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Abstract

At virtually every public venue, announcements for visitors are made via a public addressing system. It is
important that announcements transmitted by means of a public addressing system are not only audible,
but also well understood by the general public. This thesis covers one of three subsystems required to make
a product that is capable of improving intelligibility of speech based on noise statistics in a room. More-
over, these statistics allow for an automatic volume control in order for listeners to experience an improved
audio level. Therefore, this thesis aims at estimating the noise statistics in real time, while prior knowledge
on the distorting announcement signal is available. Consequently, the concept of adaptive filtering deems
suiting and is extensively studied. In order to meet the real time processing constraint, members of least
mean squares algorithms are examined. Therefore, the method of steepest decent is covered, leading to the
expounding of the traditional least mean squares (LMS) algorithm and the normalized LMS (NLMS) algo-
rithm. By assessment of the algorithms regarding different step sizes and filter lengths, the NLMS algorithm
is shown to be superior in terms of faster convergence speed and better stability characteristics considering
similar conditions for both algorithms. Subsequently, the results show that the NLMS is able to estimate the
noise in noise-to-signal ratio’s higher than -15dB. Also, its low complexity allows it to be suitable for real time
applications, hence meeting the requirements.
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1
Introduction

1.1. Intelligibility-Enhancing Automatic Volume Control objective
At many public venues, announcements for visitors are made via a public addressing system (PA). For exam-
ple to inform passengers about delays at train stations or safety procedures in planes. It is important that
announcements transmitted by means of a PA system are not only audible, but also well understood by the
general public. In other words, announcements should be intelligible. A simplified model of a PA system can
be seen in Figure 1.1. A speech signal is sent through an amplifier and played by a loudspeaker. Subsequently,
the transmitted signal is altered by the involved environment. Noise present in the room will also distort the
transmitted signal. Thus, the perceivable signal contains a distorted version of the initial announcement.
Therefore it might occur that the message is not understandable anymore.

Figure 1.1: A schematic drawing of the PA system model including the amplification of an announcement and its alteration due to noise
and a room transfer function

.

In order to get the message across, it is vital that a transmitted announcement is intelligible. Unfortunately,
this is often not the case according to [1, 2]. When noise is present, a message will be even less understand-
able. One approach is to increase the volume of an announcement accordingly. Indeed, the increased vol-
ume improves audibility, but does not necessarily boost intelligibility [3]. Besides, a message should still be
pleasant to listen to, so simply increasing the volume is not a viable solution. A PA system that is too loud
might startle people or cause disturbance at surrounding non-target places. In extreme cases it might hurt or
damage the human ear. Therefore a PA system has to keep the announcements pleasant to listen to, whilst
maintaining intelligibility.

In order to tackle this problem, three sub tasks are considered. Firstly, noise statistics in the room should
be estimated in order to compensate for the room transfer function. Hereafter the speech signal has to be
adjusted accordingly for intelligibility enhancement. Lastly speech should be amplified to be played through
a loudspeaker. This thesis will focus on one of the sub tasks, namely estimating the noise statistics. Enhance-
ment of intelligibility and the design of the amplifier are discussed in [4] and [5].

1



2 1. Introduction

1.2. Intelligibility-Enhancing Automatic Volume Control overview
Three subsystems will be designed to form a complete product that enhances intelligibility. Each part will
solve one of the previously stated problems in section 1.1.

The noise statistics estimation subsystem will receive a recording of the speech played over the PA system
in a noisy environment. It will also receive the clean speech (without noise) that is going to be played. Both
signals will be used to estimate the noise.

The noise statistics estimation subsystem will then send the estimated noise to the intelligibility enhance-
ment subgroup. This subgroup will improve the intelligibility of the speech segment that is going to be played
next, based on the noise and calculate how much the signal needs to be amplified. The improved speech will
be send to both subsystems and the amplification factor will be send the the amplifier and noise cancellation
subsystem.

The amplifier and noise cancellation subgroup will do the pre-amplification of the signal based on the am-
plification factor. It will also receive a recording of the environment and use this to actively suppress low
frequency noise. A schematic overview of how all parts are connected to each other can be seen in Figure 1.2.

Figure 1.2: Schematic overview of the product including the different subsystems, in a variety of colors, to enhance intelligibility and
adjust the volume automatically. In every box, the explanation of the subsystem is stated accordingly.

1.3. Thesis objective
Speech is played in a room through a loudspeaker. Simultaneously, a microphone will record. The received
signal is the transmitted speech signal convoluted with a room impulse response (RIR) together with noise.
An overview of the situation can be seen in Figure 1.3. In this diagram s(n) is a speech signal played through
a speaker, h(n) is the RIR (Room Impulse Response) and z(n) is s(n) convoluted with h(n). In other words,
z(n) is the part of the recorded speech correlated with the transmitted speech. The noise present in a room
is indicated by n(n) and d(n) is the total recorded signal. The aim of this project is to recover n(n) from d(n),
from which a noise power spectral density and signal-to-noise ratio will be conducted. Consequently the
research question posed in this thesis will be as follows: In what ways can noise statistics be estimated from
noisy speech signals provided that clean speech signals are known?
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Figure 1.3: Block diagram of the situation, in which s(n) is the clean speech signal and h(n) represents the room transfer function.
Additionally, z(n) represents the altered speech signal and combined with the noise signal n(n) they form the received microphone

signal d(n). Source:[6].

1.4. State-of-the-art Analysis
1.4.1. Spectral Subtraction
One of the possible ways to estimate the noise is the way that it is done in spectral subtraction [7]. Spectral
subtraction is one of the oldest simplest algorithm to enhance speech recorded in a noisy environment. In
this method, the estimated noise is subtracted from the received signal, leaving only the transmitted signal.
The noise is estimated during speech pauses[8]. The noise spectrum is obtained by taking the average of the
consecutive frames during speech pauses:

∣∣N̂S (ω)
∣∣2 = 1

M

M−1∑
j=0

∣∣∣NSP j (ω)
∣∣∣2

. (1.1)

In this equation, M is the total number of frames during speech pauses,
∣∣N̂S (ω)

∣∣2
is the estimated noise power

during a speech frame and
∣∣∣NSP j (ω)

∣∣∣2
is the noise power during a speech pause frame. The problem with this

method is that it assumes that the noise is uncorrelated and stationary. However, in this case noise changes
over time. Another problem is that it requires a sufficient amount of non-speech parts. Finding out when
there is a pause in a noisy speech signal might be a challenge. However, in this case the clean speech signal is
known beforehand, which means this can be done rather trivially by looking at the clean speech power.

1.4.2. Generalized sidelobe canceller (GSC)
The concept of GSC is based on beam forming. This in contrary to the above spectral subtraction method that
has been posed for single channel estimations or single microphone setups. In [9] a so-called Griffiths-Jim
beamformer or GSC approach is described for acoustic feedback and noise cancellation.

While both feedback and noise cancellation are not relevant to our design requirements, a similar approach
can be used to determine the noise PSD and noise signal. In Figure 1.4 it can be seen that by determining a
blocking filter B that has a zero in the direction of speech signal v(k), an uncorrelated signal to v(k), u(k) is
obtained. Filter M removes signals coming form another direction than v(k). As noise might be generated
from several locations (including the direction of v(k)), changes are that there is still noise present in d(k). A
correlation filter f(k) will be used to remove all correlated signals with u(k) from d(k) and add them to u(k)
(noise in d(k) should also belong to noise signal u(k)).

In theory SNR values and noise PSD could be calculated from the resulting signals. However this is all pro-
vided that there is no signal leakage through B, meaning that u(k) has to be uncorrelated from v(k). This
means that GSC works better in a space where there is little reflections form the speech signal to prevent cor-
related noise. In [10] an approach is proposed to determine the Direct-to-Reverberant ratio, which can be
used to specify whether a room is suitable for GSC. Another disadvantage is the fact that the direction and
location of the speech has to be known for determining B and M. Also, in a different acoustical setting, B and
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M will have to be adjusted. A solution to that problem might be adaptive beam forming, as it adjusts the di-
rection path according to changes in the acoustical setting for performance enhancement[11]. Also, a setup
like this requires a certain distance between microphones and loudspeaker in order to perform cancellation.
Advantages are obviously noise estimation based on the location of the speech and noise signals. This in
contrast with single channel setups that can only determine noise by spectral information[9].

Figure 1.4: A Griffiths–Jim beamformer. Noise signal u(k) does not contain a component correlated with the speech signal v(k), and
hence forms a noise reference. Source:[9].

1.4.3. Adaptive Filtering
Adaptive filtering is a technique used in many audio and image processing techniques due to its simplicity
and robustness. Examples of such applications are adaptive noise cancellation (ANC), acoustic echo cancel-
lation (AEC), equalization of communications channels or bio-medical signal enhancement [12]. A special
class of adaptive filters, that are based on the minimization of the mean squared error (MSE), are particularly
popular due to their robustness and ease of implementation. Additionally, computational cost is reduced [6].

By definition, adaptive filters adjust their filter coefficients based on variable parameters. This makes them
able to adapt to changing circumstances, which means they can track changes in both signal statistics and
involved environments. Therefore, adaptive filtering is ideal for non-stationary noise and environments with
changing RIR’s [13]. Furthermore, this type of filters does not require the whole sequence of a signal to be
known beforehand. It bases its necessary computations on previously acquired samples and adapts when
newer samples arrive. This procedure makes it well suited for real time time-varying applications.

