6501	tt(+),29
28	Green: tree cover	0.6593	0.4428	tt(+),72	0.7390	-0.3365	tt(-),29	0.8809	-0.1503	tt(-),71	0.7406	-0.3343	tt(-),29
29	Green: bush cover	0.9229	-0.0972	tt(-),72	0.2349	-1.214	tt(-),29	0.6535	-0.4509	tt(-),71	0.4005	-0.8538	tt(-),29
30	Green: grass cover	0.8102	0.241	tt(+),72	0.4097	-0.8369	tt(-),29	0.8530	-0.186	tt(-),71	0.5997	-0.5309	tt(-),29
31	Noise pollution: total	0.5500	0.6006	tt(+),72	0.9748	0.0319	tt(+),28	0.9667	-0.0419	tt(-),71	0.7905	0.2682	tt(+),29
32	Noise pollution: roads	0.8145	0.2355	tt(+),72	0.6514	0.4568	tt(+),28	0.7060	-0.3788	tt(-),71	0.6238	0.496	tt(+),29
33	Noise pollution: railways	0.1914	0.0957	wi(+),71	0.5926	0.2963	wi(+),28	0.5643	0.2822	wi(+),70	0.8085	-0.2447	tt(-),28
34	Subjective: fastest	0.0000	-10.567	tt(-),73	0.0000	-7.2065	tt(-),27	0.0000	-11.8418	tt(-),72	0.0000	1.0	wi(-),28
35	Subjective: easy to remember	0.0000	-5.4253	tt(-),73	0.0264	-2.3436	tt(-),29	0.0000	-5.844	tt(-),72	0.0865	-1.7765	tt(-),29
36	Subjective: no obstructions	0.0586	0.9707	wi(-),73	0.0632	-1.9347	tt(-),29	0.0226	0.9887	wi(-),72	0.1768	0.9116	wi(-),29
37	Subjective: steep slopes	0.4656	0.7335	tt(+),73	0.6009	0.5291	tt(+),29	0.2068	1.2741	tt(+),72	0.8190	0.231	tt(+),29
38	Subjective: lot of seating	0.0061	2.828	tt(+),71	0.6667	-0.4355	tt(-),28	0.0166	2.4552	tt(+),71	0.6509	0.6746	wi(-),29
39	Subjective: weather protected	0.1741	1.3728	tt(+),73	0.4369	0.7886	tt(+),29	0.0632	1.8877	tt(+),72	0.3743	0.9028	tt(+),29
40	Subjective: safe vs.traffic	0.0082	-2.7193	tt(-),73	0.2192	-1.258	tt(-),28	0.0019	-3.2273	tt(-),72	0.1069	-1.6659	tt(-),29
41	Subjective: safe vs. social risk	0.0231	-2.3217	tt(-),72	0.0514	-2.035	tt(-),29	0.0781	-1.7875	tt(-),72	0.0723	-1.8677	tt(-),29
42	Subjective: like when dark	0.0000	-4.7399	tt(-),73	0.0650	-1.9204	tt(-),29	0.0000	-4.5846	tt(-),69	0.0293	-2.2965	tt(-),29
43	Subjective: well lit	0.0878	-1.7319	tt(-),69	0.1418	-1.5116	tt(-),29	0.0819	0.9591	wi(-),70	0.3723	-0.9068	tt(-),29
44	Subjective: other people	0.1269	-1.5442	tt(-),73	0.5288	0.6377	tt(+),29	0.0833	-1.7567	tt(-),72	0.4411	-0.7815	tt(-),29
45	Subjective: well maintained	0.0928	0.9536	wi(-),72	0.0325	0.9838	wi(-),28	0.1277	0.9361	wi(-),70	0.0497	-2.0549	tt(-),28
46	Year constr.: mean	0.0544	1.9561	tt(+),72	0.3672	-0.9166	tt(-),29	0.1782	1.3599	tt(+),71	0.5181	-0.6545	tt(-),29
47	Landmarks: FSI	0.4055	0.2027	wi(+),71	0.7508	0.3754	wi(+),28	0.2519	0.1259	wi(+),66	0.1751	1.3927	tt(+),28
48	Landmarks: plot area	0.0317	0.0158	wi(+),66	0.2896	0.1448	wi(+),28	0.1459	0.073	wi(+),70	0.1125	0.0563	wi(+),27
49	Landmarks: Year constr.	0.6676	0.3338	wi(+),70	0.4827	0.2414	wi(+),27	0.7942	0.3971	wi(+),68	0.4827	0.2414	wi(+),27
50	Landmarks: 1 criterion	0.1135	1.6028	tt(+),71	0.2679	1.1321	tt(+),27	0.1061	1.6374	tt(+),70	0.1032	1.6865	tt(+),28
51	Landmarks: 2 criteria	0.8295	0.4147	wi(+),70	0.1907	0.0954	wi(+),28	0.6613	0.3307	wi(+),70	0.4867	0.2433	wi(+),28
52	Landmarks: 3 criteria	1.0000	equal	n/a,73	1.0000	equal	n/a,29	1.0000	equal	n/a,72	1.0000	equal	n/a,29

Figure 2.10: Raw results for route aggregate analysis, sample: interaction - bike (have access), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]	_coef,n
0	Year constr.: < 1945	0.8366	0.5906	(-),23			n < 20	0.8726	0.5727	(-),23				n < 20
1	Year constr.: 1946-1970	0.9500	0.5350	(+),23			n < 20	0.8412	0.5892	(+),23				n < 20
2	Year constr.: 1971-1985	0.9811	0.5189	(-),23			n < 20	0.8408	0.5888	(-),23				n < 20
3	Year constr.: 1986-2000	0.8604	0.5790	(+),23			n < 20	0.8789	0.5698	(+),23				n < 20
4	Year constr.: 2001-2022	0.8173	0.6008	(-),23			n < 20	0.6742	0.6716	(-),23				n < 20
5	Traffic signals count	0.4775	0.7682	(-),23			n < 20	0.5279	0.7434	(-),23				n < 20
6	Stairs count	0.7437	0.6394	(-),23			n < 20	0.7437	0.6394	(-),23				n < 20
7	Status: for construction	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
8	Status: unrealised	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
9	Status: under construction	0.2807	0.8695	(+),23			n < 20	0.5970	0.7155	(+),23				n < 20
10	Status: in use (n.m.)	0.6693	0.6800	(+),23			n < 20	0.3010	0.8598	(+),23				n < 20
11	Status: in use	0.3270	0.8419	(-),23			n < 20	0.3972	0.8075	(-),23				n < 20
12	Status: for demolition	0.3388	0.8516	(+),23			n < 20	0.3388	0.8516	(+),23				n < 20
13	Status: demolished	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
14	Status: not in use	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
15	Status: reconstruction	0.5352	0.7414	(+),23			n < 20	0.5352	0.7414	(+),23				n < 20
16	Status: illegitimate	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
17	Function: residential	0.6713	0.6734	(-),23			n < 20	0.7361	0.6413	(-),23				n < 20
18	Function: gathering	0.7066	0.6570	(-),23			n < 20	0.7798	0.6208	(-),23				n < 20
19	Function: prison	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
20	Function: healthcare	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
21	Function: factory	1.0000	0.5248	(+),23			n < 20	1.0000	0.5248	(+),23				n < 20
22	Function: office	0.9095	0.5553	(+),23			n < 20	0.7994	0.6101	(+),23				n < 20
23	Function: guesthouse	0.5550	0.7395	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
24	Function: education	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
25	Function: sports	1.0000	0.0000	(-),23			n < 20	1.0000	0.0000	(-),23				n < 20
26	Function: shops	0.9596	0.5303	(+),23			n < 20	0.8388	0.5905	(+),23				n < 20
27	Function: other	0.8502	0.5842	(+),23			n < 20	0.9719	0.5234	(+),23				n < 20
28	Green: tree cover	0.7417	0.6374	(-),23			n < 20	0.4162	0.7981	(-),23				n < 20
29	Green: bush cover	0.8778	0.5698	(-),23			n < 20	0.5098	0.7521	(-),23				n < 20
30	Green: grass cover	0.6603	0.6778	(-),23			n < 20	0.4037	0.8043	(-),23				n < 20
31	Noise pollution: total	1.0000	0.5088	(+),23			n < 20	0.9125	0.5524	(-),23				n < 20
32	Noise pollution: roads	0.9300	0.5437	(+),23			n < 20	0.9649	0.5263	(-),23				n < 20
33	Noise pollution: railways	0.8090	0.6040	(-),23			n < 20	0.9125	0.5524	(-),23				n < 20
34	Subjective: fastest	0.0000	1.0000	(+),23			n < 20	0.0000	1.0000	(+),23				n < 20
35	Subjective: easy to remember	0.0000	1.0000	(+),23			n < 20	0.0001	0.9999	(+),23				n < 20
36	Subjective: no obstructions	0.2759	0.8670	(+).23			n < 20	0.6885	0.6642	(+).23				n < 20
37	Subjective: steep slopes	0.1529	0.9268	(-),23			n < 20	0.2402	0.8844	(-),23				n < 20
38	Subjective: lot of seating	0.1331	0.9364	(-).23			n < 20	0.1331	0.9364	(-).23				n < 20
39	Subjective: weather protected	0.0510	0.9758	(-).23			n < 20	0.0799	0.9620	(-).23				n < 20
40	Subjective: safe vs.traffic	0.3211	0.8450	(-).23			n < 20	0.6041	0.7059	(-).23				n < 20
41	Subjective: safe vs. social risk	0.1271	0.9394	(+).23			n < 20	0.0710	0.9664	(+).23				n < 20
42	Subjective: like when dark	0.0557	0.9736	(+).23			n < 20	0.0711	0.9662	(+).23				n < 20
43	Subjective: well lit	0.3045	0.8533	(+).23			n < 20	0.3520	0.8300	(+),23				n < 20
44	Subjective: other people	0.2930	0.8590	(+).23			n < 20	0.3404	0.8359	(+),23				n < 20
45	Subjective: well maintained	0.1887	0.9096	(+),23			n < 20	0.3777	0.8175	(+),23				n < 20
46	Year constr : mean	0.6431	0.6863	(+) 23			n < 20	0.6750	0.6705	(+) 23				n < 20
47	Landmarks: FSI	0.6784	0.6724	(-) 23			n < 20	0.9511	0.5366	(-) 23				n < 20
48	Landmarke: nlot area	0.07.04	0.5861	(-),23			n < 20	0.0011	0.5163	(-),23				n < 20
49	Landmarks: Year constr	0.7384	0.6440	(+) 23			n < 20	0.7384	0.6440	(+) 23				n < 20
50	Landmarks: 1 criterion	0.7054	0.5668	(-) 23			n < 20	1 0000	0.5103	(+) 23				n < 20
51	Landmarks: 2 criteria	1.0000	0.0000	(-).23			n < 20	1.0000	0.0000	(-),23				n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-).23			n < 20	1.0000	0.0000	(-),23	•	•		n < 20

Figure 2.11: Raw results for route aggregate analysis, sample: interaction - bike (no access), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.7551	0.6224	wi(-),21			n < 20	0.7274	0.6363	wi(-),21			n < 20
1	Year constr.: 1946-1970			n < 20									
2	Year constr.: 1971-1985			n < 20									
3	Year constr.: 1986-2000			n < 20									
4	Year constr.: 2001-2022			n < 20									
5	Traffic signals count	0.2114	0.1057	wi(+),21			n < 20	0.2381	0.1191	wi(+),21			n < 20
6	Stairs count	0.6831	0.3415	wi(+),21			n < 20	0.6831	0.3415	wi(+),21			n < 20
7	Status: for construction	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
8	Status: unrealised	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
9	Status: under construction			n < 20									
10	Status: in use (n.m.)			n < 20									
11	Status: in use			n < 20									
12	Status: for demolition			n < 20									
13	Status: demolished	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
14	Status: not in use	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
15	Status: reconstruction	0.3293	-1.0	tt(-),21			n < 20	0.3293	-1.0	tt(-),21			n < 20
16	Status: illegitimate	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
17	Function: residential			n < 20									
18	Function: gathering	0.6069	0.5227	tt(+),21			n < 20	0.7004	0.3903	tt(+),21			n < 20
19	Function: prison	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
20	Function: healthcare	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
21	Function: factory			n < 20									
22	Function: office			n < 20			n < 20	0.9704	0.5148	wi(-),21			n < 20
23	Function: guesthouse			n < 20			n < 20	1.0	equal	n/a,21			n < 20
24	Function: education	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
25	Function: sports	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
26	Function: shops			n < 20									
27	Function: other			n < 20									
28	Green: tree cover	0.8338	0.2125	tt(+),21			n < 20	0.3102	1.0411	tt(+),21			n < 20
29	Green: bush cover	0.7434	0.3319	tt(+),21			n < 20	0.1614	1.4541	tt(+),21			n < 20
30	Green: grass cover	0.7376	0.3397	tt(+),21			n < 20	0.2015	1.3207	tt(+),21			n < 20
31	Noise pollution: total	0.9293	0.0899	tt(+),21			n < 20	0.3662	0.9245	tt(+),21			n < 20
32	Noise pollution: roads	0.822	0.228	tt(+),21			n < 20	0.4325	0.801	tt(+),21			n < 20
33	Noise pollution: railways	0.3292	0.8354	wi(-),21			n < 20	0.8344	0.4172	wi(+),21			n < 20
34	Subjective: fastest			n < 20									
35	Subjective: easy to remember	0.0007	-4.0062	tt(-),21			n < 20	0.0016	-3.6584	tt(-),21			n < 20
36	Subjective: no obstructions	0.3604	-0.9361	tt(-),21			n < 20	0.8781	-0.1553	tt(-),21			n < 20
37	Subjective: steep slopes	0.0372	2.2323	tt(+),21			n < 20	0.0825	1.828	tt(+),21			n < 20
38	Subjective: lot of seating	0.2684	1.1385	tt(+),21			n < 20	0.2684	1.1385	tt(+),21			n < 20
39	Subjective: weather protected	0.0632	1.9672	tt(+),21			n < 20	0.1023	1.7125	tt(+),21			n < 20
40	Subjective: safe vs.traffic			n < 20			n < 20	0.8905	0.1394	tt(+),21			n < 20
41	Subjective: safe vs. social risk	0.3217	-1.0161	tt(-),21			n < 20	0.2427	-1.2039	tt(-),21			n < 20
42	Subjective: like when dark			n < 20			n < 20	0.0374	-2.2298	tt(-),21			n < 20
43	Subjective: well lit	0.1224	-1.6129	tt(-),21			n < 20	0.1164	-1.6412	tt(-),21			n < 20
44	Subjective: other people	0.118	-1.6337	tt(-),21			n < 20	0.2239	-1.2553	tt(-),21			n < 20
45	Subjective: well maintained	0.1571	-1.4699	tt(-),21			n < 20	0.6403	-0.4744	tt(-),21			n < 20
46	Year constr.: mean			n < 20									
47	Landmarks: FSI			n < 20									
48	Landmarks: plot area			n < 20									
49	Landmarks: Year constr.			n < 20									
50	Landmarks: 1 criterion			n < 20									
51	Landmarks: 2 criteria	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20
52	Landmarks: 3 criteria	1.0	equal	n/a,21			n < 20	1.0	equal	n/a,21			n < 20

Figure 2.12: Raw results for route aggregate analysis, sample: interaction - bike (no access), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.6737	0.6657	(+),49			n < 20	0.7406	0.6325	(+),48	0.4087	0.8018	(+),23
1	Year constr.: 1946-1970	0.7074	0.6490	(+),49			n < 20	0.6938	0.6559	(+),48	0.7071	0.6546	(+),23
2	Year constr.: 1971-1985	0.4941	0.7553	(-),49			n < 20	0.4375	0.7835	(-),48	0.8418	0.5878	(-),23
3	Year constr.: 1986-2000	0.5534	0.7257	(-),49			n < 20	0.4364	0.7840	(-),48	0.9380	0.5398	(-),23
4	Year constr.: 2001-2022	0.9655	0.5201	(-),49			n < 20	0.9378	0.5340	(+),48	0.2984	0.8559	(+),23
5	Traffic signals count	0.2609	0.8711	(-),49			n < 20	0.1921	0.9052	(-),48	0.7248	0.6461	(-),23
6	Stairs count	0.8033	0.6023	(+),49			n < 20	0.9957	0.5022	(-),48	0.3969	0.8119	(-),23
7	Status: for construction	0.1941	0.9053	(-),49			n < 20	0.3035	0.8516	(-),48	0.3388	0.8516	(-),23
8	Status: unrealised	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23
9	Status: under construction	0.9892	0.5108	(+),49			n < 20	0.9559	0.5276	(+),48	0.6221	0.7013	(+),23
10	Status: in use (n.m.)	0.3242	0.8413	(+),49			n < 20	0.3244	0.8413	(+),48	0.3329	0.8414	(+),23
11	Status: in use	0.8617	0.5719	(+),49			n < 20	0.9445	0.5307	(+),48	0.5310	0.7416	(+),23
12	Status: for demolition	0.9917	0.5124	(-),49			n < 20	0.9916	0.5127	(-),48	0.1618	0.9280	(+),23
13	Status: demolished	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23
14	Status: not in use	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23
15	Status: reconstruction	0.7731	0.6173	(-),49			n < 20	0.7756	0.6160	(-),48	0.9348	0.5434	(+),23
16	Status: illegitimate	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23
17	Function: residential	0.7664	0.6195	(-),49			n < 20	0.7564	0.6246	(-),48	0.9912	0.5132	(-),23
18	Function: gathering	0.3691	0.8176	(+),49			n < 20	0.3787	0.8129	(+),48	0.1476	0.9294	(+),23
19	Function: prison	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23
20	Function: healthcare	0.3273	0.8462	(-),49			n < 20	0.9882	0.5059	(-),48	0.3388	0.8516	(+),23
21	Function: factory	0.8738	0.5670	(-),49			n < 20	0.4128	0.7965	(-),48	0.6480	0.6862	(-),23
22	Function: office	0.5532	0.7261	(+),49			n < 20	0.9967	0.5049	(+),48	0.7141	0.6517	(+),23
23	Function: guesthouse	0.4052	0.8008	(+),49			n < 20	1.0000	0.5048	(-),48	0.9635	0.5304	(+),23
24	Function: education	0.0122	0.9942	(-),49			n < 20	0.1705	0.9177	(-),48	0.3113	0.8549	(-),23
25	Function: sports	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23
26	Function: shops	0.5430	0.7310	(-),49			n < 20	0.7852	0.6104	(-),48	0.2557	0.8769	(+),23
27	Function: other	0.5190	0.7429	(+),49			n < 20	0.4482	0.7782	(+),48	0.9459	0.5361	(-),23
28	Green: tree cover	0.8842	0.5607	(+),49			n < 20	0.7976	0.6040	(+),48	0.8951	0.5611	(+),23
29	Green: bush cover	0.9518	0.5269	(+),49			n < 20	0.8777	0.5640	(+),48	0.6445	0.6856	(+),23
30	Green: grass cover	0.6933	0.6560	(-),49			n < 20	0.6815	0.6619	(-),48	0.9125	0.5524	(-),23
31	Noise pollution: total	0.7197	0.6428	(-),49			n < 20	0.8546	0.5755	(-),48	0.8433	0.5869	(-),23
32	Noise pollution: roads	0.7844	0.6105	(-),49			n < 20	0.9766	0.5146	(+),48	0.8951	0.5611	(-),23
33	Noise pollution: railways	0.7091	0.6481	(+),49			n < 20	0.7416	0.6320	(+),48	0.9300	0.5437	(+),23
34	Subjective: fastest	0.0000	1.0000	(+),49			n < 20	0.0000	1.0000	(+),48	0.0000	1.0000	(+),23
35	Subjective: easy to remember	0.0001	1.0000	(+),49			n < 20	0.0000	1.0000	(+),48	0.0182	0.9915	(+),23
36	Subjective: no obstructions	0.3579	0.8230	(+),49			n < 20	0.1674	0.9175	(+),48	0.6934	0.6618	(+),23
37	Subjective: steep slopes	0.2435	0.8797	(-),49			n < 20	0.1819	0.9103	(-),48	0.4101	0.8013	(-),23
38	Subjective: lot of seating	0.0242	0.9881	(-),49			n < 20	0.0592	0.9709	(-),48	0.3736	0.8194	(-),23
39	Subjective: weather protected	0.3430	0.8304	(-),49			n < 20	0.2776	0.8629	(-),48	0.1502	0.9282	(-),23
40	Subjective: safe vs.traffic	0.0944	0.9536	(+),49			n < 20	0.0074	0.9964	(+),48	0.1047	0.9502	(+),23
41	Subjective: safe vs. social risk	0.0568	0.9721	(+),49			n < 20	0.1275	0.9372	(+),48	0.1769	0.9152	(+),23
42	Subjective: like when dark	0.0000	1.0000	(+),49			n < 20	0.0014	0.9993	(+),48	0.1134	0.9459	(+),23
43	Subjective: well lit	0.0255	0.9875	(+),49			n < 20	0.1524	0.9249	(+),48	0.4933	0.7605	(+),23
44	Subjective: other people	0.0236	0.9884	(+),49			n < 20	0.0237	0.9884	(+),48	0.1189	0.9432	(+),23
45	Subjective: well maintained	0.6680	0.6688	(+),49			n < 20	0.7451	0.6305	(+),48	0.7666	0.6257	(-),23
46	Year constr.: mean	0.5202	0.7422	(-),49			n < 20	0.5237	0.7405	(-),48	0.8864	0.5654	(-),23
47	Landmarks: FSI	0.9812	0.5126	(-),49			n < 20	0.8488	0.5788	(-),48	0.9709	0.5242	(-),23
48	Landmarks: plot area	0.5302	0.7374	(-),49			n < 20	0.6425	0.6816	(-),48	0.7466	0.6354	(-),23
49	Landmarks: Year constr.	0.8942	0.5561	(+),49			n < 20	0.8866	0.5600	(+),48	0.7413	0.6393	(+),23
50	Landmarks: 1 criterion	0.6591	0.6731	(-),49			n < 20	0.6360	0.6846	(-),48	0.9202	0.5487	(-),23
51	Landmarks: 2 criteria	0.9751	0.5174	(+),49			n < 20	0.9779	0.5165	(+),48	1.0000	0.0000	(-),23
52	Landmarks: 3 criteria	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),48	1.0000	0.0000	(-),23

Figure 2.13: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (\leq 8 days / month), sub-question 4, data: non- $\operatorname{standardised}$

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.3089	0.8455	wi(-),47			n < 20	0.8188	0.5906	wi(-),47	0.0789	0.9606	wi(-),22
1	Year constr.: 1946-1970	0.9293	0.0892	tt(+),48			n < 20	0.8272	0.5864	wi(-),48	0.9607	0.4804	wi(+),22
2	Year constr.: 1971-1985	0.3492	0.1746	wi(+),46			n < 20	0.2591	0.1296	wi(+),46	0.4132	0.2066	wi(+),22
3	Year constr.: 1986-2000	0.6145	0.3072	wi(+),47			n < 20	0.7786	0.3893	wi(+),45	0.3805	-0.8958	tt(-),22
4	Year constr.: 2001-2022	0.9587	0.4793	wi(+),48			n < 20	0.1878	0.9061	wi(-),44	0.0040	-3.212	tt(-),23
5	Traffic signals count	0.0397	0.0198	wi(+),48			n < 20	0.0887	0.0444	wi(+),48	0.3670	0.9211	tt(+),23
6	Stairs count	1.0000	equal	n/a,43			n < 20	1.0000	equal	n/a,44	1.0000	equal	n/a,21
7	Status: for construction	0.7705	0.3852	wi(+),44			n < 20	0.7728	0.3864	wi(+),45	1.0000	equal	n/a,22
8	Status: unrealised	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23
9	Status: under construction	0.7728	0.6136	wi(-),45			n < 20	0.5679	0.7161	wi(-),44	0.4828	0.7586	wi(-),23
10	Status: in use (n.m.)	0.7751	0.3875	wi(+),46			n < 20	0.7728	0.3864	wi(+),45	0.6854	0.6573	wi(-),22
11	Status: in use	0.9493	0.5253	wi(-),47			n < 20	0.6603	0.3301	wi(+),47	0.3859	0.8071	wi(-),23
12	Status: for demolition	1.0000	equal	n/a,44			n < 20	1.0000	equal	n/a,44	1.0000	equal	n/a,21
13	Status: demolished	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23
14	Status: not in use	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23
15	Status: reconstruction	0.7003	0.3873	tt(+),48			n < 20	0.7291	0.3484	tt(+),48	0.9689	-0.0394	tt(-),23
16	Status: illegitimate	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23
17	Function: residential	0.2327	0.1163	wi(+),46			n < 20	0.3408	0.1704	wi(+),46	0.8838	0.5581	wi(-),22
18	Function: gathering	0.2445	0.8777	wi(-),48			n < 20	0.4736	0.7632	wi(-),46	0.0349	0.9825	wi(-),23
19	Function: prison	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23
20	Function: healthcare	1.0000	equal	n/a,47			n < 20	1.0000	equal	n/a,46	1.0000	equal	n/a,22
21	Function: factory	0.9695	0.5153	wi(-),48			n < 20	0.4561	0.228	wi(+),48	0.7154	0.3577	wi(+),23
22	Function: office	0.1958	0.9021	wi(-),48			n < 20	0.8154	0.5923	wi(-),48	0.8660	0.433	wi(+),22
23	Function: guesthouse	0.7776	0.6112	wi(-),43			n < 20	0.6239	0.688	wi(-),47	0.7068	0.6466	wi(-),21
24	Function: education	0.1905	0.0952	wi(+),47			n < 20	1.0000	equal	n/a,43	0.4825	0.2413	wi(+),23
25	Function: sports	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23
26	Function: shops	0.1545	1.447	tt(+),48			n < 20	0.7837	0.2761	tt(+),48	0.0124	-2.7234	tt(-),23
27	Function: other	0.6557	-0.4488	tt(-),48			n < 20	0.2360	-1.2004	tt(-),48	0.7088	0.3784	tt(+),23
28	Green: tree cover	0.9608	-0.0494	tt(-),47			n < 20	0.8330	-0.2121	tt(-),47	0.6414	-0.4722	tt(-),23
29	Green: bush cover	0.9046	0.1205	tt(+),47			n < 20	0.9890	-0.0139	tt(-),47	0.2426	-1.2007	tt(-),23
30	Green: grass cover	0.5926	0.5388	tt(+),47			n < 20	0.7908	0.2669	tt(+),47	0.7242	-0.3575	tt(-),23
31	Noise pollution: total	0.5123	0.6602	tt(+),48			n < 20	0.8875	0.1423	tt(+),47	0.5296	-0.6387	tt(-),23
32	Noise pollution: roads	0.7351	0.3404	tt(+),48			n < 20	0.6726	-0.4252	tt(-),48	0.8584	-0.1805	tt(-),23
33	Noise pollution: railways	0.7184	0.3592	wi(+),46			n < 20	0.4775	0.7612	wi(-),46	0.1511	-1.49	tt(-),22
34	Subjective: fastest	0.0000	-7.5131	tt(-),48			n < 20	0.0000	-9.1215	tt(-),48	0.0000	-5.7708	tt(-),22
35	Subjective: easy to remember	0.0004	-3.79	tt(-),46			n < 20	0.0001	-4.4047	tt(-),46	0.0308	-2.3077	tt(-),23
36	Subjective: no obstructions	0.4857	0.7572	wi(-),47			n < 20	0.1610	-1.4246	tt(-),47	0.5741	-0.5706	tt(-),23
37	Subjective: steep slopes	0.0142	0.0071	wi(+),47			n < 20	0.0020	3.2718	tt(+),47	0.1058	1.6868	tt(+),23
38	Subjective: lot of seating	0.0614	1.9188	tt(+),46			n < 20	0.0451	2.0601	tt(+),47	0.1708	1.4158	tt(+),23
39	Subjective: weather protected	0.3138	1.0182	tt(+),48			n < 20	0.1518	1.4569	tt(+),48	0.1537	1.4802	tt(+),22
40	Subjective: safe vs.traffic	0.0791	-1.7946	tt(-),48			n < 20	0.0243	-2.3296	tt(-),47	0.2859	-1.0937	tt(-),23
41	Subjective: safe vs. social risk	0.0721	-1.8405	tt(-),47	•		n < 20	0.2272	-1.2239	tt(-),47	0.1805	-1.3832	tt(-),23
42	Subjective: like when dark	0.0007	-3.6199	tt(-),48			n < 20	0.0008	0.9996	wi(-),48	0.1152	-1.6402	tt(-),23
43	Subjective: well lit	0.0052	0.9974	wi(-),48			n < 20	0.0923	-1.7185	tt(-),48	0.5420	-0.6195	tt(-),23
44	Subjective: other people	0.0354	-2.166	tt(-),48			n < 20	0.0207	-2.3941	tt(-),48	0.1307	-1.5699	tt(-),23
45	Subjective: well maintained	0.3056	0.8472	wi(-),47			n < 20	0.5489	0.7256	wi(-),47	0.9501	0.5249	wi(-),23
46	Year constr.: mean	0.0055	0.0028	wi(+),47			n < 20	0.0060	2.8826	tt(+),47	0.8792	0.1538	tt(+),23
47	Landmarks: FSI	0.1959	0.0979	wi(+),44			n < 20	0.2160	0.108	wi(+),45	0.1858	1.3679	tt(+),22
48	Landmarks: plot area	0.1084	0.0542	wi(+),47			n < 20	0.1042	1.6583	tt(+),46	0.2873	0.1436	wi(+),22
49	Landmarks: Year constr.	0.7744	0.3872	wi(+),46			n < 20	0.7721	0.386	wi(+),45	1.0000	0.5	wi(+),22
50	Landmarks: 1 criterion	0.1153	0.0577	wi(+),47			n < 20	0.0634	1.902	tt(+),47	0.8044	0.4022	wi(+),23
51	Landmarks: 2 criteria	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,45	1.0000	equal	n/a,23
52	Landmarks: 3 criteria	1.0000	equal	n/a,48			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,23

Figure 2.14: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (≤ 8 days / month), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.8252	0.5902	(-),49			n < 20	0.9291	0.5383	(+),49			n < 20
1	Year constr.: 1946-1970	0.3059	0.8488	(-),49			n < 20	0.6034	0.7009	(-),49			n < 20
2	Year constr.: 1971-1985	0.6161	0.6946	(+),49			n < 20	0.8693	0.5683	(+),49			n < 20
3	Year constr.: 1986-2000	0.6970	0.6542	(-),49			n < 20	0.6151	0.6950	(-),49			n < 20
4	Year constr.: 2001-2022	0.7987	0.6034	(-),49			n < 20	0.6228	0.6911	(-),49			n < 20
5	Traffic signals count	0.2617	0.8707	(-),49			n < 20	0.4926	0.7560	(-),49			n < 20
6	Stairs count	0.6335	0.6867	(-),49			n < 20	0.6335	0.6867	(-),49			n < 20
7	Status: for construction	0.9953	0.5023	(-),49			n < 20	0.9953	0.5023	(-),49			n < 20
8	Status: unrealised	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),49			n < 20
9	Status: under construction	0.9515	0.5297	(+),49			n < 20	0.8155	0.5973	(-),49			n < 20
10	Status: in use (n.m.)	0.6033	0.7022	(+),49			n < 20	0.2591	0.8728	(+),49			n < 20
11	Status: in use	0.6723	0.6665	(-),49			n < 20	0.8533	0.5761	(-),49			n < 20
12	Status: for demolition	0.9884	0.5058	(-),49			n < 20	0.3273	0.8462	(+),49			n < 20
13	Status: demolished	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),49			n < 20
14	Status: not in use	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),49			n < 20
15	Status: reconstruction	0.0442	0.9784	(+),49			n < 20	0.0631	0.9692	(+),49			n < 20
16	Status: illegitimate	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),49			n < 20
17	Function: residential	0.8636	0.5710	(+),49			n < 20	0.7204	0.6425	(+),49			n < 20
18	Function: gathering	0.0938	0.9539	(-),49			n < 20	0.1326	0.9348	(-),49			n < 20
19	Function: prison	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),49			n < 20
20	Function: healthcare	0.3972	0.8062	(+),49			n < 20	0.6413	0.6860	(+),49			n < 20
21	Function: factory	0.6973	0.6549	(+),49			n < 20	0.7044	0.6514	(+),49			n < 20
22	Function: office	0.8537	0.5762	(-),49			n < 20	0.7724	0.6168	(-),49			n < 20
23	Function: guesthouse	0.6616	0.6749	(-),49			n < 20	0.6682	0.6726	(+),49			n < 20
24	Function: education	0.6750	0.6693	(+),49			n < 20	0.6750	0.6693	(+),49			n < 20
25	Function: sports	0.3273	0.8462	(+),49			n < 20	0.3273	0.8462	(+),49			n < 20
26	Function: shops	0.3674	0.8184	(-),49			n < 20	0.3636	0.8203	(-),49			n < 20
27	Function: other	0.4355	0.7844	(-),49			n < 20	0.3014	0.8510	(-),49			n < 20
28	Green: tree cover	0.6907	0.6573	(-),49			n < 20	0.4621	0.7711	(-),49			n < 20
29	Green: bush cover	0.8814	0.5621	(+),49			n < 20	0.7681	0.6187	(-),49			n < 20
30	Green: grass cover	0.8590	0.5733	(+),49			n < 20	0.8395	0.5830	(-),49			n < 20
31	Noise pollution: total	0.7224	0.6415	(+),49			n < 20	0.9349	0.5354	(+),49			n < 20
32	Noise pollution: roads	0.6189	0.6930	(+),49			n < 20	0.7357	0.6348	(+),49			n < 20
33	Noise pollution: railways	0.9830	0.5113	(+),49			n < 20	0.8395	0.5830	(+),49			n < 20
34	Subjective: fastest	0.0000	1.0000	(+),49			n < 20	0.0000	1.0000	(+),49			n < 20
35	Subjective: easy to remember	0.0000	1.0000	(+),49			n < 20	0.0000	1.0000	(+),49			n < 20
36	Subjective: no obstructions	0.0150	0.9926	(+),49			n < 20	0.1208	0.9405	(+),49			n < 20
37	Subjective: steep slopes	0.6235	0.6909	(-),49			n < 20	0.6934	0.6560	(-),49			n < 20
38	Subjective: lot of seating	0.0201	0.9901	(-),49			n < 20	0.0522	0.9743	(-),49			n < 20
39	Subjective: weather protected	0.0531	0.9739	(-),49			n < 20	0.0512	0.9749	(-),49			n < 20
40	Subjective: safe vs.traffic	0.6758	0.6650	(+),49			n < 20	0.5251	0.7400	(+),49			n < 20
41	Subjective: safe vs. social risk	0.0560	0.9725	(+),49			n < 20	0.1161	0.9429	(+),49			n < 20
42	Subjective: like when dark	0.0006	0.9997	(+),49			n < 20	0.0007	0.9997	(+),49			n < 20
43	Subjective: well lit	0.3303	0.8368	(+),49			n < 20	0.1403	0.9309	(+),49			n < 20
44	Subjective: other people	0.3328	0.8355	(+),49			n < 20	0.1900	0.9063	(+),49			n < 20
45	Subjective: well maintained	0.0427	0.9790	(+),49			n < 20	0.1037	0.9490	(+),49			n < 20
46	Year constr.: mean	0.7304	0.6375	(+),49			n < 20	0.9660	0.5198	(+),49			n < 20
47	Landmarks: FSI	0.4996	0.7527	(-),49			n < 20	0.8165	0.5949	(-),49			n < 20
48	Landmarks: plot area	0.7337	0.6360	(-),49			n < 20	0.8353	0.5853	(-),49			n < 20
49	Landmarks: Year constr.	0.5405	0.7326	(-),49			n < 20	0.8108	0.5981	(-),49			n < 20
50	Landmarks: 1 criterion	0.3701	0.8169	(-),49			n < 20	0.5036	0.7505	(-),49			n < 20
51	Landmarks: 2 criteria	0.5658	0.7213	(-),49			n < 20	0.7311	0.6393	(-),49			n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-),49			n < 20	1.0000	0.0000	(-),49			n < 20

