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ABSTRACT

Developing malware variants is extremely cheap for attackers because of the availability of various
obfuscation tools. These variants can be grouped in malware families, based on information retrieved
from their static and dynamic analysis. Dynamic, network-level analysis of malware shows its core
behavior since it captures the interaction with its developer. Moreover, increasingly more emphasis is
given to using Deep Packet Inspection (DPI) in order to cluster malware’s network behavior. However,
DPI has severe privacy implications, as it involves inspecting payloads of the network traffic.

This report presents an exploratory study, the aim of which is to characterize and cluster malware
behavior using high-level, non-privacy-invasive, sequential features extracted from its network activ-
ity. The key intuition behind the proposed solution is that if the underlying infrastructure of distinct
malware samples is similar, the order in which they perform certain actions should also be similar.
The results of this research show that sequence clustering allows flexible and robust clusters, as op-
posed to using non-sequential features. In addition, incoming and outgoing connections are clustered
separately even though IP address is not used as a feature. The clusters themselves reveal interesting
attacking capabilities, such as port scans, potentially malicious subnets, and the same Command
and Control server responding to different malware families. Lastly, a comparison with clusters ob-
tained from static analysis reveals that dynamic, network-based clustering is far more qualified to
determine the many behaviors exhibited by a single malware family, as well as behaviors common
across multiple malware families.
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1
INTRODUCTION

The number of malware attacks are dramatically increasing and are also becoming more elusive,
adaptive and powerful [1]. Malware is one of the leading threats in cybersecurity today, and its
growth is still on the rise. According to PandaLabs report, in Q3 of 2016 alone, 18 million new mal-
ware samples have been detected 1. In Q1 of 2017, a new malware specimen emerged every 4.2
seconds [2], and this number is predicted to keep growing [3].

A significant fraction of the malware samples that we see on the day-to-day basis is similar to
each other, either in terms of target selection, behavior, or the Command and Control (C&C) server
they report to. Available literature suggests that the malware developers follow an iterative approach
towards malware development, as opposed to prototyping each variant separately [4]. So, the simi-
larities in these variants can be used to categorize malware samples into malware families. Group-
ing malware into families will allow us to analyze only the unique samples, reducing the number of
samples to be analyzed drastically.

In addition, several researchers have also shown that malware developers reuse code either from
old malware variants or other malware families [5]. This often happens as a result of a cat and mouse
game where small improvements in a target’s system push the attackers to include additional mali-
cious code while keeping the old code intact with the aim of maximizing their chances of success.
For example, Sun et al. [6] report that to circumvent detection and to deploy malware quickly, hack-
ers usually do not develop new malware from scratch, but rather improve existing logic or add new
malicious logic into existing malware. The findings of Li et al. [5] and Sun et al. [6] suggest that
malware developers often work in groups, where they either collaborate using forums or share their
code publicly for others to use. Therefore, we expect that similar behavior depicted by samples of
different malware families will uncover unknown malware author collaborations. Moreover, sam-
ples that report to the same Command and Control server but show different attack vectors may
suggest the presence of a single attacker (or a single group of attackers) controlling those samples.
Leveraging these insights will lead to the development of proactive and specialized defense tactics
against multiple malware families that behave similarly.

Different techniques exist to cluster malware samples together depending on which ’attack vec-
tors’ are considered. The earliest technique to dissect a malware is static analysis, which involves
decompiling the malicious binary and understanding the code to make sense of what the attack-

1https://www.pandasecurity.com/mediacenter/pandalabs/pandalabs-q3/
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2 1. INTRODUCTION

ers are after. Since the introduction of obfuscation techniques, such as encryption and encoding, it
has become more and more challenging to decompile the binary and to understand the malicious
code [7]. Although analyzing the decompiled source code provides an overall picture of what the
malware is capable of, not all the features present in the source code are utilized when the malware
is executed [8]. Hence, static analysis is not the best technique when one wants to analyze the ac-
tual behavior exhibited by the malware. Dynamic analysis, on the other hand, involves executing a
malware in a sandboxed environment and analyzing the actions it performs. This technique makes
the code obfuscation problem almost irrelevant because even if the code is obfuscated, the malware
still behaves the way it is programmed to. Therefore, dynamic analysis is the current state-of-the-art
mechanism for analyzing malware, though static analysis is also used in a few cases.

There are two sources of malware behavior that can be used to analyze it: system-level behav-
ior (system calls and API usage) and network-level behavior (what data is sent or received over the
network). System-level behavioral analysis can become prohibitively expensive given the differ-
ent system architectures often present within a network and the several low-level operations that a
malware performs, which may or may not be related to its final objective. Moreover, extracting such
behavioral information from each system in a network is extremely tedious and may create privacy
and compatibility issues. On the other hand, network-level activities show the core behavior of mal-
ware, since it is used to communicate with the attacker directly. It shows exactly what information is
exfiltrated (in case of spyware or a banking malware) and precisely what commands are received by
the malware. Deploying a system that operates purely on network behavior induces less overhead
on the end hosts, and existing infrastructure for network monitoring can be reused. Moreover, in-
creasingly more malware samples are using the Internet to communicate with their Command and
Control servers (or their developers), and since the Internet architecture is mostly uniform in the
way devices interact with each other, the same solution can be deployed for different organizations.
Even though the network traffic is sometimes encrypted, the way a malware communicates, such as
the certificates it uses, may reveal distinguishing patterns that can still potentially be used as signa-
tures. Therefore, clustering malware using the dynamic analysis of its network-level behavior is the
goal of this research.

1.1. MOTIVATING EXAMPLE

Clustering malware based on its network-level behavior is not necessarily better than clustering on
system-level behavior. In fact, they are two pieces of the same puzzle that, when combined, pro-
vide the exhaustive behavior of a malware sample. However, literature has shown that the malware
authors may sometimes divide the tasks over multiple malware samples [9]. These samples may
perform different system-level activities but produce similar network-level activity because they are
controlled by the same attacker or have used the same botnet kit.

One such example is taken from the work of Perdisci et al. [9], as shown in Figure 1.1. The
authors demonstrate a case of two distinct malware samples that perform significantly different
system-level activities. Due to their difference in behavior, the anti-virus they have used assigns dif-
ferent labels to the samples (TR/Dropper.Gen and DR/PCK.Tdss.A.21). However, the network traffic
that the two samples generate is identical (e.g., see the IP address contacted, the bytes transferred,
and the sequence in which actions are performed). This suggests that either the malware author for
both these samples is the same, or the botnet kit used to develop these malware samples is the same,
such that even the Command and Control server is the same. If one were to cluster malware samples
such as these purely based on their system-level behavior, they would end up in different clusters.
Moreover, the anti-virus labels are assigned heavily based on system-level behavior, so similar clus-
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tering would be observed with them too. Figure 1.2 shows another example of two malware samples
that are assigned different labels because their decompiled code looks different. However, the figure
shows similar sequences of packet sizes received from two different IP addresses (185.195.24.6 for
Zeus and 173.224.119.212 for Gozi). This similarity in behavior could either indicate mislabelling
of these samples as separate families or that the malware samples share some underlying infras-
tructure. If one were to cluster these samples based on the hosts they communicated with or the
assigned malware family, they would be separated, which is undesirable. On the contrary, Figure 1.3
shows two malware samples that are both labeled as Ramnit but exhibit different behavior in terms
of the sequence of packet sizes. This may indicate two different attacking capabilities. If one were to
cluster these samples using their assigned family names, they would end up together, which is also
undesirable.

Figure 1.1: Motivating example 1 – two malware samples with different system level activities but identical network be-
havior

We argue that the network behavior paints a different picture, which is closer to the attacker
than system-level behavior since it is the network behavior that captures the interaction with the
Command and Control server. Therefore, we see a benefit in clustering malware using their network
traffic. We expect that clustering malware samples, such as the ones shown in Figures 1.2 and 1.3,
based on their network activity will provide a different way of analyzing similar malware.

Figure 1.2: Motivating example 2 – two malware samples with similar network activity but different labels
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Figure 1.3: Motivating example 3 – two malware samples with different network activity but same label

1.2. PROBLEM STATEMENT

Developing malware variants is extremely cheap for attackers given the many obfuscation tools so
readily available. These variants have different hashes that make it difficult for traditional signature-
based solutions, such as anti-viruses, to detect them. The state-of-the-art analysis techniques in-
volve clustering malware samples based on similarity to identify whether a malware sample is unique
and should be analyzed [10]. Clustering based on network behavior is a relatively novel technique
that produces low overhead on end hosts and captures the communication between the infected
host and the Command and Control server. There is an increasing interest in Deep Packet Inspec-
tion (DPI) [11–14], which involves inspecting payloads of the network traffic to detect suspicious
content. While DPI is extremely effective in detecting malicious content, it has severe privacy im-
plications because it can easily be misused as a surveillance tool [15]. Besides, because of the in-
creasing privacy awareness among the masses, many countries have adopted data and information
privacy protection regulations. For example, the European Union enforced the General Data Pro-
tection Regulation (GDPR) in May of 2018. Hence, the privacy concerns associated with DPI do not
render it future-proof. Therefore, we are interested in finding solutions for malware detection and
clustering that are privacy-sensitive. This would entail developing a technique that does not access
the actual content of the packet, but relies on high-level features extracted from packet headers,
which do not come under Personally Identifiable Information (PII) 2. For example, IP address is
considered as PII 3, so it cannot be used for this research.

The concise problem statement that is addressed in this research is as follows:

Developing a technique to cluster malware’s network behavior without using Deep Packet In-
spection.

1.3. DATASET

This project aims to develop a clustering technique that is applicable to the real world. Therefore,
real-world data was collected with the help of a security company based in the Netherlands, whose

2https://www.csoonline.com/article/3215864/privacy/how-to-protect-personally-identifiable-information-pii-under-
gdpr.html

3https://www.enterprisetimes.co.uk/2016/10/20/ecj-rules-ip-address-is-pii/
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name we cannot disclose. Hence, the company has been referred to as ABC in this report.

The dataset consists of zipped packet capture (Pcap) files, which stores network traces of mal-
ware samples that they have detected in 2017. The dataset is composed of only banking malware
because ABC’s main clientèle are financial institutions. An example of the directory structure of the
files is given in Figure 1.4 and what the Pcap files look like is provided in Figure 1.5. More details
regarding the actual content of the dataset are given in Chapter 4.

