TUDelft

TrustVault

A privacy-first data wallet for the European Blockchain Services Infrastructure

Sharif Jacobino
Committee: Dr.ir. J.A. Pouwelse (supervisor), Dr. M.M. de Weerdt, Dr. M.A. Zuifiga
EEMCS, Delft University of Technology, The Netherlands
31-08-2022

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Wednesday August 31, 2022 at 1:00 PM.

TrustVault: A privacy-first data wallet for the
European Blockchain Services Infrastructure

Sharif Jacobino and Johan Pouwelse
Distributed Systems, Delft University of Technology
August 2022

Abstract—The European Union is on course to intro-
duce a European Digital Identity that will be available
to all EU citizens and businesses. This will have a huge
impact on how citizens and businesses interact online. Big
Tech companies currently dictate how digital identities
are used. As a result, they have amassed vast amounts of
private user data. Movements like Self-Sovereign Identity
aim to give users control over their online identity.
TrustVault is the first data wallet that gives users back
control of their identity and all their data. TrustVault
allows users to store all their data on their smartphones
and control with whom they share it. The user has fine-
grained access control based on verifiable user attributes.
EBSI connects TrustVault to the European Self-Sovereign
Identity Framework allowing users to use Verifiable Cre-
dentials from public and private institutions in their
access control policies. The system is serverless and has
no Trusted Third Parties. TrustVault replaces the for-profit
infrastructure of Big Tech with a public and transparent
platform for innovation.

I. INTRODUCTION

Internet users have little control over where and how
their data is stored and used online. Big Tech companies
store gigabytes of data about you and know exactly which
online services you use [1]. User data is a precious asset
and the primary source of income for such companies.
Billions of people rely on Big Tech monopolies to store
their data and voluntarily give up control and ownership
over it. Much of this data is deeply personal and valuable,
such as intimate photos of our friends and family. Public
and policy trust in Big Tech has been breaking down in
recent years (also called the "techlash") following major
scandals, rampant misinformation campaigns, and a per-
ceived consolidation of power [2]. Nearly five decades after
the invention of public key cryptography, we still lack a
good solution for people to manage their digital identity
and efficiently share encrypted data directly with each
other, certainly at a massive scale. Various movements aim
to halter Big Tech’s power and give back control to the
users. These movements are powered by technologies like
blockchain and Self-Sovereign Identity (SSI), which promise
to improve how we interact with online services and each
other. Distributed computing has progressed to a point

where a truly distributed identity system, where trust is
diffused and not under the control of any entity, is possible.

Self-Sovereign Identity, sometimes referred to as "The
Internet’s missing identity layer" is an attempt at satisfying
the following requirements for a digital identity [3]:

. Security: protecting identity information from uninten-
tional disclosure.

- Control: the identity owner determines who can access
their data and under what circumstances

. Portability: user identity must not be tied to a single
service or provider

These properties are what make Self-Sovereign Identity (SSI)
a tool that will inevitably shift power away from centralised
organisations and towards the people.

The European Union (EU) is not unaware of these move-
ments and is ramping up its efforts for bringing transforma-
tion into the digital sphere with projects such as Europe’s
Digital Decade [4]. In September 2020, the president of the
EU declared that a European Digital Identity would be made
available to all EU citizens and they all will be able to have
a digital wallet [5].

"Every time an App or website asks us to create a
new digital identity or to easily log on via a big
platform, we have no idea what happens to our
data in reality." Ursula von der Leyen, President
of the European Commission

One of the goals of the EU is to improve the way citizens,
businesses and public administrations share information
and trust each other, and simplify verification processes
for cross-border services using blockchain technology [6].
Its proposed solution to reduce our reliance on Big Tech
is the European Blockchain Services Infrastructure (EBSI).
As at May 2022, there was €57 million in funding for large
scale trials! and in June 2022 a tender valued at €26 for the
development of the European Digital Identity Wallet million
was published by the EU 2. EBSI uses Self-Sovereign Identity
to reduce the time and cost of verifying the authenticity of
documents and information shared on the EBSI network.
EU citizens will be able to download a wallet from the app

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/EBSI+Grants

2https:/ /ted.europa.eu/udl?uri=TED:NOTICE:309685-
2022:TEXT:EN:HTML&tabId=1

store and interact with EBSI3. Wide-scale adoption will have
a significant impact on the digital lives of EU citizens.

While EBSI and SSI in general can make users sovereign
over their identity, non-identity data remains on the servers
of centralised applications, unable to be used within other
applications. If you have had enough of Facebook, migrat-
ing your photos to another photo-sharing app would be
a huge undertaking. It would also be near impossible to
completely control who has access to your data on a remote
server.

This work aims to solve these problems by developing
a data wallet with advanced data sharing capabilities that
leverage SSI to provide users with true sovereignty over
their data. The contribution of this work is TrustVault:
A privacy-first data wallet deployed on the TrustChain
Super App. TrustVault consists of a secure data vault
and an EBSI conformant digital wallet. The data vault
stores the user’s data locally and provides fine-grained
access control for the stored files. The digital wallet
holds Verifiable Credentials (VCs) obtained from the EBSI
network and presents these credentials to peers using
TrustVault. VCs contain attribute claims that function as
access tokens to other users’ data vaults. Using VCs as
a basis for Attribute-Based Access Control for personal
data storage is a novel concept that extends the notion
of self-sovereignty over personal identity to personal data.
This base implementation lets you browse through photos
of your peers and demonstrates TrustVault’s ability to be
used for zero-server applications. Users connect directly
to your TrustVault and their credentials are automatically
matched against your predefined access policies. Users
only see the photos that you allow them to see. Our
openness-by-design ecosystem encourages permissionless
innovation and competition. Anyone is able to develop
new decentralised applications that can interact with data
in your TrustVault.

This research contributes (I) a GDPR-compliant by design
data wallet that (II) integrates two Self-Sovereign Identity
frameworks with a novel use of Verifiable Credentials for
access control in a peer-to-peer setting (III), creating a
societal infrastructure for trusted data sharing.

II. PROBLEM DESCRIPTION

The goal of this study is to design a system that gives
users sovereignty not just over their identity, but also over
their data. In other words, can we extend the security,
control and portability properties of SSI from identity to
data in general? The system has to be a part of the critical
societal infrastructure being developed by the EU to reduce
reliance on Big Tech. Web applications that see a lot of
user data are prime targets for hackers [7]. The reward
for disrupting important services and stealing confidential

3https:/ /www.thalesgroup.com/en/worldwide-digital-identity-and-
security/government/magazine/eu-digital-id-wallet-coming-heres-what

data is huge. Much effort goes into securing centralised
applications with frequent penetration testing, better soft-
ware development methods, hardening techniques like en-
cryption and so on. Yet, even if user data is encrypted,
much information can be inferred from the large amount
of metadata collected by web applications with statistical
analysis, possibly breaching user privacy [8]. Dispersing
data throughout a network lowers the risk of large-scale
data breaches and makes the system more fault tolerant.
As long as your data is on a remote server, it is not
truly under your full control. Soft access control is hard
to enforce if parties can be malicious [9]. Hard access
control (enforced with cryptography) is either not very
flexible when using public-key cryptography or introduces
Trusted Third Parties (TTP) in the case of most Attribute-
Based Encryption schemes [10]. Most importantly, even
systems that offer fine-grained access control without TTPs
like distributed Attribute-Based Encryption schemes do not
prevent censorship [11] by centralised applications. Data
portability is a personal right established in the General
Data Protection Regulation (GDPR) [12]. This is in direct
conflict with the desire of companies to retain users and
their data. Data is often tightly coupled to the application,
complicating transitioning data between services. Regula-
tions and public pressure is forcing companies to adopt
or support standard formats. Data must still to be exported
from one application and imported into the other. This step
can be simplified or even eliminated.

