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Abstract

Software systems need to evolve, and systems built using
model-driven approaches are no exception. What compli-
cates model-driven engineering is that it requires multiple
dimensions of evolution. In regular evolution, the model-
ing language is used to make the changes. In meta-model
evolution, changes are required to the modeling notation.
In platform evolution, the code generators and application
framework change to reflect new requirements on the target
platform. Finally, in abstraction evolution, new modeling
languages are added to the set of (modeling) languages to
reflect increased understanding of a technical or business
domain. While MDE has been optimized for regular evo-
lution, presently little or no support exists for metamodel,
platform and abstraction evolution. In this paper, we an-
alyze the problems raised by the evolution of model-based
software systems and identify challenges to be addressed by
research in this area.

1 Introduction

The promise of model-driven engineering (MDE) is that
the development and maintenance effort can be reduced by
working at the model instead of the code level. Models de-
fine what is variable in a system, and code generators pro-
duce the functionality that is common in the application do-
main. The problem with model-driven engineering is that it
can lead to a lock-in in the abstractions and generator tech-
nology adopted at project initiation. Software systems need
to evolve, and systems built using model-driven approaches
are no exception. What complicates model-driven engineer-
ing is that it requires multiple dimensions of evolution. In
regular evolution, the modeling language is used to make
the changes. In meta-model evolution, changes are required
to the modeling notation. In platform evolution, the code
generators and application framework change to reflect new
requirements on the target platform. Finally, in abstraction
evolution, new modeling languages are added to the set of

(modeling) languages to reflect increased understanding of
a technical or business domain. While MDE has been op-
timized for regular evolution, presently little or no support
exists for metamodel, platform and abstraction evolution.

In this paper, we analyze the problems raised by the evo-
lution of model-based software systems and identify chal-
lenges to be addressed. We then outline a research agenda
for addressing these challenges. The paper is written as a
first step in our Model-Driven Software Evolution project, in
which Delft University of Technology in collaboration with
a number of industrial partners will seek out to resolve the
most prominent of the issues raised in the research agenda
discussed in this paper.

2 Model-Driven Engineering

Software engineering can be reduced to development of
new software systems on the one hand and maintenance of
existing ones on the other. The aim in development is to
produce a high-quality system with the least possible effort.
The aim in maintenance is to apply improvements and ex-
tensions with the least possible effort. Abstractions play
a key role in development and maintenance. During de-
velopment of a new system, the problem is to identify the
right abstractions to represent high-level requirements and
designs, which are then encoded in software. During main-
tenance, the problem is to identify the abstractions that are
encoded in the existing implementation in order to correctly
make modifications. With increasing distance between de-
sign and implementation, complexity increases, and pro-
ductivity and maintainability decrease.

Model-Driven Engineering Model-driven engineering
(MDE) is the unification of initiatives that aim to improve
software development by employing high-level, domain-
specific, models in the implementation, integration, main-
tenance, and testing of software systems [6]. To overcome
the abstraction barrier, MDE introduces models that capture
designs at a higher-level of abstraction. Unlike technical
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documentation which has a fragile connection to the imple-
mentation of a software system, models are an integral part
of the software evolution process. Developers represent de-
signs using models that conform to an appropriate meta-
model, which are then automatically transformed to imple-
mentations. Thus, with an appropriate modelling language,
the effort of producing a new software system decreases and
maintenance is reduced to model maintenance.

Prominent among the MDE initiatives is OMG’s Model-
Driven Architecture (MDA) [38, 31], in which software de-
velopment is envisioned as a series of model transforma-
tion steps, which starts with a high level specification using
a vocabulary that is familiar to the practitioners of the do-
main in question, and which ends with a platform-specific
model describing how, for example, the system makes use
of certain J2EE features. Related industrial efforts include
Microsoft’s DSL framework of software factories [29] for
building stacks of domain-specific languages, and Jetbrain’s
Meta Programming System for language oriented program-
ming [22, 26].