Figure 2.15: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (\geq 8 days / month), sub-question 4, data: non- $\operatorname{standardised}$

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.7986	0.6007	wi(-),45			n < 20	0.6489	0.6756	wi(-),46			n < 20
1	Year constr.: 1946-1970	0.4102	0.2051	wi(+),46			n < 20	0.6750	0.422	tt(+),47			n < 20
2	Year constr.: 1971-1985	0.4682	-0.7315	tt(-),46			n < 20	0.5920	-0.5396	tt(-),47			n < 20
3	Year constr.: 1986-2000	0.5857	-0.5491	tt(-),46			n < 20	0.7412	-0.3322	tt(-),47			n < 20
4	Year constr.: 2001-2022	0.1120	0.056	wi(+),45			n < 20	0.0836	0.0418	wi(+),46			n < 20
5	Traffic signals count	0.1694	0.0847	wi(+),46			n < 20	0.3109	0.1555	wi(+),47			n < 20
6	Stairs count	0.5904	0.2952	wi(+),46			n < 20	0.5937	0.2968	wi(+),47			n < 20
7	Status: for construction	1.0000	equal	n/a,42			n < 20	1.0000	equal	n/a,43			n < 20
8	Status: unrealised	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47			n < 20
9	Status: under construction	0.7656	0.6172	wi(-),42			n < 20	0.7705	0.6148	wi(-),44			n < 20
10	Status: in use (n.m.)	0.7656	0.6172	wi(-),42			n < 20	0.7681	0.616	wi(-),43			n < 20
11	Status: in use	0.5573	0.5913	tt(+),46			n < 20	0.7233	0.3562	tt(+),47			n < 20
12	Status: for demolition	1.0000	equal	n/a,44			n < 20	1.0000	equal	n/a,46			n < 20
13	Status: demolished	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47			n < 20
14	Status: not in use	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47			n < 20
15	Status: reconstruction	0.0533	0.9734	wi(-),46			n < 20	0.0873	0.9563	wi(-),47			n < 20
16	Status: illegitimate	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47			n < 20
17	Function: residential	0.4437	-0.7732	tt(-),43			n < 20	0.5855	-0.5495	tt(-),44			n < 20
18	Function: gathering	0.0215	2.3826	tt(+),46			n < 20	0.0329	2.1998	tt(+),47			n < 20
19	Function: prison	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47			n < 20
20	Function: healthcare	1.0000	equal	n/a,42			n < 20	1.0000	equal	n/a,44			n < 20
21	Function: factory	0.6049	0.6976	wi(-),46			n < 20	0.6079	0.6961	wi(-),47			n < 20
22	Function: office	0.9501	0.063	tt(+),46			n < 20	0.7820	0.2784	tt(+),47			n < 20
23	Function: guesthouse	0.7656	0.6172	wi(-),42			n < 20	0.7681	0.616	wi(-),43			n < 20
24	Function: education	0.7728	0.3864	wi(+),45			n < 20	0.7751	0.3875	wi(+),46			n < 20
25	Function: sports	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,46			n < 20
26	Function: shops	0.0477	0.0238	wi(+),45			n < 20	0.1745	0.0872	wi(+),46			n < 20
27	Function: other	0.0413	2.1011	tt(+),46			n < 20	0.0337	2.1888	tt(+),47			n < 20
28	Green: tree cover	0.6085	0.5158	tt(+),46			n < 20	0.3688	0.9077	tt(+),47			n < 20
29	Green: bush cover	0.8975	-0.1296	tt(-),46			n < 20	0.6786	0.417	tt(+),47			n < 20
30	Green: grass cover	0.8678	-0.1675	tt(-),46			n < 20	0.6208	0.4981	tt(+),47			n < 20
31	Noise pollution: total	0.5769	0.5621	tt(+),46			n < 20	0.3942	0.1971	wi(+),47			n < 20
32	Noise pollution: roads	0.6888	0.4031	tt(+),46			n < 20	0.5331	0.628	tt(+),47			n < 20
33	Noise pollution: railways	0.3446	0.1723	wi(+),46			n < 20	0.1738	0.0869	wi(+),47			n < 20
34	Subjective: fastest	0.0000	-10.8062	tt(-),40			n < 20	0.0000	1.0	wi(-),39			n < 20
35	Subjective: easy to remember	0.0000	-5.1225	tt(-),45			n < 20	0.0000	-4.9392	tt(-),45			n < 20
36	Subjective: no obstructions	0.0208	-2.3949	tt(-),46			n < 20	0.1304	-1.54	tt(-),47			n < 20
37	Subjective: steep slopes	0.3180	1.0098	tt(+),46			n < 20	0.3560	0.9324	tt(+),47			n < 20
38	Subjective: lot of seating	0.0316	2.219	tt(+),46			n < 20	0.0500	2.0133	tt(+),47			n < 20
39	Subjective: weather protected	0.0427	2.0853	tt(+),46			n < 20	0.0347	2.176	tt(+),47			n < 20
40	Subjective: safe vs.traffic	0.1707	-1.3926	tt(-),45			n < 20	0.2284	-1.2212	tt(-),46			n < 20
41	Subjective: safe vs. social risk	0.1446	-1.4851	tt(-),45			n < 20	0.1473	-1.4741	tt(-),47			n < 20
42	Subjective: like when dark	0.0020	-3.2853	tt(-),45			n < 20	0.0011	-3.4983	tt(-),46			n < 20
43	Subjective: well lit	0.3857	0.8072	wi(-),44			n < 20	0.1112	0.9444	wi(-),46			n < 20
44	Subjective: other people	0.5496	-0.6029	tt(-),46			n < 20	0.3651	-0.9148	tt(-),47			n < 20
45	Subjective: well maintained	0.0356	-2.1666	tt(-),46			n < 20	0.0512	-2.0031	tt(-),46			n < 20
46	Year constr.: mean	0.1422	0.9289	wi(-),45			n < 20	0.2793	0.8604	wi(-),46			n < 20
47	Landmarks: FSI	0.2228	0.1114	wi(+),44			n < 20	0.4663	0.2332	wi(+),44			n < 20
48	Landmarks: plot area	0.4320	0.216	wi(+),45			n < 20	0.2905	0.1452	wi(+),45			n < 20
49	Landmarks: Year constr.	0.8057	0.4029	wi(+),44			n < 20	0.9700	0.485	wi(+),44			n < 20
50	Landmarks: 1 criterion	0.1124	1.6205	tt(+),44			n < 20	0.1572	1.439	tt(+),45			n < 20
51	Landmarks: 2 criteria	0.5598	0.2799	wi(+),42			n < 20	0.4014	0.2007	wi(+),44			n < 20
52	Landmarks: 3 criteria	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47			n < 20

Figure 2.16: Raw results for route aggregate analysis, sample: interaction - frequency of train travel (≥ 8 days / month), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.9665	0.5198	(-),47			n < 20	0.9529	0.5267	(-),46			n < 20
1	Year constr.: 1946-1970	0.9705	0.5180	(-),47			n < 20	0.9594	0.5237	(+),46			n < 20
2	Year constr.: 1971-1985	0.8942	0.5561	(-),47			n < 20	0.8771	0.5647	(-),46			n < 20
3	Year constr.: 1986-2000	0.3726	0.8158	(-),47			n < 20	0.3453	0.8294	(-),46			n < 20
4	Year constr.: 2001-2022	0.6598	0.6729	(-),47			n < 20	0.7803	0.6129	(-),46			n < 20
5	Traffic signals count	0.1724	0.9150	(-),47			n < 20	0.2924	0.8556	(-),46			n < 20
6	Stairs count	0.4272	0.7897	(+),47			n < 20	0.4262	0.7902	(+),46			n < 20
7	Status: for construction	0.7246	0.6428	(-),47			n < 20	0.9539	0.5288	(-),46			n < 20
8	Status: unrealised	1.0000	0.0000	(-),47			n < 20	1.0000	0.0000	(-),46			n < 20
9	Status: under construction	0.4065	0.8017	(-),47			n < 20	0.4167	0.7968	(-),46			n < 20
10	Status: in use (n.m.)	0.5198	0.7446	(+),47			n < 20	0.5197	0.7448	(+),46			n < 20
11	Status: in use	0.8202	0.5928	(-),47			n < 20	0.8114	0.5973	(-),46			n < 20
12	Status: for demolition	0.3277	0.8464	(-),47			n < 20	0.3279	0.8465	(-),46			n < 20
13	Status: demolished	1.0000	0.0000	(-),47			n < 20	1.0000	0.0000	(-),46			n < 20
14	Status: not in use	1.0000	0.0000	(-),47			n < 20	1.0000	0.0000	(-),46			n < 20
15	Status: reconstruction	0.4880	0.7593	(+),47			n < 20	0.4982	0.7543	(+),46			n < 20
16	Status: illegitimate	1.0000	0.0000	(-),47			n < 20	1.0000	0.0000	(-),46			n < 20
17	Function: residential	0.8335	0.5863	(+),47			n < 20	0.7170	0.6445	(+),46			n < 20
18	Function: gathering	0.1341	0.9342	(-),47			n < 20	0.1083	0.9469	(-),46			n < 20
19	Function: prison	1.0000	0.0000	(-),47			n < 20	1.0000	0.0000	(-),46			n < 20
20	Function: healthcare	0.6407	0.6866	(+),47			n < 20	0.3960	0.8070	(+),46			n < 20
21	Function: factory	0.6077	0.7004	(-),47			n < 20	0.4473	0.7800	(-),46			n < 20
22	Function: office	0.9175	0.5447	(+),47			n < 20	0.7984	0.6042	(-),46			n < 20
23	Function: guesthouse	0.9741	0.5216	(-),47			n < 20	0.6262	0.6939	(-),46			n < 20
24	Function: education	0.3146	0.8479	(-),47			n < 20	0.9912	0.5044	(-),46			n < 20
25	Function: sports	0.3277	0.8464	(+),47			n < 20	0.3279	0.8465	(+),46			n < 20
26	Function: shops	0.4197	0.7926	(-),47			n < 20	0.3608	0.8218	(-),46			n < 20
27	Function: other	0.7734	0.6163	(-),47			n < 20	0.6069	0.6994	(-),46			n < 20
28	Green: tree cover	0.9638	0.5211	(+),47			n < 20	0.9191	0.5435	(-),46			n < 20
29	Green: bush cover	0.8858	0.5601	(+),47			n < 20	1.0000	0.5031	(+),46			n < 20
30	Green: grass cover	0.9337	0.5362	(-),47			n < 20	0.7548	0.6256	(-),46			n < 20
31	Noise pollution: total	0.9037	0.5511	(-),47			n < 20	0.7253	0.6403	(-),46			n < 20
32	Noise pollution: roads	0.7913	0.6073	(+),47			n < 20	0.9751	0.5156	(+),46			n < 20
33	Noise pollution: railways	0.9698	0.5181	(-),47			n < 20	0.8820	0.5621	(+),46			n < 20
34	Subjective: fastest	0.0000	1.0000	(+),47			n < 20	0.0000	1.0000	(+),46			n < 20
35	Subjective: easy to remember	0.0000	1.0000	(+),47			n < 20	0.0000	1.0000	(+),46			n < 20
36	Subjective: no obstructions	0.1437	0.9292	(+),47			n < 20	0.1686	0.9169	(+),46			n < 20
37	Subjective: steep slopes	0.1679	0.9173	(-),47			n < 20	0.1166	0.9426	(-),46			n < 20
38	Subjective: lot of seating	0.0063	0.9969	(-),47			n < 20	0.0167	0.9918	(-),46			n < 20
39	Subjective: weather protected	0.0893	0.9561	(-),47			n < 20	0.1240	0.9390	(-),46			n < 20
40	Subjective: safe vs.traffic	0.7519	0.6271	(+),47			n < 20	0.1588	0.9218	(+),46			n < 20
41	Subjective: safe vs. social risk	0.0106	0.9948	(+),47			n < 20	0.0145	0.9929	(+),46			n < 20
42	Subjective: like when dark	0.0001	1.0000	(+),47			n < 20	0.0029	0.9986	(+),46			n < 20
43	Subjective: well lit	0.0490	0.9760	(+),47			n < 20	0.3539	0.8252	(+),46			n < 20
44	Subjective: other people	0.0605	0.9703	(+),47			n < 20	0.1578	0.9223	(+),46			n < 20
45	Subjective: well maintained	0.2662	0.8687	(+),47			n < 20	0.2614	0.8711	(+),46			n < 20
46	Year constr.: mean	0.9217	0.5422	(+),47			n < 20	0.9315	0.5373	(-),46			n < 20
47	Landmarks: FSI	0.7314	0.6378	(-),47			n < 20	0.9097	0.5491	(-),46			n < 20
48	Landmarks: plot area	0.9433	0.5317	(-),47			n < 20	0.9654	0.5208	(-),46			n < 20
49	Landmarks: Year constr.	0.6722	0.6676	(-),47			n < 20	0.8209	0.5938	(-),46			n < 20
50	Landmarks: 1 criterion	0.6831	0.6614	(-),47			n < 20	0.7777	0.6143	(-),46			n < 20
51	Landmarks: 2 criteria	0.7669	0.6222	(-),47			n < 20	0.7340	0.6394	(-),46			n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-),47			n < 20	1.0000	0.0000	(-),46			n < 20

Figure 2.17: Raw results for route aggregate analysis, sample: interaction - frequency of walking ($\leq 6 \text{ x} / \text{week}$), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.3954	0.8023	wi(-),44			n < 20	0.9045	0.5478	wi(-),45			n < 20
1	Year constr.: 1946-1970	0.8757	0.1573	tt(+),45			n < 20	0.6273	0.6864	wi(-),45			n < 20
2	Year constr.: 1971-1985	0.6272	0.6864	wi(-),43			n < 20	0.5923	0.7038	wi(-),43			n < 20
3	Year constr.: 1986-2000	0.4587	0.7476	tt(+),45			n < 20	0.1514	0.0757	wi(+),45			n < 20
4	Year constr.: 2001-2022	0.1638	0.0819	wi(+),44			n < 20	0.5183	0.2592	wi(+),44			n < 20
5	Traffic signals count	0.0380	0.019	wi(+),43			n < 20	0.0762	0.0381	wi(+),43			n < 20
6	Stairs count	1.0000	equal	n/a,41			n < 20	1.0000	equal	n/a,41			n < 20
7	Status: for construction	0.7656	0.3828	wi(+),42			n < 20	0.7681	0.384	wi(+),43			n < 20
8	Status: unrealised	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,45			n < 20
9	Status: under construction	1.0000	equal	n/a,41			n < 20	0.7630	0.6185	wi(-),41			n < 20
10	Status: in use (n.m.)	1.0000	equal	n/a,43			n < 20	1.0000	equal	n/a,43			n < 20
11	Status: in use	0.4087	-0.8343	tt(-),44			n < 20	0.6361	-0.4766	tt(-),44			n < 20
12	Status: for demolition	1.0000	equal	n/a,44			n < 20	1.0000	equal	n/a,44			n < 20
13	Status: demolished	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,45			n < 20
14	Status: not in use	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,45			n < 20
15	Status: reconstruction	0.3554	-0.9339	tt(-),45			n < 20	0.3607	-0.9236	tt(-),45			n < 20
16	Status: illegitimate	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,45			n < 20
17	Function: residential	0.4212	0.7894	wi(-),45			n < 20	0.3496	0.8252	wi(-),45			n < 20
18	Function: gathering	0.0605	0.0303	wi(+),45			n < 20	0.0469	0.0234	wi(+),44			n < 20
19	Function: prison	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,45			n < 20
20	Function: healthcare	1.0000	equal	n/a,42			n < 20	1.0000	equal	n/a,41			n < 20
21	Function: factory	0.2947	0.1473	wi(+),44			n < 20	0.9940	0.503	wi(-),40			n < 20
22	Function: office	0.7532	-0.3164	tt(-),45			n < 20	0.9340	0.0832	tt(+),45			n < 20
23	Function: guesthouse	0.7681	0.384	wi(+),43			n < 20	0.7656	0.3828	wi(+),42			n < 20
24	Function: education	1.0000	equal	n/a,43	•		n < 20	1.0000	equal	n/a,43			n < 20
25	Function: sports	1.0000	equal	n/a,44			n < 20	1.0000	equal	n/a,44			n < 20
26	Function: shops	0.1033	0.0516	wi(+),45			n < 20	0.0691	0.0345	wi(+),45			n < 20
27	Function: other	0.4826	0.7081	tt(+),45			n < 20	0.4908	0.6949	tt(+),45			n < 20
28	Green: tree cover	0.7179	0.3589	wi(+),45			n < 20	0.5706	0.5716	tt(+),44			n < 20
29	Green: bush cover	0.5086	0.6666	tt(+),44			n < 20	0.4599	0.7458	tt(+),44			n < 20
30	Green: grass cover	0.2282	1.2221	tt(+),45			n < 20	0.2805	1.0926	tt(+),45			n < 20
31	Noise pollution: total	0.1882	1.3366	tt(+),45	•		n < 20	0.0556	0.0278	wi(+),45	•		n < 20
32	Noise pollution: roads	0.4097	0.8323	tt(+),45	•	•	n < 20	0.3968	0.8557	tt(+),45	•	•	n < 20
33	Noise pollution: railways	0.4098	0.2049	wi(+),45			n < 20	0.2673	0.1337	wi(+),44			n < 20
34	Subjective: fastest	0.0000	-9.329	tt(-),45			n < 20	0.0000	-10.4401	tt(-),45			n < 20
35	Subjective: easy to remember	0.0002	-4.0457	tt(-),45			n < 20	0.0000	-4.6713	tt(-),45			n < 20
36	Subjective: no obstructions	0.2227	-1.2368	tt(-),45			n < 20	0.2425	-1.1846	tt(-),45			n < 20
37	Subjective: steep slopes	0.0821	1.//91	tt(+),45			n < 20	0.0297	2.247	π(+),45	•	•	n < 20
38	Subjective: not or seating	0.0236	2.3494	tt(+),43			n < 20	0.0131	2.5897	tt(+),44			n < 20
40	Subjective: weather protected	0.0999	0.017	tt(+),45			n < 20	0.0676	1.7430	++() 44			n < 20
40	Subjective, sale vs.trainc	0.0040	-0.917	tt(-),44			11 < 20	0.0304	-1.9441	u(-),44			n < 20
41	Subjective: sale vs. social fisk	0.0256	-2.300	tt(-),45	•		n < 20	0.0104	0.9940	wi(-),45	•	•	n < 20
42	Subjective: like when dark	0.0004	-3.6037	u(-),45	•		n < 20	0.0000	0.9997	wi(-),45		•	n < 20
43	Subjective: other people	0.0230	-1 3677	wi(-),45			n < 20	0.3525	-0.9309	tt(-),45			n < 20
44	Subjective: well maintained	0.1783	-0.5807	tt(-),40	•		n < 20	0.4178	-0.018	u(-),40		•	n < 20
46	Vear constr: man	0.3045	0.3607	tt(_),44			n < 20	0.2420	0.8522	wi(-),43			n < 20
40	l andmarke: ESI	0.4409	0.7075	u(+),44			n < 20	0.0901	0.0000	u(+),40			n < 20
41	Landmarke: plot area	0.0305	0.0102	wi(+),43			n < 20	0.4640	0.2234	wi(+),41			n < 20
40	Landmarks: Vear constr	0.4723	0.2301	wi(+),42			n < 20	0.4040	0.232	wi(+),42			n < 20
50	Landmarke: 1 oritorion	0.5705	0.7 140	wi(+) 42			n < 20	0.6100	0.7104	wi(-),44			n < 20
50	Landmarks: 2 criteria	0.7301	0.6102	wi(-) 44			n < 20	0.7797	0.6102	wi(-) 44			n < 20
52	Landmarks: 3 criteria	1.0000	equal	n/a 45			n < 20	1.0000	equal	n/a 45			n < 20
-	La	1.0000	oqual	174,40			11 < 20	1.0000	oqual	100,40			11 ~ 20

Figure 2.18: Raw results for route aggregate analysis, sample: interaction - frequency of walking (\leq 6 x / week), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.7965	0.6043	(+),51	0.7807	0.6176	(+),24	0.7051	0.6499	(+),51	0.9635	0.5256	(+),26
1	Year constr.: 1946-1970	0.5560	0.7243	(-),51	0.8926	0.5619	(-),24	0.8049	0.6001	(-),51	0.5864	0.7131	(-),26
2	Year constr.: 1971-1985	0.9644	0.5205	(+),51	0.5732	0.7206	(+),24	0.7141	0.6455	(-),51	0.8817	0.5665	(-),26
3	Year constr.: 1986-2000	0.8912	0.5571	(-),51	0.7422	0.6369	(+),24	0.6446	0.6802	(-),51	0.9776	0.5186	(+),26
4	Year constr.: 2001-2022	0.9865	0.5094	(-),51	0.8112	0.6024	(+),24	0.7794	0.6129	(-),51	0.6782	0.6676	(+),26
5	Traffic signals count	0.4120	0.7959	(-),51	0.8189	0.5986	(-),24	0.4330	0.7855	(-),51	0.6894	0.6621	(-),26
6	Stairs count	0.3552	0.8248	(-),51	0.7581	0.6311	(-),24	0.2403	0.8817	(-),51	0.3193	0.8466	(-),26
7	Status: for construction	0.3766	0.8148	(-),51	0.9713	0.5287	(+),24	0.3766	0.8148	(-),51	0.9736	0.5263	(+),26
8	Status: unrealised	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26
9	Status: under construction	0.5091	0.7490	(+),51	0.6493	0.6862	(+),24	0.7077	0.6502	(+),51	0.6258	0.6961	(+),26
10	Status: in use (n.m.)	0.4307	0.7878	(+),51	0.4002	0.8076	(+),24	0.1707	0.9163	(+),51	0.2106	0.8994	(+),26
11	Status: in use	0.8513	0.5770	(-),51	0.9507	0.5329	(+),24	0.9466	0.5294	(-),51	0.8047	0.6047	(-),26
12	Status: for demolition	0.6546	0.6791	(+),51	0.3115	0.8543	(+),24	0.3148	0.8474	(+),51	0.0811	0.9632	(+),26
13	Status: demolished	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26
14	Status: not in use	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26
15	Status: reconstruction	0.3001	0.8521	(+),51	0.4223	0.7972	(+),24	0.4112	0.7971	(+),51	0.6633	0.6771	(+),26
16	Status: illegitimate	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26
17	Function: residential	0.6632	0.6708	(-),51	0.7965	0.6097	(-),24	0.5966	0.7040	(-),51	0.6144	0.6992	(-),26
18	Function: gathering	0.6560	0.6747	(+),51	0.5320	0.7413	(+),24	0.4253	0.7895	(+),51	0.3844	0.8132	(+),26
19	Function: prison	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26
20	Function: healthcare	0.9889	0.5056	(-),51	0.3379	0.8512	(+),24	0.3269	0.8460	(-),51	1.0000	0.0000	(-),26
21	Function: factory	0.5524	0.7266	(+),51	0.6181	0.6995	(+),24	0.8473	0.5796	(+),51	0.7858	0.6155	(-),26
22	Function: office	0.7525	0.6265	(+),51	0.3769	0.8174	(+),24	0.9795	0.5132	(-),51	0.8027	0.6063	(+),26
23	Function: guesthouse	0.6377	0.6849	(+),51	0.1231	0.9422	(+),24	0.5381	0.7346	(+),51	0.3940	0.8103	(+),26
24	Function: education	0.2335	0.8862	(-),51	0.6266	0.7004	(-),24	0.3888	0.8101	(-),51	0.6288	0.6982	(-),26
25	Function: sports	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26
26	Function: shops	0.4149	0.7946	(-),51	0.7339	0.6413	(+),24	0.7723	0.6166	(-),51	0.4489	0.7816	(+),26
27	Function: other	0.8476	0.5790	(+),51	0.4115	0.8004	(-),24	0.8176	0.5939	(+),51	0.8339	0.5905	(-),26
28	Green: tree cover	0.7004	0.6523	(-),51	0.9835	0.5164	(+),24	0.6954	0.6548	(-),51	0.8333	0.5905	(+),26
29	Green: bush cover	0.9440	0.5307	(-),51	0.7259	0.6447	(+),24	0.9068	0.5493	(-),51	0.6940	0.6597	(+),26
30	Green: grass cover	0.8383	0.5835	(-),51	0.7415	0.6370	(+),24	0.7761	0.6145	(-),51	0.7212	0.6462	(+),26
31	Noise pollution: total	0.9973	0.5040	(+),51	0.9671	0.5247	(+),24	0.8383	0.5835	(+),51	0.9344	0.5401	(+),26
32	Noise pollution: roads	0.9973	0.5013	(-),51	0.8852	0.5655	(-),24	0.8070	0.5991	(+),51	0.9635	0.5255	(+),26
33	Noise pollution: railways	0.6087	0.6980	(+),51	0.7415	0.6370	(+),24	0.7153	0.6448	(+),51	0.8620	0.5762	(+),26
34	Subjective: fastest	0.0000	1.0000	(+),51	0.0001	1.0000	(+),24	0.0000	1.0000	(+),51	0.0000	1.0000	(+),26
35	Subjective: easy to remember	0.0000	1.0000	(+),51	0.0004	0.9998	(+),24	0.0000	1.0000	(+),51	0.0036	0.9983	(+),26
36	Subjective: no obstructions	0.0533	0.9738	(+),51	0.3961	0.8079	(+),24	0.1025	0.9495	(+),51	0.1961	0.9052	(+),26
37	Subjective: steep slopes	0.7540	0.6256	(-),51	0.8813	0.5677	(-),24	0.8797	0.5629	(-),51	0.8951	0.5599	(+),26
38	Subjective: lot of seating	0.0616	0.9697	(-),51	0.2467	0.8810	(-),24	0.1442	0.9289	(-),51	0.5417	0.7354	(-),26
39	Subjective: weather protected	0.1967	0.9029	(-),51	0.2976	0.8562	(-),24	0.1052	0.9482	(-),51	0.1014	0.9513	(-),26
40	Subjective: safe vs.traffic	0.0656	0.9677	(+),51	0.4990	0.7577	(+),24	0.0547	0.9731	(+),51	0.1521	0.9268	(+),26
41	Subjective: safe vs. social risk	0.2718	0.8657	(+),51	0.2568	0.8763	(+),24	0.5617	0.7216	(+),51	0.3160	0.8467	(+),26
42	Subjective: like when dark	0.0004	0.9998	(+),51	0.0459	0.9782	(+),24	0.0003	0.9998	(+),51	0.0503	0.9759	(+),26
43	Subjective: well lit	0.2030	0.8998	(+),51	0.1341	0.9359	(+),24	0.0447	0.9780	(+),51	0.1128	0.9459	(+),26
44	Subjective: other people	0.1479	0.9270	(+),51	0.6124	0.7013	(+),24	0.0259	0.9873	(+),51	0.2382	0.8847	(+),26
45	Subjective: well maintained	0.1884	0.9070	(+),51	0.0226	0.9894	(+),24	0.3954	0.8043	(+),51	0.1473	0.9292	(+),26
46	Year constr.: mean	0.6370	0.6839	(-),51	0.8609	0.5777	(-),24	0.5808	0.7119	(-),51	0.9198	0.5473	(+),26
47	Landmarks: FSI	0.7304	0.6375	(-),51	0.9040	0.5567	(-),24	0.8067	0.5994	(-),51	0.8431	0.5862	(-),26
48	Landmarks: plot area	0.3713	0.8162	(-),51	0.7721	0.6221	(-),24	0.4849	0.7597	(-),51	0.6256	0.6939	(-),26
49	Landmarks: Year constr.	0.8985	0.5536	(-),51	0.7439	0.6363	(+),24	0.9675	0.5192	(+),51	0.9177	0.5493	(+),26
50	Landmarks: 1 criterion	0.2977	0.8527	(-),51	0.6228	0.6959	(-),24	0.3645	0.8196	(-),51	0.4238	0.7934	(-),26
51	Landmarks: 2 criteria	0.7941	0.6071	(-),51	1.0000	0.5116	(-),24	0.9643	0.5223	(-),51	0.7694	0.6270	(+),26
52	Landmarks: 3 criteria	1.0000	0.0000	(-),51	1.0000	0.0000	(-),24	1.0000	0.0000	(-),51	1.0000	0.0000	(-),26