A system where users have true sovereignty over data has
to have the following properties:

. Data storage has to be decentralised on devices under
the control of the data owner.

« Access control has to be verifiably authenticated, fine-
grained and resolutely enforced.

. Data has to be decoupled from applications.

Applications access user data at the discretion of the user.
Certain applications require users to access data on another
user’s device. The requesting user has to satisfy the access
policy set in place by the host user for the desired data.
Secure access control requires a user’s authentication to be
verified before enforcement [13]. SSI solves this problem in
a way that keeps users in control of their identity. Actually,
SSI makes it possible for any attribute of a user to be
verifiable through VCs. Access policies can be defined in
a fine-grained manner for arbitrary verifiable attributes.

EBSI will be the connecting piece to the societal infras-
tructure for identity once in production. EU citizens will
have credentials from public and private institutions such
as driver’s licence, diplomas and club membership in digital
form. These can all be used to enable the automatic sharing
of data between EU citizens based on these credentials. In
section III we elaborate on concepts relevant to this work.
In section IV the architecture and design of TrustVault are
presented and in section V we discuss the implementation
and evaluate the system. In section VI we go over related

work and we end with a conclusion and future work
proposals in section VII.

III. BACKGROUND
A. Self-Sovereign Identity

SSI is a decentralised model of digital identity developed
to address the shortcomings of the previous internet iden-
tity models [14]. With centralised identities, centralised in-
stitutions such as governments and banks issue credentials
that allow citizens to interact with services and each other.
On the internet you would establish an account with every
website, service or application. In this model, all the data
about you belongs to the issuing party, can't be reused, and
is out of your control.

The federated identity model introduces identity providers
(IDPs). IDPs allow you to have one account that can be used
to interact with any service that supports that IDP. This is
the mechanism behind the social login buttons (Login with
Facebook) widely found on the internet today. Federated
identity simplified managing accounts for every service to
managing a few accounts at a few IDPs. All our identity data
and information about when or how we use our federated
identities is now concentrated in these Tech Giants, raising
many privacy concerns.

The rise of blockchain technology inspired the decentralised
identity model. This model is not based on accounts with
centralised institutions or IDPs but on direct relationships
between peers. No party controls or owns the relationship.
Users are in complete control of their identity data, how it is
shared, and with whom. Peers establish private connections
by securely exchanging public keys whereby blockchains
serve as decentralised public key infrastructures. This model
closest resembles how we manage our identities in the real
world: with wallets containing credentials obtained from
trusted parties which can be shown to other parties to initi-
ate an interaction. There are several deployed decentralised
identity (DID) frameworks built on top of ledgers purpose-
built for decentralised identity like Sovrin [15] (based on the
Hyperledger Indy framework[16]) and ledgers repurposed
for SSI, such as [17] (using TrustChain [18]) and Ethereum
[19].

Verifiable Credentials are the building blocks of SSI. Much
like physical credentials, VCs contain claims about your
identity that some authority claims are true about you.
You can then use this VC to convince others who trust
said authority of the validity of these claims. The trust
relationship between issuers, holders/provers, and verifiers
is shown in Figure 1. Issuers put digital signatures on
credentials that are cryptographically verifiable. They are
trusted to issue true credentials and be authoritative on
the attributes they attest to. Verifiers request proof about
identity claims they need to be convinced of. They do not
need to have any direct relationship with issuers. They just
need to trust an issuer’s ability to make correct assertions.
Holders ultimately have the choice to respond to a request
with a Verifiable Presentation (VP): a VC with a digital

Legend

Wallet

Holder’s

Issuer Holder Verifier

agent

Verifiable
data
registry

Fig. 1. VC trust model [14].

signature of the prover. Holders trust verifiers to keep their
credentials confidential. The Verifiable Data Registry (VDR),
where DIDs, public keys and schemas are registered, must
be trusted by every party to be accurate and tamper-
evident. That is why public ledgers are a good fit for the
function of VDR. The holder’s credentials and cryptographic
keys are stored in a digital wallet. The wallet is trusted to
store VCs securely. Digital agents wrap users’ digital wallets
and establish communication with other agents to exchange
credentials.

B. European Blockchain Services Infrastructure

European Blockchain Services Infrastructure (EBSI) is
a distributed network that runs a public blockchain to
host public and private services that want to leverage the
benefits of blockchain technology. Their objective is to
offer secure and private cross-border public services among
EU member states. The main services that EBSI aims to
facilitate are:

1) Notarization: using the blockchain to make digital
audit trails and automate compliance checks.

2) Diplomas: giving citizens control over their educa-
tional credentials and lowering the cost of verifying
documents.

3) European Self-Sovereign-Identity Framework (ESSIF):
serves as a verifiable registry and communication
channel for an SSI framework across Europe.

Relevant to this work is ESSIF, enabling the exchange of
VCs on EBSI. This service encourages European citizens to
adopt SSI to improve the identity verification process with
public services and private companies across European
borders. The EBSI blockchain serves as the VDR in the
ESSIF framework, where public keys of users and trusted
applications can be looked up.

The EBSI architecture consists of three layers: the In-
frastructure layer, the Chain and Storage layer, and the
Core Service layer. The Infrastructure layer contains the
elements required to set up an EBSI node and form a
network. Every EU Member State is allowed to run nodes,

distributing trust over all the members. The Chain and
Storage layer contains the blockchain protocols and adds
off-chain storage. This is where the smart contracts for
the different verifiable registries such as the DID registry,
the Trusted Issuers Registry (TIR) and the Trusted Schemas
Registry (TSR) are defined. These elements are segregated
to make it possible to interoperate with different blockchain
networks. The Core Service layer is the interface to the
lower layers. It contains the API endpoints to interact with
the verifiable registries and secondary services like the
Notifications service.

C. Attribute-Based Access Control

Attribute-Based Access Control (ABAC) is an access con-
trol model that controls access to objects by evaluating rules
against the attributes of entities [20]. This allows for fine-
grained access control because of the large set of possible
combinations of attributes that can feed into an access con-
trol decision and, consequently, a large set of possible rules
for policies, only limited by the richness of the available
set of attributes. ABAC makes it possible to define access
control policies without prior knowledge of who will need
access and no list needs to be modified to accommodate
new users. Access control decisions are purely based on
the presented set of attributes. An essential requirement for
ABAC is that attribute values are correctly associated with
the subject. False attributes can grant unintended access to
data.

IV. SYSTEM ARCHITECTURE AND DESIGN

In this section we discuss how the different internal and
external components come together to form the TrustVault
architecture. We then go into how we integrated Verifiable
Credentials into the access control mechanism to achieve
fine-grained access control. We then discuss the design for
a tamper-proof access log. Finally, we explain the security
measures taken to protect data in TrustVault.

