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Preface
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my future plans is much appreciated. Second, I would like to thank Marc Naeije
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friends from the ninth floor. The darts we played, coffee we had and especially the
cake we ate made this thesis project apart from interesting also a lot of fun. Finally,
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I was doing and get frustrations out of my system.
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kindle the same enthusiasm for the various topics that has driven me this past
year.

Delft, January 26, 2010
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Summary

The Global Trajectory Optimization Competition (GTOC) is a competition that
seeks to stimulate improvements in the fields of mission analysis and optimization.
Due to the increase in interest, the competition has become a good way to mea-
sure one’s skills in solving complex mission analysis problems. In this report the
problem posed in the second version of the competition, GTOC2, is investigated.
The problem concerns an asteroid tour mission. Starting from Earth, four aster-
oids selected out of a total of 910, have to be visited. The total set of asteroids
is divided into four groups, based on their physical and orbit characteristics. One
asteroid from each set needs to be visited. Minimization of final mass over time of
flight is sought.
At the point of departure of this thesis project, the Mission Analysis Department
at the Faculty of Aerospace Engineering of the Delft University of Technology is
efficient in coping with GTOC-like problems, and therefore can not successfully
compete in the GTOC competition. This situation calls for a study of the GTOC2
problem and relevant solution methods. With this purpose in mind, the main
research question is therefore formulated as follows:

What is the best way to handle the GTOC2 problem in order to find the optimal
solution with the least amount of computational effort?

It is emphasized that the research focuses on finding a solution technique,
rather than a solution of GTOC2. To answer this question as accurately as possi-
ble, the GTOC2 problem has been divided into three parts. The first part concerns
the asteroid selection and sequencing. This problem is identified as an Exact Gen-
eralized Traveling Salesman Problem (EGTSP), which is a variant of a classic
problem in combinatorial analysis, the Traveling Salesman Problem. To convert
this problem into a GTOC2 model, the cities are replaced by asteroids, and the
salesman by a spacecraft. The distances between the cities are calculated using
three alternatives. One is a cost function based on the velocity budget, ∆V , re-
quired to match the orbital elements of the departure and arrival orbit, the second
on the energy difference between the departure and arrival orbit, and the last cost
function is the one implemented by ESA when participating in GTOC2. The cost
function implemented by ESA is based on a three-burn transfer. Two methods
will be employed to solve the EGTSP, the Nearest Neighbor Heuristic (NNH) and
the Branch and Bound Method (B&B).
The second part of the problem concerns a phasing assessment of the sequences
that were found after solving the first part of the problem. For this purpose, a con-
tinuous method based on exponential sinusoids was developed. Finding optimal
solutions, using the exponential sinusoid model, was done by applying a Monte
Carlo search, a Genetic Algorithm and an Interior Point Method consecutively.
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viii Summary

The third part of the problem is to find a trajectory that fulfills the stringent con-
straints of the GTOC2 assignment. Due to time constraints, the third part will
not be addressed in this research.

The results show that the B&B method outperforms the NNH on the same
search space. Due to its efficiency, however, the NNH is able to cope with the
complete set of 910 asteroids, whilst the B&B Method could only cope with a
reduced set, with a size of about 60 asteroids. For, the cost function based on
energy, the B&B results did outperform the results obtained by applying the NNH
to the complete set.
When a selection of the sequences obtained by the GTOC2 participants was an-
alyzed using a continuous method, it was found that such a continuous method
could only be used to perform very rough assessments of the quality of the phasing
of a sequence. Only the sequence ranking last, according to the GTOC2 results,
was classified significantly worse than the sequences obtained by the other partic-
ipants, including the winner.
The continuous method was applied to the sequences obtained by the NNH and
B&B methods, using the three different cost functions, as well. This makes a total
of six sets of asteroid sequences that were analyzed. The continuous results show
that both methods, in combination with any of the cost functions, are able to come
up with good solutions, except for the NNH in combination with the cost function
used by ESA. The solutions obtained with a cost function based on energy proved
to be the most volatile. The continuous results for the sequences obtained using
the B&B method in combination with the ∆V and ESA cost functions produced
results similar to those for the sequences obtained by the GTOC2 participants.
The continuous results for the sequences obtained using the NNH in combination
with the cost function based on ∆V slightly outperformed the continuous results
for the sequences obtained by the GTOC2 participants.

Of the methods analyzed in this report, the NNH method applied to the com-
plete cost matrix, in combination with a cost function based on ∆V , proved to
be the most efficient in consistently finding good asteroid sequences. The devel-
oped B&B algorithm was not able to cope with the complete cost matrix. Results
suggest, however, that if a more advanced B&B approach is developed, one that
is able to cope with the complete cost matrix, it will most likely outperform the
NNH method.
The continuous method, was, in its current state, unable to perform an accurate
phasing assessment of asteroid sequences. The obtained solutions contained large
constraint violations, which makes it impossible to make any accurate observation
regarding phasing. The developed method can only be used to confirm the se-
quences obtained when solving the first part of the problem. Improvements of the
continuous method are needed to increase the accuracy of the model and solution
method.
Although the third part of the main question was not cover by the research in
this report, the order of magnitude of the constraint violations do indicate that
finding a trajectory fulfilling the GTOC2 constraints requires a far more accurate
and powerful solution method than the ones investigated here.
It is advised not to attempt to solve the GTOC2 problem in the framework of
one MSc thesis. The required solution methods are quite involved and require
significant amounts of time to develop and test. Instead it is advised to divide the
problem in two or three parts.



Summary ix

It is also advised to not participate in the GTOC competition until a toolbox con-
taining the basic mission analysis tools is available. The time available to solve
the GTOC assignment (one month) is far too short to develop the required tools.
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Chapter 1

Introduction

The Global Trajectory Optimization Competition (GTOC) is a competition that
seeks to stimulate improvements in the fields of mission analysis and optimization.
It was first organized in 2005 by ESA’s Advanced Concept Team [ESA, 2005].
Over the past few years, the interest in the GTOC competition has increased
significantly. The large number of participants makes this competition a good way
to directly measure one’s skills in solving complex mission analysis problems.
This research is performed under the auspices of the Mission Analysis Department
at the Faculty of Aerospace Engineering of the Delft University of Technology
(DUT). At this point the department is not efficient in coping with GTOC-like
problems, and therefore cannot successfully compete in the GTOC competition.
MSc students have been attempting to solve the second version of the competition,
GTOC2, but were unsuccessful. Large constraint violations were still present in
the solutions obtained by [Evertsz, 2008]. This situation calls for a study of the
GTOC2 problem and relevant solution methods.
In this report the GTOC2 will be investigated. The problem concerns an asteroid
tour mission. Starting from Earth, four asteroids selected out of a total of 910,
have to be visited. The total set of asteroids is divided into four groups, based
on their physical and orbit characteristics. One asteroid from each set has to be
visited. This problem was selected by JPL, the organizer of GTOC2, not only
because of its complexity, but also because of a more practical reason. Asteroids
have earned an increase in interest from the scientific community, because it is
expected they provide information about the formation of our solar system.

The research presented in this report sets out to gain more understanding of
the GTOC2 problem and to formulate an advise on how to solve it. With this
purpose in mind, the main research question is formulated:

What is the best way to handle the GTOC2 problem in order to find the optimal
solution with the least amount of computational effort?

To answer this question as accurately as possible, the GTOC2 problem will be
divided into three parts. The first part concerns the discrete aspect of the problem,
being the asteroid selection and sequencing. This problem is identified as a variant
of the Exact Generalized Traveling Salesman Problem (EGTSP), where the cities
are being replaced by asteroids, and the salesman by a spacecraft. The distances
between these cities will be determined using three different cost functions. The
first cost function is based on the velocity budget required to match all orbit
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elements of the departure orbit with the elements of the target orbit. It was
selected as an attempt to improve the results of the other two cost functions. The
second cost function is based on an energy difference between two asteroid orbits.
It was selected because of an observation made about the GTOC results. This will
be explained in chapter 2. The last cost function is the cost function implemented
by ESA when solving the GTOC2 problem. It is based on a three-burn transfer
and was selected here to compare the sequences obtained by the other methods
used in this research and the sequences obtained by ESA when participating in
GTOC2. Note that the cost functions do not consider the phasing aspect of the
transfers. Now that the asteroid selection and sequencing problem is identified
as a combinatorial analysis problem, solution techniques from this field can be
employed to solve this problem. Two solution methods will be investigated. The
Nearest Neighbor Heuristic (NNH), for its low computational cost, and a more
involved Branch and Bound (B&B) algorithm, because it generally outperforms
the NNH. For the latter method, the problem needs to be transformed from an
EGTSP into a standard Traveling Salesman Problem (TSP).
The second part of the problem considers the continuous aspect of the problem,
being a phasing assessment of the sequences that were found after solving the first
part of the problem. There are two options for the orbit model when performing
such an assessment, one is a numerical model, the other an analytical model. Since
it is known beforehand that this method will have to cover a lot of ground, it is
opted to use the computationally more efficient analytical orbit model. There are
three options for the analytic model, being the exponential sinusoids [Petropoulos
et al., 2004], the inverse polynomials [Wall and Conway, 2009] and a pseudo-
spectral model [Vogeleer, 2008]. Parallel to the research performed in this report,
another project at the Faculty of Aerospace Engineering of the Delft University of
Technology was performed in which a multileg exponential sinusoid orbit model
was developed. In order to save time, this model was converted to the needs of
this research, thereby automatically choosing for an exponential sinusoid model.
The MATLAB optimizer toolbox will be used to solve the continuous aspect of
the problem.
The last part of the problem is finding a trajectory that fulfills the stringent
constraints of the assignment. Due to project time constraints, the third part will
not be addressed in this research.

This report is written under the assumption that the reader is familiar with
the fields of astrodynamics and optimization. For an introduction in both fields
the reader is referred to [Gorter, 2009]. Theory that is needed to perform this
research, and is not typically part of an undergraduate mission analysis program,
will be introduced.
To answer the main question, first the GTOC2 assignment will be presented and
analyzed in Chapter 2. In this chapter the topics that will be scrutinized in
this report are identified as well. Because basic knowledge about combinatorial
problems and analysis is required, relevant topics from this field are included in
Chapter 3. With the concepts presented here, it is possible to construct a model for
the discrete aspect of the GTOC2 problem. This discrete model, as well as a model
for the continuous aspect of the GTOC2 problem, will be constructed in Chapter
4. Chapter 5 will present the techniques used to solve both the discrete and the
continuous aspect of the problem. In order to assess the validity of the designed
models and methods, a number of benchmark tests are performed in Chapter 6.
The results of the performed analyses will be presented in Chapter 7 and chapter
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8 will draw conclusions based on these results. Recommended starting points for
future research will be included in Chapter 8 as well.





Chapter 2

GTOC2 Analysis

This chapter will introduce the GTOC2 competition [NASA, 2006]. First, the
assignment will be described. Second, the models and solution methods used by
the GTOC 2 participants will be stated. The chapter concludes with a number of
observations relevant to the research presented in this report.

2.1 The GTOC2 Assignment

To make sure the goal of the GTOC competition is reached (improving mission
analysis tools) certain criteria are imposed on the design of the assignment itself
[Petropoulos, 2007]. First, the global design space has to be large, including a
large number of local minima. Second, the objective function or constraints has
to be unusual, so no existing software can tackle the problem. Third, the problem
needs to be solvable within 3 or 4 weeks. The last criterion is that the solutions
need to be verifiable easily [Petropoulos, 2006]. The winner of the competition
befalls the honor of organizing the next round of the competition and with that,
also the definition of the new assignment. The winners of GTOC over the years
are [ESA, 2005]:

GTOC1 (2005): JPL
GTOC2 (2006): Politecnico di Torino
GTOC3 (2007): CNES
GTOC4 (2009): Moscow State University

The assignment for GTOC2, handed out by JPL, will provide the framework for
the research in this report.

The assignment of GTOC2 concerns the design of a multiple asteroid ren-
dezvous mission, using low-thrust propulsion only. The spacecraft has to ren-
dezvous with one asteroid out of each of the four predefined groups of asteroids.
Maximization of the final spacecraft mass over flight time is sought, which leads
to the objective function given by 2.1 [Petropoulos, 2006]:

J =
mf

tf
(2.1)

The constraints of the problem are:
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6 GTOC2 Analysis

A hyperbolic excess velocity when leaving Earth, V∞, of no more than 3.5
km/s in any direction.

Launch window is between 2015 to 2035.

A stay time of at least 90 days is required at the first three asteroids; only a
flyby at the fourth asteroid is required.

The time of flight of the total mission must be less than 20 years.

No gravity assists are permitted.

Initial spacecraft mass is 1500 kg of which 1000 kg is propellant. The truster
has an Isp of 4000 s and has a maximum thrust level of 0.1 N.

A rendezvous is considered successful when the spacecraft is within 1000 km of
the asteroid and matches its velocity within 1 m/s for 90 days, upon departure
and arrival. The flyby is successful when the position is matched within 1000
km of the fourth asteroid.

The orbits of all asteroids of the GTOC2 assignment are presented in Figure 2.1.

Figure 2.1 Visualization of the asteroid orbits. The image is a top view of the ecliptic plane. The
different colors indicate the different asteroid groups. Group 1 = green, group 2= blue,
group 3 = yellow, group 4 = red [Evertsz, 2008].

2.2 GTOC2 Models, Methods and Results

The models and methods used by the different teams during the competition are
summarized in Figures 2.2 and 2.3. Because the different participating teams all
tackled the problem in at least two steps, two figures are presented. Figure 2.2
shows models and methods for finding the asteroid sequence. Figure 2.3 shows
models and methods used for finding the final low-thrust orbit. The rank numbers
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in each of the two figures correspond with each other. Thus, for each competitor
(with a certain rank) the method for the first step is presented in Figure 2.2 and the
method for the second step is presented in Figure 2.3. The tables are constructed
based on a discussion of the GTOC2 results presented in [Petropoulos, 2007].
Unfortunately, openness and sharing of knowledge is not part of the nature of the
mission analysis community and only brief statements of the models and methods
used during GTOC2 are available, with the exception of ESA, who published their
cost function used for asteroid selection in the paper [Izzo et al., 2007]. Other
than that, only the information about the used methods in Figures 2.2 and 2.3 is
available. Extensive descriptions of the models and methods mentioned in Figures
2.2 and 2.3 are given in [Gorter, 2009].
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Figure 2.2 GTOC2: Models and methods for analyzing mission scenarios.
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Asteroid selection and sequencing

Heuristics and Edelbaum approximation using phasing.

High-thrust Lambert solutions between asteroids.

Branch- and Prune with and without phasing. Model: Lambert arcs and exposins.

Use one leg as reference and check phasing with other asteroids for other legs.

1: Phase free based on variation of orbital elements and high-thrust.                                                                                  

2: Low-thrust on one leg including phasing.

Low-thrust model analyzed with neural networks.

GA and PSO on Lambert arcs, exposin for 2nd leg.

Figure 2.3 GTOC2: Models and methods for obtaining final low-thrust orbit.

The results of the competition are included in Appendix A. The attained
objective values range from a little under 30 to almost 100 kg/year. The corre-
sponding total time of flights are for the best 8 candidates near 10 years and the
corresponding fuel budgets range from about 580 kg to 680 kg. Ranks 9 to 11
have, relatively speaking, longer time of flights and higher fuel consumptions. The
group order of the best results obtained by each participant is 4-3-2-1, with the
exception of GMV, that found a group order of 4-2-3-1. Not all participants use
the 3.5 km/s available when departing Earth.
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2.3 Observations Regarding the Results of the GTOC2
Participants

The first thing that becomes obvious from looking at the applied models and
methods is that, as mentioned before, every team divided the problem into two
parts. The first part of the problem is to establish the asteroid sequences. This
is the discrete aspect of the GTOC2 problem. These sequences are mainly ob-
tained using low-fi methods. Often these methods are not based on low-thrust
characteristics, but use impulsive, high-thrust models and Lambert targeting-like
techniques, which are easier and quicker to evaluate than a low-thrust trajectory.

An important part of the asteroid selection and sequencing procedure is as-
sessing the phasing characteristics of an asteroid sequence. A sequence that is
considered promising without considering its phasing characteristic might become
unattractive when its phasing characteristics are considered. Assessing phasing
characteristics further decreases the set of candidate solution sequences. Most
teams combined the asteroid selection, sequencing and phasing analysis process.
Of teams ranking 1st, 3rd, 5th and 11th it is known, however, that they separated
the asteroid selection and sequencing from the phasing analysis. Because this re-
search focuses on analyzing the GTOC2 problem itself and is trying to determine
what it is that makes this problem so complex, it is chosen to split the asteroid
selection and sequencing analysis from the phasing analysis.

The second part in the solution procedure is to find the actual trajectory pass-
ing the selected asteroids in the determined order, without violating the mission
constraints. The method of choice to solve the trajectory was, for most partic-
ipants, a calculus-based method. Either a direct or an indirect approach was
adopted. The time frame imposed on the research performed in this report, un-
fortunately, did not permit an accurate analysis of the actual trajectory. Imple-
menting an accurate direct or indirect method is not straightforward and should
be the subject of a separate research project.

It was observed that the group sequences obtained by the winners is either
4-3-2-1 or 4-2-3-1. Together with the asteroid orbits shown in Figure 2.1, this
shows that the optimal trajectories obtained by the participants travel outward
with respect to the Sun. In other words the group sequences are ordered with
increasing amount of orbital energy. This makes sense because travelling to a
sequence with lower orbital energy followed by one with a higher orbital energy
is inefficient. For this reason, one of the cost functions analyzed in this report is
based on energy.

Another observation is that using heuristics is only useful when applied mod-
estly and carefully. Although the winner applied heuristics, there is a number of
other teams that applied heuristics too but were not as successful. In Figures 2.2
and 2.3, only the teams that found valid solutions are listed. There were a few
other teams (including the Delft University of Technology team) that used heuris-
tics on orbital elements (for example plane changes larger than a certain limit
were discarded) to determine the asteroid sequence, but were not very successful
by doing so. The winners used heuristics to establish bounds on parameters. For
example, the winner of the second competition used the observation that a group
of asteroids with low energy and low inclination passed through their perihelia
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within a window of two years, repeated every 8 years [Petropoulos, 2007]. The
second heuristic they used was a stepping approach in determining the scenario.
This means that they gave preference to sequences of which the apoapsis of the
previous leg was close to periapsis of the next leg.





Chapter 3

Combinatorial Problems and
Analysis

The problem of determining which asteroids to visit and in what order classifies
as a combinatorial optimization problem. This chapter will introduce the relevant
problems and solution methods from the field of combinatorial analysis.

When the phasing characteristics of the asteroid sequence are disregarded (i.e.
a time-independent formulation is chosen) the sequencing problem reduces to
an Exact Generalized Traveling Salesman Problem, or EGTSP. To describe the
EGTSP, two other combinatorial problems will be introduced. The first is the
most general of combinatorial problems, called the Assignment Problem (AP).
Based on the AP another classic problem in combinatorial mathematics, the Trav-
eling Salesman Problem (TSP), will be introduced. The EGTSP is a variant of
the TSP.
Three methods that will be useful when analyzing the discrete aspect of the
GTOC2 problem will be described. The Hungarian Algorithm (HA) is used to
solve APs. The Branch-and-Bound algorithm (B&B) and the Nearest Neighbor
Heuristic (NNH) can be used to solve TSPs. Since the AP and TSP are closely
related, it is not surprising that the solution methods for these problems will be
related as well. The B&B calls the HA once every iteration.
An overview of the relations between the combinatorial problems and the solution
methods is given in Figure 3.1. It is emphasized that the figure is not exhaustive
and it does not give a solution procedure, but merely an overview of relations. The
total solution procedure of the EGTSP will be discussed in section 5.1.1.

3.1 Basic Graph Theory

This section will introduce relevant topics from the field of graph theory. This
theory is used as a mathematical basis to formulate and solve a wide range of
combinatorial problems. This section is written based on [Hartmann and Weigt,
2009]. For a more extensive introduction about graph theory the reader is re-
ferred to any introductory literature readily available on the topic, for example
[Hartmann and Weigt, 2009] or [Bondy and Murty, 2009].

11
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Figure 3.1 Relations between combinatorial problems and solution methods

A graph G is a mathematical identity given by its vertices i ∈ V and its
undirected edges {i, j} ∈ E ⊂ V :

G = (V,E) (3.1)

Note that in a graph of this form {i, j} and {j, i} denote the same edge. A graph
of this form is also known as an undirected graph, since the direction in which the
edges have to be traversed is not prescribed. An edge for which the direction is
fixed is called an arc. A visual example of a graph is given in Figure 3.2. Now

 

6 

2 
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4 
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1 

7 

{4,5} 

{2,4} 

{6,3} 

Figure 3.2 Example of a Graph. Vertices are denoted by circles, edges by lines.

that the concept of a graph has been introduced a number of characteristics can
be described [Hartmann and Weigt, 2009].

The order N = |V | counts the number of vertices, and the size M = |E| counts
the number of edges.

Two vertices are adjacent if {i, j} ∈ E (for example, vertices 4 and 5 in Figure
3.2 are adjacent, 1 and 2 are not).
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The degree of vertex i, deg(i), equals the number of adjacent vertices. Vertices
of zero degree are called isolated (for example, vertex 7 in Figure 3.2 is isolated,
and the degree of vertex 4 is four).

With a graph completely defined it is possible to introduce a few new concepts.

A graph is called a subgraph Gsub of G if Vsub ⊂ V and Esub ⊂ E.

A subgraph Gsub is a path of G if it has the form Vsub = {i0, i1, . . . , il}, Esub =
{{i0, i1}, {i1, i2}, . . . , {il−1, il}}. The length of the path is l = |Esub|. i0 and il
are called endpoints.

A path with i0 = il is called a cycle.

A cycle visiting every vertex of a graph exactly once is called a Hamiltonian
cycle. Note that a Hamiltonian cycle is a subgraph of the graph it cycles
through.

A weighted graph G = (V,E,C) is a graph with edge weights described in C.
An edge weight describes the cost of traversing a certain edge. C is also known
as the cost matrix.

The introduced characteristics and concepts will be useful when modeling the
GTOC2 problem. Their physical meaning will be stated when applied.

3.2 The Assignment Problem

Suppose we have n agents and n tasks that need to be completed. Completing a
specific task by a specific agent will have a certain cost. The assignment problem
(AP) is the problem of assigning n tasks to n agents, such that the total cost of
completing all tasks is minimal. Each agent is only allowed to complete one task.
This problem can be described using a weighted graph and can be summarized
in matrix form. In this case the agents and assignments are described by vertices
and all possible combinations of agents and jobs are described by a set of edges.
An example of an AP composed of three tasks (P,Q,R) and three agents (A,B,C)
is shown in Figure 3.3 [Pilgrim, 2009]. The graph describing this problem is
of order 6, because it involves 3 tasks and 3 assignments. There are 9 entries

P     Q     R 

  

  A       1      2      3 

 

  B 2      4      6 

 

  C 3      6      9 
 

 

 

 

 

 

 

Figure 3.3 Example of an AP with 3 tasks (horizontal) and 3 agents (vertical) [Pilgrim, 2009].

(9 possible combinations of agents and tasks), each representing an edge. This
means that the size of the graph is 9. In this example, the entries in the matrix
represent the cost of performing a certain task (weight of a certain edge) by a
certain agent. For example, assigning task P to agent B will cost 2, assigning task
Q to agent A will cost 2 and assigning task R to agent C will cost 9. The total cost
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of completing all these tasks by the assigned agents is 13. This division of tasks
between the different agents, however, is not the one with the lowest total cost.
Trying different combinations of tasks and agents for this very simple example will
lead to the result that the lowest cost is 10, which is obtained by assigning agent
A to task R, agent B to task Q and agent C to task P. When the number of tasks
and agents increases it becomes more difficult to solve this problem by trial and
error. Fortunately there are algorithms available for solving APs. One of them is
the Hungarian Algorithm, which will be discussed in section 3.4.

3.3 The Traveling Salesman Problem and its Variations

Suppose we have n cities each separated by a certain distance. Consider a sales-
man who has to visit each city exactly once to sell its merchandise. The salesman
wants to find the shortest path connecting all cities such that he will have to
travel the least amount of distance. This problem is adequately called the Travel-
ing Salesman Problem (TSP) [Winston, 2004]. The TSP can also be described by
a weighted graph and summarized in matrix form. In this case, the vertices repre-
sent the various cities and the edges describe the cost (e.g. distance, financial cost
or time) of every possible transfer between any two cities. Each entry in the matrix
represents an arc (each entry represents a directed edge between two vertices, i.e.
each entry represents a connection between two cities that is traversed in a fixed
direction). Since the diagonal represents irrelevant transfers to and from the same
city, the diagonal entries are equal to infinity. An example of the problem is shown
in Figure 3.4. The TSP can be regared as a constrained AP. The constraint that is

A       B      C      D      E 

  

  A       !     132    217    164   58 

 

  B      132     !      290    201   79 

 

  C      217   290      !    113  303 

  

  D     164    201    113     !    196   

 

  E       58      79    303    196    ! 

 

 

 

 

 

Figure 3.4 Example of a symmetric Traveling Salesman Problem with 5 cities [Winston, 2004].

added to the AP is that the solution of the AP has to be a Hamiltonian cycle: all
vertices (cities A to E) need to be visited exactly once. Note that this implicitly
means that the salesman returns to the city it started from. To give a physical
meaning to this constraint, consider not just one salesman but one salesman in
every city. Each salesman has to be assigned to go to one city. This is an AP.
Adding the constraint that the solution to the AP has to be cyclic, means that all
transfers by all agents (the salesmen) can be performed sequentially.
There is a characteristic of the TSP that deserves some attention. This character-
istic is the (non-)uniqueness of the solution. It is possible to have multiple optimal
solutions. In this case different paths exist with the same total cost (same total
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distance, l, travelled). In Figure 3.4 it can be checked that there are multiple opti-
mal solutions. The total cost of these solutions is 668, and the two corresponding
cycles are: A → C → D → B → E → A and A → E → B → D → C → A.
Taking a closer look at these solutions reveals that the (Hamiltonian) cycles are
identical but traversed in the opposite direction. These two solutions are both pos-
sible because this is a symmetric problem: the cost matrix is symmetric across its
diagonal. Another way of looking at this is that although the entries in the matrix
describe a set of arcs (a specific edge traversed in a specific direction) each arcs’
opposite (the same edge but traversed in the opposite direction) is also present in
the matrix. This basically reduces the TSP to an undirected graph. On such a
graph Hamiltonian cycles exist that can be traversed in opposite directions. Con-
cluding, if the problem is symmetric at least two solutions exist that describe the
same Hamiltonian cycle but traverse it in opposite directions.
There are several variants of the TSP. Amongst others, the asymmetric TSP, where
the cost matrix of the problem is not symmetric across its diagonal, or the bottle-
neck TSP where the distance the salesman is allowed to travel between two cities
is limited. Due to these variants, the TSP has many very practical applications in
real-life. For example the TSP can be used to model truck routing problems for
transportation companies. The asymmetric TSP can be used when a truck is not
allowed to go back to a city in exactly the same way (because of one way streets
for example) and the bottleneck TSP can be practical when realizing that a truck
has a limited amount of fuel, and that the distance it is allowed to travel between
cities is limited by the distance it can cover on one tank of gas.
There is one variant of the TSP which considers the cities to be clustered. This
variant is known as the Generalized Traveling Salesman Problem (GTSP) or Trav-
eling Politician Problem. The GTSP is the problem of finding the shortest route
visiting each state exactly once. The GTSP is thus a constrained TSP. There is
a stronger formulation of this problem which not only demands that each state is
visited exactly once, but also that exactly one city of each state is visited. This
stronger form of the GTSP is called the Exact Generalized Traveling Salesman
Problem or EGTSP. Note that it is not necessary for the groups to be detached.
A city can belong to two groups. Although this is not possible when considering
actual cities and states (a city is always located in either one state or the other),
it can be of relevance for other real-life problems. Remember that the cities and
connections refer to edges and vertices in a graph theory formulation, which are
mathematical identities rather than physical objects.
The EGTSP can be stated in matrix form as well. An example is given in Figure
3.5. In this example city A and B belong to one state (state X), city C and D to
a second state (state Y) and city E, F and G belong to a third state (state Z). In
Figure 3.5 it is shown how these states are implemented in the cost matrix. Since
the Salesman is not allowed to travel in between cities that are in the same state
these connections are set to infinity (basically these edges are removed from the
graph). In this way an optimal solution will never include any of these connections
since the total cost of the solution would become infinity as well, which is of course
a non-feasible solution. There are several methods to solve the TSP. Two of them
are the NNH and the B&B algorithm. The B&B method in section 3.5, the NNH
will be described in section 3.6.
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A        B       C       D      E        F        G 

  

  A        !        !       5        7       4        6         2 

 

  B        !        !       8        9       3         1         5 

   

  C        6         3       !       !       4        2         4   

  

  D       2          1       !       !       5        6         1 

 

  E       9          7        9        3      !        !        ! 

  

  F        8         4        6        5      !        !        ! 

 

  G       4         7        9        7      !         !       ! 

 

 

 

 

 

Figure 3.5 Example of a Generalized Traveling Salesman Problem with 7 cities (A to G) divided over 3
states [Behzad and Modarres, 2002]

3.4 Hungarian Algorithm

The Hungarian Algorithm (HA), sometimes referred to as Munkres’ Assignment
Algorithm, is used to solve assignment problems. The algorithm presented
here is a modification of the original algorithm presented by James Munkres in
1957 [Munkres, 1957] and makes it able to deal with rectangular cost matrices
instead of square matrices. First, the actions for each step will be stated and the
order in which they are executed. After the algorithm has been described, an ex-
ample solution of an AP will be given that details the implementation of each step.

The steps presented are from [Pilgrim, 2009]. The algorithm describes the
manual manipulation of a two-dimensional matrix by starring and priming zeros
and by covering and uncovering rows and columns. The method is of polynomial
runtime complexity, meaning it can solve an AP in O(Mk) steps, where M is the
problem size (number of vertices) and k is some constant. This is opposed to
exponential time where the problems are solved in O(kM ) steps. The steps of the
algorithm will be stated here. For a more extensive description of the algorithm
the reader is referred to [Pilgrim, 2009].

The algorithm contains six steps. These steps will not necessarily be performed
in the presented order. Some of the steps will be repeated or executed in a different
order if that is required to solve the problem. Figure 3.6 shows the process flow of
these steps.

Step 0: Create an n×m matrix called the cost matrix C in which each
element represents the cost of assigning one of n workers to one of m jobs. If
needed, rotate the matrix so that there are at least as many columns as rows
and let K=min(n,m). Go to step 1.

Step 1: For each row of the matrix, find the smallest element and subtract it



3.4 Hungarian Algorithm 17

from every element in its row. Go to step 2.

Step 2: Find a zero (Z) in the resulting matrix. If there is no starred zero in
its row or column, star Z. Repeat for each element in the matrix. Go to step 3.

Step 3: Cover each column containing a starred zero. If K columns are
covered, the starred zeros describe a complete set of unique assignments. In
this case, go to DONE, otherwise, go to step 4.

Step 4: Find a noncovered zero and prime it. If there is no starred zero in
the row containing this primed zero, go to step 5. Otherwise, cover this row
and uncover the column containing the starred zero. Continue in this manner
until there are no uncovered zeros left. Save the smallest uncovered value and
go to step 6.

Step 5: Construct a series of alternating primed and starred zeros as follows.
Let Z0 represent the uncovered primed zero found in step 4. Let Z1 denote
the starred zero in the column of Z0 (if any). Let Z2 denote the primed zero in
the row of Z1 (there will always be one). Continue until the series terminates
at a primed zero that has no starred zero in its column. Unstar each starred
zero of the series, star each primed zero of the series, erase all primes and
uncover every line in the matrix. Return to step 3.

Step 6: Add the value found in step 4 to every element of each covered row,
and subtract it from every element of each uncovered column. Return to step
4 without altering any stars, primes, or covered lines.

DONE: Assignment pairs are indicated by the positions of the starred zeros
in the cost matrix. If C(i,j) is a starred zero, then the element associated with
row i is assigned to the element associated with column j.

To illustrate the operations of the algorithm, all the steps of the solution of the AP
example of Figure 3.3 are included in Figure 3.7. Some observations regarding
the HA have to be made. The algorithm will work even when the minimum values
in two or more rows are the same. It will also work when two or more rows contain
the same values in the same order. In fact the algorithm is able to deal with a
matrix in which all the values are the same, although this is not a very interesting
problem. The most important thing, however, is that optimality is guaranteed
[Pilgrim, 2009].
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Figure 3.6 Process flow of the Hungarian Algorithm.
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5. Step 4 6. Step 6 7. Step 4 8. Step 5 9. Step 3 

10. Step 4 11. Step 6 12. Step 4 13. Step 6 14. Step 4 

15. Step 5 16. Step 3 17. DONE 

Figure 3.7 Example execution of the Hungarian Algorithm of problem presented in figure 3.3.
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3.5 Branch-and-Bound Algorithm

A Branch-and-Bound (B&B) algorithm performs a structured search of the solu-
tion space. It is suitable for solving discrete (constrained) optimization problems.
The B&B method starts with the initial problem and converts it to an easier sub-
problem. Then it starts solving and creating new subproblems until the original
problem is solved. The algorithm only pursues options that meet a certain crite-
rion. This criterion is usually the best objective value so far (the so-called upper
bound). In section 3.5.1 a mathematical formulation of the BB algorithm will be
presented. It is based on a survey performed by Lawler and Wood at the Uni-
versity of Michigan [Lawler and Wood, 1966]. In section 3.5.2 the example TSP
from figure 3.4 will be solved using the B&B algorithm. Finally, some comments
concerning the B&B will be given.

3.5.1 Mathematical Formulation and Solution Procedure

The general approach of the B&B algorithm is to substitute a ’difficult’ problem by
a sequence of smaller simpler problems. The benefit lies in the fact that subprob-
lems with suboptimal results can be disregarded for further analysis and hence the
search space is reduced. The starting point is a ’difficult’ constrained optimization
problem (problem P0) also called node 0:

min J0(x) (3.2)

subject to:

g0(x) ≥ 0 (3.3)

x ∈ X0 (3.4)

Problem P0 is replaced by a set of easier problems P = {P1, P2, .., PN} that
bounds problem P0, such that the following boundary condition (BC) holds:

BC: There exists at least one optimal solution x∗0 of problem P0, such that
x∗0 is feasible for at least one problem Pj ∈ P and Jj(x∗0) ≤ J0(x∗0)

Suppose that an optimal solution x∗j to each problem in P is obtained, and
that x∗k indicates the overall optimum:

Jk(x∗k) = minPj∈PJj(xj) (3.5)

Then x∗k is also an optimal solution of P0 if the following optimality conditions
(OC) are met:

OC1: x∗k is a feasible solution to problem P0.
OC2: Jk(x∗k) = J0(x∗k), i.e. the Objective value of the subproblem is the same as
the objective value of the initial problem when using the same solution (x∗k).

If not both of the optimality conditions are satisfied, the problem corre-
sponding to the current optimal solution (Pk) is substituted by a new set of
problems Pk. These subproblems are represented by new nodes in the B&B tree.
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Imposed on this new set of bounding problems is the requirement that the BC,
as well as a convergence conditions, are still satisfied. The convergence condition
can be formulated in a weak or strong way:

Weak Condition: For each problem Pj ∈ Pk, either x∗k is infeasible for Pj
or Jj(x∗k) > Jk(x∗k).
Strong Condition: For each problem Pj ∈ Pk and each feasible solution x to
problem Pk, either x is infeasible or Jj(x) > Jk(x).

These conditions state that the current optimal solution (of the parent
problem) is either an unfeasible solution for the newly generated subproblems
or that the current optimal solution will generate a worse objective value for
the newly generated subproblems, compared to the solution value it returned
for the parent problem. This way, the current optimal solution of the parent
problem is not generated again by any of the subproblems. These conditions do
not guarantee that an optimal solution will be found. However, they do represent
a minimal condition such that progress towards a final solution is made. The
process is visualized in Figure 3.8. During the B&B process it is possible to find
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Figure 3.8 Branch-and-Bound Process.Each square indicates a node/subproblem. Based on [Lawler and
Wood, 1966].

several subproblems that have equal optimal solutions and represent the overall
optimum at a specific intermediate stage. These problems are classified as active,
while problems who’s optimum is larger than the intermediate overall optimum
are designated as terminated. For example, in Figure 3.8, problem 4 is active
while problems 5, 6, 7, 8 and 9 are terminated. The complete description of a
B&B algorithm requires two more elements on top of the process described so far.
One is the rule, which is used to select which of the currently active problems
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is used for branching. The second is the method for deriving new bounding
problems (the node splitting technique).

There is a limited amount of options for selecting which active problem is to
be evaluated next. Three options are listed here [Froushani and Yusuff, 2009]:

Option 1: Select an active problem at random.

Option 2: Depth First Search (DFS), selects a problem of the last created set
of subproblems. This option is also known as the Last-In-First-Out method,
or LIFO.

Option 3: Best First Search (BFS), selects one of the active problems which
branch had the lowest cost so far. It is likely to have more than one active
problem for which this holds, since each node will probably branch in more
than one way.

The choice for using either DFS or BFS is made easier if experience with these
methods was available. However, at the current state of the research, this expe-
rience is not available. Therefore, the choice is made based on logic. The DFS
approach (option 2) will be implemented, because of two reasons. First, it requires
less computer memory because storing the branch values is not needed (which is
the case if the third option is chosen). Second, not every node of the tree repre-
sents a candidate solution. If the BFS method is chosen, it might get stuck in a
maze of unfeasible solutions with good objective values.
Another method that is sometimes applied in B&B algorithms is including arcs
with a low cost, because these arcs are considered to be good. This method fixes
good arcs it comes across when solving the subproblems, such that they are a part
of the solution of the newly generated subproblems. It is chosen not to implement
this technique, because in the problem considered in this report good arcs are not
necessarily present in the optimal solution.
The method for deriving new bounding problems (also know as the branching rule)
is based on constraint addition. Whenever a new subproblem is created, the con-
straints of the parent subproblem are copied and an additional constraint, based
on the result of the evaluation of the parent subproblem, is added.
To make the B&B algorithm more tangible, the next section will cover the solution
procedure for the example TSP of Figure 3.4 using the B&B algorithm.

3.5.2 Example Solution of TSP

This section will detail the solution procedure of the TSP example of Figure 3.4
using the B&B algorithm. The entire process will require seven iterations of the
B&B algorithm and thus a total of 7 subproblems will be generated and solved.
The subproblems are APs and the HA is used to solve the APs. The process is
shown in Figure 3.9. Every node (subproblem) contains the following information:

PC: This is short for process count. It indicates the order in which the algo-
rithms solves the various subproblems.

J: Objective value obtained by HA when solving the corresponding subproblem.

UB: This is short for upper bound. It is the best value found so far by the
B&B algorithm.
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Assignment pairs: The right column contains the assignment pairs as deter-
mined by the HA.

 

A – E 
B – A 
C – D 
D – C 
E – B 

PC   = 1 
J      = 495 
UB  = ! 

A – C 
B – E 
C– D 
D – A 
E – B 

PC   = 2 
J      = 652 
UB  = ! 

A – D 
B – E 
C – A 
D – C 
E – B 

PC   = 5 
J      = 652 
UB  = 668 

A – E 
B – D 
C – A 
D – C 
E – B 

PC   = 7 
J      = 668 
UB  = 668 

A – D 
B – E 
C – B 
D – C 
E – A 

PC   = 6 
J      = 704 
UB  = 668 

Subproblem 2 

Subproblem 0 

Subproblem 1 

Subproblem 5 Subproblem 6 

D  C  C  D  

B  E  E B  B  E  E  B  

A – C 
B – E 
C – D 
D – B 
E – A 

PC   = 3 
J      = 668 
UB  = 668 

A – E 
B – C 
C – D 
D – A 
E – B 

PC   = 4 
J      = 704 
UB  = 668 

Subproblem 4 Subproblem 3 

 
Candidate Solution 

 
Upper Bound Violation 

 
Multiple subcycles 

Figure 3.9 Branch-and-Bound process for TSP example of figure 3.4.

The cost matrices corresponding to these seven subproblems are included in Figure
3.10. Subproblem 0 is exactly the same as the TSP, with the exception that the
solution does not have to be cyclic. This is the relaxation of the ’difficult’ TSP into
a ’simpler’ AP. In fact the TSP corresponds to node 0 in Figure 3.8 and subprob-
lem 0 corresponds to node 1 in Figure 3.8. The UB is set to infinity. This way, the
UB will be updated when a candidate solution to the initial TSP is found, because
the obtained candidate solution will certainly have a better objective value than
infinity.
After the initial subproblem is formulated, it is solved using the HA. The solution
consists of an objective value J , which is the sum of the costs of the assignment
pairs as specified in the right column of each subproblem. If this solution of the
AP is a valid solution of the original TSP (optimality condition 1 of section 3.5.1)
and the cost of the of the solution of the AP is equal to the cost of the TSP
(optimality condition 2) then the original TSP is solved. Optimality condition 1
demands that the solution of the AP is a valid solution for the TSP. This means
that the solution of the AP should be cyclic. This is however not the case. If the
assignment pairs of the solution of subproblem 0 are considered it is observed that
they contain two subcycles: A→E→B→A and C→D→C. Optimality condition 1
is not satisfied by the solution of subproblem 0, because the solution is not a valid
solution for the TSP (the solution is not a Hamiltonian cycle). Since no candidate
solution is found for the initial problem the UB remains infinity.
The next step is to create a new set of subproblems (P)in which the solution of
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Subproblem 0 Subproblem 1 Subproblem 2 

Subproblem 3 Subproblem 4 Subproblem 5 

Subproblem 6 

Figure 3.10 Cost matrices for subproblems created during example solution of TSP problem of figure 3.4.

subproblem 0 (x∗k) is infeasible. The solution of subproblem 0 consisted of two sub
cycles. These sub cycles are not allowed in the TSP solution, hence the choice is
made to select one of the sub cycles and use each link as a constraint for the new
subproblems. In this way it is impossible for any future solutions to contain this
subcycle and hence a step is made in the direction of finding one cycle containing
all nodes, which is a valid solution of the original problem. The shortest cycle is
chosen to create new subproblems. This choice is made because it will result in the
least amount of subproblems (this is beneficial when the algorithm is implemented
on a computer system). In this case the shortest subcycle is C→D→C. Since this
cycle consists of two links, two new subproblems are created, one in which the
link C→D is not allowed and one in which the link D→C is not allowed. These
constraints are implemented by setting the corresponding assignment in the cost
matrix to infinity.
To select the next subproblem that will be solved by the algorithm the DFS ap-
proach is used. This means that the latest created subproblem will be analyzed
first. In this case subproblem 2 was created last and will be selected for the next
iteration of the B&B algorithm.
Solving subproblem 2, by using the HA, also results in a optimal solution contain-
ing subcycles. In this case the shortest subcycle is B→E→B. Again these links are
transformed into constraints for creating subproblems 3 and 4. According to the
DFS approach subproblem 4 should be solved next.
The solution of subproblem 4 contains no subcycles and hence is a valid solution
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for the original TSP. At this point it is not known if this solution is the best overall
solution of the TSP. All that is known is that this solution is a valid solution for
the TSP. The cost J of this solution is 668. This is the best solution value found
so far and hence the upper bound (UB) is set to 668. This means that whenever
a solution of a subproblem is higher, this branch will be excluded from further
analysis. This is because the HA returns optimal solutions of the AP. Adding
constraints to this AP will only make the problem more complex. Hence the cost
J of any solution (obtained by the HA) of a similar AP with additional constraints
will never improve.
DFS dictates that the next subproblem to be solved is subproblem 3. The optimal
solution of this subproblem has a cost of 704. This is higher than the current
upper bound of 668 and hence this branch will be excluded form further analysis.
The only subproblem left for analysis is subproblem 1. The solution costs 652
which is less than the current upper bound of 668 and hence it is still possible to
find a solution which better or equal to the current best of 668. Branching again
on its shortest subcycle B→E→B, creates subproblems 5 and 6. Subproblem 6 is
solved next, resulting in a valid solution. The cost is 704, which is no improvement
of 668, and this branch is excluded from the tree. Subproblem 5 however, does
result in a valid solution matching the current optimal solution of 668. Hence there
are two valid optimal solutions of the TSP.

3.5.3 Comments

There exists no overall B&B application suited for all types of combinatorial prob-
lems. The B&B should be tailored to the problem at hand. The effectiveness
of the B&B depends to a great extent on its node-splitting techniques. Creating
overlapping subproblems should be avoided if possible. If overlapping problems
are created, the search space is not pruned efficiently or not at all, in which case
the B&B will get into an infinite process. The method of creating subproblems as
detailed in the example of section 3.5.2 does not prevent the creation of duplicate
subproblems.
Also the selection method for deciding which subproblem to analyze next is im-
portant. When analyzing a problem using the B&B algorithm, the user has two
options. One is to start the algorithm and wait until it has evaluated all active
nodes. In this case it is better to use a DFS approach because, as mentioned
before, it requires a little less computer memory. The other is to start the algo-
rithm and stop it at a prespecified time. In this case the current lowest upper
bound (the best candidate solution) and the lowest lower bound (the best invalid
solution), specify a range for the optimal solution. When this approach is used it
might be better to start evaluation branches with the lowest costs so far instead of
selecting the last one created. This increases the chance of the algorithm to find
good solutions in a reasonable amount of time.
Since we are not interested in a range for the objective value but actual valid and
good solution cycles which cannot be derived from a certain range, it is opted to
create an algorithm that is able to evaluate all active nodes. The drawback of this
approach is that it will limit the problem size (i.e. the number of asteroids being
evaluated) that can be analyzed using the B&B algorithm. This is due to two
reasons. The first is that it will take the HA significantly more time to solve the
APs. The second is that an increase in problem size will results in an increase in
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the amount of subproblems. This will become problematic when considering the
fact that computer memory is limited.