Figure 1.4: Screenshot of the directory structure showing the provided dataset

Figure 1.5: An example Pcap file from the provided dataset opened in Wireshark

1.4. PROPOSED SOLUTION

The key intuition behind the proposed solution is that if the underlying infrastructure of distinct
malware samples is similar (e.g., as a result of being controlled by the same attacker, or by reusing
code from another author), the order in which they perform certain actions would be similar. How-
ever, if we were to look at individual data points rather than sequences, we might lose similarity
shown by the order of event occurrence. Figure 1.6 summarizes each step of the project flow. The
blue boxes show project phases, while the purple ones show the different sub-sections of that phase.
We briefly introduce each phase in this section.
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Figure 1.6: Flowchart showing the various project phases

1.4.1. SEQUENCE CLUSTERING

A sequence is an ordered list of items. The order captures temporal information, which is useful
for behavioral modeling. On the other hand, a single data point captures only the summary of the
dataset. Consider an example of a computer program that randomly generates a list of 9 numbers
from 1 to 3, and we want to model the different behaviors exhibited by this program. Suppose that
it generates the following two sequences: [1,2,3,1,2,3,1,2,3] and [1,1,1,2,2,2,3,3,3]. A visualization of
these sequences is given in Figure 1.7. It is evident that the behavior exhibited by the program was
categorically different when it generated the two sequences. The aggregate (average) of both these
sequences is 2. If we were to model the program using a single data point, it would incorrectly group
these two behaviors.

(a) Seq A: 1,1,1,2,2,2,3,3,3 (b) Seq B: 1,2,3,1,2,3,1,2,3

Figure 1.7: Motivating example for Sequence clustering

In this project, the aim is to model a Pcap file in a way that captures its behavior. Hence, based
on our intuition, using sequences to model features instead of a single data point representing a
feature is a natural design choice.
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1.4.2. GRANULARITY

The level of granularity of a sequence defines which packets are used in the generation of a se-
quence. For Pcap files, a design choice is to identify whether the whole Pcap file should be consid-
ered as one long sequence, should it be broken down to incoming and outgoing traffic sequences,
or should it be broken further down to connection level sequences. A connection, in this con-
text, is defined as the traffic sent from source IP to destination IP address. This means 8.8.8.8
→ 123.123.123.123 will be a different connection than 123.123.123.123 → 8.8.8.8. We hypothesize
that looking at different granularities will result in different patterns being found in the sequences.
Hence, we consider two levels of granularity for the sake of this project:

1) Pcap-level granularity: A feature X of a malware is generated at the Pcap-level by concate-
nating each value of the feature X that occurs in the Pcap.

2) Connection-level granularity: A feature X of a connection from A to B is generated at the
Connection-level by concatenating only the values of X that occur during the connection A → B.

1.4.3. FEATURE SELECTION AND DISTANCE MEASURE

Feature selection is a crucial step towards modeling a malware’s network behavior. As mentioned
before, our intuition is that malware related to each other will perform actions in a similar order. We
hypothesize that the similarity in the sequence of actions will also be reflected in high-level features,
such as packet sizes or the interval between sending or receiving the next packet. Therefore, the fea-
ture set used is a number of sequences of simple, high-level features, extracted from the headers of
Network and Transport layer of the OSI model 4. The feature set selected for each level of granularity
is different.

The features are either categorical (a.k.a nominal) or numerical (a.k.a ratio) sequences in na-
ture. In order to compute the distance between two sequences, multiple distance measures for
each type of sequence are experimented with. For numerical sequences, Dynamic Time Warping,
and Euclidean (point-to-point) distance measure are considered. For categorical sequences, Se-
quence alignment, Longest Common Subsequence, and Ngram analysis are considered. Each of
these methods are explained in Chapter 3 Section 3.2 in detail.

1.4.4. DISCRETIZATION

Sequence discretization is a technique used to convert continuous sequences into discrete ones
to limit the number of values a sequence can be represented with. Discretizing a sequence helps
suppress noise and represent the sequence in a customized way. However, the real challenge is
defining where the thresholds exist that map the categories to the numerical data values. To this
end, we introduce three discretization techniques that define the thresholds:

1) Local Percentile: The thresholds are selected using percentiles calculated from the sequence
under consideration.

2) Peak Analysis: The thresholds are selected using a frequency analysis of the sequence under
consideration, and taking the average between the most frequent values.

3) Global Set-Percentile: The thresholds are selected by 1) doing an initial pass over the whole

4https://www.webopedia.com/quick_ref/OSI_Layers.asp
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dataset (each packet of every Pcap), 2) selecting only the unique values across the entire dataset, 3)
and then using percentiles calculated from the global set of values.

For each level of granularity, we conduct a study on which discretization technique is best suited,
and whether sequences should be discretized at all.

1.4.5. CLUSTERING AND CLUSTER VALIDATION

Clustering is a well-studied field in Machine Learning. Many different clustering algorithms exist for
different goals and data types. Several limitations, such as the presence of categorical and numeri-
cal features and the need for robust clusters filtered the clustering algorithms that were applicable
to our case. Two algorithms that are used most commonly in a problem similar to ours were con-
sidered: Single-linkage hierarchical clustering and HDBScan clustering. The explanation of these
algorithms is present in Chapter 3, Section 3.3. Each level of granularity was clustered separately,
with its own set of parameters.

A manual cluster validation approach was utilized because of the absence of any applicable
metrics. Clusters were visualized using heatmaps and scatter plots. A false positive analysis was per-
formed to identify Pcaps/connections that were too different from the rest of the Pcaps/connections
in that cluster.

A NOTE ON CLUSTERING VERSUS CLASSIFICATION

Clustering and classification are two machine learning problems that may seem similar but are very
different. Classification is a supervised learning problem, where a mathematical model is fitted on
the dataset under consideration. What makes it a supervised learning problem is the presence of
ground truth data labels that can be used to classify future samples in one of the available categories.
The accuracy of a method can be checked by counting the number of times the model assigns the
same label to a future sample as the ground truth label. On the other hand, clustering is an unsuper-
vised learning method. This technique also categorizes the dataset into groups, but their labels are
not known beforehand, because of the absence of ground truth labels. Therefore, the result of this
technique is items of the dataset grouped based on some similar aspects (while being different from
other groups at the same time), without the prior knowledge of what these groups actually mean.
Hence, although there exist metrics to quantify cluster quality, there is no straightforward way to
assess the accuracy of the resultant clusters.

In this project, we are developing a clustering technique as opposed to a classification technique
because of the absence of reliable ground truth labels. Each Pcap file that we have is assigned a label,
which is one of many malware families. However, they are primarily assigned after the static analysis
of the malware samples’ binaries, which may not always translate to the same categorization in the
dynamic behavior shown by the malware sample. Therefore, the clustering also serves as a test
regarding this assumption – whether the categorization done using static analysis is the same as
that done using dynamic analysis of malware samples.

1.4.6. CLUSTER ANALYSIS

Three types of cluster analysis are performed on the resulting clusters:

1) Pcap-level versus Connection-level clustering: The traffic of each cluster is analyzed to un-
derstand the kind of behaviors that map to the resulting clusters. This analysis is performed for each
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level of granularity. Based on the results, recommendations are presented regarding which level of
granularity to use in order to cluster malware’s network behavior.

2) Static versus Dynamic analysis: As mentioned earlier, the family labels associated to each
malware sample were assigned using static analysis of the binary executable. Since we did not have
the expertise or the resources to conduct a clustering based on static analysis of the executables
ourselves, the family labels themselves were considered as clusters resulting from static analysis –
Each malware family is a distinct cluster and all Pcaps/connections associated to it are considered
as part of the cluster. On the other hand, the clusters extracted from our technique are considered
as dynamic analysis clusters. For both levels of granularity, the location of each Pcap/connection is
compared between static-analysis and dynamic-analysis clusters.

3) Comparison with Baseline: To the best of our knowledge, there exists no baseline with which
the results of this project can be compared directly. Hence, a baseline is constructed from scratch,
where instead of representing a feature with a sequence, an aggregate of the sequence is used in-
stead. In particular, we represent a feature with the average of its corresponding sequence. Every
other setting is kept constant, in order to emphasize the significance of using sequence-as-features.
This analysis is performed at both levels of granularity. The resulting baseline clusters are then
compared with sequence-as-features clusters. In particular, each Pcap/connection in sequence-as-
features clusters is compared to its new location in the baseline clusters.

1.5. RESEARCH QUESTIONS

This report presents an exploratory study to see whether it is even possible to characterize and clus-
ter malware behavior using high-level non-privacy-invasive, sequential features extracted from its
network activity. Hence, the main research question that we aim to answer in this research, and that
reflects the problem statement is:

RQ: Are high-level sequential features effective in characterizing and clustering malware fam-
ilies’ network behavior?

The first problem that needs to be addressed when using network traffic as the source of data
is the granularity at which to construct sequences. In this project, we consider two levels of gran-
ularity: Pcap-level and Connection-level. Hence, the first research question answers which level of
granularity best characterizes malware’s network behavior, and which behaviors are captured in the
considered granularities.

RQ1: What level of granularity is best to characterize malware families’ network behavior?

Once the granularity has been decided, the next question is: which features characterize the
malware sample’s behavior? Since the focus is on using sequences, the results from available lit-
erature (see Chapter 2) may not be directly applicable. Moreover, the features need to be privacy-
preserving. Therefore, header information available at different layers of the OSI model is explored
to find the sweet-spot between behavior-characterization and privacy. In addition, the next part
of the research question quantifies the benefit of using sequences instead of using singular data
points by comparing the clusters resulting from using sequence-as-features, versus averaging those
sequences into singular data points.
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RQ2 (a): What sequences of high-level feature-set characterize a malware’s network traffic?

RQ2 (b): What is the difference between using features that are represented by sequences versus
those that are not?

The features considered may have different data types. For example, packet sizes are numerical,
while port numbers are categorical in nature. Since the features are represented as sequences, there
are either numerical sequences or categorical sequences. The data type of a feature would dictate
the distance metric used. Hence, the next research question focuses on identifying the best method
to measure the distance between sequences:

RQ3: Which distance captures the (dis)similarity in sequences at the various granularities con-
sidered?

