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ABSTRACT

Literature shows that — under specific conditions — the macroscopic fundamental diagram (MFD) describes
a crisp relationship between the average flow (production) and the average density in an entire network. The
limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works
describe hysteresis effects: systematic deviations from the MFD as result of loading and unloading.

This article proposes a two dimensional generalization of the MFD, the so-called Generalized
Macroscopic Fundamental Diagram (GMFD), which relates the average flow to both the average density
and the (spatial) inhomogeneity of density. The most important contribution is that we show this is a contin-
uous function. Using this function, we can describe the mentioned hysteresis patterns. The underlying traffic
phenomenon explaining the two dimensional surface described by the GMFD is that congestion concentrates
(and subsequently spreads out) around the bottlenecks that oversaturate first. We call this the nucleation ef-
fect. Due to this effect, the network flow is not constant for a fixed number of vehicles as predicted by the
MEFD, but decreases due to local queuing and spill back processes around the congestion ’nuclei”. During
this build up of congestion, the production hence decreases, which gives the hysteresis effects.
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1 INTRODUCTION

The dynamics of traffic differs considerably from many other transport phenomena. Most striking is that if
the load (i.e., number of vehicles) exceeds a critical number, the traffic performance, for instance measured
by arrival rates, decreases with an increasing traffic load. This differs for instance from fluid dynamics
where a higher load leads to higher flows. In this article we will study how traffic dynamics evolve in a
traffic network, and how this influences macroscopic traffic variables.

Geroliminis and Daganzo (/) investigate the Macroscopic Fundamental Diagram (MFD). They
show that if aggregated over an area, the relationship between accumulation (i.e., the average density of
roadway length) and production (i.e., the average flow of vehicles per unit of time) is quite crisp. This can
be an aspect of the law of large numbers: the more data is aggregated, the less influence the differences
in drivers characteristics have. For control purposes, it is very useful to have a strict relationship on the
basis of which control can be applied. However, several research efforts (e.g., (2, 3)) since Geroliminis
and Daganzo (/) suggest that such a crisp relationship exists only for homogeneously loaded networks. In
practice, congestion is seldom spread homogeneously over the network.

Recent literature studies the effects of inhomogeneity of densities over the network (e.g., (2, 4, 5,
6). However, most of these papers study the effect of inhomogeneity without taking into account that the
congestion spreads over the network. The effects of traffic dynamics and inhomogeneous congestion on
the MFD are currently being described as hysteresis, but its explanation and quantification is currently a
gap in the literature, which this article aims to fill. In this article we propose a generalization of the MFD,
the Generalized Fundamental Diagram (GMFD), giving the production as function of the accumulation
and spatial inhomogeneity of density. This latter quantity can be interpreted as an average measure for
inhomogeneity of traffic conditions. We will demonstrate that this GMFD describes a well-defined (crisp)
two dimensional plane. The classic MFD is a one-dimensional projection of this plane.

The use of this paper is twofold. At one hand, it scientific use is that it makes clear the that pro-
duction is a continuous function of accumulation and spatial inhomogeneity of density. It also, after the
analysis of simulated traffic dynamics in a network, describes hysteresis effects found in the MFD using the
GMED. At the other hand, for practical use, this newly found GMFD can be used in traffic control schemes.
For instance, it can be used for estimating speed in a (sub-)network, and traffic can be guided over the faster
routes. This way, GMFD can improve the traffic routing algorithm based on the MFD(7).

The remainder of the article is set-up as follows. First, a review is provided of the literature of the
MEFD. Then, section 3 introduces the variables used in this article. Section 4 then presents how GMFDs
look when traffic dynamics are not incorporated. We do so by simply averaging randomly chosen traffic
states. Section 5 presents the simulation experiment. Using a macroscopic traffic simulation, a simplified
traffic network is simulated, and the queuing dynamics are analyzed. Furthermore the effect of the spatial
inhomogeneity of density on the GMFD of density is studied in detail. Section 6 explicitly compares the
GMED of the traffic simulation with GMFD obtained by randomly chosen traffic states, and explains the
differences in results. Thus, we are able to comment on the effect of traffic dynamics on the GMFD. Finally,
section 7 presents the conclusions and an outlook on further research and applications.

2 LITERATURE OVERVIEW OF MACROSCOPIC FUNDAMENTAL DIAGRAMS

The original idea of a Macroscopic Fundamental Diagram (MFD) dates back to the late sixties (8), but only
after Daganzo’s 2007 reintroduction of the concept, research into the MFD has accelerated, often focussing
on potential for control and management of network traffic. An overview of the most important studies with
the MFD are given in table 1.