Compared to the previously discussed spatial methods like a GNC, adaptive filtering lacks the necessity of
having the location of the noise and speech sources known beforehand. This makes adaptive filtering supe-
rior in terms of location-varying systems. In other words situations in which the location of noise sources
varies over time. Examples of these sources could be people walking by or arriving trains. Furthermore, only
one microphone is required at minimum, whereas the spatial methods require at least an array of micro-
phones in order to perform signal processing. Also a GNC does not use the available information on the
clean speech signal, only it’s location.

However, also adaptive filtering has its limitations. Adaptive filtering is an iterative method and uses a step
size which controls the adaptation of the filter coefficients. The step size and the length of the filter deter-
mine the stability and convergence of the filters. Therefore, the step size influences the time it takes before
the filter coefficients change into the desired values (i.e. convergence speed). Secondly, once they reached
the desired values, fluctuations around the desired values are still present by means of new samples being
processed. Both the convergence speed and subsequent deviation from the desired values, are quantitative
ways to measure performance of the filter. Both are heavily influenced by a chosen step size. These measures
will be extensively explained in Chapter 3. For real time applications it is important to have fast convergence
speeds[13]. However fast convergence might come at cost of bigger deviations form the desired coefficients.
Therefore one can not improve on convergence speed, without increasing subsequent fluctuations from the
desired values. Several methods can be used in order to chose a step size. One can derive a step size by ei-
ther trail and error [14] or by basing it on certain criteria [15]. Furthermore a variable step size can be used
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[14, 16]. Additionally, length of a filter influences convergence. It should be chosen long enough, so there will
be convergence. However longer filters, will slow down the convergence speed and will add extra echos due
to the mismatch of the extra coefficients. Therefore research in choosing the filter length has to be conducted
for adaptive filtering. [17, 18].





2
Programme of requirements

Requirements have to be met in order to make a successful design. Therefore this chapter lists the overall
requirements for the Intelligibility-Enhancing Automatic Volume Control system, as seen in Figure 1.2. Fur-
thermore, additional requirements, only relevant to this thesis, will be listed. Both sets of requirements are
used in the last paragraph of this chapter in which a suitable method is chosen from the ones proposed in
section 1.4.

2.1. Intelligibility-Enhancing Automatic Volume Control system
In specifying the requirements, some assumptions were made regarding the noise conditions and the existing
hardware in the near-end environment. These assumptions can be found below.

Assumptions
1. The near-end noise is uncorrelated with the speech signal.

• This is a reasonable assumption when near-end noise is defined as a signal that consists of con-
tributions of all noise sources except the loudspeaker.

2. The input of the existing power amplifier has a standardized line level of maximally 0.447 V [19].

• Typical value for consumer applications.

3. The gain of the existing power amplifier is equal to 25.

• A set gain of the existing system is needed, to determine how much the system needs to amplify
the signal in order to reach a certain output level at the speaker.

4. The output level of the existing power amplifier is less than 100 dBA.

• From [20], the maximum permissible occupational noise exposure for 2 hours is 100 dBA. As-
suming that PA system employees work for 8 hours per day, this means the PA system can make
announcements for 25% of the time.

5. The input signal is pre-recorded and noise-free.

• This is typical for announcements, music and audio-books.

Mandatory Requirements
The mandatory requirements need to be met in order for the overall system to be considered successful.
A subdivision is made between functional and non-functional requirements, which represent requirements
describing what the system has to do and requirements describing the quality of the system respectively.

7



8 2. Programme of requirements

1. Functional Requirements

(a) The system must improve intelligibility such that the word recognition rate is at least 90 % in the
presence of near-end noise.

(b) The system must be able to suppress near-end noise in the frequency band from 0 Hz to 500 Hz.

(c) The system must be able to process speech in the frequency band from 0 Hz to 8 kHz.

(d) The system must be able to play audio in the frequency band from 20 Hz to 20 kHz.

(e) The system must be able to process pre-recorded speech in advance (pre-processing).

2. Non-Functional Requirements

(a) The system must operate in SNRs below 15 dB.

(b) The system must not damage hearing.

(c) The system must not add more than 3dBA noise to the enhanced speech signal.

(d) The system must have a maximum pre-processing delay of 5 times the duration of the input signal
with a maximum of 20 minutes.

(e) The system must have a maximum latency of 100 ms without pre-processing.

(f) The system must not record near-end noise when the system is not broadcasting any audio.

(g) The system must not store recorded near-end noise longer than the system latency.

Trade-Off Requirements
The trade-off requirements are not necessary to be met, however, if the they are met, the end-users become
increasingly satisfied.

1. The system should be plug-and-play.

2. The system should work on a 12 V-input.

3. The system must not add more than 1 dBA noise to the enhanced speech signal.

4. The sound coming out of the system should sound natural according to listening tests.

5. The combined price of all the individual components should not exceed 100 euro.

2.2. Noise Statistics Estimation subsystem
Not all of the requirements and assumptions made in section 2.1 are relevant when looking at the noise es-
timation subsystem. Moreover, there are also some additional requirements specific to this subsystem that
were not mentioned previously. The assumptions and requirements regarding the noise statistics subsystem
can be found below.

Assumptions
1. The near-end noise is uncorrelated from the clean speech signal

2. The near-end noise is non-stationary

3. The clean speech transmitted signal is available as an input to the subsystem.

4. The microphone and loudspeaker are a distance of 10 cm apart in height.

• This is assumed, as if the noise estimation subsystem were to be implemented in the PA system
close to the loudspeaker and not as a separate system. This way existing cabling and power of PA
systems available close to the loudspeakers can be reused.

5. The room in which the PA system is situated, has dimensions [length, width, height]=[20 19 21]

• As an example, Rotterdam Central Station has a central hall with height=30m and a passenger
platform roof at height = 15m [21]. As the ratio between the two areas inside Rotterdam CS is
about 1/2, a height of 21m is a good approximation of a typical space inside a station.

• It is assumed that the loudspeaker in this theoretical situation can fully cover this area
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Mandatory Requirements
The mandatory requirements need to be met in order for the noise statistics estimation subsystem to be
considered successful. Again a subdivision is made between functional and non-functional requirements.

1. Functional Requirements

(a) The subsystem must be able to process speech in the frequency band from 0Hz to 8kHz

(b) The subsystem must be able to estimate the noise statistics from the incoming data samples

(c) The algorithms must converge.

2. Non-Functional Requirements

(a) The subsystem must be able to estimate the noise with incoming data samples from the micro-
phone having SNRs below +15dB according to [4].

(b) The subsystem must have a maximum latency of 20 ms

• To be considered real time [22]

(c) The subsystem must not record near-end noise when the system is not broadcasting any audio

(d) The subsystem must not store recorded near-end noise longer than the system latency

Trade-Off Requirements
The trade-off requirements are not necessary to be met, however, if the they are met, the end-users become
increasingly satisfied.

1. The subsystem should use algorithms with low computational complexity.

2. The algorithms should converge within one frame of 20 ms

2.3. Proposed Method
Based on the program of requirements, a most suitable method has to be chosen form the ones discussed
in section 1.4. The first method, spectral subtraction, requires uncorrelated stationary noise. Noise in our
system is uncorrelated, as mentioned in item 1. However, as mentioned in item 2, the noise is not stationary,
which makes this not a viable method. The second method is the generalized sidelobe canceller. This method
requires a certain distance between a microphone and loudspeaker. According to item 4, the microphone and
loudspeaker are only 10 centimeters apart. This makes the GSC not a good solution. The last posed method is
adaptive filtering. Adaptive filtering works with non-stationary noise and has no requirement for the distance
between the microphone and loudspeaker, contrary to both the GSC and spectral substraction. Additionally,
adaptive filtering has low computational cost, which satisfies item 1 and makes it easier to satisfy item 2b.
Hence, this thesis poses adaptive filtering to be deemed suitable considering this program of requirements.





3
Adaptive Filters

3.1. Adaptive Noise Canceller
The aim of this project is to recover the noise signal present in a room. In Figure 1.3 n(n) represents this noise
signal. In order to retrieve this signal, it has to be estimated from d(n). Theoretically, this could be achieved
by subtracting s(n) convoluted with h(n) from the recorded signal d(n). However, h(n) is unknown. The con-
cept of adaptive noise cancelling, which closely relates to this problem, is described in [23]. The word ’noise’
in this chapter should be interpreted as the undesired signal, which is in our case the speech signal present
in d(n). The noise n(n) however, is the desired signal. Adaptive noise cancelling tries to retrieve this desired
signal.

The adaptive noise canceler (ANC) uses an adaptive filter to estimate the RIR. A diagram of the ANC is shown
in Figure 3.1. In this diagram w(n) are the adaptive filter coefficients. Together they form an estimation of the
RIR h(n). The speech signal s(n) convoluted with w(n) is y(n). It is an estimation of the speech correlated part
in d(n). By subtracting y(n) from d(n), an error signal e(n) remains. Based on this signal the filter coefficients
will be adjusted to minimize the error signal. When the error is minimized, it represents an estimation of the
uncorrelated noise signal n(n). This will be extensively discussed in upcoming paragraphs.

Figure 3.1: A Block diagram of Adaptive Noise Canceller. Herein, w(n) are the adaptive filter coefficients. Together they form an
estimation of the RIR h(n). The speech signal s(n) convoluted with w(n) is y(n), which is an estimation of the speech correlated part in

d(n). By subtracting y(n) from d(n), an error signal e(n) remains. Source:[6].