Domain-Specific Languages Model-driven engineering
is strongly related to the field of domain-specific languages
(DSLs) and generative programming [39, 4, 18, 20, 21, 37].
Domain-specific languages fill the gap between general pur-
pose languages and particular application domains, by pro-
viding a language with notation and concepts geared to the
domain. For example, database query languages provide
concise notation for extracting data from a database, and
regular expressions are the standard notation to formulate
text searches. These notations encapsulate domain knowl-
edge that cannot be expressed easily and effectively by pro-
grammatic means.

The need for domain-specific languages is clearly
demonstrated by their presence in domains such as lan-
guage recognition (YACC, ANTLR, SDF), graphics (SVG,
VRML), querying (XQuery, SQL, XPath), text processing
(Perl, Sed), document transformation (XSLT), mathematics
(Mathematica, Matlab, Fortran, Fortress, Magma), and en-
terprise query languages (EJBQL for Enterprise JavaBeans,
JDOQL for Java Data Objects, ODMG’s OQL, Hibernate’s
HQL, JMS message selectors), to mention just a few. A
DSL is described by a grammar that describes valid pro-
grams, a code generator that maps DSL programs to GPL
programs, and a framework or run-time system that gener-
ated code makes use of.

Models and DSLs have complementary strengths. Mod-
els tend to be represented using a graphical notation, while
DSLs often make use of a textual representation. Further-
more, models tend to be designed for describing structures,
while DSLs are better at describing business logic. Since
large scale adoption of model-driven engineering requires
business logic as well as structure description, a unification

of modelling and DSLs is needed.
What distinguishes MDE from the ‘fourth-generation’

and domain-specific languages of the past, is the aim at a
systematic approach, with supporting technologies, to the
construction of models and modeling languages such that
these activities can be undertaken by the ‘average’ software
developer and integrated in the software development pro-
cess.

One of the challenges of realizing MDE is to unify
the wealth of experience from work on code generation,
domain-specific languages, and other generative program-
ming techniques with the current momentum of the MDE
initiative.

From frameworks to models Enterprise software is typ-
ically designed as a multi-tier system [25], which allows
physical separation of parts of the system (layers are dis-
tributed over different machines), separation of concerns,
focus of expertise, and code reuse. Technical domains (hori-
zontal) correspond to the different implementation concerns
such as user-interface, services, business logic, and data
storage. Business domains (vertical) intersect the technical
domains, since the implementation of a software system for
application in some type of business affects design and im-
plementation choices in all layers of the system. Develop-
ment productivity of similar systems is increased by reuse
through frameworks. In addition to capturing the common
functionality in a class of systems, frameworks define their
architecture. That is, frameworks provide a default system
composition that application code only needs to customize
using mechanisms such as inheritance, delegation, reflec-
tion, and/or inversion of control.

Further increase of productivity can be achieved by code
generation, which is already used for development of some
parts, such as the generation of an object-relational mapping
from a data base schema. Model-driven engineering aims at
extending this practice to the rest of the software stack. Ap-
plication code is replaced by DSL programs, with the DSL
capturing the variability in the framework, and code gener-
ators producing the application code automatically. While
a generator may still produce code for use with a frame-
work, this is not necessarily the case. The DSL, rather than
the framework, defines the architecture and composition. It
may well be profitable to generate more application code
that is specialized to the application at hand using a trimmed
down run-time system. An immediate advantage is the pos-
sibility of targeting a generator to a new architecture, with-
out changing the DSL programs.

3 Challenges

While MDE promises to improve productivity and main-
tainability, widespread adoption and scaling to large soft-
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ware systems requires research into evolution of model-
based systems, scope and expressivity of modelling lan-
guages, and into interaction and integration of models.

Model-Driven Software Evolution Software evolution is
concerned with the complete life cycle of software systems,
from initial development to maintenance, and includes in-
troducing new features, improving old features, and repair-
ing bugs. While introduction of model-driven engineering
brings advantages, it also requires a new style of evolution.
In traditional software evolution, the development platform
is fixed. Migration to a new platform is a sporadic event.
The problem with model-driven engineering is that it can
lead to a lockin in the abstractions and generator technol-
ogy adopted when the project was started. Since an MDE
platform hardwires many more architectural and design de-
cisions than a traditional development platform, platform
evolution is a requirement for MDE. Thus, MDE requires
multiple dimensions of evolution:

1. In regular evolution, the modeling language is used
to make the changes; the development platform, that
is, the set of domain-specific and general-purpose lan-
guages, is fixed.