A. Architecture

TrustVault is a mobile agent consisting of two parts: a
secure data vault and a digital wallet. The architecture
of TrustVault is shown in Figure 2. A software agent is
a computer program that can act on behalf of an indi-
vidual autonomously*. TrustVault autonomously enforces
the user’s access policies for the data vault and manages
the credentials in the digital wallet. The data vault uses
the IPv8 networking protocol for peer-to-peer (P2P) data
sharing. IPv8 is a fully decentralised architecture for private
and authenticated communication [21]. Peers communicate
directly with each other without the need for servers, pro-
tecting their privacy. The protocol is built around commu-
nities that represent distinct services. Communities provide
the ability for peer discovery and define service-specific
messages that can be exchanged between peers. The data
vault has it's own community that implements the data

“https:/ /www.britannica.com/technology/software-agent

vault protocol. The data vault protocol is based on 5
messages: accessibleFilesRequest, accessibleFilesResponse, fil-
eRequest, fileResponse and fileRequestFailed. IPv8 abstracts
away physical addresses and allows peers to be identified
by their public keys. Connections between peers are main-
tained when IP addresses change, even behind NAT boxes
and firewalls, by using a UDP hole-punching technique. The
user can select a peer to interact with from a list of all the
peers in the DataVault Community.

The data vault functions as a personal file server to the
DataVault Community. The latest smartphones have storage
capacities rivaling laptops. We are also used to having
a large amount of personal files, mostly photos, on our
smartphones. Mobile internet speeds are also approaching
landline internet speed®, especially with the rollout of 5G.
The data vault stores and organises data in a closed-off
directory on the phone’s file system. The digital wallet also
stores VCs and key material in a closed-off directory and
interacts with the EBSI Core Services Layer via its REST
API. This architecture assumes EBSI and its infrastructure
has negligible downtime.

TrustVault’s open architecture encourages the develop-
ment of new decentralised applications that can read and
write data to the user’s data vault. Different applications
can provide different ways of interacting with data in users’
vaults. This makes for a more competitive ecosystem as user
data is completely portable between applications.

TrustVault is GDPR compliant by design. All data is stored
with and hosted by the user. There is no data storage
or processing by third parties eliminating the need for
Privacy Officers and Data Protection Officers. The system
is specifically designed to not rely on cloud infrastructure.

B. Access Control

Files and folders, including the root folder, have an
associated meta-data file that includes the file or folder’s
local access policy n(f). To access a file, the file’s global
policy II(f), meaning every policy along the file’s root path,
must be satisfied. With P(f) denoting the parent folder of
f, P(root) = ¢ and II(®) = @, global policies follow this
recursive definition: II(f) = n(f) AII(P(f)). Practically this
means that policies are inherited from parent folders. An
effective way of setting access policies is to have minimal
or no restrictions on the root folder and have increasingly
specific and restrictive policies for sub-folders.

An access policy is a binary boolean expression tree and
the leaves are attribute rule expressions that are evaluated
at access time. Attribute rules are triplets in the form of
(attribute, operator, value). An example policy would
be (age=18A(university=TU DelftVvissuer = me)). To
satisfy this policy, the prover has to present a VC that asserts
that their age is over 18, e.g. a government ID, and either
a proof-of-enrolment from the TU Delft or a VC issued by

Shttps:/ /www.statista.com/statistics/ 689876/ average-mobile-speeds-
download-and-upload-in-western-europe/

~—

Ce/

g

O
£

4

&

.‘o

European Blockchain

Fig. 2. TrustVault Architecture.

the verifier (owner of the TrustVault). The VC is first verified
by the wallet and then evaluated against the global access
policy. The age =18 rule can be satisfied with a predicate
proof. A predicate proof proves a boolean statement about a
value without having to reveal the value. The user interface
lets the user add or remove nodes to the policy tree.
Additionally, the user can define read+write policies or
separate read and write policies for more granular control.

In a protocol run, the prover is referred to as the requester
and the verifier as the host. The requester first makes
an accessibleFilesRequest. An accessibleFilesRequest must
include a set of verifiable credentials as an access token.
TrustVault supports credentials from two SSI frameworks:
TrustChain IDentity (TCID) attestations and EBSI Verifiable
Credentials. TCID attestations contain a single verifiable
attribute claim. A fingerprint of the holder’s IPv8 public key
is included in the attestation to prevent replay attacks from
unintended provers. The attestor’s public key is attached
to the attestation and does not have to be looked up in
a registry. EBSI VCs follow the W3C Verifiable Credentials
Data Model® standard that can contain multiple attribute
claims. The prover assembles one or more VCs into a
Verifiable Presentation (VP). Unlike TCID attestations, W3C
VCs are not coupled to a public key but to a DID. There
can be multiple key pairs associated with a DID. The prover
signs the VP with one of the private keys associated with
the DID in the enclosed VCs to authenticate itself as the
holder. The verifier must look up the public keys of the DID
in the EBSI DID Registry to verify the authenticity of the
VP. Credential access tokens with invalid signatures are not
included for access policy evaluation. The principles of SSI
lets the prover keep control over their identity by deciding
which credentials to disclose to the verifier. Coincidentally,
the verifier is given confidence that their ABAC policies en-

Ghttps://www.w3.org/TR/vc-data-model/

sure that only users that authentically possess the required
attributes can access their data. After policy evaluation, the
host returns an accessibleFilesResponse with a new session
token that encapsulates the directory sub-tree of the file
paths with global access policies satisfied by the provided
credentials. Session tokens are JSON Web Tokens (JWTs)
signed by the host. Besides the directory tree, a fingerprint
of the holder’s IPv8 public key is also included in the session
token. The signature ensures the integrity of the directory
tree and the fingerprint and prevents replay attacks in
the same manner as TCID attestations. The directory sub-
tree is used to dynamically recreate a copy of the host’s
data vault on the requesting device. The actual files are
retrieved on demand (fileRequest) to prevent retrieving files
that are not needed. Retrieved files are cached to avoid
fetching the same files multiple times, without storing them
permanently on the device. The sub-tree in the session
token ensures that no files are served that are not covered
by the original credentials. The verifier is freed from having
to keep a mapping of session tokens to accessible files for
subsequent requests and use up limited memory space.
Session tokens have an expiry time and a request with an
expired session token fails and the requester is notified with
a fileRequestFailed message to make a new accessiblefiles
request. This interaction is depicted in figure 3.

C. Self-Issued Credentials

VC meta-data contains data unrelated to the identity
of the credential subject, such as the issuer and issuance
date for which access policy rules can also be made. We
make use of this feature to create a new set of access
policies based on Self-issued Credentials (SICs). SICs serve
a similar but more expressive function than follow/friend
requests in traditional social networks. The issuer can add
extra attributes to a SIC to make the context of the social
connection more specific. This is particularly useful when

Prover/requester Verifier/host

Verify VCs &
Deva\uate policy

accessible files request (VCs)

accessible files tree, session token

file request (path, session token)

Verify path session €
AFT
file

Fig. 3. File exchange between TrustVaults.

you want to control access based on claims that a trusted
issuer will not assert. For example, you have some photos
you took with some people you met on holiday in Italy. You
can issue a credential to them that asserts that you have met
on holiday, giving them access only to the photos in your
vault with the corresponding access policy. It is possible to
model complex social connections in this manner, making
TrustVault a well-suited data store for decentralised social
applications. EBSI only allows VCs to be issued by trusted
issuers. These are parties that have completed a verification
and/or accreditation process to be registered on the Trusted
Issuers Registry (TIR). However, SICs are only intended
to be presented back to the issuer. SICs can therefore
be exchanged directly between peers, bypassing EBSI. The
issuer can verify a SIC without having to consult the TIR.
TCID inherently supports SICs. In TCID each agent has its
own local list of Trusted Issuers eliminating the need to
consult an external registry altogether.