3.6 Nearest Neighbor Heuristic

The Nearest Neighbor Heuristic (NNH), also known as the greedy algorithm, is an
alternative to the B&B for solving a TSP. Since the algorithm is very basic, it is a
faster method than the B&B. The quality of the result, however, depends greatly
on the search space (defined by the cost function used to model the problem) and
the starting position. It will be investigated if the NNH is a useful alternative to
the B&B for solving the discrete part of the GTOC2 problem.
The NNH is a very straightforward method. A starting point is selected, and
from there the edge or arc with the lowest cost is traversed to the next vertex.
From there on to the next vertex with the lowest cost, and so on. To increase
the robustness of this method, a multi-start approach can be chosen. This means
that the NNH is not merely run from one starting point, but for all vertices in the
graph. This approach is sometimes referred to as a multistart NNH.

As an example, the TSP from Figure 3.4 will be solved using the multistart
NNH. The first step is to set the diagonal entries to infinity. Although their
actual cost might be 0, this number is not allowed because when looking for the
cheapest transfer 0 will always be the lowest, hence this vertex will always be
chosen. Instead, it is desired that the arcs with a cost of 0 are not chosen at all
and hence they are set to infinity. In this case, when looking for a minimum, these
arcs will never be included.
For two starting points (A and B) the entire procedure will be shown. The results
for the other three points are stated as well and left for the reader to verify.
In Figure 3.11 the NNH steps are highlighted and the order of the visited vertices
is indicated by bold numbers. In this case point A is the starting point. The cost
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Figure 3.11 NNH process for TSP example of Figure 3.4, starting from city A.

matrix shows that the cheapest transfer from point A is to point E with a cost of
58. Then from row E the nearest vertex is B with a cost of 79. From there on it is
to D with a cost of 201, and C with a cost of 113. To complete the Hamiltonian
cycle the link form C to A is added with a cost of 217. The total cost of this path is
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668. Now considering B as a starting point, the cycle becomes B→E→A→D→C,
with a total cost of 704. This cycle is shown in Figure 3.12 As mentioned, every
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Figure 3.12 NNH process for TSP example of Figure 3.4, starting from city B.

city can be considered as a starting point. This method is known as the multistart
NNH. The results for the multistart NNH are summarized in Figure 3.13.

Start City 2 City 3 City 4 City 5 Cost

A E B D C 668

B E A D C 704

C D A E B 704

D C A E B 668

E A B D C 807

Figure 3.13 NNH results for TSP example of Figure 3.4.

Figure 3.13 shows that the optimal solution for the TSP is
A→E→B→C→D→A. The solution is found twice, once starting from A
and once starting from D. Interestingly, this result is the same as the optimal
solution that was found when solving this problem using the B&B. In this
particular example, the NNH is a good alternative for the B&B because the
same solution is obtained with less effort. The reason why the NNH requires less
effort is straightforward. The NNH only uses simple heuristics, whilst the B&B
algorithm calls the HA several times. The latter is intrinsically a more complex
method than the NNH and requires multiple matrix manipulations, making it
computationally more expensive.



Chapter 4

Models for GTOC2

This chapter will present the models that will be used for analyzing the GTOC2
problem. First, the model for the discrete part of the problem, the asteroid selec-
tion and sequencing, will be described, followed by a description of the continuous
model, that will be used for assessing phasing characteristics of asteroid sequences.

4.1 Discrete Model

Solving the asteroid sequencing problem for GTOC2 closely resembles the EGTSP
problem: the asteroids are divided into four groups based on their physical prop-
erties and exactly one asteroid from each group needs to be visited. The problem
will be stated in matrix form. Instead of the cities A, B, . . . etc, the matrix columns
and rows now describe asteroid 1, asteroid 2, . . . etc. The entries represent the cost
for traveling from asteroid i to asteroid j. The cost of traveling from one asteroid
to another in the same group is set to infinity. At this point there are four issues
left regarding the modeling of the GTOC2 problem with an EGTSP model:

Calculating the cost of each individual transfer.

Including Earth in the model.

The size of the problem. The B&B algorithm cannot cope with the complete
cost matrix.

The complexity of solving an EGTSP.

The first two issues are related to the model. The last two issues are related to
the method used to solve the problem. These four issues will be addressed in the
next sections.

4.1.1 Cost Functions

The entries in the cost matrix represent the costs of all possible transfers. This
section will present the functions used to calculate these transfer costs. The most
important thing regarding the costs is that they need to be time independent.
The reason for this is that the algorithm which will be used to solve the problem
is not able to cope with changing values in the cost matrix. The constraint of
time-independency implicates that phasing of one asteroid with respect to another

27
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cannot be taken into account since this would require information about the po-
sition of the asteroid in its orbit and this position is not constant over time. To
determine a transfer cost that is independent of time, the orbital elements can be
used, because these elements are constant. The orbital plane of each asteroid and
the shape of their orbits are constant.
Three cost functions will be analyzed: one based on energy, one based on ∆V ,
and one will be the cost function as used by ESA to select their asteroids during
GTOC2.

Energy
The cost function will be the sum of the energy required to transfer from the
orbital plane of the departure asteroid to the orbital plane of the target asteroid
(∆Eplane) and the difference in orbital energy between the orbits of the departing
and target asteroid (∆Eorbit).

The total orbital energy, the sum of the potential and kinetic energy, is given
by the Vis-Viva relation [Wakker, 1997]:

E =
V 2

2
− µ

r
= − µ

2a
(4.1)

where E is the total orbital energy, µ is the gravitational parameter of the Sun, V
is the velocity and a is the semi-major axis. The difference in total orbital energy
between two asteroids then becomes [Wakker, 1997]:

∆Eorbit =
(
−µ
2a1

)
−
(
−µ
2a2

)
= −µ

2

(
a2 − a1

a1a2

)
(4.2)

The energy required to change the orbital plane is obtained by adding the ∆V
required to change the inclination, i, and the right ascension of the ascending node,
Ω. This ∆V is then translated into energy by using the relation between kinetic
energy and the velocity of an object. The ∆V required to change the inclination
of the orbit is given by:

∆Vi
V1

= 2 sin (
1
2

∆i) (4.3)

and the ∆V required to change Ω is:

∆VΩ

V1
= 2 sin (i1) sin (

1
2

∆Ω) (4.4)

In these equations V1 indicates the velocity of the body in the departure orbit. It is
assumed that the plane change is done as efficiently as possible, meaning that the
transfer is executed in the apocenter. Hence V1 indicates the apocenter velocity in
the departing orbit. This velocity is given by:

V1 =
√

µ

ra1
(1− e1) (4.5)

Substituting this relation for V1 in equations 4.3 and 4.4 gives:

∆Vi = 2
√

µ

ra1
(1− e1) sin

(
|i2 − i1|

2

)
(4.6)



4.1 Discrete Model 29

∆VΩ = 2
√

µ

ra1
(1− e1) sin (i1) sin

(
|Ω2 − Ω1|

2

)
(4.7)

The sum of these ∆V s is the total ∆V required to change the orbital plane.
Because the change in orbital energy is proportional to the change in velocity, a
relation is required between velocity and energy. The simplest relation between
velocity and energy is the kinetic energy law, hence this was used to convert the
velocity into energy. Applying the ∆V at pericenter provides the largest increase
in energy, because the velocity is highest at this point 1. For this reason the ∆V
was applied at perigee.

Whether the ∆V is added to the pericenter velocity or subtracted, depends on
the semi-major axis of the departure and arrival orbit.
If a2 > a1:

∆Eplane =
1
2

(V1,p + ∆Vtot)2 − 1
2

(V1,p)2 (4.8)

If a2 < a1:

∆Eplane =
1
2
V 2

1,p −
1
2

(V1,p −∆Vtot)2 (4.9)

where ∆Vtot = ∆Vi + ∆VΩ and V1,p is given by:

V1p =
√
µ

rp
(1 + e1) (4.10)

The total energy required for each individual transfer is:

∆Etot = |∆Eplane|+ |∆Eorbit| (4.11)

Equation 4.11 is the cost function used to determine the entries in the cost matrix
of the EGTSP problem. Since this cost function will give different results for
transfers from A to B and from B to A this cost function is asymmetric.

∆V
The cost function will determine the cost of a transfer based on the ∆V required
to match the orbital elements, excluding the true anomaly, of the departure orbit
with the arrival orbit. This means that a ∆V has to be determined for changing
a, e, ω, i and Ω. First, the orbital planes are aligned, next the argument of perigee
is matched and finally the semi-major axis and the eccentricity are matched.

The equations for i and Ω are given by equations 4.6 and 4.7 and repeated
here.

∆Vi = 2
√

µ

ra1
(1− e1) sin

(
|i2 − i1|

2

)
(4.12)

∆VΩ = 2
√

µ

ra1
(1− e1) sin (i1) sin

(
|Ω2 − Ω1|

2

)
(4.13)

Next, the difference in the argument of pericenter is corrected for. The geometry
is shown in Figure 4.1. The ∆V for this change is given by [Sidi, 2006]:

1It is, from an energy point of view, more efficient to increase a higher velocity instead of a lower

velocity. For example, increasing a velocity of 2 km/s with 1 km/s results in 32

2
− 22

2
= 2.5MJ/kg,

while increasing a velocity of 3 km/s by 1 km/s results in 42

2
− 32

2
= 3.5MJ/kg
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Figure 4.1 Geometry for changing the argument of pericenter. Based on [Sidi, 2006].

∆Vω = 2
√

µ

a(1− e2)
e sin

(α
2

)
(4.14)

The ∆V required for the change of a and e is combined in one maneuver. The
equations are obtained from [Sidi, 2006]. The geometry of this transfer is shown
in Figure 4.2. The velocity at the apocenter is given, as before, by:

Va1 =
√

µ

ra1
(1− e1) (4.15)

The subscript 1 and 2 indicate departure and arrival orbits repectively. The veloc-
ity in the arrival orbit at the location where the radius is equal to the apocenter
distance of the departure orbit is:

V 2
2 = 2µ

(
1

a1(1 + e1)
− 1

2a2

)
(4.16)

The angle between the two vectors is:

cos2 β =
µa2(1− e2

2)
V 2

2 a
2
1(1 + e1)2

(4.17)

The ∆V required for the orbit change related to a and e then becomes:

∆Vae =
√

(V2 cosβ − Va1)2 + V 2
2 sin2 β (4.18)

To change a and e with this maneuver, the radius of apocenter of the departing
orbit should be larger than the radius of pericenter of the arrival orbit and smaller
than the radius of apocenter of the arrival orbit. If this is not the case, then,
depending on the situation, the apocenter of the departure body is raised or lowered
using a simple two-impulse transfer. The cost of this correction ∆V is added to the
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Figure 4.2 Change of a and e of a Keplerian orbit. Based on [Sidi, 2006].
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Figure 4.3 Raising the apocenter radius.
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total cost of the transfer. If the apocenter of the departure body is lower than the
perigee of the arrival body, the apocenter is raised by using a burn at pericenter
(see Figure 4.3):

∆Vcor = Vtar − Vdep (4.19)

where:

Vdep =

√
2
(
µ

rp
− µ

rp + ra1

)
(4.20)

and

Vtar =

√
2
(
µ

rp
− µ

rp + rp2

)
(4.21)

If the apocenter of the departure body is higher than the apogee of the arrival
body, the apocenter is lowered by using a burn at pericenter (see Figure 4.4): 

Target orbit 

Departure orbit 

rp 
ra1 ra2 

Vtgt 

Vdep 

Sun 

Figure 4.4 Lowering of the apocenter radius.

∆Vcor = Vdep − Vtar (4.22)

where:

Vtgt =

√
2
(
µ

rp
− µ

rp + ra2

)
(4.23)

and

Vdep =

√
2
(
µ

rp
− µ

rp + ra1

)
(4.24)

After these correction maneuvers are done, the eccentricity of this intermediate
orbit is also recalculated. This intermediate orbit is then used to evaluate the
maneuver to change a and e.
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The total ∆V cost required for each individual transfer is given by adding the
different ∆V s for each correction of the orbital elements:

∆Vtot = ∆Vi + ∆VΩ + ∆Vω + ∆Vae + ∆Vcor (4.25)

According to this cost function, the transfer costs from asteroid A to B will not
be the same as from asteroid B to A, hence the cost function based on ∆V is
asymmetric.

ESA Cost Function
The cost function used by ESA for the asteroid selection during the GTOC2 com-
petition is based on the ∆V consumption of a high thrust transfer between two
different orbits in two different planes. One impulse is given at the pericenter of
the lower orbit to achieve an apocenter raise and one in the apocenter of the arrival
orbit to achieve the pericenter raise and inclination change [Izzo et al., 2007]:

∆Vtot = ∆V1 + ∆V2 (4.26)

where

∆V1 =
√
µ

(√
2/rp1 − 2/(rp1 + ra1)−

√
2/rp1 − 2/(rp1 + ra2)

)
(4.27)

and

∆V2 =
√
V 2
i + V 2

f − 2ViVf cos irel (4.28)

where

Vi =
√
µ

(√
2/ra2 − 2/(rp1 + ra2)

)
(4.29)

and

Vf =
√
µ
√

2/ra2 − 1/a2 (4.30)

and

cos irel = cos i1 cos i2 + sin i1 sin i2 cos Ω1 cos Ω2 + sin i1 sin i2 sin Ω1 sin Ω2 (4.31)

Index 1 refers to the asteroid with the lowest apocenter of the pair in between
which the transfer is considered. Note that the differences in Ω and ω are not
corrected for, and thus will not be taken into account when selecting asteroids.
Since every pair of asteroids is evaluated twice, but the asteroid with the lowest
apocenter will always be the same, this cost function is symmetric.

4.1.2 Including Earth

The GTOC2 problem does not only concern transfers between asteroids, but also
an initial leg from Earth to the first asteroid. In order to include Earth a fifth
group (called group 0) is introduced. This fifth group contains Earth only. Adding
the Earth to the problem means increasing the size of the EGTSP matrix with
one row and one column. The entries in this row and column are calculated in
the same way the transfers between asteroids are calculated. Adding Earth to
the cost matrix introduces a new issue. If the EGTSP is solved in its current
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format, the solution would be optimal for a trajectory that is returning to Earth
(because the solutions of an EGTSP are cyclic). The optimal solution of this cycle
is not the same as the optimal solution for a trajectory that is departing from
Earth, visiting four asteroids without returning to Earth. To see this, realize that
each individual link in a solution cycle is not independent. By choosing one link
between asteroids you restrict certain other links from being included in the same
link. Also, by choosing an optimal transfer from the fourth asteroid to Earth fixes
the last (fourth) asteroid of the sequence, but maybe the optimal sequence that
terminates before returning to Earth, ends at an asteroid other than the optimal
one for returning to Earth.
To solve this issue, the costs for returning to Earth from all asteroids are set to
zero. This means that the entire first column of the cost matrix is set to zero,
except for the first element, which is infinity because it describes the transfer from
Earth to Earth. In this way the cost for traveling up to the fourth asteroid will be
optimized and the return to Earth will not be taken into account. After including
the Earth and filling the cost matrix with the individual transfer costs, the format
of the EGTSP problem model is as is shown in Figure 4.5. The entries in this
model depend on the chosen cost function.
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Figure 4.5 Cost Matrix of the EGTSP problem.

4.1.3 Reducing the Cost Matrix

In sections 4.1.1 and 4.1.2 the complete model of the discrete part of the GTOC2
problem is developed. The problem in its current form, a square matrix of
911×911, is hard to solve because of its large size. To reduce the size of the
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cost matrix, the observation is made that the matrix can be divided in several
blocks corresponding to the transfers between the 5 asteroid groups. These blocks
are also shown in Figure 4.5. To reduce the size of the cost matrix the best four
transfers from each block of the cost matrix are located and the corresponding
asteroids are selected.
This method of selecting asteroids is very crude. There is, however, one reason to
believe that it is a relatively good one. Observe the fact that there are 25 blocks
in the cost matrix. From the diagonal blocks no transfers are selected, since in a
valid EGTSP solution it is not allowed to have transfers within the same group.
This leaves 21 blocks. Of those blocks 8 have group 0 as either its starting or ar-
rival group. If the four best transfers of these groups are selected, this will always
result in four selected asteroids, because each entry in these blocks represents the
transfer to or from a unique asteroid (If you pick two entries from one of those
eight blocks, the corresponding transfers will always concern two distinct asteroids
and Earth). For the groups that do not have group 0 as either their departing
or arrival group there are at most 8 asteroids selected, since each of the four best
transfers require a starting and arrival asteroid. This could lead to a total of 8
times 4 plus 16 times 8 is 160 selected asteroids. It is, however, possible to have
overlap in the selected asteroids. An asteroid that is located favorable with respect
to several other asteroids might be selected more than once. This would reduce
the total number of selected asteroids. It turns out that when selecting the best
four transfers of each block a total of about 60 asteroids is obtained instead of the
possible 160. This gives reason to believe that the selected asteroids are located
favorably with respect to several other asteroids and the search space is reduced
in an effective way.

To give an impression of the reduced search space defined by the various cost
functions, a visualization of the reduced cost matrices is included in figures 4.6-4.8.
The layout of the cost matrix has not changed, i.e. asteroids from group 1 are still
identified by low numbers (upper and left part of the cost matrix), and asteroids
from group 4 are identified with high numbers (lower and right part of the cost
matrix). Note that the first column of all three cost matrices only contains 0 values
(is dark blue). This is due to the fact that the return to Earth has been set to 0,
as explained in Section 4.1.2.
Figure 4.6 presents the reduced cost matrix for the cost function based on ∆V .
According to this cost function, most transfers are relatively good with the ex-
ception of a few asteroids, that have a lot of bad transfers and only a few with a
low cost. Also the asteroids in the lower and right part are a little worse than the
others. This indicates that these asteroids are relatively hard to reach or to depart
from. Figure 4.7 presents the reduced cost matrix for the cost function based on
energy. According to this cost function, the worst transfers a located in the lower
part of the matrix, indicating that it is hard to depart from asteroids of group 4.
Figure 4.7 presents the reduced cost matrix for the cost function implemented by
ESA. Because the lower part and the right part of the cost matrix contains worse
transfers, this cost function qualifies transfers to and from group 4, as significantly
harder than the other transfers. Figure 4.7 clearly indicates that the cost matrix is
symmetric. The only exception is the first row and column, because the transfers
to Earth haven been manually set to 0.



36 Models for GTOC2

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

 

 0

10

20

30

40

50

60

70

80

90

100

Figure 4.6 Reduced cost matrix EGTSP problem for the cost function based on ∆V .
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Figure 4.7 Reduced cost matrix EGTSP problem for the cost function based on energy.
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Figure 4.8 Reduced cost matrix EGTSP problem for the cost function based on ESA.

4.1.4 EGTSP to TSP Transformation

To solve the EGTSP it will be transformed into a TSP. This makes it possible to
solve the problem with the B&B algorithm. The transformation will be presented
here first, followed by an explanation of how to extract the EGTSP solution from
the TSP solution. The transformation is detailed in [Behzad and Modarres,
2002]. For the mathematical proof of the validity of the transformation the reader
is referred to this paper.

Transformation
The transformation requires three steps:

Determine the number M, which is a random number larger than the sum of
all non-infinite entries of the cost matrix.

All nodes of each group are connected into a single cycle, a cluster path. The
asteroid that succeeds asteroid V r

i in the cycle is called V r
i(s), where r indicates

the group and i indicates a specific asteroid within that group. In terms of the
cost matrix this transformation is given by:

c′(V r
i , V

r
i(s)) = 0 (4.32)

By setting consecutive transfers to zero, the solution of the problem will always
contain these cluster paths.

The elements of the transformed cost matrix which are not included in the
cluster path are given by:

c′(V r
i , V

t
j ) = c(V r

i(s), V
t
j ) +M r 6= t (4.33)

where t indicates another group different from r.
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These transformations are visualized in Figure 4.9. An example for each type of
cost matrix block is given in Figure 4.10 (in this example M is equal to 100). If
these operations were to be performed on the matrix shown in Figure 3.5 the result
would be as shown in Figure 4.11. In this specific example, M should be larger
than 162, which is the sum of all entries.
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Figure 4.9 Transformation operations to transform EGTSP to TSP.
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Figure 4.10 Example transformation per type of cost matrix block. On the left the block before the
transformation is shown, on the right after the transformation is completed.
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A          B         C        D          E         F         G 

  

  A         !         0        8+M   9+M   3+M   1+M    5+M 

 

  B         0          !       5+M   7+M    4+M   6+M    2+M 

   

  C        2+M  1+M       !        0        5+M   6+M    1+M 

  

  D       6+M   3+M       0        !        4+M   2+M   4+M 

 

  E        8+M   4+M    6+M   5+M      !         0         ! 

  

  F        4+M   7+M    9+M   7+M      !         !         0 

 

  G       9+M   7+M     9+M   3+M      0         !        ! 

 

 

 

 

 

Figure 4.11 Result of transformation from example GTSP of Figure 3.5 to TSP.

Solution Extraction
The solution cycle of the TSP can be transformed into a solution cycle of the
corresponding EGTSP. The EGTSP cycle is constructed by finding all first
accessed cities of every group in the TSP solution cycle. For example, the optimal
solution of the example shown in Figure 4.11 is A→E→F→G→D→C→B→A,
with a total cost of 523 [Behzad and Modarres, 2002]. The corresponding solution
cycle of the EGTSP would then be E→D→B→E. An illustration of this EGTSP
problem and solution is shown in Figure 4.12. An illustration of the associated
TSP solution is shown in Figure 4.13. Note that, although it is the first element
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Figure 4.12 An illustration of the EGTSP and its optimal solution.

listed in the TSP solution, the first accessed element of the group consisting of
city A and B is not A because city A is accessed by city B which is in the same
group. To find the total cost of this EGTSP solution cycle the costs of the GTSP
cycles are extracted from the untransformed EGTSP cost matrix. This would
result in the addition of the cost for the transfers E → D, D → B and B → E,
which is 3 + 1 + 3 = 7. The connection between the cost of the TSP solution cycle
and the EGTSP solution cycle is given by the relation:
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Figure 4.13 An illustration of the TSP solution associated with the EGTSP solution of Figure 4.12.

Cost TSP cycle = Cost EGTSP cycle + M × #groups

Checking this for the example above would give TSP cycle cost = 7+3M.
Since M was set to 172, this would add up to 523 which is indeed equal the cost
of the TSP solution cycle.

4.2 Continuous Model

Solving the discrete aspect of the GTOC2 problem results in candidate asteroid
sequences. The sequences are expected to have favorable sequencing characteristics
such that relatively little fuel is needed and transfer times will be short. To assess
the validity of this expectation, a continuous orbit model is required. Because
a large number of candidate trajectories have to be evaluated, a relatively fast
method is required. Shape-based techniques are very suitable for these kinds of
evaluations. In specific, the exponential sinusoid shape is chosen. This choice was
the result of circumstances. Exponential sinusoids are well studied, also at the
Delft University of Technology (see [Paulino, 2008]), and a tool implementing
exponential sinusoids was under development at the Department of Aerospace
Engineering in Delft at the time of this research. This tool was used as a basis and
modified such that it is suitable for studying the GTOC2 problem. In this section,
first the exponential sinusoid is introduced. Next the shape is applied to transfers
between two points in space, and a fixed transfer time. In the last section this
transfer is implemented for multileg transfers. This multileg model will be applied
when analyzing asteroid sequences.

4.2.1 Exponential Sinusoids

The exponential sinusoid (exposin) method has been developed by Petropoulos and
Longuski at Purdue University. This section is based on their work [Petropoulos
et al., 2004] as well as that of [Paulino, 2008]. The shape of the most general
exposin trajectory is given by:

r = k0 exp [qθ + k1sin(k2θ + φ)] (4.34)
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where r gives the distance of the spacecraft. The constants k0, k1, k2 and φ fix
the shape of the exposin. k2 is the winding parameter and describes roughly how
many windings (revolutions) are made during the completion of the orbit. This is
illustrated in Figure 4.14. k1 is called the dynamic range parameter. It controls
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These initial estimates serve a twofold purpose: They provide mis-
sion designers with rapid, broad overviews of the trajectory design
space16 (hence the use of the word estimate rather than guess), and
they provide a starting point for trajectory optimization.

In the shape-based approach, the powered spacecraft trajectory
is assumed to be of a certain shape, with the requisite thrust profile
determined therefrom. With the correct choice of shape, not only
can we add to the small family of analytic solutions to the equations
of motion (for example, Refs. 17–22), but we can also obtain trajec-
tories with satisfactory performance and feasible, or near-feasible,
thrust profiles. Here we consider cases where multibody effects are
not significant, allowing the use of the simpler two-body equations of
motion, with the gravity assists treated as discontinuities in velocity.
In addition, we make the assumption that the spacecraft trajectory
between gravity assists is roughly planar. Having studied a number
of planar shapes,15,16,18,23 we select the exponential sinusoid15,16,23

as the most promising of these for representing the powered portion
of flight between gravity-assist bodies. The out-of-plane motion re-
quired to encounter a gravity-assist or destination body is assumed
to be small and is approximated through an analysis of the orbital
angular momentum vector. We describe a computational method of
solution of the resulting equations and the implementation of this
method in a new software. Two examples of trajectory searches
using the new software are presented for one-gravity-assist, Ceres-
rendezvous trajectories, and for three-gravity-assist, Jupiter-flyby
trajectories, both over broad ranges in launch date and launch en-
ergy. The searches are automated in the sense that the software
can find potentially thousands of trajectories over a large param-
eter space, based on a simple input file. In addition to the broad
searches, we also present two sample trajectories computed with
this method and use the two trajectories as initial estimates in a
direct-optimization program, comparing one of them to an existing
trajectory in the literature.

Methodology
Overview

In this section, we describe how exponential-sinusoid-based
thrust arcs are incorporated into the Satellite Tour Design
Program24−26 (STOUR), to form a new program, STOUR-LTGA,
which automatically searches for low-thrust, gravity-assist (LTGA)
trajectories. As in STOUR, the user specifies a sequence of gravity-
assist bodies, a range of launch dates, and a range of launch v∞
for trajectories, subject to various constraints, such as time of flight
(TOF) and propellant consumption constraints. In STOUR-LTGA,
as in STOUR, the positions and velocities of the solar system bod-
ies are modeled by polynomial representations, or, if the user so
requests, by more accurate ephemeris data.

Previous papers15,16 present an analysis of various thrust profiles
that can be used to produce a trajectory of exponential sinusoid
shape, given in polar coordinates (r, θ ) by

r = k0 exp[k1 sin(k2θ + φ)] (1)

where k0, k1, k2, andφ are constants. Two examples of an exponential
sinusoid, demonstrating the effect of the winding parameter k2, are
shown in Fig. 1. The dynamic range parameter k1 controls the ratio
of the apoapsis distance to the periapsis distance. The parameter

a) k2 = 2/3 b) k2 = 2/11

Fig. 1 Sample exponential sinusoid shapes, shown from periapsis to
apoapsis, for k1 = 0.5.

k0 is simply a scaling factor, and the phase angle φ controls the
orientation of the exponential sinusoid in the plane.

By thrust profile, we mean thrust direction and magnitude of
the acceleration due to thrust as functions of position on the tra-
jectory. Of the thrust profiles considered, we choose the tangential
thrust case because this case 1) is the simplest analytic case, 2) is
less prone to singularities, and 3) has tolerable thrust-acceleration
levels and attractive velocity profiles for both flyby missions and
rendezvous missions. By tangential thrust, we mean thrust along or
against the velocity vector. Noteworthy is that the shape assumption
with the tangential thrust assumption together dictate the magnitude
of the thrust acceleration as a function of the shape parameters and
the position on the shape. The familiar two-body equations of mo-
tion in polar coordinates are

r̈ − r θ̇2 + µ

r 2
= F sin α (2)

1
r

d
dt

(r 2θ̇) = F cos α (3)

where the overdot denotes differentiation with respect to time, µ is
the gravitational parameter of the central body–spacecraft system,
F is the magnitude of the thrust acceleration, and α is the thrust
angle with respect to the local horizon. It is convenient to normalize
F by the local gravitational acceleration:

a ≡ F/(µ/r 2) (4)

The normalized thrust acceleration a will thus be a small constant
if F is small and drops off with 1/r 2, as is roughly the case with
power-limited solar electric propulsion.13 The flight-path angle γ ,
namely the angle of the velocity vector with respect to the local
horizon, given geometrically by tan γ = (dr/dθ)/r , is easily seen
from the shape equation (1) to be

tan γ = k1k2 cos(k2θ + φ) (5)

Then, the shape equation (1), the equations of motion (2) and (3)
and the tangential thrust assumption yield the following analytic
expressions for angular rate θ̇ and normalized thrust acceleration:

θ̇ 2 =
(

µ

r 3

)
1

tan2 γ + k1k2
2s + 1

(6)

a = (−1)n tan γ

2 cos γ

[
1

tan2 γ + k1k2
2s + 1

−
k2

2(1 − 2k1s)
(

tan2 γ + k1k2
2s + 1

)2

]

(7)

where

s ≡ sin(k2θ + φ) (8)

Last, the thrust angle is given by

α = γ + nπ (9)

where n is an integer chosen so that the right-hand side of Eq. (7)
is positive. When n = 0, we have thrust along the velocity vector;
when n = 1, we have thrust against the velocity vector.

Equations (6) and (5), or equivalently Eq. (1), provide the cir-
cumferential and radial speeds as functions solely of position on
the exponential sinusoid. Equation (7) similarly provides the nor-
malized thrust acceleration as a function of position. Equation (6)
permits retrograde motion because one need simply take the nega-
tive square root of the right-hand side to obtain θ̇ < 0. However, for
purposes of convenience in discussion, we examine only prograde
motion here.

Considering only positive values for k1 and k2, without loss of
generality, we see from Eqs. (6) and (7) that as k1k2

2 approaches unity
from below, θ̇ and the normalized thrust acceleration both approach

Figure 4.14 Influence of k2 [Petropoulos et al., 2004].

the ratio of apoapsis distance with respect to the periapsis distance. k0 is a scaling
parameter to give the orbit practical dimensions. φ controls the orientation of the
exposin within its plane. The parameter q introduces flexibility in the exposin.
To further analyze the use of exposins, they are applied to the two-body equations
of motion for a spacecraft in polar coordinates [Petropoulos et al., 2004]:

r̈ − rθ̇2 +
µ

r2
= a sinα (4.35)

1
r

d

dt
(r2θ̇) = a cosα (4.36)

where α is the trust angle and a is the magnitude of the thrust acceleration, see
figure 4.15. Taking the first and second derivative of r as defined in eq 4.34:

ṙ = θ̇(q + k1k2c)r (4.37)

r̈ =
(
θ̈(q + k1k2c) + θ̇2(q + k1k2c)2 − θ̇2k1k

2
2s
)
r (4.38)

where

s = sin(k2θ + φ) (4.39)
c = cos(k2θ + φ) (4.40)

Also the flight-path angle γ can be derived, see Figure 4.15:

tan γ =
dr/dt

rdθ/dt
= q + k1k2c (4.41)

At this point the problem consists of five quations (4.34 - 4.38) and seven unknowns
(r, ṙ, r̈, θ̇, θ̈, a, α). Two more equations are needed to solve the system. From
[Paulino, 2008], we have for θ̇, based on equations 4.35- 4.38:

θ̇2 =
( µ
r3

) a0 cosα tan γ − a0 sinα+ 1
tan γ2 + k1k2

2s+ 1
(4.42)
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apocentre. On the other hand, when 2k  is large (few or none revolutions), parameter 1k  

must be small, since the dynamic range is also small. 

 

 

Figure 5.2: Example of exponential sinusoid shapes from pericentre to apocentre using 
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2 11k !  [Petropoulos and Longuski, 2004] 
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Variables s  and c  are " #2sin k % .)  and " #2cos k % .) , respectively. In equation (5.5), the 

magnitude of the thrust acceleration a  was already introduced in section 5.1 in equation 

(5.1), while &  is the thrust angle. These two parameters are represented in figure 5.2b. The 

Figure 4.15 Parameters of exposin [Paulino, 2008].

where a0 is the normalized thrust acceleration:

a0 =
Fthrust/MS/C

µ/r2
=

a

µ/r2
(4.43)

with θ̇ known, it is possible to write down the tangential and radial velocity com-
ponents:

Vr = ṙ = θ̇(q + k1k2c)r (4.44)

Vθ = rθ̇ = r

√( µ
r3

) a0 cosα tan γ − a0 sinα+ 1
tan γ2 + k1k2

2s+ 1
(4.45)

Note that to calculate θ̇, the position r needs to be known first. From θ̇ the velocity
components can be obtained, which in turn are needed to calculate the required
acceleration. This implies that, during the orbit model determination process,
no bounds can be imposed on the acceleration a. From these two expressions it
is possible to calculate the derivative of the thrust direction angle α̇ [Paulino,
2008]. The expressions for α̇ and θ̇ are coupled first-order differential equations.
Therefore a numerical integration needs to be performed to obtain solutions for α
and θ. These solutions are needed to calculate position, velocity and the time of
flight (TOF). The TOF is found by integrating the inverse of θ̇:

TOF =
∫ θf

θ0

dt

dθ
dθ =

∫ θf

θ0

[( µ
r3

) a0 cosα tan γ − a0 sinα+ 1
tan γ2 + k1k2

2s+ 1

]− 1
2

dθ (4.46)

Summarizing: for the case where the thrust angle and magnitude are free, the po-
sition, velocity, acceleration and TOF are known, provided that the expressions for
α̇ and θ̇ are numerically integrated. This case can be reduced to a case where the
thrust direction is limited to the directions tangential to the velocity vector in Fig-
ure 4.15. This would remove the need of numerical integration since one of the two
variables is known and the other can be solved for analytically. Mathematically,
for the thrust direction:

α = γ + nπ, with n = 0, 1 (4.47)
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where n=0 represents the case where the thrust is along the velocity vector, and
n=1 is the case where the thrust is against the velocity vector. In this case, due
to simplifications in equation 4.42 the parameters θ̇ and a0 are given by:

θ̇2 =
( µ
r3

) 1
tan γ2 + k1k2

2s+ 1
(4.48)

a0 =
(−1)n tan γ

2 cos γ

[
1

tan2 γk1k2
2s+ 1

− k2
2(1− 2k1s)

(tan2 γ + k1k2
2s+ 1)

]
(4.49)

The expression for the TOF can also be simplified to:

TOF =
∫ θf

θ0

√
r3(tan2 γ + k1k2

2s+ 1)/µdθ (4.50)

The tangential thrust case provides a fast way of generating orbits since no
numerical integration is necessary to obtain the thrust acceleration: it is given as
a function of the shape parameters in equation 4.49. There are, however, some
issues that need to be addressed:

1. As k1k
2
2 approaches unity from below, θ̇ and a0 approach infinity at pe-

riapsis (where s = -1)
2. If k1k

2
2 > 1, θ̇2 will be less than 0. In this region the exposin shape cannot be

followed using tangential thrust only.

These two effects force the mission designer to restrict the range of values
for k1k

2
2. This limitation on the allowable shapes given by the exposin has

consequences for both the shape as well as the velocity profile. First, the effects
on the shape are considered.
If k1 is large then k2 must be small. This means that if a large distance needs to
be travelled (result of large k1, meaning apoapsis is far away) then a large number
of revolutions are required (small k2). The other way around, if k1 is small and k2

is large, then only a short distance will be travelled with few, if any, revolutions.
Both may not be the result the mission designer is after.
The influences on the velocity can best be evaluated by comparing the velocity
on the exposin with the local circular velocity. In the previously described case
with many revolutions, the velocity on the exposin will be quite similar to that
of the local circular velocity, especially at periapsis and apoapsis. This means
that launching from or rendezvous with a body in a circular orbit would be most
effective at periapsis or apoapsis. In the case of a gravity assist, however, it is
more effective in between periapsis and apoapsis, where the velocity differs more
from the local circular velocity. In the few-revolutions case the velocity profile
is significantly non-circular making this case well suited to use gravity-assists
at bodies in a circular orbit. Also, for orbits with a high eccentricity, low
hyperbolic excess velocities can only be achieved with the few-revolution case.
High hyperbolic excess velocities can be achieved in both the few and many
revolution case [Petropoulos et al., 2004].

4.2.2 Low-thrust Lambert’s Problem

The determination of an orbit, having a specified transfer time and connecting
two position vectors, is called Lambert’s Problem [Battin, 1999]. Lambert’s prob-
lem can be solved both with high-thrust and with low-thrust trajectories. For
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a discussion of the high-thrust variant see [Gooding, 1990]. In this section, a
multi-revolution low-thrust approach to solve Lambert’s problem is presented. It
is based on the exponential sinusoid theory detailed in section 4.2.1. The goal is to
find all the exposins defined by equation 4.34, that connect r1 and r2 separated by
a transfer angle ψ in a given transfer time t, allowing for multiple revolutions. Four
main steps are taken to solve the problem. First, a geometric class of solutions is
identified, which fulfill the boundary constraints (meaning they pass through the
desired departure and arrival point). Second, the class is evaluated on dynamic
feasibility, meaning it is checked which solutions are feasible spacecraft trajecto-
ries. Third, the TOF is evaluated. Last, the corresponding relative velocities are
to be obtained. This section is written based on the work presented in [Izzo, 2006]
and the reader is referred to this paper for further details.

To find the class of exposins that passes through the departure point (P1 at
r1) and the destination point (P2 at r2) the parameter k2 is assumed to be fixed,
see figure 4.16. Also the polar coordinate system is fixed such that θ1 = 0. The
equation for the flight-path angle then becomes (using equation 4.41):
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Figure 4.16 Exposin geometry.

tan γ1 = k1k2 cosφ (4.51)

From equation 4.34, at points 1 and 2 it holds that:

r1 = k0 exp [k1sin(φ)] (4.52)
r2 = k0 exp [k1sin(k2θ̄ + φ)] (4.53)

where θ̄ = ψ + 2πN and N = 1,2,..., account for the possibility of having more
than one revolution. Note that q is set to 0. This means that only exact exposin
shapes are considered.Next the sign of k1 is determined by dividing the equations
for r1 and r2 and taking the logarithm:

k1

|k1|

√
k2

1 −
tan2 γ1

k2
2

=
ln r1/r2 + (tan γ1/k2) sin k2θ̄

1− cos k2θ̄
(4.54)
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The magnitude of k1 is obtained from:

k2
1 =

(
ln r1/r2 + (tan γ1/k2) sin k2θ̄

1− cos k2θ̄

)
+

tan2 γ1

k2
2

(4.55)

For φ:

φ = arccos
(

tan γ1

k1k2

)
(4.56)

and k0 is found from:

k0 =
r1

exp (k1 sinφ)
(4.57)

At this point, given the geometry (r1, r2, transfer angle ψ and number of revolu-
tions N) a class of exposins is determined that pass through P1 and P2 and are
parameterized using the sole free parameter γ1 (the flight-path angle at P1).

The second step considers such a class of possible exposins and determines
whether they are feasible spacecraft trajectories. As in section 4.2.1, tangential
thrust is adopted, which introduces the condition |k1k

2
2| < 1. Substituting this

condition in equation 4.55 and rewriting gives:

tan γ1min,max =
k2

2

[
− ln

r1

r2
cot

k2θ̄

2
±
√

∆
]

(4.58)

where:

∆ =
2(1− cos k2θ̄)

k4
2

− ln2 r1

r2
(4.59)

These equations define an interval of feasible spacecraft trajectories.

The third step is to evaluate the TOF. In the high-thrust case, the TOF equa-
tion could be expressed analytically as a function of the parameters describing the
feasible ellipses. This is not possible in the low-thrust case, where the TOF needs
to be determined separately by numerically integrating equation 4.48 as shown in
equation 4.50. The resulting time of flight curves can have different characteristics.
They can be monotone increasing or monotone decreasing or have a bathtub-like
shape. In [Izzo, 2006] monotonic increasing curves are analyzed for the specific
problem geometry where r1 = 1, r2 = 1.5, ψ = π/2 and different values of N.
Figure 4.17 shows these normalized TOF curves. In [Paulino, 2008] the bathtub
shape is presented, as shown in Figure 4.18. The desired solution (for a specific
TOF) can be found by applying a rootfinder method to obtain the intersection
between the time of flight curves obtained from numerical integration, and a hor-
izontal line indicating the desired value. If the TOF curves have a bathtub-like
shape two possible values for γ1 can be obtained. In this case both options are
evaluated using the objective function, and the solution corresponding to the best
objective value is selected for further analysis.

Although Lambert’s problem is solved at this point a last step to obtain the
corresponding terminal velocity vectors is useful. For example, one may want to
know the difference between the arrival velocity of the spacecraft and the velocity
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Note that if -  is negative, there is no shape that can represent the spacecraft’s trajectory 

for the initial and final conditions that are being selected and for the parameter 2k  that was 

picked. The interval in (5.34) limits the search space for the free parameter 1# . The 

derivation of equation (5.35) is done in the section A6 of the Appendix. 

 

 

Figure 5.6: (a) the TOF versus the initial flight path angle for the class ! "
1 12

1,1.5, 2, NS 6  and (b) 

feasible exponential sinusoids in the class ! "
1 12

1,1.5, 2, 0S 6  

 

Given the geometry of a problem, i.e., 1r , 2r , %-  and the number of complete revolutions 

N, for 2k7 , there is a class of feasible exponential sinusoids passing through the points 1P  

and 2P , using the free parameter 1#  represented by ! "
2 1 2, , , NkS r r %- . As an example, 

figure 5.6(a) illustrates the TOF versus the initial flight path angle at the departure planet 

1#  for a family of exponential sinusoids characterized by ! "1 12 1,1.5, 2, NS 6 , where 

N 0,1,...5* . The TOF in figure 5.6(a) was computed by integrating numerically the 

Figure 4.17 Normalized flight time curves for r1 = 1. r2 = 1.5 and ψ = π/2 for several values of N.
[Paulino, 2008], after [Izzo, 2006].
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expression (5.13), in section 5.3. Also, in figure 5.6(b), some of the feasible exponential 

sinusoids characterized by ! "1 12 1,1.5, 2,0S #  are illustrated. 

 

For a given TOF, a simple numerical method can be used to find a solution for this 

Lambert’s problem for low-thrust trajectories. This solution can be found for a particular 

class of exponential sinusoids 
2kS  by locating the intersection between the TOF curve and 

a horizontal line (figure 5.6 (a)). Using this method, the geometric parameters that yield the 

desired TOF can be obtained. Note that from figure 5.6(a), an asymptotic behaviour in the 

TOF curve can be observed, which leads to a conclusion: the low-thrust problem using a 

pseudo-Lambert method with the exponential sinusoid might not have a solution. Also, 

although the curve illustrated in figure 5.6(a) is monotone, according to [Corradini, 2007], 

this situation not always happens. This means that two exponential sinusoids that have 

different 1$  but the same 
2kS  yield the equal TOF (see figure 5.7). 

 

 

Figure 5.7: TOF in function of 
1
$  for the exponential sinusoid ! "

0.4 Earth Mars
, , 2 , 3S r r # , in an Earth to 

Mars flight 

 

Izzo procedure [Izzo, 2006] is more generic and easier to use than the one done by 

Petropoulos and Longuski [Petropoulos and Longuski, 2004]. For this reason, it will be 

Figure 4.18 Time of flight curve for r1 = rEarth. r2 = rMars and ψ = π/2 and N = 3 [Paulino, 2008].

of the arrival body. In [Izzo, 2006] a relation between the initial and final flight
path angles is presented:

tan γ2 = tan γ1min + tan γ1max − tan γ1 (4.60)

with γ2 and the other exposin parameters now fixed, the velocities can be computed
from equations 4.44 and 4.45.

4.2.3 Patched Exposins

Section 4.2.2 described how to find an exposin between two position vectors in
space for a fixed TOF. GTOC2, however, requires four successive transfers. Start-
ing from Earth, four asteroids have to be visited, with a stay time of at least 90
days at the first three asteroids. If the positions of Earth and the asteroids, the
TOF for each leg and the stay times at the asteroids are prescribed, the geometry
of the problem can be described by 4 exposins, as is shown geometry is shown in
Figure 4.19. The trajectory starts from Earth with an exposin arc. The engine
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Figure 4.19 Continuous Model for Mulitleg Exposin Trajectories.

is used to fly along this exposin shape. Upon arrival at the asteroid the engine is
assumed to be switched off and the spacecraft is translated along the trajectory
of the asteroid for the duration of the prescribed stay time. Then the engine is
switched on again and the next exposin shape is flown, etc. The model disregards
any correction maneuvers to stay within the allowable position mismatch limit. To
fully describe the geometry x, 16 parameters are required. A start date is required
to fix the starting point of the mission (the location of Earth at a certain epoch).
Each individual exposin requires three parameters. It needs a k2 to describe a
whole set of exposins parameterized by γ1 (see section 4.2.1). A TOF is required
in order to fix the positions of the relevant bodies. To select an exposin from the
exposin set with a particular TOF, also the number of revolutions needs to be
known, because there is no unique relation between TOF and N (see Figure 4.17).
The last three elements are the stay times at the different asteroids. These stay
times are introduced because GTOC2 requires a minimum stay time, not a fixed
one. To implement this in the model an additional variable is required at the three
asteroids where a stay time is required.