11
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3.2. Finite Impulse Response Wiener Filters
As previously introduced, certain adaptive filters modify their coefficients based on the minimization of the
MSE. These filters are so-called Wiener filters. Usually, such filters are implemented using a recursive algo-
rithm [14]. Herein filter coefficients are adjusted after each iteration to perform in real time applications. The
recursive implemented Wiener filter will be a finite impulse response (FIR) filter. FIR filters have advantages
over infinite impulse response (IIR) designs. First of all, FIR filters are chosen for their implementation sim-
plicity. Moreover, they are guaranteed to be bounded input - bounded output (BIBO) stable, which improves
control over stability of the filter [14, 24]. In case that the filter tabs are symmetrical around the center, the
filter will have a linear phase. This means that it has a constant group delay, which is especially desirable for
audio signals as every sample is delayed in the same way [24]. Finally, a FIR filter has lower quantization error
sensitivity than IIR [24]. This is desirable, as a digital filter will be implemented.

By considering the adaptive filter as a FIR filter, the output y(n) can be described by Equation 3.1. Here
wT is the transposed vector of filter coefficients w . The amount of filter coefficients is expressed by M . Each
iteration, the filter will process M samples of s(n) . In Figure 3.2, this equation is visualized. Herein it is clearly
visible that filter coefficients w are weights in which previous samples of s(n) form the current estimated
speech sample y(n).

y(n) =
M∑

k=0
w(k)s(n −k) = wT s(n). (3.1)

Figure 3.2: An illustration of the adaptive filter. z−1 denote delay elements.

The goal of a Wiener filter is to adjust w(n) in such a way that y(n) is as closely related to d(n) as possible. It
does this by finding the filter coefficients of w that minimize the MSE. Therefore, y(n) has to be subtracted
from d(n) to estimate the error signal e(n), as can be seen in Figure 3.1. The error signal can be expressed as
follows:

e(n) = d(n)− y(n) = d(n)−wT s(n). (3.2)

and the subsequent mean-squared error as:

ξ(n) = E
[
e2(n)

]
. (3.3)

In this equation, E [·] stand for the expected value. When the MSE is minimized, the resulting error signal will
be a good estimate of the noise signal. This can be proven by rewriting Equation 3.3 in the following way:
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ξ(n) = E
[
(d(n)− y(n))2]

= E
[
(z(n)+n(n)− y(n))2]

= E
[
n2(n)

]+E
[
(z(n)− y(n))2]−2E

[
n(n)(z(n)− y(n))

]
= E

[
n2(n)

]+E
[
(z(n)− y(n))2] .

(3.4)

By the assumption that the noise and the speech signal are uncorrelated, the cross-correlation term 2E
[
n(n)(z(n)− y(n))

]
from Equation 3.4 vanishes. That means that minimizing the MSE is achieved by minimizing E

[
z(n)− y(n)2

]
as E

[
n2(n)

]
is unchangeable . Thus, the MSE is minimized when y(n) is equal to z(n) and hence the resulting

error signal is equal to the noise.

In order minimize the error, the filter coefficients need to be found that minimize the MSE. These can be
found by taking the partial derivative of ξ(n) with respect to w(n) and setting it equal to zero [14]. The MSE
can be written as:

ξ(n) = E
[
(d(n)− y(n))2]

= E
[
d 2(n)

]+E
[

y2(n)
]−2E

[
d(n)y(n)

]
= E

[
d 2(n)

]+E

[(
M∑

k=0
w(k)s(n −k)

)2]
−2E

[
d(n)

M∑
k=0

w(k)s(n −k)

]
.

(3.5)

The derivative of Equation 3.5 can be described by Equation 3.6.

∂

∂w(n)
ξ(n) = ∂

∂w(n)

(
E

[
d 2(n)

]+E

[(
M∑

k=0
w(k)s(n −k)

)2]
−2E

[
d(n)

M∑
k=0

w(k)s(n −k)

])

= 2
M∑

l=0
E [s(n − l )s(n −k)] w(l )−2E [s(n −k)d(n)]

= 2
M∑

l=0
Rs (l −k)w(l )−2Rsd (k) k = 0, . . . , M .

(3.6)

In Equation 3.6, Rs (m) is the auto-correlation of the clean speech, as described in Equation 3.7. Rsd is the
cross correlation of the speech and the received signal, as described in Equation 3.8.

Rs (n) = E [s(n)s(n +m)] . (3.7)

Rsd (n) = E [s(n)d(n +m)] . (3.8)

Setting Equation 3.6 equal to zero results in

M∑
l=0

Rs (l −k)w(l ) = Rsd (k) k = 0, . . . , M . (3.9)

Equation 3.9 is written in matrix form in Equation 3.10[25]. The auto-correlation Rs can be written as a
Toeplitz matrix since for real signals the auto-correlation is symmetric. The filter coefficients can be deter-
mined using Equation 3.11. In this equation, T −1 is the inverse of the auto-correlation matrix of Rs .

Rs (0) Rs (1) . . . Rs (N )
Rs (1) Rs (0) . . . Rs (N −1)

...
...

. . .
...

Rs (M) Rs (M −1) . . . Rs (0)


︸ ︷︷ ︸

T


w(0)
w(1)

...
w(M)


︸ ︷︷ ︸

W

=


Rsd (0)
Rsd (1)

...
Rsd (M)


︸ ︷︷ ︸

v

(3.10)
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W = T −1v. (3.11)

This method however would require the whole signal to be available beforehand, which would prevent esti-
mating the noise in real time. For this reason, an iterative method will be used, which does not require the
whole signal at once.

3.3. The method of steepest descent
Such a procedure is the steepest decent method. In a iterative way, it tries to estimate the filter coefficients
that minimize the MSE. The method starts at the first iteration by taking an initial guess of the filter coeffi-
cients. The estimate of the coefficients for the next iteration are formed by adding a correction to the current
estimate, which should bring it closer to the desired state. The correction should be in the direction of the
maximum descent of the quadratic error. The direction of the steepest descent points in the negative gradient
direction [14]. The updated filter coefficient will be

w(n +1) = w(n)−µ∇ξ(n). (3.12)

Whereµ is the step size, which is a positive constant that affects the rate with which the coefficients change. µ
determines the rate of the convergence of the filter to the desired state. In Figure 3.3 can be seen what would
happen if a small or too big of a value is chosen for µ. If µ is large, the coefficients are changed fast and the
convergence will be fast, but the coefficients will not stay very stable. If µ is too large however,there will be
no convergence at all. A small value for µ makes the convergence rate slow, but once it is converged, it will
stay stable. This is also shown for real signals in chapter 4. According to [14], for jointly wide-sense stationary
processes, d(n) and s(n), the filter coefficients will converge if Equation 3.13 is satisfied. In this equationλmax

is maximum eigenvalue of the auto-correlation matrix of s(n).

Figure 3.3: Examples of adaption with different step sizes µ.

0 <µ< 2

λmax
. (3.13)

The gradient of the MSE is the partial derivative with respect to w . The gradient of the MSE is
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∇ξ(n) = ∂E
[
e2(n)

]
∂w

= 2E

[
e(n)

∂e(n)

∂w

]
= 2E

[
e(n)

∂d(n)−wT s(n)

∂w

]
=−2E [e(n)s(n)]

(3.14)

Combining Equation 3.14 and 3.12 results in Equation 3.15 for determining the new filter coefficients. The
factor 2 is combined with µ since µ is a constant anyway.

w(n +1) = w(n)+µE [e(n)s(n)] . (3.15)

Using Equation 3.15 to update the filter coefficients solves the problem of not needing the complete audio
sequence. This method is still not suitable for the purpose of this thesis however, since this method requires
E [e(n)s(n)] to be known. This problem is solved by using the least mean squares (LMS) algorithm.

3.4. LMS Algorithm
The LMS algorithm uses a estimate of the expectation E [e(n)s(n)] to update the filter coefficients[14]. The
expectation is replaced with the sample mean

Ê [e(n)s(n)] = 1

L

L−1∑
l=0

e(n − l )s(n − l ). (3.16)

Combining Equation 3.16 and 3.15 results in

w(n +1) = w(n)+µ 1

L

L−1∑
l=0

e(n − l )s(n − l ). (3.17)

When a one-point sample mean (L = 1) is use, Equation 3.17 can be written as

w(n +1) = w(n)+µe(n)s(n). (3.18)

The filter coefficients are adapted each iteration and the rate at which this is done depends on the step size µ.
From Equation 3.18 can be seen why the LMS is considered to have low complexity. Updating each coefficient
only takes one multiplication and one addition.

3.5. Normalized LMS
A step size has to be chosen for µ in Equation 3.18. For choosing the step size, a compromise has to be made
between having fast convergence and having good stability. Using a variable step size will allow the filter to
have a faster convergence while still keeping a good stability. This is because a big step size is used when the
filter coefficients are far from the desired values and a small step size is used when they are close.

The maximum eigenvalue in Equation 3.13 can be replaced by the trace of the auto-correlation of s(n) since

λmax ≤
p∑

k=0
λk = tr (Rs ). (3.19)

where Rs is the auto-correlation of s(n). If s(n) is wide-sense stationary, then Rs is the Toeplitz matrix and the
trace becomes

tr (Rs ) = (p +1)rx (0) = (p +1)E
[|s(n)|2] [14]. (3.20)

The resulting boundary condition for the step size becomes
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0 <µ< 2

(p +1)E
[|s(n)|2] . (3.21)

E
[|s(n)|2] is the power of the (current iteration of) signal and can be estimated by Equation 3.22. In this

equation sH (n) is the Hermitian transpose of s(n).