Figure 2.19: Raw results for route aggregate analysis, sample: interaction - frequency of walking (\geq 6 x / week), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.5138	0.7431	wi(-),48	0.7150	0.3575	wi(+),23	0.4459	0.7771	wi(-),49	0.9463	0.4732	wi(+),25
1	Year constr.: 1946-1970	0.4762	0.2381	wi(+),48	0.4827	0.2414	wi(+),22	0.7599	0.38	wi(+),50	0.6357	0.3178	wi(+),23
2	Year constr.: 1971-1985	0.7457	0.6271	wi(-),49	0.6523	0.6739	wi(-),23	0.7416	0.3316	tt(+),50	0.4533	0.2267	wi(+),25
3	Year constr.: 1986-2000	0.5996	0.7002	wi(-),48	0.7543	0.6229	wi(-),22	0.6585	0.6707	wi(-),49	0.8385	0.5808	wi(-),24
4	Year constr.: 2001-2022	0.7449	0.6275	wi(-),49	0.2935	-1.0774	tt(-),22	0.4703	0.7649	wi(-),48	0.1777	0.9111	wi(-),23
5	Traffic signals count	0.3346	0.9746	tt(+),49	0.3466	0.9617	tt(+),23	0.4990	0.6811	tt(+),50	0.2615	1.151	tt(+),24
6	Stairs count	0.4399	0.2199	wi(+),49	0.7204	0.3602	wi(+),24	1.0000	equal	n/a,46	1.0000	equal	n/a,23
7	Status: for construction	0.7751	0.3875	wi(+),46	1.0000	equal	n/a,22	0.7751	0.3875	wi(+),46	1.0000	equal	n/a,23
8	Status: unrealised	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25
9	Status: under construction	0.5718	0.7141	wi(-),45	0.4892	0.7554	wi(-),24	0.5792	0.7104	wi(-),47	0.5087	0.7456	wi(-),24
10	Status: in use (n.m.)	0.9948	0.5026	wi(-),44	0.2107	-1.2876	tt(-),24	0.9949	0.5025	wi(-),45	0.2949	0.8525	wi(-),25
11	Status: in use	0.1692	0.0846	wi(+),48	0.6682	0.3341	wi(+),24	0.4441	0.7716	tt(+),49	0.8854	0.1457	tt(+),25
12	Status: for demolition	1.0000	equal	n/a,44	0.4890	0.7555	wi(-),24	1.0000	equal	n/a,46	1.0000	equal	n/a,22
13	Status: demolished	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25
14	Status: not in use	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25
15	Status: reconstruction	0.1857	-1.3425	tt(-),49	0.4701	0.7649	wi(-),24	0.3339	-0.9759	tt(-),50	0.6685	-0.4335	tt(-),25
16	Status: illegitimate	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25
17	Function: residential	0.4393	0.2196	wi(+),47	0.9533	0.0592	tt(+),24	0.4494	0.2247	wi(+),49	0.4170	0.8259	tt(+),25
18	Function: gathering	0.5290	-0.6341	tt(-),49	0.6201	-0.5025	tt(-),24	0.3459	-0.9518	tt(-),50	0.4433	-0.7795	tt(-),25
19	Function: prison	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25
20	Function: healthcare	1.0000	equal	n/a,48	1.0000	equal	n/a,23	1.0000	equal	n/a,49	1.0000	equal	n/a,25
21	Function: factory	0.3467	0.8266	wi(-),49	0.5041	-0.6787	tt(-),24	0.6421	0.6789	wi(-),50	0.5521	0.6031	tt(+),25
22	Function: office	0.5100	-0.6638	tt(-),49	0.2191	0.8905	wi(-),24	0.8785	0.1537	tt(+),50	0.5662	-0.5824	tt(-),23
23	Function: guesthouse	0.2577	0.8711	wi(-),49	0.0522	0.9739	wi(-),24	0.3695	0.8153	wi(-),50	0.2010	0.8995	wi(-),25
24	Function: education	0.7705	0.3852	WI(+),44	0.4989	0.2494	WI(+),24	0.7751	0.3875	WI(+),46	0.5046	0.2523	WI(+),25
25	Function: sports	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25
26	Function: snops	0.3933	0.8614	tt(+),49	0.4390	-0.7876	tt(-),24	0.6308	0.4837	tt(+),50	0.1831	-1.3709	tt(-),25
21	Function: other	0.000	0.5933	tt(+),49	0.0600	1.978	tt(+),24	0.6957	0.1317	tt(+),50	0.4541	1.0254	tt(+),25
20	Green: tree cover	0.6966	0.1679	tt(+),49	0.7714	-0.294	tt(-),24	0.9177	0.1036	tt(+),50	0.3154	-1.0254	tt(-),25
29	Green: grass cover	0.6687	-0.4059	tt(-),49	0.2221	-1.200	tt(-),24	0.7806	-0.2091	tt(-),50	0.1004	-1.4037	tt(-),25
31	Noise pollution: total	0.0007	-0.003	tt(-),40	0.2455	-0.5011	tt(-),24	0.4932	-0.2001	tt(-),43	0.4916	-0.6985	tt(-),25
32	Noise pollution: roads	0.9652	0.0439	tt(-),+0	0.8228	-0.3011	tt(-),24	0.5238	-0.0304	tt(-),50	0.4510	-0.0303	tt(-),25
33	Noise pollution: railways	0.7269	0.3635	wi(+),47	0.3848	-0.8867	tt(-),24	0.9102	0.5449	wi(-).48	0.2400	-1.2062	tt(-),20
34	Subjective: fastest	0.0000	-9.014	tt(-),49	0.0000	-6.8926	tt(-),23	0.0000	-10,1798	tt(-),50	0.0000	-8.6045	tt(-).24
35	Subjective: easy to remember	0.0000	-5.1079	tt(-),47	0.0008	-3.8627	tt(-).23	0.0000	-5.2013	tt(-).50	0.0112	-2.7564	tt(-).24
36	Subjective: no obstructions	0.1743	0.9129	wi(-),48	0.4048	-0.8486	tt(-).24	0.1705	0.9147	wi(-),49	0.1770	-1.3911	tt(-).25
37	Subjective: steep slopes	0.3354	0.1677	wi(+),49	0.5418	0.2709	wi(+),24	0.3860	0.193	wi(+),50	0.8896	0.1403	tt(+),25
38	Subjective: lot of seating	0.0556	1.962	tt(+),49	0.3235	1.0099	tt(+),23	0.1082	1.6364	tt(+),50	0.5431	0.6169	tt(+),25
39	Subjective: weather protected	0.1506	1.4608	tt(+),49	0.2682	1.1346	tt(+),24	0.0593	1.9306	tt(+),50	0.0635	1.9456	tt(+),25
40	Subjective: safe vs.traffic	0.0378	-2.137	tt(-),48	0.8303	-0.2168	tt(-),24	0.1154	-1.6033	tt(-),49	0.5541	-0.6	tt(-),25
41	Subjective: safe vs. social risk	0.4687	-0.7306	tt(-),47	0.1911	-1.3469	tt(-),24	0.6191	-0.5004	tt(-),49	0.2207	-1.2573	tt(-),25
42	Subjective: like when dark	0.0007	-3.6234	tt(-),49	0.0675	-1.9189	tt(-),24	0.0013	-3.4252	tt(-),49	0.1444	-1.5086	tt(-),25
43	Subjective: well lit	0.0500	-2.0108	tt(-),49	0.0502	-2.0666	tt(-),24	0.0298	-2.2379	tt(-),50	0.0870	-1.7842	tt(-),25
44	Subjective: other people	0.1076	-1.6399	tt(-),49	0.6459	-0.4655	tt(-),24	0.0159	-2.4989	tt(-),50	0.1649	-1.4326	tt(-),25
45	Subjective: well maintained	0.0497	0.9752	wi(-),48	0.0139	0.993	wi(-),23	0.2268	0.8866	wi(-),49	0.0080	0.996	wi(-),24
46	Year constr.: mean	0.4957	0.6866	tt(+),48	0.6797	-0.4181	tt(-),24	0.5673	0.576	tt(+),49	0.6778	-0.4208	tt(-),24
47	Landmarks: FSI	0.2232	0.1116	wi(+),45	0.1576	1.4631	tt(+),23	0.2400	0.12	wi(+),48	0.2597	1.1544	tt(+),25
48	Landmarks: plot area	0.0143	0.0071	wi(+),45	0.3417	0.1708	wi(+),23	0.0111	0.0056	wi(+),46	0.0866	0.0433	wi(+),24
49	Landmarks: Year constr.	0.2863	0.1431	wi(+),46	0.4444	0.2222	wi(+),22	0.3277	0.1639	wi(+),48	0.5078	0.2539	wi(+),24
50	Landmarks: 1 criterion	0.0498	2.0129	tt(+),49	0.3777	0.8996	tt(+),24	0.0722	1.8374	tt(+),50	0.1166	1.6281	tt(+),25
51	Landmarks: 2 criteria	0.5792	0.2896	wi(+),47	0.4421	0.2211	wi(+),22	0.4190	0.2095	wi(+),48	0.4582	0.2291	wi(+),24
52	Landmarks: 3 criteria	1.0000	equal	n/a,49	1.0000	equal	n/a,24	1.0000	equal	n/a,50	1.0000	equal	n/a,25

Figure 2.20: Raw results for route aggregate analysis, sample: interaction - frequency of walking (\geq 6 x / week), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.9470	0.5296	(+),46			n < 20	0.7988	0.6038	(+),44			n < 20
1	Year constr.: 1946-1970	0.3173	0.8433	(-),46			n < 20	0.6186	0.6938	(-),44			n < 20
2	Year constr.: 1971-1985	0.9648	0.5208	(+),46			n < 20	0.7861	0.6103	(-),44			n < 20
3	Year constr.: 1986-2000	0.2153	0.8938	(-),46			n < 20	0.2424	0.8805	(-),44			n < 20
4	Year constr.: 2001-2022	0.5570	0.7242	(-),46			n < 20	0.5219	0.7418	(-),44			n < 20
5	Traffic signals count	0.2232	0.8899	(-),46			n < 20	0.4418	0.7816	(-),44			n < 20
6	Stairs count	0.8021	0.6032	(+),46			n < 20	0.8012	0.6039	(+),44			n < 20
7	Status: for construction	0.6587	0.6768	(-),46			n < 20	0.6566	0.6781	(-),44			n < 20
8	Status: unrealised	1.0000	0.0000	(-),46			n < 20	1.0000	0.0000	(-),44			n < 20
9	Status: under construction	0.7618	0.6249	(-),46			n < 20	0.7629	0.6246	(-),44			n < 20
10	Status: in use (n.m.)	0.4237	0.7919	(+),46			n < 20	0.2423	0.8817	(+),44			n < 20
11	Status: in use	0.8269	0.5896	(-),46			n < 20	0.9634	0.5216	(-),44			n < 20
12	Status: for demolition	0.1596	0.9247	(-),46			n < 20	0.3284	0.8468	(-),44			n < 20
13	Status: demolished	1.0000	0.0000	(-),46			n < 20	1.0000	0.0000	(-),44			n < 20
14	Status: not in use	1.0000	0.0000	(-),46			n < 20	1.0000	0.0000	(-),44			n < 20
15	Status: reconstruction	0.6095	0.6990	(+),46			n < 20	0.7754	0.6170	(+),44			n < 20
16	Status: illegitimate	1.0000	0.0000	(-),46			n < 20	1.0000	0.0000	(-),44			n < 20
17	Function: residential	0.8971	0.5545	(+),46			n < 20	0.6480	0.6790	(+),44			n < 20
18	Function: gathering	0.3325	0.8359	(-),46			n < 20	0.3120	0.8462	(-),44			n < 20
19	Function: prison	1.0000	0.0000	(-),46			n < 20	1.0000	0.0000	(-),44			n < 20
20	Function: healthcare	0.6404	0.6869	(+),46			n < 20	0.9908	0.5138	(+),44			n < 20
21	Function: factory	0.9080	0.5502	(+),46			n < 20	0.9076	0.5506	(+),44			n < 20
22	Function: office	0.5025	0.7515	(-),46			n < 20	0.3338	0.8354	(-),44			n < 20
23	Function: guesthouse	0.9827	0.5144	(-),46			n < 20	0.7329	0.6395	(+),44			n < 20
24	Function: education	0.2309	0.8878	(-),46			n < 20	0.2297	0.8885	(-),44			n < 20
25	Function: sports	0.3279	0.8465	(+),46			n < 20	0.3284	0.8468	(+),44			n < 20
26	Function: shops	0.1411	0.9306	(-),46			n < 20	0.0751	0.9632	(-),44			n < 20
27	Function: other	0.8049	0.6007	(+),46			n < 20	0.9309	0.5380	(+),44			n < 20
28	Green: tree cover	0.6991	0.6533	(+),46			n < 20	0.7011	0.6526	(+),44			n < 20
29	Green: bush cover	0.7459	0.6300	(+),46			n < 20	0.8413	0.5826	(+),44			n < 20
30	Green: grass cover	0.9284	0.5389	(+),46		•	n < 20	0.9933	0.5067	(-),44			n < 20
31	Noise pollution: total	0.9284	0.5389	(+),46			n < 20	0.9867	0.5100	(-),44			n < 20
32	Noise pollution: roads	0.7400	0.6330	(+),46			n < 20	0.8413	0.5826	(+),44			n < 20
33	Noise pollution: railways	0.7936	0.6062	(+),46			n < 20	0.6887	0.6587	(+),44			n < 20
34	Subjective: fastest	0.0000	1.0000	(+),46		•	n < 20	0.0000	1.0000	(+),44	•		n < 20
35	Subjective: easy to remember	0.0000	1.0000	(+),46			n < 20	0.0000	1.0000	(+),44			n < 20
36	Subjective: no obstructions	0.1570	0.9227	(+),46		•	n < 20	0.3366	0.8339	(+),44			n < 20
37	Subjective: steep slopes	0.2960	0.8538	(-),46			n < 20	0.2176	0.8928	(-),44			n < 20
38	Subjective: lot of seating	0.0064	0.9969	(-),46			n < 20	0.0420	0.9794	(-),44			n < 20
39	Subjective: weather protected	0.1030	0.9494	(-),46			n < 20	0.0471	0.9769	(-),44			n < 20
40	Subjective: safe vs.traffic	0.0689	0.9662	(+),46			n < 20	0.0093	0.9955	(+),44			n < 20
41	Subjective: safe vs. social risk	0.0314	0.9846	(+),46			n < 20	0.0313	0.9847	(+),44			n < 20
42	Subjective: like when dark	0.0082	0.9960	(+),46			n < 20	0.0071	0.9965	(+),44			n < 20
43	Subjective: well lit	0.4122	0.7963	(+),46			n < 20	0.2195	0.8919	(+),44			n < 20
44	Subjective: other people	0.1677	0.9174	(+),46			n < 20	0.0780	0.9617	(+),44			n < 20
45	Subjective: well maintained	0.2602	0.8717	(+),46			n < 20	0.3704	0.8172	(+),44			n < 20
46	Year constr.: mean	0.9006	0.5528	(-),46			n < 20	0.7480	0.6292	(-),44			n < 20
47	Landmarks: FSI	0.4437	0.7807	(-),46			n < 20	0.7553	0.6259	(-),44			n < 20
48	Landmarks: plot area	0.3805	0.8120	(-),46			n < 20	0.5052	0.7502	(-),44			n < 20
49	Landmarks: Year constr.	0.6548	0.6759	(-),46			n < 20	0.9194	0.5443	(-),44			n < 20
50	Landmarks: 1 criterion	0.2941	0.8548	(-),46			n < 20	0.4865	0.7594	(-),44			n < 20
51	Landmarks: 2 criteria	0.3420	0.8325	(-),46			n < 20	0.4362	0.7868	(-),44			n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-),46			n < 20	1.0000	0.0000	(-),44			n < 20

Figure 2.21: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.2648	0.8676	wi(-),44			n < 20	0.2104	0.8948	wi(-),42			n < 20
1	Year constr.: 1946-1970	0.1350	0.0675	wi(+),45			n < 20	0.6169	0.3084	wi(+),43			n < 20
2	Year constr.: 1971-1985	0.6387	0.6806	wi(-),45			n < 20	0.8732	0.5634	wi(-),43			n < 20
3	Year constr.: 1986-2000	0.1160	0.058	wi(+),45			n < 20	0.2016	1.2973	tt(+),43			n < 20
4	Year constr.: 2001-2022	0.1619	0.081	wi(+),44			n < 20	0.3509	0.1754	wi(+),42			n < 20
5	Traffic signals count	0.5259	0.6398	tt(+),42			n < 20	0.4562	0.2281	wi(+),40			n < 20
6	Stairs count	1.0000	equal	n/a,40			n < 20	0.7862	0.6069	wi(-),43			n < 20
7	Status: for construction	0.7656	0.3828	wi(+),42			n < 20	0.7630	0.3815	wi(+),41			n < 20
8	Status: unrealised	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,43			n < 20
9	Status: under construction	0.9894	0.4947	wi(+),43			n < 20	0.9886	0.4943	wi(+),41			n < 20
10	Status: in use (n.m.)	0.2728	0.8636	wi(-),44			n < 20	1.0000	equal	n/a,39			n < 20
11	Status: in use	0.9785	0.0272	tt(+),44			n < 20	0.9602	-0.0502	tt(-),42			n < 20
12	Status: for demolition	1.0000	equal	n/a,43			n < 20	1.0000	equal	n/a,42			n < 20
13	Status: demolished	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,43			n < 20
14	Status: not in use	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,43			n < 20
15	Status: reconstruction	0.5411	-0.616	tt(-),45			n < 20	0.7423	-0.331	tt(-),43			n < 20
16	Status: illegitimate	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,43			n < 20
17	Function: residential	0.2737	-1.1096	tt(-),42			n < 20	0.1639	-1.419	tt(-),40			n < 20
18	Function: gathering	0.1424	1.4936	tt(+),45			n < 20	0.1032	1.6656	tt(+),43			n < 20
19	Function: prison	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,43			n < 20
20	Function: healthcare	1.0000	0.5	wi(+),44			n < 20	1.0000	equal	n/a,40			n < 20
21	Function: factory	0.7976	0.6012	wi(-),45			n < 20	0.7943	0.6028	wi(-),43			n < 20
22	Function: office	0.2531	1.1581	tt(+),45	•		n < 20	0.6800	0.34	wi(+),43	•	•	n < 20
23	Function: guesthouse	0.7630	0.6185	wi(-),41			n < 20	0.3871	0.8064	wi(-),41			n < 20
24	Function: education	0.7656	0.3828	wi(+),42	•	•	n < 20	0.7604	0.3802	wi(+),40	•	•	n < 20
25	Function: sports	1.0000	equal	n/a,44	•		n < 20	1.0000	equal	n/a,42	•	•	n < 20
26	Function: shops	0.0168	2.4865	tt(+),45	•		n < 20	0.0217	2.3835	tt(+),43	•		n < 20
27	Function: other	0.5977	-0.5315	tt(-),45			n < 20	0.6181	-0.5023	tt(-),43			n < 20
28	Green: tree cover	0.8902	-0.1389	tt(-),44			n < 20	0.4913	-0.6945	tt(-),42			n < 20
29	Green: bush cover	0.9842	0.0199	tt(+),44			n < 20	0.8079	-0.2447	tt(-),42			n < 20
30	Green: grass cover	0.7209	0.3595	tt(+),45	•	•	n < 20	0.6234	-0.4948	tu(-),42	•	•	n < 20
30	Noise politition, total	0.9775	0.0834	wi(-),45	•		n < 20	0.5990	-0.55	tt(-),42	•	•	n < 20
33	Noise pollution: railways	0.3505	0.0054	wi(+),40			n < 20	0.0100	0.1839	wi(+) 42			n < 20
34	Subjective: fastest	0.0000	-10 3269	tt(-) 45			n < 20	0.0000	-11 7926	tt(-) 34			n < 20
35	Subjective: easy to remember	0.0000	-6 3946	tt(-),44			n < 20	0.0000	-5.8975	tt(-),04			n < 20
36	Subjective: no obstructions	0.2140	-1 2609	tt(-) 45			n < 20	0 7429	-0.3302	tt(-) 41			n < 20
37	Subjective: steep slopes	0.1873	1 3393	tt(+) 45	•	•	n < 20	0 1323	1.535	tt(+) 43			n < 20
38	Subjective: lot of seating	0.0082	2,7689	tt(+),45			n < 20	0.0632	1.9097	tt(+),42			n < 20
39	Subjective: weather protected	0.1155	1.6056	tt(+),45			n < 20	0.0496	2.0218	tt(+),42			n < 20
40	Subjective: safe vs.traffic	0.0720	-1.8433	tt(-),45			n < 20	0.0049	-2.9672	tt(-),43			n < 20
41	Subjective: safe vs. social risk	0.0425	-2.0888	tt(-),45			n < 20	0.0436	-2.0802	tt(-),43			n < 20
42	Subjective: like when dark	0.0216	-2.3826	tt(-),45			n < 20	0.0172	-2.4816	tt(-),43			n < 20
43	Subjective: well lit	0.2155	0.8922	wi(-),44			n < 20	0.1267	0.9366	wi(-),42			n < 20
44	Subjective: other people	0.4069	-0.8374	tt(-),45			n < 20	0.2397	-1.1927	tt(-),43			n < 20
45	Subjective: well maintained	0.2810	0.8595	wi(-),44			n < 20	0.2227	0.8886	wi(-),42			n < 20
46	Year constr.: mean	0.6813	0.4134	tt(+),45			n < 20	0.7573	0.3111	tt(+),43			n < 20
47	Landmarks: FSI	0.2572	0.1286	wi(+),45			n < 20	0.4068	0.2034	wi(+),39			n < 20
48	Landmarks: plot area	0.0731	0.0365	wi(+),41			n < 20	0.1121	0.056	wi(+),40			n < 20
49	Landmarks: Year constr.	0.7949	0.3974	wi(+),42			n < 20	0.9944	0.4972	wi(+),41			n < 20
50	Landmarks: 1 criterion	0.1979	1.3077	tt(+),44			n < 20	0.3701	0.9062	tt(+),42			n < 20
51	Landmarks: 2 criteria	0.7656	0.3828	wi(+),42			n < 20	0.5598	0.2799	wi(+),42			n < 20
52	Landmarks: 3 criteria	1.0000	equal	n/a,45			n < 20	1.0000	equal	n/a,43			n < 20

Figure 2.22: Raw results for route aggregate analysis, sample: interaction - gender (female), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.8087	0.5982	(+),52	0.8402	0.5897	(+),21	0.8266	0.5892	(+),53	0.7879	0.6127	(+),27
1	Year constr.: 1946-1970	0.7202	0.6424	(+),52	0.7804	0.6195	(+),21	0.7881	0.6084	(+),53	0.8204	0.5966	(-),27
2	Year constr.: 1971-1985	0.9044	0.5505	(-),52	0.7642	0.6282	(+),21	0.7966	0.6043	(-),53	0.9785	0.5179	(+),27
3	Year constr.: 1986-2000	0.8863	0.5595	(+),52	0.6612	0.6787	(+),21	0.7791	0.6129	(-),53	0.9436	0.5352	(-),27
4	Year constr.: 2001-2022	0.7532	0.6259	(+),52	0.3346	0.8390	(+),21	0.8575	0.5737	(+),53	0.4007	0.8045	(+),27
5	Traffic signals count	0.2870	0.8580	(-),52	0.7311	0.6440	(-),21	0.2496	0.8765	(-),53	0.5907	0.7107	(-),27
6	Stairs count	0.6360	0.6853	(-),52	0.9864	0.5068	(-),21	0.4697	0.7680	(-),53	0.5244	0.7456	(-),27
7	Status: for construction	0.4486	0.7787	(-),52	0.9670	0.5330	(+),21	0.5976	0.7047	(-),53	0.9747	0.5253	(+),27
8	Status: unrealised	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27
9	Status: under construction	0.7239	0.6426	(+),52	0.9505	0.5412	(+),21	0.9359	0.5366	(+),53	0.9621	0.5316	(+),27
10	Status: in use (n.m.)	0.5305	0.7386	(+),52	0.4621	0.7800	(+),21	0.3570	0.8244	(+),53	0.4663	0.7753	(+),27
11	Status: in use	0.8990	0.5531	(+),52	0.7531	0.6330	(+),21	0.9420	0.5315	(+),53	0.9035	0.5551	(+),27
12	Status: for demolition	0.3148	0.8472	(+),52	0.0805	0.9644	(+),21	0.3149	0.8471	(+),53	0.0812	0.9631	(+),27
13	Status: demolished	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27
14	Status: not in use	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27
15	Status: reconstruction	0.2301	0.8867	(+),52	0.6137	0.7066	(+),21	0.2515	0.8760	(+),53	0.4315	0.7912	(+),27
16	Status: illegitimate	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27
17	Function: residential	0.9580	0.5236	(-),52	0.8008	0.6093	(+),21	0.8402	0.5824	(-),53	0.9236	0.5451	(-),27
18	Function: gathering	0.8961	0.5550	(+),52	0.7950	0.6136	(+),21	0.7232	0.6412	(+),53	0.6257	0.6943	(+),27
19	Function: prison	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27
20	Function: healthcare	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	0.5674	0.7237	(+),53	0.5709	0.7292	(+),27
21	Function: factory	0.9237	0.5418	(+),52	0.6716	0.6760	(+),21	0.5983	0.7039	(-),53	0.6773	0.6696	(-),27
22	Function: office	0.2566	0.8732	(+),52	0.6173	0.7008	(+),21	0.5246	0.7400	(+),53	0.6420	0.6856	(+),27
23	Function: guesthouse	0.5759	0.7164	(+),52	0.1725	0.9206	(+),21	0.9950	0.5075	(-),53	0.6999	0.6610	(+),27
24	Function: education	0.3148	0.8472	(-),52	0.3409	0.8526	(+),21	0.5674	0.7237	(+),53	0.5709	0.7292	(+),27
25	Function: sports	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27
26	Function: shops	0.8768	0.5644	(-),52	0.7802	0.6205	(-),21	0.6301	0.6874	(+),53	0.3404	0.8347	(+),27
27	Function: other	0.7074	0.6489	(-),52	0.5693	0.7243	(-),21	0.7149	0.6450	(-),53	0.6160	0.6984	(-),27
28	Green: tree cover	0.4586	0.7727	(-),52	0.8405	0.5896	(+),21	0.3481	0.8276	(-),53	0.7621	0.6255	(-),27
29	Green: bush cover	0.8049	0.6001	(-),52	0.6149	0.7014	(+),21	0.6378	0.6833	(-),53	0.7753	0.6190	(+),27
30	Green: grass cover	0.6631	0.6708	(-),52	0.7820	0.6186	(+),21	0.4733	0.7653	(-),53	0.9105	0.5516	(-),27
31	Noise pollution: total	0.8049	0.6001	(-),52	0.8602	0.5798	(-),21	0.8720	0.5665	(-),53	0.8558	0.5789	(-),27
32	Noise pollution: roads	0.9068	0.5492	(-),52	0.7247	0.6470	(-),21	0.9572	0.5239	(+),53	0.9242	0.5448	(-),27
33	Noise pollution: railways	0.7599	0.6225	(+),52	0.6873	0.6656	(+),21	0.8078	0.5985	(+),53	0.7358	0.6386	(+),27
34	Subjective: fastest	0.0000	1.0000	(+),52	0.0002	0.9999	(+),21	0.0000	1.0000	(+),53	0.0000	1.0000	(+),27
35	Subjective: easy to remember	0.0001	0.9999	(+),52	0.0975	0.9539	(+),21	0.0000	1.0000	(+),53	0.1360	0.9343	(+),27
36	Subjective: no obstructions	0.0453	0.9777	(+),52	0.2281	0.8910	(+),21	0.0406	0.9800	(+),53	0.0514	0.9754	(+),27
37	Subjective: steep slopes	0.4998	0.7522	(-),52	1.0000	0.5104	(+),21	0.5851	0.7097	(-),53	0.9786	0.5178	(+),27
38	Subjective: lot of seating	0.0600	0.9705	(-),52	0.9264	0.5473	(+),21	0.0690	0.9660	(-),53	0.6776	0.6678	(-),27
39	Subjective: weather protected	0.0966	0.9524	(-),52	0.2860	0.8630	(-),21	0.1518	0.9250	(-),53	0.2161	0.8953	(-),27
40	Subjective: safe vs.traffic	0.6736	0.6657	(+),52	0.5280	0.7447	(+),21	0.4150	0.7944	(+),53	0.0868	0.9583	(+),27
41	Subjective: safe vs. social risk	0.1078	0.9469	(+),52	0.1766	0.9161	(+),21	0.3503	0.8267	(+),53	0.0854	0.9590	(+),27
42	Subjective: like when dark	0.0000	1.0000	(+),52	0.0212	0.9902	(+),21	0.0001	0.9999	(+),53	0.0028	0.9987	(+),27
43	Subjective: well lit	0.0153	0.9925	(+),52	0.2010	0.9047	(+),21	0.0974	0.9520	(+),53	0.1374	0.9339	(+),27
44	Subjective: other people	0.0695	0.9658	(+),52	0.8941	0.5635	(+),21	0.0761	0.9625	(+),53	0.2757	0.8662	(+),27
45	Subjective: well maintained	0.1944	0.9040	(+),52	0.0924	0.9565	(+),21	0.3048	0.8492	(+),53	0.2180	0.8945	(+),27
46	Year constr.: mean	0.8098	0.5976	(-),52	0.9900	0.5151	(-),21	0.7544	0.6252	(-),53	0.8899	0.5619	(-),27
47	Landmarks: FSI	0.9591	0.5234	(+),52	0.7576	0.6318	(+),21	0.9235	0.5411	(-),53	0.9461	0.5346	(+),27
48	Landmarks: plot area	0.9027	0.5514	(-),52	0.8932	0.5640	(+),21	0.9919	0.5067	(-),53	0.8903	0.5621	(+),27
49	Landmarks: Year constr.	0.9939	0.5061	(-),52	0.8032	0.6091	(+),21	0.9760	0.5150	(+),53	0.9835	0.5165	(+),27
50	Landmarks: 1 criterion	0.7218	0.6416	(-),52	0.9898	0.5154	(-),21	0.6793	0.6627	(-),53	0.7580	0.6277	(-),27
51	Landmarks: 2 criteria	0.7384	0.6351	(+),52	0.7272	0.6509	(+),21	0.7393	0.6346	(+),53	0.6671	0.6788	(+),27
52	Landmarks: 3 criteria	1.0000	0.0000	(-),52	1.0000	0.0000	(-),21	1.0000	0.0000	(-),53	1.0000	0.0000	(-),27

Figure 2.23: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.6687	0.6657	wi(-),48			n < 20	0.9459	0.5271	wi(-),50	0.8821	0.559	wi(-),25
1	Year constr.: 1946-1970	0.5754	0.7123	wi(-),50			n < 20	0.3902	0.8049	wi(-),51	0.4548	0.2274	wi(+),25
2	Year constr.: 1971-1985	0.7934	0.3967	wi(+),49			n < 20	0.7585	0.3793	wi(+),50	0.3951	0.1975	wi(+),24
3	Year constr.: 1986-2000	0.7353	0.6324	wi(-),49			n < 20	0.5682	0.7159	wi(-),50	0.9230	0.4615	wi(+),25
4	Year constr.: 2001-2022	0.9805	0.4903	wi(+),50			n < 20	0.3489	0.8255	wi(-),50	0.2035	0.8983	wi(-),24
5	Traffic signals count	0.2803	1.0916	tt(+),50			n < 20	0.4126	0.8261	tt(+),51	0.1805	0.0902	wi(+),25
6	Stairs count	0.6031	0.3016	wi(+),50			n < 20	1.0000	equal	n/a,48	1.0000	equal	n/a,25
7	Status: for construction	0.5792	0.2896	wi(+),47			n < 20	1.0000	equal	n/a,47	1.0000	equal	n/a,24
8	Status: unrealised	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26
9	Status: under construction	0.7773	0.6114	wi(-),47			n < 20	0.5863	0.7068	wi(-),49	0.7003	0.6498	wi(-),24
10	Status: in use (n.m.)	0.9954	0.5023	wi(-),48			n < 20	0.9954	0.5023	wi(-),48	0.7003	0.3502	wi(+),24
11	Status: in use	0.9115	0.4557	wi(+),50			n < 20	0.8203	0.4102	wi(+),50	0.3741	0.1871	wi(+),25
12	Status: for demolition	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,47	1.0000	equal	n/a,23
13	Status: demolished	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26
14	Status: not in use	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26
15	Status: reconstruction	0.2248	0.8876	wi(-),50			n < 20	0.1287	-1.5448	tt(-),51	0.3820	-0.8899	tt(-),26
16	Status: illegitimate	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26
17	Function: residential	0.2812	0.1406	wi(+),47			n < 20	0.2192	0.1096	wi(+),48	0.5187	0.655	tt(+),25
18	Function: gathering	0.9174	-0.1042	tt(-),50			n < 20	0.6967	-0.392	tt(-),51	0.6392	-0.4745	tt(-),26
19	Function: prison	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26
20	Function: healthcare	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,50	1.0000	equal	n/a,25
21	Function: factory	0.9511	0.5244	wi(-),50			n < 20	0.6478	0.3239	wi(+),51	0.7289	0.3644	wi(+),26
22	Function: office	0.0986	-1.684	tt(-),50			n < 20	0.2852	-1.0802	tt(-),51	0.8458	0.4229	wi(+),25
23	Function: guesthouse	0.4591	0.7704	wi(-),49			n < 20	0.9957	0.4978	wi(+),49	0.9884	0.4942	wi(+),25
24	Function: education	1.0000	equal	n/a,46			n < 20	1.0000	equal	n/a,48	0.7285	0.6358	wi(-),26
25	Function: sports	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26
26	Function: shops	0.6943	0.6528	wi(-),49			n < 20	0.1782	0.9109	wi(-),50	0.0791	-1.8309	tt(-),26
27	Function: other	0.0655	1.8837	tt(+),50			n < 20	0.2164	1.252	tt(+),51	0.1334	1.5515	tt(+),26
28	Green: tree cover	0.4036	0.8425	tt(+),50			n < 20	0.1859	1.3414	tt(+),51	0.6373	-0.4772	tt(-),26
29	Green: bush cover	0.9275	0.0915	tt(+),50			n < 20	0.5704	0.5713	tt(+),51	0.3022	-1.0534	tt(-),26
30	Green: grass cover	0.5330	0.6278	tt(+),50			n < 20	0.2639	1.13	tt(+),51	0.5447	-0.6141	tt(-),26
31	Noise pollution: total	0.3490	0.9457	tt(+),50			n < 20	0.4048	0.8402	tt(+),51	0.7457	0.328	tt(+),26
32	Noise pollution: roads	0.5249	0.6404	tt(+),50			n < 20	0.6231	0.4945	tt(+),51	0.8856	0.1453	tt(+),26
33	Noise pollution: railways	0.8605	-0.1766	tt(-),49			n < 20	0.6911	-0.3997	tt(-),50	0.7884	-0.2714	tt(-),25
34	Subjective: fastest	0.0000	-8.4036	tt(-),50			n < 20	0.0000	-8.709	tt(-),51	0.0000	-6.7139	tt(-),25
35	Subjective: easy to remember	0.0035	-3.0798	tt(-),48			n < 20	0.0007	-3.6432	tt(-),48	0.1637	-1.4351	tt(-),26
36	Subjective: no obstructions	0.1133	0.9434	wi(-),49			n < 20	0.0849	-1.7584	tt(-),50	0.0391	-2.1776	tt(-),26
37	Subjective: steep slopes	0.0827	0.0414	wi(+),50			n < 20	0.1984	1.3035	tt(+),51	0.7421	0.3328	tt(+),26
38	Subjective: lot of seating	0.0778	1.8021	tt(+),49			n < 20	0.0459	2.0473	tt(+),51	0.8863	0.5569	wi(-),26
39	Subjective: weather protected	0.0995	1.679	tt(+),50			n < 20	0.1304	1.5377	tt(+),51	0.1312	1.5607	tt(+),26
40	Subjective: safe vs.traffic	0.2306	-1.2142	tt(-),49			n < 20	0.2742	-1.1058	tt(-),50	0.2947	-1.0702	tt(-),26
41	Subjective: safe vs. social risk	0.2336	-1.2066	tt(-),48			n < 20	0.5809	-0.5558	tt(-),50	0.0598	-1.9721	tt(-),26
42	Subjective: like when dark	0.0000	-4.9726	tt(-),49			n < 20	0.0000	-4.4584	tt(-),50	0.0020	-3.4438	tt(-),26
43	Subjective: well lit	0.0048	0.9976	wi(-),50			n < 20	0.1327	-1.5291	tt(-),50	0.3639	-0.9248	tt(-),26
44	Subjective: other people	0.0309	-2.222	tt(-),50			n < 20	0.0495	-2.0135	tt(-),51	0.1684	-1.4186	tt(-),26
45	Subjective: well maintained	0.0872	0.9564	wi(-),49			n < 20	0.3733	-0.8987	tt(-),49	0.1653	-1.4292	tt(-),26
46	Year constr.: mean	0.5795	0.2898	wi(+),48			n < 20	0.2243	1.2308	tt(+),50	0.9918	0.0104	tt(+),26
47	Landmarks: FSI	0.3524	0.1762	wi(+),47			n < 20	0.3137	1.0183	tt(+),49	0.3314	0.9913	tt(+),25
48	Landmarks: plot area	0.0970	0.0485	wi(+),47			n < 20	0.1111	0.0556	wi(+),47	0.2658	0.1329	wi(+),24
49	Landmarks: Year constr.	0.7692	0.3846	wi(+),48			n < 20	0.9783	0.4892	wi(+),49	0.6973	0.3486	wi(+),24
50	Landmarks: 1 criterion	0.1360	1.5162	tt(+),49			n < 20	0.1280	1.5484	tt(+),50	0.3132	1.0303	tt(+),25
51	Landmarks: 2 criteria	0.9912	0.5044	wi(-),49			n < 20	0.9914	0.5043	wi(-),50	0.7055	0.3527	wi(+),25
52	Landmarks: 3 criteria	1.0000	equal	n/a,50			n < 20	1.0000	equal	n/a,51	1.0000	equal	n/a,26