The total geometry is now described by:

x = [T0 TOF1 k2(1) N1 TOS2 TOF2 k2(2) N2 . . . (4.61)
. . . TOS3 TOF3 k2(3) N3 TOS4 TOF4 k2(4) N4]

where T0 indicates the mission departure date, TOF indicates the time of flight,
k2(i) indicates the k2 exposin parameter of the i-th leg, N the number of complete



48 Models for GTOC2

 

Leg 1 

Leg 2 

!VDEP 

!VARR 

Figure 4.20 Arrival and departure ∆V. Magnification of shaded area in Figure 4.19.

revolutions and TOS indicates the time of stay at the first three asteroids. The
subscripts indicate for which leg the parameter is valid.

Now that the variables that are required to determine the complete trajectory
are identified, an objective function is required to assess the fitness of a solution in
the form of x. The chosen objective function is a modification of the main GTOC2
objective, which is the maximization of the final mass over total mission duration.
In particular, a penalty component is added to the GTOC2 objective to improve
the performance of the various optimizers by steering them towards valid and/or
promising parts of the solution space. The objective function is:

J =
M0 − (Mfuel + Ptot)∑nlegs
i=1 (TOFi + TOSi)

(4.62)

where J is the objective value and M0 indicates the departure mass of the space-
craft. Mfuel is the total fuel used in kilograms to fly the exposin trajectories.
The used fuel mass is determined by integrating the fuel use along the exposins.
Ptot is the added penalty component. It is constructed out of four different parts.
The first part is a penalty for a mismatch in the departure velocity vector of the
spacecraft flying along the exposin shaped trajectory and the velocity vector of
the departure body (see Figure 4.20). The second part is a similar penalty for
the arrival velocity. The third part is a penalty which becomes active in case the
thrust limit of the engine is exceeded. The final part is a penalty applied when the
total mission duration of 10 years is exceeded. Based on these four components
the total penalty function becomes:

Ptot =
nlegs∑
i=1

Pdeparture,i +
nlegs∑
i=1

Parrival,i +
nlegs∑
i=1

Pthrust,i + Pmission duration (4.63)

To obtain a velocity penalty that can be combined properly with equation 4.62,
the departure and arrival velocity mismatches, for each individual exposin, are
converted to kg using Tsiolkovsky’s basic rocket equation:

Pdeparture,i = M0(1− e−
∆Vdep
Ispg0 ) (4.64)

Parrival,i = M0(1− e−
∆Varr
Ispg0 ) (4.65)

Then, if the velocity mismatch, upon departure or arrival, was more than 1.2 km/s
the mass is penalized even harder using a quadratic relation. The value of 1.2 was
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determined empirically. This issue will be revisited when the additional tests are
discussed in chapter 7.

P(departure,i |∆V >1.2km/s) = P 2
departure (4.66)

P(arrival,i |∆V >1.2km/s) = P 2
arrival (4.67)

There are two exceptions to this penalty. For the departure leg from Earth a
penalty is applied when the initial velocity is larger than 3.5 km/s. This is be-
cause the GTOC2 assignment assumes this is the velocity with which the launch
vehicle inserts the satellite into its orbit. The second exception occurs at the arrival
asteroid. Here GTOC2 does not require a stay time or limit the arrival velocity,
hence it is not implemented in the penalty function.
The thrust constraint violation penalty is determined while integrating the tra-
jectory to obtain the fuel use. If the required acceleration on a specific integra-
tion segment is higher than the engine is capable of delivering (engine thrust for
GTOC2 is limited to 0.1 N), the excess acceleration will be added tot the total
excess acceleration so far. After the integration is completed, the total required
excess acceleration, atot(m/s2), is scaled empirically, such that it becomes of the
same order of magnitude as the other penalties. This scaled value is penalized as
well, by using a quadratic relation.

P(thrust,i | thrust>0.1N) = (1000 ∗ atot)2 (4.68)

The mission duration penalty is implemented to make sure that the maximum
mission duration as given by GTOC2 is not exceeded. This limit is 20 years, due
to a design error, however, the penalty threshold was set to 10 years. This issue
will be revisited in chapter 7. As with the thrust constraint violation penalty, the
mission duration of the solutions (TOFmission) that violate the constraint of 10
years are scaled and penalized using an empirical quadratic relation.

P(mission duration | TOFmission>10y) = (50 ∗ TOFmission)2 (4.69)

On top of these constraints, J is set to infinity when the mass of the total fuel
used is more than M0, because these orbits are physically impossible. Although the
allowed fuel mass of GTOC2 is limited to 1000 kg of the initial mass of 1500 kg, it
turns out no penalty is needed to steer the optimizer to an optimal solution under
this limit. This indicates that the available mass is not a dominating constraint.
One thing should be noted about the described penalties. First, the penalties are

applied to the absolute values and not to the amount with which a certain limit
was exceeded. This results in a jump in the objective function, see Figure 4.21.
This approach was chosen to stimulate the results to be within a certain desired
region. Within this pit of reasonable solutions penalties are much lower relative to
the main objective function (final mass over total mission duration). This causes
the optimizer to place more value on the actual objective value instead of any of
the constraint mismatches. Since the solutions within the pit are all relatively
good, it is allowed to place more emphasis on the objective functions since the
constraints are all either met or violated with an allowable tolerance.
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Figure 4.21 Visualization of jump in objective function due to applied penalties.



Chapter 5

Solution Methods for GTOC2

This chapter will present the methods that are used to find an optimal solution
for the discrete and continuous part of the GTOC2 problem. The first section
considers the discrete aspect. The second section discusses the continuous aspect.

5.1 Discrete Aspect

For solving the problem of asteroid selection and sequencing, two alternatives will
be discussed. The first method is the B&B method as presented in section 3.5.
A tool is developed that implements the B&B for solving the discrete aspect of
the GTOC2 problem. The second method is the NNH as presented in section 3.6.
Two issues regarding the implementation of the NNH will be discussed.

5.1.1 Branch- and Bound Algorithm

As mentioned in chapter 3, the models and methods in combinatorial analysis are
related. This section will describe how these relations are used when solving the
asteroid selection and sequencing problem of GTOC2. The goal is to solve the TSP
problem as formulated in section 4.1.4. The result will be an Asteroid Selection
Tool (AST). AST will be able to automatically generate the problem (create the
cost matrix) from an ephemeris file and a cost function, solve this problem using
a B&B algorithm, and extract the required solutions.

In figure 5.1 the flowchart describing the complete process is shown. As shown
in figure 5.1 the process is divided into 5 parts. These five parts will be discussed
here.

Input: The input consists of two parts. The first is the ephemerides data.
This data is provided with the GTOC2 assignment in a .txt file. The second is
the cost function used to determine the entries of the cost matrix. The possible
cost functions are detailed in section 4.1.1.

TSP formulation: Formulating the TSP that will be passed to the B&B
algorithm requires four steps. First, the ephemerides data is extracted from
the input file and loaded into the program. Second, the cost function and the
provided ephemerides data will be used to fill the entries of the cost matrix.
At this point the problem is a square matrix with a dimension of 911 (910

51
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Figure 5.1 AST flowchart.

asteroids plus Earth), formulating an EGTSP. The third step is to reduce this
cost matrix as explained in section 4.1.3. The fourth step is to apply the
transformation detailed in section 4.1.4 to transform the EGTSP into a TSP.

B&B algorithm: After the TSP is formulated, it is solved using the B&B
algorithm detailed in section 3.5. The first subproblem is initialized by setting
all constraints to zero. The first subproblem is equal to the TSP cost matrix.
The HA (described in section 3.4) is used to solve the problem, and then the
solution is checked for subcycles. Based on this outcome the problem set is
updated. If subcycles are found, additional subproblems are created, whereas
if a valid solution was found it is stored and no new subproblems are created.
Duplicate subproblems are eliminated. The next subproblem is selected based
on the DFS approach (section 3.5.1). The subproblem is constructed by ob-
taining all constraints from the subproblem object and implemented in the cost
matrix by setting the constrained transfers to infinity. This process is repeated
until all active problems have been analyzed.

Solution extraction: During the B&B iterations every time (an improvement
of) the solution is found, it is stored. The TSP solution is used to obtain the
solution of the EGTSP as specified in section 4.1.4.

Output: The output of the algorithm consists of a number of text files. In
these separate files the following data is stored:

– TSP solution cycles in terms of locations in the reduced cost matrix (length
is equal to the size of the reduced cost matrix).

– EGTSP solution sequence in terms of location in the reduced cost matrix.
(length of sequence is equal to 5, one body of each group is selected).
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– EGTSP solution sequence in terms of location in the original cost matrix
(length of sequence is 5, size of cost matrix is 911).

– EGTSP solution sequence in terms of asteroid IDs (length of sequence is
5).

– EGTSP solution sequence in terms of group numbers corresponding to the
asteroids in the solution sequence (length of sequence is 5).

– EGTSP solution cost per transfer (length of sequence is 4, because a se-
quence of 5 asteroids describes 4 transfers).

– EGTSP total solution costs (1 solution sequence has only 1 corresponding
total cost).

5.1.2 Applying the Nearest Neighbor Heuristic

The TSP problem formulated in section 4.1.4 can be solved by the NNH as well.
It is an alternative for the B&B method. The NNH algorithm has been discussed
in section 3.6. This section will discuss two issues regarding the implementation
of the NNH for solving the TSP problem at hand.

The first issue regarding the implementation of the NNH concerns the cost
matrix transformation as discussed in section 4.1.4. When transforming the cost
matrix the EGTSP problem is changed into a TSP problem. This was done to
make it possible to solve the EGTSP using the B&B method. Such a transforma-
tion, however, is not required when solving the problem using the NNH algorithm.
In order to make the NNH able to deal with the EGTSP, instead of a transfor-
mation, a simple mask is introduced. This mask is imposed on the cost matrix
blocks corresponding to the groups of which an asteroid has already been selected,
blocking the NNH from selecting another asteroid from that group. In this way,
the NNH can find a solution to the EGTSP.
Although it has not been tested, it is believed that the NNH is able to solve the
EGTSP by applying it to the transformed cost matrix without using the mask.
The transformation, however, requires more computational effort than a simple
statement prohibiting the NNH from selecting asteroids from a certain group.
This becomes more important with increasing problem dimensions.

The second issue regarding the implementation of the NNH concerns the in-
clusion of Earth. Section 4.1.2 explains how Earth is included in the problem.
Because the GTOC2 problem does not require the satellite to return to Earth,
the transfer cost for all transfers returning to Earth were set to 0. In this way,
the costs of the Hamiltonian cycles obtained by the B&B correctly represent the
GTOC2 problem.
Setting the cost for the transfers returning to Earth to 0, however, imposes a prob-
lem when the TSP problem is being solved by the NNH. The NNH searches for the
transfer with the lowest cost. Since returning to Earth from any asteroid has its
cost set to 0, the NNH will always select Earth as its second body in its sequence.
This is of course undesirable, and for this reason the return to Earth is not set to
0 when the NNH is used to solve the problem.
The drawback of not setting the return to Earth to 0 is the fact that the NNH is
now optimizing for a GTOC2 problem including a return to Earth. This is however
not the assignment. In order to solve this discrepancy, the obtained Hamiltonian
cycles are not ranked according to their total cost, but to the cost of the first four
transfers starting from Earth.
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5.2 Solving the Continuous Aspect

This section will describe the procedure for solving the continuous part of the
GTOC2 problem. The entire procedure is casted into a tool implemented in MAT-
LAB. Parallel to this research, a tool for orbital analysis based on exposins was
developed at the Faculty of Aerospace Engineering of the DUT. The tool originally
served a purpose different from analyzing GTOC2, but modifications were made
such that it became suitable for finding the optimal solution of a GTOC2-like
mission scenario. The MATLAB optimization toolbox will be used extensively.

An overview of the entire procedure is given in figure 5.2. In the figure the
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Figure 5.2 Overview of the solution procedure for the continuous aspect of GTOC2.

blue model block refers to the model as described in section 4.2.3. The grey blocks
indicate methods used to find optimal solutions of the search space described by
this model. Optimal solutions are maxima of J as described by equation 4.62.
Since, however, the algorithms applied are searching for minima by default, the
negative of equation 4.62 is taken during the computations. Three optimization
methods are consecutively used to find the overall maximum, see Figure 5.2. First,
the Monte Carlo method is applied, followed by a Genetic Algorithm search, and
finally a local search method, the Interior Point Method, is applied. These three
steps will be elaborated upon in the next sections.
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5.2.1 Monte Carlo

The Monte Carlo (MC) method evaluates the search space at random points.
The next iteration is independent of previous results. The main strength of these
methods is the fact that they require only simple calculations. No information
from the previous iteration is required to create new solutions. The MC methods
evaluate the search space faster than, for example, the pure enumerative methods
since they do not evaluate every option. The drawback is of course that there is
no guarantee that the best solution is found because not the entire search space
is evaluated. The rationale, however, for using the Monte Carlo method is to
probe the search space for regions of feasible solutions and basins of attraction.
These results will be passed on to the Genetic Algorithm. The number of results
that will be passed on is equal to the size of the population used in the Genetic
Algorithm. The number of iterations used was varied. Two values were evaluated:
50,000 and 100,000. These values were selected based on [Pagano, 2009], who has
experience in applying the MC method on a search space consisting of more than
10 parameters.

5.2.2 Genetic Algorithm

The Genetic Algorithm (GA) is an enumerative optimization method that performs
a structured search of the search space. The GA uses an evolving population to
find the desired optimum. The individuals in this population each describe one
single solution vector x, where x is given by equation 4.61. The added value
of a GA over an MC method is that it uses information of previous iterations
(previous populations) to direct the algorithm to more promising parts of the
search space. The MATLAB optimization toolbox provides the implemented GA.
The GA is a well-studied algorithm and has been applied extensively in the field of
astrodynamics [Myatt et al., 2003]. Therefore, only a description of the algorithm
is provided in semicode format in figure 5.3. If needed, a good discourse on the
GA can be found in [Goldberg, 1989]. The applied settings are as follows:

- Initialize population vectors uniformly over search space. 

- Repeat 
- Evaluate objective function for all population members. 
- Select proportion of population with best objective values. 
- For each individual in selected set: 

- Select another individual in the set to me ‘mated’ with. 
- Produce two children through using crossover/mutation operator. 

      - End 
- Replace the less fit members of the population with the newly generated        
children.        

- Until convergence. 

GA semi code 

Figure 5.3 Semi code for Genetic Algorithm. Based on [Myatt et al., 2003].

Population type: There are two common options for describing individuals,
the binary string representation and the real valued representation. The latter
is used. In specific, a double vector describes one individual.
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Population size: The number of individuals of each generation has the largest
impact on the performance of the algorithm. It is comparable to the amount
of iterations of the MC method. Two different values for the population size
were used, 300 and 500. If relevant, this setting will be specified.

Elitism: Describes how many of the best individuals of each generation, count-
ing from the top down, will survive and be part of the new generation. This
value is set to 2.

Selection: To determine which individuals in the current population will be
parenting the next, a selection algorithm is used. he algorithm lays out a line
in which each parent corresponds to a section of the line of length proportional
to its scaled value. The algorithm moves along the line in steps of equal size.
At each step, the algorithm allocates a parent from the section it lands on.
Note that in this way, a parent can be selected more than once.

Crossover: The part of the population remaining after the elite individuals
have been transferred, is created by either crossover or mutation. The fraction
of the new generation, excluding the elite individuals, that will be generated by
crossover is 0.8. The remaining 20% will be generated by mutation. A random
crossover function is used. This means that two individual from the current
population will be selected (parent A and parent B) and a random binary
vector is generated with the same length as the parents. For every position in
this binary vector where the entry is 0, the value from parent A is selected.
When the value in the binary vector is 1, the value from parent B is selected.

Mutation: Mutation of individuals is applied to create a more diverse set of
individuals. This helps to prevent the algorithm from getting stuck in local
optima. As mentioned, 20% of the remaining fraction of the new population
after elitism is created by mutation. The selection algorithm provides the
mutation candidates. Each element of an individual has the same chance to
mutate. This chance is 1%. If a certain element is selected for mutation,
that element will be replaced by a random value within the range of that
specific entry. The mutation function makes sure that the mutated individuals
are within the bounds of the problem. Since the mutation rate is fairly low
(1%), the part of the new population that is generated by mutation will be
quite similar to their parents. This means that this 20% most likely contains
relatively good individuals from the previous generation.

Migration: Specifies the fraction of one subpopulation that will be trans-
ported to another subpopulation. This parameter is only of interest when
multiple populations are used. Since only one population is used, this setting
is irrelevant.

A visualization of the various parts of the new population is given in Figure
5.4. This figure gives an impression of which size of the new population is created
by what part of the GA, and what the relative quality, in terms of objective value,
of that part of the population is. The tuning of the various parameters is a very
involved issue, and it is a study in itself to find the optimal combination of settings
for the problem at hand. Because a lot of different combinations of the optimizer
settings are possible and the evaluation of a single combination of settings takes
a week, only two settings for the population size were evaluated. The population
size was selected, because this parameter is the most influential when it comes to
computational cost and quality of the solution. More on this in chapter 7.
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Because good individuals are more likely to be 

selected, and the mutation rate is fairly low 

(1%), the individuals most likely represent good 
solutions. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 Crossover 

Contains individuals that were created by the 

combination of good individuals of the previous 
generation. The crossover function distorts the 
parents quite heavily, so although the parents 

are most likely good individuals, there is no 
guarantee that the children will represent good 
solutions as well. 
 

Figure 5.4 Visualization of new population as created by GA.

The individual with the best objective value is passed to the local optimizer.

5.2.3 Interior Point Method

The term Interior method is used as a common name for methods of penalty- and
barrier type for nonlinear optimization. Interior Point (IP) methods belong to the
class of analytical local optimization methods. They are used for solving bounded,
constrained optimization problems. It is an iterative method starting from a user
supplied initial point and making steps in the direction of a better solution, while
steering away from bad solutions (by using the barrier) and complying with the
constraints.
The IP method included in the fmincon function of the MATLAB optimization
toolbox was used. This reason for choosing this method is because during the
development the IP proved to be able to cope with the gaps in the search space
(see appendix J), its ease of implementation and because it is readily available in
a MATLAB toolbox.
Since the algorithm requires a background in optimal control theory and the IP
method was used merely as a black box, only an outline of the method will be
described in this section. For an introduction into optimal control theory the
reader is referred to [Visser, 2000], [Kirk, 1998] or [Gorter, 2009]. An extensive
discussion of the algorithm, including mathematical proof, is given in [Byrd et al.,
1998].

In short, the method consists of three steps. First, the optimization problem
is transformed into a barrier problem. Second, the optimality conditions are iden-
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tified. Third, the barrier problem is solved iteratively, using sequential quadratic
programming, until the optimality conditions are satisfied and the original problem
is solved within the desired accuracy. These steps will be outlined now.

The goal is to find a solution to the following minimization problem 1:

min
x

f(x) (5.1)

subject to g(x) ≤ 0

where f is the objective function (equation 4.62), the equations g are real con-
straint functions, and x is given by 4.61. In order to help the algorithm to steer
away from undesirable solutions, a barrier problem associated with equation 5.1 is
defined:

z =
(

x
s

)
, min

x,s
φ(z) = f(x)− µ

m∑
i=1

ln s(i) (5.2)

subject to c(z) = g(x) + s = 0

where µ is a barrier parameter and s is the vector of all slack variables. Both µ
and s are (assumed to be) positive. From optimal control theory it is known that
the optimal (minimum) solutions of equation 5.2 occur at the root of the gradient
of the Lagrangian. The Lagrangian of equation 5.2 is:

L(x, s,λ) = φ(z) + λT c(z) = f(x)− µ
m∑
i=1

ln s(i) + λT (g(x) + s) (5.3)

The conditions for optimality (zero gradient of the Lagrangian) then become:

∇xL(x, s,λ) = ∇f(x) + A(x)λ = 0 (5.4)

∇sL(x, s,λ) = −µS−1e + λ = 0 (5.5)

where

A(x) = (∇g(1)(x), . . . ,∇g(m)(x)) (5.6)

is the matrix of constraint gradients, and where

e =

 1
...
1

 , S =

 s(1)

. . .
s(m)

 (5.7)

The problem that is now completely described will be solved iteratively by making
steps in the directions in which the objective value improves. These steps d:

d =
(
dx
ds

)
(5.8)

are obtained by approximately solving the quadratic problem:

min
d
∇φ(z)Td +

1
2
dTHd (5.9)

1Note that minimization and maximization can be used interchangeably, without loss of gener-
ality. When maximization is required, the sign of the objective function need simply be reversed.
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subject to Â(z)Td + c(z) = 0

where H is the Hessian of the Lagrangian of equation 5.2 with respect to z and
where Â(z) is the Jacobian of c, given by:

Â(z)T = (A(x)T I) (5.10)

When the obtained value for d is deemed valid and helpful in progressing towards
the optimum that step is made and the Lagrange multipliers λ are updated. Next,
the barrier parameter µ is reduced and another approximate solution to equation
5.9 is obtained. This process is continued until equation 5.1 is solved to within the
required accuracy.





Chapter 6

Validation

This chapter will present the validation results for both discrete methods as well
as the continuous method. The discrete methods, AST and NNH, are tested with
examples from literature. The validation of the continuous method is somewhat
harder, since this model has not been used before in literature. The continuous
method will be validated by applying it to a single leg Earth-Mars transfer instead.
Results for this transfer, using exponential sinusoids, were obtained by [Paulino,
2008].

6.1 Discrete Method

In this section the ASt and NNH method will be tested using test problems from
literature. First the AST will be evaluated, followed by the evaluation of the NNH.

6.1.1 AST

To validate the AST, two problems (one symmetric, one asymmetric) are passed
to AST and the output is checked against the optimum found in literature. The
problems are described by the cost matrices in figures 3.4 and 4.11. The core of
AST (the B&B algorithm) is called to solve the problems. The input part of AST
is deactivated because the problems already are in the TSP format and no cost
function needs to be evaluated because the cost are already in the matrix. The
output of AST has been modified such that it returns the solutions of the TSP
only. The part of AST where the results of the GTSP are returned, as described
in the output part of section 5.1.1, is deactivated. This part merely evaluates
the TSP solution and determines the corresponding GTSP solution based on the
GTSP-to-TSP transformation. The output of AST will give a sequence of numbers
and the corresponding objective value J. The sequence of numbers correspond to
the various nodes/cities. The output of the AST tool for both problems is included
in appendix B.

The first validation problem is obtained from [Winston, 2004]. The (symmetric)
cost matrix for this problem is given in figure 6.1. The optimal solution from
literature is A→E→B→D→C→A, with a total cost of 668. The output of AST
gives that the optimal solution is 0→4→1→3→2→0 (see appendix B), which is
equivalent to A→E→B→D→C→A. The objective value is 668. Note that for the
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A       B      C      D      E 

  

  A       !     132    217    164   58 

 

  B      132     !      290    201   79 

 

  C      217   290      !    113  303 

  

  D     164    201    113     !    196   

 

  E       58      79    303    196    ! 

 

 

 

 

 

Figure 6.1 Example of a Traveling Salesman Problem with 5 cities [Winston, 2004].

third iteration (process count equals 3), a candidate solution is found which equals
the global optimum of 668. The corresponding cycle is 0→2→3→1→4→0, which
is equivalent to A→C→D→B→E→A. Note that these solutions are the same, but
they traverse the optimal Hamiltonian cycle in the opposite way.
The reason for the existence of both of these solutions is the fact that the cost
matrix for this problem is symmetric: the cost to travel from city A to B is the
same as from B to A. It logically follows that when one optimal solution is found in
a symmetric matrix there exists another solution with the same cost but a reversed
path through the cities.
The next question that arrises is how this affects the use of AST for symmetric ma-
trices and for GTOC2. The answer is ”not at all”. For every valid cyclic solution
found in a symmetric cost matrix it is known that there exists a complementary
solution traversing the same nodes in the opposite direction. Finding one means
having found the other one too.
One remaining question of lesser importance is whether or not both solutions are
always found during the B&B process. The answer is ”no”. In Appendix B both
solutions were obtained. If, however, the solution procedure from [Winston, 2004]
is used, only one of the solutions is found. The difference in both procedures lies
in the way in which the next subproblem to be evaluated is selected. If another
choice is made another route to the optimal solution is found. That other route
may not come across both solutions.
However, finding a sequence of asteroids for the GTOC2 problem is not a sym-
metric problem. The (optimal) orbit from asteroid A to B is always different from
the (optimal) orbit from asteroid B to A. If, however, the problem is made time-
independent as is done in this research, it is possible to choose a symmetric cost
function. If, for example, the difference in orbital elements is chosen as a cost for
a specific transfer (note: this cost function is not necessarily a good one), then the
cost matrix will be symmetric. Most other choices for a cost function, however,
will result in an asymmetric cost matrix. Based on these considerations and the
validation results it can be stated that symmetry will not be an issue when using
AST for asteroid sequencing, and the choice for the cost function is not restricted
in any way.
It should be noted that the efficiency of the solution process for symmetric matri-
ces is lower than that for asymmetric matrices, because the algorithm spends time
to find duplicate solutions.
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The second validation problem is obtained from [Behzad and Modarres, 2002].
The (assymetric) cost matrix is given in figure 6.2. The optimal solution from

A          B         C        D          E         F         G 

  

  A         !         0        8+M   9+M   3+M   1+M    5+M 

 

  B         0          !       5+M   7+M    4+M   6+M    2+M 

   

  C        2+M  1+M       !        0        5+M   6+M    1+M 

  

  D       6+M   3+M       0        !        4+M   2+M   4+M 

 

  E        8+M   4+M    6+M   5+M      !         0         ! 

  

  F        4+M   7+M    9+M   7+M      !         !         0 

 

  G       9+M   7+M     9+M   3+M      0         !        ! 

 

 

 

 

 

Figure 6.2 Result of transformation from example GTSP of figure 3.5 to TSP [Behzad and Modarres,
2002].

literature is A→E→F→G→D→C→B→A, with a total cost of 7+3M, where M is
a number larger than the sum of all finite elements. In this validation the sum
of all elements is 162 and M is randomly set to 172. This results in an optimal
solution of 7 + 3 ∗ 172 = 523. Note that this example is the TSP equivalent of a
GTSP problem with three groups as shown in figure 3.5. The output of AST gives
that the optimal solution is 0→5→6→4→3→2→1→0 (see appendix B), which is
equivalent to A→F→G→E→D→C→B→A. The objective value is 523. Note that
the objective value is the same as what was found in literature, but the cycle
is not. This means that two different optimal solutions to the TSP exist. The
cycle as presented in literature is also found by the AST. Step 17 of the output
(process count is 17) shows that a candidate solution is found for which the ob-
jective value is 523 and the corresponding solution is 0→4→5→6→3→2→1→0, or
A→E→F→G→D→C→B→A. This is equal to the optimal solution in [Behzad
and Modarres, 2002].
When the two solutions are translated into the GTSP solution (finding the first ac-
cessed city of each group), the following two sequences are obtained: E→D→B→E
and F→D→B→F. If the costs for these sequences are checked using figure 3.5, it is
found that both costs add up to 7. This indicates that the problem has no unique
solution. An interesting fact to notice is that in [Behzad and Modarres, 2002]
there is no mentioning of the transformation being able to deal with non-unique
solutions.
The existence of non-unique solutions has an influence on the quality of the solu-
tions as delivered by AST. AST returns every candidate solution it comes across.
If it has the same objective value as the best solution found so far it will return it as
well. If it comes across a valid solution (cyclic) but with an objective value higher
than the current best, it will not be returned, and the branch will be disregarded
for further analysis. In principle this is what is required for progressing towards
an optimal solution and the B&B algorithm is supposed to operate in this way.
The disadvantage is, that at this point of solving the complete GTOC2 problem,
it is not known if a sequence which is considered better by the AST is also better
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when considering the continuous aspect of the problem (i.e. if the orbit through
the asteroid sequence of one candidate solution is indeed better than the orbit
through another asteroid sequence of another candidate solution). The result is
that although the AST will find optimal solutions with the same objective value
as the current best, it can also miss sequences which have a discrete value a little
worse than the optimum, but which could result in good solutions from a contin-
uous point of view.
The extent of the impact of this observation is based on chance. The algorithm
might choose a path which finds a large number of these suboptimal solutions, but
it can also miss a fair few of them. This is inherent to the algorithm and cannot
be changed. The impact of this disadvantageous characteristic of the algorithm
can be mitigated by allowing the B&B to choose its path randomly, and have it
run several times. Unfortunately, the time available did not permit the testing of
this setting.

Based on the above observations, it is concluded that the tool is able to work
towards good candidate solutions. The quality of the overall result is based heavily
on the combination of the quality of the objective function and the settings of the
algorithm (e.g. deterministic path vs. random path).

6.1.2 NNH

To validate the performance of the NNH it will be tested on the problem given
in Figure 3.5. This problem is the untransformed version of the problem given in
Figure4.11, used to validate the AST. First this problem is solved by hand. The
results are given in Figure 6.3.

City 1 City 2 City 3 Cost 1 Cost 2 Cost 3 Total cost

A G D 2 7 2 11

B F D 1 5 1 7

C F B 2 4 8 14

D B F 1 1 5 7

E D B 3 1 3 7

F B C 4 8 2 14

G A C 4 5 2 11

Figure 6.3 Manual solution of EGTSP problem of Figure 3.5.

The output of the NNH is given in Figure 6.4. The IDs 1 to 7 correspond with
cities A to G. Comparing the result of figures 6.4 and 6.3 shows that the NNH
produces the same results. The results also shows, like the AST validation results
that this particular problem contains multiple optimal solutions.The optimal solu-
tions are the same as the ones that were obtained by the AST (E→D→B→E and
F→D→B→F). Note that the optimal result in Figure 6.3 obtained when start-
ing at city B is the same optimal solution that was found when starting at city
D. Based on these results it is concluded that the NNH performs correctly when
solving the EGTSP.
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Cost matrix is:   
 
inf inf 5 7 4 6 2 
inf inf 8 9 3 1 5 
6 3 inf inf 4 2 2 
2 1 inf inf 5 6 1 
9 7 9 3 inf inf inf 
8 4 6 5 inf inf inf 
4 7 9 7 inf inf inf  
 
IDs: 1-7-4 
costs: 2-7-2 
total cost:  11 
 
IDs: 2-6-4 
costs: 1-5-1 
total cost:  7 
 
IDs: 3-6-2 
costs: 2-4-8 
total cost:  14 
 
IDs: 4-2-6 
costs: 1-1-5 
total cost:  7 
 
IDs: 5-4-2 
costs: 3-1-3 
total cost:  7 
 
IDs: 6-2-3 
costs: 4-8-2 
total cost:  14 
 
IDs: 7-1-3 
costs: 4-5-2 
total cost:  11 
 
 
IDs of best cycle: 2-6-4 
transfer costs of best cycle: 1-5-1 
total cost of best transfer:  7 

Figure 6.4 NNH output for EGTSP problem of Figure 3.5.

6.2 Continuous Method

Due to the absence of tests performed in literature on the applied patched exposin
model, it is impossible to validate the entire model. Instead, a well-studied single
leg transfer for Earth to Mars will be used to validate the continuous method for
one leg. A thorough study of exposins has been performed in [Paulino, 2008], and
the results obtained for the EM transfer will be used for validation.
In [Paulino, 2008] a multi-objective approach was used. The used fuel mass
and the total velocity mismatch at departure and arrival are minimized. In the
continuous method a single-objective approach is used and additional terms are
added in the form of penalties. To mimic the objective function used in [Paulino,
2008] the objective function of the continuous method was changed such that the
used fuel mass is minimized and a penalty is added for velocity mismatches upon
departure and arrival. Also the fact that a ∆V budget of 3.5 km/s is available
during the GTOC 2 competition at Earth departure is disregarded.

Two tests were performed. An overview of the tests is given in figure 6.5.
The two tests are used to mimic the objective function of [Paulino, 2008] as
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1 EM Fuel Mass 486.3 Mass equiv.

2 EM Fuel Mass 486.3 >0.5 Q

Test ID Transfer Objective Initial mass Penalty

1 EM Fuel Mass 486.3 Mass equiv.

2 EM Fuel Mass 486.3 >0.5 Q

Figure 6.5 Overview of the validation tests for the continuous method.

well as possible. Both tests use the same settings: an MC of 50,000 iterations
and a GA using 150 individuals and an initial spacecraft mass of 486.3 kg. The
penalties, however, differ. Since there are no penalties included in the model used
by [Paulino, 2008], no knowledge is available about the penalty settings. To solve
this problem, two different penalty settings have been tested. The first test applies
a penalty to the velocity mismatch by converting this to a mass, using Tsiolkovsky’s
law, as explained in section 4.2.3. The second test uses this conversion as well, but
on top of that, if the velocity mismatch is larger than 0.5 km/s, the mass will be
squared. This stronger penalty should make it easier for the GA to find solutions
with a lower velocity mismatch. The results in [Paulino, 2008] were obtained
by using an MC with 100,000 iterations. The continuous method will use an
MC algorithm of 50,000 iterations followed by a GA algorithm of 150 individuals;
the transfer was analyzed ten times using the continuous method. The results
are summarized in Figure 6.6. In this figure six parameters are given. J is the
objective value as given by Equation 4.62, J GTOC is the corresponding objective
value as used during GTOC2. It is obtained by evaluating Equation 4.62 without
the penalties. TOT DV indicates the total velocity mismatch in km/s, obtained
by adding the departure velocity mismatch to the arrival velocity mismatch. T0
is the departure date given in MJD.

Test

ID mean std best mean std best mean std best

1 70 0.5 69 44 9 33 1.07 0.36 0.75

2 71 1.8 70 48 4 47 1.05 0.11 1.07

mean std best mean std best mean std best

1 1477 416 1948 2.14 0.68 2.99 60038 3077 64395

2 1401 135 1361 1.89 0.30 1.89 59933 2366 58935

J Mass Used [kg] TOF [year]

J GTOC TOT DV T0

Figure 6.6 Results of the validation tests for the continuous method.

The results obtained by [Paulino, 2008] are presented in figure 6.7. When
comparing the best results of the continuous method with the Pareto front in
figure 6.7, it follows that the continuous method finds slightly better solutions.
The reason for this difference is the fact that there is a slight difference in the
implementation of the objective function as well as in the solution method. Because
the continuous method uses a GA and [Paulino, 2008] does not, it follows that a
GA is probably better in finding optimal exposin shapes than the MC. This topic
will be returned to in the results chapter.
Based on these results, it is concluded that the exposins are implemented correctly.
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Analytical Representations for Low-Thrust Trajectories  

 216

 

Figure 9.14: Pareto fronts for the sinusoidal spiral-modified and the exponential sinusoid – first case of 

the thrust profile, for the Earth to Mars flight 

 

In figure 9.14, individuals with values lower than 1.5 kg and 4.1 kg were not selected for 

the Pareto fronts for the sinusoidal-spiral-modified and for the exponential sinusoid, 

respectively. The minimum values of the total excess velocity in the Pareto fronts are 

0.1797 km s  and 0.2835km s  for the sinusoidal spiral-modified and for the exponential 

sinusoid, respectively. Individuals with TOF values higher than ~3.5 and ~4.1 years were 

not selected for the Pareto fronts, for the sinusoidal spiral-modified and the exponential 

sinusoid, respectively. 

 

In order to provide a clear representation in figure 9.14 of the Pareto fronts, an upper limit 

for the total excess velocity was given: 60 km s . Otherwise, since individuals with values 

of the order of 310 km s  were selected for the Pareto front (untenably high), the range of 

values for the total excess velocity represented would be large and it would have been 

more complicated to analyse the Pareto front. Obviously 60 km s  is still an unreasonably 

high value. 

 

From figure 9.14 illustrated above, generally for higher TOF values (higher values of 

transfer angle !"  and of number of complete revolutions N), the total excess velocity 

decreases while the total fuel consumption increases. Unlike for the tangential case, there 

are no individuals in the Pareto front that seem to be misplaced (section 9.1.1). Also, the 

presence of two curvatures in the Pareto front cannot be clearly seen in figure 9.14, since 

Figure 6.7 Results for the Earth-Mars transfer as presented in [Paulino, 2008].





Chapter 7

Results

This chapter will present the results of various analyses performed by both the
discrete and the continuous methods.

7.1 Discrete Method

This section discusses the results of the discrete method. First, an analysis of
the cost matrix reduction procedure, described in section 4.1.3, will be performed.
This will give insight in the quality and efficiency of the reduction procedure.
Second, the results of both the AST and the NNH are presented and compared.
The output of both the AST and the NNH will be generated using the three
different cost functions described in section 4.1.1. This will give an indication of
the performance of both methods on a search space defined by any of the three
cost functions that are relevant for solving the asteroid selection and sequencing
problem.

7.1.1 Cost Matrix Reduction Results

In order to facilitate the analysis of the discrete aspect of GTOC2 by using the
AST, the cost matrix is reduced. As discussed in section 4.1.3 a certain number of
best transfers are selected from each cost matrix block and the corresponding as-
teroids are extracted and a new (reduced) cost matrix is constructed using only the
selected asteroids. To assess the quality and efficiency of the reduction procedure,
the asteroids selected by the reduction procedure are compared to the asteroids in
the sequences obtained by all GTOC participants. Each GTOC2 participant found
an asteroid sequence of four asteroids. Combining all asteroids in the solutions of
all participants forms a set of relatively good asteroids. Comparing the asteroids
that are left after the reduction procedure with this set of relatively good aster-
oids, and counting the number of matching asteroids provides a way to measure
the quality of the reduction procedure: a high number of matching asteroids in a
small (reduced) cost matrix is preferred over a low number of matching asteroids
in a large (reduced) cost matrix. The number of selected best transfers can be
varied and it is up to the mission designer to choose an appropriate number. The
cost matrix is reduced using a varying number of best transfers, starting from
2 and ending at 7. In Figure 7.1 the results of these reduction procedures are
summarized.
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Best nr. of 

transfers

Reduced cost 

matrix size

Nr. of 

matching 

asteroids

Ratio
Reduced cost 

matrix size

Nr. of 

matching 

asteroids

Ratio
Reduced cost 

matrix size

Nr. of 

matching 

asteroids

Ratio

2 30x30 5 0.167 25x25 4 0.160 28x28 3 0.107

3 47x47 8 0.170 46x46 6 0.130 42x42 8 0.190

4 63x63 12 0.190 60x60 7 0.117 60x60 10 0.167

5 74x74 13 0.176 73x73 8 0.110 75x75 10 0.133

6 87x87 15 0.172 89x89 11 0.124 90x90 12 0.133

7 89x89 15 0.169 104x104 12 0.115 102x102 12 0.118

Delta V Energy ESA

Figure 7.1 Overview of cost matrix reduction results.

For each cost function, based on ∆V , energy or ESA, three items are listed.
First, the size of the reduced cost matrix. This is a square matrix with a dimension
equal to the number of selected asteroids. Second, the number of matching aster-
oids that correspond with any of the asteroids in all best sequences submitted by
the GTOC2 participants. Third, the ratio between the number of selected aster-
oids and the reduced cost matrix dimension. As mentioned, a good cost function
will provide a high number of matches but in a small reduced cost matrix size.
Cost matrices with this characteristic represent efficient problems to solve, since
they are small but contain a large number of good candidates. This translates into
a high ratio of good asteroids with respect to the reduced cost matrix dimension.

From Figure 7.1 it can be concluded that the cost function based on ∆V has
the highest ratio values and is therefore, at this point, preferable over the other
two cost functions. Based on these results the number of best transfers is chosen
to be 4 when creating the reduced cost matrix, because it gives a relatively good
ratio value for all cost functions and also provides a high absolute number of good
candidate asteroids. On top of this there is a practical reason. It turned out that
the Hungarian Algorithm was able to solve matrices with a dimension of 60 in a
relatively short amount of time (about 1s). A matrix with a larger dimension will
require significantly more time to solve and therefore will make it unpractical to
use it for solving subproblems of the B&B algorithm.

Comparing the asteroids selected by the reduction procedure with the asteroids
in the sequences produced by the GTOC2 participants provides interesting results.
Figures 7.2 -7.4 show all asteroid sequences as obtained by the GTOC2 partici-
pants. This was based on a reduction using the 4 best transfers from each cost
matrix block. In these figures the first column specifies the rank of the sequence.
The next five columns specifies the sequence itself, where the first body is always
Earth, indicated by ID 1. The last column shows the corresponding group order.
The asteroids that match with the asteroids selected by the reduction procedure
are highlighted in blue. Figure 7.2 highlights the matching asteroids that were
obtained using a cost function based on ∆V . Figure 7.3 highlights the asteroids
that were obtained using a cost function based on energy. Figure 7.4 highlights
the asteroids that were obtained using the cost function used by ESA.
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Rank GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

1 1 3258076 2000060 2000058 2002959 4321

2 1 3250293 2000149 2000569 2002483 4321

3 1 3170221 2000574 2000209 2011542 4321

4 1 3170221 2001990 2000240 2001754 4321

5 1 3017309 2000443 2000490 2001345 4321

6 1 3250293 2000027 2000110 2001038 4321

7 1 3288933 2001707 2000047 2014569 4231

8 1 3329255 2000232 2000807 2001754 4321

9 1 3170221 2000043 2000074 2002483 4321

10 1 3250293 2000149 2000224 2009661 4321

11 1 3343104 2000169 2000075 2000659 4321

Figure 7.2 Visualization of the matching asteroids with the GTOC2 results. The matching asteroids are
highlighted in blue.
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From figures 7.2 -7.4 an important observations can be made. All three cost
functions identify good asteroids belonging to group 1 easily. For the other groups,
however, this is not the case. Only one or two asteroids from groups 2, 3 and 4 are
selected. This indicates that the quality of the cost functions might not be optimal.
Some caution needs to be taken into account when drawing this conclusion. The
participants most likely analyzed numerous asteroid sequences, but only the best
one is presented in their results. It might be that other sequences that were
considered promising, contain the asteroids that are selected by the reduction
procedure here.

Another interesting observation is the high correlation between the selected
asteroids using the three different cost functions. This is visualized in Figure 7.5.
In this figure the asteroids that were selected by the reduction procedure, using the
best four transfers, that matched with any of the asteroids selected by the GTOC2
participants is given. The green fields indicate asteroids that were selected by two
of the cost functions. The blue fields indicate asteroids that were selected by all
three cost functions. This high overlap in selected asteroids indicates that the cost
functions, although based on different concepts and equations, are effectively not
very different.

DV E ESA

2000027 2000149 2000043

2000058 2001038 2000075

2000074 2001345 2001038

2000075 2001754 2001345

2000659 2009661 2001754

2001038 2011542 2002959

2001345 3170221 2009661

2002483 2011542

2002959 3017309

2009661 3170221

2011542

3017309

Selected Asteroid ID's

Figure 7.5 Overview of selected asteroid ID’s.

When a statistic approach to the results is adopted, the impact of the reduc-
tion procedure and the various cost functions can be quantified. Out of the 910
asteroid candidates, 38 distinct good asteroids are selected by the participants,
see Appendix A. This is a ratio of 0.042. The reduced cost matrices all have
better ratios than 0.042, indicating that selection based on these cost functions
does increase the efficiency of the solution process. It is also known, however, that
promising candidates are discarded as well, since not all asteroids selected by the
GTOC2 participants are present in the reduced cost matrices.
In appendix C more extensive results of the reduction procedure are included.

7.1.2 AST and NNH Results

The two presented discrete methods, the B&B (as implemented in AST) and the
NNH method (as described in sections 5.1.1 and 3.6 respectively), are both applied
to three different cost functions (detailed in section 4.1.1). The NNH is applied,
for each cost function, to both the complete cost matrix as well as the reduced
cost matrix. The best results are presented in Figure 7.6.
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Method Cost matrix Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

NNH reduced (63) 25.6 1 3064315 2000421 3297182 2011351 4321

NNH total (911) 21.3 1 9033382 2001830 2000206 2002959 4321

AST reduced (63) 22.9 1 3072273 2001621 2000206 2002959 4321

NNH reduced (60) 465.9 1 3072273 2000197 3114017 2001621 4321

NNH total (911) 451.3 1 3250293 2000149 2000207 2011542 4321

AST reduced (60) 420.6 1 3167353 2000975 2000104 2011542 4321

NNH reduced (60) 17.1 1 3170221 2000104 2000489 2011542 4321

NNH total (911) 15.0 1 3339082 2001055 2000163 2002959 4321

AST reduced (60) 16.0 1 3167353 2000075 2000642 2011542 4231

D
V

E
E
S

A

Figure 7.6 Best results of the B&B and the NNH for the three different cost functions based on ∆V
(DV), energy (E) and the ESA cost function (ESA).