Ê
[|s(n)|2]= 1

p +1

p∑
k=0

|s(n −k)|2 = sH (n)s(n)

p +1
= ‖s(n))‖2

p +1
. (3.22)

Combining Equation 3.22 and 3.21 gives us the following requirement for the step size

0 <µ< 2

‖s(n))‖2 . (3.23)

Choosing the step size

µ= β

‖s(n))‖2 . (3.24)

where β is between zero and two. Choosing the step size of Equation 3.24 for the update scheme of Equa-
tion 3.18 gives us Equation 3.25 which is also called the normalized least mean squares (NLMS) algorithm.

w(n +1) = w(n)+β s(n)

‖s(n))‖2 e(n). (3.25)

One problem with Equation 3.25 is that there will be gradient noise amplification when ‖s(n))‖2 becomes too
small. For this reason, an additional term ε is added in the denominator to prevent is from getting too small.
The ε should be a small positive number. The resulting algorithm is Equation 3.26 in which β can be seen as
an initial guess for the step size.

w(n +1) = w(n)+β s(n)

ε+‖s(n))‖2 e(n). (3.26)

3.6. Speech pause estimation
At times, distorting signal z(n) might be silent. During these pauses, all signals present in the received signal
d(n) are considered as noise. Looking at ANC (Figure 3.1) , the LMS algorithms will adapt to this lack of dis-
torting signal and alter the coefficients unnecessarily. When the pause ends and signal z(n) is present again ,
the coefficients have to adapt back to the previous state before the pause. Therefore, signal pauses could be
detected to prevent unnecessary adaptation of the coefficients. It is also not necessary to predict the noise
signal, while the noise signal is actually present at the microphone in the form of d(n). Naturally, it is desir-
able to take the real noise signal instead of an estimate.

When a clean speech signal is considered as distorting signal z(n), speech pauses can easily be detected
by setting a threshold for the signal power. Powers below this threshold can be considered as pauses. In
Figure 3.4, an example of this approach is plotted, in which the speech pauses are marked by a red line.

Figure 3.4: An example of speech pause estimation. The red lines represent speech pauses during a clean speech signal, given in blue.



4
Results

In this chapter the results of the performance of the LMS and NLMS algorithms in a simulated MATLAB envi-
ronment are demonstrated. Firstly the selected performance measures will be discussed in order to quantify
the performance. Secondly, a paragraph will be dedicated to the determination of the parameters regarding
the LMS algorithms. Thirdly, the performance will be tested in a Monte Carlo simulation. Also, an example
will be demonstrated of the algorithm retrieving a slowly varying noise signal from a noisy speech signal.
Lastly, performance with different NSR’s and computational complexity with different filter lengths are given.

4.1. Simulation set-up
The simulated environment is supposed to recreate Figure 1.3 in a MATLAB environment. The speech and
noise signals were downloaded from [26]. A clean speech sample without noise and a non-stationary noise
sample were used. This noise sample was selected, because it has varying noise with increasing variation
over time. Therefore, it is possible to test the algorithm against different changing speeds of the noise, in
other words lower and faster changes. The RIR was created using the Matlab script in subsection A.3.1. In
[27] is explained how this script works. A 20x19x21 meter room with the speaker position at (19,18,19.5) and
the microphone at (19,18,19.4).

4.2. Performance metrics
In order to measure performance, certain properties of the results have to be quantified using performance
metrics. The noise-to-signal ratio (NSR) is the most obvious performance metric, since the goal is to reduce
the speech signal as much as possible in order to obtain the estimated noise. The NSR can be calculated by
Equation 4.1. A high NSR would mean that the estimated noise is close to the actual noise. This performance
metric however only works for simulated signals, as it is required to know the clean noise signal.

N SRdB = 10log10
|n(n)|2

|n(n)−e(n)|2 . (4.1)

Another performance measure is the convergence speed of the filter. In other words the time it takes for the
filter coefficients to reach the desired values. It results in the error signal being an estimate of the noise signal.
When the error signal is close to the noise signal, the algorithm has so-called converged. This way it is pos-
sible to quantify the number of iterations after which the difference between the signals is within a certain
small range. Hence, the algorithm has converged.

Stability is a performance measure that is closely related to the convergence speed, since increasing the sta-
bility leads to a slower convergence speed and vice versa. The stability tells us how close to the desired values
the estimated filter coefficients will stay after convergence. The stability can be expressed by looking at the
Deviation (D) of the estimated squared error and the squared real noise after convergence (4.2).

D = ∥∥n2(n)−e2(n)
∥∥ . (4.2)

17
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The complexity of the algorithm can be measured in terms of processing time. The algorithm was imple-
mented in Matlab however, so this time should be considered as a rough estimate and is only meant as a
indication.

Finally the last performance measure is a subjective informal one. This would be a listening test. The perfor-
mance of the filters will be judged based on how much of the original speech is still heard. Also a comparison
between the clean noise signal and the estimated noise signal will be done in which the estimated noise signal
should resemble the actual noise.

4.3. Parameters
In order to meet the design requirements, a trade-off should be made between convergence speed and sta-
bility. Determining factors in this case are filter length and step size. It is desirable to have a minimal mean
squared error as discussed in section 3.2. Thus a minimal MSE should be found within a range of filter lengths
and step sizes.

As test signal, a 36-seconds clean speech signal is used. This time length is chosen considering that a typical
announcement in a PA system is in the order of several tens of seconds. A non-stationary noise is chosen as
distorting factor during the total clean speech signal. Also, an input NSR of -6 dB is selected. The calculation
of the MSE will be based on the total noisy signal of 36-seconds. In a real-time setup, this signal will be re-
ceived in segments of 20ms (320 samples) from the intelligibility subsystem. Therefore, 1805 frames of each
320 samples will form the full 36-seconds signal.

By reason of the real time processing constraint, filter lengths larger than 320 could be undesirable, since
each segment is only 320 samples. As most of the speech signals transmitted by the total system will be in
the order of several seconds, convergence within a second is desirable. Thus, very small step sizes should be
avoided. Not only for the sake of convergence speed, but also for quick adaption to changing environments
and non-stationary noise. With this in mind, the following subsections will determine step size bounds of the
LMS and NLMS algorithms

4.3.1. NLMS
Theoretically, a maximum step size of 2, would still be able to result in the convergence of the filter coeffi-
cients. By determining the minimal MSE in a figure similar to Figure 4.1, a filter length of M = 33 and a step
size of µ = 0.41 were obtained for the NLMS filter. However by listening to the results of several step sizes
with M = 33, it becomes clear that step sizes above 0.1 result in quite heavily distorted estimated noise sig-
nals. Therefore step sizes are given a upper bound of 0.1. The lower bound was chosen at 0.03. This bound is
chosen by looking at a 3d plot similar to Figure 4.1 in which it became clear that smaller step sizes had rapidly
increasing MSE. This is due to very low convergence speed, which is apparently insufficient to adapt quickly
to noise changes in the non-stationary noise signal. Therefore, step sizes lower than 0.03 were not plotted as
they have significantly larger MSEs that would ruin the visibility of differences between other step sizes. The
same was true for filter lengths shorter than 6. This might be because they are to few to give a correct estimate
of the RIR. An upper bound of 60 was chosen for the filter length as it became clear that the MSE was only
rising after that point. A filter length of M=33 and step size of µ = 0.1 results in a the smallest MSE for the
NLMS, according to Figure 4.1.

4.3.2. LMS
A similar approach has been performed for LMS. The minimal MSE can be found in Figure 4.2. It was found
at a filter length of M = 93 and a step size of 0.291. By listening to the results of several step sizes with different
filter lengths, it was concluded that the maximum step size in which the signal was not heavily distorted
was at 0.3. This upper bound is selected at M = 93, with the same reason as in subsection 4.3.1. Namely,
disturbance and stability issues. Also a lower bound of 0.012 was chosen due to rapidly increasing MSE.
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Figure 4.1: A 3D-plot of the MSE using a Normalized LMS filter. The x-axis represents step size µ, the y-axis represents filter length M
and the z-axis represent the MSE. The MSE is presented when 577600 samples are processed.

Figure 4.2: A 3D-plot of the MSE using a Traditional LMS filter. The x-axis represents step size µ, the y-axis represents filter length M and
the z-axis represent the MSE. The MSE is presented when 577600 samples are processed.



20 4. Results

4.4. Monte Carlo results
In this section, the outcome of a Monte Carlo simulation is considered. This gives insight in the average per-
formance of the algorithms during different signal frames. Again the same non-stationary noise sample was
selected to be added to a clean speech signal. The NSR is also set to -6 dB. To compare the two algorithms,
filter coefficients are set to M = 33 and step size to µ= 0.1, since these are the optimal variables for the NLMS.
Furthermore, the initial Wiener filter coefficients will be set to zero. The total signal was divided into pieces
of each 20 ms long, which is the same length as how the noise estimation subsystem will receive the intelligi-
bility enhanced speech signal. Therefore it make sense to evaluate a similar length with a Monte Carlo (MC)
simulation. In total k = 1805 different MC frames are available. Results of this simulation can be found in Fig-
ure 4.3. Using the optimal variables for the LMS result in similar differences and can be seen in the appendix
in Figure B.1. In the upper plot it is seen that the normalized LMS algorithm has converged between itera-
tion 175 and 200 iterations. In other words, it converged approximately after 13 ms. On the other hand, the
traditional LMS algorithm has not converged within a single frame of 20 ms. From the lower plot one might
be concluded that the traditional LMS is more stable than the normalized LMS looking at sheer fluctuations.
However, in this case only the normalized LMS has converged and the traditional LMS has not. Thus, after a
single 20ms frame no conclusions can be conducted regarding the stability. However when larger frames are
considered, in which the LMS also converges, both algorithms will perform similarly. This is due to the fact
that only a small amount of samples is considered and a Monte Carlo simulation is used that averages several
different noise frames. Hence, the noise can be considered stationary. This means that once converged, the
algorithms perform in a steady state. Therefore, the algorithms would display comparable performance as
they both approximate the same Wiener filter and have the same step size.