2. In meta-model evolution, changes are required to the
modeling language to improve its expressivity. Such
changes may require migration of models.

3. In platform evolution, the underlying infrastructure,
such as the code generators and the application frame-
work, is required to change, because of new require-
ments in the target platform. Existing models may
remain unaffected by such changes, if the modeling
language abstracts over the specifics of the target plat-
form.

4. In abstraction evolution, new modeling languages are
added to the set of (modeling) languages to reflect in-
creased understanding of a technical or business do-
main. After introducing new languages, the old system
should be migrated to make use of it.

Our first fundamental premise for model-driven software
evolution is that evolution should be a continuous process.
Software development is a continuous search for recur-
ring patterns, which can be captured using domain-specific
(modeling) languages. After developing a number of sys-
tems using a particular meta-model, new patterns may be
recognized that can be captured in a higher-level or richer
meta-model. Our second premise is that reengineering of
legacy systems to the model-driven paradigm should be a
special case of this continuous evolution, and should be
done incrementally. While MDE has been optimized for
regular evolution, presently little or no support exists for

continuous meta-model, platform, and abstraction evolu-
tion.

Scope and Expressivity Modeling languages tend to be
geared to description of structure and have limited capabil-
ities for expressing business logic. The field of domain-
specific languages provides a source of inspiration for de-
sign of richer modeling languages. Here it is important
to find a good balance between expressivity and scope. If
modeling languages become too general they loose their ad-
vantages with respect to general purpose languages.

Another issue with existing modeling languages is a lack
of modularity. Visual modeling languages in particular have
limited modularity (e.g., entire model in one diagram). In
order to scale to modeling of large systems, models should
be developed as independent components that can be inte-
grated in different compositions. Furthermore, it should be
possible to provide different views on models and compo-
sitions of models. For instance, an architectural view that
shows the composition of a system from components, or a
data-flow view that shows the data dependencies in the sys-
tem.

Interaction and Integration Modeling languages are
typically not designed to model an entire system at once.
In order to be cost effective, a language should be usable
in many different systems. Therefore, a modeling language
captures aspects of a software system in some technical or
business domain, and the implementation of a complete sys-
tem will consist of models in many different modeling lan-
guages as well as some code in a GPL.

Thus, model-driven engineering departs from traditional
software engineering, with its mostly monolithic develop-
ment platform. Instead of one or a few programming lan-
guages, MDE development introduces a multitude of lan-
guages that are themselves artifacts of the development pro-
cess. This has numerous implications for the integration of
models in the development environment and their interac-
tion with that environment:

• Interaction between models and code. Models need
to interact with the code defining the rest of the ap-
plication. In particular, when incrementally introduc-
ing models in a legacy system, models need to interact
with legacy code. Modeling languages do not neces-
sarily cover all corner cases. It is not uncommon in
such cases to customize generated code, a disaster for
maintainability. Instead it is necessary to be able to
customize and enrich models with application specific
code without resorting to modifying generated code.
For the same reason, models need to provide an inter-
face to the underlying framework.
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• Interaction between models. Since separate models are
used to define different parts of a system, their integra-
tion requires model interaction, possibly between dif-
ferent modeling languages. Models at different layers
of the software stack need to interact, e.g. a user inter-
face model refers to a data model. Models for business
domains need to interact with models in technical do-
mains. This requires that modeling languages define
an interface through which models can be approached.

• Interaction with the development environment. The de-
velopment and build environment needs to be aware of
models and modeling languages and provide the same
level of support as for regular languages. In particular,
the definition of a modeling language should have the
same status as other programming artifacts.

4 A Research Agenda

In this section we identify four research themes for ad-
dressing the challenges introduced above. The first theme,
the construction of model development environments is con-
cerned with investigating and integrating the basic tech-
niques needed for realizing model-driven software evolu-
tion. The second theme, from model to code, is concerned
with the investigation of modeling language designs for ex-
pressing business logic and the interaction between models
and code. The third theme, from code to models, is con-
cerned with deriving model abstractions from (legacy) code.
Finally, the fourth theme is concerned with evaluation of
the methods and techniques for model-driven software evo-
lution.