In figure 7.6, the first column indicates which method is used. There are two
options: either the AST tool or the NNH. The second column indicates on which
cost matrix the method was used and in between brackets the dimension of the
cost matrix. There are two options. One is the complete cost matrix, the other is
the reduced cost matrix. In this case the reduced cost matrix was created using
the best 4 transfers from each matrix block, as argued in section 7.1.1. It should
be noted that in practice the total cost matrix is constructed by AST as well, but
that the core of the tool, the B&B procedure, is applied to the reduced matrix
only. This is because the Hungarian Algorithm is unable to deal with the com-
plete cost matrices. The reduction is performed by the AST as well. The third
column shows the minimum total cost of the corresponding asteroid sequence as
specified in columns four to eight 1 Note that the presented cost is not the cost of
the complete Hamiltonian cycle but the cost of the transfers starting from Earth
and ending at the fourth asteroid. The NNH is used to obtain Hamiltonian cy-
cles for different starting points (any of the asteroids or Earth), but the quality
of the solution is determined by the cost of the first four transfers starting from
Earth. This is because this cost resembles the GTOC problem better. A complete
Hamiltonian cycle would model a GTOC2 mission including a return to Earth.
The GTOC2 problem, however, does not include the return to Earth.
Columns 4 to 8 contain the GTOC2 asteroid ID’s (GTOC ID) of the visited aster-
oids, where columns 4 indicates the starting point (which is always Earth), column
5 indicates the asteroid that is visited first, column 6 the asteroid that is visited
second, etcetera.
The last column states the group sequence of the asteroids in that particular se-
quence.

Based on the results presented in Figure 7.6 it can be concluded that the
AST outperforms the NNH on the same search space for all three cost functions.
An improvement of 10.5% for the cost function based on ∆V is obtained, an
improvement of 9.7% for the energy cost function, and an improvement of 5.9%
when using the ESA cost function. In case of the energy cost function, the AST
even outperforms the NNH when the NNH is applied to the full set of asteroids. For
the other two cost functions however, the NNH, when applied tot the total set of
asteroids, finds a better result than the AST. Moreover, the NNH method produces
this result much faster. The NNH took minutes to produce its results, while the

1remember that the cost of the transfer when analyzing the discrete aspect needs to be mini-
mized, i.e., a cheap transfer is sought, but that the objective value for the continuous aspect needs
to be maximized. Due to the nature of the cost functions, low objective values for the discrete
aspect will most likely result in high objective values for the continuous aspect.
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AST has been running for 3 weeks, after which this process was terminated by the
user. The complete output of AST, however, was generated within a few hours,
and from there on AST has only been evaluating the tree of options without further
improvement of the objective value.
It should be noted that stopping the AST can have a disadvantageous effect on
the quality of the solution. It is not known if the global optimum has been found.
As mentioned in section 3.5.1, stopping the algorithm results in a range for the
global optimum. If it was known beforehand that the algorithm would not be able
to finish, the search strategy of the B&B would most likely have been changed
from DFS to BFS. The fact that the algorithm was stopped does not mean its
results are invalid, it does implicate that more good solutions might have been
obtained if another search strategy was used. It is emphasized that this is merely
a hypothesis.

The group order of the obtained sequences matches those of the GTOC2 par-
ticipants. Both the NNH as well as the AST indicate that either 4-3-2-1 or 4-2-3-1
is a promising sequence of asteroid groups. This coincides with the results from the
GTOC2 participants (see appendix A or C). Although results do not indicate that
the cost function based on energy results in more asteroid sequences with group
order of either 4-3-2-1 or 4-2-3-1, the explanation given in section 2.3 that this
group order is preferable because of an efficient use of energy, is deemed plausible.

Figures 7.7-7.9 show the top ten results of the AST for the cost function based
on ∆V , E and the cost function used by ESA respectively. These results confirm
that good sequences have group sequences of either 0-4-3-2-1 or 0-4-2-3-1. When
the results for the ESA cost function are scrutinized it is noted that a fair number
of duplicate solutions exist. This is due to the symmetry of the cost function as
described in sections 4.1.1 and 3.3. The symmetry reduces the efficiency of the
solution process, since time is spent looking for duplicate solutions.

DV value 

[km/s]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

22.92 1 3072273 2001621 2000206 2002959 0 4 3 2 1

24.48 1 3170221 2012746 2000206 2002959 0 4 3 2 1

24.58 1 3072273 2001621 2000558 2001345 0 4 3 2 1

25.19 1 3170221 2012746 2000558 2001345 0 4 3 2 1

27.00 1 3170221 2012746 2000558 2004754 0 4 3 2 1

27.83 1 3170221 2012746 2000010 2005209 0 4 3 2 1

28.35 1 3170221 2000010 2000975 2011542 0 4 2 3 1

30.79 1 3170221 2012746 2011542 2000010 0 4 3 1 2

39.32 1 3170221 2011542 2000010 2000008 0 4 1 2 3

41.08 1 2002959 2000010 2000158 3297182 0 1 2 3 4

Figure 7.7 Top 10 AST results for the cost function based on ∆V : asteroid and group sequences.
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E value 

[MJ/kg] 
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

421 1 3167353 2000975 2000104 2011542 0 4 3 2 1

438 1 3167353 2000975 2002407 2011542 0 4 3 2 1

454 1 3339082 2000016 2000245 2011542 0 4 2 3 1

456 1 3167353 2000104 2011542 2000642 0 4 2 1 3

465 1 3167353 2000975 2011542 2000121 0 4 3 1 2

474 1 3167353 2000104 2011542 2001087 0 4 2 1 3

479 1 3339082 2000016 2011542 2000642 0 4 2 1 3

497 1 3339082 2000016 2011542 2001087 0 4 2 1 3

513 1 3339082 2001621 2011542 2000121 0 4 3 1 2

521 1 3339082 2001621 2011542 2000334 0 4 3 1 2

Figure 7.8 Top 10 AST results for the cost function based on energy: asteroid and group sequences.

ESA value 

[km/s]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

15.98 1 3167353 2000075 2000642 2011542 0 4 2 3 1

15.98 1 3167353 2000075 2000642 2011542 0 4 2 3 1

16.32 1 3347493 2000075 2000642 2011542 0 4 2 3 1

16.56 1 3167353 2002407 2000642 2011542 0 4 2 3 1

16.56 1 3167353 2002407 2000642 2011542 0 4 2 3 1

16.75 1 3347493 2002407 2000642 2011542 0 4 2 3 1

16.84 1 3170221 2000937 2002407 2011542 0 4 3 2 1

16.87 1 3167353 2001047 2000021 2011542 0 4 3 2 1

16.93 1 3170221 2012746 2002407 2011542 0 4 3 2 1

17.11 1 3167353 2000075 2011542 2000642 0 4 2 1 3

Figure 7.9 Top 10 AST results for the cost function used by ESA: asteroid and group sequences.

Comparing the results of the AST for the ESA cost function with the results
of the GTOC2 competition, included in appendix A, shows that the ESA asteroid
sequence is not the same as the solution sequence found by AST. This is due to the
fact that not all asteroids in the sequence obtained by ESA survived the reduction
process of the cost matrix. Apparently, ESA used a stronger B&B algorithm than
the one developed during this research.
More extensive AST results are presented in appendix D.

Figures 7.10-7.12 show the top ten results of the NNH, applied to the reduced
cost matrix, for the cost function based on ∆V , E and the cost function used by
ESA respectively. The results show that when a reduced cost matrix is analyzed,
the best solution is found when starting from Earth. The next best sequence is
significantly worse for all three cases. The reason why the best sequences start at
Earth can be explained by considering that the NNH searches for a Hamiltonian
cycle. The multistart algorithm constructs a cycle for every starting body by
looking for the transfer with the lowest cost to a body in a group that has not
been visited yet. At some point however the situation arises that all groups have
been visited and the cycle needs to be closed by returning to the starting body.
This last transfer is not a variable to be optimized, it is fixed by the final body
obtained by the NNH and the starting body.
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DV value 

[km/s]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

25.59 1 3064315 2000421 3297182 2011351 4321

28.02 2001723 2002223 2012746 1 3064315 23104

28.21 2000642 2000975 2012746 1 3064315 32104

28.44 2000975 2000642 2000010 1 3064315 23104

28.73 2000519 2000138 2000021 1 3064315 23104

29.05 2011542 2000642 2000010 1 3064315 23104

29.27 3072273 2000558 2000010 1 3064315 23104

29.47 3297182 2000642 2000010 1 3064315 23104

29.68 2005209 3072273 2000010 1 3064315 32104

29.68 2000558 3072273 2000010 1 3064315 32104

Figure 7.10 Top 10 NNH results when applied to the reduced cost matrix, for the cost function based on
∆V .

E value 

[MJ/kg] 
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

466 1 3072273 2000197 3114017 2001621 4321

542 2004063 2000245 2011542 2100004 1 43120

657 2003362 2000245 2011542 2100004 1 43120

707 2000149 2000196 2001621 2000346 1 42130

741 2000521 2001345 2011542 2004063 1 32140

756 2000413 1 2000521 2001345 2011542 40321

757 2000642 3350633 2011542 2004063 1 32140

760 3177176 1 2000521 2001345 2011542 40321

764 2000207 3114017 2001621 2000149 1 32140

768 2000489 2000121 2011542 2004063 1 23140

Figure 7.11 Top 10 NNH results when applied to the reduced cost matrix, for the cost function based on
energy.

ESA value 

[km/s]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

17.10 1 3170221 2000104 2000489 2011542 4321

24.97 2000010 3072273 2000937 2001087 1 32140

25.08 2000121 3350633 2000937 2001087 1 32140

25.46 2000009 3017309 2000937 2001087 1 32140

25.63 2000104 2000489 2011542 2001087 1 32140

25.63 2001087 1 2000104 2000489 2011542 40321

25.79 3072273 2000010 2000937 2001087 1 23140

25.80 2001665 3017309 2000937 2001087 1 32140

25.82 3046844 3017309 2000937 2001087 1 32140

25.85 3350633 2000121 2009661 2001087 1 23140

Figure 7.12 Top 10 NNH results when applied to the reduced cost matrix, for the cost function used by
ESA.
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As previously mentioned, the quality of the sequence is not determined by the
cost of the complete cycle but by the cost of the first four transfers starting from
Earth. In practice this will mean that all sequences of four transfers starting from
Earth, will contain that one transfer that is fixed, except when the NNH starts
at Earth itself. When the NNH starts at Earth a Hamiltonian cycle is obtained
of five transfers, of which the fifth transfer is the one which is not optimized.
The quality, however, is determined by the first four transfers only, which are all
optimized for. The fact that all transfers are optimized for instead of only three out
of four, which is the case when starting at any of the asteroids, explains why the
multistart NNH obtains its best result when starting at Earth. It also explains the
jump in objective value present between the best solution and the other solution
values for some cost functions.

When, however, the results for the complete asteroid set are considered it shows
a smoother increase in objective value. Figures 7.13-7.15 show the top ten results
of the NNH, applied to the complete cost matrix, for the cost function based on
∆V , E and the cost function used by ESA respectively. It can be seen that the
difference in objective value between the first and second best sequence is smaller
compared to the difference in figures 7.10-7.12.

DV value 

[km/s]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

21.28 1 3339082 2001830 2000206 2002959 4321

21.28 2001830 2000206 2002959 1 3339082 32104

22.91 2000851 2000206 2002959 1 3339082 32104

23.25 2000443 2000034 2002207 1 3339082 32104

23.45 2000534 2000206 2002959 1 3339082 32104

23.46 2000058 2000533 2002207 1 3339082 23104

23.63 2000673 2000206 2002959 1 3339082 32104

23.65 2000548 2000206 2002959 1 3339082 32104

24.06 2000182 2000206 2002959 1 3339082 32104

24.13 2001350 2000206 2002959 1 3339082 32104

Figure 7.13 Top 10 NNH results when applied to the reduced cost matrix, for the cost function based on
∆V .

E value 

[MJ/kg]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

451 1 3250293 2000149 2000207 2011542 4321

498 3064315 2001078 2000535 2100004 1 43210

532 3330538 2000230 2000156 3081550 1 43210

538 3102762 2001504 2000410 2100004 1 43210

541 3102787 2000453 2000207 2011542 1 43210

545 3250195 2001047 2000021 2002959 1 43210

562 3017060 2001717 2000224 2011542 1 43210

565 3046648 2000115 2000054 3046844 1 43210

569 3266035 2000487 2000559 2100004 1 43210

570 3092347 2000161 2001500 2011542 1 42310

Figure 7.14 Top 10 NNH results when applied to the reduced cost matrix, for the cost function based on
energy.
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ESA value 

[km/s]
GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

15.03 1 3339082 2001055 2000163 2002959 4321

21.05 2003362 2100004 2000413 2000532 1 41230

21.25 2096590 2100004 2000413 2000532 1 41230

21.92 3063789 2100004 2000413 2000532 1 41230

22.62 3309858 2100004 2000413 2000532 1 41230

22.69 3031176 2100004 2000413 2000532 1 41230

22.75 3297356 2100004 2000413 2000532 1 41230

22.76 3092339 3046844 2000036 2000328 1 41230

22.83 2066400 2100004 2000413 2000532 1 41230

22.93 3328632 2100004 2000413 2000532 1 41230

Figure 7.15 Top 10 NNH results when applied to the reduced cost matrix, for the cost function used by
ESA.

It also shows that there is a large number of promising sequences found in the
total set which are not present in the reduced set because they were filtered when
reducing the cost matrix. This indicates that the reduction procedure is discarding
good candidates.

In general, it can be stated that a multi-start NNH adds relatively little to
the quality of the result, since the best result can be obtained by a single start
NNH from Earth. The multistart NNH is useful, however, for generating multiple
candidate asteroid sequences, when it is applied to the complete cost matrix.
More extensive multistart NNH results are presented in appendix E.

The biggest remaining question is what an AST-like method would find when
able to deal with the complete asteroid set. The NNH and AST results for the
reduced cost matrix indicates that solutions invisible to the NNH are present
and improvements of several percent points are to be expected. Moreover, the
results for the cost function based on energy in Figure 7.1 show that the AST,
when applied to the reduced set, finds a better solution than the NNH that was
applied to the complete asteroid set. This proves that, for the cost function based
on energy, the NNH method, when applied to the complete asteroid set, will be
unable to find the optimal solution.
These results indicate that a more powerful B&B method might improve the results
obtained by the NNH, when both are applied to the complete asteroid set. A
number of issues might be addressed when attempting to improve the quality of the
B&B. First, the rule that is used for selecting which node/subproblem to evaluate
next can be changed. As mentioned, in this research a DFS rule is applied, but
the other two rules presented in section 3.5, BFS or random, can be used as well.
Second, the rule according to which the subproblems are created can be changed.
In this research the shortest subcycle was selected for branching. Alternatively,
the longest subcycle can be selected, or a subcycle at random, or maybe even all
subcycles. Third, an initial upper bound for the BB can be created by evaluating
the problem first with NNH. This initial upper limit will prevent that the B&B
will pursue solutions of which it is known they are not optimal. Last, the efficiency
of the code can be increased.

7.2 Continuous Method

This section will present the results obtained for the continuous model for a num-
ber of tests. First, an overview of the performed tests will be given, as well as the
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settings with which the test were performed. A total of 17 tests will be performed.
The first two tests will consider sequences selected from the GTOC participants,
with different optimizer settings. Based on these test results, a performance assess-
ment of the continuous model and method, detailed in section 5.2, can be made.
The next three tests will evaluate the top 8 sequences obtained by the AST, using
the three different cost functions presented in section 4.1.1. The following three
tests evaluate the top 8 sequences obtained by applying the NNH to the complete
cost matrix, using the three different cost functions. The test results of the se-
quences obtained by the AST and NNH make it possible to give an indication of
the quality of the applied methods and cost functions. After assessing the quality
of the continuous model and method and evaluating the various methods and cost
functions, a number of additional tests will be performed to further investigate the
characteristics of the GTOC2 problem.
The settings for the various optimizers will be determined based on the results for
the sequences obtained by the GTOC participants. The lower and upper bounds
(LB and UB) used on x (equation 4.61) to evaluate the sequences are shown in Fig-
ure 7.16. The bounds on TOF , k2, N and TOS are applied for every exposin leg.

Parameter Unit LB UB

T0      MJD 57023.5 64693.5

TOF   days 1 2000

k2    - 0.01 1

N       - 0 1

TOS   days 90 150

Figure 7.16 Bounds used to evaluate GTOC2 results.

Each asteroid sequence will be evaluated 20 times using the continuous method.
This is done because the continuous method is not a deterministic process. By
running it several times, a more reliable result is obtained, and the robustness of
the method can be determined by evaluating the standard deviation of the results
of the 20 runs.
For every sequence, the results for nine different parameters will be given. The
first row contains the values for the objective value J [-], the corresponding GTOC
objective value J GTOC [-] (which is J without penalties) and the total velocity
mismatch DV TOT [km/s], of the best solution of the 20 runs, at three different
points in the solution process. They will be given after the MC has finished, after
the GA has finished, and finally after completing the IP method, which is the end
of the solution process.
The last two rows in each figure shows the results for the objective value (J), the
mass use in kg, the total time of flight in years (TOF), the corresponding GTOC2
objective value (J GTOC), the sum of the velocity mismatches upon arrival and
departure at the first three asteroids and, if applicable, at Earth (TOT DV), and
finaly the launch date in MJD (T0) for the best results after the IP method, and
with that the continuous method, has finished. For these parameters the mean
and standard deviation of the results produced by the 20 runs is presented as well.
For each test, more extensive results will be presented in the appendices.

7.2.1 Continuous Results for the GTOC2 Sequences

In order to assess the performance of the continuous method described in Section
5.2, it is applied to the sequences obtained by the GTOC2 participants. The se-
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quences that are evaluated are those of the winner (number 1) and of the numbers
3, 7, 9, 10 and 11. These were selected because of the spread in their objective
values. The objective values and corresponding asteroid sequences of the selected
participants are shown in Appendix A. The spread in the objective values makes
it possible to determine with what accuracy the continuous method is able to dif-
ferentiate between relatively good and relatively bad sequences. If the method
described in Section 5.2 is perfect, then it will rank the sequences of the vari-
ous participants in the same order as they are ranked in the GTOC2 results of
Appendix A.

The sequences were evaluated with two different sets of settings for the opti-
mizers. One set used relatively weak settings with an MC using 50,000 iterations
and a GA using a population size of 300 individuals. The other set used stronger
settings with an MC using 100,000 iterations and a GA using 500 individuals.
The best results out of these 20 runs for the weak optimizer settings are shown in
Figure 7.17 and for the strong settings in Figure 7.18.

Rank J J GTOC TOT DV J J GTOC TOT DV J J GTOC TOT DV

1 -10068 86 18.13 -3013 106 10.93 -3000 105 10.85

3 -9661 86 18.13 -2735 105 10.38 -2714 104 10.45

7 -12463 88 22.35 -4449 57 13.32 -4443 57 13.30

9 -8247 101 16.35 -2140 103 9.58 -2114 103 9.50

10 -7098 80 14.57 -2291 114 9.56 -2240 115 9.49

11 -10919 93 19.26 -5107 95 12.76 -5012 94 12.77

mean std best mean std best mean std best

1 -5595 1728 -3000 676 130 529 9.63 0.36 9.25

3 -4592 1260 -2714 490 75 477 9.78 0.32 9.82

7 -7943 2442 -4443 744 207 926 9.73 0.34 10.00

9 -4112 1922 -2114 534 123 469 9.73 0.62 10.00

10 -4464 1127 -2240 551 116 353 9.76 0.37 10.00

11 -7034 1731 -5012 730 101 670 9.53 0.44 8.79

mean std best mean std best mean std best

1 86 13 105 14.25 2.11 10.85 57974 1652.6 57343

3 103 10 104 13.46 1.61 10.45 61998 1650.3 63592

7 78 21 57 16.87 2.48 13.30 59169 2511.1 57474

9 100 18 103 12.47 2.47 9.50 61703 2551.6 64173

10 97 10 115 12.84 1.61 9.49 62073 2505.5 64145

11 81 12 94 15.19 1.89 12.77 62711 507.39 62402

J GTOC TOT DV [km/s] T0  [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.17 Results of analysis of GTOC2 candidates with an MC of 50,000 iterations and a GA of 300
individuals (weak settings).

The final objective values J, obtained after the IP method has finished, for
each of the selected GTOC participants (first column of the Interior Point results
of Figures 7.17 and 7.18) are represented graphically in Figure 7.19. Based on
Figures 7.17, 7.18, 7.19 a number of observations can be made.

When looking at the objective values J, produced after the IP method has
finished, for the various GTOC2 participants in an absolute sense, it becomes
clear that all objective values J are negative and one or two orders of magnitude
larger than the J GTOC results. Since the J value is constructed from the GTOC2
objective value (J GTOC) and the penalties, this implies that the penalties still
form a significant part of the objective value.
A second observation regarding the J values is that the standard deviation is very
large. This indicates that the algorithm is finding very different optimum values
for each of the 20 runs, i.e., the algorithm is not robust. This might be increased
by using more MC iterations or a larger GA population. This comes at the cost
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Rank J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

1 -9211 98 19.25 -2436 109 9.64 -2407 107 9.54

3 -8266 101 18.309 -2438 107 10.01 -2406 106 9.96

7 -10903 84 20.16 -3197 61 11.30 -2971 61 11.18

9 -4326 98 12.914 -1958 106 9.93 -1934 108 9.51

10 -7251 98 16.112 -2835 109 11.09 -2832 109 11.07

11 -10808 94 19.299 -4708 77 12.59 -4434 76 12.52

mean std best mean std best mean std best

1 -4808 1413 -2407 554 99 508 9.37 0.48 9.23

3 -3742 781 -2406 495 52 472 9.90 0.15 9.66

7 -6066 2005 -2971 724 193 924 9.80 0.28 9.51

9 -2873 722 -1934 508 87 440 9.77 0.29 9.82

10 -4663 1153 -2832 558 125 406 9.76 0.32 10.00

11 -6001 939 -4434 750 90 776 9.58 0.43 9.49

mean std best mean std best mean std best

1 102 15 107 13.25 1.93 9.54 57681 832 57024

3 102 6 106 12.48 1.16 9.96 62270 1518 63592

7 79 19 61 14.83 2.07 11.18 58060 1870 57651

9 102 10 108 10.97 1.08 9.51 62438 2578 64155

10 96 12 109 13.12 1.58 11.07 61312 2682 64123

11 78 11 76 14.17 1.02 12.52 62508 390 62579

J GTOC TOT DV [km/s] T0  [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.18 Results of analysis of GTOC2 candidates with a MC of 100,000 iterations and a GA of 500
individuals (strong settings).
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Figure 7.19 Visualization of results after local optimization for both the weak and the strong settings of
the MC and GA algorithms.

of an increased computation time.
When looking at the objective values J for the various GTOC2 contestants in a
relative sense, most notably in figure 7.19, it shows that they are not decreasing
overall with decreasing GTOC2 rank. The goal is to optimize J, thus the winner
is expected to have a higher objective value than the number 3, whereas this
number 3 is expected to have a higher objective value than number 7, etcetera.
This is, however, not the case for every consecutive rank, see Figure 7.19. For
the weak settings the objective values show a strong fluctuation. There is hardly
a decreasing trend in the data. For the strong settings, however, all values are
between approximately -2000 and -3000 with the exception of rank 11. Rank 11
has a value that is relatively bad in comparison with the other ranks. This leads us
to believe that the continuous method can distinguish between relatively good and
relatively bad sequences, where relatively good means GTOC2 objective values of
50 or higher and relatively bad is between 0 and 50. A sequence with a J value of
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over -3000 is considered good, and a sequence with a J value of less than -3000 is
considered bad.

The J GTOC values obtained by the continuous method are all larger than the
objective values obtained by the GTOC2 participants, except for rank 7 (compare
results in figures 7.18 and A.1 ). It is expected that the J GTOC values of the con-
tinuous method are larger than the GTOC2 value because constraint mismatches
are present. In general, it is easier to solve an unconstrained problem instead of a
constrained problem, and therefore higher objective values are expected when con-
straint mismatches are allowed. Although constraint mismatches are undesirable
and it is attempted to minimize them, they are still present in the solution. So if
the GTOC2 results (without constraint violations) are compared to the results of
Figures 7.17 and 7.18 (with constraint violations) then the results of the latter are
expected to be better. Physically this can be interpreted by comparing the case
with and without mismatch in arrival velocity. In order for the spacecraft to match
the velocity of the asteroid it will need to maneuver (use propellant mass and time)
to get into an orbit that better matches the asteroid’s orbit. Since both time and
mass are used while maneuvering, which both affect the objective value negatively,
the orbit that arrives at the asteroid without constraint violation will have a worse
objective value compared to the orbit with arrival velocity mismatches.

Figures 7.17 and 7.18 show that for the best results, the fuel mass used is
always lower than the prescribed limit of 1000 kg and the total time of flight is
always shorter than the prescribed limit of 20 years.
The results for the time of flight also reveal an error in the settings for the time of
flight penalty. A quadratic penalty was applied when the total time of flight of the
mission exceeded 10 years. The allowed mission duration for GTOC2, however, is
20 years. This means that a penalty inside the problem bounds is applied. The
results show that all mission durations are near the penalty threshold of 10 years,
indicating that the penalty has a significant influence on the results. Comparing
the results for the total time of flight obtained by the continuous method in figures
7.17 and 7.18 with the results obtained by the GTOC2 participants in appendix A,
however, shows that the time of flight penalty does steer the optimizer in the right
direction. The solutions of the top 8 ranks of the GTOC2 participants all have
a time of flight of about 10 years. The applied penalty thus steers the solution
method towards an optimal region in the search space for the sequences obtained
by the GTOC2 participants. When evaluating other sequences this might not be
the case. It should be noticed that for absolute certainty of the effect of this set-
ting, all tests have to be redone using a penalty threshold of 20 years.
Another remark has to be made regarding this error. Although the penalty was
applied for erroneous reasons, preliminary output obtained during the develop-
ment of the continuous method showed that if no penalty is applied, the total time
of flights obtained during the 20 runs for the winner sequences would range from
roughly 12 years to 21 years, but with J GTOC values half as good as compared
to when the 10+ penalty is applied to the time of flight. If at the time these
results were compared to the results obtained by the GTOC2 participants, it was
most likely opted to implement a penalty on the time of flight or to drastically
increase the strength of the optimizers. In the end, applying the erroneous penalty
unknowingly resulted in reducing the computational time, since less strong opti-
mizer settings are required. The results in Figure 7.18 do indicate that the applied
quadratic penalty might be a little too severe. Considering the mean and standard
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deviations shows that the solutions are clustered just under the 10 years, whilst
the solutions of the GTOC2 participants are just over 10 years.
The GTOC results show a correlation between good solutions and a time of flight
of about 10 years. The implemented exposin model uses a continuous thrust arc
and hence increasing the time of flight will most likely have a detrimental effect on
the objective function, since both the time of flight and the mass consumption are
increased. A more accurate model where, for example, multiple thrust and coast
arcs are implemented, should not use this penalty with a threshold of 10 years.
Considering the limited accuracy of the applied exposin model and the fact that
the results are near an optimal region in the search space supports the conclusion
that the erroneous settings do not make the results presented in this chapter in-
valid. The effect of this penalty setting will be revisited by one of the additional
tests performed at the the end of this chapter.

Rank leg 1 leg 2 leg 3 leg 4 leg 1 leg 2 leg 3 leg 4

1 3.09 2.04 0.71 1.18 2.97 1.38 1.25 2.10

3 2.35 2.40 1.20 1.97 0.40 1.20 2.79 4.33

7 3.42 2.07 2.05 1.70 2.06 1.18 2.11 1.75

9 2.03 0.98 1.62 2.70 1.19 0.92 2.11 3.16

10 1.91 1.19 3.14 1.17 1.17 1.43 3.09 4.02

11 3.35 1.13 1.52 2.45 4.06 1.56 1.79 3.09

Departure DV Arrival DV

Figure 7.20 Departure and arrival velocity mismatches of best solutions obtained using an MC with
100,000 iterations and a GA with 500 individuals.

Figure 7.18 shows that the total constraint mismatch in terms of velocity is
on average about 10 km/s, but with each individual sequence this value can vary
about 30%. This total ∆V is the summation of three arrival and three or four
departure velocity mismatches. Remember that the departure velocity at Earth
is not taken into account when lower than 3.5 km/s and that the arrival velocity
at the final asteroid is also excluded by the GTOC2 assignment. This means that
at each departure and arrival, on average, about 1.7 km/s velocity mismatch is
found. This is a serious constraint violation, since the GTOC2 assignment only
allows for 1 m/s of velocity mismatch.
Figure 7.20 presents the departure and arrival velocity mismatches for every in-
dividual leg. These results show that the departure ∆V at Earth is always lower
than the constraint of 3.5 km/s for all ranks except rank 11. The arrival ∆V at
asteroid 4 is bad in a large number of cases, relative to the arrival velocities at
the other asteroids. This is as expected since no rendezvous, but only a flyby with
the last asteroid is required, and therefor no penalty was applied to the arrival
velocity at the last asteroid.
These results indicate that the exposins are far from accurate enough for the pur-
pose of finding valid GTOC2 solutions. This indicates that a strong local optimizer
in combination with a more accurate model is required.

In order to make a clear comparison of the mission time lines obtained by the
continuous method and the GTOC2 participants, both results are summarized in
Figure 7.21. Comparing these numbers reveals that the continuous method does
not find the same (optimal) mission timelines. This indicates that, in its current
form, the continuous method is not suitable for search space reduction with the
goal of minimizing the search space for more accurate methods (i.e., it cannot
provide the input for more accurate methods).



84 Results

R Part. C.M. Part. C.M. Part. C.M. Part. C.M. Part. C.M.

1 99 107 59870 57024 90 90 90 149 105 149

3 87 106 57372 63592 102 103 102 91 90 90

7 82 61 62201 57651 90 113 90 149 90 90

9 75 108 57561 64155 119 129 90 131 90 150

10 57 109 58448 64123 94 147 222 140 90 130

11 28 76 58246 62579 90 136 90 94 90 150

Part. C.M. Part. C.M. Part. C.M. Part. C.M.

1 413 189 1606 920 578 1348 459 527

3 253 539 1636 515 447 1369 712 820

7 253 707 1900 950 860 1026 660 436

9 426 461 1521 867 1218 992 739 857

10 304 275 1980 567 943 642 943 1752

11 879 602 2516 623 731 636 2615 1223

TOF 4

TOS 1 TOS 2 TOS 3 

TOF 1

J GTOC

TOF 2 TOF 3 

T0

Figure 7.21 Comparison of mission timelines between results of GTOC2 participants and the results of
the Continuous Method (C.M.) using an MC with 100,000 iterations and a GA with 500
individuals.

To check the performance outside of the range of the winners, one sequence
of which it is known to be bad beforehand (large inclination differences between
subsequent asteroids) was tested as well. The tested sequence is (GTOC2 ID
numbers): 1→2000944→2000024→2000584→3293923. After the GA was finished
it found an objective value J, of -51344. This shows that the continuous method
will detect a (very) bad sequence. This bad sequence, however, should already
have been filtered out by the AST. In case the AST method would produce this
(or any other) bad sequence, the continuous method will detect and discard it.
Based on this result, it is concluded that the continuous method is at least able to
confirm the B&B results.

Rank N 1 N 2 N 3 N 4

1 0.40 0.25 0.75 0.44

3 0.88 0.49 0.03 0.25

7 0.71 0.71 0.95 0.02

9 0.92 0.81 0.27 0.37

10 0.46 0.25 0.48 0.37

11 0.65 0.53 0.39 0.26

Figure 7.22 Number of revolutions of best solutions obtained using an MC with 100,000 iterations and a
GA with 500 individuals.

Figure 7.22 presents the number of revolutions N for the best solutions obtained
by the strong optimizer settings. This figure shows that all numbers are between 0
and 1. The model, however, only accepts integer values. The number 0 indicates a
transfer angle between 0 and 2π, the number 1 indicates a transfer angle between
2π and 4π. The reason why these numbers are no integers is because the GA creates
a double value for every model parameter (every variable). When determining the
value for N the double value will be rounded to either 0 or 1.

A first observation regarding the applied methods is the fact that the MC finds
a finite value in all cases. It is known that some exposin shapes are impossible to
fly, so there will be gaps in the solution space. This is confirmed in appendix J
where the search space is partially visualized. Because the MC finds finite values
it can be stated that it is successful in identifying feasible solution regions, which
was the reason for including the MC in the analysis.
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A second important observation regarding the applied methods is that the
biggest improvement in the objective value is achieved by the GA, and hardly any
by the local optimizer (see Figures 7.17 and 7.18). This indicates that the search
space contains smooth regions of (local) optimal values. It does not exclude,
however, the presence of very narrow optimal regions that are very hard to find
by a GA. The partial visualization of the search space in appendix J shows that
narrow feasible regions do exist. It is, however, unknown if the GA is looking into
these regions or if they contain local optima or not.

Additional observations can be made when scrutinizing the results in figures
7.17 and 7.18. In most cases, the stronger optimizer settings find better values
for the mean and lower standard deviation of the results. This means that the
robustness of the optimizer is better for the stronger settings than for the weaker
settings, indicating that strong optimizer settings are required to analyze the ob-
jective function under consideration. Also, the results of the strong optimizer
settings match the expectations better. It finds a somewhat stronger decreasing
trend in the objective values than in the results obtained with the weak optimizer
settings (Figure 7.19).
Taking a closer look at the mean and standard deviation values indicates that
there is a wide spread in all parameters. This could indicate the presence of a
large number of local minima. It also implies that, although the GA is signifi-
cantly improving the objective value, it is not robust enough for the task at hand
and even stronger optimizer settings should be considered. One thing to keep in
mind, however, is that the landscape of the search space is shaped by the objective
function. As shown in Appendix J, the search space is determined to a large extent
by the penalty values. Since the quality of the results of a particular method are
only as accurate as its model, it is emphasized that before changing the optimizer
settings, first the model needs to be scrutinized and improved.

The trajectories and corresponding acceleration profile of the best and worst
continuous result for GTOC2 result (ranks 9 and 11 resp.) are included in Figures
7.23 - 7.26. There figures show two reasons why the orbit obtained of rank 9 is
better than the orbit belonging to rank 11.
Comparing figures 7.23 and 7.26 shows that the trajectory of the worst orbit
terminates at an asteroid which located farther from the Sun than the trajectory
of the best result. Flying further away will require both time and fuel, which both
has an adverse effect on the objective value.
The second reason why the trajectory of rank 9 is better than the trajectory of
rank 11 is a lower constraint violation for the allowed thrust acceleration. The
acceleration profiles in figures 7.24 and 7.26 indicate constraint violations in the
second leg of the trajectory for rank 9 and in the first and second leg of the
trajectory for rank 11. Also this constraint violation for rank 11 is much larger
(peak at 8.0e−4m/s2 instead of 2.5e−4m/s2).
Combining these results with the fact that the objective value is 14 points higher
for the better trajectory and that the velocity mismatch is also 3 km/s larger for
the worst trajectory (see figures 7.17 and 7.18) shows that indeed the continuous
method is able to differentiate between good and bad results.
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Figure 7.23 Orbit of best continuous result for sequences obtained by the GTOC2 participants. GTOC
rank = 9, J = -1934, J GTOC = 108. Trajectory is plotted according to the definitions in
figure 4.19.
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Figure 7.24 Allowed and required acceleration of best continuous result for sequences obtained by the
GTOC2 participants. GTOC rank = 9, J = -1934, J GTOC = 108. The blue line indicates
the acceleration limit, the black line the required acceleration for flying the trajectory shown
in figure 7.23.
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Figure 7.25 Orbit of worst continuous result for sequences obtained by the GTOC2 participants. GTOC
rank = 11, J = -5012, J GTOC = 94. Trajectory is plotted according to the definitions in
figure 4.19.
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Figure 7.26 Allowed and required acceleration of worst continuous result for sequences obtained by the
GTOC2 participants. GTOC rank = 11, J = -5012, J GTOC = 94. The blue line indicates
the acceleration limit, the black line the required acceleration for flying the trajectory shown
in figure 7.26.

Based on the observations stated so far, two consequences regarding the imple-
mentation of the continuous method as a tool for assessing the phasing behavior of
asteroid sequences are identified. The relatively large contribution of the penalty
to the objective value and the magnitude of the velocity mismatches at the aster-
oids implies that no accurate analysis of the phasing characteristics with respect
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to the GTOC objective value can be made. The results do show, however, that
when implementing the strong optimizer settings, the continuous method can be
used to roughly divide the quality of the sequences obtained by the AST and NNH
in three categories: relatively good, relatively bad, and near unfeasible. When
feasible solutions are found they will most likely fulfill the constraints for mass
use, mission duration and departure velocity. Sequences that are near unfeasible,
might demonstrate constraint violations for these parameters.

One drawback needs to be mentioned regarding the use of the GTOC2 results as
a benchmark. The GTOC2 participants may not have performed a perfect global
search of the total search space or in performing an accurate local optimization.
This introduces some uncertainty when comparing the results of other asteroid
sequences with the results for the sequences of the GTOC2 participants. It might,
for example, be the case that the asteroid sequence obtained by the participant
of rank 10 contains a better continuous solution in its search space than the one
handed in by the contestants. The results of the participant do however provide
a lower bound for the obtainable objective value. To assess if the search space
indeed contains alternative optimal solutions requires a very thorough search of
the entire search space, using more powerful methods and more accurate models,
such that all constraint violations are removed. This is, however, outside the scope
of this report, and is identified as a recommendation.

7.2.2 Continuous Results for the AST Output

This section summarizes the results of the continuous method for the three sets of
asteroid sequences obtained by the AST, using the three cost functions described
in section 4.1.1 (each set of sequences corresponds to one cost function). The top
8 asteroid sequences, obtained using a cost function based on ∆V , are shown in
Figure 7.27. The solutions are ranked according to their cost in terms of velocity
given in km/s (DV value). The top 8 asteroid sequences, obtained using a cost
function based on energy, are shown in Figure 7.28. The solutions are ranked
according to their costs in terms of energy given in MJ/kg (E value). The top 8
asteroid sequences, obtained by the AST, when using the ESA cost function, are
shown in Figure 7.29. The solutions are ranked according to their cost in terms
of velocity given in km/s (ESA value). More extensive results are included in
Appendix G.
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DV Value 

[km/s] J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

22.9 -4685 82 12.96 -2067 92 9.23 -2067 92 9.23

24.5 -10278 99 19.12 -2850 83 11.13 -2835 82 11.11

24.6 -6634 103 15.11 -2771 101 11.08 -2654 102 10.96

25.2 -6000 90 14.18 -3366 92 11.26 -3366 92 11.26

27.0 -7366 101 17.23 -2566 99 10.57 -2564 99 10.60

27.8 -5407 100 15.15 -1871 98 8.77 -1871 98 8.77

28.4 -5068 110 14.34 -2862 114 10.96 -2820 114 10.90

30.8 -6008 94 15.41 -1706 101 9.15 -1706 101 9.15

mean std best mean std best mean std best

22.9 -2650 790 -2067 639 33 621 9.27 0.55 9.51

24.5 -5703 1591 -2835 636 108 703 9.67 0.35 9.71

24.6 -4105 1074 -2654 529 62 489 9.85 0.18 9.94

25.2 -5255 1153 -3366 592 52 615 9.87 0.22 9.60

27.0 -3963 1158 -2564 516 56 521 9.93 0.13 9.92

27.8 -3311 1519 -1871 473 53 520 9.84 0.29 10.00

28.4 -4422 1050 -2820 495 96 439 9.64 0.32 9.31

30.8 -3450 1540 -1706 535 104 489 9.94 0.12 10.00

mean std best mean std best mean std best

22.9 93 7 92 10.03 1.44 9.23 59992 617 59659

24.5 90 12 82 14.44 1.97 11.11 60294 1710 61564

24.6 99 7 102 12.85 1.43 10.96 61519 459 61650

25.2 92 6 92 13.51 1.37 11.26 60939 1168 61207

27.0 99 6 99 12.26 1.43 10.60 62401 1938 63586

27.8 104 8 98 11.24 2.08 8.77 60754 1068 60874

28.4 105 11 114 13.05 1.39 10.90 58625 1080 59559

30.8 97 11 101 11.62 1.98 9.15 60427 1103 60133

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.27 Results of continuous method for the best sequences selected by AST using a cost function
based on ∆V .

E Value

[MJ/kg] J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

420 -1371 107 7.67 -181 104 5.55 -181 104 5.54

437 -7090 82 15.56 -2057 84 9.17 -1785 83 9.20

454 -9627 93 20.06 -5127 98 14.43 -5125 98 14.43

456 -6648 113 15.83 -2490 109 10.46 -2490 109 10.45

465 -11161 79 22.22 -4578 87 13.94 -4530 88 13.84

473 -7321 83 15.76 -2176 84 8.91 -2174 84 8.96

479 -4771 97 13.84 -1624 108 9.10 -1623 108 9.06

496 -8180 53 17.31 -4541 67 12.69 -4536 67 12.62

E 

Value mean std best mean std best mean std best

420 -1217 556 -181 490 49 465 9.28 0.50 9.92

437 -3156 984 -1785 631 111 669 9.89 0.11 10.00

454 -7950 1613 -5125 643 208 517 9.95 0.19 10.00

456 -3663 829 -2490 476 92 414 9.80 0.16 10.00

465 -7347 2541 -4530 710 103 625 9.93 0.18 10.00

473 -5089 2089 -2174 694 121 664 9.83 0.22 10.00

479 -2966 902 -1623 443 32 417 9.87 0.19 10.00

496 -6306 738 -4536 675 170 839 9.83 0.17 9.90

mean std best mean std best mean std best

420 109 7 104 7.68 1.18 5.54 64340 197 64065

437 88 11 83 11.44 1.47 9.20 60093 2848 58072

454 86 21 98 16.86 1.51 14.43 62490 2411 64690

456 104 10 109 12.30 1.32 10.45 62729 2003 63319

465 80 10 88 16.58 2.18 13.84 61097 853 60985

473 82 12 84 14.71 5.61 8.96 58627 1062 58036

479 107 4 108 10.37 1.21 9.06 62999 266 63177

496 84 18 67 15.09 1.18 12.62 62059 1593 63233

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.28 Results of continuous method for the best sequences selected by AST using a cost function
based on Energy.
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ESA Value

[km/s] J J GTOC TOT DV J J GTOC TOT DV J J GTOC TOT DV

15.98 -8875 74 18.55 -2926 88 10.05 -2882 88 10.05

16.32 -12709 92 22.96 -2565 72 9.90 -2557 73 9.92

16.56 -4538 117 12.92 -1983 105 8.87 -1983 105 8.87

16.75 -6564 109 14.95 -2772 100 11.17 -2758 100 11.16

16.84 -4522 89 12.52 -1984 104 10.01 -1981 104 10.01

16.87 -7874 109 18.21 -1877 76 9.04 -1857 77 9.00

16.93 -3438 104 10.42 -958 87 7.76 -934 87 7.65

17.11 -5883 68 14.37 -4020 98 13.14 -4018 98 13.14

Value mean std best mean std best mean std best

15.98 -4339 989 -2882 603 140 619 9.91 0.13 10.00

16.32 -7459 2577 -2557 679 88 774 9.87 0.24 10.00

16.56 -2638 411 -1983 479 79 482 9.66 0.33 9.66

16.75 -3625 652 -2758 570 116 525 9.76 0.25 9.77

16.84 -3024 928 -1981 498 82 473 9.85 0.22 9.87

16.87 -4575 1220 -1857 600 111 750 9.64 0.40 9.80

16.93 -1795 669 -934 479 172 644 9.64 0.58 9.83

17.11 -5989 1681 -4018 610 159 522 9.86 0.19 10.00

mean std best mean std best mean std best

15.98 91 15 88 12.47 1.47 10.05 62894 481 62797

16.32 83 9 73 17.02 4.53 9.92 62464 1170 62415

16.56 106 8 105 11.11 3.51 8.87 62816 294 62610

16.75 95 12 100 12.90 3.95 11.16 62833 240 63002

16.84 102 9 104 11.01 1.50 10.01 60039 3007 63975

16.87 93 11 77 13.16 1.68 9.00 63135 1268 63471

16.93 106 20 87 9.93 4.17 7.65 62744 1443 59911

17.11 90 17 98 14.61 1.92 13.14 62812 555 62156

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.29 Results of continuous method for the best sequences selected by AST using a cost function
based on ESA.
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Figure 7.30 Visualization of the results of the continuous method, for the asteroid sequences obtained by
the AST using three different cost functions. The GTOC2 results are added for comparison.
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Observations can be made based on the presented results. Some of these ob-
servations are similar to the observations for the GTOC2 sequences: from figures
7.27, 7.28 and 7.29 it follows that all J values are negative and one or two orders
larger in magnitude than the J GTOC values. From appendix G it follows that
mass and mission duration constraints are met. The ∆V constraints upon depar-
ture and arrival are not met, except for the departure at Earth where less than
the allowed 3.5 km/s is used by all best solutions. For all cost functions, again the
GA provided the largest increase in quality.