D. Tamper-proof access log

Access control is completely automated without the in-
tervention of the TrustVault owner. This makes it impossible
to keep track of who has been given access to which files.
This is remediated by recording accessibleFilesRequest on
TrustChain for each session. The owner sends a trans-
action to the requester with a bloom filter containing
the accessible files from the request. A bloom filter is a
randomized data structure for representing a set of el-
ements that supports membership queries with no false
negative and a small false positive probability [22]. This
forms a timestamped, tamper-proof record of the files made
accessible to the requester. TrustChain transactions have
to be signed by both the sender and the recipient. The
requester’s approval of the record is thus made irrefutable.
This also guarantees the integrity of the record. In case of
an audit or dispute, this record can be referenced and the
bloom filter can be queried to prove with high probability
that a specific file was offered to a specific user. We opted
not to log each fileRequest, which would give more credence
to the access log in case of disputes, but the number of log

CTR vs CBC encryption

2.5

— CBC
— CTR
2.0
1.5
0
1]
£
“10
0.5
0.0
o 200 400 600 800 1000
input size (MB)
Fig. 4. AES encryption CTR vs CBC mode.
CTR vs CBC decryption
2.00
— CBC
— CTR

200 400 600 800
input size (MB)

1000

Fig. 5. AES decryption CTR vs CBC mode.

entries would be multiple times higher, causing TrustChain
to take more space on the user’s phone.

E. Data protection

As a data wallet for EU citizens, it is crucial that personal
data and the user’s right to privacy are protected in line
with the GDPR. An essential measure is to have data in the
system encrypted at rest and in transit. When the TrustVault
is inactive, all files are encrypted with AES in Counter
mode. Counter mode is great for encrypting/decrypting
large amounts of data compared to the standard Cipher
Block Chaining mode because blocks can be processed in
parallel. Figures 4 and 5 show the encryption and decryp-
tion of 1GB performance of a Samsung Galaxy S8. This
includes VCs stored in the wallet. A password is required to
"unlock” the TrustVault and "lock" it again when closing the
app. The encryption key is derived from the password using
PBKDF2. When transmitting files, IPv8’s end-to-end encryp-
tion is used. Data packets are asymmetrically encrypted for
the recipient and signed for confidentiality, integrity and
authenticity of transferred files.

V. IMPLEMENTATION AND EVALUATION

This section describes the implementation process of
TrustVault and the digital wallet for EBSI specifically. We
then evaluate the system’s privacy protection and security.
We explain our experimental setup and provide some in-
sight into the system’s performance.

A. Implementation

TrustVault is made for Android and is implemented
entirely in Kotlin”. It is part of the TrustChain Super App, the
collection of decentralised apps running on IPv8 and the
TrustChain ledger. The codebase includes a fork of walt.id
SSI kit. The open source code for SSI kit is also written in
Kotlin. However, it is developed as a command line tool and
does not run on Android out of the box. Changes needed to
make it compatible with Android include modifications to
10 operations with the file system and replacing network-
ing and crypto libraries unavailable on Android. Figure 6
depicts a component diagram of the digital wallet for EBSI.
The core component is the EBSIWallet class. The EBSIWallet
stores and retrieves cryptographic keys and credentials from
the KeyStore and CredentialStore using walt.id SSI kit key
store and credential store functionalities. OnboardingTools,
DIDRegistryTools and VerifiableCredentialTools implement
common flows used in TrustVault like registering with
EBSI, posting or updating a DID document on the DID
Registry, or requesting a credential from an issuer. Upon
the first launch of TrustVault, an EBSI DID and an Elliptic
Curve (EC) key pair are created and registered with EBSIL
Verifiers can then look up the user’s public key in EBSI’s
DID Registry. Subsequently, the user can obtain VCs from
trusted issuers on the network. These could be private or
public entities all over the EU, making the attributes for
which access policy rules can be defined very diverse. As
the official framework for European digital identities, EBSI
makes official government credentials available for access
control use. The easiest way to obtain VCs at the moment
of writing is using the Conformance Test Mock Issuer. These
tools share common APIs grouped together in the EBSIAPI
class. Requests and responses to and from the EBSI API
often included JWTs. JWTTools generates and verifies JWTs
for the different tools. The DIDRegistryTools looks up public
keys in the DID Registry required for JWT verification.
The AuthorisationTools request short-term session tokens
from the Authorisation Service using a long-term autho-
risation token obtained during onboarding. Session tokens
are embedded in request headers when accessing protected
resources or doing write operations on EBSI.

Figure 7 shows the important components and classes
from the data vault. There are three Ul views: the Vault-
Browser, the AccessControlManagement interface, and the
RuleEditor. The VaultBrowser is the main view that lets you
explore the photos in your DataVault. The user can select
a peer in the DataVaultCommunity to request files from to

https://github.com/Tribler/trustchain-superapp/pull /122

1
EBSIRequest '
AuthorisationTools ~ —— '
autharisationToken '
JWTTools
S —
' verifyJWT(}
. EBSIAPI ' '
1
[' 1
[1
- [[S
[1
[1
: ' [
i VerifiableCredentialTools
OnboardingTools DIDRegistryToals |- ="
requestVC()
verifyVC()
createVP{)
EBSIWallet
DID
keyPair
verifiableCredentials

Fig. 6. Digital wallet components.

explore in the VaultBrowser in peer view. The DataVault-
Community is connected to the TCIDDatabase from which
it can retrieve TCID attestations, and the EBSIWallet which
contains EBSI credentials that along with cached session
tokens are used as access tokens in requests to other peers.
The TCIDDatabase is managed by a separate Super App
application. The DataVaultCommunity runs independently
in the background, processing incoming requests. Each
message type (e.g. FileRequestFailed) has a corresponding
message handler (onFileRequestFailed). onAccessibleFilesRe-
quests trigger an access log transaction to TrustChain. The
AccessControlFile for each requested file is retrieved and
evaluated against the presented access tokens. In the case of
session tokens, the embedded directory tree is searched for
the requested file. In the case of credentials, the Policy for
the required access mode is evaluated with the presented
credentials starting from the root Rule of the rule tree.
Binary expression rules have a boolean operator and two
sub-rules which are recursively evaluated. The leaves of the
tree are unary expression attribute rules that are matched
against the attributes in the given credentials. Whenever
a leaf rule is evaluated, the credentials that dont satisfy
the rule are discarded. If the whole tree is evaluated and
the set of candidate credentials is not empty, the policy is
satisfied. The AccessControlManagement view is where you
create and update access policies for a selected file and the
RuleEditor lets you edit a specific rule of a policy. Figures
8, 9, 10 and 11 show screenshots of the browser interface
for local files and peer browsing, and the access control
management interfaces.