The best-known studies are the ones by Daganzo (9) and Geroliminis and Daganzo (/). Geroliminis
and Daganzo (/) show the relationship between the number of completed trips and the production function
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TABLE 1 Overview of the papers discussing the macroscopic fundamental diagram

Paper data network insight

Daganzo (9) theory none Overcrowded networks lead to a performance degradation — the start
of the MFD.

Geroliminis real Yokohama MFDs work in practice, and there is a relation between the average

and Daganzo flow (production) and the arrival rate (performance).

)

Daganzo and data& Yokohama & San  The shape of MFDs can be theoretically explained.

Geroliminis simulation Francisco

(10)

Buisson  and real urban + wurban There is scatter on the FD if the detectors are not ideally located or if

Ladier (2) freeway there is inhomogeneous congestion.

Jietal. (11) simulation urban + Hybrid networks give a scattered MFD; inhomogeneous congestion

freeway reduces flow, and should therefore be considered in network control.

Cassidy et al. real 3 km MEFEDs on freeways only hold if stretch is completely congested or not;

“ freeway otherwise, there are points within the diagram.

Mazloumian simulation urban grid — spatial inhomgeneity of density is important in deriving the produc-

etal. (12) periodic bound- tion.

ary

Geroliminis real Yokohama Spatial inhomogeneity of density is important in deriving the produc-

and Ji (3) tion.

Knoop and simulated grid Traffic congestion attracts congestion; production is a continuous

Hoogendoorn function of accumulation and inhomogeneity of density.

3)

Wu et al. (14) real 900m arterial There is an arterial fundamental diagram, influenced by traffic light
settings.

Knoop et al. (7) simulated grid Traffic performance can be improved by routing based on an average
accumulation in an area. Possibly spatially correlated densities in a
network.

Daganzo et al. simulated grid Equilibrium states in a network are either free flow, or heavily con-
(15) gested. Rerouting increases the critical density for the congested states
considerably.

Gayah and simulated grid/bin Hysteresis loops exist in MFDs due to a quicker recovery of the un-

Daganzo (5) congested parts; this is reduced with rerouting.

Saberi and real Portland region Spatial spread of a network cause the traffic production to reduce; this

Mahmassani leads to hysteresis loops.

(6)

which is defined as a weighted average of the flow on all links. Their results indicate that the network
production can be used as a good approximation of the utility of the users for the network, i.e., it is related
to their estimated travel time. Furthermore, after some theoretical work, Geroliminis and Daganzo (/) were
the first to show that MFDs are not just theoretical concepts, but also exist in practice. With pioneering work
using data from the Yokohama metropolitan area, an MFD was constructed with showed a crisp relationship
between the network production and the accumulation.

Also, theoretical insights have be gained over the past years. Daganzo and Geroliminis (/0) have
shown that rather than to find the shape of the MFD in practice or by simulation, one can theoretically
predict its shape. This gives a tool to calculate the highest production of the network, which then can be
compared with the actual network production.

One of the requirements for the crisp relationship is that the congestion should be homogeneous
over the network. Buisson and Ladier (2) were the first to test the how the MFDs change if the congestion
is not homogeneously distributed over the network. They showed a reasonably good MFD for the French
town Toulouse in normal conditions. However, one day there were strikes of truck drivers, driving slowly on
the freeways, leading to traffic jams. The researchers concluded that this leads to a serious deviation from
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the MFD for normal conditions. The inhomogeneous conditions were recreated by Ji et al. (/) in a traffic
simulation of a urban freeway with several on-ramps (several kilometers). They found that inhomogeneous
congestion leads to a reduction of flow. Moreover, they advised on the control strategy to be followed, using
ramp metering to create homogeneous traffic states. Cassidy et al. (4) studied the MFD for a freeway road
stretch. They conclude, based on real data, that the MFD only holds in case the whole stretch is either
congested or in free flow. In case there is a mix of these conditions on the studied stretch the production
is lower than the production which would be predicted by the MFD. This is due to the convex shape of the
fundamental diagram.

The effect of inhomogeneity is further discussed by Mazloumian et al. (/2) and Geroliminis and
Ji (3). Contrary to Ji et al. ({1), both papers focus on urban networks. First, Mazloumian et al. (/2) show
with simulation that the spatial inhomogeneity of density over different locations is an important aspect
to determine the total network production. So not only too many vehicles in the network in total, but
also if they are located at some shorter jams at parts of the networks. The reasoning they provide is that
“an inhomogeneity in the spatial distribution of car density increases the probability of spillover, which
substantially decreases the network flow.” Furthermore, they conclude that it is essential to model flow
quantization to obtain the effects of reducing performance with an increasing variability. This finding from
simulation and reasoning is confirmed by an empirical analysis by Geroliminis and Ji (3), using the data
from the Yokohama metropolitan area. The main cause for this effect is claimed to be the turning movement
of the individual vehicles. The same data is used by Geroliminis and Sun (/6) showing that if clustered
in bins with similar variation of denisity, the MFD is a well defined curve. Daganzo et al. (15) simplify
the setup and approach the traffic flows and MFDs analytically. They show there are several equilibria
to which the network will relax if loaded. Where they do show the equilibrium points, they do not show
the direct influence of density variability on network production. In preliminary work (13) we already
studied the effect of inhomogeneity of density in a traffic network. We then concluded that the macroscopic
fundamental diagram was a continuous function of both the accumulation and the inhomogeneity of the
density in an area. This is further analysed and quantified in this paper.