Finally, we are interested in observing the kind of behaviors that the proposed clustering tech-
nique is able to capture. Specifically, we want to know whether certain type of attacks are reflected
in the network traffic of malware samples, or does this technique completely fail in that we do not
see any interesting attack behaviors getting clustered. In addition, the second part of the next re-
search question compares the clustering done with using malware family labels versus that done
with features extracted from the network traffic of the malware.

RQ4 (a): What kind of behaviors are visible in the clustered malware samples resulting from
the proposed clustering approach?

RQ4 (b): How different is the malware samples’ membership to clusters resulting from network
analysis versus static analysis?

1.6. RESEARCH SCOPE

This project develops a clustering technique to group similar network behaviors exhibited by mal-
ware. A comparison with benign network traffic is outside the scope of this project. In addition, the
research presents a clustering algorithm, which means that we assume that the malware samples
have already been collected. Hence, malware detection is also outside the scope of this project.

Because of the exploratory nature of this study, there does not exist a baseline method to com-
pare the presented solution with. To the best of our knowledge, sequential features extracted from
network traffic have not been utilized to cluster malware families. Existing literature (see Chapter 2)
varies so much on the feature set used, which behavior is clustered, and the utilized clustering algo-
rithm itself, that they simply cannot be considered as baselines. Therefore, a synthetic baseline has
been constructed, which removes the sequence-aspect of the features. We do not perform a detailed
analysis of what behaviors are clustered in the baseline version, but only compare the location of
samples in clusters with respect to sequence-as-features clusters. Additionally, this technique was
not optimized for performance. Hence, a basic performance evaluation is performed but is not
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meant to be compared with other existing clustering techniques.

The scope of this project only covers Pcap-level and Connection-level granularity. Moreover,
cluster validation is performed manually because of the absence of an applicable metric. Hence,
development of a cluster validation metric, as well as a metric for False positive analysis has been
left as future work.

1.7. CONTRIBUTIONS

State-of-the-art dynamic analysis techniques rely heavily on system-level activities, so much so
that even the labels assigned to malware families are based on the binary executable information.
Network-level behavior, on the other hand, presents a different behavioral aspect of malware fami-
lies, the benefit of which is often overlooked. In addition, the techniques that do exist for network-
behavioral analysis focus increasingly on Deep Packet Inspection, which is a controversial topic
because of its privacy implications. The proposed solution in this research is novel because of the
special emphasis on using high-level features to cluster malware’s network behavior. We compen-
sate the ’abstractness’ of the features by also exploiting the order in which they occur. Following are
the contributions of this project:

1. Appropriate level of granularity: We identify the kind of behaviors that are clustered if we
make sequences out of one connection at a time (source IP, destination IP) pair versus making
sequences out of the whole Pcap.

2. Feature-set exploration: We identify the high-level feature-set that characterizes the mal-
ware’s network behavior based on the level of granularity of the sequences.

3. Discretization technique: We have proposed three discretization techniques to convert nu-
meric sequences into categorical ones if one wishes to use distance measures applicable to
categorical sequences.

4. Distance measure identification: We identify interpretable distance measures to measure the
distance between both, numeric and categorical sequences.

5. Clustering: We identify the applicability of HDBScan clustering algorithm to cluster malware
samples’ network behavior robustly. In addition, we present a systematic way of clustering
and analyzing malware samples.

6. Cluster analysis: We perform visual cluster analysis to identify the different attacking capa-
bilities of malware families. We also compare the resulting clusters with a baseline that does
not utilize sequence-as-features. Furthermore, we perform a comparison of resulting clusters
with their corresponding family labels.

1.8. SUMMARY OF RESULTS

Sequence clustering allows flexible and robust clusters, as opposed to using non-sequential fea-
tures. We found that sequences of simple features, such as packet sizes and port numbers can char-
acterize a malware’s network behavior. In addition, Pcap-level and Connection-level granularities
were evaluated for malware characterization. We found that at the Connection-level, behavioral
patterns are clearer and a lot more information is available to infer about the kind of behaviors
captured in the clusters, as opposed to Pcap-level granularity. The resulting clusters show different
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malicious Internet-usage behaviors. Incoming and outgoing connections are clustered separately
even though IP address is not used as a feature. The clusters themselves reveal interesting attack-
ing capabilities, such as systematic and randomized port scans, potentially malicious subnets, and
the same C&C server reporting to different malware families. Lastly, a comparison with clusters ob-
tained from static analysis revealed that dynamic, network-based clustering is far more qualified to
determine the many behaviors exhibited by a single malware family, as well as behaviors common
among multiple malware families.

1.9. PROJECT WORKFLOW AND REPORT ORGANIZATION

Chapter 2 summarizes the literature that was studied in order to identify the research gap. Chapter
3 explains the necessary background concepts required to understand the rest of the report. Each
phase of the proposed methodology is explained in the subsequent chapters. In the data collection
phase, a few banking malware families are chosen, and their corresponding Pcaps are collected.
This is explained in Chapter 4. Then, the Pcap files are explored, and the feature set best character-
izing malware families is chosen. At this step, we also explore the level of granularity at which the
sequences of features should be generated. In addition, we also identify the distance measures that
best represent the distances between numeric and categorical sequences. These steps are explained
in Chapter 5. In the sequence discretization step, we propose three discretization techniques to
convert numeric sequences to categorical ones. This is explained in Chapter 6. Once we have the
granularity at which the sequences should be constructed, the feature set represented as a set of
numeric and categorical sequences, and the distance measure that represents an interpretable dis-
tance between sequences, we build an nxn pairwise distance matrix, where n is the dataset size.
In the clustering phase, we provide the pre-computed distance matrix to the clustering algorithm.
Then, we measure the cluster quality by visual analysis of the resulting clusters at different parame-
ter settings. This step is explained in Chapter 7. After choosing the optimal parameters, we extract
the samples from each cluster and further analyze them to answer the research questions posed in
this project. The insights obtained from the cluster analysis are explained in Chapter 8. Next, Chap-
ter 9 discusses the limitations of this project and touches upon the future work. Finally, we conclude
in Chapter 10.



2
LITERATURE REVIEW

In this chapter, the relevant literature upon which the research is built is discussed. We also show
what the state-of-the-art is and identify the research gap, which our study aims to fill.

There is rich literature on clustering malicious software (malware) based on various attributes.
However, because of the highly evolving threat landscape, some research is not applicable anymore,
while some aspects have not been explored yet. In this section, we summarize the literature that
is most relevant to the problem we are addressing in this project. In particular, we discuss works
on clustering/classification malware using symbols obtained from 1) Static analysis (Binary infor-
mation [4, 16–19], Metadata analysis [20, 21], and 2) Dynamic analysis (System activity [6, 22, 23],
Network activity [9, 24–31]).

2.1. STATIC ANALYSIS

The first theme of research that we discuss is clustering or classification of malware using static anal-
ysis. There are two problems addressed by the following scientific literature: classifying/clustering
malicious and benign samples, and classifying/clustering malware families. The latter problem
consists of a dataset that is entirely malicious and directly falls under this project’s scope.

2.1.1. BINARY ANALYSIS

In the following papers, the authors perform the classification/clustering on decompiled code ob-
tained from disassembling the binary executable.

For example, Abou-Assaleh et al. [16] generate signatures that differentiate malicious code from
benign code. They use I-Worm and Win32 virus executables as their dataset (dataset not available
anymore), but it is unclear whether they use the decompiled source code as features or the binary
executable itself. Their intuition is that malware authors sometimes use common tools to compile
malware, which leaves signatures in the compiled binary file. They aim to detect such patterns
and use them as signatures, which will also be able to detect never-before-seen malware compiled
under similar conditions. They apply Ngrams (n=10) for classification, which is a highly common
technique used in text classification. The distance metric they use is a straightforward k-nearest
neighbor algorithm, where the samples having the highest overlap in Ngrams are classified as the

13
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same category. Their method is 91% accurate in distinguishing between malicious and benign code.
However, we believe that the results they show are unreliable because they present the numbers for
classification by evaluating the classifier on the training data itself, which is known to yield high
results. Secondly, when calculating the distance metric, although the metric is simple, they do not
filter out the sequential data for common terms (by applying Term Frequency–Inverse Document
Frequency (tf-idf), for example), which might skew their results.

Zhang and Reeves [17] aim to detect software variants, such as obfuscated malware or evolved
versions of a software. They perform static analysis on the disassembled code of Windows executa-
bles. Their method is applicable to both malware and benign software. They generate patterns
based on the flow of data and system calls in the disassembled code and measure their similarity.
The similarity metric is a weighted function of the value of operands and operators present in the
instructions of the software being compared. The intuition is that patterns coming from similar
malware will be similar. In a dataset of 200 malware variants, their method is able to detect 90% of
the similar pairs. However, their technique requires a predefined threshold value of the similarity
measure above which samples are considered variants of each other. This parameter is unintuitive
and highly dependent on the underlying dataset.

Suarez-Tangil et al. [18] aim to classify malware samples into families by performing statistical
analysis of malware code. They decompile android apps into their Dalvik bytecode. Each malware
sample is represented by a set of code chunks, which contain one or more methods. The idea is to
identify common chunks across multiple malware samples. These common blocks serve as a sig-
nature for that malware family. They use a text-mining approach to classify these malware samples
– by converting the code chunks into vector space and measuring distance between them using co-
sine distance. They report that their method is fast, scalable and produces good results having a
classification error of mere 5.74%.

Sun et al. [19] aim to find repackaged apps and malware variants in android apps. Similar to
the work of Suarez-Tangil et al. [18], the technique performs a static analysis of decompiled Dalvik
bytecode of android apps. However, their approach utilizes Component-based Control Flow Graphs
(CBCFG) to find the maximum number of overlapping code blocks among apps. Each node in a
CBCFG represents an API call. Each app is then identified by its signature, which is composed of
the author information in the META-INF file and multiple CBCFGs. The more similar the CBCFGs
are, the higher chance there is that the two apps are variants of each other. Although they report
a detection ratio of 96.6%, the similarity metric seems too stringent to detect variants that have a
significant amount of code revised.