Before settling on developing TrustVault, work was done
on the Super App’s messaging app, implementing features

User Interface

RuleEditor

|
L

AccessControl

+— VaultBrowser

LI

DataVaultCommunity

——— AccessControlManagement ———

|

N AccessControlFile
sessionTokens

3 licies
on/sendA bleFilesR po

on/sendFileRequest(sessionToken)
on/sendAccessibleFiles()
on/sendFiles()
on/sendFileRequestFailed()

Tokens)

evaluate(accessMode, accessTokens)

| Policy

accessMode
ruleTree

DataVault EBSIWallet

Rule

TCIDDatabase

operator
attributeRuleExpression
subRules

TrustChain

OO —

evaluate(credentials)

Fig. 7. Data vault components.

like contact sharing to familiarize IPv8. The biggest chal-
lenge was making an intuitive user interface (UI) to edit
access policies on a small-screen device. The current UI
does not reflect the tree-like structure of an access policy.
Instead, the linear layout enforces a linear evaluation of
access policies. A policy (Ae BoCo D) would be evaluated
as (Ao(Bo(CoD))). The shape of policy trees is thus limited
to be consistent with what the user expects from the UL
TrustVault is designed to be a secure data wallet for EBSI
users. The process of getting TrustVault EBSI conformant
has not been straightforward and is still ongoing. The
first prototypes were built using the early versions of the
TypeScript cef-ebsi packages to interact with EBSI v1 [23]
as part of the EBSI Early Adopters programme®. In v,
all operations were API calls to test endpoints. In v2,
critical operations, including creating, signing, and verifying
credentials, were moved from the endpoints to libraries
running on the user’s device. At this point, there were three
documentation sources for implementing an EBSI wallet
that were out of sync in several places and there was no offi-
cial library for Android, meaning that there was much trial-
and-error to get the API connection working?!?. As some
wallets started passing the conformance tests, EBSI started
publishing test reports that included correctly formulated
HTTP requests for the different APIs. We were able to use
some of these, including onboarding, authentication and

8This work was facilitated and sponsored by The National Office for
Identity Data (RvIG) of the Dutch government.

9Discrepancies in documentation and trial-and-error:
https://github.com/Tribler/tribler/issues/6023#issuecomment-908087676
0Contact with EBSI support about downtime and errors:

https://github.com/Tribler/tribler/issues/6023#issuecomment-1104821838

authorisation requests to validate our own implementation
up to that point.

When initializing TrustVault, the user needs to complete
the EBSI onboarding process, which entails scanning a QR-
code on the onboarding page to get an authentication token
that is used to get permanent authorisation. In subsequent
sessions, the authorisation token is exchanged for a short-
term session token that needs to be included in every API
request.

B. Privacy

Privacy in TrustVault can be analysed from the
perspective of the TrustVault owner and the requesting
party. One of the main goals of this work is to give users
control over their data and thus over their privacy. The
first step is to enable users to self-host their data, stopping
data-hungry companies from running machine learning
algorithms over user data and learning users’ behavioral
patterns. This has the added benefit of disrupting Big Tech
from monetizing user data. Giving the user fine-grained
access control allows the user to have specific disclosure
policies at the desired granularity level, down to the file
level. This comes with great responsibility, as there is the
opportunity to make mistakes when defining access policies
and disclosing data to unintended parties. The challenge
is to make the user experience simple and intuitive to
minimise the chances of mistakes. Hosts are encouraged
to exercise data minimisation: the practice of requesting
only the minimum amount of information necessary for
an operation. In this context, it means not having policies
that require provers to reveal an unnecessary amount of
(personal) information. The requesting party, meanwhile,
has full control over its identity. Selective disclosurability
allows the requesting party to only present information it
is comfortable disclosing.

Identification by static public keys does present the
possibility of learning information over time. The host can
keep a record of every time a certain public key wants to
access data, which is arguably a sensible thing for the host.
However, the host is able to link different access requests
over time while collecting the credentials presented at each
request, possibly accumulating a more revealing or even
identifiable set of attributes of the requesting party. Entities
are able to have multiple DIDs for different contexts in
SSI. This reduces the linkability of credentials to an entity.
However, users still have one public key by which they
are identified in IPv8 communities, voiding the benefits of
having multiple DIDs in EBSI. The Python implementation
of IPv8!! has Network-Level Anonymity which mitigates
credential linkability and correlation attacks. The Kotlin
implementation'> however does not have this feature.
TrustChain does not support private/anonymous transac-
tions. By logging access requests on-chain, interactions

Whttps:// github.com/Tribler/py-ipv8
2https://github.com/Tribler/kotlin-ipv8

110 & = ©

¢ Vault Browser
Peer: Architecture

*4

054 & Q < *d4
< Vault Browser

®)
)

®)

Vacation Architecture

Fig. 8. Data vault browser.

between parties become publicly visible. Anyone can keep
track of when and how often one public key requests access
from another public key, potentially leaking information.

C. Security

The security of TrustVault depends on the security of
the data vault and the digital wallet. The data vault’s main
task is keeping data confidential. The Android internal
file storage protects files from being accessed outside the
Super App [24]. This offers the first layer of protection.
Additionally, the data vault is encrypted using AES when the
application is not in use. When opened, a password is re-
quired to decrypt the data vault. This prevents unauthorised
access even if someone gets physical access to the device
and launches the application. Data is also protected in
transit with IPv8. Packets are encrypted with the recipient’s
public key and signed for authenticity and integrity.

TrustVault inherits the VC trust model. EBSI can be
trusted to be tamper-evident in fulfilling the role of VDR
by using a public blockchain. It is less convincing in meet-
ing the requirement of accuracy because there is a layer
between users and the blockchain where read and write
operations could be corrupted. The likeliest way an attacker
could get access to data not intended to be disclosed is
by getting a false VC from a malicious, compromised or
incompetent issuer. Issuers that have a reputation to protect
are incentivised to be honest. EBSI tries to facilitate this
by having an accreditation process for issuers on the TIR.
Ultimately the verifier decides whom to trust. TCID gives
more control to the user in this aspect by using personal
Trusted Issuer registries. Attestations can also be revoked in
TCID, resulting in better credential accuracy.

Fig. 9. Loading images from a peer.

P55 & © 0 L *d4

047 & Q £
€ Access Control Management <«

A

Edit credential
Tania Mousinho.jpg

Size 0.22MB et
id_metadata v
Last modified 01-02-2022 ADD POLICY

attribute

city
read v ADD RULE

value Delft
lissuer 1G-SS1:123456789

trusted_authority

read+write ~ ADD RULE
issuer 1G-SS1:123456789
OR

attribute 1G6-SSlid_metadata:city
alue Delft
trusted_authority Noj
AND

attribute 1G-SSkid_metadata_range_18plus:agelG

value 184

trusted_authority Yes

N SAVE
N

Fig. 10.
ment.

Access Control Manage- Fig. 11. Edit policy rule.

There are several threats to data availability. The first
threat is the lack of redundancy. All the user’s data is on
a mobile device that can temporarily or permanently be
out of service for a number of reasons. If the data vault
is not backed up on a more reliable medium, the user
risks losing data if the device becomes permanently inac-
cessible. Limited battery capacity and fluctuating internet
speed occasional drops in service level can be expected.
Communication on the protocol level is more robust. IPv8
maintains network connectivity between peers even with
changing IP addresses and firewall protection. While EBSI
uses a distributed ledger, interaction with the ledger goes
via the hosted Core Services layer. These hosted services can
be a single point of failure that can disrupt VC verification.

The tamper-proof access log does not provide indis-
putable proof that a requester retrieved a file. The record
only claims that the requester could access a set of files
based on the provided VCs. A malicious host could add
files to the bloom filter that are not actually accessible to
the requester. This would be difficult for the requester to
detect.