Recently, we showed (7) that the MFD could be used for control purposes as well. Because speeds
on neighboring roads are correlated, the traffic state in a whole area could be approximated by an average,
the MFD. Using the speeds derived from the MFD, we showed that traffic could be rerouted based on
the accumulation in a subnetwork and the MFD which gives the speed. In this way, the traffic situation
improved. This routing strategy can be improved if the prediction of the speed in a subnetwork is improved,
which is one of the aims of this paper.

A theoretical explanation for the phenomenon of the influence of the spatial inhomogeneity of den-
sity on the accumulation is given by Daganzo et al. (/5). He shows that turning at intersections is the key
reason for the drop in production under spatially inhomogeneous conditions. Gayah and Daganzo (5) then
use this information by adding dynamics to the MFD. If congestion solves, it will not solve instantaneous
over all locations. Rather, it will solve completely from one side of the queue. Therefore, reducing conges-
tion will increase the spatial inhomogeneity of density and thus (relatively) decrease the production. This
means that the production for a system of dissolving traffic jams is lower than the the equilibrium state, and
thus graphically located under the MFD. This way, there are hysteresis loops in the MFD, as also noted by
Jietal. (/7). Note that these loops are an effect by themselves and are not associated with the capacity drop
(17, 18). Instead, hysteresis in the MFD case is a result of macroscopic queueing and spillback processes.
Saberi and Mahmassani (6) discusses this in more detail, how the averaging of traffic states leads to a lower
prediction. Furthermore, this is confirmed with real data.

Our article continues this line of research and investigates the effect of network dynamics on the
MED. It does do by first considering the MFD as a simple average of randomly chosen traffic states. This
will be compared with a macroscopic traffic simulation, simplified to the essence, by which we reveal the
effect of network dynamics and using which we will find the production as function of accumulation and
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TABLE 2 The variables used

Symbol  meaning

T Node

T Cell in the discretised traffic flow simulation
L, Length of the road in cell =

Qx Flow in cell

ka Density in cell ©

ke Critical density

Dij Flux from link ¢ to link j

S The supply of cell =

D The demand from cell

i The links towards node r

J The links from node 7

N The number of links

C The capacity of node 7 in veh/unit time

o The fraction of traffic that can flow according to the supply and demand
B The fraction of traffic that can flow according to the demand and the node capacity
¢ The fraction of the demand that can flow over node r

X

An area
Ax Accumulation of vehicles in area X
Px Production in area X
Rx Performance (arrival rate) in area X
Yx Spatial inhomogeneity of the density in area X
l Accumulation in the network at the start of the simulation, expressed as fraction of the critical accumulation
o Standard deviation

the spatial inhomogeneity of density.

3 DEFINITIONS AND VARIABLES

In this article, several traffic flow variables are used to describe the network traffic flow operations. This
section explains them and shows the way to calculate them. The variables are listed in table 2.

Standard traffic flow variables are flow, g, being the vehicle distance covered in a unit of time, and
density, k, the number of vehicles per unit road length. The network is divided into cells, which we denote
by x, which have a length L. Flow and density in cells are denoted by ¢, and k..

Furthermore, the accumulation A in an area X is the weighted average density:

kyx L
Ay = Egexterle ()
ZxGX Ly
Similarly, the production P in an area X is the weighted average flow:
* L
Py — Zrexde Lo @)
ZmeX Lx

Since in the examples of this manuscript the cell length are the same for all links in the network, the accu-
mulation and production are average densities and flows. Recall that there is a strong relationship between
the production and the arrival rate, as shown by Geroliminis and Daganzo (/). This arrival rate is called
performance, and is indicated by R.

This article also studies the inhomogeneity of density expressed by the standard deviation of the cell
density. This is found by considering all cell densities in an area at one moment in time, and calculate the
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standard deviation of these numbers, indicated by ~:

ki = Fmean)”
=, (ke = Fnew)” 3)

N
zeX

In this equation, kpean is the mean density of all cells.