Figure 4.3: A Monte Carlo simulation of the normalized and traditional LMS filter with parameters µ= 0.1 and M = 33. The upper graph
plots the squared error against iterations of the algorithm. The lower graph plots the deviation of the error signal from the real noise

signal, against iterations.

To compare the LMS and NLMS in frames of 20ms, both should converge with a filter length of M = 33. In
order for the NLMS algorithm to converge, the step size should be bigger than 0.06. For the LMS algorithm, it
should have a step size bigger than 0.39.

Now, a larger frame that does converge will be considered for the LMS. In Figure 4.4 a plot is shown, in which
the LMS and NLMS have approximately the same convergence speed. The NLMS still has parameters µ= 0.1
and M = 33, however the LMS has a step sizeµ= 0.72 and M = 33. This shows clearly that the NLMS algorithm
needs a smaller step size compared to the LMS in order to have the same convergence time.
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Figure 4.4: A Monte Carlo simulation of the normalized LMS with µ= 0.1 and M = 33 and traditional LMS filter µ= 0.72 and M = 33. The
upper graph plots the squared error against iterations of the algorithm. The lower graph plots the deviation of the error signal from the

real noise signal, against iterations.

4.5. Performance of the NLMS filter
This section focuses on determining performance when a 36-seconds announcement is made. Again a non-
stationary noise is chosen as distorting factor. Also, a input NSR of -6 dB is selected. The total signal is again
divided in frames of 20ms in order to simulate as if the frames would come in real-time from the intelligibility
enhancement subsystem. Naturally, the filter coefficients will not be set to zero every frame as was done in
the Monte Carlo simulation. In this case the filter coefficients and step size of the previous frame will be used
as initial values of the new frame. Essentially as if frames are non-existent.

In Figure 4.5 the actual distorting noise signal is compared to the estimated noise signal during 36 seconds.
Now, it can be seen that the slowly-varying noise signal is an amplitude varying noise with a changing rate
that increases over time.

Figure 4.5: In the upper plot, the squared error against iterations of the normalized LMS filter with parameters µ= 0.1 and M = 33.

Moreover, noise power spectral density (PSD) plots of both the estimated and real noise show that the esti-
mated noise resembles the actual noise with the exception of some frequency components, that are estimated
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to high. These are due to a parts the speech signal that are still slightly present in the estimated noise signal.
In Figure 4.6 a comparison between both noise spectra can be found.

Figure 4.6: PSD of the real (left) and estimated (right) noise using the normalized LMS filter with parameters µ= 0.1 and M = 33. Below
both plots against each other.

4.6. Input and Output NSR
In previous sections a noise-to-signal ratio of -6 dB was considered. In this section the focus will be on the
performance of the NLMS with different NSR. In Figure 4.7 one can see the received NSR from the micro-
phone plotted against the output NSR which will be made available for the other subgroups. In this plot a
step size of µ = 0.1 and a filter length of M = 33 is used. It can be seen that the output NSR hardly changes,
when the input NSR is higher than 6.2 dB.

Figure 4.7: Input NSR versus output NSR using the Normalized LMS algorithm.
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4.7. Complexity
The goal is to deliver the estimated noise to the other subgroup in real time. Therefore, the time between
receiving the recorded signal and sending the estimated noise should be faster than 20 ms [22]. This means
that processing each segment of 320 samples must not take longer than 20 ms. The time to process depends
on the filter length, since longer filter lengths require less iterations. The average time it takes to process 320
samples for different filter lengths is plotted in Figure 4.8.

Figure 4.8: A plot of the time it takes in MATLAB to process 320 samples on the y-axis. The x-axis denotes the filter length M used with
the Normalized LMS filter to process the samples.





5
Discussion

This chapter focuses on pointing out the findings of this work. First, some observations of the results are
being discussed. Furthermore, the performance of the NLMS algorithm is validated against the program of
requirements.

5.1. Observations Of The Results
By looking at the NLMS 3D plot of the MSE, various combinations of step sizes and filter lengths are expressed
in terms of MSE. It was found that a filter length of M = 33 coefficients and a step size of 0.41 resulted in the
smallest MSE. This suggests that with these parameters the error signal most accurately approximates the
real noise signal. However, when a listening test was performed, it was quite noticeable that the error for step
sizes larger than 0.1 included a heavily distorted version of the speech. Therefore, the 3D plot was truncated
to a maximum step size of µ= 0.1. According to the truncated plot, a filter length of 33 coefficients and a step
size of 0.1 results in the most accurate approximation of the noise. The same procedure was followed for the
traditional LMS and the optimal parameters were found as µ= 0.291 and M = 93.

Plots of the squared error of either of the algorithms have shown that the NLMS had a faster convergence
speed and better stability. Now, one concludes that the NLMS outperforms the LMS, based on simulations
using both the optimal parameters for the NLMS aswell as the traditional LMS.

In Figure 4.5 was seen that the NLMS algorithm had an increased error for non-stationary parts of the noise.
The algorithm performed better in the stationary parts of the noise, but still performed adequately in the
non-stationary parts. By comparing the estimated noise with the real noise signal, it could be concluded that
the estimated noise resembled the real noise.

The performance of the NLMS algorithm was also determined with different noise-to-signal ratio’s. The NSR
of the input signal affects the NSR of the output signal. In figure Figure 4.7, it could be seen that output NSR’s
do not increase liniairly with the input NSR’s. Furthermore, for input NSR’s higher than 6.2 dB, the output
NSR’s are not higher. A higher threshold than 6.2 dB can be obtained by lowering the step size. Anyway,
this means that above a certain value estimation of the noise signal does not suppress the undesired signals,
or worse, even adds undesired components. Therefore, it is undesirable to estimate the noise signal in this
situation. It makes more sense to send the received microphone signal directly through instead of firstly esti-
mating the noise.

In figure Figure 4.8, it can be seen that the time it takes to process an audio segment of 20ms takes longer
when fewer filter coefficients are used. To put it into perspective, even with only one filter coefficient, it only
takes less than 1 ms. This is far below the requirement of processing within 20ms. In conclusion, when choos-
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ing the filter length, time complexity can be neglected.

Also, an informal listening test was performed for several combinations of parameters. An estimated noise
signal was acquired by a NLMS algorithm with parameters M = 33 and µ = 0.1. It seemed to resemble the
actual input noise. According to the 3d MSE plots, parameters M = 33 and µ = 0.41 should result in a better
estimation of the noise. However, this was in contradiction with the results from the listening test. Since the
MSE is an average of all iterations, the deviations of the individual iterations might still be large. But when
averaged, could compensate for each other. Therefore a small MSE might be obtained, while still having large
distortions in the estimated signal.

5.2. Validation
The system was tested with signals in the frequency band of 0-8 kHz, which were sampled at 16 kHz. Estima-
tion of the noise was performed, resulting in better output NSR’s than input NSR’s. This means that item 1a
and item 1b of the mandatory functional requirements are satisfied. Furthermore, the algorithm converges
fast enough that it can produce a good real time estimate of non-stationary noise. This means that final
mandatory function requirement, item 1c is met.

In Figure 4.7, it can be seen that the algorithm can improve the NSR for input signals larger than -15 dB.
Therefore, item 2a of the non-functional requirements is met. The non-functional requirement of item 2a
is also met, since the time to process is always below 1ms according to Figure 4.8. The algorithm does not
require any recordings in the room when no speech is transmitted. The system does not need to record any
data, since the incoming data samples are processed in real time. Therefore one could conclude that item 2c
and item 2d are met.

The trade-off requirement item 1 is met since adaptive Wiener filters have low complexity [6, 14, 28]. As a
consequence, trade-off requirement item 2 is met, which is also proven by Figure 4.8.



6
Conclusion

6.1. Outlook
Supported by the rise of computational power, development of speech intelligibility enhancement systems
has seen an increase in popularity the past decades. It is implemented more and more in phones, smart de-
vices, cars and audio systems. The problem posed in this thesis is the extraction of noise parameters in an
environment, while a PA system makes announcements. These parameters are the building blocks for two
adaptations in an environment: intelligibility enhancement and automatic volume control.

In order to create a simulation environment for testing, a clean speech signal and a non-stationary noise sig-
nal was selected. Furthermore a room impulse response was selected, along with locations of the loudspeaker
and microphone. Now, methods to retrieve the noise signal from a transmitted noisy speech signal had to be
investigated. As was encountered in the literature, this problem could be tackled form various perspectives.
One assumption that let to the final selection, was the availability of the clean speech signal. Using this piece
of information, could lead to advantages compared to other methods. For example, being less computation-
ally expensive or lacking the need for pre-processing techniques on the microphone signal.