D. Experimental analysis

For TrustVault to be a viable solution for storing and
sharing data, file transfer, including the time it takes to
verify access tokens, must be as quick as possible. The
factors that determine transfer time are Internet connection
speed and latency, transfer protocol speed, and access
token verification time which is in turn dependent on the
available computing power. Internet connection speed sets
the upper limit for achievable transfer speeds but will likely
not be the bottleneck. The data transfer protocol used

Verification Time Data
Session token 1 130 ms 300B
TCID 3 180 ms 3 x 1800B
EBSI VC 1+1 340 ms 200B + 1300B
TABLE T

EXPERIMENTAL ACCESS TOKEN VERIFICATION TIME AND DATA OVERHEAD.

is a connection-less data transfer protocol based on the
Trivial File Transfer Protocol. The protocol works around
the unreliability of User Datagram Protocol (UDP) to create
a protocol that can be used for P2P data transfer. An
average transfer speed of 260kB/s is achieved over WiFi
on the same network and 210kB/s over 4G [25]. File size
is capped at 250MB to avoid running out of memory when
reconstructing packets. The different access token types
incur distinct penalties on transfer time because of the
different verification methods. Session tokens need to be
verified when presented, which requires an EC signature
verification. Depending on the size of the encoded acces-
sibleFilesTree, a session token adds at least 370 bytes to
a request. TCID attestations also require an EC signature
verification. However, if multiple attestations are included
in a single request, each has to be separately verified.
Each attestation also adds at best 1800 bytes to a request.
Similar to TCID, each EBSI credential in a VPs requires
an EC signature verification but an extra verification is to
authenticate the holder of the VCs. Whereas TCID has a
local registry of Trusted Issuer public keys, the DID of the
issuer and the holder has to be resolved with the EBSI DID
Registry APIL. That is an additional overhead of two HTTP
requests per VP. EBSI access token adds around 200 bytes
for the VP metadata and 1300 bytes at a minimum for each
included VC to a request. The EBSI VCs in this experiment
contain three attribute claims. We therefore chose to use
three TCID attestations, each attesting to one claim. These
figures are summarised in table 1.

E. Experimental setup

The experimental setup consists of one phone, a Sam-
sung Galaxy S8 with 4GB RAM, 4x2.3 GHz + 4x1.7 GHz 8-
core CPU running Android 9, and a MacBook Pro running
a Google Pixel 4 emulator on Android 11. The Galaxy S8
serves as the host TrustVault and the emulator function as
requester. All verification and access control is thus done
on the Galaxy S8. The devices are connected to the same
WiFi network. We ran 7 experiments detailed in table II. In
each experiment, 50 requests and file transfers are made for
each access token type and a baseline with no access token.
Transfer time is measured from the moment a request is
sent to the moment a response is received. A timestamp
is included in the request metadata that is returned in the
response and the difference is taken from the timestamp
at which the response is received. A single file of 220kB is
returned in the response. The chosen file is an arbitrary
JPEG compressed to approximately 260kB such that a sub-
1-second transfer time would indicate the expected 260kB/s

10

Phone A file size
1 WiFi 5 220kB
2 4G 5 220kB
3 WiFi 5 1kB

4 WiFi 4 220kB
5 WiFi 3 220kB
6 WiFi 2 220kB
7 WiFi 1 220kB

TABLE 1T

EXPERIMENT PARAMETERS.

throughput of IPv8 is achieved. The first two experiments
compare the transfer times over WiFi and 4G. There is
one control experiment over WiFi with a file of 1kB. The
control is to single out the influence of the request size
on transfer time by having a relatively small response. We
then simulated different workloads of 50 requests with the
time between requests A changed to vary the number of
requests per second that the phone needs to handle. The
experiments are run with an automated Kotlin script that
generates logs that are processed in Python.

E Experimental results

The WiFi and 4G transfer times are shown in Figure 12.
The results confirm a slower transfer speed when on 4G
than on WiFi. The average transfer time increased 138%,
157%, 52% and 54%, respectively for the four categories.
This is a bigger decrease in speed from WiFi to 4G than that
measured in [25]. Session token verification is on par with
the baseline measurements. The extra signature verification
only takes on average 130 ms. It takes about 180 ms to
verify the 3 TCID attestations but the bigger request size
seems to have the biggest impact on the transfer time. On
average, TCID is about 1.5 seconds slower than baseline.
EBSI VPs take the longest to verify at around 340 ms. Yet
the overall transfer time is quicker than TCID, and a smaller
request size is more optimal. This same pattern holds with
the transfer times over 4G. This is confirmed in the results of
the control experiment shown in Figure 13. With a response
of just 1kB the transfer time drops with an average of 700
ms. The relative differences between the access token types
are preserved.

The simulated workload results are shown in figure 14.
With a A = 4s, the transfer times mirror that of the initial
tests with an interval of 5 seconds. At A = 3s, the baseline,
session token, and EBSI VP runs mirror the A = 4s runs
but TCID is about 50% slower. At A = 2s, the phone starts
getting overloaded with session tokens and EBSI VPs taking
a small hit but TCID taking on average 3.6 times longer.
Figure 15 shows the transfer times over time for 1 request
per second. The CPU load is still low and the phone is still
able to verify access tokens nominally, but the network stack
gets congested and transfer times gradually increase to tens
of seconds in the case of TCID and around 10 seconds for
session tokens and EBSI VP,

3.5

3.0

2.5

time (s)

2.0

1.5

1.0

0.5

20.0

17.5

15.0

5.0

2.5

0.0

60

50

10

File transfer time (220kB)

—— WiFi
— 46

=

T

- &

Baseline Session token TCID EBSI VP

Fig. 12. File transfer Time (220kB).

File transfer workload (220kB)

—— Ads
— A3s
— A2s

[

<]

g b

oo
0 O

° g

iin

ol

e

Baseline Session token TCID EBSI VP

Fig. 14. File transfer workload (220kB).

Workload 1 req/s

—— Baseline

—— Session Token

—— TCID
EBSI VP

/\‘/\\/\

10 20 30 40 50
request #

Fig. 15. File transfer workload 1 req/s (220kB).

11

File transfer time (1kB)

2.04

1.5

time (s)

=

= - o

Baseline Session token

0.0+

TCID EBSI VP

Fig. 13. File transfer Time (1kB).

G. Performance evaluation

The transfer when the device is not congested is in line
with the results of [25]. In the A = 5s baseline case, the
mean transfer time for a 220kB file is 780 milliseconds.
The request would have a negligible impact on the transfer
time as it is just a couple of hundred bytes meaning the
file response is the dominant factor. Considering this, the
transfer speed can be approximated at around 280kB/s.
However, even light congestion causes the transfer time to
become impractically high in the order of tens of seconds
for a single file. This is a baked-in limitation of IPv8 using
UDP.

On the other hand, the use of access tokens with each
request does not diminish the usability of the system,
especially when converting TCID and EBSI credentials into
session tokens. Session tokens incur almost no time penalty
on transfer time. The results show the time penalty incurred
for the different types of access tokens on the retrieval of a
single file but in practice, multiple files are retrieved with
one request, spreading the verification time penalty across
multiple files. At the moment, it is fair to say that large-scale
data sharing is not yet achieved.

VI. RELATED WORK

Solid is an open-source protocol that lets people store
their data securely in decentralised data stores called Pods
[29]. Pods are personal web servers that can store any kind
of data as Linked Data. Linked Data is data with semantic
links to other data recorded in its metadata such that
computers can explore these links using semantic queries.
Pod owners have granular control over who has access to
the data. Solid uses the WebAccessControl system, which
is based on access control lists with user identification by
WebID, to grant and revoke access to any slice of data
contained in a Pod to individuals, organizations, or applica-
tions. WebID is a protocol that allows persons, organizations
or other types of agents to create unique identities and

2
] = =
=% E E g 2 £
5 3f2. % E g B
e]
£ €52 B2 : =3
8§ 2% @ g & § = g
o3 o)]
z E = a & S a a
Solid X X X
Gaia-X X X -
Musubi X Cloud relay
Safebook X X X X
SkyFlow X X X X -
[26] X X X X X -
TrustVault X
[127] [28] - N/A__ N/A |
TABLE TII

COMPARISON WITH RELATED WORK

embed links to other people or objects using Resource
Description Framework [30]. WebID makes it easy to make
arbitrary claims about yourself, but those claims are not
trustworthy as they are not verifiable. At best, they provide
authentication by proving possession over a private key.
Access control rules can be based on the agent’s properties
in their profile document. Solid applications are client-side,
mobile or web, that read data straight from users’ pods.
Users can switch from one application to the other because
data is decoupled from applications by design.