4 THE EFFECT OF SPATIAL INHOMOGENEITY OF DENSITY ON NETWORK PER-
FORMANCE: NO DYNAMICS

The macroscopic fundamental diagram can be interpreted as the connection between the average density
and the average flow in the area for which it is created. This section will show what the effect is of a
simple averaging, without taking typical traffic phenomena and dynamics into account. This adds to the
contribution of Saberi and Mahmassani (6) in the sense that it adds the stochastic analysis of many links to
the time-evolution of two links described analytically in that paper. Section 5 will include traffic dynamics
and show the effects thereof, which will be compared to the results obtained in this section. Now, section 4.1
first explains the experiment of averaging random traffic states. Section 4.2 then presents the results thereof.

4.1 Mathematical analysis

In this section we study the effect of averaging without incorporating traffic dynamics. For each link in a
set of IV links, a traffic state is chosen according to the fundamental diagram. The traffic states on this set
of links are averaged, and the accumulation, flow and spatial inhomogeneity of density are calculated. The
idea is to find the performance function as function of the average density and the spatial inhomogeneity of
density. In this section, we consider these variables independent. In section 5 the inhomogeneity of density
is calculated endogenously in a traffic simulation program.

In this section, we consider link density as a random variable . For reasons of simplicity, it is
chosen from a uniform distribution (denoted U) with minimum ke — p and maximum Kpean + p, With
p > 0 a variable indicating the spread of the density:

K~U (kmean — D, Kmean + p) “)

This is chosen because it is the most simple distribution, and an analytical is possible. We will show later
on (section 5) choose a more realistic approach and comment on the differences in section 6.

In this distribution, parameters kmean and p can be chosen independently, but all values of K have to
lie within the admissible range for densities, ranging from 0 to jam density. Hence, it is required that

Kmean —p = 0 (%)
Fmean +p < kjam (6)
This means we can freely choose a value for the average density between 0 and kjay,. Now the value of p is

restricted:
0<p< min{kmeany kjam - kmean} @)

Next, we assume that all N links have the same triangular fundamental diagram (19), which maps
the density uniquely to the flow:

kﬁ - if k< ke
9=1/ k—k ®
<1 _ <C>> gmax = W (k — kjam)  otherwise
kjam - kc
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In the second equation, w is the slope of the congested branch of the fundamental diagram, defined by
Qmax
W= ©)
kc - kjam

The average density, the standard deviation of the density and the average flow are needed to con-
struct the Generalized Fundamental Diagram. Since we use a continuous distribution for the traffic states,
the averages are replaced by the expectation value; throughout the paper, the expectation value is indicated
by a bar over the variable. For the expectation value of the density we find by definition:

A:E: kmean (10)

The spatial inhomogeneity v can also be directly derived from the known standard deviation of the uniform
distribution function

— s (11)

For the production, we have to find the expectation value of the flow (equation 2), indicated by g(k).
To this end, we need to evaluate this integral:

kmean+p
- PR q(k)dk

P——Q()—““EE“‘* (12)
The production is obtained by substituting the fundamental diagram (equation 8) in equation 12. This
integral can be studied for three cases: all links are in free flow conditions (kmean + p < k), all links are
congested (Kmean — p > k¢), or a combination of congested and non-congested links. For this case of mixed
traffic states, the integral is split over 2 parts, the free part for densities k = kyean — p to the critical density
k. and the congested part for k = k. to kmpean + p:

kmean"v‘p ko b N
kmean—p Q(k)dk 1 </ L > </ e )
P —— = - k)dk ) + kdk
2p 2p Kmean —-p q( ) Q( )

C

1 ke k kmean+p
= — qmaxdk> + </ w (k — Kiam dk‘) (13)
2p </k'mean_p kc ke ( ! )

The integral, and thus the production, then is a straightforward integration:

%kmeam (kmean _|_p) < ke
P kk?meanj'; q(k)dk ui(kmlean - kjdm) (l{imean — p) > kc
= = max (;2 9
59.-) 9 ky — kmean -
2 QP{Q R e = p)?) +
1
iw ((kmean + p)2 - kz) + U)kjam ((kmean +p) — k?c)} otherwise

(14)
These equations will be used to show the Generalized Fundamental Diagram for a case without
traffic dynamics in section 4.2.
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(a) The Generalized Macroscopic Fundamental Diagram. To im- (b) Macroscopic fundamental diagrams with constant levels of
prove visibility of the surface, the graph is rotated such that the spatial inhomogeneity of density.
axis of density increases from right to left.

FIGURE 1 The generalized macroscopic fundamental diagram based on independent road stretches

4.2 Numerical results and implications for the GMFD

To show numerical results, use the following values in our experimental setup: number of links N= 100,
critical density k.=25 veh/km/lane, cam density kj,m = 150 veh/km/lane, capacity gmax = 2500 veh/h, length
ofalink L =1 km.