With this in mind, adaptive Wiener filtering was selected. In order to create a real time system, this method
had to be solved using an iterative least squares approach. Therefore, the family of LMS algorithms was stud-
ied. Herein, the MSE error had to be minimized. To obtain an estimate of the noise signal this way, an ANC
diagram was used (Figure 3.1).

Within the family of LMS algorithms, the traditional and normalized LMS algorithms were studied and com-
pared. Therefore, performance metrics had to be determined. Hereafter, the performance regarding mini-
mizing the MSE had to be assessed. Therefore parameters with different convergence and stability properties
were considered.

Additionally, Monte Carlo simulations were done to give an inside in performance with non-stationary noise
with different changing speeds. It became clear that with similar parameters the NLMS outperformed the
LMS in terms of convergence speed while maintaining similar stability properties. Furthermore, performance
was looked into during the estimation of noise in a simulated environment. Finally, limitations in terms of
NSR and complexity were considered.

In conclusion, adaptive filtering succeeds in suppressing the undesired signal, provided that the interfering
signal is available beforehand. Moreover, the NLMS outperforms the LMS in terms of convergence properties.

27
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6.2. Recommendations and Future Work
This thesis can be seen as a starting point for further research into the subject of non-stationary noise esti-
mation. Therefore the following recommendations are posed.

For improvement of efficiency, one would suggest to conduct further research on the subject of speech pause
estimation. In subsection 1.4.3 a section was dedicated to explanation of this principle. However, no perfor-
mance measures were tested on this. Hence only theoretical assumptions were made in this thesis.

In the simulated scenario, only a single non-stationary noise signal was considered to be received by the
microphone. However, several noise signals from several locations could be used to simulate several noise
sources. Also estimating using multiple microphones might increase the performance.

Additionally, multiple loudspeakers could be considered in a larger room, as that would improve the approx-
imation of a real life situation in a train station. Information on the location could be incorporated to allow
for beam forming and improvement on the clean speech reduction.

With both LMS algorithms, problems occurred in very low SNRs. In this case, different algorithms from the
LMS family could be considered. For example, the transform domain LMS (TDLMS) algorithms, which are
frequency domain realizations of the traditional LMS algorithm. These algorithms should perform more con-
sistently and with improved suppression of the undesired signals [29] [6]. Furthermore, under these condi-
tions, the TDLMS would outperform NLMS in terms of convergence speed.

Finally, a comparison between methods, that do and do not use the distorting signal to estimate the desired
signal, could be performed. Hereby, insight might be gained into the benefits (if any) of having the distorting
signal available beforehand.
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MATLAB Code

A.1. LMS algorithms
A.1.1. Traditional LMS

1 function [ y , e , W] = tlms (u , d , M, step , returnCoeffs , i n i t C o e f f s )
2 % This function i s a wiener f i l t e r which minimizes the mean−sqaure error .
3 % The f i l t e r c o e f f i c i e n t s are calculated in r e a l time using an i t e r a t i v e
4 % approach based on the method of steepest decent .
5 %
6 % %%%% Input arguments %%%%
7 % u : Input of the adaptive f i l t e r ( i n t e r f e r e r / noise /music )
8 % d : Desired signal ( microphone signal )
9 % M : F i l t e r c o e f f i c i e n t s

10 % step : Step s i z e of the algorithm
11 % returnCoeffs : Return f i l t e r c o e f f i c i e n t s of every i t e r a t i o n
12 % i n i t C o e f f s : I n i t i a l f i l t e r c o e f f i c i e n t s ( optional )
13 %
14 % %%%% Output arguments %%%
15 % y : F i l t e r e d signal u
16 % e : minimized error (= noise )
17 % W : F i l t e r c o e f f i c i e n t s of each i t e r a t i o n
18

19 switch nargin
20 case 4 % In case no i n i t i a l f i l t e r c o e f f i c i e n t s are given
21 returnCoeffs = 0 ; % Do not return f i l t e r c o e f f i c i e n t s of a l l i t e r a t i o n s
22 i n i t C o e f f s = zeros (M, 1 ) ; % Make array of zeros of length M ( i n i t i a l f i l t e r )
23 case 5
24 i n i t C o e f f s = zeros (M, 1 ) ; % Make array of zeros of length M ( i n i t i a l f i l t e r )
25 end
26

27 % I n i t i a l i z e some s t u f f
28 N = length (u)−M+1; % Number of i t e r a t i o n s
29 y = zeros (N, 1 ) ; % F i l t e r output
30 e = zeros (N, 1 ) ; % Error s ignal
31 w = i n i t C o e f f s ; % I n i t i a l f i l t e r coef fs
32 X = zeros (M,N) ; % I n i t i a l i z e X as NxM zeros matrix
33 i f returnCoeffs
34 W = zeros (N,M) ; % Matrix to hold coef fs for each i t e r a t i o n
35 else
36 W = NaN; % W i s not used
37 end
38

39 for i = 1 :N % F i l l x with the time frames and s h i f t e d one sample each time
40 X ( : , i ) = u( i :M+i −1) ;
41 end
42

43 Xk = f l i p (X) ; % Flip X to make the newest sample the highest
44 for n = 1 :N % Perform the f i l t e r i n g
45 x = Xk ( : , n) ; % Select one frame to f i l t e r
46 y (n) = dot ( x ,w) ; % Dot product of x and w
47 e (n) = d(n+M−1)−y (n) ; % Calculate the error
48 w = w + step *x ’ * e (n) ; % calculate f i l t e r
49 i f returnCoeffs
50 W(n , : ) = w; % ’ save ’ a l l f i l t e r s in W
51 end
52 end
53

54 end

29
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A.1.2. Normalized LMS

1 function [ y , e , W] = nlms (u , d , M, step , eps , returnCoeffs , i n i t C o e f f s )
2 % This function i s a wiener f i l t e r which minimizes the mean−sqaure error .
3 % The f i l t e r c o e f f i c i e n t s are calculated in r e a l time using an i t e r a t i v e
4 % approach based on the Gauss−Newton update scheme .
5 %
6 % %%%% Input arguments %%%%
7 % u : Input of the adaptive f i l t e r ( i n t e r f e r e r / noise /music )
8 % d : Desired signal ( microphone signal )
9 % M : F i l t e r c o e f f i c i e n t s

10 % step : Step s i z e of the algorithm
11 % eps : Regularization term (make i t small i f SNR i s small )
12 % returnCoeffs : Return f i l t e r c o e f f i c i e n t s of every i t e r a t i o n
13 % i n i t C o e f f s : I n i t i a l f i l t e r c o e f f i c i e n t s ( optional )
14 %
15 % %%%% Output arguments %%%
16 % y : F i l t e r e d signal u
17 % e : minimized error (= noise )
18 % W : F i l t e r c o e f f i c i e n t s of each i t e r a t i o n
19

20 switch nargin
21 case 5 % In case only 5 input arguments are given
22 returnCoeffs = 0 ; % Do not return f i l t e r c o e f f i c i e n t s of a l l i t e r a t i o n s
23 i n i t C o e f f s = zeros (M, 1 ) ; % Make array of zeros of length M ( i n i t i a l f i l t e r )
24 case 6 % In case no i n i t i a l f i l t e r c o e f f i c i e n t s are given
25 i n i t C o e f f s = zeros (M, 1 ) ; % Make array of zeros of length M ( i n i t i a l f i l t e r )
26 end
27

28 % I n i t i a l i z e some s t u f f
29 N = length (u)−M+1; % Number of i t e r a t i o n s
30 y = zeros (N, 1 ) ; % F i l t e r output
31 e = zeros (N, 1 ) ; % Error s ignal
32 w = i n i t C o e f f s ; % I n i t i a l f i l t e r coef fs
33 X = zeros (M,N) ; % I n i t i a l i z e X as NxM zeros matrix
34 i f returnCoeffs
35 W = zeros (N,M) ; % Matrix to hold coef fs for each i t e r a t i o n
36 else
37 W = NaN; % W i s not used
38 end
39

40 for i = 1 :N % F i l l x with the time frames and s h i f t e d one sample each time
41 X ( : , i ) = u( i :M+i −1) ;
42 end
43

44 Xk = f l i p (X) ; % Flip X to make the newest sample the highest
45 for n = 1 :N % Perform the f i l t e r i n g
46 x = Xk ( : , n) ; % Select one frame to f i l t e r
47 y (n) = dot ( x ,w) ; % Dot product of x and w
48 e (n) = d(n+M−1)−y (n) ; % Calculate the error
49 normFactor = 1 . / ( dot ( x , x ) +eps ) ; % Normalize the error
50 w = w + step *normFactor*x ’ * e (n) ; % calculate f i l t e r
51 i f returnCoeffs
52 W(n , : ) = w; % ’ save ’ a l l f i l t e r s in W
53 end
54 end
55

56 end

A.2. Plots
A.2.1. Frequency Plot

1 function freqPlot ( y , Fs )
2 % Function to make time and frequency plot
3 % Detailed explanation goes here
4

5 % Time Domain signal
6 t i n t = ( length ( y )−1)/Fs ; % length of speech signal in seconds
7 t = linspace ( 0 , t i n t , length ( y ) ) ;
8

9 % Frequancy domain
10 N = length ( t ) ;
11 Y = f f t s h i f t ( f f t ( y ) ) ; % Fourier Transform and s h i f t center
12 dF = Fs/N; % hertz
13 f = −Fs / 2 :dF : Fs/2−dF ; % hertz
14