Especially the relative results of the various cost functions are of interest. Rel-
ative to each other as well as relative to the results for the sequences of the GTOC2
participants. To facilitate the comparison of the continuous results for the three
different cost functions, the results are presented graphically in Figure 7.30. The
results for the sequences obtained by the GTOC2 participants are also included
in the graph for a comparison of the order of magnitude of the results. Note
that the rank on the horizontal axis refers to the rank as determined by the AST.
The GTOC results are ordered according to the GTOC2 ranking, but the actual
GTOC2 rank differs from the one on the x-axis in Figure 7.30.
The first interesting observation is that none of the three objective functions show
a decreasing trend. Apparently there is no strong downward trend in the sequence
quality for the best eight solutions of each cost function. It also indicates that
the discrete model alone is not enough to differentiate between the quality of two
relatively good sequences.
The graph for the cost function based on ∆V shows that all results are in the range
of good objective values starting from -3000. When comparing with the results
of the GTOC2 participants, it follows that the sequences obtained by the AST,
using a cost function based on ∆V , provides sequences which are likely to have
good GTOC2 objective values when subjected to more accurate analysis.
The graph for the cost function based on energy shows a strong fluctuation in the
objective value. Some results are better than the results for the GTOC2 sequences,
and some are significantly worse. Using again the GTOC results as a benchmark,
it follows that the sequences obtained by the AST, using a cost function based on
energy, probably include bad sequences when they are subjected to more accurate
analysis. On top of that, appendix G shows that most of the best solutions run
into the time of flight penalty of 10 years. This indicates that the solution method
tries to find solutions with a longer time of flight. As argued when discussing the
continuous results for the sequences obtained by the GTOC participants, searching
past the 10 year threshold most likely does not lead to better J GTOC values. This
indicates that the sequences obtained with the AST, using a cost function based on
energy, are most likely worse than sequences obtained using another combination
of discrete method and cost function.
The graph for the cost function used by ESA shows results similar to the results ob-
tained by the cost function based on ∆V , except for the last two ranks. Although
the ESA cost function outperforms the other two cost functions for most ranks, the
differences are not significant enough, considering the accuracy of the continuous
method, to state that the ESA cost function is better. It can be stated, however,
that the cost function based on ∆V , when applied to a reduced cost matrix, is a
viable alternative for the cost function used by ESA.

The trajectory with the highest J value (the best result) in Figure 7.30 was
obtained using the AST in combination with the energy cost function, and had
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an E value of 420 MJ/kg (see Figure 7.28). The corresponding trajectory and
acceleration profile is shown in figures 7.31 and 7.32 respectively.
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Figure 7.31 Orbit of best continuous result for sequences obtained by the AST. E value = 420, J = -181,
J GTOC = 104. Trajectory is plotted according to the definitions in figure 4.19.
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Figure 7.32 Allowed and required acceleration of best continuous result for sequences obtained by the
AST. E value = 420, J = -181, J GTOC = 104. The blue line indicates the acceleration
limit, the black line the required acceleration for flying the trajectory shown in figure 7.31.

The trajectory with the lowest J value (the worst result) in Figure 7.30 was
obtained using the AST in combination with the energy cost function, and had
an E value of 454 MJ/kg (see Figure 7.28). The corresponding trajectory and
acceleration profile is given in figures 7.33 and 7.34 respectively.



7.2 Continuous Method 93

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

X [AU]

Y 
[A

U]

Figure 7.33 Orbit of worst continuous result for sequences obtained by the AST. E value = 454, J =
-5125, J GTOC = 98. Trajectory is plotted according to the definitions in figure 4.19.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5 x 10−4

Number of Revolutions [−]

Ac
ce

le
ra

tio
n 

[m
/s2 ]

Figure 7.34 Allowed and required acceleration of worst continuous result for sequences obtained by the
AST. E value = 454, J = -5125, J GTOC = 98. The blue line indicates the acceleration
limit, the black line the required acceleration for flying the trajectory shown in figure 7.33.
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The best result is a reasonable approximation for a low-thrust trajectory. The
reason why this trajectory is better than the others is the far lower total velocity
mismatch. Figure 7.28 shows, however, that the velocity constraint violation is still
of the order of several km/s. Figure 7.33 shows that especially the departure of
the last leg is problematic. It has a large angle with respect to the departure orbit.
This results in high constraint violations and therefore a bad J value. These results
indicate, again, that a good objective value indeed represents a good trajectory,
and a bad objective value does represent a bad solution.
A second observation can be made regarding the acceleration profiles. If the profiles
in figures 7.24, ??, 7.32 and 7.34 are compared, it follows that each solution has
acceleration constraint violations for the second leg. This indicates that the second
leg is the hardest to fly with the tangential thrust assumption and the allowed
thrust acceleration.

7.2.3 Continuous Results for the NNH output

This section summarizes the results of the continuous method for the three sets
of asteroid sequences obtained by applying the NNH to the complete cost matrix,
using the three cost functions described in section 4.1.1. The results for the asteroid
sequences obtained by the NNH, using a cost function based on ∆V , are shown in
Figure 7.35. The results for the asteroid sequences obtained by the NNH using a
cost function based on energy are shown in Figure 7.36. The results for the asteroid
sequences obtained by the NNH, using the ESA cost function, are shown in Figure
7.37. Extensive results are included in appendix H. A graphical representation of
the results is given in figures 7.38 and 7.39.

DV Value

[km/s] J J GTOC TOT DV J J GTOC TOT DV J J GTOC TOT DV

21.28 -3614 108 12.12 -1278 104 8.84 -1260 104 8.93

21.28 -4778 93 13.23 -1424 113 9.08 -1391 113 9.15

22.91 -3801 109 12.46 -1508 108 9.24 -1482 107 9.24

23.25 -5173 121 13.35 -1767 114 8.45 -1757 115 8.43

23.45 -8845 85 18.53 -2722 100 11.37 -2710 100 11.27

23.46 -8100 95 18.41 -2481 100 10.10 -2372 102 10.29

23.63 -9212 70 18.81 -4475 75 13.24 -4360 73 13.07

23.65 -5772 66 14.66 -1842 61 9.69 -1803 62 9.54

mean std best mean std best mean std best

21.28 -2422 1137 -1260 452 47 464 9.87 0.19 9.95

21.28 -2448 956 -1391 508 151 368 9.89 0.14 10.00

22.91 -2421 333 -1482 478 43 425 9.37 0.41 10.00

23.25 -3097 917 -1757 486 131 393 9.84 0.19 9.64

23.45 -3869 662 -2710 537 89 503 9.69 0.37 9.99

23.46 -4509 1270 -2372 557 135 490 9.84 0.20 9.95

23.63 -6304 2524 -4360 778 126 781 9.74 0.20 9.80

23.65 -3381 1704 -1803 732 165 883 9.76 0.30 10.00

mean std best mean std best mean std best

21.28 106 5 104 10.18 1.66 8.93 62015 1140 61493

21.28 100 15 113 10.29 1.27 9.15 61307 1407 61627

22.91 109 5 107 10.15 0.36 9.24 61756 165 61495

23.25 103 13 115 10.82 1.32 8.43 61732 2081 63211

23.45 100 10 100 12.44 0.77 11.27 60423 1797 61458

23.46 96 14 102 13.24 1.78 10.29 60183 1086 59777

23.63 74 13 73 15.30 2.50 13.07 61512 1313 61682

23.65 79 17 62 11.58 2.25 9.54 61697 855 61483

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.35 Results of continuous method for the best sequences selected by NNH using a cost function
based on ∆V .
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E Value

[MJ/kg] J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

451 -4655 103 13.37 -1621 94 8.69 -1594 93 8.63

497 -8052 78 16.52 -3518 94 11.81 -3251 89 10.84

531 -10797 97 16.75 -4352 107 11.74 -4335 107 11.73

537 -4686 85 12.73 -1572 85 8.52 -1562 85 8.47

540 -8734 119 17.79 -2378 96 10.10 -2342 104 10.05

545 -11659 68 20.74 -6009 78 13.91 -5736 84 14.91

562 -7814 109 15.51 -2309 104 8.78 -2249 95 9.27

565 -15870 90 24.58 -5620 52 13.65 -5392 52 13.81

mean std best mean std best mean std best

451 -2750 1076 -1594 699 119 567 9.80 0.19 10.00

497 -5325 1239 -3251 706 211 666 9.34 0.70 9.36

531 -6638 2051 -4335 677 134 536 9.70 0.37 9.01

537 -3717 1729 -1562 676 105 664 9.67 0.34 9.86

540 -4097 1386 -2342 614 98 467 9.83 0.29 9.91

545 -9089 3210 -5736 728 115 667 9.77 0.33 9.91

562 -4114 1534 -2249 680 119 583 9.69 0.30 9.62

565 -11013 2977 -5392 846 130 999 9.81 0.26 9.68

mean std best mean std best mean std best

451 82 12 93 10.26 1.36 8.63 59389 2375 64691

497 86 25 89 14.06 4.91 10.84 58662 635 58249

531 85 16 107 14.78 2.71 11.73 62170 945 62632

537 85 12 85 11.54 2.27 8.47 58740 1301 58496

540 90 10 104 12.81 4.10 10.05 60426 1936 60396

545 79 12 84 16.87 2.63 14.91 62007 1608 62305

562 85 14 95 11.69 2.10 9.27 63142 2048 64388

565 67 13 52 19.87 2.91 13.81 62339 1952 61062

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.36 Results of continuous method for the best sequences selected by NNH using a cost function
based on Energy.

ESA Value

[km/s] J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

15.03 -4681 120 12.76 -1992 107 9.59 -1989 107 9.60

21.05 -47110 78 46.04 -29425 81 34.18 -29027 83 34.88

21.25 -27788 54 34.42 -14908 68 22.80 -14832 68 23.30

21.92 -34053 59 36.30 -22831 60 28.59 -22822 58 28.67

22.62 -45434 55 44.13 -20127 66 28.61 -20125 66 28.58

22.69 -35865 84 39.14 -20981 58 28.58 -20980 58 28.58

22.75 -44416 31 42.72 -31174 46 35.87 -29783 37 33.67

22.76 -62317 49 49.34 -43741 43 42.29 -43706 43 42.33

mean std best mean std best mean std best

15.03 -2777 789 -1989 519 76 455 9.68 0.35 9.77

21.05 -37553 5388 -29027 807 191 702 9.85 0.21 9.56

21.25 -22586 5191 -14832 902 142 823 9.83 0.19 10.00

21.92 -29299 4272 -22822 900 138 944 9.80 0.24 9.65

22.62 -30166 7676 -20125 946 121 841 9.82 0.21 9.98

22.69 -31452 7981 -20980 937 168 917 10.00 0.48 10.00

22.75 -39658 7126 -29783 1157 143 1128 10.28 1.16 10.00

22.76 -57519 5679 -43706 1044 146 1069 13.25 2.49 10.00

mean std best mean std best mean std best

15.03 102 10 107 11.09 1.61 9.60 63420 515 63718

21.05 70 19 83 39.57 3.30 34.88 60419 1341 59446

21.25 61 14 68 28.74 4.31 23.30 61268 1283 62813

21.92 61 14 58 34.05 3.55 28.67 60877 1448 61128

22.62 56 12 66 34.80 4.59 28.58 61483 1684 62874

22.69 56 16 58 35.06 5.47 28.58 61259 1545 62808

22.75 34 14 37 36.59 4.71 33.67 60401 1644 59216

22.76 36 17 43 41.61 6.20 42.33 59037 1299 59995

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.37 Results of continuous method for the best sequences selected by NNH using a cost function
based on ESA. GTOC2 results are added for comparison.
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Figure 7.38 Visualization of the results of the continuous method, for the asteroid sequences obtained
with the NNH and three different cost functions. GTOC2 results are added for comparison.
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Figure 7.39 Figure 7.38 excluding the results for the ESA cost function. GTOC2 results are added for
comparison.

The most surprising result is observed in figures 7.37 and 7.38. These figures
show that only the first rank of the results obtained using the NNH and the
cost function implemented by ESA has a solution of the same order as the other
sequences. The sequences belonging to the other ranks all perform significantly
worse. Figure 7.40 shows a top view of the orbit of the sequence with the lowest
J value, obtained with the NNH using the ESA cost function, and had an ESA
value of 22.76. A side view of this orbit is shown in Figure 7.41. Figure 7.42 gives
the acceleration profile.
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Figure 7.40 Orbit of continuous result for worst sequence obtained by the erroneous combination of the
NNH with the symmetric ESA cost function. ESA value = 22.76 , J = -43706, J GTOC =
43. Trajectory is plotted according to the definitions in figure 4.19.
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Figure 7.41 Side view of orbit of continuous result for worst sequence obtained by the erroneous
combination of the NNH with the symmetric ESA cost function. ESA value = 22.76 , J =
-43706, J GTOC = 43. Trajectory is plotted according to the definitions in figure 4.19.
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Figure 7.42 Allowed and required acceleration for worst sequence obtained by the erroneous combination
of the NNH with the symmetric ESA cost function. ESA value = 22.76 , J = -43706, J
GTOC = 43.The blue line indicates the acceleration limit, the black line the required
acceleration for flying the trajectory shown in figure 7.40.

Figures 7.40 - 7.42 show that large departure and arrival angles between the
trajectory of the spacecraft and the relevant bodies are present. On top of this
large inclination changes are present and a very large acceleration constraint vi-
olation (note that the y-axis changed one order of magnitude from -4 to -3, with
respect to the acceleration profiles presented so far). These three factors combined
result in a very low J value. This behavior is not seen in the other NNH results or
in the results generated by the AST, using the ESA cost function. This indicates
that the bad objective values in figures 7.37 and 7.38 are the result of a combina-
tion of the NNH algorithm with the ESA cost function.
One possible explanation is the following. The ESA cost function is symmetric,
resulting in a diagonally symmetric cost matrix. The cost function is based on a
transfer from the asteroid with the lowest apocenter to the asteroid with the high-
est apocenter. This means that the cost function gives representative values for
transfers from a lower group to a higher group (higher in terms of group number),
since asteroids in a lower group have a shorter apocenter distance than asteroids in
a higher group. Returning to the symmetric cost matrix, this implies that the part
above the diagonal contains numbers that are representative for the transfer, but
the values in the part below the diagonal are not representative for the transfer
cost. A good value for a transfer below the diagonal might represent a transfer
that is not efficient in real life.
The problem now is that the NNH searches for the lowest transfer cost in a par-
ticular row from left to right and it only updates the best value, if a value lower
than the current best is found, and not when a similar value is found. Due to the
fact that the cost matrix is symmetric and the algorithm starts searching form left
to right it will always find transfers in the lower left part of the cost matrix, since
the lowest value above the diagonal will at best be equal to the lowest value below
the diagonal. This was the part, however, that contained bad approximations for
the transfer costs. This means that the NNH, in combination with the ESA cost
function, will most likely give bad results. The AST has no problems in dealing
with the symmetry of the cost matrix, since it does not search the cost matrix
from left tot right but finds combinations of transfers from anywhere in the cost
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matrix. The NNH gives good results for the other cost functions since they are not
symmetric. The reason why the first rank does give a good solution, is because the
NNH starts at Earth. If the NNH starts searching from Earth in the cost matrix
(Earth is the upper most left entry) then it will be searching in the part above the
diagonal and hence will find a better solution.
One way to solve this problem is to update the NNH, such that it starts each
search above the diagonal of the cost matrix. In this way it will only search the
part of the cost matrix with entries that are an accurate approximation of the
transfer cost for that particular transfer.
Another explanation is found in the fact that the evaluated sequences are quite
similar. A large number of the asteroids they contain are the same and even in
a similar order (see Figure E.5). It might be a question of mere chance that the
NNH found a bad sequence. This latter argument is deemed less plausible since
the eighth sequence selected for analysis is completely different from the others,
but produces bad results as well.
It is emphasized that the presented explanations are merely hypothetical. Ad-
ditional research has to be done in order to confirm this theory. The results do
confirm that the continuous method is able to detect unfeasible options.

Figure 7.39 shows the results of the continuous method for the ∆V and energy
cost function, and the GTOC solutions for comparison purposes. The results for
the ESA cost function have been omitted to be able to rescale the graph to a size
similar to that of Figure 7.30. For both the cost functions a stronger downward
trend is detected in the NNH results than in the AST results. The behavior is,
however, very volatile. Especially for the energy cost function, as was the case
for the AST energy results. Nevertheless, both cost functions are able to produce
results that are relatively good (i.e. solutions that have an objective value of over
-3000). The results for the ∆V cost function are less volatile and consistently
good. Only the seventh rank produces a bad result. In general, it can be stated
that the behavior of the NNH result for the ∆V and energy cost functions are
consistent with the results obtained by the AST. In an absolute sense, for the cost
function based on ∆V , the results for the top 4 ranks of the NNH are generally
better than the AST results.

Both trajectories and acceleration profiles of the trajectory with the highest
and lowest J value of the NNH results have been included in figures 7.43 -7.46. The
best trajectory in Figure 7.39 has been obtained using the NNH in combination
with the cost function based on ∆V and had a DV value of 21.28 km/s. The worst
trajectory in Figure 7.39 has been obtained using the NNH in combination with
the cost function based on energy and had an E value of 545 MJ/kg.
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Figure 7.43 Orbit of best continuous result for sequences obtained by the NNH. DV value = 21.28, J =
-1260, J GTOC = 104.
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Figure 7.44 Allowed and required acceleration of best continuous result for sequences obtained by the
NNH. DV value = 21.28, J = -1260, J GTOC = 104.
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Figure 7.45 Orbit of worst continuous result for sequences obtained by the NNH. E value = 545, J =
-5736, J GTOC = 84.
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Figure 7.46 Allowed and required acceleration of worst continuous result for sequences obtained by the
NNH. E value = 545, J = -5736, J GTOC = 84.

The trajectory in figure 7.43 appears to be a reasonable approximation of a low-
thrust trajectory, but, as with the best solution obtained with the AST, velocity
constraint violations of several km/s are present in this orbit. Also the acceleration
limit is exceeded.
The main reason why the trajectory of Figure 7.45 is an suboptimal trajectory is
the fact that it contains a very high total velocity mismatch (14.91 km/s). On top
of that Figure 7.46 shows that the trajectory contains a very large transgression
of the acceleration limit in the second leg (note that the scale of the y-axis has
changed from an order of magnitude of -4 to -3).

Combining these results, it can be stated that the NNH, when applied to the
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complete cost matrix, is a useful alternative for the AST as long as no symmetric
cost function is used. Again it holds that, like for the other continuous results,
concrete statements regarding the quality of any method can only be made after
a solution is found that matches all the problem constraints.

7.2.4 Additional Tests for Continuous Method

In order to get more insight into the GTOC2 problem and the applied models and
methods, a number of additional tests are performed. First, single leg transfers
will be submitted to several tests, followed by two tests on the sequences selected
by the GTOC2 participants. Lastly, the influence of the previously mentioned
error in the total TOF will be investigated. The sequences selected by the NNH,
using a cost function based on energy, are used for this test because these results
were hindered the most by the penalty setting.

Tests for single leg transfers
An overview of the performed tests on a single leg transfer is shown in Figure 7.47.
The first five tests are performed to analyze the influence of the penalty settings.
An Earth-Asteroid transfer (EA) is taken as a test case, where the target asteroid
is the first asteroid in the sequence of the GTOC2 winner (GTOC2 asteroid ID:
3258076). The original GTOC2 cost function is implemented and the spacecraft
mass is set to the GTOC2 initial spacecraft mass of 1500 kg. GTOC2 also provides
an initial velocity of up to 3.5 km/s if needed, thus no penalty will be applied to
a ∆V smaller than 3.5 km/s at Earth departure.

Test ID Transfer Objective Initial mass Penalty Other

1 EA Mf/TOF 1500 >0.5 L

2 EA Mf/TOF 1500 Mass equiv.

3 EA Mf/TOF 1500 >0.5 Q

4 EA Mf/TOF 1500 >1.2 L

5 EA Mf/TOF 1500  >1.2 Q

6 EA Mf/TOF 1500 >0.5 L Inclination set to 0

7 EA Mf 1500 >0.5 L

8 EM Mf/TOF 1500 >0.5 L

Figure 7.47 Overview of additional tests for a single leg transfer.

The first test is the reference test. The linear penalty is set to 50 times the
mass equivalent for a velocity mismatch of over 0.5 km/s. The second test applies
a penalty function similar to the one used for the first validation test and the
third test uses a penalty function similar to the second validation test as described
in section 6.2. In addition, three other tests with varying penalty settings were
performed. The fourth test is used to check the influence of the threshold value
above which the penalty is applied. For this test the threshold value has been
shifted from 0.5 to 1.2 km/s. The fifth test was performed because of the results
of the first four tests. The results suggest that a quadratic penalty applied at a
threshold of 1.2 km/s might provide better results. The fifth test will check if this
is correct. The sixth test is performed to check the influence of the inclination
difference between the transfer bodies. In this test the inclination for both the
departure and arrival body is set to 0. The seventh test checks the influence
of the objective function. Instead of testing the GTOC2 objective function, the
same objective function used for validation (mass minimization) was used, with the
exception that the applied penalty is linear instead of mass equivalent or quadratic.
The last test is performed to determine if there is a difference between transfers
to planets and to asteroids.



7.2 Continuous Method 103

The same optimizer settings used for the validation tests were applied. An
overview of the test results is given in Figure 7.48. The mean, standard deviation
and best result of the 10 runs is given for the objective value J, the corresponding
GTOC2 objective value, the mass consumption, the total time of flight, the total
velocity mismatch (sum of excess departure velocity and excess arrival velocity)
and the launch date.

Test

ID mean std best mean std best mean std best

1 -1070 39.2 -1028 546 22 571 5.11 0.36 5.54

2 14085 746.4 14991 11 9 2 0.05 0.00 0.05

3 -1642 785.5 -643 250 211 138 2.80 1.68 1.56

4 -875 551.2 693 516 131 142 4.92 1.19 1.56

5 -1180 1084 769 167 181 143 1.66 0.41 1.54

6 -574 1063.2 2429 328 236 45 3.31 2.01 0.43

7 -954 418.9 -579 246 209 93 1.92 1.23 0.73

8 1190 0.4 1191 120 1 120 0.86 0.00 0.86

mean std best mean std best mean std best

1 188 19 168 6.70 0.10 6.82 59816 2259 63361

2 27538 1796 30025 21.35 1.52 22.58 62864 192 62954

3 609 307 874 5.33 1.08 4.23 62187 2277 63898

4 247 218 868 6.52 0.72 4.48 59724 2577 56974

5 870 365 882 6.78 6.09 4.55 61237 2493 63553

6 761 975 3367 5.29 1.46 3.76 61848 2042 62893

7 981 663 1932 7.70 1.73 6.29 61834 1879 62073

8 1608 5 1607 2.62 0.03 2.62 58940 1 58941

J Mass Used [kg] TOF [year]

J GTOC TOT DV T0

Figure 7.48 Results of additional tests for a single leg transfer.

Comparing the 1st test with the 2nd shows that a mass equivalent penalty is
not strong enough to find solutions with good departure and arrival ∆V ’s. The
reason why the function values are good for the 1st test is that although the veloc-
ity mismatches are high, the increase in the quality of the objective value achieved
by mismatching the departure and arrival velocities is more than sufficient to com-
pensate for the penalty imposed by the velocity mismatches. This is undesirable
behavior, since a good J GTOC value is worthless if it also has huge constraint
violations. Fortunately, other tests show that when a stronger penalty is applied,
this behavior is prevented because extremely high objective values have become
unfeasible when the orbit also has to fulfill the velocity constraints. Note that the
validation tests did not have this problem. This is due to the fact that the transfer
time was not part of the objective. Only mass needed to be minimized, which
this does not require high velocity mismatches at departure or arrival in order to
accommodate a fast transfer.
Comparing the first result with the third result shows that a quadratic penalty
achieves a lower velocity mismatch than a linear penalty. Also the best objective
value J obtained by using a quadratic penalty is better than the best solution
obtained when using a linear function. When the mean and standard deviation
of the results is scrutinized it shows that the objective function with a quadratic
penalty has a mean which is worse than the mean of the objective function with a
linear penalty. Also the standard deviation is larger. This is an interesting result
since it shows that when using a quadratic penalty, the complexity of the search
space is increased and the optimizers have more trouble identifying the best solu-
tion. Put in a different way, in order to increase the contrast between good and
bad solutions, the complexity of the search space has to be increased. This also
means that a more powerful solution method is required. This is confirmed when
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the search spaces for the mass equivalent and the quadratic penalty are visualized.
Appendix J includes the results of such visualizations.
Comparing the test result of the 4th test with the result of the first, shows that
loosening the threshold value for the penalty also leads to better results for the
objective values, J and J GTOC and for the velocity mismatch. This result is
not as expected. By lowering the penalty threshold, the optimizer will shift its
focus from low velocity mismatches to good J GTOC objective values (i.e. less
emphasis on the penalty part and more emphasis on the actual objective part of
equation 4.62). It is expected that better objective values are found at the cost of
larger constraint violations, i.e., larger velocity mismatches. The mean and stan-
dard deviations of test 1 and 4 show that the better result for the total velocity
mismatch of test 4 is an outlier. This indicates that it is already hard for the
exposin to stay within the threshold for the velocity mismatch of 1.2 km/s, and
almost impossible to find solutions with a mismatch lower than 0.5 km/s. These
tests reveal a limiting factor of the exposins. Improvements might be obtained by
increasing the optimizer strength. The drawback of this approach is that more
computational effort is required.
Comparing test 1 with test 5 shows that a quadratic penalty after a threshold of
1.2 km/s provides better results compared to a linear penalty applied after 0.5
km/s. Since test 4 already demonstrated that a penalty applied at a threshold of
1.2 km/s already provides better objective values than one applied at a threshold
of 0.5, it is more interesting to compare the results of test 5 with test 4. This
shows if using a quadratic penalty (which, as already demonstrated, makes the
search space more complex/irregular) has a beneficial effect. When looking at the
objective values J and J GTOC, Figure 7.48 shows that the quadratic penalty
finds slightly better values. It does find these better values at the expense of a
slightly higher velocity mismatch. There appears to be some sort of Pareto opti-
mality relation between the results of test 4 and 5. Because the difference in J is
relatively large compared to the differences in J GTOC, mass used, TOF and TOT
DV, it is believed that the quadratic penalty also results in trajectories that better
match the thrust limit constraint. This makes the quadratic penalty preferable
over the linear penalty. Comparing the standard deviations of test 4 and 5 also
show an increase in irregularity of the search space when applying the quadratic
penalty, which was concluded before by comparing the first and third test. Also,
the departure dates are completely different for test 4 and 5. This indicates that
the two trajectories are very different, and not just a slight deviation form one
another, that could have been explained by the accuracy of the algorithm.
The combination of the results of tests one to four supports the choice for using
a quadratic penalty applied after a threshold value of 1.2 km/s for the analysis of
the patched exposin model.

Comparing the results for tests 1 and 5 shows that the inclination difference
between the arrival and departure body is significant. This is to be expected,
since the velocity mismatch in the third dimension is eliminated. This makes
it easier to find better solutions. In reality however this mismatch in the third
dimension has to be compensated for as well, for example, by thrusting in directions
other than tangent to the trajectory. This reduces the thrust available for the
in plane maneuvering, and hence will affect the phasing results. This makes it
necessary to implement the third dimension, since the influence on the results is
quite significant. It is deemed unwise to approximate phasing behavior by a 2D
model.
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The 7th test optimizes for the fuel use only, instead of optimizing for a low fuel use
and a fast transfer. The J value for the transfer considering both fuel use and time
of flight, is worse than for the transfer that only considers the minimization of fuel
use. This is expected because the the minimization of mass use and flight time
are two conflicting objectives. The fuel use for test 1 is also larger than for test 8.
This is also according to expectations because it requires more fuel to fly faster.
The time of flight, however, is not lower for test 1 than for test 7, even though it
was part of the objective function. This is an unexpected result. Also the J GTOC
value is higher for test 7 than for test 1. This should be the other way around,
because in test 1 the J GTOC value is optimized for. An explanation for these
strange results might be found in the fact that the total velocity mismatch is quite
large. This means that the obtained exposins give a relatively bad approximation
of a low-thrust transfer trajectory. Also the velocity budget available at departure
might influence the results such that they become harder to interpret. Additional
tests should be performed to be able to make a statement about the influence of
the objective function.
Test 8 is performed to analyze the difference between a planet-planet transfer and
a planet-asteroid transfer. For the planet-planet case an Earth-Mars transfer is
used. It is expected that a planet-planet transfer will provide better results, since
planetary orbits are more similar to each other than asteroid orbits are. Comparing
the results of test one and seven shows that this is indeed the case. A much better
objective value is found, with a far lower velocity mismatch and an extremely low
standard deviation. This indicates that the optimizer finds almost the exact same
solution with every run, and therefore it can be concluded that the planet-asteroid
transfer is indeed more complicated than a planet-planet transfer. Of course, this
result is only based on only one comparison and additional tests, with different
asteroids and planets, need to be performed in order to make a more definite
statement about the difficulty of Earth-asteroid and Earth-planet transfers. The
results of this test are in concordance with the expectations.

Tests for multileg transfers
Two tests on the asteroid sequences selected by the GTOC2 participants and one
on the sequences obtained by the NNH using a cost function based on energy will
be performed. The first test will try to improve the performance of the continuous
method by creating a pit in the penalty function where no penalties are applied.
The second test tries to identify the most stringent constraint, by allowing the
local optimizer to search outside the problem bounds. The third test is used to
assess the influence of the erroneous penalty setting for the total time of flight.
The model, method and optimizer settings used for testing are the same as those
used for obtaining the continuous results of sections 7.2.1 - 7.2.3.

The goal of the continuous method is to assess the phasing characteristic of
a certain sequence, in order to determine if that sequence possibly has a good J
GTOC value. The continuous method, however, is not able to meet the GTOC2
constraints. A hypothesis is now formed, that if a velocity mismatch is allowed
and within this band of allowable velocity mismatches only the original GTOC
objective is analyzed, it might be possible to get the desired result when used on
the selected sequences submitted by the GTOC2 participants. The desired results
in this case is that the continuous method ranks the sequences of the GTOC2
participants according to their GTOC2 rank, meaning that it ranks the sequence
of the winner as the best one, the sequence of the second place as second best
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and so on. To create the pit, the penalty is set to zero when the total velocity
mismatch is smaller than 14 km/s, the time of flight is lower than 10 years and
the objective value is higher than -5500. A summary of the results of this penalty
function with a ’penalty pit’ is shown in Figure 7.49. More extensive results are
included in appendix I.

Rank J J GTOC TOT DV J J GTOC TOT DV J J GTOC TOT DV

1 -8943 92 17.17 137 137 10.54 142 142 11.09

3 -8313 99 16.76 121 121 13.05 121 121 13.06

7 -6721 50 15.64 -3018 46 11.02 -3008 46 11.01

9 -5850 96 14.66 228 228 11.22 228 228 11.24

10 -5479 97 15.19 115 115 13.40 117 117 12.62

11 -6352 99 15.86 110 110 13.45 110 110 13.45

mean std best mean std best mean std best

1 -3837 2730 142 601 166 402 9.36 0.68 7.75

3 -2874 2350 121 502 67 420 9.76 0.29 8.92

7 -4908 1386 -3008 876 133 1043 9.69 0.35 9.90

9 -127 1156 228 460 104 293 8.65 1.63 5.30

10 -3090 2783 117 543 106 476 9.70 0.41 8.75

11 -3062 2407 110 498 108 408 9.61 0.36 9.90

mean std best mean std best mean std best

1 97 23 142 13.53 1.58 11.09 58001 1679 57368

3 103 9 121 13.08 1.08 13.06 62074 1778 63730

7 64 13 46 13.97 2.52 11.01 58205 1374 57816

9 128 45 228 12.05 0.85 11.24 60882 2979 57031

10 99 13 117 13.32 1.25 12.62 62308 2225 64021

11 104 10 110 13.41 0.77 13.45 63107 2091 64030

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.49 Results of additional tests when a pit in the penalty is created.
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Figure 7.50 Visualization of the results of the continuous method when a pit in the penalty is created.
The GTOC2 results are added for comparison.

From figures 7.49 and 7.50 it becomes clear that the continuous method with a
’pit’ in its penalty function does not rank the sequences of the GTOC2 participants
according to their GTOC2 ranks. In fact, when comparing the results in figure
7.49 with Figure 7.18, it becomes clear that the exact opposite of the desired
result is achieved. Allowing a certain velocity mismatch facilitates a faster transfer,
reducing the total time of flight and increasing the J GTOC objective value, whilst
increasing the amount of velocity mismatch. This is according to expectations,
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but the problem is that the continuous method still does not rank the asteroid
sequences according to their GTOC2 ranks. So allowing for constraint violations
does not increase the performance of the continuous method. A second observation
is that for the third rank (corresponding to GTOC rank 7) no solution within the
pit is obtained. This could indicate that the optimizer is not strong enough to
find the pit. For the other sequences, however, the optimizer did find the pit.
Considering this, a more likely explanation is that it is relatively hard to find a
good solution using exposins for this asteroid sequence. Based on the presented
results the hypothesis of finding better results when allowing for certain velocity
mismatches is dismissed.

An additional test is performed where the Interior Point method is allowed to
search outside the problem bounds. This test gives information about the influence
of the bounds on the difficulty of finding good results. It is also a check if some of
the bounds that are not specified by GTOC2 are set correctly (for example, the
upper limit on the stay time of 150 days). The results of this test are shown in
Figure 7.51. Extensive results are included in Appendix I.

Rank J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

1 -8219 92 17.25 -2455 115 10.07 -2066 110 9.79

3 -6775 113 15.59 -2955 109 10.59 -1850 106 9.55

7 -10562 83 20.12 -3532 56 11.81 -2276 56 10.20

9 -6960 99 16.46 -1619 119 8.23 -803 108 8.17

10 -7968 85 17.99 -2901 108 10.91 -2096 112 10.26

11 -10425 86 18.25 -5366 84 13.39 -4389 66 12.57

mean std best mean std best mean std best

1 -4771 1391 -2066 644 132 527 9.67 0.48 8.83

3 -4068 1344 -1850 517 67 478 9.95 0.10 9.68

7 -5558 1901 -2276 779 192 955 9.88 0.22 9.67

9 -2610 994 -803 507 105 433 9.91 0.21 9.92

10 -4243 1069 -2096 570 132 382 9.77 0.34 10.00

11 -6075 1423 -4389 826 247 840 9.85 0.37 10.00

mean std best mean std best mean std best

1 89 15 110 13.42 1.90 9.79 57781 858 57150

3 99 7 106 12.76 1.66 9.55 61731 1705 62313

7 73 19 56 14.35 2.34 10.20 58870 2410 57625

9 100 12 108 10.55 1.51 8.17 61236 2917 57002

10 95 13 112 12.58 1.32 10.26 61868 2612 64098

11 69 25 66 15.96 6.45 12.57 62789 603 62341

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.51 Results of additional tests when IP method is allowed to search outside the problem bounds.
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Figure 7.52 Visualization of the results of the continuous method when it is allowed to search outside the
problem bounds. The GTOC2 results are added for comparison.

When comparing the J values in Figure 7.51 with the J values for the GTOC
sequences in Figure 7.18, it follows that, when allowed to search outside the prob-
lem bounds, the IP method will return better J values. The corresponding J
GTOC values and total velocity mismatch has changed relatively little, whilst the
mission timeline has been changed significantly. Figure 7.53 shows the departure
date (T0), the TOF for all four legs and the TOS at the first three asteroids.
The mission departure date has changed a few months for most sequences. The

Rank GTOC2 Test GTOC2 Test GTOC2 Test GTOC2 Test

1 57024 57150 90 82 149 81 149 111

3 63592 62313 103 120 91 288 90 -219

7 57651 57625 113 85 149 144 90 60

9 64155 57002 129 81 131 -1 150 139

10 64123 64098 147 91 140 135 130 144

11 62579 62341 136 91 94 98 150 77

GTOC2 Test GTOC2 Test GTOC2 Test GTOC2 Test

1 189 407 920 1295 1348 755 527 495

3 539 252 515 1043 1369 1135 820 918

7 707 713 950 1068 1026 1014 436 447

9 461 263 867 728 992 295 857 2120

10 275 361 567 491 642 948 1752 1483

11 602 264 623 670 636 1096 1223 1358

TOF 1

T0 TOS 1 TOS 2

TOF 3

TOS3

TOF 4TOF 2

Figure 7.53 Comparison of the mission timeline obtained by the continuous method for the GTOC results
(left columns) and the test case where the IP is allowed to search out of the bounds.

time of flights and stay times at the first three asteroids have changed consider-
ably. Stay times (far) beyond the bounds are found. Some stay times even have
become negative, indicating that a good solution would have to depart from that
asteroid before it even gets there. From these results it follows that the stay time
is a relatively hard constraint. The upper bound of 150 days is user defined and
should be relaxed.

The last test is performed to investigate the influence of the erroneous penalty
setting for the total time of flight. The threshold after which the penalty is applied
is changed from 10 years to 20 years. The test was performed using the asteroid
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sequences obtained by the AST, using a cost function based on energy. This
set of asteroid sequences was selected because most of its solutions ran into the
threshold of 10 years. A summary of the test results is included in Figure 7.54.
More extensive results are included in appendix I. The J values are plotted in
figure 7.55.

E Value

[MJ/kg] J J GTOC TOT DV J  J GTOC TOT DV J J GTOC TOT DV

420 -924 79 6.76 -188 28 6.38 -188 28 6.32

437 -2317 87 10.51 -404 42 6.13 -402 42 6.41

454 -2079 63 11.53 -336 45 7.19 -336 45 7.19

456 -2027 60 10.34 -543 42 6.67 -507 42 6.92

465 -2636 54 13.05 -732 52 7.88 -732 52 7.88

473 -1361 56 9.57 -343 58 6.64 -313 43 6.64

479 -1850 67 10.57 -681 65 8.35 -657 65 8.46

496 -1960 51 10.93 -761 37 7.40 -761 37 7.40

mean std best mean std best mean std best

420 -412 230 -188 624 158 998 16.11 1.46 18.17

437 -837 408 -402 655 90 770 15.61 1.78 17.18

454 -784 317 -336 554 90 665 16.32 0.87 18.52

456 -1031 353 -507 695 135 829 16.10 1.78 16.10

465 -1127 255 -732 691 165 716 16.83 1.47 15.04

473 -676 252 -313 642 130 733 17.03 1.20 17.72

479 -899 135 -657 512 60 531 15.56 1.16 14.82

496 -1106 253 -761 706 116 808 17.49 1.46 18.62

mean std best mean std best mean std best

420 55 13 28 7.03 0.90 6.32 63292 950 63184

437 55 12 42 8.10 1.37 6.41 60967 1605 61360

454 58 8 45 8.23 0.96 7.19 62931 2046 62048

456 51 12 42 8.76 1.28 6.92 60144 3095 58214

465 49 11 52 9.30 0.77 7.88 63342 1551 63334

473 51 10 43 8.96 4.98 6.64 58359 1933 57674

479 64 6 65 8.42 0.50 8.46 62141 215 62145

496 46 8 37 9.19 1.07 7.40 60299 2575 62574

J GTOC TOT DV [km/s] T0 [MJD]

Monte Carlo Genetic Algorithm Interior Point Method

J Mass Used [kg] TOF [year]

Figure 7.54 Results of additional tests when the penalty threshold for the mission duration is changed
from 10 to 20 years.
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Figure 7.55 Visualization of the results of the continuous method when the penalty threshold for the total
TOF is set to 20 years. The GTOC2 results are added for comparison.

Comparing the results for the penalty threshold of 20 years, shown in Figure
7.54 (and appendix I), with the results for the penalty threshold of 10 years, shown
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in Figure 7.28 (and appendix G), leads to an interesting result.
The objective values for the threshold setting of 20 years are significantly better
than the results obtained when the threshold is set to 10 years. This improve-
ment is due to the fact the total velocity mismatch is lower. This leads to lower
penalty values, and hence better J values. The fact that the velocity mismatch is
lower, can, in its turn, be explained by the increase in the time of flight for each
leg (compare Figure 7.54 with Figure 7.18). If more time is available to fly the
mission, the spacecraft could complete another revolution around the Sun. This
is confirmed by the trajectory and acceleration profile plotted in figures 7.56 and
7.57 respectively. Note that 6 revolutions are completed instead of about 4, as

−4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

X [AU]

Y 
[A

U]

Figure 7.56 Orbit of best continuous result for the sequences obtained by the NNH using ESA cost
function and a time of flight penalty threshold of 20 years. E value = 420, J = -188, J
GTOC = 28.

was the case for the asteroid sequences evaluated with a TOF penalty threshold at
10 years. By completing more revolutions around the Sun, the arrival angle will
decrease and the spacecraft has more time to accelerate towards a velocity similar
to that of the target asteroid. Both factors decrease the velocity mismatch upon
arrival at the target body. This decrease in (total) velocity mismatch, however,
comes at the expense of the J GTOC value. As mentioned before, increasing the
time of flight has a detrimental effect on the mass use. Both the increase of the
time of flight and increase in mass consumption are directly affecting the J GTOC
value negatively. This is confirmed by the results. The J GTOC values in Figure
7.54 are about half the J GTOC values in Figure 7.28. This indicates that without
the penalty threshold for the total time of flight set to 10 years, the continuous
method is not able to obtain J GTOC values matching or surpassing the values
obtained by the GTOC2 participants (as previously explained, higher J GTOC
values are to be expected when constraint violations are present).
Moreover, Monte Carlo results obtained with the threshold set to 20 years (Figure
7.54) prove the presence of better J GTOC values in the search space, but that
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Figure 7.57 Allowed and required acceleration of best continuous result for the sequences obtained by the
NNH using ESA cost function and a time of flight penalty threshold of 20 years. E value =
420, J = -188, J GTOC = 28.

the GA and IP method discard those solutions. These solutions also have J values
similar to those obtained by the IP method with the threshold set to 10 years
(Figure 7.28). The reason for the GA and IP method to discard the solutions is
that these orbits have a higher (total) velocity mismatch.
The conclusion that can be drawn on these results is that the continuous method
prefers to match the velocity constraints over finding a good J GTOC value. Al-
though this is desirable (a good solution is worthless if it has high constraint
violations), it also demonstrates that the exposin is not a suitable model for exact
phasing assessment. Good solutions, analyzed with the continuous method, will
contain velocity mismatches, and due to the current penalty settings the corre-
sponding J value is not an accurate indication of the phasing quality of such a
sequence.
Regarding the erroneous penalty setting, it turns out that the setting is actually
beneficial in terms of finding trajectories with J GTOC values similar to those
obtained by the GTOC2 participants. It would, however, require foreknowledge
about the optimal solution to set the penalty threshold to this value. This dis-
qualifies the continuous method to be used as a phasing assessment tool.





Chapter 8

Conclusions and Recommendations

This chapter will present conclusions based on the results of the research presented
in this report. An answer to the main research question will be formulated and
recommendations for future research will be given.

8.1 Conclusions

Conclusions based on research results

1. The cost function based on a ∆V budget that matches the orbital elements of
the departure asteroid with the orbital elements of the target asteroid, reduces
the asteroid set most efficiently in terms selecting asteroids that were selected
by the GTOC2 participants too.
Because the reduction procedure selected asteroids that match those selected
by the participants, it is believed that the reduction procedure, combined with
any of the cost functions, is able to indicate whether or not a certain transfer
is promising or not. The results in figure 7.1 show that, overall, for the cost
function based on ∆V , the reduced cost matrix contains the most asteroids
that are also present in one of the asteroid sequences obtained by the GTOC2
participants with respect to the dimension of the reduced cost matrix. There
is, however, still room for improvement. All three cost functions are able to
select good asteroids from group 1. Unfortunately, only a limited number of
asteroids from group 2, 3 or 4 are selected that match those selected by the
GTOC2 participants (see appendix C). This is most likely due to the fact
that no phasing characteristics are taken into account during the reduction
procedure. There is a high overlap in the asteroids selected with the different
cost functions, indicating that the three cost functions are effectively not very
different.

2. The Branch and Bound algorithm outperforms the Nearest Neighbor Heuristic
on the same search space, irrespective of the cost function used.
The results in figure 7.6 show that the B&B algorithm used by the AST finds
a better result than the NNH for all three cost functions. Improvements of
5%-10% are obtained by the B&B. This improvement comes at the cost of a
much longer computation time (hours instead of minutes). The results indicate
that selecting the asteroid which is closest as seen from the current position is
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not the best approach for constructing a multiple leg asteroid mission, because
solutions exist that are not visible to this approach.

3. The NNH, when applied to the complete search space, is a viable alternative to
the AST, which can only be applied to the reduced cost matrix.
The results in figure 7.6 show that, for the cost function based on ∆V , and
the cost function used by ESA, when the NNH is applied to the complete cost
matrix it will find better results. The AST cannot be applied to the complete
search space because it takes too long to solve the subproblems created during
the B&B procedure. This makes the NNH applied to the complete cost matrix
an useful alternative to the B&B (as implemented in the AST) applied to the
reduced cost matrix.

4. Improving the B&B, such that it is able to deal with the complete asteroid set,
will most likely result in better sequences.
Combining the fact that the B&B finds better results on the same search space,
and the fact that the NNH showed that the complete cost matrix contains
better results than the reduced search space indicates that improvements can
be made by applying a stronger B&B to the complete search space. For the
cost function based on energy, the AST, when applied to the reduced cost
matrix, already outperforms the NNH applied to the complete cost matrix.
This proves that the NNH is not finding all the optimal solutions even though
it is applied to the complete set of asteroids.