The study presented by Tajalizadehkhoob et al. [4] focuses on inject code evolution in banking
malware. Inject codes are pieces of code, which a malware (specifically, banking malware) injects
in the browser of an infected host with the goal of stealing credentials entered in a form or adding
extra fields on the bank’s web page to make the victim enter more information than what is actually
required. This study is performed on a dataset provided by our current data provider – ABC. The
authors analyze 1.2 Million inject codes and find that only 1% of the code is unique across the entire
dataset. This suggests code reuse and code stealing among attackers. They also look at the evolution
of inject code over time and find most of the versions to be exactly the same. Whenever they see
differences in code, it suggests that the target’s User Interface (UI) changed, so the attacker adapted
the code to the change, while the rest of the code remained the same. Our research is different
because we study the dynamic network behavior of the malware. However, our work is partially
motivated by the results of this study – most of the attack code remains the same among variants of
a malware family. Whether one can identify this similarity in the network behavior of the malware
too is the question we aim to answer.
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2.1.2. METADATA ANALYSIS

The work of Gupta et al. [20] is innovative since they characterize a malware from its description
written in natural language. They collect their dataset from McAfee’s threat library database. From
what they have described, it seems like they have applied some text-mining algorithm, such as
Ngram analysis to get their feature vector, based on which they generate a graph. They extract
the actual features used by their system from the generated graph – fan-out of nodes, number of
spawning children, the lifetime of the malware, and code sharing suggested by similarity. This can
be considered static analysis since the malware sample itself has not been executed.

In addition, the work of Johnson [21] clusters DNS-based malware samples using the dynamic
execution trace metadata provided by VirusTotal. Their feature set includes code size, imports, and
DNS requests made. This study can also be considered as static analysis because the feature set they
use does not incorporate any dynamic aspect of the malware. They also acknowledge that their
dataset is not representative and that the applicability of a particular feature is dependent on the
kind of data set. Finally, they use Agglomerative linkage-based algorithm to perform the clustering.

SUMMARY

In summary, the studies mentioned above either use disassembled code of the binary executable
or metadata of the malware to classify it as malicious or benign. The techniques they utilize range
from building CFGs to using text mining algorithms. Since all the static-analysis techniques rely on
accessing the code, they suffer from code obfuscation problem. On the other hand, analyzing the
metadata may be effective for exploratory analysis, but it does not say anything about the actual
behavior of the malware sample.

2.2. DYNAMIC ANALYSIS

In this section, we discuss behavioral analysis approaches for clustering and classification. Gen-
erally, collecting a malware’s behavioral information on an operational device is a challenging task
since several other services are also running in the background, which can add noise to the collected
data. The most common workaround is to execute the malware sample in a controlled environment
and to collect the traces generated by that sample. Most of the research work analyzed further in this
section collects behavioral data in this way.

2.2.1. SYSTEM-TRACE ANALYSIS

Bayer et al. [22] want to cluster malware variants together so that one does not have to analyze a
malware that has been seen before. They collect system-level symbols, such as OS objects and op-
erations, and network API calls. The main objective of this approach is to keep it scalable, which they
achieve by utilizing Jaccard index – a set-specific distance measure and Locality Sensitive Hashing
[32] – a technique that maps input items to their hashes with the goal of achieving hash collisions
for similar items.

Sun et al. [6] build a malware variant detection system for Android applications. It combines
the static and dynamic analysis by collecting features from both sources. The authors collect infor-
mation from the static symbols in the manifest file. They also generate a run-time behavioral graph
(a Control Flow Graph made from static analysis of code), which is enriched with run-time sym-
bols collected from executing the malware. They compare the resulting behavioral graphs using a
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simple edit distance (number of additions, deletions, and replacements required to convert graph A
into graph B). If the similarity is higher than a predefined threshold, the two samples are considered
variants of each other. They report a classification accuracy of 99%, which seems a little too good
to be true. One negative aspect of this paper is that they have developed their own malware sample
for the evaluation. They also apply obfuscation techniques themselves to make malware variants.
Developing self-developed synthetic malware samples can potentially skew results in their favor.
This is also why we resort to collecting real-world malware samples.

The Master thesis presented by Wong Hon Chan [23] is one of the examples of using sequences-
as-features for clustering. The author utilizes the sequence of accessed resources in Android ap-
plications to group applications that behave similarly. He uses the length of the Longest Common
Subsequence (LCS) between two access sequences as the measure of similarity. Then, he uses the K-
means algorithm to cluster the behaviors based on a pre-computed distance matrix. He also defines
a number of cluster validation techniques for quantifying the cluster quality. His results motivate
the use of sequences-as-features and show LCS to be a promising metric to cluster similar-behaving
resources.

2.2.2. NETWORK-TRACE ANALYSIS

There is a variety of work that clusters malware samples based on their network behavior, and they
all rely on the labels provided by the Anti-Virus (AV) vendors to calculate the accuracy of their ap-
proach. On the contrary, research has shown that AV vendors do not use a standardized naming
convention for malware samples [33]. In addition, the labels that AV vendors assign to malware
samples are heavily based on the system-level behavioral analysis rather than the network-level be-
havioral analysis. Hence, it is essential to think about the applicability of such labels if one aims to
utilize only the network behavior of the malware to perform the classification/clustering.

Providing an alternative to the system-level behavioral clustering of Bayer et al. [22], Perdisci
et al. [9] develop a 3-step clustering algorithm, which operates purely on network traffic. Their
intuition is that if the structure of the request query of multiple malware samples is similar, then it
is more likely that they belong to the same family, that the developers may be related, and even that
code reuse might have occurred. The 3-step algorithm works by first coarsely clustering the traffic
based on statistical features, then splitting those clusters further by utilizing the query structure,
and finally merging the clusters that are most similar (by comparing their centroids represented by
regular expressions). They check the cluster quality by introducing their own way of calculating
cluster cohesion and cluster separation. They build graphs from the labels (family names) assigned
by AV vendors to the samples. These labels form the nodes of the graph, and the edges between
nodes are drawn when two AVs label the sample as names in the corresponding nodes. Essentially,
the graph shows the agreement between labels assigned by the AVs. Clusters are cohesive if all the
samples in a cluster have the same label. Clusters are well-separated if there is no overlap between
the labels of distinct clusters. Figure 2.1 shows what cohesive and well-separated clusters look like.
This algorithm can cluster 12M HTTP requests in a few minutes while producing very low false
positives and is able to achieve higher accuracy than the work of Bayer et al. [22]. One negative
point is that the authors do not justify most of the decisions regarding parameter values of their
system. Secondly, since the main feature of their approach is the request URL of the malware, their
method is only applicable for clustering HTTP-based malware. Similarly, multiple approaches exist
specifically for DNS-based malware [24, 34], and HTTPs-based malware [35, 36].
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Figure 2.1: High (Left) and Low (Right) cluster cohesion and separation

In the study presented by Tegeler et al. [25], they build a classification system to detect network
traffic generated by bot-infected hosts. Similar to our work, their emphasis is on using high-level
features. Unlike us though, they use statistical features from netflows (aggregated packet transfer
based on connections), such as average time between the start times of two subsequent flows, the
average duration of a connection, the number of bytes transferred to the source, etc. They report
a detection accuracy close to 100%, while only producing a few false positives. This study provides
evidence that a high-level feature set can indeed be used to characterize a malware’s network be-
havior.

In the work of Mohaisen et al. [26], the authors use an ensemble of multiple clustering algo-
rithms to classify malware families. They specifically use the Zeus botnet’s network activity and
have used domain experts for manually labeling it as ground truth. They also provide feature rank-
ing, where they conclude that port information is the least useful in characterizing malware variants.

Network traffic analysis does not only have applications in malware analysis. The work by Kor-
czyński and Duda [27] studies the traffic generated by 12 everyday-use software such as Skype, Pay-
pal, and Twitter to see if they can fingerprint their encrypted traffic using Markov chains. They study
single-directional traffic coming from a server to a client and use Secure Socket Layer/Transport
Layer Security (SSL/TLS) header information (message types, in particular) as features. They pro-
vide a framework for encoding types of TLS messages in categories, which makes the handling of
sequential data much more manageable. This idea has been borrowed when we discretize numer-
ical sequences. They also provide the insight that their method does not model how the software
itself performs but rather, how it utilizes the TLS protocol. This insight also applies to our work as
the clusters would not model the full working of the malware, but rather how they utilize the Inter-
net to carry out their objective. Specifically, it models the behavior that is directly associated with
the chosen features. Therefore, it is of the utmost importance that the feature set characterizes as
much of the malware behavior as possible.

Bilge et al. [28] use netflows to detect botnet Command and Control servers. They use the fol-
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lowing features: 1) Flow-size-based features (number of bytes transferred, auto-correlation features
that help see patterns in time series, unique flow sizes based on the assumption that malicious
entities transfer similar amounts of data with their respective Command and Control servers), 2)
User-behavior-based features (access patterns that look at the regularity in time difference between
flows because bots communicate with their Command and Control servers in regular periods, un-
matched flow to detect zombies where no return flow is detected), and 3) Temporal patterns (time
when the traffic is generated, e.g., traffic generated at night time with respect to the corresponding
time zone is suspicious). Finally, they use Random Forests to perform the classification. Their tool
reaches an accuracy of 65%.

Ghorbani and Nari [29] also use netflows to classify malware samples as malicious or benign.
They build graphs from netflow data, where the nodes are protocols, and directed edges represent
flows grouped by IP addresses. Then, they extract the following features out of the graphs: graph
size, average fan-out of nodes, and the number of specific protocol nodes (limited to SSL, DNS, FTP).
Using these features and WEKA classifier, they classify the samples as malicious or benign. Their
intuition is that similar malware samples will have similar graphs and hence, similar features. They
recommend using application-level features to improve accuracy because the behavior at network-
level seems similar for some samples.

SUMMARY

In summary, the studies mentioned above utilize the system and network traces generated by ex-
ecuting malware to cluster and classify it. However, there are a number of problems with these
approaches. First, comparing with network-level activities, collecting system-level activities is not
always possible as it is quite privacy-intrusive and takes a lot of effort to access each end host. Sec-
ond, because of the feature set used, most of the techniques mentioned above are applicable only to
one type of protocol. Additional research and tweaking are required to make them work with other
types of malware. Third, although netflows are more privacy-preserving than Pcap files, they are of-
ten sampled, which limits their applicability for building sequential behavioral models. Therefore,
in this research, instead of using statistical and privacy-intrusive features as recommended by Ghor-
bani and Nari [29] and Tegeler et al. [25], we combine the use of Pcaps and sequences of high-level
features extracted from a malware’s network traffic to cluster malware families.