Figure 2.24: Raw results for route aggregate analysis, sample: interaction - gender (male), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_coef,n
0	Year constr.: < 1945	0.7243	0.6397	(+),62	0.7885	0.6124	(+),27	0.7526	0.6257	(+),60	0.7184	0.6469	(+),28
1	Year constr.: 1946-1970	0.6996	0.6520	(-),62	0.9377	0.5380	(+),27	0.7267	0.6386	(-),60	0.7797	0.6164	(-),28
2	Year constr.: 1971-1985	0.9608	0.5217	(-),62	0.5638	0.7242	(+),27	0.8255	0.5894	(-),60	0.8648	0.5743	(-),28
3	Year constr.: 1986-2000	0.6078	0.6979	(-),62	0.6558	0.6784	(+),27	0.5244	0.7395	(-),60	0.7601	0.6262	(-),28
4	Year constr.: 2001-2022	0.8798	0.5621	(+),62	0.1118	0.9461	(+),27	0.8366	0.5838	(+),60	0.1817	0.9118	(+),28
5	Traffic signals count	0.2832	0.8595	(-),62	0.4538	0.7783	(-),27	0.2284	0.8868	(-),60	0.5750	0.7182	(-),28
6	Stairs count	0.8312	0.5871	(-),62	0.7276	0.6462	(-),27	0.6616	0.6718	(-),60	0.4970	0.7593	(-),28
7	Status: for construction	0.6215	0.6921	(-),62	0.6057	0.7090	(+),27	0.7917	0.6075	(-),60	0.9854	0.5220	(+),28
8	Status: unrealised	1.0000	0.0000	(-),62	1.0000	0.0000	(-),27	1.0000	0.0000	(-),60	1.0000	0.0000	(-),28
9	Status: under construction	0.7996	0.6038	(-),62	0.9490	0.5357	(+),27	0.8153	0.5961	(-),60	0.9570	0.5322	(+),28
10	Status: in use (n.m.)	0.4727	0.7661	(+),62	0.4252	0.7941	(+),27	0.3163	0.8439	(+),60	0.3624	0.8249	(+),28
11	Status: in use	0.8415	0.5812	(+),62	0.6971	0.6579	(+),27	0.9352	0.5345	(+),60	0.7931	0.6097	(+),28
12	Status: for demolition	0.6441	0.6832	(-),62	0.5709	0.7292	(+),27	0.9933	0.5101	(-),60	0.1610	0.9269	(+),28
13	Status: demolished	1.0000	0.0000	(-),62	1.0000	0.0000	(-),27	1.0000	0.0000	(-),60	1.0000	0.0000	(-),28
14	Status: not in use	1.0000	0.0000	(-),62	1.0000	0.0000	(-),27	1.0000	0.0000	(-),60	1.0000	0.0000	(-),28
15	Status: reconstruction	0.4558	0.7743	(+),62	0.4055	0.8044	(+),27	0.4602	0.7722	(+),60	0.4364	0.7885	(+),28
16	Status: illegitimate	1.0000	0.0000	(-),62	1.0000	0.0000	(-),27	1.0000	0.0000	(-),60	1.0000	0.0000	(-),28
17	Function: residential	0.9243	0.5398	(+),62	0.6219	0.6952	(+),27	0.9205	0.5418	(+),60	0.9935	0.5098	(-),28
18	Function: gathering	0.7575	0.6233	(-),62	0.8748	0.5699	(+),27	0.8344	0.5851	(-),60	0.6352	0.6888	(+),28
19	Function: prison	1.0000	0.0000	(-),62	1.0000	0.0000	(-),27	1.0000	0.0000	(-),60	1.0000	0.0000	(-),28
20	Function: healthcare	0.6892	0.6600	(+),62	0.3035	0.8570	(+),27	0.6886	0.6604	(+),60	0.3040	0.8565	(+),28
21	Function: factory	0.7201	0.6422	(+),62	0.3428	0.8337	(+),27	0.8886	0.5582	(-),60	0.8549	0.5801	(+),28
22	Function: office	0.6210	0.6914	(+),62	0.3534	0.8280	(+),27	0.8524	0.5761	(-),60	0.5755	0.7182	(+),28
23	Function: guesthouse	0.3172	0.8434	(+),62	0.1269	0.9400	(+),27	0.5846	0.7107	(+),60	0.4248	0.7947	(+),28
24	Function: education	0.0819	0.9600	(-),62	0.6298	0.6972	(-),27	0.4479	0.7797	(-),60	0.6682	0.6762	(-),28
25	Function: sports	0.3252	0.8452	(+),62	1.0000	0.0000	(-),27	0.3254	0.8453	(+),60	1.0000	0.0000	(-),28
26	Function: shops	0.2160	0.8930	(-),62	0.7787	0.6176	(-),27	0.3433	0.8298	(-),60	0.3952	0.8073	(+),28
27	Function: other	0.6756	0.6641	(-),62	0.6167	0.6979	(-),27	0.7399	0.6321	(-),60	0.5129	0.7490	(-),28
28	Green: tree cover	0.8027	0.6006	(-),62	0.9586	0.5276	(-),27	0.9498	0.5272	(-),60	0.7869	0.6129	(-),28
29	Green: bush cover	0.9880	0.5080	(-),62	0.7164	0.6482	(+),27	0.9081	0.5480	(+),60	0.8122	0.6003	(+),28
30	Green: grass cover	0.7834	0.6102	(-),62	0.8627	0.5755	(+),27	0.8214	0.5913	(-),60	0.8892	0.5619	(-),28
31	Noise pollution: total	0.7340	0.6349	(-),62	0.7164	0.6482	(-),27	0.9081	0.5480	(-),60	0.6523	0.6798	(-),28
32	Noise pollution: roads	0.8690	0.5675	(-),62	0.4999	0.7555	(-),27	0.8666	0.5688	(+),60	0.7123	0.6499	(-),28
33	Noise pollution: railways	0.6102	0.6966	(+),62	0.5448	0.7333	(+),27	0.6784	0.6627	(+),60	0.6760	0.6679	(+),28
34	Subjective: fastest	0.0000	1.0000	(+),62	0.0000	1.0000	(+),27	0.0000	1.0000	(+),60	0.0000	1.0000	(+),28
35	Subjective: easy to remember	0.0000	1.0000	(+),62	0.0112	0.9947	(+),27	0.0000	1.0000	(+),60	0.0430	0.9793	(+),28
36	Subjective: no obstructions	0.1568	0.9224	(+),62	0.1068	0.9485	(+),27	0.0751	0.9629	(+),60	0.1855	0.9101	(+),28
37	Subjective: steep slopes	0.3194	0.8416	(-),62	0.5126	0.7495	(-),27	0.2072	0.8974	(-),60	0.7936	0.6097	(-),28
38	Subjective: lot of seating	0.0116	0.9943	(-),62	0.6826	0.6654	(-),27	0.0479	0.9764	(-),60	0.8363	0.5886	(-),28
39	Subjective: weather protected	0.2736	0.8643	(-),62	0.4752	0.7682	(-),27	0.1692	0.9163	(-),60	0.4835	0.7636	(-),28
40	Subjective: safe vs.traffic	0.0350	0.9828	(+),62	0.2140	0.8965	(+),27	0.0009	0.9996	(+),60	0.0107	0.9949	(+),28
41	Subjective: safe vs. social risk	0.0769	0.9620	(+),62	0.1399	0.9325	(+),27	0.1722	0.9148	(+),60	0.1257	0.9392	(+),28
42	Subjective: like when dark	0.0000	1.0000	(+),62	0.1060	0.9489	(+),27	0.0002	0.9999	(+),60	0.0182	0.9913	(+),28
43	Subjective: well lit	0.0635	0.9686	(+),62	0.2865	0.8609	(+),27	0.0925	0.9543	(+),60	0.2509	0.8782	(+),28
44	Subjective: other people	0.0721	0.9643	(+),62	0.8912	0.5616	(-),27	0.0586	0.9711	(+),60	0.5774	0.7172	(+),28
45	Subjective: well maintained	0.1255	0.9379	(+),62	0.0371	0.9823	(+),27	0.1327	0.9344	(+),60	0.2570	0.8752	(+),28
46	Year constr.: mean	0.5355	0.7339	(-),62	0.9173	0.5482	(-),27	0.5960	0.7038	(-),60	0.9152	0.5489	(-),28
47	Landmarks: FSI	0.9787	0.5128	(+),62	0.9634	0.5256	(+),27	0.9372	0.5336	(-),60	0.9298	0.5421	(-),28
48	Landmarks: plot area	0.5398	0.7318	(-),62	0.8221	0.5959	(-),27	0.5529	0.7254	(-),60	0.8781	0.5677	(-),28
49	Landmarks: Year constr.	0.8434	0.5805	(-),62	0.8577	0.5786	(+),27	0.9241	0.5403	(-),60	0.9479	0.5334	(-),28
50	Landmarks: 1 criterion	0.4207	0.7911	(-),62	0.5922	0.7099	(-),27	0.4004	0.8013	(-),60	0.4904	0.7600	(-),28
51	Landmarks: 2 criteria	0.8542	0.5759	(-),62	1.0000	0.5112	(-),27	0.9899	0.5084	(-),60	0.7279	0.6484	(+),28
52	Landmarks: 3 criteria	1.0000	0.0000	(-).62	1.0000	0.0000	(-).27	1.0000	0.0000	(-).60	1.0000	0.0000	(-),28

Figure 2.25: Raw results for route aggregate analysis, sample: interaction - local resident (yes), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.3113	0.8443	wi(-),59	0.3926	-0.87	tt(-),26	0.7869	0.6066	wi(-),57	0.3867	-0.8803	tt(-),27
1	Year constr.: 1946-1970	0.4447	0.2224	wi(+),61	0.6840	0.342	wi(+),26	0.6849	0.3425	wi(+),59	0.2676	0.1338	wi(+),27
2	Year constr.: 1971-1985	0.4452	-0.7686	tt(-),61	0.2460	0.877	wi(-),26	0.6522	-0.4531	tt(-),59	0.4538	0.2269	wi(+),28
3	Year constr.: 1986-2000	0.9290	0.4645	wi(+),60	0.5470	0.7265	wi(-),26	0.9472	0.5264	wi(-),58	0.7988	0.3994	wi(+),27
4	Year constr.: 2001-2022	0.6497	0.3248	wi(+),60	0.1441	0.928	wi(-),26	0.6779	0.661	wi(-),58	0.0749	0.9625	wi(-),27
5	Traffic signals count	0.0794	0.0397	wi(+),61	0.2126	1.2804	tt(+),25	0.4904	0.6941	tt(+),59	0.1615	0.0808	wi(+),27
6	Stairs count	0.8192	0.4096	wi(+),61	0.7323	0.3662	wi(+),27	1.0000	equal	n/a,53	1.0000	equal	n/a,26
7	Status: for construction	0.4571	0.2285	wi(+),58	0.9888	0.5056	wi(-),26	0.7928	0.3964	wi(+),55	1.0000	equal	n/a,26
8	Status: unrealised	1.0000	equal	n/a,61	1.0000	equal	n/a,27	1.0000	equal	n/a,59	1.0000	equal	n/a,28
9	Status: under construction	0.7946	0.6027	wi(-),56	0.7673	0.6164	wi(-),27	0.6026	0.6987	wi(-),54	0.7103	0.6448	wi(-),26
10	Status: in use (n.m.)	0.9963	0.5018	wi(-),56	0.2099	-1.2856	tt(-),27	0.9962	0.5019	wi(-),55	0.7055	0.3527	wi(+),25
11	Status: in use	0.4505	0.7748	wi(-),60	0.1737	-1.3987	tt(-),27	0.7597	0.6201	wi(-),58	0.3390	-0.9733	tt(-),28
12	Status: for demolition	1.0000	equal	n/a,56	0.7323	0.6338	wi(-),27	1.0000	equal	n/a,55	1.0000	equal	n/a,26
13	Status: demolished	1.0000	equal	n/a,61	1.0000	equal	n/a,27	1.0000	equal	n/a,59	1.0000	equal	n/a,28
14	Status: not in use	1.0000	equal	n/a,61	1.0000	equal	n/a,27	1.0000	equal	n/a,59	1.0000	equal	n/a,28
15	Status: reconstruction	0.3978	0.8011	wi(-),61	0.3742	-0.9042	tt(-),27	0.3956	-0.8559	tt(-),59	0.4435	-0.7776	tt(-),28
16	Status: illegitimate	1.0000	equal	n/a,61	1.0000	equal	n/a,27	1.0000	equal	n/a,59	1.0000	equal	n/a,28
17	Function: residential	0.6736	0.3368	wi(+),57	0.4070	-0.8434	tt(-),26	0.9447	0.4724	wi(+),56	0.4349	0.2174	wi(+),27
18	Function: gathering	0.4088	0.8319	tt(+),61	0.8734	0.1609	tt(+),27	0.5040	0.6724	tt(+),59	0.8281	-0.2192	tt(-),28
19	Function: prison	1.0000	equal	n/a,61	1.0000	equal	n/a,27	1.0000	equal	n/a,59	1.0000	equal	n/a,28
20	Function: healthcare	1.0000	equal	n/a,57	1.0000	equal	n/a,25	1.0000	equal	n/a,55	1.0000	equal	n/a,26
21	Function: factory	0.6499	0.6751	wi(-),61	0.1177	-1.6181	tt(-),27	0.9873	0.4937	wi(+),59	0.8642	-0.1726	tt(-),28
22	Function: office	0.4296	-0.7952	tt(-),61	0.2200	0.89	wi(-),27	0.9211	0.0995	tt(+),59	0.8623	0.5688	wi(-),27
23	Function: guesthouse	0.1899	0.9051	WI(-),61	0.0610	0.9695	wi(-),27	0.3861	0.8069	wi(-),59	0.3492	0.8254	wi(-),28
24	Function: education	0.2517	0.1259	WI(+),60	0.5157	0.2578	WI(+),27	0.7893	0.3946	WI(+),53	0.6317	0.4848	π(+),28
25	Function: sports	1.0000	equal	n/a,60	1.0000	equal	n/a,27	1.0000	equal	n/a,58	1.0000	equal	n/a,28
26	Function: snops	0.1301	1.5348	tt(+),01	0.8776	0.1000	tt(+),27	0.3320	0.9782	π(+),59	0.1063	-1.6709	π(-),28
27	Function: other	0.1902	0.010	tt(+),01	0.0099	0.1550	tt(+),27	0.4027	0.6431	tt(+),59	0.1101	0.0471	tt(+),28
20	Green: hush cover	0.8842	-0.1463	tt(+),01	0.07792	-1 1076	tt(-),27	0.5579	-0.400	++(-) 59	0.0007	-0.2471	tt(-),20
30	Green: grass cover	0.6563	0.1403	tt(+) 60	0.2702	-0.7162	tt(-),27	0.0079	-0.365	tt(-),58	0.4740	-0.7201	tt(-),20
31	Noise pollution: total	0.6132	0.5082	tt(+),00	0.4003	0.1554	tt(+) 26	0.8748	-0.1503	tt(-),50	0.7272	0.3343	tt(-),20
32	Noise pollution: roads	0.8286	0.2175	tt(+) 60	0.6309	0.4864	tt(+) 26	0.6735	-0.4236	tt(-) 58	0.5867	0.5503	tt(+) 28
33	Noise pollution: railways	0.2497	0.1249	wi(+).59	0.5296	0.6375	tt(+),26	0.7386	0.3693	wi(+).57	0.7354	-0.3416	tt(-),27
34	Subjective: fastest	0.0000	-9.4926	tt(-),61	0.0000	-7.0735	tt(-),26	0.0000	-11.3243	tt(-).59	0.0000	1.0	wi(-),27
35	Subjective: easy to remember	0.0001	-4.3389	tt(-),61	0.0354	-2.2192	tt(-).27	0.0000	-4.7319	tt(-).59	0.1178	-1.6158	tt(-),28
36	Subjective: no obstructions	0.2167	0.8916	wi(-),61	0.1065	-1.672	tt(-),27	0.0568	0.9716	wi(-),59	0.1691	0.9154	wi(-),28
37	Subjective: steep slopes	0.2005	1.2944	tt(+),61	0.3825	0.8883	tt(+),27	0.0639	1.8889	tt(+),59	0.6647	0.4382	tt(+),28
38	Subjective: lot of seating	0.0193	2.4071	tt(+),59	0.6673	-0.435	tt(-),26	0.0396	2.106	tt(+),58	0.6300	0.4872	tt(+),28
39	Subjective: weather protected	0.2474	1.168	tt(+),61	0.4377	0.7882	tt(+),27	0.1212	1.5729	tt(+),59	0.5010	0.6822	tt(+),28
40	Subjective: safe vs.traffic	0.0209	0.9895	wi(-),60	0.2194	-1.2585	tt(-),27	0.0004	0.9998	wi(-),58	0.0216	-2.4385	tt(-),28
41	Subjective: safe vs. social risk	0.0657	-1.8751	tt(-),61	0.0717	-1.8774	tt(-),27	0.2634	-1.1293	tt(-),59	0.1271	-1.5743	tt(-),28
42	Subjective: like when dark	0.0002	-4.0116	tt(-),61	0.1045	-1.6824	tt(-),27	0.0013	-3.3931	tt(-),59	0.0292	-2.3028	tt(-),28
43	Subjective: well lit	0.0353	0.9824	wi(-),61	0.1807	-1.3754	tt(-),27	0.2154	-1.2525	tt(-),59	0.5121	-0.6644	tt(-),28
44	Subjective: other people	0.1812	-1.3529	tt(-),61	0.7386	0.3373	tt(+),27	0.1392	-1.4994	tt(-),59	0.6441	-0.4671	tt(-),28
45	Subjective: well maintained	0.0259	0.987	wi(-),60	0.0118	0.9941	wi(-),26	0.0331	0.9834	wi(-),57	0.0496	-2.0595	tt(-),27
46	Year constr.: mean	0.0896	1.726	tt(+),60	0.1585	-1.4535	tt(-),26	0.1732	1.3789	tt(+),59	0.5453	-0.6126	tt(-),28
47	Landmarks: FSI	0.1462	0.0731	wi(+),56	0.2773	1.1117	tt(+),25	0.1219	1.5717	tt(+),55	0.1752	1.3936	tt(+),27
48	Landmarks: plot area	0.0594	0.0297	wi(+),57	0.2290	0.1145	wi(+),25	0.0372	0.0186	wi(+),55	0.1714	0.0857	wi(+),26
49	Landmarks: Year constr.	0.4844	0.2422	wi(+),59	0.4757	0.2379	wi(+),26	0.4484	0.2242	wi(+),56	0.4757	0.2379	wi(+),26
50	Landmarks: 1 criterion	0.0918	1.714	tt(+),60	0.2683	1.1323	tt(+),26	0.0700	1.8467	tt(+),58	0.1468	1.4957	tt(+),27
51	Landmarks: 2 criteria	0.8179	0.409	wi(+),59	0.4658	0.2329	wi(+),25	0.6360	0.318	wi(+),58	0.4800	0.24	wi(+),27
52	Landmarks: 3 criteria	1.0000	equal	n/a,61	1.0000	equal	n/a,27	1.0000	equal	n/a,59	1.0000	equal	n/a,28

Figure 2.26: Raw results for route aggregate analysis, sample: interaction - local resident (yes), sub-question 4, data: standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_coef,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_coef,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_coef,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]	_coef,n
0	Year constr.: < 1945	0.7442	0.6322	(-),36			n < 20	0.9475	0.5306	(-),37				n < 20
1	Year constr.: 1946-1970	0.8305	0.5898	(-),36			n < 20	0.7537	0.6278	(+),37				n < 20
2	Year constr.: 1971-1985	0.9575	0.5259	(+),36			n < 20	0.7991	0.6048	(-),37				n < 20
3	Year constr.: 1986-2000	0.6332	0.6876	(-),36			n < 20	0.4662	0.7704	(-),37				n < 20
4	Year constr.: 2001-2022	0.5561	0.7259	(-),36			n < 20	0.4423	0.7822	(-),37				n < 20
5	Traffic signals count	0.1700	0.9168	(-),36			n < 20	0.3290	0.8382	(-),37				n < 20
6	Stairs count	0.9934	0.5033	(-),36			n < 20	0.9936	0.5032	(-),37				n < 20
7	Status: for construction	0.3782	0.8172	(-),36			n < 20	0.3792	0.8165	(-),37				n < 20
8	Status: unrealised	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
9	Status: under construction	0.6533	0.6812	(+),36			n < 20	0.9440	0.5360	(+),37				n < 20
10	Status: in use (n.m.)	0.4174	0.7980	(+),36			n < 20	0.2327	0.8878	(+),37				n < 20
11	Status: in use	0.3271	0.8392	(-),36			n < 20	0.5038	0.7515	(-),37				n < 20
12	Status: for demolition	0.3309	0.8480	(+),36			n < 20	0.3306	0.8478	(+),37				n < 20
13	Status: demolished	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
14	Status: not in use	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
15	Status: reconstruction	0.3154	0.8458	(+),36			n < 20	0.4466	0.7809	(+),37				n < 20
16	Status: illegitimate	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
17	Function: residential	0.6423	0.6831	(-),36			n < 20	0.7630	0.6228	(-),37				n < 20
18	Function: gathering	0.7044	0.6534	(-),36			n < 20	0.7515	0.6298	(-),37				n < 20
19	Function: prison	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
20	Function: healthcare	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
21	Function: factory	0.5914	0.7154	(-),36			n < 20	0.5907	0.7155	(-),37				n < 20
22	Function: office	1.0000	0.5051	(-),36			n < 20	0.9254	0.5423	(+),37				n < 20
23	Function: guesthouse	0.3004	0.8563	(-),36			n < 20	0.5583	0.7314	(-),37				n < 20
24	Function: education	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
25	Function: sports	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20
26	Function: shops	0.9357	0.5371	(-),36			n < 20	0.9857	0.5119	(-),37				n < 20
27	Function: other	0.5943	0.7069	(+),36			n < 20	0.8210	0.5939	(+),37				n < 20
28	Green: tree cover	0.9865	0.5112	(+),36			n < 20	0.6693	0.6693	(-),37				n < 20
29	Green: bush cover	0.7143	0.6470	(+),36			n < 20	0.8669	0.5708	(-),37				n < 20
30	Green: grass cover	0.9775	0.5157	(+),36			n < 20	0.6228	0.6924	(-),37				n < 20
31	Noise pollution: total	0.8174	0.5957	(+),36			n < 20	0.9182	0.5452	(-),37				n < 20
32	Noise pollution: roads	0.6402	0.6839	(+),36			n < 20	0.9182	0.5452	(+),37				n < 20
33	Noise pollution: railways	0.7312	0.6386	(-),36			n < 20	0.9871	0.5108	(-),37				n < 20
34	Subjective: fastest	0.0000	1.0000	(+),36			n < 20	0.0000	1.0000	(+),37				n < 20
35	Subjective: easy to remember	0.0000	1.0000	(+),36			n < 20	0.0000	1.0000	(+),37				n < 20
36	Subjective: no obstructions	0.0379	0.9816	(+),36			n < 20	0.2844	0.8603	(+),37				n < 20
37	Subjective: steep slopes	0.5020	0.7526	(-),36			n < 20	0.6935	0.6573	(-),37				n < 20
38	Subjective: lot of seating	0.0397	0.9807	(-),36			n < 20	0.0602	0.9706	(-),37				n < 20
39	Subjective: weather protected	0.0562	0.9726	(-),36			n < 20	0.0806	0.9606	(-),37				n < 20
40	Subjective: safe vs.traffic	0.9375	0.5361	(-),36		•	n < 20	0.9128	0.5482	(-),37	•			n < 20
41	Subjective: safe vs. social risk	0.0305	0.9852	(+),36			n < 20	0.0647	0.9685	(+),37				n < 20
42	Subjective: like when dark	0.0032	0.9985	(+),36			n < 20	0.0041	0.9980	(+),37				n < 20
43	Subjective: well lit	0.1814	0.9113	(+),36			n < 20	0.2184	0.8930	(+),37				n < 20
44	Subjective: other people	0.1550	0.9242	(+),36			n < 20	0.0917	0.9552	(+),37				n < 20
45	Subjective: well maintained	0.4085	0.7992	(+),36			n < 20	0.7564	0.6262	(+),37				n < 20
46	Year constr.: mean	0.8040	0.6023	(+),36			n < 20	0.8795	0.5645	(-),37				n < 20
47	Landmarks: FSI	0.2696	0.8682	(-),36			n < 20	0.5830	0.7131	(-),37				n < 20
48	Landmarks: plot area	0.8220	0.5940	(-),36			n < 20	0.9658	0.5220	(-),37				n < 20
49	Landmarks: Year constr.	0.7564	0.6276	(-),36			n < 20	0.9760	0.5180	(-),37				n < 20
50	Landmarks: 1 criterion	0.5313	0.7383	(-),36			n < 20	0.7451	0.6318	(-),37				n < 20
51	Landmarks: 2 criteria	0.5691	0.7264	(-),36			n < 20	0.5689	0.7262	(-),37				n < 20
52	Landmarks: 3 criteria	1.0000	0.0000	(-),36			n < 20	1.0000	0.0000	(-),37				n < 20

Figure 2.27: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 4, data: non-standardised

	features	P(ML,egress)	[ML,eg.]_stat	[ML,eg.]_test,n	P(MR,egress)	[MR,eg.]_stat	[MR,eg.]_test,n	P(ML,access)	[ML,ac.]_stat	[ML,ac.]_test,n	P(MR,access)	[MR,ac.]_stat	[MR,ac.]_test,n
0	Year constr.: < 1945	0.6185	0.6908	wi(-),33			n < 20	0.4626	0.7687	wi(-),35			n < 20
1	Year constr.: 1946-1970	0.9764	0.0298	tt(+),33			n < 20	0.3378	0.8311	wi(-),35			n < 20
2	Year constr.: 1971-1985	0.7115	0.6443	wi(-),31			n < 20	0.5589	0.7206	wi(-),33			n < 20
3	Year constr.: 1986-2000	0.9718	0.0356	tt(+),33			n < 20	0.6030	0.525	tt(+),35			n < 20
4	Year constr.: 2001-2022	0.9753	0.4877	wi(+),31			n < 20	0.7287	0.3643	wi(+),33			n < 20
5	Traffic signals count	0.0796	0.0398	wi(+),33			n < 20	0.1336	0.0668	wi(+),35			n < 20
6	Stairs count	1.0000	0.5	wi(+),33			n < 20	1.0000	0.5	wi(+),35			n < 20
7	Status: for construction	1.0000	equal	n/a,31			n < 20	1.0000	equal	n/a,33			n < 20
8	Status: unrealised	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
9	Status: under construction	0.7277	0.6361	wi(-),30			n < 20	0.7389	0.6306	wi(-),33			n < 20
10	Status: in use (n.m.)	1.0000	equal	n/a,31			n < 20	1.0000	equal	n/a,32			n < 20
11	Status: in use	0.3498	0.1749	wi(+),32			n < 20	0.5745	0.2873	wi(+),34			n < 20
12	Status: for demolition	1.0000	equal	n/a,32			n < 20	1.0000	equal	n/a,34			n < 20
13	Status: demolished	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
14	Status: not in use	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
15	Status: reconstruction	0.1664	-1.4162	tt(-),33			n < 20	0.2704	-1.1205	tt(-),35			n < 20
16	Status: illegitimate	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
17	Function: residential	0.7534	0.6233	wi(-),32			n < 20	0.7673	0.6164	wi(-),34			n < 20
18	Function: gathering	0.6166	0.5056	tt(+),33			n < 20	0.6783	0.4183	tt(+),35			n < 20
19	Function: prison	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
20	Function: healthcare	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
21	Function: factory	1.0000	equal	n/a,30			n < 20	1.0000	equal	n/a,32			n < 20
22	Function: office	0.8859	-0.1446	tt(-),33			n < 20	0.8342	-0.2109	tt(-),35			n < 20
23	Function: guesthouse	1.0000	equal	n/a,31			n < 20	1.0000	equal	n/a,34			n < 20
24	Function: education	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
25	Function: sports	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20
26	Function: shops	0.0764	0.0382	wi(+),32			n < 20	0.7542	0.3771	wi(+),32			n < 20
27	Function: other	0.7856	0.6072	wi(-),30			n < 20	0.9215	0.4607	wi(+),32			n < 20
28	Green: tree cover	0.7541	0.3771	wi(+),33			n < 20	0.3207	0.1604	wi(+),35			n < 20
29	Green: bush cover	0.8791	0.4395	wi(+),33			n < 20	0.1748	1.3867	tt(+),34			n < 20
30	Green: grass cover	0.9413	0.0742	tt(+),33			n < 20	0.3049	1.0418	tt(+),35			n < 20
31	Noise pollution: total	0.7545	0.3154	tt(+),33			n < 20	0.3295	0.9894	tt(+),35			n < 20
32	Noise pollution: roads	0.8178	0.2323	tt(+),33			n < 20	0.4542	0.7571	tt(+),35			n < 20
33	Noise pollution: railways	0.8258	-0.2219	tt(-),32			n < 20	0.5291	0.6361	tt(+),34			n < 20
34	Subjective: fastest	0.0000	-9.1347	tt(-),33			n < 20	0.0000	-8.9199	tt(-),35			n < 20
35	Subjective: easy to remember	0.0000	-5.3453	tt(-),33			n < 20	0.0000	-5.2225	tt(-),35			n < 20
36	Subjective: no obstructions	0.1383	-1.5214	tt(-),32			n < 20	0.6289	-0.4879	tt(-),34			n < 20
37	Subjective: steep slopes	0.2252	1.2367	tt(+),33			n < 20	0.3629	0.9223	tt(+),35			n < 20
38	Subjective: lot of seating	0.0883	1.7583	tt(+),33			n < 20	0.0738	1.8447	tt(+),35			n < 20
39	Subjective: weather protected	0.0472	2.0645	tt(+),33			n < 20	0.0512	2.0207	tt(+),35			n < 20
40	Subjective: safe vs.traffic	0.3301	-0.9894	tt(-),32			n < 20	0.4987	-0.6841	tt(-),34			n < 20
41	Subjective: safe vs. social risk	0.1057	-1.6663	tt(-),32			n < 20	0.1164	-1.6122	tt(-),34			n < 20
42	Subjective: like when dark	0.0035	-3.1647	tt(-),32			n < 20	0.0013	-3.5052	tt(-),35			n < 20
43	Subjective: well lit	0.0666	-1.9014	tt(-),32			n < 20	0.0423	-2.1097	tt(-),35			n < 20
44	Subjective: other people	0.1543	-1.46	tt(-),32			n < 20	0.0775	-1.8202	tt(-),35			n < 20
45	Subjective: well maintained	0.3221	-1.0058	tt(-),33			n < 20	0.4932	-0.6929	tt(-),34			n < 20
46	Year constr.: mean	0.3241	0.8379	wi(-),33			n < 20	0.6126	0.6937	wi(-),34			n < 20
47	Landmarks: FSI	0.5205	0.2602	wi(+),32			n < 20	1.0000	0.5	wi(+),33			n < 20
48	Landmarks: plot area	0.2022	0.1011	wi(+),30			n < 20	0.5783	0.2891	wi(+),33			n < 20
49	Landmarks: Year constr.	0.7316	0.6342	wi(-),31			n < 20	0.5167	0.7416	wi(-),33			n < 20
50	Landmarks: 1 criterion	0.7059	0.3529	wi(+),32			n < 20	0.9567	0.4784	wi(+),34			n < 20
51	Landmarks: 2 criteria	1.0000	equal	n/a,32			n < 20	1.0000	equal	n/a,34			n < 20
52	Landmarks: 3 criteria	1.0000	equal	n/a,33			n < 20	1.0000	equal	n/a,35			n < 20

Figure 2.28: Raw results for route aggregate analysis, sample: interaction - local resident (no), sub-question 4, data: standardised

Chapter 3

Within-route distribution results: Sub-question 3

3.1 Results for tests against least turns paths sample

2. png
direction:
most-used,
<pre>images/withinroute/SQ3/TIL5060-12_1-OUTPUT_withinroute-RQ1_ldt-route:</pre>

Figure 3.1: Raw results for within-route distribution analysis, sample: most-used, sub-question 3, baseline: least directional turns paths, direction: access

1. png	
, direction:	
most-used	
<pre>images/withinroute/SQ3/TIL5060-12_1-0UTPUT_withinroute-RQ1_ldt-route;</pre>	

Figure 3.2: Raw results for within-route distribution analysis, sample: most-used, sub-question 3, baseline: least directional turns paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.289	0.7207	mw(-),28	0.2998	0.7146	mw(-),28	0.3155	0.6962	mw(-),28	0.3839	0.6251	mw(+),28
-	Year constr.: 1946-1970				0.1675	0.8498	mw(-),28	0.1675	0.8498	mw(+),28	0.4635	0.5486	mw(+),28
2	Year constr.: 1971-1985							0.1675	0.8498	mw(-),28			•
e	Year constr.: 1986-2000			•	•	•	•						
4	Year constr.: 2001-2022	0.0805	0.9269	mw(+),28	0.2783	0.7356	mw(+),28	0.1675	0.8498	mw(-),28	0.1675	0.8498	mw(+),28
5	Traffic signals count					•		0.4927	0.522	mw(+),28	0.4514	0.5607	mw(+),28
9	Stairs count	0.4939	0.5061	mw(+),28									•
7	Status: for construction				•					•	•		
80	Status: unrealised		·	·	·	•				•			·
6	Status: under construction												
₽	Status: in use (n.m.)		·										·
÷	Status: in use	0.4136	0.5964	mw(+),28	0.2227	0.7863	mw(-),28	0.3189	0.6912	mw(-),28	0.4724	0.5354	mw(+),28
12	Status: for demolition		·		·	•							•
13	Status: demolished									•			
4	Status: not in use		·		·								
15	Status: reconstruction				•								
16	Status: illegitimate									•			•
17	Function: residential				0.2998	0.7146	mw(-),28	0.0805	0.9268	mw(-),28	0.1865	0.8196	mw(+),28
18	Function: gathering	·	·	·	·			0.1675	0.8498	mw(-),28	0.1675	0.8498	mw(-),28
19	Function: prison					•						•	
20	Function: healthcare		·	•	·								•
21	Function: factory		·										
8	Function: office			•		•	•			•			•
33	Function: guesthouse					•						•	
24	Function: education									•			·
25	Function: sports												
26	Function: shops	0.4939	0.5061	mw(+),28				0.1675	0.8498	mw(-),28	0.5	0.5203	mw(-),28
27	Function: other				0.1675	0.8498	mw(-),28	0.1675	0.8498	mw(-),28		•	
28	Green: tree cover	0.3242	0.6824	mw(-),28	0.2564	0.75	mw(-),28	0.167	0.8377	mw(-),28	0.466	0.5408	mw(+),28
59	Green: bush cover	0.4117	0.5955	mw(+),28	0.2082	0.7972	mw(-),28	0.0873	0.9157	mw(-),28	0.3519	0.6545	mw(+),28
8	Green: grass cover	0.3753	0.6316	mw(+),28	0.3859	-0.8741	tt(-),28	0.118	0.8856	mw(-),28	0.0734	0.9289	mw(+),28
31	Noise pollution: total	0.0537	1.9726	tt(+)28	0.3354	0.6706	mw(-),28	0.4616	0.5453	mw(-),28	0.1405	0.8632	mw(+),28
32	Noise pollution: roads	0.3614	0.9204	tt(+)28	0.1993	0.8053	mw(-),28	0.3997	0.607	mw(-),28	0.2303	0.7748	mw(+),28
33	Noise pollution: railways	0.0048	0.9954	mw(-),28	0.2589	0.7465	mw(+),28	0.2604	0.7453	mw(+),28	0.2047	0.8001	mw(-),28
ure	3.3: Raw result	ts for wit	hin-roi	ite distr	ibution ar	alvsis.	sample:	frequency	z 5 (alv	vavs). si	th-auestion	3. has	eline: lea