15 % Plot
16 plot ( f , abs (Y) /N)
17 t i t l e ( ’ Noise PSD ’ )
18 ylabel ( ’ Magnitude ’ )%[ arb units ]
19 xlabel ( ’ Frequency [Hz] ’ )
20
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21 end

A.2.2. Time Domain Plot

1 function timeplot ( z , d , Fs )
2 % Function to make time plot
3 % Detailed explanation goes here
4

5 % Time Domain signal
6 t i n t = ( length ( z )−1)/Fs ; % length of speech signal in seconds
7 t = linspace ( 0 , t i n t , length ( z ) ) ;
8

9 % Plot
10 plot ( t , d , ’ color ’ , ’ #999999 ’ )
11 hold on
12 plot ( t , z , ’ color ’ , ’ #606060 ’ )
13 %t i t l e ( ’ Time domain spectrum ’ )
14 ylabel ( ’ Amplitude ’ )%[ arb units ]
15 xlabel ( ’Time [ s ] ’ )
16

17 end

A.2.3. Monte Carlo Plot

1 function [ time ] = monteCarloPlot ( u0 , n0 , h , eps , samp,M, step , f i l t e r , dB)
2 %This function s p l i t s the signal into pieces of ’samp’ samples and plots
3 %the squared error and MSD of the average of the estimated error . I t also
4 %return the average time i t takes matlab to f i l t e r each segment .
5

6 % Cut signal in pieces
7 N = f l o o r ( length ( u0 ) /samp) ;
8 s = zeros (N, samp) ;
9 n = zeros (N, samp) ;

10 z = zeros (N, samp) ;
11 d = zeros (N, samp) ;
12 for i = 1 :N
13 s ( i , : ) = u0 ( ( i −1) *samp+1: i *samp) ;
14 n( i , : ) = n0 ( ( i −1) *samp+1: i *samp) ;
15 temp = conv ( s ( i , : ) ,h) ;
16 z ( i , : ) = temp ( 1 :samp) ;
17 d( i , : ) = z ( i , : ) + n( i , : ) ; % Add noise
18 end
19

20 % F i l t e r
21 L = samp−M+1; % Number of i t e r a t i o n s in the f i l t e r
22 e = zeros (N, L ) ;
23 t = zeros (N, 1 ) ;
24 i n i t C o e f f s = zeros ( 1 ,M) ; % I n i t i a l f i l t e r c o e f f i c i e n t s
25 i f isequal ( f i l t e r , ’nlms ’ )
26 for i = 1 :N
27 t i c
28 [~ , e ( i , : ) , ~] = nlms ( s ( i , : ) , d( i , : ) , M, step , eps , 0 , i n i t C o e f f s ) ; % Use normalized wiener f i l t e r
29 t ( i ) = toc ;
30 end
31 e l s e i f isequal ( f i l t e r , ’ tlms ’ )
32 for i = 1 :N
33 t i c
34 [~ , e ( i , : ) , ~] = tlms ( s ( i , : ) , d( i , : ) , M, step , 0 , i n i t C o e f f s ) ; % Use t r a d i t i o n a l wiener f i l t e r
35 t ( i ) = toc ;
36 end
37 end
38 time = mean( t ) ; % Average time to process
39

40 % Plot
41 subplot ( 2 , 1 , 1 ) % plot the squared error
42 plot (mean( e . ^ 2 ) ) % MSE
43 hold on
44 plot (mean(n ( : ,M: end) . ^ 2 ) ) % Mean squared r e a l noise
45 xlabel ( ’ I t e r a t i o n ’ )
46 ylabel ( ’ Squared error ’ )
47 legend ( { ’ Obtained error ’ , ’ Noise ’ } , ’ Location ’ , ’ northeast ’ )
48

49

50 subplot ( 2 , 1 , 2 )
51 MSD = abs (mean( e . ^ 2 )−mean(n(M: end) . ^ 2 ) ) ; % Mean squared deviation of noise and error
52 i f isequal (dB, ’dB ’ )
53 MSDdB = 10* log10 (MSD) ; % Logaritmic scale
54 plot (MSDdB) ;
55 ylabel ( ’ Deviation [dB] ’ )
56 else
57 plot (MSD) ;
58 ylabel ( ’ Deviation ’ )
59 end
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60 xlabel ( ’ I t e r a t i o n ’ )
61

62 end

A.2.4. 3D Plot

1 function [ step , M] = threedMSE ( s , d , eps , f i l t e r )
2 %This function makes 3D plot of the MSE, f i l t e r length and step s i z e
3 % A 3D plot i s made of the MSE for every combination of f i l t e r length
4 % and step s i z e s in the ranges of rangeM and stepRange
5 rangeM = 60:100; % The range of f i t e r c o e f f i c i e n t s to t e s t
6 stepRange = 0 . 0 1 2 : 0 . 0 0 3 : 0 . 3 ; % The range of step s i z e s to t e s t
7 MSE = zeros ( length (rangeM) , length ( stepRange ) ) ;
8 i =0;
9

10 for M = rangeM
11 i n i t C o e f f s = zeros ( 1 ,M) ; % I n i t i a l f i l t e r c o e f f i c i e n t s
12 i = i +1;
13 j =0;
14 for step = stepRange
15 j = j +1;
16 i f isequal ( f i l t e r , ’nlms ’ )
17 [~ , e , ~] = nlms ( s , d , M, step , eps , 0 , i n i t C o e f f s ) ; % Use normalized wiener f i l t e r
18 e l s e i f isequal ( f i l t e r , ’ tlms ’ )
19 [~ , e , ~] = tlms ( s , d , M, step , 0 , i n i t C o e f f s ) ; % Use normalized wiener f i l t e r
20 end
21 MSE( i , j ) = mean( e . ^ 2 ) ;
22 end
23 end
24

25 surf ( stepRange , rangeM ,MSE)
26 xlabel ( ’ Step s i z e ’ )
27 ylabel ( ’ F i l t e r length ’ )
28 zlabel ( ’MSE’ )
29

30 [A , B] = min(MSE) ;
31 [~ , C] = min(A) ;
32 step = stepRange (C) ;
33 M = rangeM(B(C) ) ;
34 end

A.2.5. Noise PSD Plot

1 function [ ] = NoisePSDplot ( e , n , Fs )
2 %This function makes PSD plot of r e a l and estimated noise
3 %
4 subplot ( 2 , 2 , 1 )
5 f reqPlot (n , Fs ) % Real noise PSD
6 t i t l e ( ’ Real noise PSD ’ )
7 subplot ( 2 , 2 , 2 )
8 f reqPlot ( e , Fs ) % Estimated noise PSD;
9 t i t l e ( ’ Estimated noise PSD ’ )

10 subplot ( 2 , 2 , [ 3 , 4 ] )
11 f reqPlot ( e , Fs ) % Real noise PSD
12 hold on
13 f reqPlot (n , Fs ) % Estimated noise PSD;
14 t i t l e ( ’ Real and estimated noise PSD ’ )
15 legend ( { ’ Estimated noise PSD ’ , ’ Real noise PSD ’ } , ’ Location ’ , ’ southeast ’ )
16 end

A.2.6. Plot Of The Squared Error

1 function [ ] = SEplot ( e , n , dB)
2 %This function makes a plot of the squared error and the squared noise ( the
3 %t a r g e t of the squared error ) , which w i l l t e l l us something about the
4 %convergence speed . I t also plots the MSD which t e l l s us about the
5 %s t a b i l i t y .
6

7 switch nargin
8 case 2 % In case only 5 input arguments are given
9 dB = 0 ;

10 end
11

12 subplot ( 2 , 1 , 1 ) % plot the squared error
13 plot ( e . ^ 2 )
14 hold on
15 plot (n. ^ 2 )
16 xlabel ( ’ I t e r a t i o n ’ )
17 ylabel ( ’ Squared error ’ )
18 legend ( { ’ Obtained error ’ , ’ Noise ’ } , ’ Location ’ , ’ southeast ’ )
19

20 subplot ( 2 , 1 , 2 )
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21 MSD = abs ( e.^2−n ( 1 : length ( e ) ) . ^ 2 ) . ^ 2 ; % Mean squared deviation of noise and error
22 i f isequal (dB, ’dB ’ )
23 MSDdB = 10* log10 (MSD) ; % Logaritmic scale
24 plot (MSDdB) ;
25 ylabel ( ’ Deviation [dB] ’ )
26 else
27 plot (MSD) ;
28 ylabel ( ’ Deviation ’ )
29 end
30 xlabel ( ’ I t e r a t i o n ’ )
31

32 end

A.3. Other
A.3.1. Room Impulse Response

1 function [h]= r i r ( fs , mic , n , r , rm, src )
2 %RIR Room Impulse Response .
3 % [h] = RIR ( FS , MIC, N, R, RM, SRC) performs a room impulse
4 % response calculat ion by means of the mirror image method .
5 %
6 % FS = sample rate .
7 % MIC = row vector giving the x , y , z coordinates of
8 % the microphone .
9 % N = The program w i l l account for (2*N+1)^3 v i r t u a l sources