2.3. MALWARE CHARACTERIZATION

Many papers were studied to get an idea of the feature set that would best characterize a malware’s
network activity.

For example, the work by Jiang and Zhou [33] presents a theoretical study on the characteri-
zation and evolution of Android malware. The authors create a dataset of android apps and then
categorize them by reading blogs, news, etc. They also perform some behavioral analysis regarding
how the different malware families install themselves, what they exploit, how they spread and what
they do (specifically: Installation, Activation, and Payloads). They discuss some useful features, e.g.,
the encryption keys used and naming convention of malicious embedded apps. They also identify
that different AV vendors name the same malware differently, which shows the lack of consistency
and coordination among the AV vendors. This is why we believe that there is a possibility of misla-
belling malware samples in the provided dataset.

In the work of Black et al. [37], the authors present a detailed survey of seven Windows-based
banking malware. It identifies 1) the common malware behaviors among the samples that are stud-
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ied, 2) an almost-exhaustive list of ways those behaviors can be achieved in Windows OS, and 3) how
each of the malware family performs those actions. In addition, because of the difficulty in charac-
terizing malware behaviors, the authors conclude that this task will remain somewhat manual in
nature.

Unfortunately, in the aforementioned studies, the authors only characterize system-level be-
havior, which cannot be used for our project.

Cui et al. [30] utilize the network activity of everyday-use applications to reverse engineer their
communication protocol, which is essentially the core behavior of the software. Their results pro-
vide evidence that the software’s Internet-usage behavior is visible in its network traffic. Hence, we
can conjecture that the same would hold true for malware and that the clusters obtained would
reflect different types of Internet-usage behaviors. Whether different malware families exhibit dis-
tinguishing Internet-usage behaviors is one of the questions that we aim to address in this project.

Secondly, a challenge in using sequences-as-features is determining the reasonable length of
a sequence. For example, longer sequences would be better-suited for building state machines,
since they need to compute probabilities of transitions, which only makes sense on a large enough
sample size. On the other hand, if one wants to detect handshakes, a small chunk of sequence
from the beginning would be enough. For example, Wang et al. [31] aim to reverse engineer the
protocol used by a software using its network traces. They identify that the first 3-bytes extracted
from the application header of each packet are a distinguishing pattern in determining the ’message
format’. Hence, they use those small strings to cluster different types of network messages, which
they eventually use in determining the protocol. In this project, we use this insight and take only
the first few packets to construct sequences.

2.4. DISCRETIZATION TECHNIQUES

In Sequence Clustering, it is important to define the notion of ’similar sequences’. This, in turn,
depends on many factors, such as the data type and distribution of the sequences. Some distance
measures are only applicable to categorical sequences. For example, the distance between the nu-
meric sequences [1,2,3,60,70,80,900,1000] and [2,3,4,61,71,82,901,1001] should not be very large,
since the point-to-point values are very close together. On the other hand, if these sequences are
considered as categorical in nature, each distinct value is considered a different category. Hence,
the distance between these two sequences will be large. Moreover, the key challenge is determining
the thresholds/boundaries that discretize the numerical sequence into categories. Detailed surveys
on discretization techniques can be found in [38], [39], [40]. We only summarize the most com-
monly used techniques in this section. There are two main types of discretization techniques: 1)
Supervised discretization, which knows the class labels, and 2) Unsupervised discretization, which
does not have class information. In this project, we deal with numeric sequences without assum-
ing any class information. Following are some of most commonly used Unsupervised discretization
techniques:

1. Equal-Width Interval Discretization: This method calculates the boundaries based on the
minimum and maximum value of a sequence, and the number of user-defined categories.
The interval between each boundary is fixed, irrespective of the number of items that fall
in each category. For example, for a minimum value of 10, a maximum value of 50 and 2
categories, the interval of each class is 20 (calculation: 50−10

2 ), so the boundary lies at
30 (calculation: 10+20). If most of the values in the sequence are below 30, the first
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category will have a lot more samples than the second category.

2. Equal-Frequency Discretization: This method finds the minimum and maximum values of
a sequence, arranges the data items in ascending order, and then assigns the sorted values to
categories such that the number of items in each category remains the same.

3. Entropy-based Discretization: This method recursively evaluates a number of boundaries
and chooses the best one based on minimum Shannon’s entropy 1. However, performing this
process for a larger number of sequences quickly becomes infeasible.

4. Percentile-based discretization: This method divides a sequence into categories based on
pre-defined percentiles as the boundaries. For example, assuming three categories, in se-
quence [1,1,1,1,4,4,5,7,7,7,1], the 33r d percentile is 1 and the 66th percentile is 5. Hence, all
values lower than 1 fall in the 1st category, all values lower than 5 fall in the 2nd category, and
all other values fall in the 3r d category. This approach is used by Pellegrino et al. [41] to dis-
cretize numeric sequences such as duration, bytes, and number of packets by assigning them
a cluster based on which percentile they lie in.

The above-mentioned techniques are either too computationally heavy, do not take into ac-
count the underlying data distribution, or operate locally on a single sequence at a time. The partic-
ular challenge that we have is: knowing the number of categories, which boundary selection makes
sense for the data set under consideration. This problem is both, data distribution- and context-
dependent.

2.5. RESEARCH GAP

There are a number of gaps in the research that we have reviewed above.

Firstly, there is increasingly more emphasis on Deep Packet Inspection to extract good features
that characterize a malware’s network behavior. Although such features give a better view of the
behavior, because of privacy concerns, these tactics may not be applicable in the near-future. On
the other hand, using high-level features do not provide an exact behavioral profile, which we want
to build. Hence, the first research gap we fill is to use sequences of high-level features, instead of the
previously-used single-valued features to evaluate the kind of behaviors they are able to capture. We
also compare clusters generated with sequences-as-features with a baseline version that does not
incorporate sequence data. Finally, we also test various distance measures to define the notion of
’similarity’ when dealing with sequences-as-features.

Secondly, network traffic analysis has been used to solve a number of problems. However, to
the best of our knowledge, there does not exist an analysis of which level of granularity is appropri-
ate to achieve certain goals – whether to use all traffic as one sequence, whether to split incoming
and outgoing traffic as two sequences, or whether to split the traffic into connections to generate
sequences. Hence, we fill the second research gap by performing clustering on two levels of granu-
larity – the whole Pcap file considered as a sequence (Pcap-level) and individual connections con-
sidered a sequence (Connection-level). We provide insight into what kind of behaviors are visible at
each level.

Thirdly, to the best of our knowledge, there does not exist any work that compares malware
families’ system-level behavioral aspect with their network-behavioral aspect – how many attacking

1https://en.wiktionary.org/wiki/Shannon_entropy
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capabilities are exhibited by a particular malware, and how many malware families have common
attacking capabilities. We fill this gap by considering malware family labels as clusters on the static-
analysis level and compare these clusters with those generated using a malware’s network activity.

Lastly, discretizing sequences is a well-studied topic. However, to the best of our knowledge, we
have not found a technique that is both context-dependent and is simple to use at the same time.
Hence, we evaluate three simple discretization techniques and show under what circumstances they
are applicable.

In summary, we combine different aspects of network traffic analysis from various papers and
consolidate it all in one master thesis with the goal of filling all the aforementioned research gaps.



3
PRELIMINARIES

This chapter briefly explains the algorithms and concepts required to understand the rest of the
report. It also outlines the design decisions for choosing the particular techniques.

3.1. SEQUENTIAL DATA

A sequence is an ordered list of items. Sequences capture subsequent values of a variable and there-
fore, have the ability to capture behavioral changes in that variable over a period of time. The ’order’
of the items is important, because, for example, keeping the order intact in a recipe is what allows
one to bake the perfect cake, and a particular order of actions allows one to predict the next moves
of a person. On the contrary, a single value of a variable captures only the current state or only the
aggregate of multiple states, which may not be appropriate to represent the intricacies of evolving
behavior.

In this project, we are interested in clustering the network behavior of malware samples. In order
to do that, we need to capture each malware sample’s behavior in one or more features. Because of
the implicit temporal aspect of sequences, they seem to be the intuitive choice for features.

There are two types of sequences that we work within this project:

1. Numeric sequences: Numeric sequences can be considered as time series. Techniques from
time series analysis can be used to measure the distance between two numeric sequences.
Some examples of numeric sequences are sizes of the alphabets written when writing your
name, and the number of bytes transferred in ten subsequent packets.

2. Categorical sequences: Categorical sequences are much difficult to deal with because of their
non-generalizable and non-standard notions of similarity. Bio-informatics is a field of Com-
puter Science that frequently deals with categorical sequences, such as DNA and RNA strains.
They align DNA sequences to identify which species might be related to each other. More-
over, text matching can also be considered as a categorical sequence-matching problem – an
alphabet represents its own category and the more overlap there is between alphabets of two
words, the higher the similarity score is.

Sequences can be represented in many ways, e.g., as time-series or by transforming them into

22
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another form using dimensionality reduction techniques. We represent the sequences used in this
project in two ways:

1. Sequences-as-lists: Values at different time steps are collected in a list to form one long se-
quence of events. For example, the number of coffees I drink in a week can be represented as:
[1,2,3,4,1,1,1], which shows a partially increasing trend as the week goes on and drops as the
weekend approaches.

2. Ngrams: In Computational Linguistics, ngram is defined as the set of n consecutive items in a
given sequence. n=1 is called a unigram, n=2 is called a bigram, n=3 is called a trigram, and so
on. Ngrams can capture the structure of a sequence from a statistical point of view. The larger
the value of n is, the more structure is captured. A sequence is converted into a set of ngrams
by using a sliding window of length n. For example, the sequence A = [1,1,2,3,4,2,3] will
be converted into the following bigrams: [(1,1),(1,2),(2,3),(3,4),(4,2),(2,3)]. The
order in which the ngrams are stored now becomes fluid since each ngram captures a little
piece of the whole temporal behavior within itself.