Gaia-X is a federated data infrastructure for data and
cloud sovereignty [31]. The main problem Gaia-X aims
to solve is the lack of trust in the current landscape of
storing, sharing and handling data. The Gaia-X infras-
tructure is based on Ecosystems: an independent group
of participants that provide or consume data and ser-
vices. The infrastructure relies on federated services run
by participants to provide trust and data sovereignty in
data exchange between participants. These services include
decentralised identity management based on Self-Sovereign
Identity. Gaia-X employs usage control rather than access
control by establishing data contracts between participants
and logging data exchanges to enforce the data usage
policies in the contracts. Participants have to negotiate a
data contract and usage policies for each connection. Usage
policies constrain the consumer’s use of a resource based
on the consumer’s properties and verifiable attributes. How-
ever, usage policies are not granular and specific to slices
of data. While the federation services are not centralised,
they publicise information about the relationship between
participants and prevent the system from being completely
P2P. The Gaia-X infrastructure is tailored for business-to-
business applications and is not suited for personal and
social data sharing.

Musubi [32] is a mobile social application for real-time
data sharing. It uses the custom Trusted Group Commu-
nication Protocol to enable phones to connect through a
cloud relay and share data in a group without intermedi-
ation. Public keys are used for addressing and communi-
cation encryption. Group membership by invitation is the

12

only form of access control.

Safebook [8] is another privacy-preserving social appli-
cation. Safebook uses a P2P overlay with pseudonymous
identifiers. Data is not retrieved directly from a peer but
relayed through layers of nodes surrounding a peer ob-
fuscating communication. The innermost layer consists of
direct contacts of the core and each store an encrypted copy
of the core’s data providing a backup and fallback when
the core is offline. Safebook supports some sort of fine-
grained access control but since communication is done
pseudonymously, we can conclude that it is not based on
user credentials.

SkyFlow PII Data Privacy Vault'® (DPV) is a zero-trust
hosted database service focused on protecting personally
identifiable information. Authentication and authorisation
are required with each access request. It has row and
column-level fine-grained access control based on roles and
attributes. As it is intended for internal support teams, it
does not leverage the benefits of decentralised identity but
uses centralised identity instead.

[26] proposes using an ABAC scheme based on DIDs,
similar to the scheme proposed in this work. The system
is used to control access to a centralised platform and
the credentials used are from within the ecosystem. We
extend this concept to decentralised data sharing with
many independent verifiers and exploit the power of cross-
domain and societally relevant credentials.

There is multiple research that looked into decentralizing
ABAC. [27] and [28] proposes using a blockchain for policy
enforcement. The task of making policy decisions is handed
over to smart contracts. Access policies and user attributes
are stored on smart contracts. When access is requested to
aresource, a request is made to a smart contract that makes
a decision based on the policies and attributes stored on-
chain. The decision is returned to the server enforcing the
access policy. This approach makes it possible to have the
blockchain serve as a decentralised escrow for digital assets.
An on-chain access log is automatically created recording
the access policy decision, removing the need to have a

13https:/ /www. skyflow.com/product/pii-data-privacy-vault

separate logging mechanism. A drawback to this approach
is that updating policies is costly as that requires write
operations on the blockchain. Every access request has to
go through a smart contract, introducing some latency.

TrustChain is a Sybil-resistant permissionless blockchain
[18]. Transactions are signed by both parties and blocks
are chained together to the previous block of both parties.
Each maintains its own chain that is tangled with the
chains of parties they transacted with. There is no global
chain containing every transaction over which consensus
has to be made. Modifications or reordering of blocks on
one chain can be detected on the chains of counterparties.
This way, consensus is achieved between participants of a
transaction instead of on a global level.

TCID is an SSI system designed with performance and
security at the networking layer in mind [33]. TCID pro-
vides the properties of Self-Sovereignty and Credibility,
but crucially also Network-level Anonymity. Network-level
Anonymity is achieved when source and destination ad-
dresses are obfuscated. Without this property, it is pos-
sible to carry out correlation attacks on credentials ex-
changes over time, undermining the data disclosure pro-
tections of SSI. TCID solves this problem by adding an
anonymisation layer on top of the communication layer.
The anonymisation layer routes identity-based messages
through a multi-hop communication channel of randomly
selected peers. Increasing the number of intermediaries im-
proves anonymity but also increases latency. TCID supports
credentials with zero-knowledge proofs (ZKPs), including
ZKP range proofs.

[34] extends TCID with a distributed revocation mech-
anism. A gossip protocol is used to propagate revocations
through a network. Accepting a revocation is at the verifier’s
discretion. Verifiers keep their own local registry of Trusted
Issuers that inform decisions on both verification and
revocation.

The SSI Kit by walt.id is a Self-Sovereign-Identity open
source solution, primarily focused on the EBSI/ESSIF
ecosystem!“. It provides building blocks for key manage-
ment, issuing, presenting and verifying credentials, and
specific EBSI-related functions. Walt.id developed one of
the earliest EBSI conformant wallets.

Table III shows how the different related works compare.
Cloud-based data storage means extra work is necessary to
ensure data is secure according to GDPR. Some works have
fine-grained access control but do not use verifiable au-
thentication. [32] relies on real-world trust and proximity for
verifiable authentication. By using only public keys as user
identities, fine-grained access control would be strenuous.
[26], like Gaia-X and SkyFlow uses SSI for Attribute-Based
Access Control (ABAC), but does not veer into decentralised
data sharing. Gaia-X does use SSI for ABAC in the context of
data sharing but relies on federators to achieve sovereign
data exchange. SkyFlow and [26] are hosted services and

4 https://github.com/walt-id/waltid-ssikit

13

not P2P data-sharing infrastructures. Safebook is the only
mobile system with a data backup and fallback mechanism
but it compromises on security by having copies of user
data on devices of other peers. TrustVault compromises on
data backup because storage is limited on mobile phones.
Backups are technically possible on a separate storage
medium, but fallbacks introduce complexity and security
concerns.

VII. CONCLUSION AND FUTURE WORK

This work presents TrustVault, a system where users are
sovereign over both their identity and their data. TrustVault
is a unique first operational system that builds upon the
upcoming European Digital Identity Wallet. Alternatives
for Big Tech is an emerging topic of research. In our
system, users are not reliant on Big Tech companies to
authenticate themselves or store and host their data.
User data is stored in a data vault on a device under
the control of the user. To our knowledge, TrustVault is
the first solution to use Attribute-Based Access Control to
achieve fine-grained access control to data in a peer-2-peer
context while leveraging SSI for the wealth of verifiable
attributes available. We show that the EU’s EBSI initiative
is a viable way to give control to the citizens of the EU
by integrating it into our system in a societally relevant
way. Compared to related works Solid and Gaia-X, there
is no infrastructure and system management burden for
the user. The user does not need to understand the inner
workings of data management. Our work presents the first
data and identity wallet solution with true sovereignty over
both. It is possible to have a fairer and more competitive
system than the for-profit infrastructure of Big Tech, which
is public, transparent, and open source.