10 % R = r e f l e c t i o n c o e f f i c i e n t for the walls , in general −1<R<1.
11 % RM = row vector giving the dimensions of the room .
12 % SRC = row vector giving the x , y , z coordinates of
13 % the sound source .
14 %
15 % EXAMPLE:
16 %
17 % >> f s =44100;
18 % >>mic=[19 18 1 . 6 ] ;
19 % >>n=12;
20 % >>r = 0 . 3 ;
21 % >>rm=[20 19 2 1 ] ;
22 % >>src =[5 2 1 ] ;
23 % >>h= r i r ( fs , mic , n , r , rm, src ) ;
24 %
25 % NOTES:
26 %
27 % 1) A l l distances are in meters .
28 % 2) The output i s scaled such that the l a r g e s t value of the
29 % absolute value of the output vector i s equal to one .
30 % 3) To implement t h i s f i l t e r , you w i l l need to do a f a s t
31 % convolution . The program FCONV.m w i l l do t h i s . I t can be
32 % found on the Mathworks F i l e Exchange at
33 % www. mathworks .com/ matlabcentral / fi leexchange / . I t can also
34 % be found at http : / /www. sgm−audio .com/ research / r i r / fconv .m
35 % 4) A paper has been written on t h i s model . I t i s a v a i l a bl e at :
36 % http : / /www. sgm−audio .com/ research / r i r / r i r . html
37 %
38 %
39 %Version 3 . 4 . 2
40 %Copyright 2003 Stephen G. McGovern
41

42 %Some of the following comments are references to equations the my paper .
43

44 nn=−n : 1 : n ; % Index for the sequence
45 rms=nn+0.5−0.5*(−1) .^nn ; % Part of equations 2 ,3 ,& 4
46 srcs =(−1) . ^ (nn) ; % part of equations 2 ,3 ,& 4
47 x i =srcs * src ( 1 ) +rms*rm( 1 )−mic ( 1 ) ; % Equation 2
48 y j =srcs * src ( 2 ) +rms*rm( 2 )−mic ( 2 ) ; % Equation 3
49 zk=srcs * src ( 3 ) +rms*rm( 3 )−mic ( 3 ) ; % Equation 4
50

51 [ i , j , k]= meshgrid ( xi , yj , zk ) ; % convert vectors to 3D matrices
52 d=sqrt ( i .^2+ j .^2+k . ^ 2 ) ; % Equation 5
53 time=round ( f s *d/343) +1; % Similar to Equation 6
54

55 [ e , f , g]= meshgrid (nn, nn, nn) ; % convert vectors to 3D matrices
56 c=r . ^ ( abs ( e ) +abs ( f ) +abs ( g ) ) ; % Equation 9
57 e=c . / d ; % Equivalent to Equation 10
58

59 h= f u l l ( sparse ( time ( : ) ,1 , e ( : ) ) ) ; % Equivalent to equation 11
60 h=h/max( abs (h) ) ; % Scale output

A.3.2. Main

1 %% Clear s t u f f
2 close a l l
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3 clearvars
4 cl c
5

6 %% Set parameters
7 % %%% Audio f i l e s : %%% ( A l l Fs = 16kHz)
8 % − clean_speech
9 % − clean_speech_2

10 % − a r i t i f i c i a l _ n o n s t a t _ n o i s e
11 % − babble_noise
12 % − Speech_shaped_noise
13

14 SNR = 6 ; % Choose input SNR in dB
15 M = 33; % Choose f i l t e r length
16 step = 0 . 1 ; % Choose ( i n i t i a l ) step s i z e
17 eps = 0 . 0 0 1 ; % Regularization term
18 returnCoeffs = 1 ; % Return f i l t e r c o e f f i c i e n t s of every i t e r a t i o n ( 1 ) ( needed for plots )
19 i n i t C o e f f s = zeros ( 1 ,M) ; % I n i t i a l f i l t e r c o e f f i c i e n t s
20 samp = 320; % Length i f segments to make Monte Carlo plots
21 f i l t e r = ’nlms ’ ; % Choose which f i l t e r to use
22

23 %% Make simulated signal
24 [ s , Fs ] = audioread ( ’ AudioFiles \ clean_speech . wav ’ ) ; %load clean speech
25 [ n0 , ~ ] = audioread ( ’ AudioFiles \ a r i t i f i c i a l _ n o n s t a t _ n o i s e . wav ’ ) ; %load noise
26 %n0 = rand ( length (n0) , 1 ) ;
27 h= r i r ( Fs , [ 1 9 18 1 . 6 ] , 1 2 , 0 . 9 , [ 2 0 19 21] , [19 18 1 . 5 ] ) ; % Make an impulse response
28 z = conv ( s , h) ; % Make the convolution of s and h
29 n0(numel( z ) ) = 0 ; % Zero pad s i g n a l s to make same length
30 n0 = n0 ( 1 : length ( z ) ) ; % Truncate noise to same length as speech
31 snrat = dot ( z , z ) /dot (n0 , n0) ; % Calculate snr ( not in dB)
32 SNR2 = 10^(SNR/20) ; % Calculate SNR ( not in dB)
33 n = n0* sqrt ( snrat ) /SNR2 ; % Change noise power to create desired SNR
34 d = z + n ; % Add noise and signal
35

36 %% Run the f i l t e r function
37 i f isequal ( f i l t e r , ’nlms ’ )
38 [ y , e , w] = nlms ( s , d , M, step , eps , returnCoeffs , i n i t C o e f f s ) ; % Use normalized wiener f i l t e r
39 e l s e i f isequal ( f i l t e r , ’ tlms ’ )
40 [ y , e , w] = tlms ( s , d , M, step , returnCoeffs , i n i t C o e f f s ) ; % Use t r a d i t i o n a l wiener f i l t e r
41 end
42

43 %% Make f i g u r e s
44 f i g u r e ( 1 ) ; [ best_step , best_M ] = threedMSE ( s , d , eps , f i l t e r ) ; % Find step s i z e based on MSE (and make 3d plot : p)
45 f i g u r e ( 2 ) ; NoisePSDplot ( e , n(M: end) , Fs ) ; % Make noise PSD plot of e and n
46 f i g u r e ( 3 ) ; SEplot ( e , n(M: end) , ’ndB ’ ) % Plot squared error and MSD of the r e a l and estimated error
47 f i g u r e ( 4 ) ; SEplot ( e (9000:9300) ,n(9000+M−1:9300+M−1) , ’dB ’ ) % Zoomed in version of f i g u r e 4
48 f i g u r e ( 5 ) ; t_av = monteCarloPlot ( s , n , h , eps , samp,M, step , f i l t e r , ’dB ’ ) ; % Plot average squared error of multiple sound

samples
49 f i g u r e ( 6 ) ; timeplot ( z , d , Fs ) ; % Plot the recieved signal in time domain
50

51 %% Performance metrics
52 NSR0 = snr (n , z ) ; % NSR before f i l t e r i n g
53 NSR1 = snr (n(M: length ( s ) ) ,n(M: length ( s ) )−e ) ; % Noise to signal r a t i o in Db ( can ’ t be done for f i r s t M samples )
54 NSR_gain = NSR1−NSR0 ; % Achieved increase in NSR
55 samp_time = round (samp*1000/Fs ) ;
56

57 %% Play sound
58 p = audioplayer ( e , Fs , 1 6 ) ;
59 play (p)
60

61 %% Save f i g u r e s
62 saveas ( f i g u r e ( 1 ) , ’ Figures \3dMSE ’ , ’png ’ )
63 saveas ( f i g u r e ( 2 ) , ’ Figures \PSD ’ , ’png ’ )
64 saveas ( f i g u r e ( 3 ) , ’ Figures \SE ’ , ’png ’ )
65 saveas ( f i g u r e ( 4 ) , ’ Figures \SE2 ’ , ’png ’ )
66 saveas ( f i g u r e ( 5 ) , ’ Figures \MC’ , ’png ’ )
67 saveas ( f i g u r e ( 6 ) , ’ Figures \ timeplot ’ , ’png ’ )
68

69 %% Display s t u f f
70 delete Figures \Performance . t x t
71 diary Figures \Performance . t x t
72 disp ( ’%%%%%% Input Parameters %%%%%%’ )
73 disp ( [ ’ F i l t e r used : ’ , f i l t e r ] )
74 disp ( [ ’ Input NSR: ’ , num2str (NSR0) , ’dB ’ ] )
75 disp ( [ ’ F i l t e r length : ’ , num2str (M) ] )
76 disp ( [ ’ Step s i z e : ’ , num2str ( step ) ] )
77 disp ( [ ’MC plot segment length : ’ , num2str ( samp_time ) , ’ ms ’ ] )
78 disp ( ’%%%%%%%%%%% Results %%%%%%%%%%’ )
79 disp ( [ ’ Output NSR: ’ , num2str ( round (NSR1) ) , ’dB ’ ] )
80 disp ( [ ’NSR gain : ’ , num2str ( round ( NSR_gain ) ) , ’dB ’ ] )
81 disp ( [ ’ Optimal f i l t e r legnth : ’ , num2str ( best_M ) ] )
82 disp ( [ ’ Optimal step s i z e : ’ , num2str ( best_step ) ] )
83 disp ( [ ’Time to f i l t e r ’ , num2str ( samp_time ) , ’ ms: ’ , num2str ( round ( t_av *1000 ,2) ) , ’ ms ’ ] )
84 diary o f f
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Figure B.1: Monte Carlo simulation of the normalized and traditional LMS filter with parameters µ= 0.291 and M = 93.

Figure B.2: Squared error of each iteration of the traditional filter with parameters µ= 0.291 and M = 93.
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Figure B.3: PSD of the real, and estimated noise with the traditional LMS filter with parameters µ= 0.291 and M = 93.
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