A packet capture (Pcap) file consists of the packets sent and received to/from a host during the
interval the capture was in effect for. Each packet is composed of many fields, which can be used
as features depending on which OSI layer we look at. For example, at the Network layer, we get
access to the IP address of the domain a user is trying to contact, such as that of a mail server or a
malware trying to contact its Command and Control server. At the Transport layer, we get access
to the port number through which the service is communicating to and being communicated with.
Port numbers sometimes also indicate the protocol being used for the communication, such as port
80 for HTTP and port 22 for SSH. At the highest level – the Application layer, direct interaction with
the service takes place, which makes the exact message sent or received visible (either in plain-text
or encrypted), as well as the URL of the request sent to that service. For example, it could be the
credentials to a service a user is logging in on or personal pictures that a user is archiving to the
cloud. Each layer provides a slightly different view of the network behavior. However, one thing is
constant – a sequence of individual actions capture the long-term behavior of a host much better
than aggregated, singular values.

3.2. MEASURING DISTANCE BETWEEN SEQUENCES

Characterizing behavior using sequences is an intuitive design choice. However, it is not straight-
forward to define the notion of ’similar sequences’ in order to measure the distance between them.
A number of techniques exist to measure the distance/similarity depending on the type of sequence
and how the context defines ’similarity’. In this section, we describe a few distance measures that
have been evaluated during this project. There are two measures for numeric sequences, i.e., Eu-
clidean (point-to-point) distance, and Dynamic Time Warping; and there are three measures for
categorical sequences, i.e., Sequence alignment, Longest Common Subsequence, and Ngram anal-
ysis.

A NOTE ON DISTANCE VERSUS SIMILARITY

On a scale of 0.0 to 1.0, when two items are exactly alike, the similarity is 1.0, while the distance
between them is 0.0. In contrast, when two items are completely different, the similarity is 0.0 while
the distance is 1.0. This means that similarity and distance are inverses of each other. In the rest of
the report, we define distance as:
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distance = 1.0 - similarity (3.1)

; where the similarity score has been scaled to [0-1].

PROPERTIES OF DISTANCES

Distances need to fulfill four conditions to be considered metric:

1. Non-negative: d(a,b) >= 0

2. Symmetric: d(a,b) == d(b,a)

3. Exact match: d(a,b) == 0 iff a == b

4. Triangular inequality: d(a,b) <= d(a,c) + d(b,c)

Metric distances are especially required when comparing distances computed from different
methods. Metric distances always calculate the same distance, which makes different distance mea-
sures comparable.

3.2.1. EUCLIDEAN (POINT-TO-POINT ) DISTANCE

One standard technique used to measure the distance between two numeric time series is to map
each point of one sequence to each point of the other sequence and then to calculate the Euclidean
distance (or Manhattan distance, etc.) between each point-pair and summing it all up. An example
of this technique is shown in Figure 3.1. The blue and orange series represent two sequences, and
the dotted line between the series represents point-pairs between which distance is computed. This
technique is easy to use, but cannot handle sequences of different lengths. It also does not take into
account out-of-phase sequences involving delays but otherwise having the same structure.

Figure 3.1: Point-to-point distance measure

3.2.2. DYNAMIC TIME WARPING

Dynamic Time Warping (DTW) is an old algorithm, developed in 1983, which was meant to calculate
the distance between two curves in the presence of distortions (or warps) in the time-axis. DTW
considers the distance calculation between two numeric sequences as an optimization problem
where the objective function is to map points from one sequence to that of the other sequence
in a way that minimizes the overall distance between the two sequences. DTW is a more robust
technique than the standard point-to-point mapping mechanism because it is able to find local
substructures in one sequence and map them to that of the other sequence.
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DTW iteratively builds the solution by computing the distance between points of the two se-
quences and summing it up with the minimum solution found so far in the immediate neighbor-
hood. The neighborhood is defined as the values of 1) taking one step in the x-direction, 2) one
step in the y-direction, and 3) one step in both x- and y- directions. This is formally written in the
following equation:

D(i , j ) = d(Ai ,B j )+min(D(i −1, j ),D(i , j −1),D(i −1, j −1)) (3.2)

Where d(_,_) is the distance measure to compute the distance between two sample points,
e.g., Euclidean distance or Manhattan distance. The three parameters of min(_,_,_) are the values
of the neighborhood, which are essentially sub-problems of the main problem. A graphical repre-
sentation of distance computation is shown in Figure 3.2, where the two sequences are written on
the x- and y-axes.

Figure 3.2: Graphical representation of the DTW equation

The output of DTW is a ’similarity’ score. This score is only meaningful when compared with the
similarity scores of other sequences. Therefore, one must first collect all the similarity scores, and
scale them to a self-defined range before they can be used further. Moreover, the similarity score
is converted to a distance score using the equation 3.1. This score measures the distance between
two sequences but is not a ’distance metric’ since it does not fulfill the triangular inequality. In
our case, since we do not compare distances calculated using other methods, we do not care if a
distance measure is metric. An example of DTW in action is shown in Figure 3.3. The blue and
orange series represent two sequences, and the dotted line between the series represents point-
pairs that are mapped to each other for distance computation. The only negative aspect of using
DTW is that it takes a long time to compute even on the fastest implementation of Python – fastdtw
[42], which is used in this project. However, the benefits of using DTW far outweigh the speed issue,
as it is incredibly noise tolerant and can calculate an interpretable distance between sequences even
in the presence of delays. Therefore, DTW was selected to compute distances between numeric
sequences.
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Figure 3.3: Dynamic Time Warping distance measure

3.2.3. SEQUENCE ALIGNMENT

Sequence alignment is a way of arranging sequences of DNA, RNA or protein to identify regions
of similarity that may be a consequence of the functional or evolutionary relationship between se-
quences 1. Sequence alignment can be considered as the categorical alternative of DTW, but instead
of using Euclidean distance, each match gets a reward, while each mismatch and an introduced gap
gets a penalty. When two data points have the same category, it is considered as a match; otherwise,
it is considered as a mismatch. A gap is an empty character inserted in place of a mismatch to avoid
getting a high penalty. There are two types of alignment methods: 1) Local alignment: when one
wants to find a sub-string in a longer string, and 2) Global alignment: when one wants to match
two full sequences with each other. The output of the sequence alignment algorithm is an align-
ment score, similar to DTW. The main drawback of using Sequence alignment is that it requires
the appropriate substitution matrix, which gives scores for matches, mismatches, and gaps. In the
case of Bio-informatics, many of these substitution matrices have been introduced over the years.
Unfortunately, for malware analysis, no such matrix exists. Moreover, in the presence of default pa-
rameter values, the algorithm performs worse than any other technique we evaluated. Therefore, it
was decided not to use this technique further.

3.2.4. LONGEST COMMON SUBSEQUENCE

As the name suggests, the Longest Common Subsequence (LCS) algorithm 2 finds the longest con-
secutive sequence of items that are common to both categorical sequences. This technique does
not give a distance score, but rather the LCS of the two sequences. Hence, one must figure out how
to map it to a number. In the thesis presented by Wong Hon Chan [23], the length of LCS is used as
the measure of similarity.

Consider the following example: The LCS between sequence A = [1,1,2,3,4,2,3] and se-
quence B = [2,2,1,2,3,3] will be [1,2,3] and the similarity score would be 3.

However, in the case of this research, the results produced by LCS were uninterpretable. There
were cases where the two sequences looked nothing alike, but because they both had, what we de-
fined noise, the LCS turned out to be the noise, rather than interesting behavior. Hence, the distance
measure was overshadowed by the presence of delays and noise in the sequences. Therefore, it was
decided not to use LCS anymore either.

1https://en.wikipedia.org/wiki/Sequence_alignment
2https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
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3.2.5. NGRAM ANALYSIS AND COSINE DISTANCE

As mentioned previously, sequences are broken into multiple smaller sequences, which we call
Ngrams, using a sliding window of length n.

Consider the following running example: Sequence A = [1,1,2,3,4,2,3] will be converted
into the following bigrams: [(1,1),(1,2),(2,3),(3,4),(4,2),(2,3)]; and Sequence B = [2,
2,1,2,3,3] will be converted into the following bigrams: [(2,2),(2,1),(1,2),(2,3),(3,3)].
We define a set of bigrams as a sequence’s Bigram Profile.

Once all sequences are transformed into their bigram profiles, a set of common bigrams (let’s
call it C) is selected. Then, for each sequence, a numeric list equal to the length of C is generated.
For each bigram in C, its frequency in the sequence’s bigram profile is appended to the list. If a
bigram does not exist in the bigram profile, 0 is appended instead. This step transforms the bigram
profiles into their vector representation.

In the above example, the common set C would be: [(1,1),(1,2),(2,3),(3,4),(4,2),
(2,2),(2,1),(3,3)]. Hence, the resulting vectors for the two sequences will be: sequence A =
[1,1,2,1,1,0,0,0] and sequence B = [0,1,1,0,0,1,1,1]

Cosine curves can be used to measure the distance between two vectors, which is essentially the
cosine angle between the two. The similarity value lies between 0 and 1, where 1 means that the two
vectors are the same (parallel to each other) and 0 means they are completely different (orthogonal
to each other). In the above example, the cosine similarity comes out to be 0.526, so the distance
between sequence A and B is 0.474 (from Eq. 3.1).

This technique is, by far, the most commonly used one in literature to measure similarity in text
[43, 44], in DNA and RNA sequences [45], and even in software code matching [16]. In addition,
this technique is the fastest and provides the most interpretable results among all the techniques
we have tried. Hence, Ngram analysis has been used to compute distances between categorical
sequences.

3.3. CLUSTERING ALGORITHMS

Once the distance between two sequences can be computed, a mechanism is required that can
group the sequences closest to each other. There exists a family of clustering algorithms in Machine
Learning that aim to group items in bins based on their similarity. Each algorithm has its pros and
cons. We narrowed down the algorithms we wanted to use based on the following criteria:

• Must be able to operate on pre-calculated distance matrix and not on the original dataset
since our dataset is a collection of sequences that many algorithms cannot handle.

• Clusters should be free to be of any shape and size for robustness.

• The algorithm should require fewer parameters to be tweaked.

• The algorithm’s output is intuitive and easy to analyze.