5. The most promising sequence of asteroid groups is either 4-3-2-1 or 4-2-3-1.
Both the AST and NNH results in figure 7.6 show that the best solutions have a
group order of 4-3-2-1 or 4-2-3-1. When considering not only the best sequences
obtained by each method, but also other good solutions these methods found
(see appendices D and E), it follows that other good sequences have this group
order too. An explanation is found when considering the orbital energies of
the various asteroid groups. Selecting asteroids sequentially from groups 4, 3,
2, and 1 or 4, 2, 3 and 1, will most likely demonstrate a pattern of increasing
orbital energy, due to the positioning of the groups in the solar system. A
pattern of increasing orbital energy is desirable from a propulsion point of
view. It eliminates the need of lowering the orbital energy by using the engine,
only to regain that energy when a transfer to an orbit with higher orbital energy
is desired. The result regarding the group order is an improvement considering
past research on GTOC2 at the Mission Analysis Department of the DUT
Aerospace Engineering Faculty. The group order was only an assumption based
on the GTOC2 results in the research performed in [Evertsz, 2008].

6. The NNH cannot be used in combination with a symmetric cost function.
The continuous results for the sequences obtained by the NNH using the ESA
cost function show that this combination is inadequate for identifying candidate
asteroid sequences. It is believed that this is due to the combination of the
algorithm search pattern and the symmetry of the cost function. The symmetry
of the cost function causes the values beneath the diagonal of the cost matrix
to be inaccurate approximations of the transfer cost. The NNH algorithm
searches the cost matrix from left to right, meaning that it will start in this
region with inaccurate cost approximations. Because of the symmetry of the
cost matrix, and the fact that the NNH only updates its solution when it finds
a better solution, but not when it finds a similar solution, the NNH is stuck
in this region of inaccurate approximations. This problem might be solved by
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updating the NNH such that it starts each search above the diagonal of the
cost matrix. This has, however, not been tested in this research.

7. The best NNH results are obtained when starting from Earth.
The results in appendix E show that for all cost functions the lowest cost for
the complete sequence was obtained when starting form Earth. The reason
for this is that when starting from Earth, non of the transfers is fixed because
the Hamiltonian cycle needs to be closed. If the goal is to find the single
best asteroid sequence, a single start NNH starting from Earth is sufficient. If
the goal, however, is to find several promising candidate sequences for further
analysis, then a multi start NNH can be used, provided that a asymmetric cost
function is used.

8. The continuous method, in its current form, can be used for confirmation and
increase in accuracy of the results of the AST and NNH, but it cannot be used
to give an accurate assessment of the phasing characteristics of a certain as-
teroid sequence.
The continuous results in figure 7.19 for the asteroid sequences of the GTOC2
participants show that the continuous method is able to distinct between rel-
atively good and relatively bad sequences in terms of favorable asteroid orbit
characteristics for transfer trajectories. Results obtained during the develop-
ment of the method as well as results obtained for the sequences found by the
NNH in combination with the ESA cost function (figure 7.38), show that the
continuous method can detect practically unfeasible sequences as well.
Because an exposin model is used, the results inherently take the phasing of
the asteroid sequence into account as well. The extensive results included in
appendices F to I, however, show that a velocity mismatch of the order of sev-
eral km/s is obtained. Also, when comparing the obtained mission timelines
with the timelines obtained by the GTOC participants (see figure 7.21) it fol-
lows that the continuous method finds completely different results. In addition,
when the penalty threshold for the total time of flight was loosened from 10
to 20 years, the continuous method was not able to find solutions with GTOC
objective values resembling those obtained by the GTOC2 participants. The
order of magnitude of the velocity mismatch, the fact that obtained mission
timelines do not resemble those obtained by the participants and the fact that
a penalty inside the search space is required to find good GTOC objective val-
ues, indicates that the continuous method, in its current state, cannot be used
for accurate phasing analysis or for providing bounds on the search space for
more accurate methods.
The performance of the continuous method could not be increased by creating
a pit in the penalty function. Results in figure 7.49 show that the quality of
the solutions decreases whilst the continuous method was not able to rank the
sequences of the GTOC2 participants according to the GTOC2 results. Setting
the inclination of the bodies in the sequence being evaluated to 0 does improve
the objective value, it is, however, not believed that this is an adequate method
for evaluating phasing characteristics, because it eliminates an important as-
pect of the transfer. Plane changes are amongst the most expensive maneuvers
and neglecting these costs results in an inaccurate assessment of the transfer.

9. The best combination of models and methods described in this report for finding
good asteroid seqeunces consistently is the combination of the NNH and the cost
function based on ∆V .
The results of the continuous method for the sequences found by the AST and
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NNH (Figures 7.30, 7.38 and 7.39) show that the combination of the NNH and
a cost function based on ∆V provide good asteroids sequences consistently.
Of the top 8 sequences only one sequence was qualified as relatively bad, all
other solutions were good and in all instances outperformed the continuous
results for the sequences of the GTOC2 participants. The sequences obtained
by the AST using the cost function based on ∆V resulted in sequences that
are comparable in quality to the GTOC2 sequences. The AST, in combination
with the cost function based on energy found the overall best solution. For
generating a large number of good sequences, however, this combination is not
adequate, since relatively bad sequences were found repeatedly. Again, it is
believed that an B&B algorithm that is able to cope with the complete cost
matrix will provide the overall best results.
The cost function based on ∆V is a viable alternative to the cost function used
by ESA. It not only provides comparable results on a reduced search space, but
it is also possible to analyze the cost function by using a low fidelity method
like the NNH. Overall, it is believed that the obtained sequences that have an
objective value comparable to or better than the GTOC2 sequences are good
alternatives for the GTOC2 sequences after a solution is obtained that matches
all the constraints.

10. Part of the reason why the GTOC2 problem is hard to solve is the fact that the
assignment involves asteroids instead of, for example, planets.
Another reason why the GTOC2 problem is a relatively complicated orbital
analysis problem is because it has to rendezvous with asteroids instead of, for
example, planets. Asteroid orbits are generally more exotically shaped than
planetary orbits, which are nearly circular. To transfer between two very dif-
ferent orbits, as is the case for transfers between asteroid orbits, is much harder
than to transfer between two concentric circular orbits, which planetary orbits
approximately are. The exposin shape has difficulties to find trajectories that
depart and arrive parallel to these exotic orbits, hence the velocity mismatches
will be larger when trajectories between asteroids are analyzed opposed to
when trajectories between planets analyzed.

11. Penalties are required to eliminate unfeasible parts of the search space.
Figure J.1 in Appendix J shows that the optimum solution moves from unre-
alistically low transfer times to more realistic time of flights. This is due to
the fact that the GTOC2 objective is a function of the time of flight. Without
applying penalties the most optimal transfer, according to the objective func-
tion, is almost a straight line from the starting body to the target body. Such a
trajectory is unfeasible since it requires too much thrust and has huge velocity
mismatches upon departure and arrival. Applying penalties on the departure
and arrival velocity mismatches eliminates the existence of these unrealistic
trajectories. The fact that the mass equivalent penalties allow the existence of
unrealistic trajectories, indicates that the mass equivalent penalty is not strong
enough. This is confirmed by the results of test 2, included in figure 7.48.

12. Applying (stronger) penalties increases the contrast in the search space.
In appendix J a partial visualization of the search space for two different penalty
settings is shown. The images show that by applying penalties, the search space
is contorted such that undesirable solutions have a worse objective value than
they would have if only the objective function itself, without penalties, was
evaluated. This increase in irregularity of the landscape of the search space
makes it easier for the optimizers to identify good solutions. The drawback
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is that also local minima tend to stand out more, which makes the landscape
more treacherous for an optimizer to search. The chance that an optimizer
gets stuck in a local optimum increases.

13. Part of the difficulty of solving the GTOC2 assignment is the narrow timeframe
in which participants have to provide a solution.
This conclusion is not based on results presented in the report, but on the
experience of the author. During the presented research, relatively simple
tools were designed to solve the GTOC2 problem. Developing these tools
already required several months. An overall observation of this research is that
simple tools are not able to cope with the GTOC2 problem. Developing more
advanced tools for orbital analysis requires time. Because only one month is
available for generating solutions for the GTOC2 problem, developing these
tools is not an option.

14. The second leg is the hardest to fly with the available thrust.
The acceleration profiles in the results chapter all show constraint violations
for the second leg, indicating that the transfer departing from group 4 to group
2 or 3 is the most difficult transfer to complete using a low-thrust engine.

Answering the research question
The goal of the research presented in this report is to find an answer to the following
research question:

What is the best way to handle the GTOC2 problem in order to find the optimal
solution with the least amount of computational effort?

To answer this question the GTOC2 assignment was divided in 3 parts. The first
part concerned the generation of promising asteroid sequences, the second part
concerned a phasing assessment of the generated sequences, and the third part
focused on finding the actual trajectory that matches the assignment constraints.
Due to time constraints, only the first two parts were investigated in this report.
Therefore, only a partial answer to the main research question can be formulated.
In order to provide a complete answer to this question additional research needs
to be conducted. Starting points for this research are provided in the recommen-
dations. The answer consists of four parts:

Of the models and methods analyzed in this report, a cost function based on
the velocity budget required to match all orbit elements of the departure orbit
to the arrival orbit in combination with an NNH search algorithm provides the
most promising asteroid sequences for the GTOC2 competition with the least
amount of computational effort.
This is mainly due to the fact that the NNH requires a low computational cost
such that it can deal with the complete asteroid set, opposed to the B&B which
can only handle reduced asteroid sets.

Results indicate that a B&B algorithm that is able to cope with the complete
asteroid set will most likely provide better solutions at the expense of an in-
creased computational effort.
A straightforward B&B algorithm is not able to cope with the complete aster-
oid set. Applying a simple B&B algorithm to a subset of the asteroids provides
results that are competitive to the NNH , but requires more computational ef-
fort. The B&B algorithm, however, outperforms the NNH on the same search
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space. This indicates that developing a more advanced B&B algorithm that is
able to cope with the complete asteroid set, will provide a significant increase
in the quality of the results obtained by the NNH.

A model based on exponential sinusoids, in the form presented in this report,
is not able to perform an accurate phasing assessment of an asteroid sequence.
An orbit model based on exponential sinusoids can be used to check if the
sequences obtained by a NNH or B&B algorithm are indeed promising, but it
is not able, in its current form, to give an accurate phasing assessment of the
asteroid sequence or to provide bounds for more accurate methods.

An more accurate orbit model and stronger optimizer than the ones imple-
mented in this research are required to match the GTOC2 constraints. Match-
ing these constraints will require a large amount of computational effort.
Matching the velocity constraints proved to be one of the most dominating
parts of the assignment. Although the exposin model developed in this report
was intended to perform a preliminary phasing assessment (analyze the second
part of the GTOC assignment), and not intended to provide an orbit that is
matching all GTOC2 constraints (which is the third part of the GTOC assign-
ment), it did show that the exposin model was far from accurate enough to
perform such a task. In order to increase this accuracy a stronger and more
accurate method is required. These kinds of methods require, by definition, a
lot of computational effort.

8.2 Recommendations

The conclusions can be translated into an advise on how to tackle the GTOC2
problem. This section provide a list of recommended developments and a few
practical tips for solving the GTOC2 problem.

The implementation of a B&B algorithm or any other TSP solver able to cope
with the TSP problem covering the complete asteroid set is believed to provide
significant improvement in the quality of the asteroid sequences. Developing
such a B&B algorithm is not straight forward and the use of of-the-shelf soft-
ware should be considered. The most powerful TSP solver currently available
is the Concorde solver [Cook, 2009]. This solver is able to cope with several
thousands of vertices and might be too powerful for the GTOC2 problem, i.e.,
it might require more computational effort or implement an algorithm that is
more advanced than strictly necessary, therefor alternatives should be investi-
gated.
A second aspect regarding the TSP solver that is interesting to investigate is
the Time Dependent TSP or TDTSP. Because this research focused on finding
the most simple algorithms that require the lowest amount of computational
effort to solve the GTOC2 problem and the algorithms to solve the TDTSP
generally are more complex, these algorithms have not been investigated. Im-
plementing a time dependent model had both an advantage and a disadvantage.
The advantage is that the obtained sequences most likely have better phasing
characteristics. The disadvantage is that these algorithms require more compu-
tational effort and that no information is obtained about search space bounds
that are required when implementing a more accurate model. Also it should
be investigated if the transformation from the EGTSP to the TSP is still valid
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when a time dependent model is used.
Another aspect that should be investigated further is the quality of the answer
produced by the B&B algorithm. Due to a lack of time it has not been investi-
gated if the B&B algorithm has found the global optimum when it is finished.
The validation results did show that the B&B algorithm is able to find the
global optimum for small problems.

Alternative cost functions for asteroid selection should be investigated, based
on, for example, angular momentum. Asteroid selection based on angular
momentum has been performed by [Heiligers, 2008] for an asteroid sample
return mission. This study, however, only applied heuristics and not a more
sophisticated method like a B&B method.

It should be attempted to develop a more accurate continuous model. Since the
accuracy of the continuous method is limited by the accuracy of the exponen-
tial sinusoid, alternative models should be investigated. Alternative analytical
models are inverse polynomials [Wall and Conway, 2009] or pseudospectral
methods [Vogeleer, 2008], although the latter has trouble dealing with multiple
revolutions.
Introducing coast arcs should be investigated. A model that includes coast
arcs should be able to align better with the departure and arrival orbits.
Numerical models should also be considered because of their accuracy. This
accuracy, however, comes at a higher computational cost. Current research at
the Delft Aerospace Engineering Department suggests that the unified state
model might reduce the computational cost (or increase the accuracy) of nu-
merical based methods significantly [Vittaldev, 2010]. In the end this research
will boil down to a trade off between the speed of shape based models and the
accuracy of the numerical models. The added value of an accurate continuous
method is not only a more reliable phasing assessment, but the results can also
be used for the definition of the bounds for a very accurate method that is able
to deal with the rigorous GTOC2 constraints.

Search space reduction methods like, for example, the boxing principle de-
scribed in [Myatt et al., 2003] should be considered. Reducing the search
space results in a more effective search. A method for assessing phasing char-
acteristics, could benefit form this approach.

Instead of using a separate discrete and continuous approach, a hybrid method
should be analyzed. A nice starting point for this research is provided in [Ross
and D’Souza, 2005]. This work introduces a pseudospectral knotting method
for solving a problem consisting of both discrete and continuous variables.
In this case the discrete variables are used for the asteroid selection and the
continuous variables are used for trajectory modeling.

The most important recommendation concerns the implementation of a strong
(local) optimizer, in combination with a more accurate model, to be able to
match the tough GTOC2 constraints. Only when the sequences are evaluated
by such a method, accurate statements regarding the quality of the obtained
sequences and overall solution method can be made. A tool that fulfills these
requirements might, for example, be HQP developed by Rüdiger Franke. For
further details about HQP see [Franke, 1998], or [Gorter, 2009]. ESA ESTEC
is looking into the use of HQP for space mission analysis applications as well.
At the time of writing, HQP has been successfully compiled, but no results
obtained by HQP are available yet.
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It is recommended not to participate in the GTOC competition until a decent
software toolbox is available. The time available to generate a solution for
GTOC2 (one month) is too short to develop the required tools.

To conclude, a practical recommendation regarding the handling of the GTOC2
problem in a master thesis framework is given. Solving the GTOC2 problem
is, generally speaking, not a one-man project. A large number of specialized
tools and a large dose of experience with those tools specifically, and in orbital
mechanics generally, is required to successfully solve the GTOC2 problem. On
top of that, solving GTOC2 requires knowledge about numerous topics, like
mathematics, optimal control theory, numerical analysis and optimization. It is
not realistic to expect expertise in all fields at a master thesis level. Therefore,
if it is desired to solve the problem within a master thesis framework, it is
advised to split the GTOC2 problem. A three-way division could, for example,
be similar to the one made in this report:

– 1. Asteroid selection and sequencing (discrete aspect)
– 2. Phasing analysis (continuous aspect)
– 3. Local optimization for elimination of constraint violations (implement

HQP)

A two-way division could, for example, be:

– 1. Asteroids selection, sequencing and phasing analysis (hybrid approach)
– 2. Local optimization for elimination of constraint violations (implement

HQP)
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Appendix A

GTOC2 Results

This appendix contains the results of the GTOC 2 competition as presented in
[Petropoulos, 2007].

Final Rankings and Brief Descriptions of the
Returned Solutions and Methods Used for the

2nd Global Trajectory Optimisation Competition

Anastassios E. Petropoulos1

Outer Planets Mission Analysis Group
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA

12 January 2007

Overview

The problem posed for the 2nd Global Trajectory Optimisation Competition was announced on 06 November
2006. Of the 26 registered teams, 15 teams responded by the deadline of 04 December 2006. Eleven of the
returned solutions were found to be complete solutions in the sense that they satisfied all of the constraints of
the problem, or had only minor or moderate constraint violations which were deemed small enough that no
significant penalty on the reported merit function was warranted. These eleven solutions were thus ranked
according to the reported merit function, J . Three solutions were either partial or violated the constraints
so significantly that it was not clear how to penalise the reported merit function. Hence these solutions were
not ranked. Lastly, one response consisted of a proposed method without a reported solution. The rankings
are summarised in Table 1. Tables 2 and 3 provide additional information about the solutions returned.
All teams visited Group 4 first and Group 1 last, based on increasing orbital energy. Most teams used a
countdown group sequence: 4,3,2,1. The remaining sections of this document describe briefly the teams’
methods, based on the brief descriptions returned by the teams.

Table 1: Ranking of Returned Solutions

Rank Team J (kg/yr)
1 4: Politecnico di Torino 98.64
2 13: Moscow Aviation Institute, and Khrunichev State Research and

Production Space Center
87.93

3 10: Advanced Concepts Team, ESA 87.05
4 15: Centre National d’Etudes Spatiales (CNES) 85.43
5 1: GMV Aerospace and Defence 85.28
6 2: German Aerospace Center (DLR) 84.48
7 9: Politecnico di Milano 82.48
8 19: Alcatel Alenia Space 76.37
9 14: Moscow State University 75.08

10 7: Tsinghua University 56.87
11 18: Carnegie Mellon University, J.J. Arrieta-Camacho 27.94
– 17: University of Glasgow, et al. 73.87a

– 21: Technical University of Delft and Dutch Space 15.95b

– 23: Facultes Universitaires Notre-Dame de la Paix (FUNDP) –c

– 26: University of Maribor, Bostjan Eferl –d

a Significant position and velocity violations at the asteroids and Earth
b Significant position and velocity violations at the asteroids and Earth, and flight time limit violation
c Only one leg computed (Earth to Group 4)
d Only a proposed method described, no solution computed

1Mail-Stop 301-121, Email: Anastassios.E.Petropoulos@jpl.nasa.gov, Tel.: (1)(818)354-1509.
Alternate Contact: Jon A. Sims, Group Supervisor, Outer Planets Mission Analysis Group, Jon.A.Sims@jpl.nasa.gov.
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Figure A.1 Overview of GTOC results: rankings with corresponding objective values.
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Table 2: Asteroids visited and trajectory characteristics

Rank Team v∞L TOF mf Asteroid sequence (spkid) and group numbers
(km/s) (yrs) (kg)

1 4 3.50 9.106 898.2 3258076 (4) 2000060 (3) 2000058 (2) 2002959 (1)

2 13 3.50 10.394 913.9 3250293 (4) 2000149 (3) 2000569 (2) 2002483 (1)

3 10 2.58 9.523 829.0 3170221 (4) 2000574 (3) 2000209 (2) 2011542 (1)

4 15 2.45 9.777 835.2 3170221 (4) 2001990 (3) 2000240 (2) 2001754 (1)

5 1 2.18 10.096 861.0 3017309 (4) 2000443 (3) 2000490 (2) 2001345 (1)

6 2 3.23 10.170 859.1 3250293 (4) 2000027 (3) 2000110 (2) 2001038 (1)

7 9 3.50 10.796 890.5 3288933 (4) 2001707 (3) 2000047 (2) 2014569 (1)

8 19 3.50 10.816 826.1 3329255 (4) 2000232 (2) 2000807 (3) 2001754 (1)

9 14 2.46 11.509 864.1 3170221 (4) 2000043 (3) 2000074 (2) 2002483 (1)

10 7 3.50 12.941 735.9 3250293 (4) 2000149 (3) 2000224 (2) 2009661 (1)

11 18 3.50 19.195 536.3 3343104 (4) 2000169 (3) 2000075 (2) 2000659 (1)

– 17 – 12.991 959.6 3250293 (4) 2000443 (3) 2000058 (2) 2002959 (1)

– 21 – 32.25 514.3 3170221 (4) 2001314 (3) 2000395 (2) 2002483 (1)

– 23 – – – 3177202 (4)

Table 3: Dates at the various bodies
Rank Team Earth launch, and asteroid arrival and departure dates (MJD)

1 4 59870 60283 60373 61979 62069 62647 62737 63196

2 13 62866 63028 63118 64907 64997 65712 65802 66662

3 10 57372 57747 57849 59485 59587 60034 60139 60851

4 15 59574 60104 60194 61749 61839 62306 62396 63145

5 1 61073 61258 61348 63178 63268 64011 64101 64761

6 2 58021 58379 58469 60236 60326 60872 60963 61735

7 9 62201 62454 62544 64444 64534 65394 65484 66144

8 19 59418 59610 59700 61603 61693 62288 62378 63369

9 14 57561 57987 58106 59627 59717 60935 61025 61764

10 7 58448 58752 58846 60826 61048 61991 62232 63175

11 18 58246 59125 59215 61731 61821 62552 62642 65257

– 17 58460 58794 58884 60623 60714 62303 62393 63204

– 21 57755 58659 58749 61861 62190 64925 65200 69534

– 23 57052 59226

2

Figure A.2 Overview of GTOC results: departure velocity (v∞L), Time of flight (TOF), final mass(mf )
and asteroid sequences.

Table 2: Asteroids visited and trajectory characteristics

Rank Team v∞L TOF mf Asteroid sequence (spkid) and group numbers
(km/s) (yrs) (kg)

1 4 3.50 9.106 898.2 3258076 (4) 2000060 (3) 2000058 (2) 2002959 (1)

2 13 3.50 10.394 913.9 3250293 (4) 2000149 (3) 2000569 (2) 2002483 (1)

3 10 2.58 9.523 829.0 3170221 (4) 2000574 (3) 2000209 (2) 2011542 (1)

4 15 2.45 9.777 835.2 3170221 (4) 2001990 (3) 2000240 (2) 2001754 (1)

5 1 2.18 10.096 861.0 3017309 (4) 2000443 (3) 2000490 (2) 2001345 (1)

6 2 3.23 10.170 859.1 3250293 (4) 2000027 (3) 2000110 (2) 2001038 (1)

7 9 3.50 10.796 890.5 3288933 (4) 2001707 (3) 2000047 (2) 2014569 (1)

8 19 3.50 10.816 826.1 3329255 (4) 2000232 (2) 2000807 (3) 2001754 (1)

9 14 2.46 11.509 864.1 3170221 (4) 2000043 (3) 2000074 (2) 2002483 (1)

10 7 3.50 12.941 735.9 3250293 (4) 2000149 (3) 2000224 (2) 2009661 (1)

11 18 3.50 19.195 536.3 3343104 (4) 2000169 (3) 2000075 (2) 2000659 (1)

– 17 – 12.991 959.6 3250293 (4) 2000443 (3) 2000058 (2) 2002959 (1)

– 21 – 32.25 514.3 3170221 (4) 2001314 (3) 2000395 (2) 2002483 (1)

– 23 – – – 3177202 (4)

Table 3: Dates at the various bodies
Rank Team Earth launch, and asteroid arrival and departure dates (MJD)

1 4 59870 60283 60373 61979 62069 62647 62737 63196

2 13 62866 63028 63118 64907 64997 65712 65802 66662

3 10 57372 57747 57849 59485 59587 60034 60139 60851

4 15 59574 60104 60194 61749 61839 62306 62396 63145

5 1 61073 61258 61348 63178 63268 64011 64101 64761

6 2 58021 58379 58469 60236 60326 60872 60963 61735

7 9 62201 62454 62544 64444 64534 65394 65484 66144

8 19 59418 59610 59700 61603 61693 62288 62378 63369

9 14 57561 57987 58106 59627 59717 60935 61025 61764

10 7 58448 58752 58846 60826 61048 61991 62232 63175

11 18 58246 59125 59215 61731 61821 62552 62642 65257

– 17 58460 58794 58884 60623 60714 62303 62393 63204

– 21 57755 58659 58749 61861 62190 64925 65200 69534

– 23 57052 59226

2

Figure A.3 Overview of GTOC results: departure and arrival dates.



Appendix B

Validation Results for AST

This appendix includes the output as generated by the B&B algorithm for the
problems shown in figures 3.4 and 4.11. The obtained solution paths for each
subproblem are represented by numbers, and each number corresponds to a city
(i.e. where 0 indicates city A, 1 indicates B, etc...). First, the output for the
problem of figure 3.4 is given.
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The following pages include the output of the B&B algorithm for the problem in
figure 4.11.





Appendix C

Extensive Cost Matrix Reduction
Results

In this appendix the results of the cost matrix reduction procedure as described in
section 4.1.3 are presented. For each of the three cost functions a figure is included.
The figure states the results for the matrix dimension, the number of matching
asteroids with those selected by the GTOC2 participants and all the matching
asteroid IDs, for a varying number of best transfers selected form the complete
cost matrix.
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Nr. of best transfers 2 3 4 5 6 7

Size reduced cost matrix 30x30 47x47 63x63 74x74 87x87 98x98

Nr. of matching asterids 5 8 12 13 15 15

2001038 2000074 2000027 2000027 2000027 2000027

2001345 2001038 2000058 2000058 2000058 2000058

2002483 2001345 2000074 2000074 2000074 2000074

2009661 2002483 2000075 2000075 2000075 2000075

3017309 2002959 2000659 2000110 2000110 2000110

2009661 2001038 2000659 2000149 2000149

2011542 2001345 2001038 2000659 2000659

3017309 2002483 2001345 2001038 2001038

2002959 2002483 2001345 2001345

2009661 2002959 2001754 2001754

2011542 2009661 2002483 2002483

3017309 2011542 2002959 2002959

3017309 2009661 2009661

2011542 2011542

3017309 3017309

Cost function based on DV

Matching asteroid Ids

Figure C.1 Reduction results for the cost function based on ∆V .

Nr. of best transfers 2 3 4 5 6 7

Size reduced cost matrix 25x25 46x46 60x60 73x73 89x89 104x104

Nr. of matching asterids 4 6 7 8 11 12

2000149 2000149 2000149 2000149 2000027 2000027

2001345 2001038 2001038 2000232 2000075 2000075

2009661 2001345 2001345 2001038 2000149 2000149

2011542 2009661 2001754 2001345 2000232 2000232

2011542 2009661 2001754 2001038 2001038

3170221 2011542 2009661 2001345 2001345

3170221 2011542 2001754 2001754

3170221 2009661 2002959

2011542 2009661

3170221 2011542

3258076 3170221

3258076

Cost function based on Energy

Matching asteroid Ids

Figure C.2 Reduction results for the cost function based on energy.

Nr. of best transfers 2 3 4 5 6 7

Size reduced cost matrix 28x28 42x42 60x60 75x75 90x90 102x102

Nr. of matching asterids 3 8 10 10 12 12

2001754 2000075 2000043 2000043 2000043 2000043

2009661 2001345 2000075 2000075 2000074 2000074

2011542 2001754 2001038 2001038 2000075 2000075

2002959 2001345 2001345 2001038 2001038

2009661 2001754 2001754 2001345 2001345

2011542 2002959 2002959 2001754 2001754

3017309 2009661 2009661 2002483 2002483

3170221 2011542 2011542 2002959 2002959

3017309 3017309 2009661 2009661

3170221 3170221 2011542 2011542

3017309 3017309

3170221 3170221

Cost function based on ESA

Matching asteroid Ids

Figure C.3 Reduction results for the cost function as implemented by ESA during the GTOC2
competition.



Appendix D

Extensive AST Results

This appendix contains the results as produced by AST for the different cost
functions presented in section 4.1.1. The first cost function is based on the ∆V
required to transfer from the orbit of the departing asteroid to the orbit of the
arrival asteroid. The second cost function is based on the energy required to
transfer from the orbit of the departure asteroid to the orbit of the arrival asteroid.
The last cost function is the same as was used by ESA during GTOC2. Some
comments regarding the results should be made.

For all cost functions two tables have been included. The first table contains
the sequence cost as obtained by the AST, the asteroid sequence in GTOC2 ID
numbers and the corresponding group order. The second table states the individual
transfer costs.
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D.1 Cost Function Based on ∆V

Cost 
GTOC ID 

1

GTOC ID 

2

GTOC ID 

3

GTOC ID 

4

GTOC ID 

5
Group order

22.92 1 3072273 2001621 2000206 2002959 0 4 3 2 1

24.48 1 3170221 2012746 2000206 2002959 0 4 3 2 1

24.58 1 3072273 2001621 2000558 2001345 0 4 3 2 1

25.19 1 3170221 2012746 2000558 2001345 0 4 3 2 1

27.00 1 3170221 2012746 2000558 2004754 0 4 3 2 1

27.83 1 3170221 2012746 2000010 2005209 0 4 3 2 1

28.35 1 3170221 2000010 2000975 2011542 0 4 2 3 1

30.79 1 3170221 2012746 2011542 2000010 0 4 3 1 2

39.32 1 3170221 2011542 2000010 2000008 0 4 1 2 3

41.08 1 2002959 2000010 2000158 3297182 0 1 2 3 4

41.38 1 2002959 2000010 2000208 3297182 0 1 2 3 4

44.04 1 2002959 2000010 2000158 2002062 0 1 2 3 4

45.78 1 2002959 2000010 2000208 2002062 0 1 2 3 4

48.16 1 2002959 2000010 2000824 2002062 0 1 2 3 4

48.89 1 2002959 2000010 2001532 2002062 0 1 2 3 4

49.05 1 2002959 2000010 2002411 2002062 0 1 2 3 4

49.60 1 2000010 2005209 2000158 2002062 0 2 1 3 4

49.72 1 2000010 2005209 2001532 2002062 0 2 1 3 4

50.18 1 2000010 2004754 2000824 2002062 0 2 1 3 4

50.34 1 2000010 2000158 2011351 2002062 0 2 3 1 4

50.41 1 2000010 2011351 2000378 2002062 0 2 1 3 4

50.59 1 2000534 2000010 2011351 2002062 0 3 2 1 4

51.50 1 2000010 2011351 2000824 2002062 0 2 1 3 4

51.69 1 2001621 2000010 2011351 2002062 0 3 2 1 4

51.82 1 2000010 2000975 2011542 2002062 0 2 3 1 4

54.43 1 2000010 2011542 2001532 2002062 0 2 1 3 4

55.99 1 2000010 2011542 2002411 2002062 0 2 1 3 4

59.04 1 2011542 2000010 2002411 2002062 0 1 2 3 4

60.93 1 2000010 2011542 2012746 2002062 0 2 1 3 4

61.22 1 2000008 2000010 2011542 2002062 0 3 2 1 4

64.14 1 2011542 2000010 2000008 2002062 0 1 2 3 4

65.42 1 2002062 2000040 2000010 2011542 0 4 3 2 1

65.49 1 2002062 2000534 2000010 2011542 0 4 3 2 1

67.39 1 2002062 2002411 2011542 2000010 0 4 3 1 2

68.23 1 2002062 2000008 2000010 2011542 0 4 3 2 1

69.92 1 2002062 2000008 2011542 2000010 0 4 3 1 2

Figure D.1 B&B results for the cost function based on ∆V : asteroid and group sequences.
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Cost 

Cost 

Transfer 

1

Cost 

Transfer 

2

Cost 

Transfer 

3

Cost 

Transfer 

4

22.92 3.34 11.06 3.64 4.88

24.48 3.28 9.95 6.37 4.88

24.58 3.34 11.06 5.85 4.33

25.19 3.28 9.95 7.63 4.33

27.00 3.28 9.95 7.63 6.14

27.83 3.28 9.95 7.52 7.08

28.35 3.28 16.83 3.92 4.32

30.79 3.28 9.95 9.98 7.58

39.32 3.28 20.96 7.58 7.50

41.08 16.52 5.13 3.58 15.85

41.38 16.52 5.13 3.38 16.35

44.04 16.52 5.13 3.58 18.82

45.78 16.52 5.13 3.38 20.75

48.16 16.52 5.13 8.96 17.55

48.89 16.52 5.13 4.65 22.59

49.05 16.52 5.13 9.26 18.13

49.60 15.31 7.08 8.41 18.82

49.72 15.31 7.08 4.76 22.59

50.18 15.31 8.10 9.22 17.55

50.34 15.31 3.58 8.00 23.45

50.41 15.31 8.12 6.84 20.14

50.59 14.13 4.90 8.12 23.45

51.50 15.31 8.12 10.52 17.55

51.69 12.75 7.37 8.12 23.45

51.82 15.31 3.92 4.32 28.27

54.43 15.31 11.71 4.82 22.59

55.99 15.31 11.71 10.84 18.13

59.04 24.07 7.58 9.26 18.13

60.93 15.31 11.71 10.10 23.81

61.22 12.57 8.68 11.71 28.27

64.14 24.07 7.58 7.50 24.99

65.42 25.48 20.83 7.40 11.71

65.49 25.48 23.41 4.90 11.71

67.39 25.48 22.18 12.16 7.58

68.23 25.48 22.37 8.68 11.71

69.92 25.48 22.37 14.50 7.58

Figure D.2 B&B results for the cost function based on ∆V : costs per transfer.
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D.2 Cost Function Based on Energy

Cost 
GTOC ID 

1

GTOC ID 

2

GTOC ID 

3

GTOC ID 

4

GTOC ID 

5

Group 

order

420.6 1 3167353 2000975 2000104 2011542 0 4 3 2 1

437.8 1 3167353 2000975 2002407 2011542 0 4 3 2 1

454.3 1 3339082 2000016 2000245 2011542 0 4 2 3 1

456.2 1 3167353 2000104 2011542 2000642 0 4 2 1 3

465.0 1 3167353 2000975 2011542 2000121 0 4 3 1 2

473.5 1 3167353 2000104 2011542 2001087 0 4 2 1 3

479.3 1 3339082 2000016 2011542 2000642 0 4 2 1 3

496.5 1 3339082 2000016 2011542 2001087 0 4 2 1 3

512.7 1 3339082 2001621 2011542 2000121 0 4 3 1 2

521.2 1 3339082 2001621 2011542 2000334 0 4 3 1 2

522.7 1 3339082 2001621 2011542 2000566 0 4 3 1 2

537.6 1 3339082 2000016 2011542 2001723 0 4 2 1 3

544.1 1 3339082 2000016 2011542 2000028 0 4 2 1 3

630.8 1 3350633 2000021 2011542 2000642 0 4 2 1 3

645.3 1 3350633 2000104 2011542 2000642 0 4 2 1 3

648.1 1 3350633 2000021 2011542 2001087 0 4 2 1 3

662.5 1 3350633 2000104 2011542 2001087 0 4 2 1 3

669.7 1 3350633 2000566 2011542 2001087 0 4 2 1 3

689.2 1 3350633 2000021 2011542 2001723 0 4 2 1 3

695.7 1 3350633 2000021 2011542 2000028 0 4 2 1 3

710.1 1 3350633 2000104 2011542 2000028 0 4 2 1 3

717.3 1 3350633 2000566 2011542 2000028 0 4 2 1 3

744.3 1 3350633 2000016 2011542 2000028 0 4 2 1 3

810.2 1 2000149 2000104 2011542 2002062 0 3 2 1 4

815.2 1 2000149 2002407 2011542 2002062 0 3 2 1 4

828.2 1 2000149 2000016 2011542 2002062 0 3 2 1 4

829.8 1 2000296 2000104 2011542 2002062 0 3 2 1 4

835.2 1 2000975 2000104 2011542 2002062 0 3 2 1 4

844.9 1 2000975 2011542 2000413 2002062 0 3 1 2 4

852.4 1 2000975 2002407 2011542 2002062 0 3 2 1 4

857.2 1 2001621 2000016 2011542 2002062 0 3 2 1 4

890.9 1 2000104 2011542 2001723 2002062 0 2 1 3 4

891.3 1 2000104 2011542 2000028 2002062 0 2 1 3 4

893.6 1 2002407 2011542 2000028 2002062 0 2 1 3 4

902.5 1 2000016 2011542 2000028 2002062 0 2 1 3 4

995.1 1 2002062 2000413 2011542 2000028 0 4 2 1 3

1060.0 1 2002062 2000521 2011542 2000028 0 4 2 1 3

1066.0 1 2002062 2000776 2011542 2000028 0 4 2 1 3

1179.0 1 2002062 2000028 2011542 2002407 0 4 3 1 2

1206.0 1 2002062 2000028 2011542 2000016 0 4 3 1 2

Figure D.3 B&B results for the cost function based on energy: asteroid and group sequences.
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Cost 

Cost 

Transfer 

1

Cost 

Transfer 

2

Cost 

Transfer 

3

Cost 

Transfer 

4

420.60 53.33 294.20 17.94 55.15

437.80 53.33 294.20 18.72 71.59

454.30 38.30 312.00 44.35 59.72

456.20 53.33 311.70 55.15 36.06

465.00 53.33 294.20 74.38 43.14

473.50 53.33 311.70 55.15 53.30

479.30 38.30 312.00 92.94 36.06

496.50 38.30 312.00 92.94 53.30

512.70 38.30 270.60 160.70 43.14

521.20 38.30 270.60 160.70 51.61

522.70 38.30 270.60 160.70 53.08

537.60 38.30 312.00 92.94 94.37

544.10 38.30 312.00 92.94 10.90

630.80 125.90 352.20 116.70 36.06

645.30 125.90 428.20 55.15 36.06

648.10 125.90 352.20 116.70 53.30

662.50 125.90 428.20 55.15 53.30

669.70 125.90 437.50 53.05 53.30

689.20 125.90 352.20 116.70 94.37

695.70 125.90 352.20 116.70 100.90

710.10 125.90 428.20 55.15 100.90

717.30 125.90 437.50 53.05 100.90

744.30 125.90 424.60 92.94 100.90

810.20 244.10 88.68 55.15 422.30

815.20 244.10 77.15 71.59 422.30

828.20 244.10 68.82 92.94 422.30

829.80 270.70 81.71 55.15 422.30

835.20 339.90 17.94 55.15 422.30

844.90 339.90 74.38 133.20 297.50

852.40 339.90 18.72 71.59 422.30

857.20 282.30 59.66 92.94 422.30

890.90 359.30 55.15 94.37 382.10

891.30 359.30 55.15 100.90 375.90

893.60 345.10 71.59 100.90 375.90

902.50 332.70 92.94 100.90 375.90

995.10 261.70 315.40 317.10 100.90

1060.00 261.70 548.60 148.30 100.90

1066.00 261.70 476.10 227.70 100.90

1179.00 261.70 677.50 168.50 71.18

1206.00 261.70 677.50 168.50 98.20

Figure D.4 B&B results for the cost function based on energy: costs per transfer.
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D.3 Cost Function According to ESA Approach

Cost 
GTOC ID 

1

GTOC ID 

2

GTOC ID 

3

GTOC ID 

4

GTOC ID 

5

Group 

order

15.98 1 3167353 2000075 2000642 2011542 0 4 2 3 1

15.98 1 3167353 2000075 2000642 2011542 0 4 2 3 1

16.32 1 3347493 2000075 2000642 2011542 0 4 2 3 1

16.56 1 3167353 2002407 2000642 2011542 0 4 2 3 1

16.56 1 3167353 2002407 2000642 2011542 0 4 2 3 1

16.75 1 3347493 2002407 2000642 2011542 0 4 2 3 1

16.84 1 3170221 2000937 2002407 2011542 0 4 3 2 1

16.87 1 3167353 2001047 2000021 2011542 0 4 3 2 1

16.93 1 3170221 2012746 2002407 2011542 0 4 3 2 1

17.11 1 3167353 2000075 2011542 2000642 0 4 2 1 3

17.11 1 3167353 2000075 2011542 2000642 0 4 2 1 3

17.44 1 3167353 2011542 2000245 2000086 0 4 1 3 2

17.48 1 3167353 2002407 2011542 2000642 0 4 2 1 3

17.48 1 3167353 2002407 2011542 2000642 0 4 2 1 3

17.66 1 3347493 2002407 2011542 2000642 0 4 2 1 3

18.21 1 3167353 2002407 2011542 2001087 0 4 2 1 3

18.21 1 3167353 2002407 2011542 2001087 0 4 2 1 3

18.40 1 3347493 2002407 2011542 2001087 0 4 2 1 3

18.56 1 3167353 2011542 2000642 2000010 0 4 1 3 2

18.68 1 3167353 2000010 2011542 2000642 0 4 2 1 3

18.69 1 3170221 2000010 2011542 2000642 0 4 2 1 3

18.69 1 3170221 2000010 2011542 2000642 0 4 2 1 3

18.74 1 3347493 2000010 2011542 2000642 0 4 2 1 3

19.30 1 3167353 2001047 2011542 2000010 0 4 3 1 2

19.41 1 3167353 2001087 2011542 2000010 0 4 3 1 2

19.42 1 3167353 2000010 2011542 2001087 0 4 2 1 3

19.42 1 3167353 2000010 2011542 2001087 0 4 2 1 3

19.43 1 3170221 2000010 2011542 2001087 0 4 2 1 3

19.48 1 3347493 2000010 2011542 2001087 0 4 2 1 3

19.58 1 3170221 2012746 2011542 2000010 0 4 3 1 2

19.89 1 3347493 2012746 2011542 2000010 0 4 3 1 2

19.93 1 3167353 2000008 2011542 2000010 0 4 3 1 2

20.15 1 3347493 2000008 2011542 2000010 0 4 3 1 2

25.58 1 2003362 2000008 2011542 2000010 0 4 3 1 2

Figure D.5 B&B results for the cost function based on ESA: asteroid and group sequences.
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Cost 

Cost 

Transfer 

1

Cost 

Transfer 

2

Cost 

Transfer 

3

Cost 

Transfer 

4

15.98 2.40 9.88 2.03 1.66

15.98 2.40 9.88 2.03 1.66

16.32 2.56 10.06 2.03 1.66

16.56 2.40 10.75 1.75 1.66

16.56 2.40 10.75 1.75 1.66

16.75 2.56 10.77 1.75 1.66

16.84 2.31 9.03 2.83 2.67

16.87 2.40 9.14 1.20 4.14

16.93 2.31 9.12 2.83 2.67

17.11 2.40 9.88 3.17 1.66

17.11 2.40 9.88 3.17 1.66

17.44 2.40 12.21 2.26 0.57

17.48 2.40 10.75 2.67 1.66

17.48 2.40 10.75 2.67 1.66

17.66 2.56 10.77 2.67 1.66

18.21 2.40 10.75 2.67 2.40

18.21 2.40 10.75 2.67 2.40

18.40 2.56 10.77 2.67 2.40

18.56 2.40 12.21 1.66 2.29

18.68 2.40 11.65 2.97 1.66

18.69 2.31 11.75 2.97 1.66

18.69 2.31 11.75 2.97 1.66

18.74 2.56 11.55 2.97 1.66

19.30 2.40 9.14 4.79 2.97

19.41 2.40 11.64 2.40 2.97

19.42 2.40 11.65 2.97 2.40

19.42 2.40 11.65 2.97 2.40

19.43 2.31 11.75 2.97 2.40

19.48 2.56 11.55 2.97 2.40

19.58 2.31 9.12 5.18 2.97

19.89 2.56 9.18 5.18 2.97

19.93 2.40 9.26 5.31 2.97

20.15 2.56 9.32 5.31 2.97

25.58 7.77 9.54 5.31 2.97

Figure D.6 B&B results for the cost function based on ESA: costs per transfer.