 \mathbf{st} 5 λ Γ 5 > 2 5, 5 Figure 3.3: Raw results for within-route directional turns paths, direction: access
	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[QZ]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.3731	0.6321	mw(-),41	0.1602	0.8458	mw(-),41	0.1158	0.8878	mw(-),41	0.2247	0.7794	mw(-),41
-	Year constr.: 1946-1970		•		0.5	0.5138	mw(+),41	0.5	0.5138	mw(-),41	0.3114	0.6965	mw(+),41
N	Year constr.: 1971-1985				0.0799	0.9251	mw(-),41				0.5	0.5138	mw(-),41
e	Year constr.: 1986-2000				0.495	0.5149	mw(-),41	0.041	0.9614	mw(-),41	0.0799	0.9251	mw(+),41
4	Year constr.: 2001-2022	0.112	0.8916	mw(+),41	0.1663	0.8398	mw(-),41	0.041	0.9614	mw(-),41	0.2747	0.7348	mw(-),41
2	Traffic signals count				0.2412	0.7644	mw(-),41	0.3662	0.6402	mw(+),41	0.1696	0.8344	mw(+),41
9	Stairs count	0.366	0.6405	mw(+),41				0.1646	0.8472	mw(-),41			
7	Status: for construction	•				•	•						
80	Status: unrealised												•
6	Status: under construction				0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(-),41			
9	Status: in use (n.m.)				·	•	·			·			•
÷	Status: in use	0.2657	0.7382	mw(+),41	0.162	0.8418	mw(-),41	0.0501	0.9515	mw(-),41	0.4254	0.5795	mw(-),41
12	Status: for demolition												
13	Status: demolished	•				•	•					•	
4	Status: not in use						·					•	•
15	Status: reconstruction	•			0.1646	0.8472	mw(-),41						
16	Status: illegitimate												•
17	Function: residential	•			0.4918	0.5164	mw(-),41	0.3519	0.6563	mw(-),41	0.3437	0.6612	mw(+),41
18	Function: gathering	·			·	·	·	·		·	0.1646	0.8472	mw(+),41
19	Function: prison												
20	Function: healthcare												
5	Function: factory				0.1646	0.8472	mw(+),41				0.1646	0.8472	mw(-),41
8	Function: office		•		0.1646	0.8472	mw(-),41				0.5	0.5138	mw(+),41
33	Function: guesthouse							0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(+),41
24	Function: education	·	·		·	·	·	·		·	·	·	·
25	Function: sports		•			•	·		•			•	
26	Function: shops	0.4892	0.518	mw(+),41	0.0799	0.9251	mw(-),41	0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(-),41
27	Function: other	0.4931	0.5069	mw(+),41	0.0799	0.9251	mw(-),41	0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(+),41
28	Green: tree cover	0.4694	0.5357	mw(+),41	0.3259	0.678	mw(-),41	0.2669	0.7365	mw(+),41	0.0941	0.9075	mw(-),41
29	Green: bush cover	0.3877	0.6169	mw(+),41	0.2681	0.7355	mw(-),41	0.4386	0.5654	mw(+),41	0.2825	0.7208	mw(-),41
30	Green: grass cover	0.3484	0.6556	mw(+),41	0.4694	0.535	mw(+),41	0.496	0.508	mw(+),41	0.3657	0.6379	mw(-),41
31	Noise pollution: total	0.0324	0.9682	mw(+),41	0.2633	0.7398	mw(-),41	0.2841	0.7191	mw(-),41	0.416	0.5876	mw(+),41
32	Noise pollution: roads	0.4286	0.7957	tt(+)41	0.1379	0.8643	mw(-),41	0.3479	0.6556	mw(-),41	0.4606	0.5432	mw(-),41
33	Noise pollution: railways	0.1455	0.8566	mw(-),41	0.0867	0.9148	mw(+),41	0.1523	0.8499	mw(+),41	0.3999	0.6038	mw(-),41
ure	3.4: Raw result	ts for wit	hin-rou	tte distri	bution an	alvsis.	sample:	frequency	v 5 (alw	vavs). su	th-auestion	3. bas	eline: lea

 \mathbf{st} 5 5 5 5 Ś Ξ. ż, 5 Figure 3.4: Raw results for within-rouve directional turns paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.2452	0.7596	mw(-),40	0.08	0.9252	mw(-),40	0.4874	0.521	mw(+),40	0.3198	0.6851	mw(-),40
-	Year constr.: 1946-1970			•	0.5	0.5142	mw(+),40	0.1648	0.8473	mw(-),40	0.1541	0.8519	mw(+),40
2	Year constr.: 1971-1985				0.2843	0.7255	mw(-),40	0.2745	0.7352	mw(+),40	0.2843	0.7255	mw(-),40
e	Year constr.: 1986-2000	•			0.4949	0.5152	mw(-),40	0.1602	0.8459	mw(-),40	0.0799	0.9252	mw(+),40
4	Year constr.: 2001-2022	0.2185	0.7869	mw(+),40	0.2943	0.7157	mw(-),40	0.08	0.9252	mw(-),40	0.2745	0.7352	mw(-),40
5	Traffic signals count				0.1254	0.8786	mw(-),40	0.4963	0.5037	mw(+),40	0.2469	0.7589	mw(+),40
9	Stairs count	0.4971	0.5029	mw(+),40		•				•			
2	Status: for construction								•				
80	Status: unrealised	·	·	·	·	•	•			•			·
6	Status: under construction	•			•			0.1648	0.8473	mw(-),40			
우	Status: in use (n.m.)		·	·									•
÷	Status: in use	0.4024	0.6025	mw(+),40	0.3401	0.6663	mw(-),40	0.1443	0.8592	mw(-),40	0.4823	0.5227	mw(+),40
12	Status: for demolition												•
13	Status: demolished								•				
4	Status: not in use				·	•		•	•				•
15	Status: reconstruction	•			0.1648	0.8473	mw(-),40						
16	Status: illegitimate		·	·									·
17	Function: residential	•			0.3526	0.6559	mw(+),40	0.1481	0.8577	mw(+),40	0.1614	0.8422	mw(+),40
18	Function: gathering		·					0.1648	0.8473	mw(-),40	0.1648	0.8473	mw(+),40
19	Function: prison	•		•	•		•						
20	Function: healthcare												·
21	Function: factory			•	0.1648	0.8473	mw(+),40			•	0.1648	0.8473	mw(-),40
ន	Function: office				0.1648	0.8473	mw(-),40			•	0.5	0.5142	mw(+),40
33	Function: guesthouse				•			0.1648	0.8473	mw(-),40	0.0799	0.9252	mw(+),40
24	Function: education					•	•			•			·
25	Function: sports				•								
26	Function: shops	0.4958	0.5042	mw(+),40	0.1648	0.8473	mw(-),40	0.1648	0.8473	mw(-),40	0.4929	0.5071	mw(+),40
27	Function: other	0.4949	0.5051	mw(+),40	0.1648	0.8473	mw(-),40	0.1648	0.8473	mw(-),40	0.1648	0.8473	mw(+),40
28	Green: tree cover	0.4166	0.5885	mw(+),40	0.3916	0.6129	mw(-),40	0.2434	0.76	mw(+),40	0.3513	0.6523	mw(-),40
29	Green: bush cover	0.366	0.6386	mw(+),40	0.3069	0.6972	mw(-),40	0.2931	0.7106	mw(+),40	0.3028	0.7007	mw(+),40
30	Green: grass cover	0.3359	0.6682	mw(+),40	0.3765	0.628	mw(+),40	0.4273	0.5768	mw(+),40	0.3564	0.6472	mw(+),40
31	Noise pollution: total	0.0268	0.9738	mw(+),40	0.1958	0.807	mw(-),40	0.391	0.6128	mw(-),40	0.2347	0.7683	mw(+),40
32	Noise pollution: roads	0.3405	0.959	tt(+)40	0.0971	0.9046	mw(-),40	0.4468	0.5572	mw(-),40	0.3947	0.609	mw(+),40
33	Noise pollution: railways	0.0733	0.928	mw(-),40	0.2241	0.779	mw(+),40	0.3339	0.6697	mw(+),40	0.0589	0.9422	mw(-),40
ure	3.5: Raw resul	lts for wi	thin-ro:	ute disti	ribution a	nalysis.	sample:	: frequenc	v 4 (o	ften), su	b-question	1 3, bas	eline: lea

 \mathbf{st} 5 5 ÷. 2 5 ر ج 4 ÷ 5 Figure 3.5: Raw results for within-route directional turns paths, direction: access

	Year constr.: < 1945	0.3731	0.6321	mw(-),41	0.1602	0.8458	mw(-),41	0.1158	0.8878	mw(-),41	0.2247	0.7794	mw(-),41
-	Year constr.: 1946-1970	•		•	0.5	0.5138	mw(+),41	0.5	0.5138	mw(-),41	0.3114	0.6965	mw(+),41
2	Year constr.: 1971-1985		·		0.0799	0.9251	mw(-),41	·		·	0.5	0.5138	mw(-),41
~	Year constr.: 1986-2000			•	0.495	0.5149	mw(-),41	0.041	0.9614	mw(-),41	0.0799	0.9251	mw(+),41
*	Year constr.: 2001-2022	0.112	0.8916	mw(+),41	0.1663	0.8398	mw(-),41	0.041	0.9614	mw(-),41	0.2747	0.7348	mw(-),41
LC.	Traffic signals count				0.2412	0.7644	mw(-),41	0.3662	0.6402	mw(+),41	0.1696	0.8344	mw(+),41
5	Stairs count	0.366	0.6405	mw(+),41			•	0.1646	0.8472	mw(-),41			
~	Status: for construction			•			•			•	•		
~	Status: unrealised												
s e	Status: under construction				0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(-),41	•		
6	Status: in use (n.m.)						·	·		·	·	·	
Ξ	Status: in use	0.2657	0.7382	mw(+),41	0.162	0.8418	mw(-),41	0.0501	0.9515	mw(-),41	0.4254	0.5795	mw(-),41
5	Status: for demolition						·				•	·	
13	Status: demolished												
4	Status: not in use												
15	Status: reconstruction			•	0.1646	0.8472	mw(-),41			•	•		
16	Status: illegitimate						•			•			
17	Function: residential			•	0.4918	0.5164	mw(-),41	0.3519	0.6563	mw(-),41	0.3437	0.6612	mw(+),41
18	Function: gathering										0.1646	0.8472	mw(+),41
19	Function: prison												
20	Function: healthcare												
21	Function: factory	•			0.1646	0.8472	mw(+),41			•	0.1646	0.8472	mw(-),41
ស	Function: office				0.1646	0.8472	mw(-),41				0.5	0.5138	mw(+),41
33	Function: guesthouse			•			•	0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(+),41
24	Function: education						•	·		•			
25	Function: sports						•						
56	Function: shops	0.4892	0.518	mw(+),41	0.0799	0.9251	mw(-),41	0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(-),41
27	Function: other	0.4931	0.5069	mw(+),41	0.0799	0.9251	mw(-),41	0.1646	0.8472	mw(-),41	0.1646	0.8472	mw(+),41
88	Green: tree cover	0.4694	0.5357	mw(+),41	0.3259	0.678	mw(-),41	0.2669	0.7365	mw(+),41	0.0941	0.9075	mw(-),41
53	Green: bush cover	0.3877	0.6169	mw(+),41	0.2681	0.7355	mw(-),41	0.4386	0.5654	mw(+),41	0.2825	0.7208	mw(-),41
8	Green: grass cover	0.3484	0.6556	mw(+),41	0.4694	0.535	mw(+),41	0.496	0.508	mw(+),41	0.3657	0.6379	mw(-),41
3	Noise pollution: total	0.0324	0.9682	mw(+),41	0.2633	0.7398	mw(-),41	0.2841	0.7191	mw(-),41	0.416	0.5876	mw(+),41
32	Noise pollution: roads	0.4286	0.7957	tt(+)41	0.1379	0.8643	mw(-),41	0.3479	0.6556	mw(-),41	0.4606	0.5432	mw(-),41
33	Noise pollution: railways	0.1455	0.8566	mw(-),41	0.0867	0.9148	mw(+),41	0.1523	0.8499	mw(+),41	0.3999	0.6038	mw(-),41

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.2091	0.7962	mw(+),32	0.4809	0.5319	mw(-),32	0.1512	0.8536	mw(-),32	0.1903	0.814	mw(-),32
÷	Year constr.: 1946-1970				0.1663	0.8488	mw(-),32	0.5	0.5178	mw(-),32	0.4809	0.5319	mw(-),32
2	Year constr.: 1971-1985				0.0803	0.9261	mw(-),32	0.1663	0.8488	mw(-),32	0.0803	0.9261	mw(-),32
e	Year constr.: 1986-2000	•			0.0803	0.9261	mw(-),32	0.0803	0.9262	mw(+),32	0.0408	0.9623	mw(-),32
4	Year constr.: 2001-2022	0.0397	0.9625	mw(+),32	0.0853	0.9191	mw(-),32	0.5	0.5178	mw(+),32	0.209	0.7985	mw(-),32
5	Traffic signals count	•			0.0408	0.9623	mw(-),32	0.1194	0.8855	mw(+),32	0.4894	0.5212	mw(-),32
9	Stairs count	0.3826	0.6247	mw(+),32				0.1663	0.8488	mw(-),32			
2	Status: for construction												
00	Status: unrealised	•											•
6	Status: under construction				0.1663	0.8488	mw(-),32						
9	Status: in use (n.m.)	·	•		·	•		·	•		0.1663	0.8488	mw(+),32
÷	Status: in use	0.0293	0.9718	mw(+),32	0.0753	0.9279	mw(-),32	0.1034	0.8999	mw(-),32	0.1662	0.8376	mw(-),32
12	Status: for demolition	•											
13	Status: demolished												
4	Status: not in use	•							•				•
15	Status: reconstruction	•			•				•	•	•		
16	Status: illegitimate	•				•			•	•	•		•
17	Function: residential	•			0.3068	0.7032	mw(-),32	0.0274	0.9741	mw(-),32	0.2155	0.7894	mw(-),32
18	Function: gathering	·	·	·	·		•	0.1663	0.8488	mw(+),32	0.1663	0.8488	mw(+),32
19	Function: prison					•			•				
20	Function: healthcare	·			·	•	•		•	•		·	•
3	Function: factory					•			•			•	
3	Function: office		·		0.1663	0.8488	mw(+),32	0.1663	0.8488	mw(+),32	0.3378	0.6727	mw(-),32
33	Function: guesthouse					•			•				
24	Function: education	·	·	·	·	•						•	·
25	Function: sports												
26	Function: shops	0.4953	0.5047	mw(+),32	0.1663	0.8488	mw(-),32	0.1663	0.8488	mw(+),32			•
27	Function: other	0.4911	0.5089	mw(+),32	0.0803	0.9261	mw(-),32				0.0803	0.9261	mw(-),32
28	Green: tree cover	0.1739	0.83	mw(+),32	0.4092	0.5976	mw(-),32	0.0354	0.9658	mw(+),32	0.1994	0.8045	mw(-),32
29	Green: bush cover	0.2865	0.7188	mw(+),32	0.3297	0.6763	mw(+),32	0.0959	0.9066	mw(+),32	0.3652	0.6401	mw(-),32
30	Green: grass cover	0.2875	0.7175	mw(+),32	0.1247	0.8787	mw(+),32	0.0509	0.9507	mw(+),32	0.4405	0.5651	mw(-),32
31	Noise pollution: total	0.0611	1.9076	tt(+)32	0.0368	0.9643	mw(+),32	0.0474	0.954	mw(+),32	0.1361	0.8669	mw(-),32
32	Noise pollution: roads	0.2125	1.2597	tt(+)32	0.0648	0.937	mw(+),32	0.046	0.9553	mw(+),32	0.1106	0.892	mw(-),32
33	Noise pollution: railways	0.0	1.0	mw(-),32	0.0596	0.9421	mw(-),32	0.0675	0.9344	mw(-),32	0.1306	0.8723	mw(-),32
2	9 7. Dam moonl4	1+: for	tuon cit	diataila di	ene acitus	lia	f .olamo		(120a) 6	امیاندا	the amount of the	0 hod	olino. loo

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.2061	0.7982	mw(+),37	0.2022	0.8041	mw(-),37	0.4027	0.6032	mw(+),37	0.4113	0.5938	mw(-),37
-	Year constr.: 1946-1970	•		•	0.5	0.5153	mw(-),37	0.1653	0.8478	mw(+),37	0.4835	0.5275	mw(-),37
N	Year constr.: 1971-1985			•	0.0801	0.9255	mw(-),37	0.1653	0.8478	mw(+),37	0.0409	0.9618	mw(-),37
e	Year constr.: 1986-2000			•	0.2845	0.7261	mw(-),37	0.08	0.9255	mw(+),37	0.0409	0.9618	mw(-),37
4	Year constr.: 2001-2022	0.0783	0.9253	mw(+),37	0.3364	0.6726	mw(-),37	0.2845	0.7261	mw(-),37	0.2088	0.7977	mw(-),37
9	Traffic signals count			•	0.0409	0.9618	mw(-),37	0.3273	0.6816	mw(+),37	0.2289	0.778	mw(+),37
9	Stairs count	0.4966	0.5034	mw(+),37	•					•			•
4	Status: for construction												
00	Status: unrealised			•					•				•
6	Status: under construction			•	•			•		•			
9	Status: in use (n.m.)			•	•			•		•	0.1653	0.8478	mw(+),37
÷	Status: in use	0.0536	0.9479	mw(+),37	0.1513	0.8527	mw(-),37	0.4301	0.5756	mw(+),37	0.3276	0.6768	mw(-),37
12	Status: for demolition				0.1653	0.8478	mw(+),37						•
13	Status: demolished												
4	Status: not in use			•					•				•
15	Status: reconstruction			•				•					
16	Status: illegitimate			•			•		•				•
17	Function: residential			•	0.229	0.777	mw(-),37	0.3731	0.6341	mw(-),37	0.3299	0.6754	mw(-),37
18	Function: gathering	·	·	•				0.5	0.5153	mw(+),37	0.1653	0.8478	mw(+),37
19	Function: prison	·		•					•			•	
20	Function: healthcare	·	·	•	•	•			•			•	·
21	Function: factory				0.1653	0.8478	mw(+),37						
ដ	Function: office	•		•	0.1653	0.8478	mw(+),37	0.0801	0.9255	mw(+),37	0.3364	0.6727	mw(-),37
33	Function: guesthouse	•		•	•	•	•					•	
24	Function: education	·	·	•	•	•	•	·	•			•	·
25	Function: sports				•	•						•	
26	Function: shops	0.4855	0.5218	mw(-),37	0.0801	0.9255	mw(-),37	0.1653	0.8478	mw(+),37	0.1653	0.8478	mw(-),37
27	Function: other	0.4923	0.5077	mw(+),37	0.1653	0.8478	mw(-),37	0.1653	0.8478	mw(+),37	0.0801	0.9255	mw(-),37
28	Green: tree cover	0.1064	0.8958	mw(+),37	0.1241	0.8787	mw(-),37	0.0341	0.9668	mw(+),37	0.1264	0.876	mw(-),37
29	Green: bush cover	0.1801	0.823	mw(+),37	0.203	0.8007	mw(-),37	0.0488	0.9524	mw(+),37	0.2163	0.7871	mw(-),37
30	Green: grass cover	0.1684	0.8344	mw(+),37	0.3597	0.6451	mw(+),37	0.0306	0.9702	mw(+),37	0.2895	0.7144	mw(-),37
સ	Noise pollution: total	0.0187	0.9818	mw(+),37	0.1042	0.8978	mw(+),37	0.0439	0.9571	mw(+),37	0.2962	0.7076	mw(-),37
32	Noise pollution: roads	0.1211	1.5687	tt(+)37	0.2458	0.7578	mw(+),37	0.0505	0.9506	mw(+),37	0.3198	0.6842	mw(-),37
33	Noise pollution: railways	0.0001	0.9999	mw(-),37	0.108	0.8941	mw(-),37	0.0535	0.9477	mw(-),37	0.257	0.7466	mw(-),37
ure	3.8: Raw result	ts for wit	hin-rou	ite distri	bution an	alvsis.	sample:	frequency	r 3 repr	larly. su	th-amestion	3. has	eline: lea

£ 5 ý. 20 20 > 5 स 2 5 Figure 3.8: Raw results for within-rouve directional turns paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.1383	0.8627	mw(+),84	0.0507	0.9503	mw(-),84	0.0246	0.9758	mw(-),84	0.2105	0.7907	mw(-),84
÷	Year constr.: 1946-1970	•			0.283	0.7216	mw(-),84	0.1623	0.8406	mw(-),84	0.2822	0.7204	mw(+),84
2	Year constr.: 1971-1985				0.0793	0.9232	mw(-),84	0.2106	0.7922	mw(-),84	0.5	0.5048	mw(+),84
e	Year constr.: 1986-2000				0.1579	0.845	mw(-),84	0.4843	0.5197	mw(+),84	0.0223	0.9781	mw(+),84
4	Year constr.: 2001-2022	0.0929	0.9084	mw(+),84	0.1954	0.8067	mw(-),84	0.0749	0.9263	mw(+),84	0.2135	0.7894	mw(+),84
5	Traffic signals count	•			0.2642	0.7383	mw(-),84	0.0592	0.9416	mw(-),84	0.0233	0.977	mw(+),84
9	Stairs count	0.3448	0.6569	mw(+),84		•	•	0.1616	0.8442	mw(-),84			
7	Status: for construction				•		•		•		0.1616	0.8442	mw(+),84
80	Status: unrealised					•	•			•			•
6	Status: under construction				0.1616	0.8442	mw(-),84	0.1616	0.8442	mw(-),84			
₽	Status: in use (n.m.)	0.5	0.5067	mw(+),84			•					•	•
÷	Status: in use	0.0416	0.9587	mw(+),84	0.0293	0.9711	mw(-),84	0.1041	0.8967	mw(-),84	0.4124	0.5891	mw(-),84
12	Status: for demolition				0.1616	0.8442	mw(+),84						•
13	Status: demolished									•			
4	Status: not in use					•	•		•	•			•
15	Status: reconstruction				0.1616	0.8442	mw(-),84			•			
16	Status: illegitimate					•				•			•
17	Function: residential				0.2404	0.7622	mw(-),84	0.389	0.6133	mw(-),84	0.2656	0.7359	mw(+),84
8	Function: gathering				0.1616	0.8442	mw(-),84	0.2854	0.7193	mw(-),84	0.5	0.5067	mw(+),84
19	Function: prison	•											
20	Function: healthcare		•			•	•			•			
21	Function: factory	•						0.1616	0.8442	mw(+),84	0.1616	0.8442	mw(-),84
8	Function: office				0.1616	0.8442	mw(-),84			•	0.3352	0.6687	mw(-),84
ន្ល	Function: guesthouse	•		•				0.1616	0.8442	mw(-),84	0.0793	0.9232	mw(+),84
24	Function: education					•	•			•	0.1616	0.8442	mw(+),84
25	Function: sports	•											
26	Function: shops	0.4906	0.5118	mw(+),84	0.283	0.7216	mw(-),84	0.0793	0.9232	mw(-),84	0.1616	0.8442	mw(-),84
27	Function: other	0.4976	0.5072	mw(+),84	0.012	0.9883	mw(-),84	0.1594	0.8435	mw(-),84	0.283	0.7216	mw(-),84
28	Green: tree cover	0.2297	0.7715	mw(+),84	0.4489	0.5527	mw(+),84	0.4687	0.5327	mw(-),84	0.2503	0.7508	mw(-),84
29	Green: bush cover	0.2839	0.7174	mw(+),84	0.2584	0.7429	mw(-),84	0.4485	0.5529	mw(+),84	0.4443	0.557	mw(-),84
30	Green: grass cover	0.1783	0.8227	mw(+),84	0.2812	0.7201	mw(+),84	0.293	0.7082	mw(-),84	0.3523	0.6489	mw(-),84
31	Noise pollution: total	0.0002	0.9998	mw(+),84	0.4993	0.502	mw(+),84	0.4583	0.543	mw(-),84	0.3934	0.6079	mw(-),84
32	Noise pollution: roads	0.0101	0.99	mw(+),84	0.2378	0.7633	mw(-),84	0.4385	0.5628	mw(-),84	0.2815	0.7196	mw(-),84
33	Noise pollution: railways	0.0	1.0	mw(-),84	0.4589	0.5425	mw(+),84	0.4953	0.506	mw(+),84	0.0791	0.9214	mw(-),84
041	2 0. Dam month	d for with	in mont	diataih o	ene noitu	lardio oc	folam	Proprioti Po	(como	timoa) a	uh anostio	n 2 ho	oolino. loo

Figure 3.9: Raw results for within-route distribution analysis, sample: frequency 2 (sometimes), sub-question 3, baseline: least directional turns paths, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.1744	0.8267	mw(+),85	0.2707	0.7316	mw(-),85	0.093	0.9079	mw(-),85	0.2897	0.7118	mw(-),85
÷	Year constr.: 1946-1970				0.4976	0.5071	mw(-),85	0.4976	0.5071	mw(+),85	0.3991	0.6038	mw(+),85
2	Year constr.: 1971-1985				0.0413	0.9599	mw(-),85	0.3351	0.6688	mw(-),85	0.2876	0.717	mw(-),85
e	Year constr.: 1986-2000				0.0413	0.9599	mw(-),85	0.4844	0.5194	mw(+),85	0.068	0.9331	mw(+),85
4	Year constr.: 2001-2022	0.0345	0.966	mw(+),85	0.1983	0.8038	mw(-),85	0.1022	0.8991	mw(+),85	0.4961	0.5078	mw(-),85
5	Traffic signals count				0.151	0.8509	mw(-),85	0.1905	0.8113	mw(-),85	0.1717	0.8299	mw(+),85
9	Stairs count	0.2718	0.7298	mw(+),85			•	0.1615	0.8442	mw(-),85	0.1615	0.8442	mw(+),85
7	Status: for construction				•		•				0.1615	0.8442	mw(+),85
80	Status: unrealised						•			•	•		•
6	Status: under construction				0.1615	0.8442	mw(-),85	0.1615	0.8442	mw(-),85			
우	Status: in use (n.m.)	0.5	0.5067	mw(+),85									·
÷	Status: in use	0.0235	0.9767	mw(+),85	0.1088	0.8921	mw(-),85	0.4679	0.5337	mw(-),85	0.385	0.6164	mw(-),85
12	Status: for demolition	·					•						•
13	Status: demolished				•		•						
14	Status: not in use	·			·		•						•
15	Status: reconstruction				•		•						
16	Status: illegitimate												•
17	Function: residential				0.487	0.5156	mw(-),85	0.4884	0.514	mw(-),85	0.416	0.5858	mw(+),85
18	Function: gathering				0.1615	0.8442	mw(-),85	0.4976	0.5071	mw(+),85	0.4967	0.5033	mw(+),85
19	Function: prison				•		•						
20	Function: healthcare						•						•
21	Function: factory				•		•	0.1615	0.8442	mw(+),85	0.1615	0.8442	mw(-),85
ន	Function: office		·				•			•	0.3351	0.6688	mw(-),85
23	Function: guesthouse				•		•	0.1615	0.8442	mw(-),85	0.0793	0.9232	mw(+),85
24	Function: education				•		•						•
25	Function: sports				•								
26	Function: shops	0.4907	0.5117	mw(-),85	0.2784	0.7262	mw(-),85	0.0793	0.9232	mw(-),85	0.0793	0.9232	mw(-),85
27	Function: other	0.4976	0.5071	mw(+),85	0.012	0.9883	mw(-),85	0.3312	0.6726	mw(-),85	0.283	0.7216	mw(-),85
28	Green: tree cover	0.2302	0.771	mw(+),85	0.4298	0.5717	mw(-),85	0.4929	0.5085	mw(+),85	0.3116	0.6895	mw(-),85
29	Green: bush cover	0.2827	0.7186	mw(+),85	0.1809	0.8201	mw(-),85	0.486	0.5154	mw(-),85	0.3658	0.6355	mw(+),85
30	Green: grass cover	0.1598	0.8411	mw(+),85	0.4923	0.5092	mw(+),85	0.3988	0.6025	mw(-),85	0.4244	0.5769	mw(+),85
31	Noise pollution: total	0.0001	0.9999	mw(+),85	0.4608	0.5405	mw(+),85	0.4054	0.5959	mw(-),85	0.486	0.5153	mw(+),85
32	Noise pollution: roads	0.1465	1.4589	tt(+)85	0.392	0.6093	mw(-),85	0.4425	0.5588	mw(-),85	0.2982	0.703	mw(-),85
33	Noise pollution: railways	0.0	1.0	mw(-),85	0.3909	0.6104	mw(-),85	0.4514	0.5499	mw(+),85	0.0371	0.9631	mw(-),85
ure	3.10: Raw resu	ults for w	rithin-re	oute dist	tribution	analysis	s, sample	e: frequen	icy 2 (s	ometime	s), sub-qu	lestion	3. baselir

е. -5 ñ, ý 5 5, <u>.</u> Ś Figure 3.10: Raw results for within-route dist least directional turns paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.4827	0.5205	mw(+),52	0.0899	0.913	mw(-),52	0.2195	0.7846	mw(-),52	0.3475	0.6557	mw(+),52
-	Year constr.: 1946-1970	•			•	•		0.5	0.5109	mw(-),52	0.0237	0.9772	mw(+),52
2	Year constr.: 1971-1985		·		0.5	0.5109	mw(-),52	0.5	0.5109	mw(+),52	0.5	0.5109	mw(-),52
e	Year constr.: 1986-2000				0.5	0.5109	mw(-),52	0.1634	0.846	mw(-),52	0.1505	0.854	mw(+),52
4	Year constr.: 2001-2022	0.087	0.9158	mw(+),52	0.2542	0.7503	mw(-),52	0.2762	0.7312	mw(-),52	0.2914	0.7163	mw(+),52
ŝ	Traffic signals count	•			0.2762	0.7313	mw(+),52	0.3544	0.6505	mw(+),52	0.3421	0.6628	mw(+),52
9	Stairs count	0.1721	0.831	mw(+),52				0.1634	0.846	mw(-),52			
7	Status: for construction				•		•			•	•	•	
œ	Status: unrealised				•		•						•
6	Status: under construction	•			0.1634	0.846	mw(-),52	0.1634	0.846	mw(-),52	•	•	
우	Status: in use (n.m.)	0.5	0.5109	mw(+),52			•			•	0.1634	0.846	mw(+),52
Ŧ	Status: in use	0.1297	0.8719	mw(+),52	0.0794	0.9222	mw(-),52	0.365	0.6393	mw(-),52	0.1443	0.8575	mw(+),52
12	Status: for demolition				•								
13	Status: demolished												
4	Status: not in use				•		•					•	•
15	Status: reconstruction				•		•				•	•	
16	Status: illegitimate				•		•			•	•	•	•
17	Function: residential	•			0.4936	0.5128	mw(+),52	0.3513	0.6542	mw(-),52	0.0205	0.9799	mw(+),52
8	Function: gathering	·	·		•	•	•			•	0.5	0.5109	mw(+),52
19	Function: prison	·				•	•					•	
30	Function: healthcare	·	•			•	•			•		·	•
21	Function: factory	•				•							
ដ	Function: office				•	•	•				0.2762	0.7312	mw(+),52
ន	Function: guesthouse										0.1634	0.846	mw(+),52
24	Function: education	·			•	•	•						•
25	Function: sports	·			•	•	•					•	
26	Function: shops	0.498	0.502	mw(+),52	0.1634	0.846	mw(-),52				0.28	0.7275	mw(-),52
27	Function: other	0.4945	0.5055	mw(+),52	0.0217	0.9793	mw(-),52	0.0797	0.9243	mw(-),52	0.0796	0.9243	mw(+),52
28	Green: tree cover	0.2882	0.7142	mw(+),52	0.2341	0.7682	mw(+),52	0.1902	0.8118	mw(+),52	0.2707	0.7316	mw(+),52
29	Green: bush cover	0.153	0.8487	mw(+),52	0.3094	0.6933	mw(+),52	0.3786	0.6242	mw(+),52	0.1629	0.8388	mw(+),52
8	Green: grass cover	0.0838	0.9173	mw(+),52	0.1872	0.8148	mw(+),52	0.3077	0.6948	mw(+),52	0.1174	0.8839	mw(+),52
3	Noise pollution: total	0.0014	0.9987	mw(+),52	0.0458	0.9548	mw(+),52	0.2211	0.781	mw(+),52	0.1263	0.8751	mw(+),52
32	Noise pollution: roads	0.0129	0.9874	mw(+),52	0.0664	0.9345	mw(+),52	0.2908	0.7115	mw(+),52	0.1597	0.8419	mw(+),52
33	Noise pollution: railways	0.0034	0.9966	mw(-),52	0.2154	0.7865	mw(-),52	0.3946	0.608	mw(+),52	0.0545	0.9463	mw(-),52
Ire	3.11. Baw resu	ults for w	ithin-ro	inte distr	ribution a	nalvsis	sample	· frequence	w 1 (no	ever) si	h-anestion	3 has	eline: lea