• The algorithm is known to give good results.
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3.3.1. AGGLOMERATIVE CLUSTERING

Agglomerative clustering is a type of ’hierarchical clustering’, where the goal is to build a hierarchy
of clusters. Agglomerative follows a bottom-up approach, where each point starts in its own cluster.
Then, iteratively, the clusters that are closest to each other are merged to form a larger cluster. This
process is repeated until only one cluster is left. For example, consider the clustering of three points
(a, b, c) as shown in Figure 3.4. Each point forms its own cluster. In the next step, a and b are
merged, followed by merging with c. The distance between the newly formed cluster and the rest
of the clusters is the minimum distance between its contained points and the rest of the clusters.
This is what the ’Single-Linkage’ clustering does. There are other methods to measure the distance
as well. For example, the ’Complete-Linkage’ calculates the maximum distance between a cluster’s
points and the rest of the clusters, and ’Average-Linkage’ computes the average distance between
a cluster’s points and the rest of the clusters. However, Single-linkage is the most commonly used
method.

Figure 3.4: Example of Agglomerative clustering

The output of this algorithm is a dendrogram, where leaves are individual data points, and the
increasing levels of the tree show the cluster mergers (right side of Figure 3.4). It is used to represent
phylogeny in different fields, e.g., species of animals or relationships between malware families. The
downsides to using this algorithm are that the Single-linkage is very sensitive to noise and that the
user has to provide a cut-off point manually, which is an unintuitive parameter and will result in
clusters of equal sizes.

3.3.2. HDBSCAN

HDBScan [46] stands for Hierarchical DBScan algorithm – an extension of DBScan, which used to
require more parameters and was unable to build clusters of varying densities. HDBScan uses ro-
bust Single-linkage hierarchical clustering and then extracts flat clusters based on cluster stability.
It is a density-based algorithm, meaning clusters are groups that are located in a densely populated
area. HDBScan has two input parameters, i.e., minimum cluster size and k-nearest neighbors.

The underlying algorithm is Single-linkage, which is very sensitive to noise. Real data has noise
and outliers, so a data point in a wrong place can serve as a bridge between two clusters. To mit-
igate this problem, the idea is to conceptually push away the noisy points from ’good’ points and
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to reduce the distance among ’good’ points that are placed closer together. Noise can be intuitively
defined as points whose probability of membership to any cluster is too low, as a result of either be-
ing too far away from all other points or by forming a bridge between two or more clusters. In order
to do this, an estimate of density is required. The concept of Mutual Reachability Distance (MRD)
is used to conceptually bring points in high density closer together and increase the distance of
points lying in low-density areas. The MRD between points a and b is the maximum of two distance
metrics defined below:

1. The kth nearest neighbor provides a local estimate of density. The ’distance’ is equal to the
radius of a circle that one needs to draw around a point to encapsulate k nearest neighbors.
Naturally, if a point is in a high-density area, the radius will be small. Conversely, the radius
will be much bigger if the point lies in a low-density area. This distance is also called the core
distance of a point.

2. The original distance measure between two points. This value can be read off from the pre-
computed distance matrix.

(a) When points are close-by (b) When points are farther away

Figure 3.5: Working example of Mutual Reachability Distance

Consider the points in Figure 3.5. Let k=2, so the circles would be drawn of a radius such that
2 points can be encapsulated inside the cluster. In case (a), the points are closer together, so the
MRD is the core distance of the bigger (purple) circle, which is also the same as the original distance
measure between the two points (shown as a black line). In case (b), the points are far away from
each other, so they get pushed even farther as the MRD is the distance between the two points
(shown as a black line). The higher the value of k is, the more noise will be integrated inside the
clusters.

Next, a weighted graph is generated where the data points are vertices, and the edges represent
the MRD between points. Then, given an iteratively decreasing value of a threshold, vertices whose
MRD is higher than the threshold are dropped. Essentially, we start with a fully connected graph
and move towards a fully disconnected graph. The subsections of the graph that are connected to
each other are called connected components. The different values of the threshold give a hierarchy
of connected components. In order to make this algorithm scalable and more efficient, the con-
cepts of spatial indexing and minimum spanning tree are used in the implementation of connected
components.
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Next, we want to extract flat clusters from the resulting hierarchical tree. This is where the ’min-
imum cluster size’ parameter is used. At each level, when the tree splits into a branch that has less
items than the minimum cluster size, it considers them as falling out of the cluster and labels them
as noise instead of putting them in a new cluster. The longer a cluster remains intact – points fall
out of the cluster, rather than getting split into multiple clusters, the more persistent or stable that
cluster is considered. The stability of a cluster is formally defined as the distance from the birth of
the cluster until it gets split into new clusters. In order to extract the final clusters, we traverse the
tree bottom up, choosing clusters that have higher stability than that of its descendants. This step is
there to avoid having larger clusters when the smaller clusters have been more persistent and have
sizes larger than the minimum cluster size parameter. Finally, we end up with clusters of different
shapes and sizes, where the points are more likely to be in the correct clusters since we only select
the stable clusters and remove noisy points in the process.

3.4. CLUSTER VALIDATION TECHNIQUES

Clustering algorithms provide a dataset divided into groups based on similarity. In case the labels
are present, one can use a test set to validate the quality of clustering by calculating the precision
and recall. On the other hand, if the ground truth labels are absent, there is no intrinsic way of
calculating the quality of the clusters. Many indexes exist that try to quantify the cohesion and
separation of the clusters.

• Cluster cohesion is defined as how similar and close by the items are within a cluster.

• Cluster separation is defined as how diverse are items belonging to different clusters.

A clustering is considered generally good if it exhibits high cluster cohesion and high cluster
separation.

3.4.1. SILHOUETTE INDEX

Silhouette analysis presented in 1987 by Rousseeuw [47] can be used to quantify the separation dis-
tance between the resulting clusters. It is a graphical representation technique, where the silhouette
plot shows how well within the cluster a point is. The silhouette value represents how similar a data
point is to the members of its own cluster and how different it is to the members of other clusters.
This measure has a range of [-1, 1]. Let i be the centroid of a cluster; s(i ) be the Silhouette value
of that centroid; a(i ) be the average distance between i and all other data points within the same
cluster (a way to measure cluster cohesion); and b(i ) be the lowest average distance of i to all data
points in any other cluster, of which i is not a member (a way to measure cluster separation). Then
the Silhouette index is formally written as:

s(i ) = b(i )−a(i )

max(a(i ),b(i ))
(3.3)

which can also be written as:

s(i ) =
{ 1 - a(i )/b(i ), if a(i ) < b(i )

0, if a(i ) = b(i )
a(i )/b(i ) - 1, if a(i ) > b(i )

(3.4)
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3.4.2. DAVIES-BOULDIN INDEX

DB Index is an older measure, introduced in 1979 by Davies and Bouldin [48]. It is an internal evalu-
ation scheme, where the validation of cluster quality is made using features inherent to the dataset.
Hence, a good value reported by this method is non-comparable to other indexes. Let Mi , j be the
separation between the i th and the j th cluster; Si be the within-cluster scatter for cluster i ; and
S j be the within-cluster scatter for cluster j . DB Index aims to maximize the inter-cluster distance
(Mi , j ) and minimize the intra-cluster distance (Si and S j ). The equation for DB index is formally
defined as:

Di = max
j 6=i

Si +S j

Mi , j
(3.5)

If N is the number of clusters:

DB = 1

N

N∑
i=1

Di (3.6)

3.4.3. VISUAL ANALYSIS

This technique is manual as one has to manually explore each data point in a cluster and inspect
whether its current assignment to a cluster makes sense. Utilizing visualizations, such as heatmaps
and scatter plots help ease the analysis, such that one can visualize the dataset itself and can make
their own ’visual clusters’. Then, one can compare the result of the ’visual clusters’ to the clusters
provided by the algorithm. This technique is highly subjective but works well because humans are
typically good at finding patterns and similarities using visual analysis [49].

This technique is particularly useful when one wants to perform an exploratory analysis of
whether the data inside a cluster makes sense or not, as opposed to when validating the cluster-
ing algorithm itself. In addition, this technique also works in cases where all other cluster validation
indexes fail, since the ’goodness’ of a cluster is also self-defined and context-dependent notion [50].

3.5. SUMMARY

In this chapter, we explained the necessary background required to fully understand the rest of
the report. We first describe sequential data and why it is a good choice for behavioral modeling.
Then, we describe several distance measures that can be used to measure the distance between se-
quences – the techniques for numeric sequences are Point-to-point mapping and Dynamic Time
Warp distance; and those for categorical sequences are Sequence alignment, Longest Common
Subsequence, and Ngram analysis. We also describe two clustering algorithms (Agglomerative and
HDBScan) and three cluster validation techniques (Silhouette index, DB index, and visual analysis)
that have been evaluated in this research.
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DATASET EXPLORATION

This project aims to develop a clustering technique that is applicable to the real world. This would
eliminate the bias towards synthetic malware that models scenarios that might never occur in real
life. Therefore, it was decided to work with a security company, which specializes in malware anal-
ysis and threat intelligence.

4.1. DATASET COLLECTION

ABC has provided the dataset used in this project. The dataset is a collection of malware samples
detected by their system in 2017. The dataset is composed of only banking malware because ABC’s
main clientèle are financial institutions.

The data has been collected as follows: ABC has an infrastructure with which they detect mal-
ware samples. If the sample turns out to be a unique one, which they have not analyzed before, they
execute it in a sandboxed environment and collect behavioral information. They have a series of
different sandboxes so that if a malware is able to detect that it is being executed in a sandbox and
refuses to generate behavioral data, they execute it in a different one with changed configurations.
The goal is to execute the malware to collect information, such as file system activities, API calls, and
the generated network traffic. The sample is executed for a variable amount of time, which is un-
known to us. Since only network behavior concerns this project, we only focus on it. Hence, among
other kinds of files, the generated network activity is saved in a Pcap file. Each Pcap file refers to
one malware sample. The Pcap file is zipped and is renamed to its SHA1 hash, and then is stored in
an archive. These hashes are stored in a database corresponding to the entry of its original binary’s
sample. This database also contains other metadata, such as the time and date when the malware
was detected, the malware family label assigned to it, VirusTotal’s output, and the reference to the
binary executable associated to the Pcap file. ABC graciously provided us with approximately 1.2
Million Pcap files and some of their associated metadata entries.

32
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4.2. DATASET LABELING

ABC has a set of YARA 1 rules to classify malware samples into families. YARA is a tool for malware
researchers that helps to identify and classify malware samples. With YARA, one can create a set of
rules, which are essentially descriptions of malware families based on their textual or binary pat-
terns. The rules used by ABC are entirely based on the static analysis of binaries of the different
malware samples they have analyzed over the years. Malware analysts update rules of a malware
family whenever a sample of that family has changed significantly. The labels assigned to malware
samples are stored in the database, referenced by the hash of the malware’s binary.