4.1 Model Development Environment

An important goal is to make it possible to easily create
new modeling languages as part of software development.
This requires a model development environment with model
processing techniques that build on the advanced analysis
and transformation techniques produced in programming
language research.

Connecting model representations and meta-models.
Infrastructure for defining the syntax and structure of mod-
eling languages has a central role in a model development
environment. The basic infrastructure for meta-modelling
is widely available, but requires integration and connection
of existing formalisms such as MOF, EBNF, SDF, and XML
Schema, by mappings at the meta-model and model level.
Here inspiration can be drawn from previous work in syntax
definition, exchange formats, pretty-printing and generic
mappings between languages, e.g. [9, 41, 8, 30, 7, 10].

The next objective will be to address grammars and meta-
models in the context of multiple languages that refer to
each other or are combined into new languages. Important
steps in this direction are provided by the work on modu-
lar parametric syntax definition [41], embedding of domain-
specific languages [15], and recent experiments with gram-
mar mixins [?].

Unifying model and code transformation. Model-
driven software evolution requires many types of transfor-
mations. Transformations from model to code are used
to implement modeling languages. Transformations from
code to models are used to extract models from (legacy)
code. Transformations from models to models are used to
refactor models, to migrate models to a new modeling lan-
guage, or to map higher-level models to lower-level models.
Preferably all these transformations should be expressed us-
ing the same transformation language. Concepts from high-
level program transformation languages such as strategies
and dynamic rules in Stratego [45, 12, 13] can provide in-
spiration for the design of a high-level transformation lan-
guage that can be used to transform models as well as code.

Integrating modeling language definitions in the devel-
opment environment. MDE essentially proposes model-
ing languages as new units of abstraction. Thus, rather than
providing a fixed set of meta-models and corresponding
generators, introducing a new modeling language should be
just as easy as, say, introducing a new class in Java. The
programming environment should support the definition of
new languages consisting of a grammar (meta-model), a
transformation mapping models to implementations, pos-
sibly a framework for use by target code, and declaration
of an interface for connecting models to other models and
code. Furthermore, a language definition may come with
transformations for extraction of models from code, or for
refactorings. After defining a new language, the program-
ming environment supports the creation of models in the
language.

4.2 From Model to Code (Generation)

The objective of this theme is to arrive at methods and
tools that support the integration between traditional devel-
opment and generative development. The main question is
what are good design criteria for modeling languages and
their mapping to implementations; the main issues are ex-
pressivity and interaction.

Modeling business logic What are good language de-
signs for modeling business logic? The full generality of
a general purpose language provides great expressivity, but
provides little guidance in or knowledge of the application
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domain. On the other hand, a more restricted and to the
point language may provide excellent expressivity in the do-
main it supports, but is usually not very flexible as soon as
something slight out of the ordinary is needed. How do
we find a good balance between generality and domain-
specificity? How can existing (proprietary) DSL-based so-
lutions be mapped to the (standards-based) MDE domain
[23, 24]?

Model interaction In order to achieve modularity we
need separation of concerns into different models, which
implies dependencies between models. Furthermore, a sys-
tem may only be partially defined by models, with the rest
defined with GPL code, which implies dependencies be-
tween models and code. Rather than depending on con-
ventions that may easily get out of synch, these dependen-
cies should be formalized and checkable before code gener-
ation [27]. Thus, a model should publish an interface that
custom code and other models can use to interact with the
model. Such an interface may be declared explicitly as part
of the model, or it may be derived from the model specifica-
tion automatically. These requirements also hold for models
that define different views on the same (aspects of a) system.

Modeling composition Modeling languages usually
model a particular, frequently occurring aspect of sofware
systems. This promotes their reuse. Composition of
complete systems requires modeling lanuages that define
compositions of models.