A grid is made of values for the mean density kpnean and the spatial inhomogeneity of density ~y. For
each combination the resulting production is calculated using equation 14. This is plotted as function of the
mean density and the spatial inhomogeneity of density, and thus, a Generalized Macroscopic Fundamental
Diagram is constructed, see figure 1a. Also the cross-sections of this Generalized Macroscopic Fundamental
Diagram are given in figure 1b. The basic shape of the MFD as found by Geroliminis and Daganzo (/) is
clearly visible: an increase of production with an increase of the density for values lower than the critical
density, and a decrease later on. Also, the effect explained by Cassidy et al. (4) is visible. If the the spread
of density is 0, all links have the same density, and therefore the average density is equal to the density at
any of the links. Consequently, we observe the triangular fundamental diagram which has been put in.

Note too, that for the very high accumulations all links are probably congested, especially for the
lower values for the inhomogeneity of density. That means that all links are in the right hand side of the
triangular fundamental diagram, and the actual spread inhomogeneity does not matter (see Cassidy et al. (4)
for a detailed reasoning). Only when free flow states and congested states are mixed, there is a mixed state,
leading to a lower production than the triangular MFD, valid for a spatially homogeneous area. Hence, a
decrease in the direction of increasing density is most pronounced at accumulation values around capacity,
where congested states and non-congested states are equally likely to occur.

5 THE EFFECT OF SPATIAL INHOMOGENEITY OF DENSITY ON NETWORK PER-
FORMANCE INCLUDING TRAFFIC DYNAMICS

Where the previous section described an average of randomly drawn traffic states, this section will study
the MFD with traffic dynamics taken into account. The section first describes what will be simulated in
terms of network and demands. Then, section 5.2 describes the macroscopic traffic simulation model used
to describe the traffic dynamics. Then the outcomes of the simulations are presented: first, the traffic flow
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FIGURE 2 Illustration of a 4x4 grid network with periodic boundary conditions

phenomena are qualitatively described (section 5.3). Section 5.4 shows the resulting Generalized Macro-
scopic Fundamental Diagram, and relates this to the averaging experiment in the previous section. Finally,
section 5.5 sheds some light at the relation between production and performance.

5.1 Experimental set-up

In the paper an urban network is simulated, since this is the main area where MFDs have been tested.
Inspired by Mazloumian et al. (/2), we follow Knoop and Hoogendoorn (/3) and choose a Manhattan-like
grid network with square blocks and periodic boundary conditions. This implies that the nodes are located
at a regular grid, for which we choose a 20x20 size. Then, one-way links connect these nodes. The direction
of the links changes from block to block, i.e. if at x = 2 the traffic is allowed to drive in the positive y
direction, at z = 1 and at x = 3 there are one-way roads for traffic to drive in the negative y direction.
We assume 2 lanes per link, a 1 km block length, a triangular fundamental diagram with a free speed of 60
km/h, a capacity of 1500 veh/h/lane and a jam density of 150 veh/km/lane.

Furthermore, periodic boundary conditions are used, meaning that a link will not end at the edge of
the network. Instead, it will continue over the edge at the other side of the network. An example of such
a network is given in figure 2. Traffic can continue in a direct link from node 13 to node 1 or from node 5
to node 8. This way, all nodes have two incoming and to outgoing links and network boundaries have no
effect.

The destinations are randomly chosen from all points in the network. In the network, there are 19
nodes chosen as destination nodes. There are no origin nodes. Instead, at the beginning of the simulation,
traffic is put on the links. Vehicles are assigned to a destination, and for this distribution is equal over all
destinations.

The simulated time is 4.5 hours. During the first three hours of the simulation, the cars that reach
their destination will not leave the network, but instead they are assigned a new destination. The arriving
vehicles are split equally over the 18 other destinations; this is possible because we use a macroscopic model
(see section 5.2). As a result of the new destination labeling, the number of cars in the network is constant
for the first three hours and as such can be set as parameter setting in the simulation. This demand level is
expressed as the density on all links at the start of the simulation, as fraction of the critical density; this is
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indicated by [.

The reason for this redestination is that most people will go the busier places (e.g., CBD), and this
is also the area where many people leave. At specific periods of the day (morning peak) where this strict
balance does not hold, but at other moments of the day (say, around noon), the chosen approach of vehicle
regeneration at the same place as where they arrive is a good first approximation.

Figure 3a shows the network used under initial conditions. After three hours, the arriving vehicles
will not be reassigned to a new destination, but they will be removed from the simulation. Hence, the number
of vehicles in the network will gradually decrease after three hours.

5.2 Traffic flow simulation

This section describes the traffic flow model. For the traffic flow modelling we use a first order traffic model,
the Cell Transmission Model (20). Lebacque (27) showed that this is basically an analytical, continuum
LWR-model proposed by Lighthill and Whitham (22) and Richards (23) that is discretized in space and time
and solved with a Godunov scheme (24).