Appendix E

Extensive NNH Results

This appendix contains the results of the NNH algorithm for each of the three cost
functions discussed in section 4.1.1. For each cost function two tables are included.
The first presents the best 30 NNH sequences with corresponding costs (excluding
the return to Earth) when the NNH is applied to the reduced cost matrix. The
second table presents the best 30 NNH sequences with corresponding costs when
the NNH is applied to the total cost matrix describing complete set of asteroids.
Note that round off errors might be present.
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E.1 Cost Function Based on ∆V

Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

25.59 1 3064315 2000421 3297182 2011351 4321

28.02 2001723 2002223 2012746 1 3064315 23104

28.21 2000642 2000975 2012746 1 3064315 32104

28.44 2000975 2000642 2000010 1 3064315 23104

28.73 2000519 2000138 2000021 1 3064315 23104

29.05 2011542 2000642 2000010 1 3064315 23104

29.27 3072273 2000558 2000010 1 3064315 23104

29.47 3297182 2000642 2000010 1 3064315 23104

29.68 2005209 3072273 2000010 1 3064315 32104

29.68 2000558 3072273 2000010 1 3064315 32104

30.48 2002483 2000138 2000021 1 3064315 23104

32.34 2000107 2000558 2000010 1 3064315 23104

32.91 2000137 2000138 2000021 1 3064315 23104

33.16 2000334 2000138 2000021 1 3064315 23104

33.61 2000024 2002959 2012746 1 3064315 32104

34.01 2002959 2000024 2012746 1 3064315 23104

34.46 2000010 2000558 3072273 1 3064315 13204

37.27 2002223 2001723 2009661 3064315 1 32140

37.27 3064315 1 2002223 2001723 2009661 40321

37.71 2001047 2011542 2000642 1 3064315 12304

37.91 2004754 2000107 2000558 1 3064315 12304

37.92 2000195 2000138 2000021 1 3064315 23104

38.59 3114017 1 2002223 2001723 2009661 40321

38.76 2000429 2001723 2009661 3064315 1 32140

38.79 2000535 2001723 2009661 3064315 1 32140

39.06 3005821 2001038 2000107 1 3064315 31204

39.24 2012746 3046844 2005209 3114017 1 12340

39.82 2001345 2004754 2000558 1 3064315 21304

39.87 2000021 3046844 2005209 3114017 1 12340

40.19 2000138 2000519 2000208 3064315 1 32140

Figure E.1 NNH results when applied to the reduced cost matrix, for the cost function based on ∆V :
asteroid sequences.
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Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

21.28 1 3339082 2001830 2000206 2002959 4321

21.28 2001830 2000206 2002959 1 3339082 32104

22.91 2000851 2000206 2002959 1 3339082 32104

23.25 2000443 2000034 2002207 1 3339082 32104

23.45 2000534 2000206 2002959 1 3339082 32104

23.46 2000058 2000533 2002207 1 3339082 23104

23.63 2000673 2000206 2002959 1 3339082 32104

23.65 2000548 2000206 2002959 1 3339082 32104

24.06 2000182 2000206 2002959 1 3339082 32104

24.13 2001350 2000206 2002959 1 3339082 32104

24.29 2000540 2000034 2002207 1 3339082 32104

24.43 2001245 2000206 2002959 1 3339082 32104

24.44 2000124 2000058 2002207 1 3339082 32104

24.70 2000215 2000206 2002959 1 3339082 32104

25.10 2000163 2001052 2002959 1 3339082 23104

25.10 2000962 2000206 2002959 1 3339082 32104

25.13 2000462 2000206 2002959 1 3339082 32104

25.36 2000189 2000168 2002207 1 3339082 32104

25.37 2000027 2000206 2002959 1 3339082 32104

25.47 2001336 2000206 2002959 1 3339082 32104

25.49 2000034 2000032 2002207 1 3339082 23104

25.52 2000811 2000206 2002959 1 3339082 32104

25.78 2000005 2000058 2002207 1 3339082 32104

25.96 2000060 2000206 2002959 1 3339082 32104

26.02 2000755 2000533 2002207 1 3339082 23104

26.02 2002357 2000334 2000811 1 3339082 12304

26.02 2000872 2000533 2002207 1 3339082 23104

26.07 2001636 2000206 2002959 1 3339082 32104

26.38 2000103 2000206 2002959 1 3339082 32104

26.49 2000169 2000224 2002959 1 3339082 32104

Figure E.2 NNH results when applied to the total asteroid set, for the cost function based on ∆V :
transfer costs.
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E.2 Cost Function Based on Energy

Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

465.89 1 3072273 2000197 3114017 2001621 4321

541.92 2004063 2000245 2011542 2100004 1 43120

656.82 2003362 2000245 2011542 2100004 1 43120

707.20 2000149 2000196 2001621 2000346 1 42130

740.93 2000521 2001345 2011542 2004063 1 32140

756.06 2000413 1 2000521 2001345 2011542 40321

757.16 2000642 3350633 2011542 2004063 1 32140

759.97 3177176 1 2000521 2001345 2011542 40321

764.39 2000207 3114017 2001621 2000149 1 32140

768.17 2000489 2000121 2011542 2004063 1 23140

778.94 3114017 2000121 2011542 2004063 1 23140

779.85 2000135 2000489 2011542 2004063 1 32140

780.71 2002207 1 2000521 2001345 2011542 40321

781.13 2000334 2000642 2011542 2004063 1 23140

781.15 2000111 1 2000521 2001345 2011542 40321

784.72 3167353 2000642 2011542 2004063 1 23140

786.34 2001345 2000121 2011542 2004063 1 23140

789.24 2000296 1 2000521 2001345 2011542 40321

790.04 2001723 2000016 2000558 2000296 1 21340

790.53 2000776 2000566 2000016 2000296 1 23140

790.72 2068347 1 2000521 2001345 2011542 40321

792.05 2000121 2000489 2011542 2004063 1 32140

793.98 2000197 3114017 2001621 2000149 1 32140

795.12 3072273 1 2000521 2001345 2011542 40321

795.66 3350633 2000642 2011542 2004063 1 23140

815.19 2001087 2001345 2011542 2004063 1 32140

820.86 3339082 2000975 2001038 3177176 1 23140

821.62 2002062 2000021 2001087 2001345 1 41320

832.43 2000086 2001754 2000206 2000111 1 32140

842.26 3072196 2000975 2001038 3177176 1 23140

Figure E.3 NNH results when applied to the reduced cost matrix, for the cost function based on energy:
asteroid sequences.
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Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

451.28 1 3250293 2000149 2000207 2011542 4321

497.92 3064315 2001078 2000535 2100004 1 43210

531.50 3330538 2000230 2000156 3081550 1 43210

537.54 3102762 2001504 2000410 2100004 1 43210

540.83 3102787 2000453 2000207 2011542 1 43210

545.49 3250195 2001047 2000021 2002959 1 43210

562.07 3017060 2001717 2000224 2011542 1 43210

565.01 3046648 2000115 2000054 3046844 1 43210

569.45 3266035 2000487 2000559 2100004 1 43210

570.15 3092347 2000161 2001500 2011542 1 42310

571.82 3072196 2000134 2000101 2014569 1 42310

576.17 3057545 2000963 2000481 2100004 1 43210

577.93 3176187 2000574 2000224 2011542 1 43210

578.80 3297182 2000341 2000207 2011542 1 43210

584.62 3285073 2000115 2000054 3046844 1 43210

587.32 3005972 2000963 2000481 2100004 1 43210

593.58 3092114 2000516 2000174 3046844 1 42310

594.61 3137844 2001500 2000161 2011542 1 43210

596.02 3180192 2000345 2000080 2003134 1 42310

597.81 3154520 2000230 2000156 3081550 1 43210

603.17 2005590 2000216 2000968 2006984 1 42310

606.72 3177197 2001418 2000224 2011542 1 43210

615.54 3092390 2001500 2000161 2011542 1 43210

620.04 3182187 2001504 2000410 2100004 1 43210

620.66 3249980 2000516 2000174 3046844 1 42310

620.98 3257077 2000258 2000393 2006984 1 43210

623.21 3005821 2000200 2000123 2003134 1 42310

624.42 3092245 2000565 2000712 3081550 1 43210

624.78 3297356 2000674 2000022 2100004 1 43210

625.63 3010201 2000897 2000405 3081550 1 43210

Figure E.4 NNH results when applied to the total asteroid set, for the cost function based on energy:
transfer costs.
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E.3 Cost Function According to ESA Approach

Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

17.10 1 3170221 2000104 2000489 2011542 4321

24.97 2000010 3072273 2000937 2001087 1 32140

25.08 2000121 3350633 2000937 2001087 1 32140

25.46 2000009 3017309 2000937 2001087 1 32140

25.63 2000104 2000489 2011542 2001087 1 32140

25.63 2001087 1 2000104 2000489 2011542 40321

25.79 3072273 2000010 2000937 2001087 1 23140

25.80 2001665 3017309 2000937 2001087 1 32140

25.82 3046844 3017309 2000937 2001087 1 32140

25.85 3350633 2000121 2009661 2001087 1 23140

25.94 2000075 2001038 2000937 2001087 1 32140

25.98 2105140 3017309 2000937 2001087 1 32140

25.99 2000228 2000086 3102787 2000135 1 42310

26.03 3167353 2000121 2009661 2001087 1 23140

26.03 2001362 1 2000104 2000489 2011542 40321

26.07 2000043 1 2000104 2000489 2011542 40321

26.08 2001723 2000121 2009661 2001087 1 23140

26.10 3017309 2105140 2000937 2001087 1 23140

26.12 3005964 1 2000104 2000489 2011542 40321

26.18 3092324 1 2000104 2000489 2011542 40321

26.19 2000937 2001723 2000121 2001087 1 12340

26.21 3184475 2002959 2009661 2001087 1 32140

26.22 3347493 1 2000104 2000489 2011542 40321

26.26 2000498 2001345 3169278 2001087 1 32140

26.26 2000196 2000121 2009661 2001087 1 23140

26.26 3064315 2001345 3169278 2001087 1 32140

26.29 2001754 2000121 2009661 2001087 1 23140

26.34 2003362 2000021 3167353 2000121 1 41230

26.44 2000016 2000489 2011542 2001087 1 32140

26.47 3092377 2000489 2011542 2001087 1 32140

Figure E.5 NNH results when applied to the reduced cost matrix, for the cost function based on ESA:
asteroid sequences.
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Cost GTOC ID 1 GTOC ID 2 GTOC ID 3 GTOC ID 4 GTOC ID 5 Group order

15.03 1 3339082 2001055 2000163 2002959 4321

21.05 2003362 2100004 2000413 2000532 1 41230

21.25 2096590 2100004 2000413 2000532 1 41230

21.92 3063789 2100004 2000413 2000532 1 41230

22.62 3309858 2100004 2000413 2000532 1 41230

22.69 3031176 2100004 2000413 2000532 1 41230

22.75 3297356 2100004 2000413 2000532 1 41230

22.76 3092339 3046844 2000036 2000328 1 41230

22.83 2066400 2100004 2000413 2000532 1 41230

22.93 3328632 2100004 2000413 2000532 1 41230

22.95 3092156 3046844 2000036 2000328 1 41230

23.01 2086450 2100004 2000413 2000532 1 41230

23.18 3307228 2100004 2000413 2000532 1 41230

23.23 3102744 2100004 2000413 2000532 1 41230

23.35 2000198 2000405 3081550 3182186 1 32140

23.36 2068347 3079876 2000132 2000686 1 41230

23.45 3063058 2100004 2000413 2000532 1 41230

23.46 3092380 2100004 2000413 2000532 1 41230

23.52 3170202 2100004 2000413 2000532 1 41230

23.53 2003753 2100004 2000413 2000532 1 41230

23.57 2000550 2000405 3081550 3182186 1 32140

23.62 3153508 2100004 2000413 2000532 1 41230

23.62 2088213 2100004 2000413 2000532 1 41230

23.62 2002062 2100004 2000413 2000532 1 41230

23.79 3012397 3046844 2000036 2000328 1 41230

23.87 3350632 3046844 2000036 2000328 1 41230

23.99 2000584 2000405 3081550 3182186 1 32140

24.07 2000712 2000397 3081550 3182186 1 23140

24.13 2000405 2000550 3081550 3182186 1 23140

24.20 3249980 3046844 2000036 2000328 1 41230

Figure E.6 NNH results when applied to the total asteroid set, for the cost function based on ESA:
transfer costs.





Appendix F

Extensive Results of Continuous
Method for Best Asteroid

Sequences of Selected GTOC2
Participants

This appendix presents the extensive results obtained by the continuous method
for the selected sequences found by the GTOC2 participants, using two different
optimizer settings. The selected ranks, 1, 3, 7, 9, 10 and 11 have each been run 20
times. The figures summarize the mean, standard deviation and best value of those
20 runs after the Interior Point method has finished for a number of parameters.
For each optimizer setting three figures have been included. The first figure shows
the results for the objective value (J), the mass use in kg, the total time of flight
in years (TOF), the corresponding GTOC2 objective value (J GTOC), the sum
of the velocity mismatches upon arrival and departure at the first three asteroids
and, if applicable, at Earth (TOT DV), and finaly the launch date in MJD (T0).
The second figure shows the k2 and N values for each leg. The third figure specifies
the flight times for each leg, the stay times at the first three asteroids and specifies
all velocity mismatches upon departure and arrival individually.
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Participants

F.1 Weak Optimizer Settings

Results obtained using a Monte Carlo with 50,000 initial guesses and a Genetic
Algorithm with 300 individuals.

R mean std best mean std best mean std best

1 -5595 1728 -3000 676 130 529 9.63 0.36 9.25

3 -4592 1260 -2714 490 75 477 9.78 0.32 9.82

7 -7943 2442 -4443 744 207 926 9.73 0.34 10.00

9 -4112 1922 -2114 534 123 469 9.73 0.62 10.00

10 -4464 1127 -2240 551 116 353 9.76 0.37 10.00

11 -7034 1731 -5012 730 101 670 9.53 0.44 8.79

mean std best mean std best mean std best

1 86 13 105 14.25 2.11 10.85 57974 1653 57343

3 103 10 104 13.46 1.61 10.45 61998 1650 63592

7 78 21 57 16.87 2.48 13.30 59169 2511 57474

9 100 18 103 12.47 2.47 9.50 61703 2552 64173

10 97 10 115 12.84 1.61 9.49 62073 2506 64145

11 81 12 94 15.19 1.89 12.77 62711 507 62402

TOT DV 

J Mass Used [kg] TOF [year]

J GTOC T0

Figure F.1 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by
GTOC participants, obtained with weak optimizer settings.

R mean std best mean std best mean std best mean std best

1 0.44 0.18 0.64 0.35 0.22 0.06 0.71 0.15 0.56 0.35 0.29 0.18

3 0.64 0.28 0.45 0.30 0.19 0.19 0.46 0.40 0.24 0.89 0.22 0.98

7 0.53 0.29 0.31 0.41 0.23 0.02 0.55 0.25 0.70 0.73 0.29 0.51

9 0.70 0.23 0.73 0.35 0.12 0.33 0.56 0.27 0.82 0.64 0.40 0.96

10 0.77 0.17 0.97 0.36 0.14 0.58 0.72 0.25 0.79 0.43 0.31 0.77

11 0.60 0.23 0.98 0.43 0.14 0.28 0.75 0.27 0.97 0.66 0.25 0.52

mean std best mean std best mean std best mean std best

1 0.67 0.19 0.28 0.50 0.27 0.58 0.34 0.14 0.31 0.32 0.14 0.35

3 0.63 0.26 0.66 0.48 0.33 0.12 0.34 0.12 0.17 0.32 0.13 0.40

7 0.62 0.21 0.73 0.53 0.30 1.00 0.53 0.24 0.54 0.39 0.14 0.29

9 0.55 0.32 0.54 0.55 0.25 0.63 0.33 0.22 0.26 0.38 0.17 0.13

10 0.53 0.24 0.39 0.74 0.23 0.29 0.29 0.15 0.40 0.40 0.27 0.36

11 0.63 0.20 0.49 0.54 0.25 0.92 0.26 0.16 0.18 0.32 0.16 0.35

N 1 N 2 N 3 N 4

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

Figure F.2 k2 and N values of all four legs for sequences found by GTOC participants, obtained with
weak optimizer settings.
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R mean std best mean std best mean std best mean std best

1 3.20 0.49 3.40 2.54 0.96 1.60 2.00 1.15 1.65 2.45 0.75 2.05

3 2.19 0.65 2.40 2.75 0.84 2.85 2.45 1.01 1.20 2.26 0.67 1.70

7 3.26 0.70 3.49 3.30 1.30 2.82 3.04 1.38 1.81 3.16 1.73 1.13

9 2.01 0.79 2.37 1.55 0.74 0.77 2.62 1.35 1.55 2.80 0.76 2.72

10 1.93 0.77 2.52 1.43 0.42 1.24 2.71 0.84 0.91 3.49 1.40 1.20

11 3.14 0.92 2.30 2.73 1.25 4.06 1.42 1.05 1.14 2.53 0.87 1.82

mean std best mean std best mean std best mean std best

1 3.37 0.72 2.52 2.53 1.20 2.12 1.36 0.75 0.91 2.12 1.89 0.97

3 1.31 0.68 0.51 2.29 0.89 1.20 2.40 0.85 2.99 5.13 1.42 3.86

7 2.74 0.46 2.59 2.49 0.85 1.58 2.03 1.28 3.37 3.39 1.99 1.50

9 1.42 0.54 1.34 1.90 1.00 1.05 2.18 1.06 2.08 4.11 1.77 2.95

10 1.29 0.66 0.76 1.43 0.75 1.98 2.48 0.90 3.41 4.94 1.88 3.75

11 4.50 0.80 3.64 1.96 1.00 1.20 1.89 0.83 0.91 4.41 2.04 6.22

mean std best mean std best mean std best mean std best

1 643 335 216 784 314 1283 944 138 872 798 203 692

3 431 159 537 659 192 449 1150 228 1351 967 251 911

7 436 156 331 701 228 1151 1123 362 1236 940 397 576

9 387 137 411 862 291 877 960 257 964 985 245 972

10 363 133 280 767 175 467 774 311 898 1297 420 1692

11 508 286 195 780 248 797 655 258 1047 1177 325 848

mean std best mean std best mean std best

1 121 24 90 108 18 130 118 24 95

3 114 22 102 131 22 145 119 23 90

7 120 24 121 120 25 113 114 21 124

9 117 19 146 118 20 146 125 20 137

10 119 19 130 125 19 95 119 23 90

11 127 19 137 123 22 98 112 19 91

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure F.3 Velocity mismatches, flight times and stay times of all four legs for sequences found by
GTOC participants, obtained with weak optimizer settings.
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F.2 Strong Optimizer Settings

Results obtained using a Monte Carlo with 100,000 initial guesses and a Genetic
Algorithm with 500 individuals.

R mean std best mean std best mean std best

1 -4808 1413 -2407 554 99 508 9.37 0.48 9.23

3 -3742 781 -2406 495 52 472 9.90 0.15 9.66

7 -6066 2005 -2971 724 193 924 9.80 0.28 9.51

9 -2873 722 -1934 508 87 440 9.77 0.29 9.82

10 -4663 1153 -2832 558 125 406 9.76 0.32 10.00

11 -6001 939 -4434 750 90 776 9.58 0.43 9.49

mean std best mean std best mean std best

1 102 15 107 13.25 1.93 9.54 57681 832 57024

3 102 6 106 12.48 1.16 9.96 62270 1518 63592

7 79 19 61 14.83 2.07 11.18 58060 1870 57651

9 102 10 108 10.97 1.08 9.51 62438 2578 64155

10 96 12 109 13.12 1.58 11.07 61312 2682 64123

11 78 11 76 14.17 1.02 12.52 62508 390 62579

TOT DV 

J Mass Used [kg] TOF [year]

J GTOC T0

Figure F.4 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by
GTOC participants, obtained with strong optimizer settings.

R mean std best mean std best mean std best mean std best

1 0.55 0.21 0.73 0.26 0.19 0.20 0.70 0.21 0.83 0.36 0.35 0.02

3 0.69 0.28 0.51 0.28 0.18 0.37 0.45 0.38 0.18 0.92 0.12 0.99

7 0.39 0.24 0.14 0.40 0.16 0.36 0.65 0.25 0.61 0.65 0.30 0.33

9 0.69 0.21 0.83 0.33 0.13 0.38 0.55 0.27 0.83 0.77 0.32 0.97

10 0.62 0.31 0.80 0.36 0.14 0.54 0.70 0.26 0.91 0.46 0.29 0.63

11 0.42 0.22 0.40 0.39 0.19 0.51 0.81 0.23 0.99 0.69 0.21 0.77

mean std best mean std best mean std best mean std best

1 0.60 0.21 0.40 0.55 0.22 0.25 0.36 0.16 0.75 0.31 0.18 0.44

3 0.47 0.25 0.88 0.57 0.30 0.49 0.30 0.16 0.03 0.34 0.12 0.25

7 0.67 0.17 0.71 0.50 0.28 0.71 0.51 0.34 0.95 0.24 0.14 0.02

9 0.53 0.28 0.92 0.67 0.24 0.81 0.33 0.19 0.27 0.36 0.16 0.37

10 0.45 0.23 0.46 0.67 0.19 0.25 0.38 0.19 0.48 0.47 0.24 0.37

11 0.73 0.15 0.65 0.71 0.21 0.53 0.34 0.13 0.39 0.24 0.14 0.26

N 1 N 2 N 3 N 4

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

Figure F.5 k2 and N values of all four legs for sequences found by GTOC participants, obtained with
weak optimizer settings.
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R mean std best mean std best mean std best mean std best

1 2.84 0.55 3.09 2.72 1.04 2.04 1.69 0.72 0.71 1.92 0.71 1.18

3 2.17 0.53 2.35 2.47 0.67 2.40 1.99 0.68 1.20 2.20 0.39 1.97

7 3.45 0.35 3.42 2.97 1.09 2.07 2.52 1.08 2.05 2.49 1.43 1.70

9 2.12 0.49 2.03 1.27 0.39 0.98 2.07 0.80 1.62 2.74 0.76 2.70

10 1.65 0.96 1.91 1.52 0.78 1.19 2.59 0.52 3.14 1.44 0.52 1.17

11 3.20 0.52 3.35 2.45 1.30 1.13 1.22 0.41 1.52 2.29 0.95 2.45

mean std best mean std best mean std best mean std best

1 3.05 0.60 2.97 2.30 0.99 1.38 1.58 0.89 1.25 2.06 0.93 2.10

3 1.34 0.60 0.40 2.22 0.91 1.20 2.26 0.82 2.79 4.48 0.96 4.33

7 2.65 0.52 2.06 2.32 1.07 1.18 1.82 1.06 2.11 2.56 1.56 1.75

9 1.48 0.50 1.19 1.50 0.59 0.92 1.92 0.64 2.11 3.44 1.41 3.16

10 1.44 0.52 1.17 1.52 0.77 1.43 2.28 0.72 3.09 4.95 1.83 4.02

11 4.29 0.42 4.06 1.75 0.58 1.56 2.10 0.68 1.79 4.18 1.60 3.09

mean std best mean std best mean std best mean std best

1 466 257 189 881 296 920 870 171 1348 854 353 527

3 351 129 539 740 245 515 1256 177 1369 920 198 820

7 466 198 707 799 181 950 1184 239 1026 787 354 436

9 387 152 461 933 196 867 875 235 992 1003 322 857

10 371 168 275 780 174 567 755 324 642 1298 375 1752

11 554 227 602 829 265 623 604 217 636 1170 291 1223

mean std best mean std best mean std best

1 117 22 90 114 23 149 122 24 149

3 123 19 103 120 24 91 106 19 90

7 116 20 113 112 23 149 117 28 90

9 121 20 129 124 23 131 124 26 150

10 124 22 147 122 19 140 115 24 130

11 118 21 136 115 23 94 111 22 150

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure F.6 Velocity mismatches, flight times and stay times of all four legs for sequences found by
GTOC participants, obtained with weak optimizer settings.





Appendix G

Extensive Results of Continuous
Method for Best Asteroid

Sequences Obtained by AST

This appendix contains the results of the continuous method of the sequences
obtained by AST for each of the three cost functions. Each sequences has been
analyzed 20 times using the continuous method. The figures summarize the mean,
standard deviation and best value of those 20 runs after the Interior Point method
has finished for a number of parameters. For each cost function three figures have
been included. The first figure shows the results for the objective value (J), the
mass use in kg, the total time of flight in years (TOF), the corresponding GTOC
2 objective value (J GTOC), the sum of the velocity mismatches upon arrival and
departure at the first three asteroids and, if applicable, at Earth (TOT DV), and
finaly the launch date in MJD (T0). The second figure shows the k2 and N values
for each leg. The third figure specifies the flight times for each leg, the stay times
at the first three asteroids and specifies all velocity mismatches upon departure
and arrival individually.
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G.1 Cost Function Based on ∆V

DV

Value mean std best mean std best mean std best

22.9 -2650 790 -2067 639 33 621 9.27 0.55 9.51

24.5 -5703 1591 -2835 636 108 703 9.67 0.35 9.71

24.6 -4105 1074 -2654 529 62 489 9.85 0.18 9.94

25.2 -5255 1153 -3366 592 52 615 9.87 0.22 9.60

27.0 -3963 1158 -2564 516 56 521 9.93 0.13 9.92

27.8 -3311 1519 -1871 473 53 520 9.84 0.29 10.00

28.4 -4422 1050 -2820 495 96 439 9.64 0.32 9.31

30.8 -3450 1540 -1706 535 104 489 9.94 0.12 10.00

mean std best mean std best mean std best

22.9 93 7 92 10.03 1.44 9.23 59992 617 59659

24.5 90 12 82 14.44 1.97 11.11 60294 1710 61564

24.6 99 7 102 12.85 1.43 10.96 61519 459 61650

25.2 92 6 92 13.51 1.37 11.26 60939 1168 61207

27.0 99 6 99 12.26 1.43 10.60 62401 1938 63586

27.8 104 8 98 11.24 2.08 8.77 60754 1068 60874

28.4 105 11 114 13.05 1.39 10.90 58625 1080 59559

30.8 97 11 101 11.62 1.98 9.15 60427 1103 60133

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure G.1 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by the
AST, using a cost function based on ∆V .

DV

Value mean std best mean std best mean std best mean std best

22.9 0.62 0.34 0.44 0.29 0.11 0.19 0.61 0.16 0.57 0.64 0.16 0.70

24.5 0.56 0.28 0.84 0.40 0.16 0.47 0.49 0.23 0.45 0.50 0.26 0.08

24.6 0.70 0.31 0.44 0.38 0.20 0.40 0.55 0.15 0.60 0.63 0.33 0.86

25.2 0.84 0.16 0.97 0.33 0.13 0.44 0.35 0.27 0.65 0.38 0.29 0.39

27.0 0.72 0.21 0.57 0.29 0.09 0.24 0.31 0.34 0.02 0.07 0.03 0.12

27.8 0.82 0.20 0.80 0.26 0.22 0.05 0.46 0.36 0.20 0.07 0.05 0.04

28.4 0.63 0.38 0.90 0.37 0.11 0.36 0.95 0.04 0.91 0.53 0.33 0.26

30.8 0.77 0.27 0.02 0.22 0.14 0.21 0.63 0.11 0.68 0.31 0.31 0.26

mean std best mean std best mean std best mean std best

22.9 0.54 0.23 0.78 0.73 0.18 0.78 0.30 0.19 0.15 0.76 0.21 0.67

24.5 0.55 0.29 0.36 0.62 0.31 0.87 0.52 0.29 0.97 0.41 0.29 0.24

24.6 0.44 0.29 0.42 0.63 0.19 0.59 0.74 0.28 0.87 0.24 0.13 0.19

25.2 0.36 0.20 0.08 0.61 0.22 0.51 0.49 0.32 0.87 0.47 0.28 0.12

27.0 0.54 0.29 0.71 0.57 0.24 0.95 0.27 0.21 0.41 0.31 0.20 0.29

27.8 0.33 0.26 0.45 0.60 0.27 0.92 0.26 0.15 0.07 0.30 0.14 0.41

28.4 0.46 0.28 0.14 0.64 0.20 0.78 0.29 0.14 0.19 0.54 0.26 0.49

30.8 0.41 0.19 0.22 0.55 0.26 0.09 0.27 0.13 0.25 0.35 0.16 0.18

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure G.2 k2 and N values of all four legs for sequences found by the AST, using a cost function based
on ∆V .
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DV

Value mean std best mean std best mean std best mean std best

22.9 2.49 0.53 2.23 1.19 0.63 1.12 1.80 0.46 1.75 2.51 0.64 2.44

24.5 2.00 0.60 2.58 1.66 0.65 1.79 3.09 1.39 2.34 2.99 1.37 1.84

24.6 2.10 0.63 2.71 2.49 0.80 1.95 2.93 0.73 2.15 2.03 0.89 2.25

25.2 2.45 0.64 2.35 1.63 0.83 1.56 3.18 0.73 3.03 3.50 2.00 1.36

27.0 2.41 0.46 2.33 1.19 0.37 1.16 2.86 0.78 2.58 2.90 1.15 2.14

27.8 2.28 0.31 2.43 1.47 0.98 0.53 1.58 0.70 0.95 3.02 0.95 2.85

28.4 2.17 0.53 3.04 1.75 0.54 1.20 3.30 0.55 2.71 2.73 0.71 2.11

30.8 2.28 0.53 2.83 1.08 0.53 1.02 2.41 0.71 2.03 2.57 1.01 1.56

mean std best mean std best mean std best mean std best

22.9 1.13 0.63 0.48 1.10 0.46 1.06 2.29 0.50 2.37 4.20 1.38 3.95

24.5 1.25 0.67 1.16 2.56 0.84 2.36 2.89 0.61 1.61 5.90 2.31 8.77

24.6 1.41 0.66 1.18 2.10 0.68 2.05 1.89 0.52 1.37 2.14 1.22 1.48

25.2 1.41 0.61 1.08 1.59 1.18 0.95 2.20 0.79 3.27 4.81 2.40 3.73

27.0 1.52 0.65 1.47 1.30 0.46 1.28 2.48 0.98 1.97 5.71 0.84 5.40

27.8 1.24 0.49 1.06 1.88 0.81 1.26 2.05 0.58 2.11 4.69 0.99 4.69

28.4 1.11 0.47 1.02 2.50 0.65 2.37 1.66 0.42 1.48 4.50 2.28 6.81

30.8 1.48 0.78 0.84 1.37 0.61 1.20 2.71 0.51 2.51 8.67 1.83 6.70

mean std best mean std best mean std best mean std best

22.9 394.1 148 628 827 150 745 617.8 248 542 1218 226 1209

24.5 356.3 130 271 739.6 166 1021 1091 210 1247 1010 245 657.8

24.6 315.2 133 242 824.2 203 952 1320 210 1408 780 257 703.5

25.2 290.6 120 243 802.6 242 1341 967.9 360 1102 1165 529 458.1

27.0 338.9 140 376 756 177 647 903.4 328 1079 1271 348 1200

27.8 281.1 66.9 248 858.6 204 1022 662.3 273 566 1449 305 1498

28.4 318.1 152 116 975.4 183 1081 800.9 313 1089 1102 342 816.3

30.8 295.6 132 214 599.5 128 544 1016 221 926 1378 290 1658

mean std best mean std best mean std best

22.9 120 20 123 115 20 138 95 13 90

24.5 121 21 148 105 23 90 107 18 111

24.6 126 20 134 123 25 96 110 22 96

25.2 118 20 107 123 21 107 139 14 147

27.0 104 17 90 126 18 100 127 22 131

27.8 120 18 102 108 18 101 116 19 115

28.4 125 19 102 94 4 94 104 16 102

30.8 108 17 91 99 13 90 132 21 129

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure G.3 Velocity mismatches, flight times and stay times of all four legs for sequences found by the
AST, using a cost function based on ∆V .
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G.2 Cost Function Based on Energy

E 

Value mean std best mean std best mean std best

420 -1217 556 -181 490 49 465 9.28 0.50 9.92

437 -3156 984 -1785 631 111 669 9.89 0.11 10.00

454 -7950 1613 -5125 643 208 517 9.95 0.19 10.00

456 -3663 829 -2490 476 92 414 9.80 0.16 10.00

465 -7347 2541 -4530 710 103 625 9.93 0.18 10.00

473 -5089 2089 -2174 694 121 664 9.83 0.22 10.00

479 -2966 902 -1623 443 32 417 9.87 0.19 10.00

496 -6306 738 -4536 675 170 839 9.83 0.17 9.90

mean std best mean std best mean std best

420 109 7 104 7.68 1.18 5.54 64340 197 64065

437 88 11 83 11.44 1.47 9.20 60093 2848 58072

454 86 21 98 16.86 1.51 14.43 62490 2411 64690

456 104 10 109 12.30 1.32 10.45 62729 2003 63319

465 80 10 88 16.58 2.18 13.84 61097 853 60985

473 82 12 84 14.71 5.61 8.96 58627 1062 58036

479 107 4 108 10.37 1.21 9.06 62999 266 63177

496 84 18 67 15.09 1.18 12.62 62059 1593 63233

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure G.4 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by the
AST, using a cost function based on Energy.

E 

Value mean std best mean std best mean std best mean std best

420 0.74 0.24 0.91 0.25 0.14 0.15 0.94 0.06 1.00 0.15 0.13 0.04

437 0.61 0.33 0.68 0.36 0.08 0.36 0.71 0.23 0.63 0.44 0.41 0.40

454 0.68 0.19 0.77 0.34 0.13 0.29 0.86 0.16 0.90 0.18 0.23 0.06

456 0.69 0.31 0.85 0.29 0.16 0.30 0.58 0.35 0.70 0.20 0.25 0.10

465 0.58 0.26 0.81 0.39 0.12 0.52 0.94 0.06 0.88 0.63 0.13 0.56

473 0.51 0.25 0.42 0.44 0.06 0.48 0.88 0.13 0.93 0.56 0.21 0.60

479 0.83 0.22 0.87 0.31 0.12 0.41 0.92 0.06 0.95 0.49 0.34 0.21

496 0.63 0.28 0.99 0.32 0.10 0.42 0.92 0.13 0.99 0.66 0.30 0.79

mean std best mean std best mean std best mean std best

420 0.37 0.22 0.24 0.74 0.16 0.88 0.28 0.10 0.06 0.26 0.15 0.06

437 0.47 0.24 0.22 0.67 0.20 0.18 0.49 0.29 0.69 0.34 0.13 0.43

454 0.47 0.31 0.20 0.56 0.27 0.74 0.43 0.32 0.07 0.28 0.19 0.05

456 0.37 0.27 0.15 0.64 0.25 0.53 0.29 0.16 0.25 0.25 0.15 0.06

465 0.34 0.25 0.28 0.63 0.28 0.25 0.31 0.13 0.30 0.72 0.22 0.73

473 0.42 0.21 0.32 0.57 0.25 0.65 0.28 0.19 0.30 0.56 0.29 0.97

479 0.37 0.29 0.37 0.72 0.18 0.60 0.20 0.13 0.30 0.31 0.13 0.19

496 0.51 0.28 0.17 0.67 0.27 0.74 0.29 0.21 0.09 0.31 0.19 0.37

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure G.5 k2 and N values of all four legs for sequences found by the AST, using a cost function based
on Energy.
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E 

Value mean std best mean std best mean std best mean std best

420 2.40 0.71 2.38 1.71 0.53 1.15 0.72 0.52 0.24 1.49 0.17 1.35

437 2.50 0.58 3.48 1.37 0.67 1.18 2.46 0.79 1.36 1.84 0.98 0.98

454 1.97 0.75 1.85 1.75 0.59 1.47 3.90 1.53 2.43 4.08 1.49 3.95

456 2.67 0.74 2.57 1.56 0.75 0.92 2.29 0.71 1.80 2.24 0.45 1.68

465 2.38 1.10 2.28 2.12 0.57 2.37 3.55 1.24 2.53 3.05 1.18 2.79

473 3.43 2.45 3.47 1.67 0.83 1.57 2.27 1.71 0.79 2.51 1.15 2.74

479 0.84 0.53 1.07 1.30 0.19 1.28 3.04 1.24 1.55 1.05 0.44 1.17

496 1.50 0.72 2.15 1.61 0.55 1.29 4.16 0.55 4.01 2.63 0.81 2.37

mean std best mean std best mean std best mean std best

420 1.55 0.46 1.01 1.27 0.51 0.88 0.95 0.16 0.92 4.76 0.22 4.94

437 1.63 0.38 1.01 2.07 0.65 2.78 2.08 0.62 1.88 2.48 0.93 1.56

454 1.59 0.84 1.19 2.31 1.01 2.29 3.23 1.12 3.10 6.09 2.31 7.97

456 1.61 0.49 1.17 1.93 0.57 1.86 2.65 0.27 3.03 1.79 1.32 1.13

465 1.87 0.43 1.55 2.31 1.15 1.69 3.58 1.03 2.90 5.20 2.38 3.67

473 2.19 2.50 1.16 2.59 1.35 0.24 2.97 0.59 2.46 5.29 2.23 6.54

479 1.05 0.32 1.11 1.53 1.07 1.07 2.41 0.71 2.89 1.09 0.56 0.74

496 1.13 0.27 1.41 2.47 1.57 0.92 3.10 0.91 2.62 5.89 3.49 8.99

mean std best mean std best mean std best mean std best

420 279 124 255 1348 281 1481 676 281 859 730 67 664

437 398 180 393 965 100 803 1122 206 1294 770 265 770

454 340 123 278 775 123 776 1137 135 1166 1033 227 1095

456 328 141 247 966 175 1149 1335 220 1484 630 319 438

465 337 112 254 832 164 749 881 192 1043 1250 217 1275

473 435 129 360 832 170 988 890 346 854 1105 246 1129

479 318 170 97 996 166 906 1484 335 1826 455 243 468

496 389 185 70 848 119 1102 1119 227 988 889 341 1054

mean std best mean std best mean std best

420 124 20 90 113 18 127 119 18 146

437 127 18 150 104 18 149 127 22 94

454 127 18 140 112 23 91 109 22 107

456 120 22 97 107 20 125 95 9 112

465 109 22 91 111 20 136 104 18 105

473 114 19 99 109 22 121 106 18 101

479 116 18 127 117 23 122 119 24 107

496 117 19 114 117 24 142 113 23 147

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Figure G.6 Velocity mismatches, flight times and stay times of all four legs for sequences found by the
AST, using a cost function based on Energy.



160 Extensive Results of Continuous Method for Best Asteroid Sequences Obtained by AST

G.3 Cost Function According to ESA Approach

ESA

Value mean std best mean std best mean std best

15.98 -4339 989 -2882 603 140 619 9.91 0.13 10.00

16.32 -7459 2577 -2557 679 88 774 9.87 0.24 10.00

16.56 -2638 411 -1983 479 79 482 9.66 0.33 9.66

16.75 -3625 652 -2758 570 116 525 9.76 0.25 9.77

16.84 -3024 928 -1981 498 82 473 9.85 0.22 9.87

16.87 -4575 1220 -1857 600 111 749.6 9.64 0.40 9.80

16.93 -1795 669 -934 479 172 644 9.64 0.58 9.83

17.11 -5989 1681 -4018 610 159 522 9.86 0.19 10.00

mean std best mean std best mean std best

15.98 91 15 88 12.47 1.47 10.05 62894 481 62797

16.32 83 9 73 17.02 4.53 9.92 62464 1170 62415

16.56 106 8 105 11.11 3.51 8.87 62816 294 62610

16.75 95 12 100 12.90 3.95 11.16 62833 240 63002

16.84 102 9 104 11.01 1.50 10.01 60039 3007 63975

16.87 93 11 77 13.16 1.68 9.00 63135 1268 63471

16.93 106 20 87 9.93 4.17 7.65 62744 1443 59911

17.11 90 17 98 14.61 1.92 13.14 62812 555 62156

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure G.7 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by the
AST, using the cost function implemented by ESA.

ESA

Value mean std best mean std best mean std best mean std best

15.98 0.70 0.30 0.99 0.42 0.19 0.55 0.67 0.13 0.75 0.61 0.38 0.93

16.32 0.59 0.27 0.49 0.43 0.15 0.56 0.61 0.26 0.75 0.60 0.31 0.70

16.56 0.67 0.27 0.69 0.29 0.17 0.48 0.38 0.23 0.56 0.85 0.23 0.85

16.75 0.51 0.26 0.85 0.26 0.17 0.02 0.41 0.19 0.55 0.83 0.21 0.99

16.84 0.70 0.31 0.54 0.30 0.21 0.47 0.74 0.31 0.52 0.77 0.30 0.99

16.87 0.63 0.33 0.91 0.34 0.16 0.22 0.64 0.39 0.91 0.15 0.13 0.11

16.93 0.63 0.26 0.96 0.19 0.19 0.15 0.91 0.21 1.00 0.82 0.23 0.45

17.11 0.73 0.27 0.98 0.17 0.16 0.06 0.67 0.21 0.78 0.66 0.37 0.06

mean std best mean std best mean std best mean std best

15.98 0.45 0.23 0.26 0.50 0.31 0.50 0.69 0.24 0.76 0.26 0.16 0.15

16.32 0.54 0.28 0.50 0.62 0.26 0.54 0.48 0.24 0.76 0.32 0.18 0.20

16.56 0.53 0.28 0.93 0.70 0.19 0.80 0.31 0.16 0.43 0.30 0.14 0.14

16.75 0.67 0.21 0.84 0.57 0.24 0.91 0.32 0.14 0.25 0.26 0.15 0.30

16.84 0.52 0.27 0.79 0.54 0.25 0.57 0.44 0.24 0.36 0.29 0.12 0.25

16.87 0.47 0.25 0.23 0.57 0.21 0.52 0.36 0.16 0.29 0.56 0.22 0.54

16.93 0.63 0.28 0.19 0.65 0.29 0.88 0.31 0.19 0.45 0.29 0.19 0.61

17.11 0.47 0.29 0.22 0.59 0.30 0.82 0.34 0.18 0.39 0.28 0.15 0.28

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure G.8 k2 and N values of all four legs for sequences found by the AST, using the cost function
implemented by ESA.
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ESA

Value mean std best mean std best mean std best mean std best

15.98 2.49 0.78 3.14 2.43 1.04 2.64 2.01 1.20 0.81 1.11 0.75 0.68

16.32 3.26 1.22 3.27 3.81 1.06 2.02 2.62 1.41 0.98 1.78 1.58 0.56

16.56 2.75 1.62 2.36 1.92 0.56 1.00 2.24 0.40 2.50 0.86 0.52 0.65

16.75 3.07 1.74 2.98 2.64 0.73 2.17 2.38 0.42 2.69 0.81 0.44 1.19

16.84 2.21 0.50 2.13 1.70 0.77 2.03 2.40 0.80 1.82 1.76 0.72 1.90

16.87 2.58 1.12 3.49 2.50 0.84 1.01 2.02 0.98 2.11 2.86 0.94 1.45

16.93 2.95 1.89 1.93 1.14 0.44 1.17 1.99 0.42 2.18 1.57 0.49 0.43

17.11 2.49 0.61 1.71 2.63 1.04 2.57 3.21 1.05 1.92 1.31 1.21 1.42

mean std best mean std best mean std best mean std best

15.98 1.68 0.56 0.94 3.49 0.93 3.57 1.74 0.96 1.40 2.39 1.85 1.84

16.32 2.66 2.04 2.02 3.55 0.78 2.89 2.39 1.37 1.45 3.40 2.44 4.02

16.56 2.06 2.50 1.20 2.36 0.60 2.88 1.42 0.44 0.65 2.47 1.65 3.17

16.75 2.74 2.61 1.52 2.74 0.39 2.39 1.29 0.31 1.20 2.20 1.22 0.61

16.84 1.39 0.67 1.18 2.04 0.85 1.89 1.72 0.68 1.20 2.54 0.84 3.11

16.87 1.62 0.56 1.38 2.34 0.78 1.36 1.75 0.43 1.69 5.63 1.89 2.07

16.93 1.52 2.08 1.20 1.54 0.60 1.18 1.80 0.30 1.51 4.20 1.47 6.47

17.11 1.91 0.73 2.36 3.10 1.43 2.24 2.45 0.93 2.62 3.30 2.06 8.15

mean std best mean std best mean std best mean std best

15.98 337 150 228 865 260 800 1514 225 1329 542 164 860

16.32 404 196 535 987 334 1015 1267 342 1230 586 363 497

16.56 379 156 478 999 188 966 1089 407 1313 708 289 396

16.75 420 119 432 933 182 834 1077 448 1555 780 385 422

16.84 328 154 419 713 203 966 1086 253 745 1109 262 1163

16.87 369 147 283 765 209 744 770 257 461 1270 353 1783

16.93 423 145 248 709 151 691 840 147 794 1215 293 1509

17.11 316 160 135 698 216 839 1589 211 1603 652 258 737

mean std best mean std best mean std best

15.98 117 22 150 119 25 148 127 20 138

16.32 116 24 133 117 24 127 128 19 117

16.56 113 24 111 104 18 122 137 16 143

16.75 111 19 103 104 17 90 139 16 130

16.84 119 21 97 128 17 99 128 17 99

16.87 118 20 128 116 25 90 113 24 91

16.93 113 21 121 103 17 96 118 23 133

17.11 116 20 91 108 23 133 122 24 115

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure G.9 Velocity mismatches, flight times and stay times of all four legs for sequences found by the
AST, using the cost function implemented by ESA.





Appendix H

Extensive Results of Continuous
Method for Best Asteroid

Sequences Obtained by NNH

This appendix contains the results of the continuous method of the sequences
obtained by the NNH for each of the three cost functions. Each sequences has been
analyzed 20 times using the continuous method. The figures summarize the mean,
standard deviation and best value of those 20 runs after the Interior Point method
has finished for a number of parameters. For each cost function three figures have
been included. The first figure shows the results for the objective value (J), the
mass use in kg, the total time of flight in years (TOF), the corresponding GTOC2
objective value (J GTOC), the sum of the velocity mismatches upon arrival and
departure at the first three asteroids and, if applicable, at Earth (TOT DV), and
finaly the launch date in MJD (T0). The second figure shows the k2 and N values
for each leg. The third figure specifies the flight times for each leg, the stay times
at the first three asteroids and specifies all velocity mismatches upon departure
and arrival individually.
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H.1 Cost Function Based on ∆V

DV

Value mean std best mean std best mean std best

21.28 -2422 1137 -1260 452 47 464 9.87 0.19 9.95

21.28 -2448 956 -1391 508 151 368 9.89 0.14 10.00

22.91 -2421 333 -1482 478 43 425 9.37 0.41 10.00

23.25 -3097 917 -1757 486 131 393 9.84 0.19 9.64

23.45 -3869 662 -2710 537 89 503 9.69 0.37 9.99

23.46 -4509 1270 -2372 557 135 490 9.84 0.20 9.95

23.63 -6304 2524 -4360 778 126 781 9.74 0.20 9.80

23.65 -3381 1704 -1803 732 165 883 9.76 0.30 10.00

mean std best mean std best mean std best

21.28 106 5 104 10.18 1.66 8.93 62015 1140 61493

21.28 100 15 113 10.29 1.27 9.15 61307 1407 61627

22.91 109 5 107 10.15 0.36 9.24 61756 165 61495

23.25 103 13 115 10.82 1.32 8.43 61732 2081 63211

23.45 100 10 100 12.44 0.77 11.27 60423 1797 61458

23.46 96 14 102 13.24 1.78 10.29 60183 1086 59777

23.63 74 13 73 15.30 2.50 13.07 61512 1313 61682

23.65 79 17 62 11.58 2.25 9.54 61697 855 61483

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure H.1 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by the
NNH, using a cost function based on ∆V .