 \mathbf{st} 5 ; シ ý 2 ż, 5 Figure 3.11: Raw results for within-rouve directional turns paths, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.4787	0.5244	mw(+),55	0.1631	0.8457	mw(-),55	0.2548	0.749	mw(-),55	0.0541	0.9469	mw(-),55
-	Year constr.: 1946-1970				0.1631	0.8457	mw(+),55	0.0796	0.9242	mw(-),55	0.5	0.5103	mw(+),55
2	Year constr.: 1971-1985			•	•		•	0.0412	0.9607	mw(-),55	0.2836	0.7235	mw(+),55
e	Year constr.: 1986-2000	•			0.4948	0.5052	mw(+),55	0.5	0.5103	mw(+),55	0.2765	0.7305	mw(+),55
4	Year constr.: 2001-2022	0.0411	0.9607	mw(+),55	0.1996	0.8046	mw(-),55	0.5	0.5103	mw(-),55	0.0796	0.9242	mw(+),55
5	Traffic signals count				0.0796	0.9242	mw(-),55	0.3396	0.6646	mw(+),55	0.2363	0.7671	mw(+),55
9	Stairs count	0.2565	0.7474	mw(+),55			•	0.1631	0.8457	mw(-),55			
7	Status: for construction					•	•		•	•	0.1631	0.8457	mw(+),55
80	Status: unrealised				•	•	•			•			•
6	Status: under construction				0.1631	0.8457	mw(-),55	0.1631	0.8457	mw(-),55			
우	Status: in use (n.m.)	0.5	0.5103	mw(+),55									
÷	Status: in use	0.1285	0.8731	mw(+),55	0.4055	0.5993	mw(-),55	0.0955	0.9062	mw(-),55	0.1561	0.8458	mw(-),55
12	Status: for demolition	·											•
13	Status: demolished												
14	Status: not in use	·				•				·			·
15	Status: reconstruction				0.1631	0.8457	mw(-),55			•			
16	Status: illegitimate		·	•	•		•						·
17	Function: residential	•		•	0.1631	0.8457	mw(+),55	0.3577	0.647	mw(-),55	0.4753	0.5288	mw(+),55
18	Function: gathering							0.1631	0.8457	mw(-),55	0.1631	0.8457	mw(+),55
19	Function: prison									•			
20	Function: healthcare				•		•		•	•			•
21	Function: factory				•				•				
ន	Function: office	·	·		0.1631	0.8457	mw(-),55	0.1631	0.8457	mw(+),55	0.1631	0.8457	mw(-),55
53	Function: guesthouse					•							·
24	Function: education	·		•	•		•				0.1631	0.8457	mw(+),55
25	Function: sports	•											
26	Function: shops	0.4876	0.5165	mw(-),55							0.5	0.5103	mw(-),55
27	Function: other				0.0412	0.9607	mw(-),55	0.2909	0.7164	mw(-),55			
28	Green: tree cover	0.4786	0.5241	mw(+),55	0.1693	0.8326	mw(-),55	0.4792	0.5235	mw(+),55	0.1052	0.896	mw(-),55
29	Green: bush cover	0.3328	0.6696	mw(+),55	0.1302	0.8714	mw(-),55	0.3929	0.6097	mw(+),55	0.1381	0.8633	mw(-),55
30	Green: grass cover	0.3038	0.6985	mw(+),55	0.1618	0.84	mw(-),55	0.4403	0.5623	mw(-),55	0.1054	0.8958	mw(-),55
31	Noise pollution: total	0.0319	0.9686	mw(+),55	0.2564	0.7457	mw(-),55	0.3864	0.616	mw(+),55	0.2566	0.7454	mw(-),55
32	Noise pollution: roads	0.5413	0.6128	tt(+)55	0.136	0.8654	mw(-),55	0.4031	0.5993	mw(+),55	0.1339	0.8675	mw(-),55
33	Noise pollution: railways	0.0369	0.9636	mw(-),55	0.0728	0.9281	mw(+),55	0.4267	0.5758	mw(+),55	0.5	0.5025	mw(-),55
9.1 F	3 19. Ram result	lte for an	ithin_ro	uto diet	rihiition s	nalweie	واستلقه	. fracinan	av 1 (n	arrar) en	h-dilestion	3 hac	alina. laa

Figure 3.12: Raw results for within-route distribution analysis, sample: frequency 1 (never), sub-question 3, baseline: least directional turns paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.2467	0.7542	mw(+),105	0.1763	0.8252	mw(-),105	0.2539	0.7474	mw(-),105	0.0697	0.9308	mw(-),105
-	Year constr.: 1946-1970				0.3274	0.6757	mw(-),105	0.1616	0.8408	mw(-),105	0.4944	0.5079	mw(-),105
2	Year constr.: 1971-1985				0.1592	0.8431	mw(-),105	0.363	0.6398	mw(-),105	0.4969	0.5063	mw(+),105
e	Year constr.: 1986-2000				0.0878	0.9136	mw(-),105	0.4874	0.5157	mw(+),105	0.3367	0.6664	mw(-),105
4	Year constr.: 2001-2022	0.0378	0.9626	mw(+),105	0.291	0.7109	mw(-),105	0.3575	0.6452	mw(+),105	0.2032	0.799	mw(-),105
5	Traffic signals count				0.045	0.9556	mw(-),105	0.3848	0.6171	mw(+),105	0.155	0.846	mw(+),105
9	Stairs count	0.4217	0.5798	mw(+),105				0.161	0.8436	mw(-),105			
7	Status: for construction										0.161	0.8436	mw(+),105
80	Status: unrealised												•
6	Status: under construction				0.161	0.8436	mw(-),105	0.161	0.8436	mw(-),105	•		
₽	Status: in use (n.m.)	0.5	0.5054	mw(+),105				·					
÷	Status: in use	0.0229	0.9773	mw(+),105	0.1208	0.88	mw(-),105	0.3402	0.661	mw(-),105	0.0682	0.9322	mw(-),105
12	Status: for demolition	·				·		·			·		·
13	Status: demolished												
14	Status: not in use											•	•
15	Status: reconstruction				0.161	0.8436	mw(-),105						
16	Status: illegitimate							·					
17	Function: residential				0.2897	0.7121	mw(-),105	0.4938	0.508	mw(+),105	0.2685	0.7326	mw(-),105
8	Function: gathering				0.161	0.8436	mw(-),105	0.2847	0.7191	mw(-),105	0.4973	0.5027	mw(+),105
19	Function: prison										•		
20	Function: healthcare							·					•
21	Function: factory	•						0.161	0.8436	mw(+),105	0.161	0.8436	mw(-),105
ន	Function: office	·			0.161	0.8436	mw(-),105	0.0791	0.9228	mw(+),105	0.0899	0.9115	mw(-),105
33	Function: guesthouse							0.161	0.8436	mw(-),105	•		
24	Function: education												
25	Function: sports												
26	Function: shops	0.4811	0.5205	mw(-),105	0.0791	0.9228	mw(-),105	0.0791	0.9228	mw(-),105	0.2791	0.7246	mw(-),105
27	Function: other	0.4981	0.5019	mw(+),105	0.0121	0.9881	mw(-),105	0.4906	0.5126	mw(+),105	0.0791	0.9228	mw(-),105
58	Green: tree cover	0.3434	0.6576	mw(+),105	0.182	0.8188	mw(-),105	0.337	0.664	mw(+),105	0.0559	0.9444	mw(-),105
29	Green: bush cover	0.2707	0.7302	mw(+),105	0.07	0.9304	mw(-),105	0.3421	0.6588	mw(+),105	0.1468	0.8537	mw(-),105
30	Green: grass cover	0.1893	0.8114	mw(+),105	0.16	0.8407	mw(-),105	0.4476	0.5534	mw(+),105	0.1784	0.8223	mw(-),105
31	Noise pollution: total	0.0008	0.9992	mw(+),105	0.4724	0.5285	mw(-),105	0.1648	0.8358	mw(+),105	0.3754	0.6255	mw(-),105
32	Noise pollution: roads	0.0312	0.969	mw(+),105	0.1325	0.8681	mw(-),105	0.1454	0.8551	mw(+),105	0.2154	0.7852	mw(-),105
33	Noise pollution: railways	0.0001	0.9999	mw(-),105	0.3659	0.635	mw(+),105	0.3211	0.6797	mw(-),105	0.1599	0.8407	mw(-),105
Ire	3 13. Raw resu	lts for wi	thin-roi	nte distr	"ibution ar	na.lvsis.	sample:	- least-use	d sub-	nnestion	3. baseline	e. least	direction

nal Figure 3.13: Raw results for w turns paths, direction: access

	222231104	10/07-0-10)	Cal_stat	"'''''''''''''''''''''''''''''''''''''						··(1000 [000]	LIVES 10- 100 201	1919 4-1	
0	Year constr.: < 1945	0.2209	0.7801	mw(+),105	0.095	0.9019	mw(-),105	0.2578	0.7435	mw(-),105	0.0526	0.9478	mw(-),105
÷	Year constr.: 1946-1970		•	•	0.3274	4 0.6757	mw(-),105	0.1616	0.8408	mw(-),105	0.3856	0.6165	mw(-),105
N	Year constr.: 1971-1985			·	0.0414	1 0.9596	mw(-),105	0.2054	0.7968	mw(-),105	0.4969	0.5063	mw(+),105
e	Year constr.: 1986-2000	•	•	•	0.0878	3 0.9136	mw(-),105	0.4874	0.5157	mw(+),105	0.2215	0.7805	mw(+),105
4	Year constr.: 2001-2022	0.0358	0.9646	mw(+),105	0.1856	0.816	mw(-),105	0.2424	0.7597	mw(+),105	0.2032	0.799	mw(-),105
5	Traffic signals count				0.1015	9 0.8992	mw(-),105	0.2961	0.7055	mw(+),105	0.2141	0.7872	mw(+),105
9	Stairs count	0.4217	0.5798	mw(+),105		•		0.161	0.8436	mw(-),105	0.161	0.8436	mw(+),105
7	Status: for construction										0.161	0.8436	mw(+),105
80	Status: unrealised					•		·					•
6 0	tatus: under construction				0.161	1 0.8436	mw(-),105	0.161	0.8436	mw(-),105			•
10	Status: in use (n.m.)	0.5	0.5054	mw(+),105				·					
÷	Status: in use	0.0222	0.9779	mw(+),105	0.0481	1 0.9523	mw(-),105	0.2792	0.7219	mw(-),105	0.0943	0.9062	mw(-),105
12	Status: for demolition			·				·					
13	Status: demolished		•			•							
14	Status: not in use					•							•
15	Status: reconstruction		•	•	0.161	0.8436	mw(-),105						•
16	Status: illegitimate			•		•							•
17	Function: residential			•	0.1184	4 0.8827	mw(-),105	0.4009	0.6009	mw(-),105	0.4243	0.577	mw(-),105
18	Function: gathering				0.16	0.8436	mw(-),105	0.4981	0.5057	mw(+),105	0.4973	0.5027	mw(+),105
19	Function: prison					•							•
20	Function: healthcare		•			•							
21	Function: factory		•	•		•	•	0.161	0.8436	mw(+),105	0.161	0.8436	mw(-),105
53	Function: office		•		0.167	0.8436	mw(-),105	0.0791	0.9228	mw(+),105	0.0899	0.9115	mw(-),105
23	Function: guesthouse		•			•		0.161	0.8436	mw(-),105			
24	Function: education			•		•		·			0.161	0.8436	mw(+),105
25	Function: sports												
26	Function: shops	0.4811	0.5205	mw(-),105	0.0791	0.9228	mw(-),105	0.0791	0.9228	mw(-),105	0.2791	0.7246	mw(-),105
27	Function: other	0.4981	0.5057	mw(+),105	0.0121	1 0.9881	mw(-),105	0.4906	0.5126	mw(+),105	0.0791	0.9228	mw(-),105
28	Green: tree cover	0.3434	0.6576	mw(+),105	0.2066	5 0.7942	mw(-),105	0.2726	0.7282	mw(+),105	0.1144	0.8861	mw(-),105
29	Green: bush cover	0.2707	0.7302	mw(+),105	0.115	3 0.8826	mw(-),105	0.2804	0.7205	mw(+),105	0.215	0.7857	mw(-),105
30	Green: grass cover	0.1907	0.81	mw(+),105	0.2756	3 0.7256	mw(-),105	0.4701	0.5309	mw(-),105	0.2458	0.755	mw(-),105
31	Noise pollution: total	0.0007	0.9993	mw(+),105	0.4681	1 0.5328	mw(-),105	0.2576	0.7432	mw(+),105	0.4662	0.5347	mw(-),105
32	Noise pollution: roads	0.0307	0.9695	mw(+),105	0.1126	3 0.8876	mw(-),105	0.2398	0.7609	mw(+),105	0.2788	0.722	mw(-),105
33	Noise pollution: railways	0.0001	0.9999	mw(-),105	0.3126	3 0.6882	mw(+),105	0.3719	0.629	mw(-),105	0.0917	0.9087	mw(-),105

(л. 20 20 20 20 20 20 20 20 20 20 20 20 20
	alrection:
	nost-tsed,
	Images/withInroute/Su/3/IILD000-12_I-UUIPUL_withInroute-kul_sp-route:

Figure 3.15: Raw results for within-route distribution analysis, sample: most-used, sub-question 3, baseline: shortest paths, direction: access

1.png
direction:
most-used
<pre>images/withinroute/SQ3/TIL5060-12_1-OUTPUT_withinroute-RQ1_sp-route:</pre>

Figure 3.16: Raw results for within-route distribution analysis, sample: most-used, sub-question 3, baseline: shortest paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.4939	0.5061	mw(+),28	0.2926	0.7217	mw(-),28	0.1759	0.8319	mw(-),28	0.4037	0.6048	mw(-),28
-	Year constr.: 1946-1970	•		•	0.1675	0.8498	mw(-),28	0.1675	0.8498	mw(+),28	0.1436	0.8646	mw(+),28
N	Year constr.: 1971-1985	·			•								•
e	Year constr.: 1986-2000	•			•						0.0805	0.9268	mw(-),28
4	Year constr.: 2001-2022	0.4927	0.5073	mw(+),28	0.4927	0.5073	mw(+),28	0.1675	0.8498	mw(-),28	0.4898	0.5102	mw(+),28
5	Traffic signals count	•			•			0.2853	0.7288	mw(+),28	0.1699	0.8392	mw(+),28
9	Stairs count	0.3497	0.6608	mw(-),28									•
7	Status: for construction	•			•		•						
00	Status: unrealised	•			•		•				•	•	•
6	Status: under construction	•			•		•				•	•	
9	Status: in use (n.m.)	·	•		•		•	•	•			•	
÷	Status: in use	0.4951	0.5049	mw(+),28	0.2137	0.7951	mw(-),28	0.2174	0.7904	mw(-),28	0.4421	0.5656	mw(-),28
5	Status: for demolition				•								•
13	Status: demolished												
4	Status: not in use	·					•						•
15	Status: reconstruction	•			•		•				•	•	
16	Status: illegitimate	•		•	•		•				•	•	•
17	Function: residential			•	0.2926	0.7217	mw(-),28	0.1675	0.8498	mw(-),28	0.4957	0.5129	mw(+),28
18	Function: gathering	·	·		•			•			0.1675	0.8498	mw(-),28
19	Function: prison					•			•			•	
20	Function: healthcare		·			•			•			·	•
3	Function: factory				•		•	•	•			•	•
ន	Function: office								•			·	·
33	Function: guesthouse												·
24	Function: education	·	·									·	·
25	Function: sports				•							•	
26	Function: shops	0.4939	0.5061	mw(+),28	•					•	0.1675	0.8498	mw(+),28
27	Function: other												
28	Green: tree cover	0.3761	0.6312	mw(-),28	0.4316	0.5769	mw(+),28	0.129	0.8757	mw(+),28	0.3728	0.6336	mw(-),28
29	Green: bush cover	0.4117	0.5956	mw(-),28	0.3063	0.7012	mw(+),28	0.1754	0.8307	mw(+),28	0.428	0.5788	mw(-),28
30	Green: grass cover	0.4137	0.5934	mw(-),28	0.4006	0.6071	mw(-),28	0.1464	0.8586	mw(+),28	0.3441	0.6622	mw(+),28
31	Noise pollution: total	0.9495	-0.0636	tt(-),28	0.4592	0.5476	mw(-),28	0.0679	0.9346	mw(+),28	0.2227	0.7823	mw(+),28
32	Noise pollution: roads	0.9861	0.0175	tt(+)28	0.4796	0.5272	mw(+),28	0.0888	0.9142	mw(+),28	0.277	0.7286	mw(+),28
33	Noise pollution: railways	0.4726	0.5342	mw(-),28	0.4965	0.5035	mw(+),28	0.087	0.916	mw(-),28	0.3796	0.627	mw(-),28
041	3 17. Baur rocul	lte for with	แดา-น่า	to dietri	hiition ana	lireie e	f .olame	1 monon	کر است	-dria (au	ametion 3	haedin	o. shorto

Figure 3.17: Raw results for within-route distribution analysis, sample: frequency 5 (always), sub-question 3, baseline: shortest paths, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.4972	0.5028	mw(+),41	0.2891	0.7206	mw(-),41	0.294	0.7157	mw(+),41	0.4134	0.5923	mw(-),41
-	Year constr.: 1946-1970				0.1646	0.8472	mw(+),41	0.5	0.5138	mw(+),41	0.1602	0.8458	mw(+),41
N	Year constr.: 1971-1985				0.1646	0.8472	mw(-),41				0.1646	0.8472	mw(+),41
e	Year constr.: 1986-2000				0.294	0.7158	mw(+),41	0.1646	0.8472	mw(-),41	0.495	0.505	mw(+),41
4	Year constr.: 2001-2022	0.3769	0.6291	mw(-),41	0.4931	0.5069	mw(+),41	0.1646	0.8472	mw(-),41	0.4931	0.5069	mw(+),41
2	Traffic signals count				0.3616	0.6455	mw(-),41	0.377	0.6289	mw(-),41	0.1834	0.8207	mw(+),41
9	Stairs count	0.366	0.6405	mw(+),41									
7	Status: for construction												
80	Status: unrealised									•			•
6	Status: under construction									•	•		
9	Status: in use (n.m.)	•		•						•	•		·
÷	Status: in use	0.4634	0.5412	mw(-),41	0.4892	0.518	mw(-),41	0.2583	0.7474	mw(-),41	0.4847	0.5204	mw(-),41
4	Status: for demolition												
13	Status: demolished												
4	Status: not in use									•			•
15	Status: reconstruction									•			
16	Status: illegitimate	•		•						•	•		·
17	Function: residential	•	•	•	0.3334	0.6735	mw(-),41	0.4851	0.5248	mw(+),41	0.3611	0.6439	mw(+),41
8	Function: gathering	•		•			•				0.1646	0.8472	mw(+),41
19	Function: prison		•				•		•			•	
20	Function: healthcare												•
21	Function: factory				0.1646	0.8472	mw(+),41		•				
2	Function: office	•		•			•			•	0.4931	0.5069	mw(+),41
33	Function: guesthouse	•		•			•				0.1646	0.8472	mw(+),41
24	Function: education	•	•	•		•	•		•		•	•	·
25	Function: sports	•					•						
26	Function: shops	0.4892	0.518	mw(+),41			•		•		0.1646	0.8472	mw(-),41
27	Function: other	0.4931	0.5069	mw(+),41			•				0.1646	0.8472	mw(+),41
28	Green: tree cover	0.4415	0.5636	mw(-),41	0.1847	0.8185	mw(+),41	0.4172	0.5869	mw(+),41	0.4456	0.5583	mw(-),41
29	Green: bush cover	0.4976	0.5071	mw(-),41	0.1609	0.8421	mw(+),41	0.4646	0.5396	mw(-),41	0.4662	0.5377	mw(+),41
30	Green: grass cover	0.452	0.5524	mw(-),41	0.2743	0.7296	mw(+),41	0.425	0.579	mw(+),41	0.4981	0.5019	mw(+),41
31	Noise pollution: total	0.3264	0.677	mw(-),41	0.4821	0.5219	mw(+),41	0.3539	0.6498	mw(+),41	0.4113	0.5924	mw(+),41
32	Noise pollution: roads	0.5845	-0.5491	tt(-),41	0.3952	0.6087	mw(-),41	0.3502	0.6534	mw(+),41	0.4188	0.5849	mw(+),41
33	Noise pollution: railways	0.2692	0.7339	mw(+),41	0.2862	0.7172	mw(+),41	0.2832	0.7202	mw(-),41	0.1845	0.8181	mw(+),41
0.11	118. Raw result	tefor wit]	non-nin	ta distri	hiition ans	lareie e	amnla. f	นอกอบเรา	تو (ما _س رم	ua) enh-	ametion 3	hacalin	a. shorta

Figure 3.18: Raw results for within-route distribution analysis, sample: frequency 5 (always), sub-question 3, baseline: shortest paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.3466	0.6593	mw(-),40	0.1648	0.8473	mw(-),40	0.3357	0.6726	mw(+),40	0.3996	0.6058	mw(-),40
-	Year constr.: 1946-1970	•			0.1648	0.8473	mw(+),40	0.1648	0.8473	mw(-),40	0.1602	0.8459	mw(+),40
2	Year constr.: 1971-1985		·		0.5	0.5142	mw(-),40	0.08	0.9252	mw(+),40	0.1648	0.8473	mw(+),40
e	Year constr.: 1986-2000	•			0.2943	0.7157	mw(+),40	0.5	0.5142	mw(+),40	0.4949	0.5051	mw(+),40
4	Year constr.: 2001-2022	0.3767	0.6294	mw(-),40	0.1648	0.8473	mw(+),40	0.1648	0.8473	mw(-),40	0.4929	0.5071	mw(+),40
ŝ	Traffic signals count	•			0.2086	0.7974	mw(-),40	0.254	0.7513	mw(-),40	0.366	0.6406	mw(+),40
9	Stairs count	0.4971	0.5029	mw(+),40									
7	Status: for construction	•			•	•			•			•	
œ	Status: unrealised	•	·										
6	Status: under construction	•			•							•	
9	Status: in use (n.m.)	·			·	•		·	•			•	·
Ξ	Status: in use	0.3134	0.691	mw(-),40	0.3804	0.627	mw(+),40	0.2874	0.7183	mw(-),40	0.4471	0.5579	mw(-),40
12	Status: for demolition	·	•	·	·	·	·	·	·	·		•	
13	Status: demolished												
4	Status: not in use												
15	Status: reconstruction												
16	Status: illegitimate	·	·										·
17	Function: residential	•			0.4832	0.5252	mw(-),40	0.3029	0.705	mw(+),40	0.2762	0.7285	mw(+),40
8	Function: gathering	•									0.1648	0.8473	mw(+),40
19	Function: prison												
20	Function: healthcare	·	•		·	·	•		·	·			·
2	Function: factory				0.1648	0.8473	mw(+),40						
ន	Function: office	•									0.4929	0.5071	mw(+),40
83	Function: guesthouse										0.0799	0.9252	mw(+),40
24	Function: education	·	·	·	·	·	·	·	·	·		•	·
25	Function: sports												
26	Function: shops	0.4958	0.5042	mw(+),40					•		0.2893	0.7206	mw(-),40
27	Function: other	0.4949	0.5051	mw(+),40							0.1648	0.8473	mw(+),40
28	Green: tree cover	0.4816	0.5236	mw(-),40	0.2595	0.7447	mw(+),40	0.4808	0.5234	mw(-),40	0.2197	0.7833	mw(+),40
29	Green: bush cover	0.4951	0.5098	mw(-),40	0.2157	0.7883	mw(+),40	0.3395	0.6644	mw(-),40	0.1848	0.8179	mw(+),40
30	Green: grass cover	0.4505	0.5539	mw(-),40	0.2569	0.747	mw(+),40	0.4565	0.5476	mw(-),40	0.2203	0.7826	mw(+),40
સ	Noise pollution: total	0.3237	0.6797	mw(-),40	0.3867	0.6173	mw(-),40	0.3873	0.6166	mw(-),40	0.221	0.7819	mw(+),40
32	Noise pollution: roads	0.6298	-0.4839	tt(-),40	0.3518	0.6522	mw(-),40	0.4066	0.5973	mw(-),40	0.2435	0.7596	mw(+),40
33	Noise pollution: railways	0.2224	0.7806	mw(+),40	0.2752	0.7283	mw(+),40	0.4555	0.5486	mw(+),40	0.4516	0.5524	mw(-),40
пre	3.19. Baw resul	lts for wit	hin-roi	ite distri	ibution an	alvsis.	sample.	frequency	4 (off.e	n), sub-	mestion 3.	haselin	e: shorte

 test Figure 3.19: Raw results paths, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.4972	0.5028	mw(+),41	0.2891	0.7206	mw(-),41	0.294	0.7157	mw(+),41	0.4134	0.5923	mw(-),41
-	Year constr.: 1946-1970				0.1646	0.8472	mw(+),41	0.5	0.5138	mw(+),41	0.1602	0.8458	mw(+),41
N	Year constr.: 1971-1985				0.1646	0.8472	mw(-),41				0.1646	0.8472	mw(+),41
e	Year constr.: 1986-2000				0.294	0.7158	mw(+),41	0.1646	0.8472	mw(-),41	0.495	0.505	mw(+),41
4	Year constr.: 2001-2022	0.3769	0.6291	mw(-),41	0.4931	0.5069	mw(+),41	0.1646	0.8472	mw(-),41	0.4931	0.5069	mw(+),41
5	Traffic signals count				0.3616	0.6455	mw(-),41	0.377	0.6289	mw(-),41	0.1834	0.8207	mw(+),41
9	Stairs count	0.366	0.6405	mw(+),41			•						
7	Status: for construction						•						
80	Status: unrealised						•						
6	Status: under construction	•			•		•	•					
9	Status: in use (n.m.)						•						
÷	Status: in use	0.4634	0.5412	mw(-),41	0.4892	0.518	mw(-),41	0.2583	0.7474	mw(-),41	0.4847	0.5204	mw(-),41
4	Status: for demolition						•						
13	Status: demolished						•						
4	Status: not in use						•						
15	Status: reconstruction				•		•						
16	Status: illegitimate	•					•	•					
17	Function: residential				0.3334	0.6735	mw(-),41	0.4851	0.5248	mw(+),41	0.3611	0.6439	mw(+),41
18	Function: gathering	·	·		·		•		•		0.1646	0.8472	mw(+),41
19	Function: prison									•		•	
20	Function: healthcare						•						
2	Function: factory				0.1646	0.8472	mw(+),41						
23	Function: office		·	•		•	•	•	•		0.4931	0.5069	mw(+),41
33	Function: guesthouse								•		0.1646	0.8472	mw(+),41
24	Function: education		·	·	·		•		•				
25	Function: sports					•				•		•	
26	Function: shops	0.4892	0.518	mw(+),41			•				0.1646	0.8472	mw(-),41
27	Function: other	0.4931	0.5069	mw(+),41			•				0.1646	0.8472	mw(+),41
28	Green: tree cover	0.4415	0.5636	mw(-),41	0.1847	0.8185	mw(+),41	0.4172	0.5869	mw(+),41	0.4456	0.5583	mw(-),41
29	Green: bush cover	0.4976	0.5071	mw(-),41	0.1609	0.8421	mw(+),41	0.4646	0.5396	mw(-),41	0.4662	0.5377	mw(+),41
30	Green: grass cover	0.452	0.5524	mw(-),41	0.2743	0.7296	mw(+),41	0.425	0.579	mw(+),41	0.4981	0.5019	mw(+),41
31	Noise pollution: total	0.3264	0.677	mw(-),41	0.4821	0.5219	mw(+),41	0.3539	0.6498	mw(+),41	0.4113	0.5924	mw(+),41
32	Noise pollution: roads	0.5845	-0.5491	tt(-),41	0.3952	0.6087	mw(-),41	0.3502	0.6534	mw(+),41	0.4188	0.5849	mw(+),41
33	Noise pollution: railways	0.2692	0.7339	mw(+),41	0.2862	0.7172	mw(+),41	0.2832	0.7202	mw(-),41	0.1845	0.8181	mw(+),41
ure	3.20: Raw resul	lts for wit	thin-ro	ute distr	ibution an	alysis,	sample:	frequency	4 (ofte	n), sub-	question 3,	baseliı	ne: short

01000		Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n F	°(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
1 1	•	Year constr.: < 1945	0.3609	0.6459	mw(+),32	0.4809	0.5319	mw(+),32	0.3597	0.6496	mw(+),32	0.493	0.5141	mw(-),32
3 werome:::::::::::::::::::::::::::::::::::	-	Year constr.: 1946-1970	•		•			•	0.2912	0.7213	mw(-),32	0.2167	0.791	mw(-),32
3 Warener: 196-000 · 1 1	2	Year constr.: 1971-1985		·		0.1663	0.8488	mw(-),32				0.1663	0.8488	mw(-),32
4 1	e	Year constr.: 1986-2000	•		•	0.1663	0.8488	mw(-),32	0.0803	0.9262	mw(+),32			
Immatrational methods Immatratand methods Immatrational methods <	4	Year constr.: 2001-2022	0.4958	0.5042	mw(+),32	0.1663	0.8488	mw(+),32	0.5	0.5178	mw(+),32	0.2849	0.7274	mw(+),32
6 Sum control 0.463 0.601 0.6432 0.6432 0.6432 0.6432 0.6432 0.6432 0.6432 0.6432 0.6432 0.6432 0.6432 0.643 <th>2</th> <td>Traffic signals count</td> <td>•</td> <td></td> <td>•</td> <td>0.1663</td> <td>0.8488</td> <td>mw(-),32</td> <td>0.1965</td> <td>0.8099</td> <td>mw(+),32</td> <td>0.1685</td> <td>0.8395</td> <td>mw(+),32</td>	2	Traffic signals count	•		•	0.1663	0.8488	mw(-),32	0.1965	0.8099	mw(+),32	0.1685	0.8395	mw(+),32
1 Static for construction ·	9	Stairs count	0.4963	0.5037	mw(+),32									
6 Statuc-undercontrolition · <th>7</th> <td>Status: for construction</td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td>	7	Status: for construction	•		•					•	•			
9 Status under correturidin · <th>80</th> <td>Status: unrealised</td> <td></td> <td>·</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	80	Status: unrealised		·	•									
10 Status funde (m) 1	6	Status: under construction	•		•									
11 Statuc functione 0.305 0.401 0.402 0.403	9	Status: in use (n.m.)	·	·	•					•		0.1663	0.8488	mw(+),32
12 Status for damolio · · · · · · · · · · · · · · · · · · ·	÷	Status: in use	0.3651	0.6408	mw(+),32	0.4936	0.5064	mw(+),32	0.3653	0.643	mw(+),32	0.2813	0.7239	mw(-),32
13 Status demoleted ·	5	Status: for demolition			•									
14 Status: northicutes ·	13	Status: demolished												
16 Satura recontruction ·	4	Status: not in use								•				•
16 Status lingitute · · · · · · · · · · · · · · · · · · ·	15	Status: reconstruction	•		•					•	•			
1Function: residential 0.4303 0.5043 0.6043 </td <th>16</th> <td>Status: illegitimate</td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td>•</td>	16	Status: illegitimate	•		•					•	•			•
1 Function: gatherig ·	17	Function: residential	·		•	0.4936	0.5064	mw(+),32	0.5	0.5178	mw(+),32	0.4106	0.5964	mw(-),32
16 Function: piston · <	18	Function: gathering			•				0.1663	0.8488	mw(+),32	0.1663	0.8488	mw(+),32
20 Function: heathcare .	19	Function: prison												
21Function: factory </td <th>20</th> <td>Function: healthcare</td> <td></td> <td>·</td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td>	20	Function: healthcare		·	•		•			•				•
22Function: office0.16630.8488m(H),320.2848m(H),320.28490.7714m(H),3223Function: guestitues0.16630.8488m(H),320.28490.7214m(H).3224Function: education	21	Function: factory	•		•					•				
23 Function: guestitude · · · · · · · · · · · · · · · · · · ·	ន	Function: office	•		•	0.1663	0.8488	mw(+),32	0.1663	0.8488	mw(+),32	0.2849	0.7274	mw(+),32
24 Function: education · · · · · · · · · · · · · · · · · · ·	23	Function: guesthouse	•		•	•					•			
25 Function: sports .	24	Function: education		·	•	·	•							•
Z6 Function: shops 0.493 0.5047 m(H),32	25	Function: sports	•											
Z1 Function: other 0.4911 0.5089 mw(+),32	26	Function: shops	0.4953	0.5047	mw(+),32				0.5	0.5178	mw(+),32			
28 Green: tree cover 0.3871 0.6187 mw(-),32 0.9061 mw(-),32 0.9061 mw(-),32 0.9033 0.9033 mw(-),32 mw(-),32 mw(-),32 29 Green: tree cover 0.411 0.505 mw(-),32 0.9061 mw(-),32 0.9063 0.9381 mw(-),32 mw(-),32 30 Green: grass cover 0.411 0.505 mw(-),32 0.9431 mw(-),32 0.9431 mw(-),32 0.9381 mw(-),32 31 Noise pollution: total 0.410 0.503 0.9431 mw(-),32 0.9431 mw(-),32 0.9456 mw(-),32 31 Noise pollution: total 0.410 0.410 0.410 0.410 0.410 0.4956 0.4956 0.4953 32 Noise pollution: rotal 0.410	27	Function: other	0.4911	0.5089	mw(+),32	•								
29 Green: bush cover 0.436 0.5705 mu(-),32 0.3827 mu(+),32 0.3655 0.6401 mu(+),32 0.0636 0.3931 mu(-),32 30 Green: grass cover 0.411 0.5647 mu(-),32 0.0381 mu(+),32 0.3417 0.6636 mu(+),32 0.6355 mu(+),32 mu(+),32 31 Noise pollution: total 0.4609 -0.7419 0.0589 0.9431 mu(+),32 0.2898 0.715 mu(+),32 0.9466 mu(-),32 32 Noise pollution: total 0.4109 -0.719 0.1372 0.0512 0.715 mu(+),32 0.9466 mu(-),32 32 Noise pollution: ralways 0.6179 -0.5013 tt(-),32 0.0514 mu(-),32 0.9466 mu(-),32 0.715 mu(-),32 0.9466 mu(-),32 33 Noise pollution: ralways 0.6179 -0.5013 un(+),32 0.715 mu(+),32 0.9176 0.9167 0.9603 mu(-),32 34 Noise pollution: ralways 0.2898	28	Green: tree cover	0.3871	0.6187	mw(-),32	0.0975	0.9061	mw(+),32	0.6401	0.4699	tt(+)32	0.0789	0.9232	mw(-),32
30 Green: grass cover 0.411 0.5647 mw(-),32 0.0380 0.9431 mw(+),32 0.3417 0.6636 mw(+),32 0.1377 0.8655 mw(-),32 31 Noise pollution: total 0.4609 0.7419 tt(-),32 0.0347 0.9664 mw(+),32 0.2898 0.715 0.0456 mw(-),32 32 Noise pollution: radix 0.6179 -0.5013 tt(-),32 0.0347 0.9664 mw(+),32 0.2756 0.776 0.0512 0.3466 mw(-),32 32 Noise pollution: radix 0.6179 -0.5013 tt(-),32 0.0614 0.9634 mw(-),32 0.2755 0.7291 mw(+),32 0.9613 mw(-),32 33 Noise pollution: raliways 0.2889 0.716 uw(-),32 0.4044 mw(-),32 0.4765 0.4765 0.9503 0.4966 mw(-),32	29	Green: bush cover	0.4356	0.5705	mw(-),32	0.0182	0.9827	mw(+),32	0.3655	0.6401	mw(+),32	0.0636	0.9381	mw(-),32
31 Noise pollution: total 0.4609 -0.7419 tt(-),32 0.0347 0.9664 mw(+),32 0.2896 0.715 mw(+),32 0.0466 mw(-),32 32 Noise pollution: roads 0.6179 -0.5013 tt(-),32 0.0347 0.9664 mw(+),32 0.2896 0.715 mw(+),32 0.055 0.9466 mw(-),32 32 Noise pollution: roads 0.6179 -0.5013 tt(-),32 0.0614 0.9634 mw(-),32 0.7291 mw(+),32 0.0512 0.9503 mw(-),32 33 Noise pollution: railways 0.2166 mw(-),32 0.4286 mw(-),32 0.4786 mw(-),32 0.1763 0.8766 mw(-),32	30	Green: grass cover	0.4411	0.5647	mw(-),32	0.0589	0.9431	mw(+),32	0.3417	0.6636	mw(+),32	0.1377	0.8655	mw(-),32
32 Noise pollution: roads 0.6179 -0.5013 tt(-),32 0.0378 0.9634 mw(+),32 0.2755 0.7721 mw(+),32 0.0512 0.3603 mw(-),32 33 Noise pollution: railways 0.2889 0.716 mw(+),32 0.4288 0.4288 0.5768 mw(-),32 0.8766 mw(+),32	31	Noise pollution: total	0.4609	-0.7419	tt(-),32	0.0347	0.9664	mw(+),32	0.2898	0.715	mw(+),32	0.055	0.9466	mw(-),32
33 Noise pollution: railways 0.2889 0.716 mw(+),32 0.0614 0.9404 mw(-),32 0.4288 0.5768 mw(-),32 0.1263 0.8766 mw(+),32	32	Noise pollution: roads	0.6179	-0.5013	tt(-),32	0.0378	0.9634	mw(+),32	0.2755	0.7291	mw(+),32	0.0512	0.9503	mw(-),32
	33	Noise pollution: railways	0.2889	0.716	mw(+),32	0.0614	0.9404	mw(-),32	0.4288	0.5768	mw(-),32	0.1263	0.8766	mw(+),32