We choose to split links into cells of 250 meters in length (i.e., 4 cells per link). The flux ¢ over a
node, from one link to the next, is basically restricted by either the demand from the upstream node (free
flow) or by the supply from the downstream node (congestion):

¢z,z+1 = min {Dz, Set1}; (15)

At anode r we have inlinks, denoted by ¢ which lead the traffic towards node 7 and outlinks, denoted
by j which lead the traffic away from r. At each node r, the demand D to each of the outlinks of the nodes
is calculated, and all demand to one link from all inlinks is added. This is compared with the supply S of
the cell in the outlink. In case this is insufficient, a factor, «, is calculated which shows which part of the

demand can continue. s
Q. = argmin { - } (16)

[7 leading away from ] D J

This is the model developed by Jin and Zhang (25). They propose that all demands towards the node are
multiplied with the factor «, which gives the flow over the node.

This node model is slightly adapted for the case at hand here. Also the node itself can restrict
the capacity. In our case, there are two links with a capacity of 1500 veh/h as inlinks and two links with
a capacity of 1500 veh/h as outlinks. Since there are crossing flows, it is not possible to have a flow of
1500 veh/h in one direction and a flow of 1500 veh/h in the other direction. To overcome this problem, we
introduce a node capacity (see also for instance Tampere et al. (26)). The node capacity is the maximum of
the capacities of the outgoing links. This means that in our network, at maximum 1500 veh/h can travel over
a node. The fraction of the traffic that can continue over node r, indicated by g, is calculated as follows:

EVito T D (

The demand factor ¢ is now the minimum of the demand factor calculated by the nodes and the
demand factor due to the supply:

Br an

¢ = min{ay, 5y, 1} (18)

Similar to Jin and Zhang (25), we take this as multiplicative factor for all demands to get to the flux ¢;;, i.e.
the number of cars from one cell to the next over the node:

bij = CDij (19)
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Note further that once the node capacity is insufficient, upstream of the node congestion will form. Since
the cells in the network are small, the ratio between of flows from the inlinks will be divided according to
their respective capacity, since the demand in congested conditions is capacity.

The path choice is static, and determined based on distance to the destination. Traffic will take the
shortest path towards the destination. For intersections where both directions will give the same path length
towards a destination, the split of traffic to that direction is 50-50. We choose this simple routing because a
fixed routing allows to pinpoint the problems in the network. With more advanced routing, as for instance
equilibrium, drivers can start deviating before congestion starts. For this paper it is important to understand
the network effects and the best way to separate them from route choice effects is by keeping one constant.

5.3 Discussion and implications of the results: the nucleation effect

This section first describes the traffic flow over time. Figure 3 shows the outcomes of the simulation, in
snapshots of the density and speed over time. At the start of the simulation (see figure 3a), traffic is evenly
distributed over all links, since this was the initial situation as it was regulated externally.

When the traffic starts to run, various distributed bottlenecks become active. This is shown in figure
3b. After some time (figure 3d-f), traffic problems concentrate more and more around one location. The
number of vehicles in the rest of the network reduces, ensuring free flow conditions there. This complete
evolution can be found in figure 3a-f. The network has periodic boundary conditions, which means that the
network edges do not have any effect. Any deviations from a symmetry are due to random effects and thus
to the location of the destinations, since the traffic simulation is deterministic.

Finally, the situation stabilizes. After 3 hours vehicles which arrive at their destination will be taken
from the network, instead of being assigned to another destination as in the beginning. This reduces the
number of vehicles in the network. This evolution of the number of vehicles over time is shown in figure 4a.
Note that the number decreases after 3 hours.

Also, for each time step the accumulation and the standard deviation of the density over all cells
in the simulation can be determined. The evolution of the network in this plane is shown in figure 4b. In
general, traffic starts at an accumulation but with no spread in density (i.e., at the right bottom of the figure).
Then, traffic becomes less homogeneous, but the accumulation stays constant (in the figure: the line goes
up) In fact, it can be seen that as soon as a queue starts, the outflow will be reduced due to the reduced
speed. Since the inflow will not change, the queue will grow. So, congestion attracts more congestion.
The spatiotemporal dynamics of traffic jams are thus ruled by individual points where congestion starts;
this phenomenon we will call the nucleation effect of traffic jams due to its similarities in physics in state
transitions.