DV

Value mean std best mean std best mean std best mean std best

21.28 0.50 0.34 0.04 0.43 0.13 0.52 0.78 0.13 0.71 0.23 0.20 0.14

21.28 0.57 0.29 0.99 0.46 0.10 0.56 0.80 0.11 0.78 0.17 0.17 0.60

22.91 0.57 0.30 0.59 0.30 0.13 0.60 0.74 0.09 0.88 0.39 0.27 0.03

23.25 0.73 0.30 0.89 0.44 0.15 0.57 0.85 0.13 0.82 0.13 0.11 0.03

23.45 0.60 0.23 0.49 0.43 0.08 0.40 0.91 0.11 0.82 0.39 0.33 0.03

23.46 0.73 0.17 0.91 0.35 0.14 0.30 0.89 0.12 0.95 0.16 0.14 0.08

23.63 0.68 0.35 0.97 0.38 0.13 0.30 0.65 0.09 0.65 0.56 0.35 0.69

23.65 0.70 0.22 0.38 0.31 0.14 0.18 0.63 0.15 0.62 0.31 0.28 0.05

mean std best mean std best mean std best mean std best

21.28 0.51 0.25 0.25 0.51 0.25 0.12 0.30 0.13 0.36 0.25 0.15 0.42

21.28 0.43 0.28 0.13 0.54 0.26 0.25 0.32 0.24 0.37 0.25 0.18 0.36

22.91 0.60 0.29 0.93 0.67 0.27 0.13 0.27 0.17 0.31 0.26 0.16 0.07

23.25 0.46 0.21 0.23 0.53 0.31 0.14 0.34 0.21 0.07 0.19 0.12 0.21

23.45 0.50 0.29 0.17 0.53 0.26 0.82 0.35 0.31 0.97 0.30 0.11 0.17

23.46 0.63 0.30 0.34 0.61 0.31 0.79 0.27 0.19 0.00 0.28 0.14 0.45

23.63 0.35 0.21 0.21 0.59 0.24 0.73 0.74 0.16 0.65 0.26 0.14 0.10

23.65 0.50 0.30 0.30 0.58 0.28 0.62 0.60 0.29 0.94 0.27 0.18 0.03

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure H.2 k2 and N values of all four legs for sequences found by the NNH, using a cost function based
on ∆V .
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DV

Value mean std best mean std best mean std best mean std best

21.28 1.54 0.87 1.95 1.46 0.41 1.20 1.54 0.59 1.19 1.82 1.22 1.07

21.28 1.93 0.54 2.18 1.50 0.49 1.50 2.01 0.77 1.19 1.56 0.76 1.19

22.91 1.47 0.78 2.43 1.34 0.34 2.02 1.34 0.21 1.52 1.62 0.35 1.19

23.25 1.38 0.63 1.67 1.84 0.37 2.05 2.02 0.92 1.01 3.01 1.11 2.08

23.45 1.95 0.76 1.79 2.26 0.48 2.34 2.05 0.35 2.01 2.27 0.76 2.44

23.46 2.16 0.80 3.15 2.19 0.83 1.20 2.41 0.98 1.55 3.03 1.05 2.61

23.63 2.16 0.98 2.29 2.27 0.78 1.80 2.46 0.52 2.23 2.99 1.49 1.70

23.65 2.08 0.45 1.77 2.11 0.75 2.23 1.65 0.83 1.10 1.87 1.00 1.10

mean std best mean std best mean std best mean std best

21.28 1.24 0.17 1.20 1.76 0.62 1.65 2.36 0.70 2.62 8.21 1.35 8.42

21.28 1.29 0.33 1.19 1.79 0.51 1.93 2.15 0.56 2.15 7.56 1.58 5.96

22.91 1.13 0.33 1.15 1.83 0.33 2.19 2.88 0.62 1.16 7.50 1.11 7.85

23.25 1.21 0.51 1.22 1.77 0.83 1.67 0.97 0.35 0.40 4.93 1.48 4.80

23.45 1.27 0.42 1.20 2.12 0.75 1.11 2.47 0.69 2.16 6.65 1.56 8.94

23.46 1.56 0.52 1.81 2.23 1.00 1.23 1.82 0.49 1.89 6.06 0.87 6.86

23.63 1.72 1.04 1.13 2.79 0.92 2.26 6.95 1.81 6.07 6.95 1.81 6.07

23.65 1.31 0.48 1.18 2.16 0.62 1.63 2.47 0.76 2.30 7.84 1.23 8.33

mean std best mean std best mean std best mean std best

21.28 395 101 364 710 165 631 1174 245 1371 971 198 832

21.28 391 109 304 691 127 572 1090 192 1288 1106 272 1157

22.91 423 100 431 696 88 591 1165 78 976 822 188 1337

23.25 358 178 88 772 195 629 793 338 1121 1324 396 1336

23.45 449 141 375 805 146 1007 1153 213 1399 818 154 597

23.46 440 143 387 850 163 1009 971 308 1208 993 284 730

23.63 347 142 327 841 166 999 1247 213 1073 800 244 862

23.65 375 77 364 714 206 625 1285 267 1441 859 194 877

mean std best mean std best mean std best

21.28 117 21 147 110 23 144 130 21 144

21.28 103 15 92 105 16 90 127 22 148

22.91 115 19 101 97 11 95 103 20 121

23.25 117 19 122 107 18 115 123 23 109

23.45 111 21 90 102 19 91 101 17 90

23.46 113 21 119 104 15 90 124 20 90

23.63 113 22 121 105 15 90 104 16 106

23.65 113 18 127 114 19 93 105 15 125

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Figure H.3 Velocity mismatches, flight times and stay times of all four legs for sequences found by the
NNH, using a cost function based on ∆V .
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H.2 Cost Function Based on Energy

E 

Value mean std best mean std best mean std best

451 -2750 1076 -1594 699 119 567 9.80 0.19 10.00

497 -5325 1239 -3251 706 211 666 9.34 0.70 9.36

531 -6638 2051 -4335 677 134 536 9.70 0.37 9.01

537 -3717 1729 -1562 676 105 664 9.67 0.34 9.86

540 -4097 1386 -2342 614 98 467 9.83 0.29 9.91

545 -9089 3210 -5736 728 115 667 9.77 0.33 9.91

562 -4114 1534 -2249 680 119 583 9.69 0.30 9.62

565 -11013 2977 -5392 846 130 999 9.81 0.26 9.68

mean std best mean std best mean std best

451 82 12 93 10.26 1.36 8.63 59389 2375 64691

497 86 25 89 14.06 4.91 10.84 58662 635 58249

531 85 16 107 14.78 2.71 11.73 62170 945 62632

537 85 12 85 11.54 2.27 8.47 58740 1301 58496

540 90 10 104 12.81 4.10 10.05 60426 1936 60396

545 79 12 84 16.87 2.63 14.91 62007 1608 62305

562 85 14 95 11.69 2.10 9.27 63142 2048 64388

565 67 13 52 19.87 2.91 13.81 62339 1952 61062

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure H.4 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by the
NNH, using a cost function based on Energy.

E 

Value mean std best mean std best mean std best mean std best

451 0.45 0.33 0.19 0.36 0.14 0.33 0.69 0.08 0.78 0.27 0.25 0.04

497 0.49 0.25 0.52 0.39 0.17 0.42 0.70 0.29 0.61 0.54 0.38 0.93

531 0.49 0.21 0.32 0.34 0.16 0.19 0.54 0.24 0.53 0.25 0.22 0.07

537 0.79 0.24 0.94 0.29 0.16 0.22 0.52 0.22 0.62 0.51 0.18 0.61

540 0.49 0.28 0.56 0.36 0.17 0.55 0.79 0.25 0.12 0.39 0.33 0.77

545 0.50 0.30 0.89 0.39 0.17 0.50 0.81 0.28 0.99 0.75 0.34 0.99

562 0.46 0.19 0.49 0.36 0.13 0.50 0.47 0.37 0.27 0.64 0.24 0.60

565 0.55 0.24 0.74 0.32 0.13 0.39 0.82 0.23 0.95 0.32 0.25 0.18

mean std best mean std best mean std best mean std best

451 0.57 0.25 0.16 0.66 0.23 0.85 0.73 0.20 0.10 0.26 0.15 0.45

497 0.56 0.18 0.68 0.65 0.24 0.59 0.35 0.25 0.14 0.38 0.20 0.09

531 0.69 0.20 0.63 0.51 0.22 0.36 0.30 0.23 0.35 0.27 0.17 0.37

537 0.40 0.25 0.14 0.60 0.26 0.58 0.38 0.19 0.46 0.59 0.29 0.85

540 0.68 0.19 0.85 0.64 0.27 0.46 0.33 0.23 0.01 0.38 0.16 0.28

545 0.45 0.23 0.19 0.48 0.33 0.20 0.42 0.28 0.22 0.28 0.14 0.24

562 0.58 0.28 0.77 0.67 0.23 0.58 0.30 0.14 0.17 0.28 0.18 0.19

565 0.64 0.25 0.78 0.68 0.27 0.58 0.34 0.19 0.78 0.54 0.25 0.75

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure H.5 k2 and N values of all four legs for sequences found by the NNH, using a cost function based
on Energy.
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E 

Value mean std best mean std best mean std best mean std best

451 2.29 1.24 3.37 1.38 0.49 1.34 2.50 0.81 2.36 2.04 1.03 1.50

497 3.59 0.79 3.48 2.45 2.58 0.47 1.52 0.55 1.11 2.68 0.76 2.86

531 3.58 0.56 3.50 1.75 0.87 1.18 1.77 1.22 1.19 2.59 0.85 2.58

537 3.56 0.42 3.50 2.01 1.00 1.33 1.42 0.55 1.62 1.47 0.70 0.72

540 3.85 1.45 3.50 1.79 0.66 1.10 1.73 0.87 1.78 2.24 1.12 1.81

545 4.01 1.20 3.50 2.04 0.92 1.67 1.57 0.70 2.54 2.82 1.51 1.98

562 3.41 0.19 3.49 1.93 1.02 1.19 1.09 0.58 1.67 2.00 1.20 0.92

565 3.76 1.43 3.46 2.34 1.04 1.18 3.11 1.61 2.97 3.35 1.54 1.78

mean std best mean std best mean std best mean std best

451 1.33 0.53 1.45 1.10 0.36 1.20 1.85 0.62 0.79 3.93 2.74 5.88

497 3.58 0.72 2.94 2.27 2.18 2.29 1.37 0.85 1.17 15.59 2.80 14.32

531 4.46 0.53 4.51 1.63 0.68 0.67 2.37 1.26 1.61 6.54 1.49 6.95

537 3.02 0.69 2.23 1.78 0.87 1.13 1.74 0.75 1.44 11.87 4.69 9.27

540 3.49 2.00 2.38 1.73 0.66 2.25 1.39 0.60 0.72 4.77 2.49 4.99

545 5.14 1.03 3.99 2.16 1.18 1.48 2.55 0.96 3.25 5.02 2.14 2.59

562 3.84 0.74 3.40 1.56 0.61 1.26 1.27 0.64 0.83 2.99 1.98 1.16

565 4.45 1.07 3.79 3.04 1.03 1.01 3.05 1.38 3.09 20.78 9.33 26.08

mean std best mean std best mean std best mean std best

451 455 168 242 818 214 856 1029 152 864 947 287 1360

497 429 216 403 863 233 855 1056 299 828 715 310 1022

531 474 185 297 782 218 774 1072 202 982 876 112 950

537 229 142 157 725 151 777 1163 260 1037 1060 290 1279

540 511 127 688 760 196 459 797 266 810 1178 337 1323

545 460 274 373 827 267 1049 836 223 759 1084 326 1073

562 543 180 517 722 139 577 412 237 113 1507 392 1988

565 467 119 546 781 273 582 951 410 1378 1020 488 701

mean std best mean std best mean std best

451 116 23 90 109 17 104 105 17 137

497 127 20 129 114 19 90 109 18 90

531 107 18 103 112 21 92 118 22 90

537 115 22 97 118 16 106 123 19 149

540 118 20 118 112 21 90 114 23 133

545 127 21 150 118 17 116 115 21 102

562 119 22 108 121 21 93 115 24 119

565 124 21 97 119 22 121 121 23 110

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure H.6 Velocity mismatches, flight times and stay times of all four legs for sequences found by the
NNH, using a cost function based on Energy.
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H.3 Cost Function According to ESA Approach

ESA

Value mean std best mean std best mean std best

15.03 -2777 789 -1989 519 76 455 9.68 0.35 9.77

21.05 -37553 5388 -29027 807 191 702 9.85 0.21 9.56

21.25 -22586 5191 -14832 902 142 823 9.83 0.19 10.00

21.92 -29299 4272 -22822 900 138 944 9.80 0.24 9.65

22.62 -30166 7676 -20125 946 121 841 9.82 0.21 9.98

22.69 -31452 7981 -20980 937 168 917 10.00 0.48 10.00

22.75 -39658 7126 -29783 1157 143 1128 10.28 1.16 10.00

22.76 -57519 5679 -43706 1044 146 1069 13.25 2.49 10.00

mean std best mean std best mean std best

15.03 102 10 107 11.09 1.61 9.60 63420 515 63718

21.05 70 19 83 39.57 3.30 34.88 60419 1341 59446

21.25 61 14 68 28.74 4.31 23.30 61268 1283 62813

21.92 61 14 58 34.05 3.55 28.67 60877 1448 61128

22.62 56 12 66 34.80 4.59 28.58 61483 1684 62874

22.69 56 16 58 35.06 5.47 28.58 61259 1545 62808

22.75 34 14 37 36.59 4.71 33.67 60401 1644 59216

22.76 36 17 43 41.61 6.20 42.33 59037 1299 59995

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure H.7 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences found by the
NNH, using the cost function implemented by ESA.

ESA

Value mean std best mean std best mean std best mean std best

15.03 0.77 0.29 0.94 0.24 0.15 0.31 0.27 0.32 0.10 0.23 0.21 0.78

21.05 0.61 0.26 0.56 0.29 0.22 0.01 0.95 0.07 1.00 0.74 0.36 1.00

21.25 0.48 0.23 0.73 0.31 0.17 0.39 0.90 0.14 0.98 0.70 0.35 0.05

21.92 0.61 0.31 0.29 0.41 0.11 0.48 0.92 0.10 0.93 0.67 0.37 0.64

22.62 0.67 0.23 0.86 0.47 0.08 0.43 0.91 0.12 0.98 0.68 0.35 0.24

22.69 0.70 0.22 0.64 0.46 0.06 0.47 0.88 0.20 0.99 0.70 0.36 0.48

22.75 0.64 0.23 0.51 0.42 0.18 0.46 0.85 0.17 0.80 0.70 0.34 0.89

22.76 0.48 0.31 0.49 0.25 0.18 0.26 0.36 0.34 0.99 0.77 0.28 0.90

mean std best mean std best mean std best mean std best

15.03 0.39 0.23 0.39 0.48 0.27 0.17 0.30 0.20 0.08 0.33 0.17 0.08

21.05 0.71 0.28 0.82 0.38 0.22 0.18 0.27 0.15 0.16 0.29 0.15 0.15

21.25 0.61 0.28 0.42 0.61 0.29 0.90 0.34 0.20 0.22 0.30 0.14 0.37

21.92 0.56 0.26 0.62 0.55 0.26 0.90 0.28 0.18 0.31 0.33 0.21 0.34

22.62 0.40 0.27 0.03 0.72 0.21 0.62 0.28 0.17 0.39 0.28 0.15 0.28

22.69 0.45 0.27 0.24 0.61 0.28 0.85 0.41 0.23 0.15 0.30 0.15 0.37

22.75 0.54 0.30 0.83 0.67 0.17 0.58 0.35 0.27 0.45 0.36 0.16 0.17

22.76 0.53 0.26 0.59 0.43 0.24 0.70 0.59 0.32 0.08 0.32 0.15 0.37

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure H.8 k2 and N values of all four legs for sequences found by the NNH, using the cost function
implemented by ESA.
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ESA

Value mean std best mean std best mean std best mean std best

15.03 1.37 0.89 0.66 1.94 0.73 1.44 1.84 0.34 1.50 2.48 0.33 2.76

21.05 6.16 1.65 5.53 9.35 1.93 7.15 5.51 0.83 5.13 3.51 1.63 4.14

21.25 4.92 1.79 3.50 2.32 1.30 1.19 5.29 0.60 5.61 2.56 1.78 1.12

21.92 6.47 1.67 4.73 4.49 1.16 3.53 5.40 1.04 4.77 3.08 1.75 0.94

22.62 4.07 1.86 3.49 6.31 0.97 5.76 5.38 0.79 6.34 2.98 1.47 2.05

22.69 5.84 2.18 3.50 6.97 2.60 5.53 6.05 1.06 6.15 3.00 1.94 1.19

22.75 7.89 1.51 7.16 4.83 2.62 2.94 5.44 0.80 5.26 3.31 1.96 2.00

22.76 4.81 2.29 3.36 8.11 2.71 10.86 7.95 1.32 11.26 2.28 1.39 3.83

mean std best mean std best mean std best mean std best

15.03 1.50 1.07 1.18 1.62 0.69 1.10 1.66 0.32 1.62 4.21 1.37 1.90

21.05 6.60 1.68 6.43 7.73 2.06 6.22 4.21 0.67 3.78 5.53 2.49 6.38

21.25 6.32 1.23 6.79 6.63 1.87 4.88 4.14 0.95 3.71 7.51 3.54 9.19

21.92 7.00 1.78 6.88 6.62 1.74 6.46 4.48 0.76 4.86 6.55 2.95 10.21

22.62 7.95 0.93 7.21 7.04 3.18 3.72 4.40 1.11 3.50 5.93 2.50 7.80

22.69 7.21 1.04 7.82 5.52 1.39 4.32 3.96 0.71 3.56 6.82 3.03 9.18

22.75 7.92 0.98 8.50 6.34 1.57 5.63 4.36 0.87 5.68 6.89 2.34 9.11

22.76 8.43 4.03 6.68 8.90 0.92 7.14 4.48 2.73 2.55 3.68 1.89 2.64

mean std best mean std best mean std best mean std best

15.03 283 152 302 624 170 515 960 213 1031 1316 284 1388

21.05 391 236 304 956 284 1071 1067 351 1226 811 270 523

21.25 448 197 275 834 241 750 1130 397 1225 793 256 988

21.92 385 175 397 1032 332 1087 971 409 1208 817 198 435

22.62 387 199 279 813 227 611 1174 287 1426 839 278 926

22.69 400 152 330 815 297 672 1297 297 1338 770 180 980

22.75 385 163 492 1076 404 1487 1082 445 584 860 363 696

22.76 644 373 767 1431 428 498 1716 309 1260 690 374 707

mean std best mean std best mean std best

15.03 124 21 150 112 20 90 116 20 90

21.05 117 19 124 128 22 150 126 22 94

21.25 126 22 140 132 22 150 130 19 124

21.92 120 24 149 124 21 102 133 21 146

22.62 121 19 110 126 21 149 127 23 145

22.69 116 21 94 135 22 139 120 21 101

22.75 108 15 105 123 22 150 123 23 137

22.76 122 25 120 121 21 150 117 22 150

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Figure H.9 Velocity mismatches, flight times and stay times of all four legs for sequences found by the
NNH, using the cost function implemented by ESA.





Appendix I

Extensive Results of Continuous
Method for Additional Tests

This appendix contains the results of the continuous method for the sequences ob-
tained by GTOC participants for three additional tests. The first test investigates
the implementation of a pit in the penalty function. The second test investigates
what happens if the IP method is allowed to search outside the problem bounds.
The third test investigates an alternative setting for the total mission duration
penalty of 20 years instead of 10 years. Each sequences has been analyzed 20
times using the continuous method. The figures summarize the mean, standard
deviation and best value of those 20 runs after the Interior Point method has
finished for a number of parameters. For each cost function three figures have
been included. The first figure shows the results for the objective value (J), the
mass use in kg, the total time of flight in years (TOF), the corresponding GTOC2
objective value (J GTOC), the sum of the velocity mismatches upon arrival and
departure at the first three asteroids and, if applicable, at Earth (TOT DV), and
finaly the launch date in MJD (T0). The second figure shows the k2 and N values
for each leg. The third figure specifies the flight times for each leg, the stay times
at the first three asteroids and specifies all velocity mismatches upon departure
and arrival individually.

171



172 Extensive Results of Continuous Method for Additional Tests

I.1 Including a pit in the objective function.

R mean std best mean std best mean std best

1 -3837 2730 142 601 166 402 9.36 0.68 7.75

3 -2874 2350 121 502 67 420 9.76 0.29 8.92

7 -4908 1386 -3008 876 133 1043 9.69 0.35 9.90

9 -127 1156 228 460 104 293 8.65 1.63 5.30

10 -3090 2783 117 543 106 476 9.70 0.41 8.75

11 -3062 2407 110 498 108 408 9.61 0.36 9.90

mean std best mean std best mean std best

1 97 23 142 13.53 1.58 11.09 58001 1679 57368

3 103 9 121 13.08 1.08 13.06 62074 1778 63730

7 64 13 46 13.97 2.52 11.01 58205 1374 57816

9 128 45 228 12.05 0.85 11.24 60882 2979 57031

10 99 13 117 13.32 1.25 12.62 62308 2225 64021

11 104 10 110 13.41 0.77 13.45 63107 2091 64030

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure I.1 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences obtained by
GTOC2 participants, when a pit is implemented in the penalty function.

R mean std best mean std best mean std best mean std best

1 0.55 0.24 0.81 0.37 0.23 0.13 0.69 0.13 0.80 0.52 0.32 0.82

3 0.84 0.15 0.80 0.25 0.16 0.33 0.49 0.31 0.61 0.89 0.21 1.00

7 0.35 0.23 0.47 0.37 0.11 0.40 0.58 0.18 0.58 0.48 0.25 0.52

9 0.80 0.21 0.97 0.39 0.11 0.40 0.71 0.23 0.71 0.65 0.31 0.73

10 0.73 0.22 0.74 0.37 0.11 0.50 0.64 0.27 0.65 0.50 0.34 0.38

11 0.67 0.30 0.82 0.41 0.16 0.35 0.59 0.27 0.96 0.68 0.26 0.73

mean std best mean std best mean std best mean std best

1 0.66 0.20 0.39 0.59 0.31 0.66 0.28 0.16 0.34 0.31 0.13 0.26

3 0.47 0.32 0.79 0.49 0.25 0.16 0.31 0.13 0.36 0.31 0.16 0.24

7 0.73 0.16 0.71 0.60 0.32 0.84 0.72 0.24 0.85 0.27 0.16 0.12

9 0.54 0.24 0.49 0.63 0.22 0.72 0.31 0.24 0.10 0.29 0.19 0.24

10 0.46 0.23 0.51 0.71 0.24 0.52 0.29 0.20 0.48 0.40 0.25 0.48

11 0.51 0.28 0.32 0.54 0.26 0.63 0.34 0.14 0.49 0.29 0.13 0.24

N 1 N 2 N 3 N 4

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

Figure I.2 k2 and N values of all four legs for sequences obtained by GTOC2 participants, when a pit is
implemented in the penalty function.
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R mean std best mean std best mean std best mean std best

1 2.97 0.63 2.90 2.65 1.16 2.12 1.88 0.64 2.18 2.06 0.88 0.60

3 2.05 0.67 0.94 2.71 0.56 3.44 2.18 1.12 0.77 1.80 0.35 2.45

7 3.42 0.94 3.50 2.43 1.06 1.17 2.34 0.90 2.26 2.16 1.00 1.76

9 2.01 0.72 2.74 1.47 0.61 0.94 2.63 1.34 2.32 2.67 0.87 2.52

10 1.49 1.01 1.38 1.65 0.44 1.51 2.45 0.83 2.33 4.23 1.23 4.75

11 1.14 0.86 0.55 1.68 0.53 2.18 2.26 0.60 2.41 3.96 1.34 2.01

mean std best mean std best mean std best mean std best

1 3.09 0.62 3.23 2.51 0.69 2.09 1.29 0.52 0.89 2.47 1.65 3.12

3 1.76 0.67 2.16 2.21 1.15 0.95 2.42 1.08 3.29 4.19 1.11 5.69

7 2.84 0.95 2.49 1.77 0.84 1.31 2.26 1.11 2.01 2.77 2.00 1.63

9 1.65 0.76 1.12 1.49 0.81 2.67 2.13 1.19 1.68 3.74 1.61 1.12

10 1.45 0.49 1.16 1.42 0.63 1.22 2.13 0.82 1.65 4.65 1.23 6.39

11 1.80 0.70 2.34 1.64 0.49 1.04 2.08 0.94 3.47 4.60 1.43 4.61

mean std best mean std best mean std best mean std best

1 506 217 199 862 271 1288 948 193 745 769 314 308

3 312 116 370 639 209 434 1223 205 1410 1050 199 714

7 538 207 527 865 347 1097 1130 216 966 651 298 736

9 319 112 257 821 206 590 790 306 338 903 300 480

10 326 166 409 727 116 586 924 267 1093 1215 401 789

11 382 164 321 681 146 773 963 248 682 1150 359 1520

mean std best mean std best mean std best

1 116 21 94 108 19 99 112 20 99

3 113 18 106 116 22 106 113 21 117

7 118 22 96 125 21 95 112 19 100

9 109 13 91 111 20 90 106 19 90

10 123 22 93 112 18 105 115 20 120

11 115 22 105 112 23 91 107 19 124

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure I.3 Velocity mismatches, flight times and stay times of all four legs for sequences obtained by
GTOC2 participants, when a pit is implemented in the penalty function.
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I.2 Allowing the IP Method to Search Outside the
Problem Bounds.

R mean std best mean std best mean std best

1 -4771 1391 -2066 644 132 527 9.67 0.48 8.83

3 -4068 1344 -1850 517 67 478 9.95 0.10 9.68

7 -5558 1901 -2276 779 192 955 9.88 0.22 9.67

9 -2610 994 -803 507 105 433 9.91 0.21 9.92

10 -4243 1069 -2096 570 132 382 9.77 0.34 10.00

11 -6075 1423 -4389 826 247 840 9.85 0.37 10.00

mean std best mean std best mean std best

1 89 15 110 13.42 1.90 9.79 57781 858 57150

3 99 7 106 12.76 1.66 9.55 61731 1705 62313

7 73 19 56 14.35 2.34 10.20 58870 2410 57625

9 100 12 108 10.55 1.51 8.17 61236 2917 57002

10 95 13 112 12.58 1.32 10.26 61868 2612 64098

11 69 25 66 15.96 6.45 12.57 62789 603 62341

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure I.4 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences obtained by
GTOC2 participants, when the IP is allowed to search outside the problem bounds.

R mean std best mean std best mean std best mean std best

1 0.55 0.17 0.57 0.26 0.18 0.04 0.62 0.21 0.70 0.38 0.27 0.52

3 0.82 0.27 1.14 0.31 0.14 0.35 0.62 0.40 1.01 0.82 0.24 0.21

7 0.45 0.27 0.35 0.39 0.19 0.40 0.51 0.34 0.58 0.68 0.31 0.36

9 0.82 0.32 1.17 0.34 0.12 0.14 0.60 0.44 0.08 0.64 0.40 0.82

10 0.69 0.28 0.90 0.38 0.11 0.57 0.67 0.33 0.49 0.44 0.31 0.86

11 0.60 0.30 1.14 0.51 0.20 0.39 0.83 0.34 0.91 0.72 0.22 0.71

mean std best mean std best mean std best mean std best

1 0.71 0.18 0.56 0.63 0.28 0.67 0.31 0.17 0.49 0.34 0.26 0.50

3 0.52 0.37 0.22 0.49 0.38 1.47 0.30 0.13 0.29 0.30 0.17 0.08

7 0.74 0.18 0.50 0.55 0.35 0.87 0.61 0.25 0.92 0.40 0.15 0.49

9 0.48 0.30 0.09 0.76 0.37 1.46 0.36 0.16 0.16 0.34 0.27 0.50

10 0.46 0.22 1.02 0.66 0.35 0.08 0.25 0.18 0.03 0.43 0.38 0.02

11 0.69 0.35 0.06 0.59 0.28 0.53 0.30 0.14 0.36 0.33 0.27 0.26

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure I.5 k2 and N values of all four legs for sequences obtained by GTOC2 participants, when the IP
is allowed to search outside the problem bounds.



I.2 Allowing the IP Method to Search Outside the Problem Bounds. 175

R

R mean std best mean std best mean std best mean std best

1 3.18 0.52 3.29 2.60 1.10 1.20 1.79 0.60 1.42 2.10 0.72 1.20

3 2.44 0.61 2.61 2.43 0.72 1.47 2.38 1.19 1.20 1.92 0.47 1.33

7 3.32 0.30 3.42 2.69 1.27 1.20 2.61 0.87 2.23 2.70 1.63 1.82

9 2.32 0.36 2.12 1.25 0.27 1.17 2.49 0.93 2.13 2.15 0.68 1.20

10 2.31 0.93 2.58 1.51 0.40 1.20 2.65 0.59 1.77 3.69 1.34 2.15

11 3.44 0.72 2.28 3.09 3.60 1.20 1.52 1.02 1.20 2.07 0.79 1.35

mean std best mean std best mean std best mean std best

1 2.94 0.48 2.67 2.43 0.88 2.10 1.51 0.79 1.20 1.91 0.88 2.21

3 1.41 0.73 1.20 2.70 1.05 2.33 1.93 0.65 2.01 3.94 1.65 6.77

7 2.49 0.47 2.07 2.30 0.99 1.20 1.55 0.75 1.69 2.65 1.39 1.72

9 1.21 0.52 1.15 1.58 0.59 1.32 1.86 0.73 1.20 3.37 1.68 1.02

10 1.22 0.39 1.18 1.35 0.37 1.79 2.15 0.73 2.17 4.93 1.46 4.09

11 4.16 0.56 4.21 3.09 3.05 2.36 1.78 0.77 2.26 3.35 1.61 3.30

mean std best mean std best mean std best mean std best

1 446 207 407 884 275 1295 831 131 755 1054 490 495

3 338 107 252 648 160 1043 1174 247 1135 1122 241 918

7 565 226 713 754 177 1068 1038 270 1014 925 422 447

9 344 139 263 884 192 728 823 242 295 1223 392 2120

10 330 117 361 800 171 491 849 301 948 1256 379 1483

11 489 219 264 745 274 670 600 249 1096 1416 364 1358

mean std best mean std best mean std best

1 104 30 82 103 28 81 112 30 111

3 122 34 120 138 48 288 93 79 -219

7 112 28 85 106 31 144 108 34 60

9 126 35 81 112 41 -1 106 46 139

10 118 26 91 105 51 135 110 44 144

11 130 30 91 115 23 98 106 31 77

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Figure I.6 Velocity mismatches, flight times and stay times of all four legs for sequences obtained by
GTOC2 participants, when the IP is allowed to search outside the problem bounds.
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I.3 Changing the Threshold for the Total Time of Flight
Penalty.

E 

Value mean std best mean std best mean std best

420 -412 230 -188 624 158 998 16.11 1.46 18.17

437 -837 408 -402 655 90 770 15.61 1.78 17.18

454 -784 317 -336 554 90 665 16.32 0.87 18.52

456 -1031 353 -507 695 135 829 16.10 1.78 16.10

465 -1127 255 -732 691 165 716 16.83 1.47 15.04

473 -676 252 -313 642 130 733 17.03 1.20 17.72

479 -899 135 -657 512 60 531 15.56 1.16 14.82

496 -1106 253 -761 706 116 808 17.49 1.46 18.62

mean std best mean std best mean std best

420 55 13 28 7.03 0.90 6.32 63292 950 63184

437 55 12 42 8.10 1.37 6.41 60967 1605 61360

454 58 8 45 8.23 0.96 7.19 62931 2046 62048

456 51 12 42 8.76 1.28 6.92 60144 3095 58214

465 49 11 52 9.30 0.77 7.88 63342 1551 63334

473 51 10 43 8.96 4.98 6.64 58359 1933 57674

479 64 6 65 8.42 0.50 8.46 62141 215 62145

496 46 8 37 9.19 1.07 7.40 60299 2575 62574

TOT DV [km/s]

J Mass Used [kg] TOF [year]

J GTOC T0 [MJD]

Figure I.7 J, mass used, Time of flight, J GTOC, TOT DV, and launch date for sequences obtained by
the NNH, using a cost function based on energy, when the penalty threshold for the total
time of flight is shifted from 10 to 20 years.

E 

Value mean std best mean std best mean std best mean std best

420 0.65 0.24 0.34 0.26 0.11 0.18 0.69 0.27 0.49 0.56 0.37 0.55

437 0.56 0.27 0.36 0.30 0.14 0.21 0.52 0.17 0.53 0.51 0.35 0.87

454 0.58 0.29 0.35 0.33 0.09 0.21 0.55 0.38 0.89 0.70 0.14 0.75

456 0.47 0.28 0.70 0.28 0.15 0.47 0.89 0.14 0.86 0.37 0.36 0.63

465 0.60 0.25 0.69 0.28 0.13 0.35 0.70 0.27 0.02 0.63 0.25 0.54

473 0.48 0.24 0.34 0.40 0.14 0.48 0.74 0.13 0.85 0.84 0.12 0.86

479 0.47 0.27 0.29 0.17 0.03 0.18 0.91 0.07 0.83 0.58 0.42 0.09

496 0.55 0.27 0.98 0.31 0.10 0.40 0.59 0.24 0.34 0.67 0.26 0.98

mean std best mean std best mean std best mean std best

420 0.63 0.29 0.91 0.74 0.16 0.51 0.34 0.22 0.48 0.30 0.24 0.57

437 0.63 0.28 0.65 0.69 0.19 0.74 0.81 0.13 0.71 0.31 0.21 0.12

454 0.60 0.20 0.62 0.70 0.13 0.79 0.72 0.22 0.87 0.30 0.22 0.92

456 0.68 0.19 0.68 0.71 0.16 0.60 0.38 0.22 0.16 0.54 0.25 0.58

465 0.65 0.23 0.91 0.75 0.12 0.80 0.35 0.20 0.60 0.47 0.30 0.45

473 0.65 0.25 0.54 0.78 0.21 0.78 0.26 0.13 0.33 0.23 0.14 0.18

479 0.77 0.16 0.98 0.77 0.15 0.80 0.25 0.18 0.00 0.30 0.12 0.48

496 0.76 0.14 0.93 0.75 0.16 0.57 0.38 0.27 0.75 0.48 0.33 0.26

k2 leg 1 k2 leg 2 k2 leg 3 k2 leg 4

N 1 N 2 N 3 N 4

Figure I.8 k2 and N values of all four legs for sequences obtained by the NNH, using a cost function
based on energy, when the penalty threshold for the total time of flight is shifted from 10 to
20 years.



I.3 Changing the Threshold for the Total Time of Flight Penalty. 177

E 

Value mean std best mean std best mean std best mean std best

420 2.65 0.60 2.92 1.09 0.35 0.98 1.02 0.53 1.56 1.59 0.34 0.93

437 2.69 0.68 2.94 1.35 0.61 1.07 0.99 0.19 0.70 1.60 0.37 1.47

454 0.95 0.42 0.45 1.18 0.24 0.79 1.94 0.59 1.67 1.22 0.30 1.13

456 2.75 0.65 2.97 1.33 0.38 1.21 1.66 0.90 1.68 1.25 0.54 0.67

465 2.68 0.66 2.68 1.20 0.34 0.87 2.18 0.55 2.53 1.57 0.39 1.20

473 3.19 2.54 3.18 1.40 0.24 1.20 1.60 0.25 1.58 0.83 0.29 0.92

479 1.16 0.47 0.91 0.91 0.32 1.20 1.48 0.35 1.20 1.36 0.25 1.05

496 1.29 0.76 0.86 1.17 0.31 1.27 2.07 0.63 1.90 1.00 0.62 0.76

mean std best mean std best mean std best mean std best

420 1.26 0.33 1.07 0.93 0.38 0.60 1.15 0.13 1.18 3.60 1.60 2.75

437 1.43 0.50 1.15 0.88 0.51 0.29 1.85 0.25 1.73 2.59 0.34 2.74

454 0.98 0.23 1.05 1.09 0.42 1.11 1.84 0.61 1.44 2.61 1.02 3.51

456 1.54 0.51 1.20 1.26 0.49 1.30 1.74 0.62 0.85 3.53 2.11 7.53

465 1.26 0.43 1.00 1.12 0.53 0.92 1.97 0.54 1.36 4.59 1.85 7.08

473 2.04 2.71 0.70 1.38 0.66 1.28 1.21 0.28 0.97 2.60 0.91 1.89

479 0.93 0.21 1.12 1.03 0.20 1.12 2.70 0.21 2.77 1.04 0.49 1.61

496 1.20 0.36 0.77 1.13 0.42 0.39 2.61 0.34 2.31 2.97 0.93 3.88

mean std best mean std best mean std best mean std best

420 604 308 1024 1622 272 1692 1396 282 1527 1905 181 1969

437 625 285 1057 1455 324 1815 1713 128 1708 1556 339 1349

454 1626 267 1931 1626 267 1931 1861 166 1880 1652 177 1946

456 647 353 564 1477 247 1390 1570 334 1746 1832 177 1861

465 584 286 477 1606 331 1264 1905 112 1938 1682 228 1416

473 620 221 1128 1588 265 1342 1758 151 1672 1876 129 1997

479 558 170 483 1399 153 1335 1928 62 1998 1437 423 1303

496 751 198 683 1566 289 1683 1953 46 2000 1756 189 1990

mean std best mean std best mean std best

420 122 20 139 123 23 149 111 23 137

437 120 22 150 121 22 98 113 21 100

454 116 16 93 124 18 126 118 27 103

456 118 23 93 118 26 90 118 23 137

465 121 19 130 134 18 136 114 25 132

473 116 21 96 122 26 90 140 8 148

479 118 20 99 118 19 90 124 23 106

496 121 22 149 113 22 146 127 25 150

Stay Time 1 Stay Time 2 Stay Time 3

Time of Flight 1 Time of Flight 2 Time of Flight 3

Departure DV 1 Departure DV 2 Departure DV 3 Departure DV 4

Time of Flight 4

Arrival DV 1 Arrival DV 2 Arrival DV 3 Arrival DV 4

Figure I.9 Velocity mismatches, flight times and stay times of all four legs ffor sequences obtained by
the NNH, using a cost function based on energy, when the penalty threshold for the total
time of flight is shifted from 10 to 20 years.





Appendix J

Continuous Search Space
Visualization

In this appendix a limited search space visualization of a single leg and the
winning GTOC2 sequence will be presented. The visualizations are obtained
by performing a grid search. The goal of visualizing the search space is to
provide some feeling for the complexity of the search space and to support
various discussions in this report. Since only a small part of the total search
space will be visualized, the results in this appendix provide a lower limit for the
search space complexity. The search space of the single leg transfer consists of
four parameters, while the search space of the GTOC2 sequence consists of 16
transfers. Performing a grid search on a 16-dimensional search space with a useful
accuracy requires a huge amount of time, and therefore only two variables are
selected for analyses. The selected variables are the mission start date, T0, and
the time of flight to the first asteroid, TOF. The two parameters will be visualized
for both the single leg and the multiple leg transfer. For the single leg transfer the
search space for two different penalty settings will be presented. The variables
that are not subjected to a grid search are fixed. The variables for the single leg
transfer that are being fixed are k2 and N . The parameters are set to the values
corresponding to the best objective value found by the grid search. Since it is not
possible to perform a grid search for all sixteen variables for the multi leg transfer,
the fourteen variables other than T0 and TOF in the solution vector (equation
4.61) will be set to the variables corresponding to the best objective value found
by the continuous method.

Visualization of Search Space of a Single Leg Mission
First, a part of the search space for a single leg transfer from Earth to the first
asteroid of the winning GTOC2 sequence will be visualized. The search spaces of
the objective function with mass equivalent penalties and with a quadratic penalty
of velocity mismatches over 0.5 km/s are presented. Three different views of the
same search space are shown in figures J.1 to J.3. On the left side of figures J.1
to J.3 the search space with a mass equivalent penalty in the objective function
is shown. On the right side the search space for the mass equivalent penalty
with the added quadratic penalty is shown. The search space visualized on the
left side of figures J.1 to J.3 is the search space corresponding to the second test
in figures 7.47 and 7.48, the search space visualized on the right side shows the
search space for test 3. The figures show two things. The first observation is
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Figure J.1 Comparison of search space with mass equivalent penalty (left) and with an added quadratic
penalty (right) for T0 vs. TOF.

  

Figure J.2 Comparison of search space with mass equivalent penalty (left) and with an added quadratic
penalty (right) for J vs. TOF.

  

Figure J.3 Comparison of search space with mass equivalent penalty (left) and with an added quadratic
penalty (right) for J vs. T0.



J Continuous Search Space Visualization 181

that the maximum value on the left side in figure J.1 is in a different location
than on the right side. The maximum on the left side is located at very low TOF
values, which are unrealistic for an actual mission. This observation is confirmed
by the results of test 2 which indicate that low time of flight values result in
high velocity mismatches upon departure and arrival, and hence are unfeasible
trajectories. Applying the quadratic penalty results in the search space shown
on the right side of figures J.1 to J.3. In these search spaces the maximum is
located at more realistic time of flight values for an Earth-asteroid transfer. The
fact that the results of test 2 and 3 do not exactly match the visualized space is
due to the difference in the grid accuracy and the settings for the MC and the
GA. apparently the MC in combination the GA finds better results than the grid
search. Increasing the grid accuracy will probably lead to a peak in the search
space closer to the values obtained with the MC and GA.

The second observation is the increase in contrast between good and bad so-
lutions. The figures are all plotted on the same scale and same color map, so
the results can be compared directly. For the search space including the quadratic
penalty a large part of the search space has dropped below the axis limit of -10,000
and only the part of the search space close to the optimum is still visible. This
makes it easier for an optimizer to find this optimal region. The three different
views also show that in the part of the search space with objective values over
-10,000 the shape is very irregular. This also agrees with the results of test 1 and
2 in figure 7.48. Those results show a strong increase in the standard deviation
relative to the mean of the solutions, which indeed indicates an increase in irregu-
larity in the search space. To show the increase in irregularity of the search space
more clearly, the images in figure J.2 are plotted again in figure J.4, but on a scale
starting from -20,000 instead of -10,000.

 

 

Figure J.4 Comparison of search space with mass equivalent penalty (left) and with an added quadratic
penalty (right) for J vs. T0.

Visualization of Search Space of a Multileg Mission
The results of the grid search for the mission start date (T0) and the time of flight
to the first asteroid (TOF) for the multiple leg transfer is shown in figures J.5
and J.6. To generate these images a cost function with a quadratic penalty for
velocity mismatches over 1.2 km/s was applied. Figure J.5 shows a top view of
the search space for different sections of the search space. The upper left corner
shows the complete search space from the lower to the upper bound for T0 and
TOF. The upper right picture is the results of a grid search performed on the part
indicated by the green square in the upper left picture. It represents the 10% of the
search space around the optimum solution. The lower left picture is a grid search
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performed on the part indicated by the green square in the upper right picture. It
represents the 3% of the search space around the optimum solution. Finally, the
lower right picture shows the result of a grid search performed on the part of the
search space indicated by the green square in the lower left picture. It represents
the 0.5% of the search space around the optimum solution. The optimum solution
is indicated by a green cross. A 3D image of the results in figure J.5 is shown in

  

 

 

Figure J.5 Visualization of the search space for the continuous method of the asteroid sequence of the
GTOC2 winner for T0 and TOF.

figure J.6. The first thing that becomes clear is that only a very limited part of
the search space contains feasible solutions. This requires a method that is able
to probe the search space thoroughly. The MC settings used in this report proved
to be strong enough to identify these regions. The range of the objective values
in the feasible regions themselves is large. There are a number of narrow spikes
present. The ridge indicated by the green arrow is created by the penalty function.
It is the jump as visualized schematically in figure 4.21.
The maximum value obtained by the grid search is -2416. This is close to the value
found by the continuous method which was -2407 (see figure 7.18). It indicates
that the continuous method is more accurate than the grid search.

In order to determine the influence of the grid accuracy and to determine if
more narrow feasible solution regions exist a grid search was performed with a grid
that is three times as small as the one used to generate figures J.5 and J.6. The
results are summarized in figure J.7. On the left side the search space is shown with
a grid accuracy of 100 intervals per variable. It is the same image as the upper left
one in figure J.5. On the right side the result is presented for the grid search using
300 intervals per variable. Comparing the left image with the right image shows
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Figure J.6 3D representation of figure J.5.

that other narrow regions exist with feasible solutions that were not detected by
the grid search that only used 100 intervals per variable. At the moment it is
unclear if there are more regions that are even narrower than the ones found by
the grid search using 300 intervals per variable. Another unanswered question at
this point is whether or not the continuous method is seeing these narrow regions
and discarding them because they are not optimal, or that the continuous method
is not detecting these regions at all.

  

Figure J.7 Comparison of grid search with grid accuracy of 100 and 300.