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.3951	0.6106	mw(+),37	0.3364	0.6726	mw(-),37	0.1243	0.8792	mw(+),37	0.3999	0.6055	mw(+),37
-	Year constr.: 1946-1970	•	•		0.1653	0.8478	mw(+),37	0.2899	0.7208	mw(-),37	0.2154	0.7912	mw(-),37
2	Year constr.: 1971-1985				0.1653	0.8478	mw(-),37	0.1653	0.8478	mw(+),37	0.1653	0.8478	mw(-),37
e	Year constr.: 1986-2000				0.5	0.5153	mw(+),37	0.2953	0.7155	mw(+),37			
4	Year constr.: 2001-2022	0.496	0.504	mw(+),37	0.2953	0.7155	mw(+),37	0.5	0.5153	mw(+),37	0.2845	0.7261	mw(+),37
ŝ	Traffic signals count				0.1653	0.8478	mw(-),37	0.4772	0.5319	mw(+),37	0.2152	0.7914	mw(+),37
9	Stairs count	0.3839	0.6223	mw(-),37									
7	Status: for construction	•					•						
00	Status: unrealised	·	•				•						
6	Status: under construction	•	•				•						
9	Status: in use (n.m.)	•					•				0.1653	0.8478	mw(+),37
÷	Status: in use	0.3749	0.63	mw(+),37	0.3828	0.6253	mw(+),37	0.23	0.7747	mw(+),37	0.3901	0.6147	mw(-),37
12	Status: for demolition				0.1653	0.8478	mw(+),37						
13	Status: demolished		•								•		
4	Status: not in use												
15	Status: reconstruction												
16	Status: illegitimate												
17	Function: residential	•			0.5	0.5091	mw(-),37	0.0859	0.9179	mw(+),37	0.3879	0.618	mw(-),37
8	Function: gathering							0.1653	0.8478	mw(+),37	0.1653	0.8478	mw(+),37
19	Function: prison												
20	Function: healthcare												
21	Function: factory				0.1653	0.8478	mw(+),37				•		
8	Function: office	•			0.1653	0.8478	mw(+),37	0.0801	0.9255	mw(+),37	0.2845	0.7262	mw(+),37
23	Function: guesthouse	•	•										
24	Function: education	•					•						
25	Function: sports												
26	Function: shops	0.4855	0.5218	mw(-),37				0.5	0.5153	mw(+),37	0.1653	0.8478	mw(-),37
27	Function: other	0.4923	0.5077	mw(+),37			•	0.1653	0.8478	mw(+),37			
28	Green: tree cover	0.4298	0.5748	mw(-),37	0.3096	0.6963	mw(+),37	0.3091	0.6951	mw(+),37	0.0184	0.9821	mw(-),37
29	Green: bush cover	0.4288	0.5759	mw(-),37	0.0653	0.9367	mw(+),37	0.222	0.7815	mw(+),37	0.0427	0.9583	mw(-),37
30	Green: grass cover	0.4525	0.552	mw(-),37	0.1222	0.8805	mw(+),37	0.1133	0.8889	mw(+),37	0.0719	0.9297	mw(-),37
31	Noise pollution: total	0.2706	0.7329	mw(-),37	0.0593	0.9421	mw(+),37	0.2293	0.7741	mw(+),37	0.0939	0.908	mw(-),37
32	Noise pollution: roads	0.7953	-0.2603	tt(-),37	0.0846	0.9172	mw(+),37	0.2665	0.7371	mw(+),37	0.111	0.8911	mw(-),37
33	Noise pollution: railways	0.2511	0.7525	mw(+),37	0.135	0.8675	mw(-),37	0.3489	0.6553	mw(-),37	0.0396	0.9613	mw(+),37
04	9 99. Dam wood	to for unit!		to diatail	oution one		f. olamo	1.0000000	ol		9 motion 9	head	o. chowto

Figure 3.22: Raw results for within-route distribution analysis, sample: frequency 3 regularly, sub-question 3, baseline: shortest paths, direction: egress

0 Year constr: : 1946-1970 1 Year constr: : 1971-1965 2 Year constr: : 1971-1965 3 Year constr: : 1971-1965 4 Year constr: : 1971-1965 5 Year constr: : 1971-1965 4 Year constr: : 1971-1965 5 Year constr: : 1971-1965 6 Year constr: : 2001-2022 7 Status: ornealise 8 Status: for construction 9 Status: under construction 10 Status: under construction 11 Status: under construction 12 Status: in use (n.m. 13 Status: in use (n.m. 14 Status: in use (n.m. 15 Status: in ot in use (n.m. 16 Status: neot in use (n.m. 17 Function: residentia 18 Function: gathering 19 Function: gathering 19 Function: gathering	0.1587 0.1587 0.1587 1 <th>0.8423 0.8455 0.66655 0.5777 0.5034 0.6693 0.6693</th> <th>mw(+),84</th> <th>0.2877 0.1616 0.1616 0.0221 0.4983 0.4753 0.1616</th> <th>0.717 0.8442 0.8442 0.8785 0.9785 0.5017</th> <th>mw(-),84 mw(+),84 mw(+),84 mw(+),84 mw(+),84</th> <th>0.1895 0.1623 0.0793 0.3332 0.0713</th> <th>0.8124 0.8406 0.9232 0.6707</th> <th>mw(-),84 mw(-),84 mw(+),84 mw(+),84</th> <th>0.3163 0.2642 0.283 0.1988</th> <th>0.6853 0.7383 0.7216</th> <th>mw(-),84 mw(+),84 mw(+),84 mw(+),84</th>	0.8423 0.8455 0.66655 0.5777 0.5034 0.6693 0.6693	mw(+),84	0.2877 0.1616 0.1616 0.0221 0.4983 0.4753 0.1616	0.717 0.8442 0.8442 0.8785 0.9785 0.5017	mw(-),84 mw(+),84 mw(+),84 mw(+),84 mw(+),84	0.1895 0.1623 0.0793 0.3332 0.0713	0.8124 0.8406 0.9232 0.6707	mw(-),84 mw(-),84 mw(+),84 mw(+),84	0.3163 0.2642 0.283 0.1988	0.6853 0.7383 0.7216	mw(-),84 mw(+),84 mw(+),84 mw(+),84
1 Year constr.: 1946-197C 2 Year constr.: 1971-1986 3 Year constr.: 1986-2000 4 Year constr.: 1986-2001 5 Traffic signals courn 6 Stairs courn 7 Stairs courn 8 Status: In use (n.m. 9 Status: In use (n.m. 10 Status: In use (n.m. 11 Status: In use (n.m. 12 Status: In use (n.m. 13 Status: In use (n.m. 14 Status: In use (n.m. 15 Status: In use (n.m. 16 Status: In use (n.m. 17 Status: In use (n.m. 18 Function: residentia 19 Status: Illegitimate 11 Status: Illegitimate 12 Status: Illegitimate 13 Status: Illegitimate 14 Status: Illegitimate 15 Function: residentia 16 Function: gathering	5 2 2 4 4 4 6 0.3167 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6855 0.5777 0.5034 0.6693		0.1616 0.1616 0.0221 0.4983 0.4983 0.4753 0.1616 0.1616	0.8442 0.8442 0.9785 0.5017	mw(+),84 mw(+),84 mw(+),84 mw(+),84	0.1623 0.0793 0.3332 0.0713	0.8406 0.9232 0.6707	mw(-),84 mw(+),84 mw(+),84	0.2642 0.283 0.1988	0.7383 0.7216	mw(+),84 mw(+),84 mw(+),84
2 Year constr: 1911-1985 3 Year constr: 1986-2000 4 Year constr: 2001-2022 5 Traffic signals count 6 Status: 100 7 Status: for construction 9 Status: in use (n.m. 10 Status: in use (n.m. 11 Status: in use (n.m. 12 Status: or demolified 13 Status: or timus 14 Status: or timus 15 Status: in use (n.m. 16 Status: or timus 17 Status: for demolified 18 Function: residentia 19 Status: inglitimatt 11 Function: residentia 12 Status: inglitimatt 13 Status: inglitimatt 14 Status: inglitimatt 15 Function: residentia 16 Function: residentia	5 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6855 0.5777 0.57777 0.5034 0.5034	. mw(-),84 	0.1616 0.0221 0.4983	0.8442 0.9785 0.5017	mw(+),84 mw(+),84 mw(+),84	0.0793 0.3332 0.0713	0.9232 0.6707	mw(+),84 mw(+),84	0.283	0.7216	mw(+),84 mw(+),84
3 Year constr: 1986-2000 4 Year constr: 2001-2022 5 Traffic signals count 6 Status: construction 7 Status: in use (n.m. 9 Status: in use (n.m. 10 Status: in use (n.m. 11 Status: in use (n.m. 12 Status: in use (n.m. 13 Status: ordenolisher 14 Status: in use (n.m. 15 Status: in use (n.m. 16 Status: in use (n.m. 17 Status: in use (n.m. 18 Function: residentia 19 Status: in use (n.m. 14 Status: in use (n.m. 15 Status: in use (n.m. 16 Status: indiction: residentia 17 Function: gatherin 18 Function: patherin 19 Function: patherin	2 0.3167 1 1 0.4241 1 0.4266 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.4966 0.3167 0.4966 0.3167 0.4966 0.3167 0.3167 0.4966 0.3167 0.31666 0.3167 0.317 0.3	0.5777 0.5777 0.5777 0.5034 0.6693	mw(-),84	0.1616 0.0221 0.4983 0.4763 0.1616	0.8442 0.9785 0.5017	mw(+),84 mw(+),84 mw(+).84	0.3332 0.0713	0.6707	mw(+),84	0.1988		mw(+),84
 4 Year constr.: 2001-2022 5 Traffic signals count 6 Status: for construction 8 Status: in neallise 9 Status: in use (n.m. 10 Status: in use (n.m. 11 Status: in use (n.m. 12 Status: in use (n.m. 13 Status: demolisher 14 Status: illegitimate 15 Status: illegitimate 16 Status: illegitimate 17 Function: residentia 18 Function: residentia 19 Function: residentia 10 Function: pathening 11 Function: pathening 12 Status: illegitimate 13 Status: illegitimate 14 Status: illegitimate 15 Status: illegitimate 16 Function: residentia 17 Function: residentia 	2 0.3167 1 0.4241 1 0.4241 1 0.4265 0 0.3321 6 0.3321 6 0.3321 1 1 0.4965 1 1 0.4955 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6855	mw(-),84 	0.0221 0.4983	0.9785 0.5017	mw(+),84 mw(+).84	0.0713				0.8031	
 Traffic signals count Status: for construction Status: in use (n.m. Status: not in use (n.m. Status: not in use (n.m. Status: in use (n.m. Function: residentia Function: pathering Function: pathering 	t 0.4241	0.5777 0.5034 0.6693		0.4983 0.4753 0.1616	0.5017	mw(+).84		0.9299	mw(+),84	0.3604	0.643	mw(+),84
6 Stairs count 7 Status: for construction 8 Status: unrealisec 9 Status: under construction 10 Status: in use (n.m. 11 Status: in use (n.m. 12 Status: in use (n.m. 13 Status: of demolisher 14 Status: not in use 15 Status: not in use 16 Status: not in use 17 Status: not in use 18 Function: residentia 19 Function: gathering 11 Function: gathering	t 0.4241	0.5777	mw(-),84 	0.1616		- 4 - 1	0.0647	0.9363	mw(-),84	0.0905	0.9105	mw(+),84
7 Status: for construction 8 Status: unnealised 9 Status: unnealised 10 Status: in use (n.m.) 11 Status: in use (n.m.) 12 Status: in use (n.m.) 13 Status: or demolished 14 Status: not in use 15 Status: not in use 16 Status: illegitimati 17 Function: residentia 18 Function: residentia 19 Function: or statustia	с. с	0.5034	mw(+),84 mw(+),84	0.4763 0.4763								
8 Status: unrealised 9 Status: under construction 10 Status: in use (n.m.) 11 Status: in use (n.m.) 12 Status: of demolition 13 Status: of demolished 14 Status: of nusion 15 Status: not in use 16 Status: reconstruction 17 Function: residentia 18 Function: residentia 19 Function: residentia	с. с	0.5034 0.6693	mw(+),84 mw(+),84	0.1616 0.1616						0.1616	0.8442	mw(+),84
9 Status: under construction 10 Status: in use (n.m.) 11 Status: in use (n.m.) 12 Status: for demolitor 13 Status: demolisher 14 Status: demolisher 15 Status: illegitimati 16 Status: illegitimati 17 Function: residentia 18 Function: residentia 19 Function: residentia	с (. с.	0.5034 0.6693	mw(+),84 mw(+),84	0.4753 0.1616								
10 Status: in use (n.m.) 11 Status: in use 12 Status: for demolition 13 Status: demolisher 14 Status: demolisher 15 Status: not in use 16 Status: illegitimate 17 Function: residentia 18 Function: residentia 19 Function: or status illegitimate) 0.4966 6 0.3321 6 6 8	0.5034 0.6693 .	mw(+),84 mw(+),84	0.4753	•				•			
11 Status: In use 12 Status: for demolition 13 Status: or demolished 14 Status: not in use 15 Status: not in use 16 Status: llegitimate 17 Function: residentia 18 Function: gathering 19 Function: gathering	0.332 ¹ 6 7	0.6693	mw(+),84	0.1616								
12 Status: for demolition 13 Status: demolishec 14 Status: not in usc 15 Status: not in usc 16 Status: illegitimati 17 Function: residentia 18 Function: residentia 19 Function: orison				0.1616	0.5278	mw(+),84	0.4971	0.5049	mw(-),84	0.2166	0.7845	mw(-),84
13 Status: demolished 14 Status: not in use 15 Status: reconstruction 16 Status: illegitimate 17 Function: residentia 18 Function: gathering 19 Function: gathering					0.8442	mw(+),84						
14 Status: not in use 15 Status: reconstruction 16 Status: illegitimate 17 Function: residentia 18 Function: gathering 19 Function: matchering			·									
15 Status: reconstruction 16 Status: Illegitimate 17 Function: residentia 18 Function: gathering 19 Function: prison					·	·		•			·	•
16 Status: lilegitimate 17 Function: residentia 18 Function: gathering 19 Function: gathering	 • न											
Tunction: residentia Function: gathering Function: gathering Function: prisor		·			•						·	
18 Function: gathering 19 Function: prisor				0.369	0.6344	mw(-),84	0.1848	0.817	mw(+),84	0.4507	0.551	mw(+),84
19 Function: prisor			·	·	•		0.1616	0.8442	mw(+),84	0.5	0.5067	mw(+),84
20 Function: healthcark	•	·	·		·	•	·	•		•	·	•
21 Function: factory	,						0.1616	0.8442	mw(+),84			
22 Function: office	•	·	·		·		·	•		0.5	0.5048	mw(-),84
23 Function: guesthouse						•				0.0793	0.9232	mw(+),84
24 Function: education			·	·	·	·	·	•	·	0.1616	0.8442	mw(+),84
25 Function: sports												
26 Function: shops	s 0.4906	0.5118	mw(+),84	0.1616	0.8442	mw(+),84	0.1616	0.8442	mw(-),84	0.0793	0.9232	mw(-),84
27 Function: othe	ır 0.4976	0.5072	mw(+),84				0.1616	0.8442	mw(+),84	0.5	0.5067	mw(-),84
28 Green: tree cove	r 0.4945	0.507	mw(+),84	0.1068	0.894	mw(+),84	0.4665	0.535	mw(-),84	0.4933	0.508	mw(+),84
29 Green: bush cove	r 0.4209	0.5806	mw(-),84	0.0947	0.9061	mw(+),84	0.323	0.6783	mw(+),84	0.4119	0.5894	mw(-),84
30 Green: grass cove	ır 0.492	0.5095	mw(+),84	0.2825	0.7189	mw(+),84	0.428	0.5734	mw(+),84	0.341	0.6602	mw(-),84
31 Noise pollution: tota	u 0.2959	0.7052	mw(-),84	0.4924	0.5089	mw(-),84	0.3059	0.6953	mw(+),84	0.4511	0.5502	mw(+),84
32 Noise pollution: roads	s 0.5313	-0.6273	tt(-),84	0.3187	0.6825	mw(-),84	0.3304	0.6708	mw(+),84	0.4362	0.5651	mw(+),84
33 Noise pollution: railways	s 0.1816	0.8193	mw(+),84	0.3496	0.6517	mw(+),84	0.2439	0.7571	mw(-),84	0.4449	0.5565	mw(+),84

-5 2 ý 5 2 ÷ ĥ Figure 3.23: Raw results for wit shortest paths, direction: access

	Variable	s P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	5 0.2289	0.7724	mw(+),85	0.3574	0.6456	mw(+),85	0.4926	0.5098	mw(-),85	0.4675	0.5343	mw(-),85
÷	Year constr.: 1946-1970				0.0793	0.9232	mw(+),85	0.3351	0.6688	mw(-),85	0.2642	0.7383	mw(+),85
2	Year constr.: 1971-1985				0.1615	0.8442	mw(-),85	0.0793	0.9232	mw(+),85	0.5	0.5067	mw(+),85
e	Year constr.: 1986-2000				0.1615	0.8442	mw(-),85	0.1579	0.8449	mw(+),85	0.3794	0.6234	mw(+),85
4	Year constr.: 2001-2025	2 0.4253	0.5769	mw(-),85	0.089	0.9127	mw(+),85	0.0417	0.959	mw(+),85	0.4903	0.5136	mw(-),85
5	Traffic signals coun	۲ .			0.3468	0.6565	mw(-),85	0.1003	0.9008	mw(-),85	0.1275	0.8738	mw(+),85
9	Stairs coun	nt 0.4991	0.5009	mw(+),85							0.1615	0.8442	mw(+),85
7	Status: for constructior				•						0.1615	0.8442	mw(+),85
80	Status: unrealised												·
6	Status: under constructior												
9	Status: in use (n.m.	.) 0.4967	0.5033	mw(+),85	·			·				·	·
÷	Status: in use	e 0.3438	0.6576	mw(+),85	0.2899	0.7122	mw(+),85	0.1137	0.8872	mw(+),85	0.2635	0.7377	mw(-),85
12	Status: for demolitior												•
13	Status: demolished	ק										•	
4	Status: not in use												•
15	Status: reconstructior												
16	Status: illegitimate		·		•			·		•		•	•
17	Function: residentia	ы.			0.3766	0.626	mw(+),85	0.1263	0.8751	mw(+),85	0.4582	0.5435	mw(-),85
8	Function: gathering	D						0.0793	0.9232	mw(+),85	0.5	0.5067	mw(+),85
19	Function: prisor	L											
20	Function: healthcare	Đ											·
2	Function: factory	А						0.1615	0.8442	mw(+),85			
ន	Function: office									•	0.5	0.5047	mw(-),85
53	Function: guesthouse									•	0.0793	0.9232	mw(+),85
24	Function: education				·			·		·		·	·
25	Function: sports	S											
26	Function: shops	s 0.4907	0.5117	mw(-),85	0.1615	0.8442	mw(+),85	0.1615	0.8442	mw(-),85	0.0793	0.9232	mw(-),85
27	Function: othe	yr 0.4976	0.5071	mw(+),85				0.0793	0.9232	mw(+),85	0.5	0.5067	mw(-),85
28	Green: tree cove	sr 0.4151	0.5864	mw(-),85	0.1165	0.8843	mw(+),85	0.4559	0.5455	mw(+),85	0.4693	0.532	mw(+),85
29	Green: bush cove	sr 0.4101	0.5914	mw(-),85	0.1276	0.8733	mw(+),85	0.3684	0.633	mw(+),85	0.4225	0.5788	mw(+),85
30	Green: grass cove	sr 0.4957	0.5057	mw(-),85	0.4184	0.5832	mw(+),85	0.37	0.6313	mw(+),85	0.4549	0.5464	mw(-),85
31	Noise pollution: tota	al 0.2323	0.7686	mw(-),85	0.4349	0.5664	mw(+),85	0.3528	0.6484	mw(+),85	0.4589	0.5423	mw(+),85
32	Noise pollution: roads	s 0.2533	0.7477	mw(-),85	0.4815	0.5198	mw(-),85	0.3453	0.6559	mw(+),85	0.4749	0.5264	mw(+),85
33	Noise pollution: railway	s 0.0807	0.9198	mw(+),85	0.4878	0.5136	mw(+),85	0.3137	0.6875	mw(-),85	0.2792	0.7219	mw(+),85
ure	3.24: Raw res	sults for w	rithin-re	oute dist	ribution a	analysis	, sample	:: frequen	cv 2 (s	ometime	s), sub-qu	estion	3, baselir

e. 5 5 . ñ, ý 5 5 . . 2 Figure 3.24: Raw results for wir shortest paths, direction: egress 3.2 Results for tests against shortest paths sample

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.3672	0.6359	mw(+),52	0.0913	0.9116	mw(-),52	0.3348	0.6706	mw(-),52	0.1723	0.8301	mw(+),52
-	Year constr.: 1946-1970	•			•		•	0.4945	0.5055	mw(+),52	0.0249	0.9759	mw(+),52
2	Year constr.: 1971-1985	·	·		0.5	0.5109	mw(-),52	0.1634	0.846	mw(+),52	0.5	0.5109	mw(-),52
e	Year constr.: 1986-2000	•			0.5	0.5109	mw(-),52	0.1634	0.846	mw(-),52	0.4936	0.5128	mw(-),52
4	Year constr.: 2001-2022	0.4972	0.5028	mw(+),52	0.3242	0.6821	mw(+),52	0.5	0.5109	mw(-),52	0.2837	0.7238	mw(+),52
ŝ	Traffic signals count				0.2762	0.7313	mw(+),52	0.2728	0.7311	mw(-),52	0.2341	0.7702	mw(+),52
9	Stairs count	0.2726	0.7313	mw(+),52	•	•						•	·
4	Status: for construction	•					•						
80	Status: unrealised	•			•						•		•
6	Status: under construction	•			•								
9	Status: in use (n.m.)	0.4945	0.5055	mw(+),52						•	0.1634	0.846	mw(+),52
₽	Status: in use	0.3648	0.6381	mw(+),52	0.2584	0.7457	mw(-),52	0.4977	0.5023	mw(+),52	0.0984	0.903	mw(+),52
12	Status: for demolition	•					•						
13	Status: demolished												
4	Status: not in use	•			•								•
15	Status: reconstruction	•			•						•		
16	Status: illegitimate	·			•								
17	Function: residential	•		•	0.3597	0.6459	mw(-),52	0.3337	0.6726	mw(+),52	0.1167	0.8851	mw(+),52
8	Function: gathering	•			•		•				0.1634	0.846	mw(+),52
19	Function: prison				•	•						•	
20	Function: healthcare	·	·			•			•				
2	Function: factory	•		•		•					•	•	
ដ	Function: office	•			•		•				0.2875	0.72	mw(+),52
ន	Function: guesthouse			•	•						0.1634	0.846	mw(+),52
24	Function: education	•		•	•		•				•		•
25	Function: sports						•						
26	Function: shops	0.498	0.502	mw(+),52				0.1634	0.846	mw(-),52	0.1634	0.846	mw(+),52
27	Function: other	0.4945	0.5055	mw(+),52	•						0.2914	0.7163	mw(+),52
28	Green: tree cover	0.4216	0.5812	mw(-),52	0.0199	0.9805	mw(+),52	0.022	0.9784	mw(+),52	0.337	0.6656	mw(+),52
29	Green: bush cover	0.4581	0.5447	mw(-),52	0.018	0.9823	mw(+),52	0.0363	0.9643	mw(+),52	0.3709	0.6318	mw(+),52
33	Green: grass cover	0.4797	0.523	mw(-),52	0.1211	0.8805	mw(+),52	0.0085	0.9917	mw(+),52	0.2789	0.7234	mw(+),52
સ	Noise pollution: total	0.3094	0.6929	mw(-),52	0.2028	0.7991	mw(+),52	0.0196	0.9808	mw(+),52	0.3392	0.6633	mw(+),52
32	Noise pollution: roads	0.7388	-0.3344	tt(-),52	0.2272	0.7749	mw(+),52	0.0221	0.9783	mw(+),52	0.3702	0.6324	mw(+),52
33	Noise pollution: railways	0.4059	0.5967	mw(+),52	0.3961	0.6066	mw(-),52	0.0138	0.9865	mw(-),52	0.2826	0.7197	mw(-),52
1r6	a 3.25. Raw resul	lts for wit	hin-roi	ite distri	hution an	alvsis.	sample:	frequency	1 (new	er) sub-	anestion 3.	haseli	ne: shorte

test Figure 3.25: Raw results paths, direction: access

	Year constr.: < 1945	0.4006	0.6025	mw(+),55	0.0796	0.9242	mw(-),55	0.3814	0.6234	mw(-),55	0.0871	0.9144	mw(-),55
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							22 () EE						
4 6 5 4 3 7	Year constr.: 1946-1970	•			0.1631	0.8457	cc'(+)MIII	0.1631	0.8457	mw(-),55	0.5	0.5103	mw(-),55
4 6 6 4	Year constr.: 1971-1985							·			0.2765	0.7305	mw(+),55
6 6 7	Year constr.: 1986-2000				0.1631	0.8457	mw(+),55	0.5	0.5103	mw(-),55	0.1871	0.817	mw(-),55
5 6 7	Year constr.: 2001-2022	0.2344	0.7696	mw(-),55	0.2836	0.7235	mw(+),55	0.4948	0.5052	mw(+),55	0.2765	0.7305	mw(+),55
6	Traffic signals count	•			0.1631	0.8457	mw(-),55	0.4494	0.5549	mw(+),55	0.1835	0.8195	mw(+),55
7	Stairs count	0.4978	0.5022	mw(+),55									•
	Status: for construction	•						•	•	•	0.1631	0.8457	mw(+),55
80	Status: unrealised	·				•		·		·			
6 0	tatus: under construction									•			
9	Status: in use (n.m.)	0.4948	0.5052	mw(+),55				·	•				•
ŧ	Status: in use	0.4268	0.5761	mw(-),55	0.3862	0.6186	mw(-),55	0.2866	0.7172	mw(-),55	0.1709	0.8312	mw(-),55
5	Status: for demolition	·						·		•			•
13	Status: demolished												
4	Status: not in use									•			
15	Status: reconstruction	•								•	•		
16	Status: illegitimate	•								·			
17	Function: residential	•			0.1598	0.8447	mw(-),55	0.1996	0.8046	mw(+),55	0.3152	0.6883	mw(-),55
18	Function: gathering									·	0.5	0.5103	mw(-),55
19	Function: prison											•	
20	Function: healthcare	·	·		•	•	·	·	•	·		•	
21	Function: factory						•						
8	Function: office	·	•					0.1631	0.8457	mw(+),55	0.1631	0.8457	mw(-),55
53	Function: guesthouse							·		·			
24	Function: education	·	·		·	•	·	·	·	·	0.1631	0.8457	mw(+),55
25	Function: sports		•			•		·				•	
26	Function: shops	0.4876	0.5165	mw(-),55	·	•	·	0.1631	0.8457	mw(-),55	0.5	0.5103	mw(+),55
27	Function: other					•		0.1631	0.8457	mw(+),55	0.1631	0.8457	mw(-),55
28	Green: tree cover	0.3123	0.6901	mw(-),55	0.3518	0.6513	mw(+),55	0.1324	0.8692	mw(+),55	0.127	0.8744	mw(-),55
29	Green: bush cover	0.261	0.7411	mw(-),55	0.2131	0.7894	mw(+),55	0.0539	0.9469	mw(+),55	0.0826	0.9184	mw(-),55
30	Green: grass cover	0.364	0.6384	mw(-),55	0.2925	0.7102	mw(-),55	0.0185	0.9818	mw(+),55	0.0776	0.9233	mw(-),55
31	Noise pollution: total	0.1141	0.8871	mw(-),55	0.2632	0.7389	mw(-),55	0.0163	0.984	mw(+),55	0.2609	0.7411	mw(-),55
32	Noise pollution: roads	0.3602	-0.919	tt(-),55	0.1444	0.8571	mw(-),55	0.0116	0.9886	mw(+),55	0.1863	0.8154	mw(-),55
33	Noise pollution: railways	0.0578	0.9429	mw(+),55	0.0958	0.9053	mw(+),55	0.0182	0.9821	mw(-),55	0.1979	0.8039	mw(+),55