4.3 From Code to Model (Evolution)

The objective of this theme is to arrive at methods and
tools that support the evolution of MDE-infrastructures,
which may affect the underlying meta-models, code gen-
erators, and application frameworks, as well as the existing
models that need to be migrated to the new infrastructure.
A special case is the migration of legacy applications to an
MDE approach, which we will consider as a sequence of
small MDE evolution steps.

Incremental model introduction Methods and tech-
niques are needed that make it possible to move certain con-
cerns to the model-based paradigm, leaving the rest of the
code in its current state. Our approach will be based on
our earlier experience in mixing domain-specific languages
(DSLs) with existing languages [15, 11], and our earlier
work in migrating concerns implemented using coding id-
ioms to an aspect-oriented DSL solution [16]. A particular
issue to be resolved is how to deal with (data) dependencies
between concerns.

Model reconstruction To migrate legacy systems to
model-based systems, methods are needed to reconstruct
or harvest models from existing code [40]. We distinguish
two directions. In agnostic reconstruction, we search for re-
curring patterns in the source code, and investigate if these
can be obtained through generation from a more concise
model specification. As an example, in our earlier work
we have investigated how clone detection or metrics can be
used to identify certain crosscutting concerns such as log-
ging and error handling [17, 36]. A second direction in-
vestigates how known model types can be reconstructed.
The models can be generic, such as state machines, but
also domain-specific, requiring domain-specific reconstruc-
tion techniques [28].

Model-based testing before and after reengineering
Replacing a concern by a model-based concern and intro-
ducing code generation for that concern, requires valida-
tion to ensure that the application still works as before. We
will investigate what testing techniques can be used to en-
sure that the system’s functionality has not altered, and that
faults likely to have been introduced in the reengineering are
found in the most effective manner. An issue is how we can
express the adequacy of a test suite in terms of the legacy
concern implementation as well as in the target model rep-
resentation.

4.4 Evaluation

While MDE holds much promise in reducing the costs
of maintenance, there is presently no empirical evidence
that this is indeed the case. Thus, besides research into
technological solutions, we need to analyze under what cir-
cumstances incremental model-based software evolution is
a viable idea, determine factors for success and counter-
indicators, and demonstrate benefits in practice.

While MDE offers a vision on how software engineer-
ing should be done, there is little guidance on the decision
making process to be followed when adopting model-driven
techniques for existing systems. It would be useful to de-
velop, based on experience from case studies, a set of guide-
lines for use in decision making, comprising indicators for
adopting MDE for a given system, metrics for monitoring
progress, guidelines for choosing technologies, analysis of
the impact of MDE on lifecycle management, and methods
for ensuring that the system’s behavior is not altered when
we improve its structure using MDE technologies.

5 Related Work

Work in some of the areas as suggested by our research
agenda is already taking place. We briefly discuss a selec-
tion of the most relevant recent developments.
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Technological Spaces Kurtev et al. [33] coin the term
“technological space” for a working context with a set of
associated concepts, body of knowledge, tools, required
skills, and possibilities. MDA and “grammarware” are two
example technological spaces they mention. The differ-
ent characteristics of technological spaces can motivate the
move from one technological space to another, which re-
quires “bridges” between these spaces. Such bridges will
be, e.g., needed in (incremental) platform and abstraction
evolution, when new code generator technologies and new
modeling notations are introduced.

A very generic framework for bridging between techno-
logical spaces is discussed by Wimmer and Kramler [48].
In this framework a compiler-compiler is used that, based
on an attributed grammar mapping EBNF to MOF, gener-
ates a so-called grammar-parser. This grammar-parser not
only transforms EBNF grammars into MOF-based meta-
models, but also generates a tool to transform programs as-
sociated with that EBNF grammar into models associated
with the generated metamodel. Model-driven software evo-
lution requires a similar approach to establish a bridge be-
tween some of useful and earlier developed tools that are
grammar-based and MOF-based meta-models such as the
UML.

Language Workbenches and Metamodeling Infrastruc-
tures The Model Development Environment we intend to
develop is strongly related to the ongoing language oriented
programming [22], language workbenches [26], and soft-
ware factories [29] initiatives. Jetbrain’s prototype Meta-
Programming System (MPS) for language oriented pro-
gramming [22] allows developers to extend the base pro-
gramming languages with new, domain-specific extensions
and a mapping to the base language.