Future Work

TrustVault can be expanded to support other SSI net-
works like Sovrin and many built on Ethereum. This would
open the door to even more types of credentials and
attributes to include in access policies. TCID supports
some ZKPs but there are currently more proof schemes in
development like BBS+ signatures!® that provide selective
disclosure, signature blinding and private holder blinding.
These schemes further improve user privacy. Network-Level
anonymity, which is already implemented in Python, could
be implemented in Kotlin as well. This would mitigate
the correlation attacks possible in the system as is. Im-
proving the UI to reflect the structure of access policies
better could allow the user to set up more complex and
expressive policies intuitively. For critical data with high
availability requirements, having a fallback device could be
a great capability. Redundant devices could be deployed
simultaneously for load balancing or simply as a backup.
Finally, applications can be developed that make use of

Bhttps:/ /www.evernym.com/blog/bbs-verifiable-credentials/

the TrustVault infrastructure to provide valuable services to
TrustChain Super App users.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(11]

(12]

[13]

(14]

(15]
[16]

REFERENCES

D. Curran. (2018) Are you ready? Here is all the data
Facebook and Google have on you. [Online]. Available:

[17]

Q. Stokkink and J. Pouwelse, “Deployment of a
blockchain-based self-sovereign identity,” in 2018 IEEE
International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData),
2018, pp. 1336-1342.

https://www.theguardian.com/commentisfree/2018/mar/2BRhIR Otte, M. de Vos, and J. Pouwelse, “Trustchain: A

the-data-facebook-google-has-on-you-privacy

K. Birch, D. Cochrane, and C. Ward, “Data as asset?
the measurement, governance, and valuation of digital
personal data by big tech,” Big Data & Society, vol. 8,
no. 1, p. 20539517211017308, 2021.

A. Tobin and D. Reed, “The inevitable rise of self-
sovereign identity,” The Sovrin Foundation, vol. 29, no.
2016, p. 18, 2016.

European Commission. (2021) Europe’s Digital
Decade. [Online]. Available: https://digital-
strategy.ec.europa.eu/en/policies/europes-digital-
decade

——. (2019) European Digital Identity. [Online]. Avail-
able: https://ec.europa.eu/info/strategy/priorities-
2019-2024/europe-fit-digital-age/european-digital-
identity_en

European Blockchain Services Infrastruc-
ture. [Online]. Available: https://ec.europa.eu/digital-
building-blocks/wikis/display/EBSI/Home

B. Musa Shuaibu, N. Md Norwawi, M. H. Selamat, and
A. Al-Alwani, “Systematic review of web application
security development model,” Artificial Intelligence Re-
view, vol. 43, no. 2, pp. 259-276, 2015.

L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A
privacy-preserving online social network leveraging
on real-life trust,” IEEE Communications Magazine,
vol. 47, no. 12, pp. 94-101, 2009.

L. Pesonen, D. Eyers, and B. Jean, “Access control in
decentralised publish/subscribe systems,” Journal of
Networks, vol. 2, 04 2007.

S. Miiller, S. Katzenbeisser, and C. Eckert, “Distributed
attribute-based encryption,” in International Confer-
ence on Information Security and Cryptology. Springer,
2008, pp. 20-36.

J. Lee, B. Lee, J. Jung, H. Shim, and H. Kim, “Dq: Two
approaches to measure the degree of decentralization
of blockchain,” ICT Express, vol. 7, no. 3, pp. 278-282,
2021.

GDPR Right to data portability. [Online]. Available:
https://gdpr-info.eu/art-20-gdpr/

R. S. Sandhu and P. Samarati, “Access control: principle
and practice,” IEEE communications magazine, vol. 32,
no. 9, pp. 40-48, 1994.

A. Preukschat and D. Reed, Self-sovereign identity.
Manning Publications, 2021.

Sovrin. [Online]. Available: https://sovrin.org
Hyperledger. Hyperledger Indy. [Online]. Available:
https://www.hyperledger.org/use/hyperledger-indy

14

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

sybil-resistant scalable blockchain,” Future Generation
Computer Systems, vol. 107, pp. 770-780, 2020.
Ethereum decentralized identity. [Online]. Available:
https://ethereum.org/en/decentralized-identity/

V. C. Hu, D. R. Kuhn, D. E Ferraiolo, and J. Voas,
“Attribute-based access control,” Computer, vol. 48,
no. 2, pp. 85-88, 2015.

Tribler. (2021) Ipv8 documenta-
tion. [Online]. Available: https://py-
ipv8.readthedocs.io/_/downloads/en/latest/pdf/

L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and
X. Luo, “Optimizing bloom filter: Challenges, solutions,
and comparisons,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1912-1949, 2019.
European Commission. cef-ebsi packages. [Online].
Available: https://www.npmjs.com/search?q=cef-ebsi
Android. Access app-specific files. [Online]. Avail-
able: https://developer.android.com/training/data-
storage/app-specific

J. Bambacht and J. Pouwelse, “Web3: A
decentralized societal infrastructure for identity,
trust, money, and data,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.00398

B. Kim, W. Shin, D.-Y. Hwang, and K.-H. Kim,
“Attribute-based access control (abac) with decentral-
ized identifier in the blockchain-based energy trans-
action platform,” in 2021 International Conference on
Information Networking (ICOIN). IEEE, 2021, pp. 845-
848.

S. Rouhani, R. Belchior, R. S. Cruz, and R. Deters, “Dis-
tributed attribute-based access control system using
permissioned blockchain,” World Wide Web, vol. 24,
no. 5, pp. 1617-1644, 2021.

Y. Zhuy, Y. Qin, Z. Zhou, X. Song, G. Liu, and W. C.-
C. Chu, “Digital asset management with distributed
permission over blockchain and attribute-based access
control,” in 2018 IEEE International Conference on
Services Computing (SCC), 2018, pp. 193-200.

E. Mansour, A. V. Sambra, S. Hawke, M. Zereba, S. Ca-
padisli, A. Ghanem, A. Aboulnaga, and T. Berners-Lee,
“A demonstration of the solid platform for social web
applications,” in Proceedings of the 25th International
Conference Companion on World Wide Web, ser. WWW
16 Companion. Republic and Canton of Geneva,
CHE: International World Wide Web Conferences
Steering Committee, 2016, p. 223-226. [Online].
Available: https://doi.org/10.1145/2872518.2890529

P. Mainini and A. Laube-Rosenpflanzer, “Access con-

(31]

(32]

(33]

(34]

trol in linked data using webid,” arXiv preprint
arXiv:1611.03019, 2016.

German Federal Ministry for Economic Affairs and
Energy, “Project Gaia-X,” 2019.

B. Dodson, I. Vo, T. Purtell, A. Cannon, and M. Lam,
“Musubi: disintermediated interactive social feeds for
mobile devices,” in Proceedings of the 21st interna-
tional conference on World Wide Web, 2012, pp. 211-
220.

Q. Stokkink, G. Ishmaev, D. Epema, and J. Pouwelse, “A
truly self-sovereign identity system,” in 2021 IEEE 46th
Conference on Local Computer Networks (LCN), 2021,
pp. 1-8.

R. Chotkan, J. Decouchant, and J. Pouwelse,
“Distributed attestation revocation in self-
sovereign identity,” 2022. [Online]. Available:
https://arxiv.org/abs/2208.05339

15