The curve from the top to the lower left corner in figure 4b start when the vehicles are set to reach
their destination and hence the accumulation reduces (in the end to zero, the origin in the figure). If the
network is relatively empty (undercritical), the largest part of the cells has a low density. Once the traf-
fic jams dissolve, a larger fraction of the cells will be in lower density and the inhomogeneity of density
hence decreases. However, if the network is relatively full, most cells will have a high density. Removing
vehicles from the simulation will increase the number of cells with a relatively low density, and hence the
inhomogeneity of density increases. Consider for example the extreme case that at the beginning all cells
are congested. Then, removing some vehicles will give some cells a lower density and hence inhomogeneity
of density will increase.

It is interesting to see what the traffic production will do in these situations; this is shown in figure
4c. First the production will decrease with an increasing inhomogeneity in density. Contrary to the randomly
drawn densities, due to the nucleation effect, there is an immediate decrease in performance. Congestion
will start at nodes, and this will create congested cells and uncongested cells. Hence, two traffic states are
simultaneously present and the production is lower than with the same accumulation without inhomogeneity
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FIGURE 4 The evolution of the network characteristics over time
of density (4).

Let’s now consider what happens when the traffic accumulation decreases. In undercritical con-
ditions, the production will decrease due to this lower density. However, in overcritical conditions, the
production will increase, because less vehicles are blocked.

5.4 Generalized Macroscopic Fundamental Diagram

As shown above, the traffic production varies as function of both the accumulation and the inhomogeneity
in density. Figure 5a shows the GMFD. Figure 5b shows the same surface, but now in isoproduction lines.
The production decreases once the inhomogeneity increases, and that this holds for every accumulation. As
will be discussed in section 6, this is a major difference with the averaging of random traffic states.

The figures show that the maximum production can be achieved at a density of approximately 30
veh/km/lane, and at a standard deviation of density of approximately 10 veh/km/lane. For lower standard
deviations of density, the production flattens and reduces. This contradicts with the reasoning in section
4 and with common sense: if there is no spatial spread in density, the production should show the same
pattern as the flow in the fundamental diagram, which was chosen triangular in the simulations. Therefore,
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FIGURE 5 The Generalized Macroscopic Fundamental Diagram

we attribute this flattening is to interpolation effects, as is argued in the next paragraph.

As argued, due to the nucleation effect, as soon as congestion starts, this attracts more congestion.
Therefore, the situation with accumulation but no spread in density hardly ever occurs. The situations with
zero standard deviation of density which can occur are (1) an empty network with no production and (2) a
completely congested network with no production. In the interpolation, any point on the line of v = 0 will
be influenced by the points with a similar accumulation and a higher standard deviation of density, but also
by the two aforementioned points. Furthermore, the lower the standard deviation of density, the higher will
be the influence of these two points with no production. We therefore see a reduction of production with
decreasing standard deviation of density for the very low values, which is an artefact of the interpolation
method.

5.5 Performance versus production

Geroliminis and Daganzo (/) indicates that the production, i.e. the average flow, is correlated to the perfor-
mance, i.e. the exit flow of the network. Figure 6a shows the figure of time series, with data extracted from
Geroliminis and Daganzo (/). The production and performance show a remarkable correlation.

In our simulations this is different. This mainly has to do with the network transition towards an
equilibrium state. At the beginning, all vehicles are spread over the network, regardless of their destination.
They then all drive towards their destination, and get closer to it. Hence close to a destination the fraction of
vehicles heading to that destination is generally higher. The flow reaching the destination will be considered
as new demand for all different destinations. In equilibrium if no traffic with another destination were to
pass the considered area, one would close to a destination hence find as much traffic heading towards the
destination as from it, where the outbound flow is divided over all 18 other directions. In the beginning, the
ratio between flow to a destination and flow to another destination is 1:18 over the whole network. Although
it is not true that other traffic will not pass the destination, the example makes clear why in an equilibrium
situation one expects more traffic closer to the destination than randomly spread.

For the above reasoning, all traffic situations where the equilibrium had not been reached yet, will
distort the correlation between traffic production and performance. Figure 6b shows the time series of the
production and performance. It shows that the performance starts low and needs some time to climb to the
value.
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After this initialization phase, equilibrium sets in (at approximately 0,5h after the start). From
that moment, performance degrades gradually due to the increasing congestion. More importantly, this
performance pattern follows the production pattern from that moment in time. At 3h after the start, the
vehicles start to arrive, and the arrival pattern is still remarkably similar to the performance pattern. The
difference between the lines in figure 6b at the beginning of the simulation time are hence due to the loading
technique.