 \mathbf{st} • 5 -5 > 5 5 -Š Figure 3.26: Raw results paths, direction: egress

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.2671	0.7339	mw(+),105	0.4918	0.5109	mw(+),105	0.2396	0.7618	mw(+),105	0.1888	0.8121	mw(-),105
-	Year constr.: 1946-1970			•	0.2791	0.7246	mw(+),105	0.1616	0.8408	mw(-),105	0.4944	0.5079	mw(-),105
2	Year constr.: 1971-1985		·		0.5	0.5054	mw(+),105	0.0414	0.9596	mw(+),105	0.1546	0.8476	mw(+),105
e	Year constr.: 1986-2000				0.5	0.5054	mw(-),105	0.3305	0.6726	mw(+),105	0.125	0.8765	mw(-),105
4	Year constr.: 2001-2022	0.2527	0.7487	mw(-),105	0.1265	0.875	mw(+),105	0.201	0.8012	mw(+),105	0.3274	0.6757	mw(-),105
5	Traffic signals count	•		•	0.2032	0.799	mw(-),105	0.3648	0.6369	mw(-),105	0.1158	0.8851	mw(+),105
9	Stairs count	0.3515	0.6499	mw(-),105						•			
7	Status: for construction										0.161	0.8436	mw(+),105
80	Status: unrealised		·	•	•		•	•		•			•
6	Status: under construction	•					•						
₽	Status: in use (n.m.)	0.4973	0.5027	mw(+),105	•		•			•	•		
Ħ	Status: in use	0.4788	0.5223	mw(+),105	0.3721	0.6297	mw(+),105	0.159	0.8419	mw(+),105	0.062	0.9384	mw(-),105
12	Status: for demolition												
13	Status: demolished			•						•			
4	Status: not in use		·	•						•			
15	Status: reconstruction			•	•			•		•			
16	Status: illegitimate		·	•	•					•			
17	Function: residential	•		•	0.4065	0.5956	mw(-),105	0.0802	0.9206	mw(+),105	0.1683	0.8326	mw(-),105
18	Function: gathering			•			•	0.161	0.8436	mw(+),105	0.5	0.5054	mw(+),105
19	Function: prison	•					•						
20	Function: healthcare		•	•		•	•			•			·
21	Function: factory			•		•	•	0.161	0.8436	mw(+),105			
2	Function: office					•		0.0791	0.9228	mw(+),105	0.2791	0.7246	mw(-),105
53	Function: guesthouse	•					•						
24	Function: education			•	•	•	•			•	•		
25	Function: sports			•									
26	Function: shops	0.4811	0.5205	mw(-),105			•	0.0791	0.9228	mw(-),105	0.2847	0.7191	mw(-),105
27	Function: other	0.4981	0.5019	mw(+),105				0.0414	0.9596	mw(+),105	0.161	0.8436	mw(-),105
28	Green: tree cover	0.3488	0.6522	mw(-),105	0.1611	0.8396	mw(+),105	0.2942	0.7068	mw(+),105	0.0964	0.904	mw(-),105
29	Green: bush cover	0.3338	0.6672	mw(-),105	0.115	0.8856	mw(+),105	0.1906	0.8101	mw(+),105	0.1029	0.8975	mw(-),105
30	Green: grass cover	0.4155	0.5855	mw(-),105	0.3716	0.6295	mw(-),105	0.1175	0.883	mw(+),105	0.0869	0.9134	mw(-),105
31	Noise pollution: total	0.0955	0.9049	mw(-),105	0.4917	0.5093	mw(+),105	0.0728	0.9276	mw(+),105	0.4007	0.6002	mw(-),105
32	Noise pollution: roads	0.1193	0.8811	mw(-),105	0.2841	0.7167	mw(-),105	0.0604	0.9399	mw(+),105	0.3687	0.6322	mw(-),105
33	Noise pollution: railways	0.0283	0.9718	mw(+),105	0.4304	0.5706	mw(+),105	0.1502	0.8504	mw(-),105	0.166	0.8346	mw(+),105
en ne	3-27. Baw resu	lts for wi	ithin-ro	inte distr	ribution a	nalvsis	sample	· least-nsc	dus .be	-anestio	1 3. haselir	le. sho	rtest nath

chs, Figure 3.27: Raw 1 direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.2299	0.771	mw(+),105	0.3616	0.6411	mw(-),105	0.2468	0.7547	mw(+),105	0.1487	0.8521	mw(-),105
-	Year constr.: 1946-1970	•	•	•	0.2791	0.7246	mw(+),105	0.1616	0.8408	mw(-),105	0.3856	0.6165	mw(-),105
2	Year constr.: 1971-1985		·		0.161	0.8436	mw(-),105	0.0791	0.9228	mw(+),105	0.1546	0.8476	mw(+),105
e	Year constr.: 1986-2000				0.5	0.5054	mw(-),105	0.3305	0.6726	mw(+),105	0.4853	0.5172	mw(-),105
4	Year constr.: 2001-2022	0.259	0.7424	mw(-),105	0.2077	0.7946	mw(+),105	0.122	0.8795	mw(+),105	0.3274	0.6757	mw(-),105
5	Traffic signals count	•		•	0.352	0.6507	mw(-),105	0.4618	0.54	mw(-),105	0.1634	0.8377	mw(+),105
9	Stairs count	0.3515	0.6499	mw(-),105		•	•	•	•	•	0.161	0.8436	mw(+),105
7	Status: for construction										0.161	0.8436	mw(+),105
80	Status: unrealised		•	•		•			•				
6	Status: under construction						•						
9	Status: in use (n.m.)	0.4973	0.5027	mw(+),105		•	•	•	•	•			·
Ħ	Status: in use	0.4783	0.5228	mw(+),105	0.4285	0.5733	mw(-),105	0.2142	0.7869	mw(+),105	0.0791	0.9213	mw(-),105
12	Status: for demolition												
13	Status: demolished	•	•	•			•		•	•			
4	Status: not in use			•		•	•	•	•	•			•
15	Status: reconstruction	•	•	•				•	•	•			
16	Status: illegitimate							•					·
17	Function: residential	•			0.1864	0.8152	mw(-),105	0.1218	0.8793	mw(+),105	0.2671	0.734	mw(-),105
18	Function: gathering	•					•	0.0791	0.9228	mw(+),105	0.5	0.5054	mw(-),105
19	Function: prison						•						
20	Function: healthcare	·	·	•			•			•			•
21	Function: factory	•	•	•		•	•	0.161	0.8436	mw(+),105			
2	Function: office		•					0.0791	0.9228	mw(+),105	0.2791	0.7246	mw(-),105
53	Function: guesthouse						•						
24	Function: education	•	•	•		•	•	•	•	•	0.161	0.8436	mw(+),105
25	Function: sports						•						
26	Function: shops	0.4811	0.5205	mw(-),105			•	0.0791	0.9228	mw(-),105	0.2847	0.7191	mw(-),105
27	Function: other	0.4981	0.5057	mw(+),105		•	•	0.0414	0.9596	mw(+),105	0.161	0.8436	mw(-),105
28	Green: tree cover	0.3447	0.6563	mw(-),105	0.1537	0.847	mw(+),105	0.2491	0.7517	mw(+),105	0.1304	0.8701	mw(-),105
29	Green: bush cover	0.3164	0.6846	mw(-),105	0.0822	0.9183	mw(+),105	0.1764	0.8242	mw(+),105	0.1124	0.8881	mw(-),105
30	Green: grass cover	0.4175	0.5835	mw(-),105	0.4994	0.5006	mw(+),105	0.1822	0.8185	mw(+),105	0.092	0.9084	mw(-),105
31	Noise pollution: total	0.1136	0.8868	mw(-),105	0.4912	0.5098	mw(+),105	0.1019	0.8985	mw(+),105	0.4888	0.5122	mw(-),105
32	Noise pollution: roads	0.1184	0.882	mw(-),105	0.2669	0.7339	mw(-),105	0.087	0.9133	mw(+),105	0.4426	0.5583	mw(-),105
33	Noise pollution: railways	0.0158	0.9843	mw(+),105	0.325	0.6759	mw(+),105	0.1469	0.8537	mw(-),105	0.1529	0.8477	mw(+),105
1re	3.28. Baw resu	ults for wi	thin-ro	ute distr	ribution a	nalvsis	sample	· least-us	dus .be	-onestion	n 3. haselir	ohs sho	rtest nath

chs, Figure 3.28: Raw r direction: egress Chapter 4

Within-route distribution results: Sub-question 4

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.3332	0.6679	mw(-),105	0.2111	0.7912	mw(-),105	0.2411	0.7604	mw(-),105	0.0935	0.907	mw(+),105
÷	Year constr.: 1946-1970				0.2828	0.7209	mw(-),105	0.2865	0.7172	mw(+),105	0.1943	0.8071	mw(+),105
2	Year constr.: 1971-1985			•	0.4973	0.5027	mw(+),105	0.332	0.6711	mw(-),105	0.1592	0.8431	mw(-),105
e	Year constr.: 1986-2000				0.2865	0.7172	mw(+),105	0.4906	0.5126	mw(+),105	0.3274	0.6757	mw(+),105
4	Year constr.: 2001-2022	0.3292	0.6724	mw(+),105	0.2424	0.7597	mw(-),105	0.2099	0.7923	mw(-),105	0.2043	0.7979	mw(+),105
5	Traffic signals count	•		•	0.3274	0.6757	mw(+),105	0.424	0.5778	mw(+),105	0.4615	0.5401	mw(+),105
9	Stairs count	0.2808	0.7204	mw(+),105					•				•
7	Status: for construction			•					•		0.161	0.8436	mw(-),105
~	Status: unrealised												•
6	Status: under construction			•									
₽	Status: in use (n.m.)	0.4973	0.5027	mw(+),105							0.161	0.8436	mw(+),105
Ħ	Status: in use	0.4822	0.5189	mw(+),105	0.2262	0.7753	mw(-),105	0.0854	0.9151	mw(-),105	0.0554	0.945	mw(+),105
12	Status: for demolition												
13	Status: demolished												
4	Status: not in use			•									·
15	Status: reconstruction												
16	Status: illegitimate												
17	Function: residential				0.3787	0.6235	mw(-),105	0.2122	0.7892	mw(-),105	0.0399	0.9604	mw(+),105
8	Function: gathering							•			0.2828	0.7209	mw(+),105
19	Function: prison	•		•									
20	Function: healthcare												•
21	Function: factory			•	0.161	0.8436	mw(+),105						
ន	Function: office			•				0.161	0.8436	mw(-),105	0.1546	0.8476	mw(+),105
33	Function: guesthouse			•							0.0791	0.9228	mw(+),105
24	Function: education			•									·
25	Function: sports			•									
26	Function: shops	0.4811	0.5205	mw(+),105				0.161	0.8436	mw(+),105	0.0791	0.9228	mw(+),105
27	Function: other	0.4981	0.5019	mw(+),105				0.0414	0.9596	mw(-),105	0.0791	0.9228	mw(+),105
28	Green: tree cover	0.3601	0.6409	mw(+),105	0.2538	0.7471	mw(+),105	0.0882	0.9122	mw(+),105	0.2219	0.7788	mw(+),105
29	Green: bush cover	0.3834	0.6176	mw(+),105	0.1674	0.8334	mw(+),105	0.1596	0.841	mw(+),105	0.2723	0.7285	mw(+),105
30	Green: grass cover	0.4456	0.5554	mw(+),105	0.0563	0.944	mw(+),105	0.1452	0.8554	mw(+),105	0.057	0.9433	mw(+),105
31	Noise pollution: total	0.2031	0.7975	mw(+),105	0.2198	0.781	mw(+),105	0.1546	0.846	mw(+),105	0.268	0.7328	mw(+),105
32	Noise pollution: roads	0.609	0.5122	tt(+)105	0.1233	0.8772	mw(+),105	0.231	0.7697	mw(+),105	0.1843	0.8163	mw(+),105
33	Noise pollution: railways	0.0354	0.9648	mw(-),105	0.2847	0.7162	mw(-),105	0.0622	0.9381	mw(-),105	0.0256	0.9745	mw(-),105
04	4 1. Dam woon1+	frim and b	tuon cir	diatorp of	ane acitic	laroi o	hour du	non 1 noi-	m .olac	out tolo	r routo he	.colino.	loot tolro

Figure 4.1: Raw results for within-route distribution analysis, sub-question 4, sample: most-taken route, baseline: least-taken route, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
•	Year constr.: < 1945	0.3338	0.6673	mw(-),105	0.332	0.6711	mw(-),105	0.3359	0.6657	mw(-),105	0.0796	0.9209	mw(+),105
-	Year constr.: 1946-1970				0.4981	0.5019	mw(+),105	0.2828	0.7209	mw(+),105	0.1943	0.8071	mw(+),105
2	Year constr.: 1971-1985				0.161	0.8436	mw(+),105	0.5	0.5038	mw(+),105	0.1581	0.8442	mw(-),105
e	Year constr.: 1986-2000	•	•		0.2828	0.7209	mw(+),105	0.3336	0.6695	mw(-),105	0.2339	0.7682	mw(-),105
4	Year constr.: 2001-2022	0.3382	0.6635	mw(+),105	0.4932	0.5096	mw(+),105	0.2099	0.7923	mw(-),105	0.2043	0.7979	mw(+),105
ŝ	Traffic signals count	•			0.3274	0.6757	mw(+),105	0.3903	0.6115	mw(-),105	0.236	0.7653	mw(+),105
9	Stairs count	0.3477	0.6537	mw(+),105							0.161	0.8436	mw(-),105
7	Status: for construction	•									0.161	0.8436	mw(-),105
80	Status: unrealised	•											•
6	Status: under construction	•											
9	Status: in use (n.m.)	0.4973	0.5027	mw(+),105			•	·			0.161	0.8436	mw(+),105
₽	Status: in use	0.4632	0.5379	mw(+),105	0.4023	0.5995	mw(+),105	0.1826	0.8184	mw(-),105	0.0842	0.9163	mw(+),105
12	Status: for demolition												
13	Status: demolished												
4	Status: not in use												•
15	Status: reconstruction												
16	Status: illegitimate	•	•				•						•
17	Function: residential				0.2691	0.7329	mw(+),105	0.4852	0.5167	mw(-),105	0.0835	0.917	mw(+),105
18	Function: gathering	·	·		·	•	·	0.161	0.8436	mw(-),105	0.2828	0.7209	mw(+),105
19	Function: prison		•			•						•	
20	Function: healthcare	·						·	•				•
21	Function: factory		•		0.0791	0.9228	mw(+),105		•				
ដ	Function: office	·	•					0.5	0.5054	mw(+),105	0.1546	0.8476	mw(+),105
ន	Function: guesthouse										0.0791	0.9228	mw(+),105
24	Function: education	·	·		•	·	·	·		·		•	·
25	Function: sports											•	
26	Function: shops	0.4811	0.5205	mw(+),105				0.161	0.8436	mw(+),105	0.0791	0.9228	mw(+),105
27	Function: other	0.4981	0.5057	mw(-),105				0.0414	0.9596	mw(-),105	0.0791	0.9228	mw(+),105
28	Green: tree cover	0.3479	0.6531	mw(+),105	0.4982	0.503	mw(-),105	0.1399	0.8607	mw(+),105	0.4184	0.5825	mw(+),105
29	Green: bush cover	0.3461	0.6549	mw(+),105	0.4457	0.5555	mw(+),105	0.2189	0.7819	mw(+),105	0.3648	0.6361	mw(+),105
30	Green: grass cover	0.4271	0.5739	mw(+),105	0.1869	0.8139	mw(+),105	0.1308	0.8697	mw(+),105	0.1757	0.8249	mw(+),105
સ	Noise pollution: total	0.2773	0.7234	mw(+),105	0.3945	0.6064	mw(+),105	0.1659	0.8347	mw(+),105	0.4119	0.589	mw(+),105
32	Noise pollution: roads	0.6026	0.5215	tt(+)105	0.2019	0.7988	mw(+),105	0.2368	0.7639	mw(+),105	0.3131	0.6877	mw(+),105
33	Noise pollution: railways	0.0591	0.9412	mw(-),105	0.4309	0.5701	mw(-),105	0.1528	0.8478	mw(-),105	0.0679	0.9324	mw(-),105
- J.L	. 4.9. Bam results	s for with	in-ront	⁺e distrih	ution ana	الالعناقة	nh-anest	noi. Tes 1	mle. m	oet-takei	n route ha	seline.	least-take

Figure 4.2: Raw results for within-route distribution analysis, sub-question 4, sample: most-taken route, baseline: least-taken route, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.4514	0.5543	mw(-),43	0.5	0.5132	mw(+),43	0.4556	0.5511	mw(+),43	0.4977	0.5023	mw(+),43
-	Year constr.: 1946-1970				0.5	0.5132	mw(-),43	0.5	0.5132	mw(-),43	0.1333	0.8706	mw(-),43
2	Year constr.: 1971-1985	·			·			0.5	0.5132	mw(+),43	0.0799	0.9249	mw(-),43
e	Year constr.: 1986-2000	•			0.1643	0.8469	mw(+),43	0.3121	0.6954	mw(+),43	0.0799	0.9249	mw(-),43
4	Year constr.: 2001-2022	0.4039	0.6015	mw(+),43	0.0799	0.9249	mw(-),43	0.2841	0.725	mw(-),43	0.5	0.5132	mw(+),43
ŝ	Traffic signals count	•			0.2841	0.725	mw(-),43	0.351	0.6557	mw(+),43	0.3362	0.6697	mw(+),43
9	Stairs count	0.4004	0.6043	mw(+),43	•		•			•		•	•
۲	Status: for construction	•			•		•		•			•	
œ	Status: unrealised				·				•				•
6	Status: under construction	•			•			•			•		
9	Status: in use (n.m.)				·		•		•	•	•	•	•
÷	Status: in use	0.4373	0.5669	mw(+),43	0.5	0.5078	mw(-),43	0.16	0.8432	mw(-),43	0.3689	0.6351	mw(-),43
12	Status: for demolition				•								
13	Status: demolished				•								
4	Status: not in use	•			•		•		•				•
15	Status: reconstruction	•			•		•		•			•	
16	Status: illegitimate	•			•		•		•		•	•	·
17	Function: residential	•			0.4953	0.5142	mw(-),43	0.4961	0.5117	mw(+),43	0.2882	0.716	mw(-),43
18	Function: gathering	•			•						0.1643	0.8469	mw(+),43
19	Function: prison												
20	Function: healthcare				·								
21	Function: factory				0.1643	0.8469	mw(+),43						
2	Function: office				•		•	0.1643	0.8469	mw(-),43	0.5	0.5132	mw(+),43
83	Function: guesthouse				•	•					0.1643	0.8469	mw(+),43
24	Function: education	·	·		·	•		·			•	•	·
25	Function: sports				•	•							
26	Function: shops	0.4953	0.5047	mw(+),43	·	•		0.1643	0.8469	mw(+),43	0.1643	0.8469	mw(+),43
27	Function: other	0.4934	0.5066	mw(+),43	•			0.1643	0.8469	mw(-),43			
28	Green: tree cover	0.5	0.5047	mw(-),43	0.1944	0.8087	mw(-),43	0.0545	0.9466	mw(+),43	0.3737	0.6296	mw(-),43
29	Green: bush cover	0.4637	0.5411	mw(+),43	0.4307	0.5737	mw(-),43	0.0295	0.9712	mw(+),43	0.5	0.5036	mw(+),43
30	Green: grass cover	0.4392	0.5651	mw(-),43	0.4587	0.5457	mw(+),43	0.0137	0.9866	mw(+),43	0.2627	0.7402	mw(+),43
સ	Noise pollution: total	0.4621	0.5413	mw(+),43	0.3415	0.6619	mw(-),43	0.0827	0.9186	mw(+),43	0.3008	0.7022	mw(-),43
32	Noise pollution: roads	0.7819	0.2777	tt(+)43	0.4392	0.5646	mw(+),43	0.1121	0.8896	mw(+),43	0.3194	0.6837	mw(-),43
33	Noise pollution: railways	0.2105	0.7921	mw(-),43	0.2402	0.7627	mw(+),43	0.0701	0.9312	mw(-),43	0.3713	0.6322	mw(-),43
11re	- 4.3. Raw resul	lts for wi	thin-ro	nte distr	ibution a	na.lvsis.	sub-dus	estion 4.	sample:	second	l-most take	n rout	e haselin

ine: Figure 4.3: Raw results for within-route second-least taken route, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n	
•	Year constr.: < 1945	0.4369	0.5685	mw(-),40	0.3399	0.6685	mw(-),40	0.4393	0.567	mw(-),40	0.4698	0.5357	mw(-),40	
÷	Year constr.: 1946-1970	•			0.5	0.5142	mw(-),40	0.2843	0.7255	mw(+),40	0.2147	0.7914	mw(-),40	
2	Year constr.: 1971-1985							0.5	0.5142	mw(-),40	0.1648	0.8473	mw(-),40	
e	Year constr.: 1986-2000	•			0.0799	0.9252	mw(+),40	0.4949	0.5152	mw(+),40	0.08	0.9252	mw(-),40	
4	Year constr.: 2001-2022	0.4866	0.5201	mw(-),40	0.5	0.5102	mw(+),40	0.1602	0.8459	mw(-),40	0.1648	0.8473	mw(+),40	
ŝ	Traffic signals count	•			0.4949	0.5051	mw(+),40	0.3509	0.6564	mw(-),40	0.0591	0.9431	mw(+),40	
9	Stairs count	0.4969	0.5031	mw(+),40							0.1648	0.8473	mw(-),40	
۲	Status: for construction	•			•	•			•					
œ	Status: unrealised	•			•			•	•	•			•	
6	Status: under construction	•			•									
9	Status: in use (n.m.)	·			•				•	•			·	
÷	Status: in use	0.4721	0.5326	mw(-),40	0.2788	0.7268	mw(+),40	0.1889	0.8146	mw(-),40	0.3994	0.6054	mw(-),40	
12	Status: for demolition				•								·	
13	Status: demolished													
4	Status: not in use				•				•				•	
15	Status: reconstruction				•									
16	Status: illegitimate		·										•	
17	Function: residential	•			0.3693	0.6381	mw(+),40	0.3582	0.6491	mw(+),40	0.2861	0.7186	mw(-),40	
18	Function: gathering				•						0.1648	0.8473	mw(+),40	
19	Function: prison													
20	Function: healthcare	·	·		•			•	•				·	
21	Function: factory	•			0.0799	0.9252	mw(+),40		•					
8	Function: office	•			•			0.1648	0.8473	mw(-),40	0.5	0.5142	mw(+),40	
33	Function: guesthouse													
24	Function: education				•				•				·	
25	Function: sports				•									
26	Function: shops	0.4916	0.5168	mw(+),40				0.1648	0.8473	mw(+),40			·	
27	Function: other	0.4929	0.5071	mw(+),40	•			0.0799	0.9252	mw(-),40				
28	Green: tree cover	0.4924	0.5126	mw(-),40	0.1811	0.8221	mw(-),40	0.0562	0.945	mw(+),40	0.0857	0.9159	mw(-),40	
29	Green: bush cover	0.4633	0.5419	mw(+),40	0.465	0.5397	mw(+),40	0.0172	0.9832	mw(+),40	0.0843	0.9172	mw(-),40	
30	Green: grass cover	0.4573	0.5472	mw(-),40	0.3546	0.6496	mw(+),40	0.0103	0.99	mw(+),40	0.2741	0.7293	mw(-),40	
31	Noise pollution: total	0.4885	0.5154	mw(+),40	0.4939	0.5102	mw(-),40	0.0268	0.9738	mw(+),40	0.2801	0.7232	mw(-),40	
32	Noise pollution: roads	0.8206	0.2275	tt(+)40	0.4095	0.5946	mw(+),40	0.0436	0.9573	mw(+),40	0.3019	0.7015	mw(-),40	
33	Noise pollution: railways	0.1987	0.8041	mw(-),40	0.3939	0.6101	mw(+),40	0.009	0.9913	mw(-),40	0.3032	0.7003	mw(+),40	
11.LE	a 4.4. Raw resul	ts for wi	thin-ro	nte distr	ibution a	nalvsis	sup-dus	estion 4	samnle.	second	-most, take	tunt	- haselir	Ę

ine: Figure 4.4: Raw results for within-route second-least taken route, direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	[Q4]_coef,n
0	Year constr.: < 1945	0.4884	0.5116	mw(+),18	0.4841	0.5159	mw(+),18	0.4841	0.5159	mw(+),18	0.492	0.508	mw(+),18
÷	Year constr.: 1946-1970							0.4841	0.5159	mw(+),18	0.4884	0.5116	mw(+),18
N	Year constr.: 1971-1985	•			•	•							•
e	Year constr.: 1986-2000	•		•	•	•		•					
4	Year constr.: 2001-2022	0.4884	0.5116	mw(+),18	0.4884	0.5116	mw(+),18						•
ŝ	Traffic signals count				·			0.4841	0.5159	mw(+),18	0.4841	0.5159	mw(+),18
9	Stairs count	0.4902	0.5098	mw(+),18	•								•
7	Status: for construction												
00	Status: unrealised	•			•								•
6	Status: under construction												
9	Status: in use (n.m.)	·	•		·			•					·
÷	Status: in use	1.0	0.0	tt(+)18	0.4884	0.5116	mw(+),18	0.4884	0.5116	mw(+),18	0.4925	0.5075	mw(+),18
12	Status: for demolition	•			·								•
13	Status: demolished	•		•	•	•							
4	Status: not in use	•			•								•
15	Status: reconstruction				•								
16	Status: illegitimate	•			•								•
17	Function: residential				0.4841	0.5159	mw(+),18				0.4913	0.5087	mw(+),18
18	Function: gathering	·	·	·	·				•			•	·
19	Function: prison				·	•			•				
20	Function: healthcare	·	•	·	·	•			•			·	·
21	Function: factory		•	·		•			•			•	
ដ	Function: office	·	·	·	·	•			•				·
33	Function: guesthouse												
24	Function: education	·	·	·	·			•	•				·
25	Function: sports												
26	Function: shops	0.4884	0.5116	mw(+),18	·		•				0.4841	0.5159	mw(+),18
27	Function: other		•			•			•	•			
28	Green: tree cover	1.0	0.0	tt(+)18	1.0	0.0	tt(+)18	0.4919	0.5081	mw(+),18	1.0	0.0	tt(+)18
29	Green: bush cover	0.4932	0.5068	mw(+),18	1.0	0.0	tt(+)18	1.0	0.0	tt(+)18	0.4935	0.5065	mw(+),18
30	Green: grass cover	0.4934	0.5066	mw(+),18	1.0	0.0	tt(+)18	1.0	0.0	tt(+)18	0.4935	0.5065	mw(+),18
31	Noise pollution: total	1.0	0.0	tt(+)18	1.0	0.0	tt(+)18	0.4928	0.5072	mw(+),18	1.0	0.0	tt(+)18
32	Noise pollution: roads	1.0	0.0	tt(+)18	1.0	0.0	tt(+)18	1.0	0.0	tt(+)18	0.4936	0.5064	mw(+),18
33	Noise pollution: railways	1.0	0.0	tt(+)18	0.4924	0.5076	mw(+),18	0.4926	0.5074	mw(+),18	1.0	0.0	tt(+)18
0	A E. D	: 17:	+	- diatesh	-long act-	lun oine	Citoria -	amos 1	1. fund		ر (میتونیدا م) م		Local cond

Figure 4.5: Raw results for within-route distribution analysis, sub-question 4, sample: frequency 5 (always), baseline: frequency 1 (never), direction: access

	Variables	P(Q1: 0-25%)	[Q1]_stat	[Q1]_coef,n	P(Q2: 25-50%)	[Q2]_stat	[Q2]_coef,n	P(Q3: 50-75%)	[Q3]_stat	[Q3]_coef,n	P(Q4: 75-100%)	[Q4]_stat	Q4]_coef,n
•	Year constr.: < 1945	0.2755	0.7488	mw(-),16				0.082	0.9308	mw(-),16	0.2111	0.8045	mw(+),16
-	Year constr.: 1946-1970	•		•						•	0.4821	0.5179	mw(+),16
2	Year constr.: 1971-1985			·				·			0.1743	0.856	mw(-),16
e	Year constr.: 1986-2000	•		•				•		•	0.1743	0.856	mw(-),16
4	Year constr.: 2001-2022	0.3266	0.6947	mw(+),16	0.4821	0.5179	mw(+),16				0.1743	0.856	mw(-),16
ŝ	Traffic signals count	•		•				0.1743	0.856	mw(-),16	0.4821	0.5179	mw(+),16
9	Stairs count	0.4869	0.5131	mw(+),16									•
7	Status: for construction	•		•						•			
00	Status: unrealised												•
6	Status: under construction	•		•				•		•		•	
9	Status: in use (n.m.)	·						·				•	•
Ξ	Status: in use	0.4701	0.5497	mw(-),16	0.4821	0.5179	mw(+),16	0.082	0.9308	mw(-),16	0.4339	0.5847	mw(-),16
12	Status: for demolition	·	·	·		•	·	·	•	·			·
33	Status: demolished			·				·	•			•	
4	Status: not in use		·	•		•	•	·	•	•		•	·
15	Status: reconstruction												
16	Status: illegitimate	·						·				•	•
17	Function: residential							0.082	0.9308	mw(-),16	0.1664	0.8471	mw(+),16
18	Function: gathering	·	•	·				·		·	0.1743	0.856	mw(-),16
19	Function: prison	·	•	·		•		·	•			•	·
20	Function: healthcare	·						·	•			·	
2	Function: factory		•	·								•	·
2	Function: office	·	•										
23	Function: guesthouse			·				·			0.1743	0.856	mw(+),16
24	Function: education	·		·		·		·	·	·		·	
25	Function: sports		•			•						•	
26	Function: shops	0.4821	0.5179	mw(+),16		•	·	·	•	·	0.1743	0.856	mw(+),16
27	Function: other		•			•						•	
28	Green: tree cover	0.3014	0.7135	mw(+),16	0.4433	0.5754	mw(-),16	0.1425	0.868	mw(-),16	0.1786	1.3774	tt(+)16
29	Green: bush cover	0.3482	0.6677	mw(+),16	0.4716	0.5473	mw(-),16	0.0776	0.9289	mw(-),16	0.0989	1.7029	tt(+)16
30	Green: grass cover	0.9051	0.1202	tt(+)16	0.3384	0.6804	mw(+),16	0.0476	0.9566	mw(-),16	0.1835	1.3614	tt(+)16
3	Noise pollution: total	0.3527	0.944	tt(+)16	0.3469	0.6675	mw(-),16	0.3216	0.6927	mw(-),16	0.3784	0.6363	mw(+),16
32	Noise pollution: roads	0.7544	0.3157	tt(+)16	0.7419	-0.3324	tt(-),16	0.428	-0.8036	tt(-),16	0.5221	0.6476	tt(+)16
33	Noise pollution: railways	0.2773	0.7353	mw(-),16	0.3744	0.6407	mw(+),16	0.2527	0.76	mw(+),16	0.0444	0.9592	mw(-),16
2411	. 4 6. Dam monita	for with:	n rout	, diatrib.	tion analy	troi o ior	, amortic	ames hac	lo. frod	E TOTOTI	ط (متيميتيام)	ocilino	from on on one

Figure 4.6: Raw results for within-route distribution analysis, sub-question 4, sample: frequency 5 (always), baseline: frequency 1 (never), direction: access

Appendix G

Python scripts

This thesis has performed its analysis using a series of 14 Python scripts. A copy of these scripts is included as a series of separate documents in this appendix. The following scripts are included:

• Script 1.1: Error filter, preparation:

This script is used to clean the raw data obtained from the survey. It applies all link, route etc. length criteria and removes respondents which exceed the specified thresholds from the database. The script concludes with the manual deletion of a set of respondents which contained irrepairable, faulty responses which were discovered after running the cleaned set in Script (1.2). After these additional errors were deleted, script (1.2) was rerun.

• Script 1.2: Extend lines to OD points:

This script extends the user-entered routes from the survey to the final OD-points which were entered by respondents in the survey.

• Script 2: Map matching algorithm:

The purpose of this script is to map-match the filtered and cleaned set of respondent routes so that it corresponds to the underlying infrastructural network. Note: script (3) is originally written as part of the same script and is as such functionally dependent on computations in (2).

• Script 4: Analysis 1:

This script computes a set of route key indicators, based on line distances: (1) Detour ratio vs. bearing line, (2) Detour ratio vs. shortest path, (3) Detour ratio vs. least directional turns path, (4) Maximum deviation vs. bearing line, (5) Eccentricity vs. bearing line, (6) Curvature vs. bearing line, (7) Overlap (distance) of user-routes with shortest path,

• Script 5: Create featurelist

This script generates an empty 'featurelist' dataframe for each route of each respondent, whereby that route is broken down into links. These dataframe are subsequently 'loaded' with urban features by applying scripts (7), (8), (9) and (10).

• Script 6.1: OSM features loader:

This script serves as 'function'-script which is triggered by Script (7). The purpose of this script is to assign features which were downloaded in Script (7) to their correct place in the featurelist. The script returns an updated featurelist which is saved to file in the original downloader script.

• Script 6.2: BAG features loader:

This script serves as 'function'-script which is triggered by Script (8). The purpose of this script is to assign features which were downloaded in Script (8) to their correct place in the featurelist. The script returns an updated featurelist which is saved to file in the original downloader script.

• Script 6.3: GEOTIFF features loader

This script serves as 'function'-script which is triggered by Script (8). The purpose of this script is to assign features which were downloaded in Script (8.1) and subscript (8.2) to their correct place in the featurelist. The script returns an updated featurelist which is saved to file in the original downloader script.

• Script 7: Download OSM feature data:

This script downloads selected OSM feature data (traffic light and stairs) for the routes under considerations. Once downloaded, this script calls script (6.1) to load the features to the featurelist.

• Script 8.1: BAG download main script:

This script prepares data and actives script (8.2) and (6.3) for downloading and feature loading functions, respectively. Multiple steps are performed: (1) Data is downloaded from 'nationaal georegister' for BAG: Pand and BAG: verblijfsobject. The latter download categor is needed for the next point. (2) Floor space index is computed, which is needed for the corresponding landmark definition. (3) Data is matched to the featurelists.

• Script 8.2: BAG WFS downloader tool:

This script is called by script (8.2) in order to download BAG feature data. Essentually, this script is only a Web Feature Service (WFS) downloading tool that can be used for any WFS download assignment. The WFS system permits no downloads of more than 1000 features in one go. The script download feature data per rectangular bounding box. If no more ethan 1000 features are contained in the bounding box, these are downloaded. If more than 1000 features are contained, the bounding box is divided into 4 smaller boxes, which are all downloaded separately.

If any of these boxed still contains more than 1000 features, the process is repeated until al features are downlaoded and merged into a new file. Credits: this script is a reworked version of a WFS downloader built by Sai Kiran et al. for Witteveen+Bos (2021).

• Script 9: GEOTIFF download main script:

This script downloads and prepares GEOTIFF format data. That is the data format in which raw data for 'trees', 'bushes', 'grass', 'noise: total', 'noise: road', and 'noise: railway' variables is obtained. Upon download (as a raster-picture) and before matching this data is first aggregated to 25 m raster blocks so as to avoid (even) long(er) computation times on the matching process. For featurelist matching, this script calls on script (6.3)

• Script 10: Landmark computation:

This script performs all computations to distinguish landmark-type buildings. This definition is based on year of construction, floor space index (FSI) and plot area.

• Script 11: statistics for sub-question 3:

This script performs statistical tests required for sub-qestion 3. As such, these tests compare between respondent routes and the null hypothesis routes on a per-variable basis.

• Script 12: result printing for sub-question 3:

This script (which is optionally activated in script (11)), prints the results of the statistical tests performed in script (11) to the final data format.

• Script 13: Analysis for Sub-question 4:

This script performs statistical tests and prints results to the final output files. As this is for sub-question 4, all tests are on between-respondent route sample pairs.

• Script 14: Within-route distribution analysis testing

This script performs all data preparation, statistical tests and result printing for the within-route distribution tests.