The software factories [29] of Microsoft add to the de-
velopment environment DSL Tools that support the con-
struction of visual domain-specific languages. This consists
of support for creating a visual editor from a language defi-
nition, and definition templates for code generation.

Neither of these frameworks provide support for trans-
formation and reverse engineering. To facilitate this, infras-
tructures such the ASF+SDF MetaEnvironment [8], TXL
[19], DMS [3], and Stratego/XT [42, 30, 44, 12] support-
ing the modular definition of domain-specific and general-
purpose languages and transformations on those languages
will be necessary as well. A challenge to address is to ap-
ply the extensive experience obtained in the grammarware
domain to the realm of models.

Language Combination and Interaction Whereas cur-
rently languages interact implicitly at the level of the gener-
ated code, model-driven software evolution requires explicit
language interactions at the right level of abstraction.

This calls for a combination of languages, with which
we have already experimented in the context of embedding
of domain-specific languages [15, 11] and concrete syntax
for code generator templates [43, 14]. A particular chal-
lenge is finding appropriate mechanisms for extensibility of
program transformations for language extensions [46].

Reengineering to MDA The OMG is currently working
on a set of standards related to the modernization of exist-
ing systems, referred to as Architecture-Driven Moderniza-
tion (ADM) [1]. These standards effectively define a set
of metamodels that allow for modeling the information re-
quired for modernization efforts. One of these standards is
based on Mansurov and Campara’s Container Models that
they propose as a way to guide software maintenance [35].
Where possible we will reuse (or perhaps even contribute
to) relevants elements of the ADM meta-models.

The OMG discusses a number of scenarios in which
ADM could be applied [2]. One of those scenarios involves
the migration towards the MDA. For this scenario it is as-
sumed that the starting point is a situation were software
development is not model-driven. In practice, a hybrid set-
ting in which the starting point is partly model-driven but
using proprietary or obsolete technology that fails to meet
the demands of modern (web based) applications are likely
to occur as well. Initial results in addressing such situations
have been presented, in which model transformations them-
selves are used to automate parts of the migration [24, 40].

Roundtrip Engineering We are not considering
roundtrip engineering as in Fujaba’s ‘from models to code
and back’ [32]. Roundtrip engineering assumes editing of
generated code, which poses restrictions on code generation
(generated code should be invertible) and run a great risk
of divergence between model and code.

Instead we assert that generated code should never be
modified, and that models should be customized ‘from the
outside’, and that customization should either be considered
by the generator or be plugged into the generated code.

A challenge that must be addressed that such customiza-
tions should not depend on knowledge of the generated
code, in order to enable retargetability. Furthermore, our
transformations from code to model are “apply-once” model
extraction transformations that may become much more
complicated than one-to-one mappings common in rountrip
engineering.

Unifying Code Generation, Reverse Engineering, and
Model Transformation The key innovation that model-
driven software evolution requires is a unification of re-
verse engineering, program transformation, code genera-
tion, and model transformation techniques. The vision is
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that programmers using the model development environ-
ment can develop code generators, as well as transforma-
tions for model-to-model migrations, model harvesting, and
code-to-model extraction. Currrently transformation and
analysis frameworks tend to focus on one or the other ap-
plication.

Frameworks such as Fujaba, ATL and the proposed QVT
are biased to model transformations, and do not effectively
support program transformations as well. Likewise, many
reverse engineering activities, such as Rigi [49], Crocopat
[5], Bauhaus1, or CodeCrawler [34] (to name a few), are
effective in recovering lost structures, but have little support
for transformations.

There is a lot to be gained from combining and unify-
ing these various initiatives. One of our routes will be to
take our earlier program transformation and reverse engi-
neering work as starting points. We believe that the uni-
fying approach to program transformation developed in the
Stratego/XT project [47, 44, 13] consisting of rewriting with
programmable rewriting strategies, generic traversals, sep-
aration of rules and strategies for reusability and separa-
tion of concerns in transformations, and dynamic rules for
context-sensitive transformation is a valuable contribution
to the field of model transformation, and provides solutions
for many of the requirements in the QVT proposal.