6 DISCUSSION ON THE EFFECT OF TRAFFIC DYNAMICS

It is interesting to compare the results and the GMFDs for the case with and without traffic dynamics to
understand the effect of traffic dynamics. With network dynamics included, the GMFD is more then a
simple average of the fundamental diagram because correlation of the densities in an area is inherent to traffic
processes. Contrary to the randomly chosen states (section 4), in the simulation the production decreases
with the slightest increase of inhomogeneity of density. This is because already at the start, the restricted
capacity at the nodes will create congestion in some cells. This significantly reduces the traffic production,
and hence the lines in figure 4c are steep. For the high accumulations, the nucleation effect also plays a
role. However, an increase of inhomogeneity of density means that traffic moves towards the clusters of
congestion. If all cells were in congestion, this new, mixed, traffic state must have a lower performance (4).
However, since there was no high performance (no high speeds or capacity flows), the performance reduction
is less than in case free flowing traffic changes into standing traffic. Hence, the lines with a downslope in
figure 4c with a high traffic demand are less steep than those with a low demand.

The final patterns depend on the exact characteristics of the traffic and the network, including the
network type and layout, the position of the destinations, the demand pattern, and the shape of the funda-
mental diagrams. It is believed that a continuous function also holds for other networks, but that the shape
might differ. This can be checked in two ways, which both are suggested as line of further research: (1) A
sensitivity study, how the results compare in real life, with heterogeneous drivers and different road types,
including different fundamental diagrams; (2) empirical studies showing the GMFD for real networks. The
studied the GMFD for a real life urban freeway network (27).

Also, the relation between production and performance only holds in quasi-equilibrium situations.
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This equilibrium is defined by the spatial spread of drivers heading for a specific destinations, related to
the drivers heading towards other destinations. In particular, during network loading the production and the
performance differed. In the studied situation this effect was dominant due to the artificial loading situation
and the static route choice. In real life, the situation is not likely to deviate from the equilibrium state as
much as in the test case. However, it would be interesting to study the effects of network loading and route
choice on the relation between production and performance.

7 CONCLUSIONS AND OUTLOOK

In this manuscript we studied network traffic dynamics, and their effect on the macroscopic fundamental
diagram (MFD). In the traffic dynamics, we identified a nucleation effect. Congestion starts in a network at
one point, which we call the nucleation point. By definition, traffic moves slower there, and therefore, the
flow is reduced, and the traffic jam will grow at the tail. If the tail reaches an intersection, the congestion
spreads to different links, thus inducing even more congestion. Congestion thus attracts more congestion. A
simulation with periodic boundaries has shown how a network evolves from freely flowing via a state with
several local bottlenecks into a final state where all traffic is queuing to pass one bottleneck.

We conclude that a continuous Generalised MFD exists, which expresses the production as func-
tion of the accumulation and the spatial inhomogeneity of density. In the analysed case, the total number
of travellers in the network remains constant, but the network production, i.e. the average flow, reduces.
This observation contradict with the existence of a single macroscopic fundamental diagram which links the
production in a network with the accumulation of vehicles in the network. This paper proposed a General-
ized Macroscopic Fundamental Diagram (GMFD), a two dimensional function giving the production in the
network as function of the accumulation in the network and the spatial inhomogeneity of density over the
network, in this case expressed as the standard deviation of the densities in different cells in the network.
The production is shown to be a continuous function of accumulation and inhomogeneity of density, for the
simulation as studied in the paper.

It is also found that due to nucleation the GMFD is different from a GMFD created by averaging
randomly chosen traffic states. In the latter one, no correlation between traffic states is present, and the
production is, only decreasing with large inhomogeneity or near capacity. Due to the spatial correlation of
congestion and the above-mentioned nucleation effect, inhomogeneity in densities almost always are caused
by some parts of the network being congested and others being not congested. Then, the production is less
than with the same accumulation, but without spread. Therefore, in the GMFD the production decreases as
a function of the inhomogeneity in density.

The decrease of traffic performance with the increase of inhomogeneity of density, and hence the
GMEFD, is also found in a continuous macroscopic traffic representation. This means that the effect is not
due to individual traffic movements, or gaps, but the nucleation effect, and hence the asymmetric loading
of the network is the main cause. This study furthermore showed that the production decreases as function
of the spread of density, and that the causes thereof does not lie in the traffic light settings or microscopic
merging, since these are not explicitly included in the simulation used.

The understanding of traffic dynamics on a large scale can be utilized to improve the traffic situa-
tion. It is well possible that traffic control, for instance traffic light settings or routing, can not only change
the independent variables, i.e., the accumulation and the inhomogeneity of density, but possibly it can also
change the shape of the GMFD. For instance, production at the same accumulation and the same inhomo-
geneity of density might be higher if all travelers are guided towards free flow traffic conditions. This is
an example of optimizing within a (sub)network. Alternatively, it can be used to optimize traffic guidance
through various subnetworks. In previous work we showed that guidance of travelers over subnetworks
with low accumulation improved the traffic state (7). This paper suggests that the routing algorithm can be
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improved by not only using the accumulation but also the spatial spread of density. Preliminary results look
promising (28), and further improvements on the details of the algorithm are subject for further research.
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