6 Perspective

In the late 80s and early 90s, significant investments in
4th generation languages and code generators were made by
many organizations. 4GL was considered an important way
to speed up time to market, and to reduce the costs of soft-
ware development. Unfortunately, 4GL could not deliver
the value that was promised: in many cases, the use of a
4GL meant a lockin in proprietary code generation technol-
ogy, and in abstractions and modeling languages that that
were less and less suitable for the new demands imposed by
the environment in which the application had to run.

To date, model-driven architectures are generating a sim-
ilar amount of interest as 4GL, again in order to reduce de-
velopment effort and increase software quality. The strong
backing of large companies and the fact that many of the
proposed techniques are based on open standards, help to
avoid the problem of being restricted to proprietary tech-
nology. Nonetheless, the problem remains that for systems
with a long life span, it will be essential to be able to al-
ter the underlying code generators, frameworks or the mod-
eling notation used. Developing methods, tools and tech-
niques for exactly this problem will allow the modernization
of existing systems and the incremental adoption of model-
driven techniques.

1www.bauhaus-stuttgart.de

In this paper, we have analyzed the underlying issues and
challenges, leading to a research agenda for model-driven
software evolution.
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T. Tourwé. On the use of clone detection for identifying
cross cutting concern code. IEEE Transactions on Software
Engineering, 31(10):804–818, 2005.

[18] J. C. Cleaveland. Building application generators. IEEE
Software, pages 25–33, July 1988.

[19] J. Cordy. Source transformation, analysis and generation in
TXL. In ACM SIGPLAN 2006 Workshop on Partial Evalu-
ation and Program Manipulation (PEPM ’06), pages 1–11,
Charleston, South Carolina, January 2006. ACM SIGPLAN.

[20] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Techniques and Applications. Addison-Wesley,
1999.

[21] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. ACM SIGPLAN No-
tices, 35(6):26–36, June 2000.

[22] S. Dmitriev. Language oriented programming: The next
programming paradigm. JetBrains ’onBoard, Novem-
ber 2004. http://www.onboard.jetbrains.com/is1/
articles/04/10/lop/.

[23] D. Doyle. Transforming proprietary domain-specific mod-
eling languages to model-driven architectures. Master’s the-
sis, Delft University of Technology, 2005. URL: swerl.
tudelft.nl.

[24] D. Doyle, H. Geers, B. Graaf, and A. van Deursen. Migrat-
ing a domain-specific modeling language to MDA technol-
ogy. In J. M. Favre, D. Gasevic, R. Lammel, and A. Win-
ter, editors, Proceedings of the 3rd International Workshop
on Metamodels, Schemas, Grammars, and Ontologies for
Reverse Engineering (ateM 2006), pages 47–54. Johannes
Gutenberg-Universitat Mainz, 2006.

[25] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[26] M. Fowler. Language Workbenches: The Killer-App
for Domain Specific Languages? ThoughtWorks,
June 2005. http://www.martinfowler.com/articles/
languageWorkbench.html.

[27] B. Graaf and A. v. Deursen. Model-driven consistency
checking of behavioural specifications. In Proceedings
Fourth International Workshop on Model-based Method-
ologies for Pervasive and Embedded Software (MOMPES
2007). IEEE Computer Society, 2007.

[28] B. Graaf, S. Weber, and A. van Deursen. Model-driven mi-
gration of supervisory machine control architectures. Jour-
nal of Systems and Software, 2007.

[29] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, August 2004.

[30] M. de Jonge, E. Visser, and J. Visser. XT: A bundle of pro-
gram transformation tools. In M. G. J. van den Brand and
D. Perigot, editors, Workshop on Language Descriptions,
Tools and Applications (LDTA’01), volume 44 of Electronic
Notes in Theoretical Computer Science. Elsevier Science
Publishers, April 2001.

[31] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The
Model Driven Architecture–Practice and Promise. Addison-
Wesley, 2003.

[32] T. Klen, U. A. Nickel, J. Niere, and A. Zndorf. From uml to
java and back again. Technical Report tr-ri-00-216, Univer-
sity of Paderborn, Paderborn, Germany, September 1999.
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