4.3. DATASET FILTERING

There are approximately 1.2 Million Pcap files in the dataset, all in a zipped format. Each Pcap file
refers to a unique malware sample. In addition, the metadata file contains 47,271 entries associated
with malware samples. A script was written to unzip those Pcap files that have a corresponding
entry in the metadata file. This step resulted in a little over 47K Pcap files. Each Pcap file had a
corresponding malware family label. Each malware family had a variable size. It was decided to
focus on a few prevalent and well-known malware families. Crowe [1] reports a list of malware
families that pose the highest threat in 2016-2017 2. Hence, a total of 15 banking malware families
were chosen from those lists for the purpose of this project. 1196 Pcap files are associated with the
chosen malware families. The family names and their contribution to the final dataset are given in
Table 4.1. The filtered sample set is merely 2.5% of the original dataset, which is not a representative
sample set. However, the feature set we have chosen eliminates the potential for bias because of its
genericity. Moreover, some chosen families are significantly bigger than the others, which also has
the potential of causing skews. However, a pairwise distance matrix is calculated for all samples,
which gives each sample in every malware family an equal opportunity. Hence, a malware family’s
size is not correlated with the clustering results.

1https://virustotal.github.io/yara/
2https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-financial-threats-

review-2017-en.pdf
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Family name Samples Percentage Contribution (%)
Blackmoon 887 74.10
Gozi ISFB 122 10.19
Citadel 70 5.85
Zeus VM AES 29 2.42
Ramnit 22 1.83
Dridex Loader 15 1.25
Zeus v1 10 0.83
Zeus Panda 10 0.83
Gozi EQ 7 0.58
Dridex RAT Fake Pin 7 0.58
Dridex 6 0.50
Zeus P2P 4 0.33
Zeus 3 0.25
Zeus OpenSSL 2 0.17
Zeus Action 2 0.16
Total (N) 1196

Table 4.1: Composition of malware families and their contribution in the experimental dataset

4.4. LEVEL OF GRANULARITY OF SEQUENCES

There is much work on network traffic analysis to solve a number of problems, e.g., intrusion de-
tection, anomaly detection, building behavioral models of malware, etc. However, to the best of
our knowledge, there does not exist any work that answers how low-level the features need to be in
order to capture the behavior of the entity that they are analyzing. We already know from literature
survey (see Chapter 2) that there is an emphasis on application layer headers and even on features
extracted from the payload. We want to know whether that is the only way forward and whether we
can modify the way we build our features in a way that does not go too deep in a packet’s content.
A discussion with an experienced network analyst from ABC led us to select the potential level of
granularities that might capture the malware behavior. Hence, in this project we experiment with
sequences generated at two different levels of granularity: 1) Pcap-level, and 2) Connection-level.

In order to understand the granularities of the sequences, consider the following analogy: There
is a room filled with people. The host is having a conversation with each of the guests. Your task is to
detect whether that room is filled with potentially malicious conversations, e.g., regarding murder
or drug dealing. It would be even better if you can identify which of the guests seem suspicious
based on the kind of conversation they are having with the host. For example, a drug-dealing expert
informed you that specific gestures are often used when negotiating a drug deal. Hence, you should
be on a lookout for familiar gestures and flagged keywords.

The room in this example is a packet capture (Pcap) file. The host of the party is the localhost,
which is represented by the IP address of the virtual machine the malware is executed in. The guests
of the party are the IP addresses the localhost connects to. The goal is to detect and group similar
malicious conversations/behaviors, without reading the actual payload of the involved packets.
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4.4.1. PCAP-LEVEL SEQUENCES

Back to the analogy: One way to monitor the room and its residents is to listen to every word every
person says starting from the beginning of the party till the end and flag any suspicious words that
you hear. This is equivalent of creating a sequence from every single packet in the Pcap file. This is
called the ’Pcap-level granularity’. For example, a sequence of packet sizes would be generated at the
Pcap-level by concatenating the packet size of each packet in the sequence. Similarly, a sequence
of time-elapsed between packets would be generated at the Pcap-level by concatenating the time-
difference between receiving the previous and current packet, starting from the first packet till the
last packet of the Pcap. The visual examples of these sequences are shown in Figures 4.1. These
figures show the first 100 packets of the Pcap. The figure’s title shows the assigned malware family
label followed by the first five characters of the SHA1 hash of the Pcap file. In the given dataset of
1196 Pcaps, the average length of Pcap-level sequences is approximately 190 packets.

(a) Sequence of packet sizes measured in bytes)

(b) Sequence of interval between packets measured in seconds

Figure 4.1: Examples of Pcap-level sequences

There are some caveats to using Pcap-level sequences. The resulting sequences are, on average,
too short for behavioral models, such as state machines, and take too long to compute distances,
such as Dynamic Time Warp distance. Secondly, the way the packets are concatenated to generate
sequences jumbles up packets being sent to and received from different hosts. The interference
from other connections can hide the subtle patterns present in the way hosts communicate with
each other. However, on the positive side, Pcap-level sequences show a bird’s eye view of what goes
on right after the malware sample is executed.

4.4.2. CONNECTION-LEVEL SEQUENCES

Back to the analogy: Another way to spot malicious conversations is to zoom in on each individual
conversation, such that the words spoken by the host are considered a separate sequence than the
response received from one of the guests. This is equivalent of constructing a sequence only from
the packets transferred between (source IP → destination IP). This is called the ’Connection-level
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granularity’. An Outgoing connection is defined as the packets transferred between (localhost →
guest IP), where guest IP is the IP address of one of the hosts the localhost connects to. On the
contrary, an Incoming connection is defined as the packet transfers between (guest IP → localhost),
where guest IP is the IP address of one of the hosts that is replying to the localhost. Figures 4.2
show examples of incoming and outgoing connections, respectively. Figure 4.2(a) shows the sizes
of the first 100 packets of an incoming connection from 144.76.133.38. Figure 4.2(b) shows the time
difference between the first 40 packets of an outgoing connection to 185.133.72.100. In the given
dataset of 1196 Pcaps (or 8997 connections), the average length of Connection-level sequences is
approximately 20 packets, which is significantly smaller than the average of Pcap-level sequences.

(a) Incoming connection of packet sizes

(b) Outgoing connection of interval between packets

Figure 4.2: Examples of Connection-level sequences

Figures 4.1 and 4.2 show behaviors at different levels. However, at the Connection-level, much
more insight can be obtained about the behavior, since we also have access to the host’s IP address.
Each Pcap file consists of three connections on average, which on the Pcap level are all jumbled up
inside a single sequence. Connection-level sequences are smaller than Pcap-level sequences. How-
ever, because Connection-level sequences are at a deeper level than Pcap-level sequences, they are
able to capture clearer behavioral patterns of individual hosts. It is also much easier to distinguish
hosts exhibiting similar behavioral patterns versus distinguishing behavioral patterns in whole Pcap
files.

4.5. DATASET SPECIFICATION

For the clustering, we only consider sequences that are longer than a fixed threshold in order to
avoid introducing artifacts in the results due to huge variance in the length of the considered se-
quences. After a conversation with an experienced malware analyst, we hypothesize that if two mal-
ware samples have some relationship, e.g., code sharing or being controlled by the same attacker,
the first few packets, also known as the handshake, transferred to an IP address may be similar. We
expect that the similarity in the handshakes will be reflected in higher-level features. However, it
is unclear how many packets constitute the handshake. The threshold should be such that it is big
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enough to allow the initial handshake to be captured and short enough that it does not take too
long to compute distances between sequences. Since there is no straightforward way of setting this
value, the average length of the sequences was chosen as the threshold. This value is the average
number of packets in a Pcap (or connection) of the whole dataset. Since the dataset is very skewed,
most of the sequences are shorter than the selected threshold. In case of Pcap-level granularity, only
129 Pcaps out of the 1196 files are longer than the pre-defined threshold of 190 packets. In addition,
there are a total of 8997 connections in the 1196 Pcap files. In case of Connection-level granularity,
only 733 connections are longer than the threshold of 20 packets. Hence, the dataset considered for
clustering forms 10% of the total Pcaps and 8% of the total connections. A summary of the dataset
size is given in Table 4.2.

Pcap-level sequences Connection-level sequences
No. Pcap files 1196 1196
No. Connections - 8997
Average length in bytes (avg) 190 20
Revised No. Pcap files (>=avg) 129 216
Revised No. Connections (>=avg) - 733

Table 4.2: Summary of number of sequences at Pcap- and Connection- level granularity

4.6. SUMMARY

In this chapter, we introduced ABC as the data provider for this project. We also described how
the dataset was collected and labeled. The provided dataset was initially composed of 1.2M Pcap
files, which were filtered down to 1196 files coming from 15 pre-selected banking malware families.
In addition, two levels of granularity were selected to generate the sequential features – Pcap-level
(generating sequences from each packet in a Pcap), and Connection-level (generating sequences
from packets sent from host A to host B).
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In this chapter, the feature-set that we believe characterizes a malware’s network behavior has been
identified. There are two sets of features, one for each level of granularity. We also provide jus-
tifications for why the features were chosen and the differences that exist between feature sets of
Pcap-level sequences and Connection-level sequences. In addition, the feature representation for
the baseline analysis has also been described. Finally, we explain which distance measures were
used to calculate distances between the features.

There are a few considerations for the choice of the feature set. In light of available literature,
we want to develop a technique that is generalizable to more than one type of protocol-based mal-
ware. Hence, the feature set should allow clustering different type of malware. Secondly, although
netflows are more privacy-preserving than Pcaps, they are often sampled so they cannot be used for
building sequential behavioral models as some behavior would be missing due to sampling. More-
over, behavioral models such as state machines require long uninterrupted sequences to provide a
reasonable statistical distribution of data. Since the majority of the samples in the provided dataset
have short lengths, reliable state machines cannot be built. Therefore, the feature set should not
rely on excessively long sequences and must capture the uninterrupted behavior of malware. Lastly,
since the project’s emphasis is on banking malware, following are some of the features commonly
present in a banking malware, and that can be seen in its network traffic:

1. Presence of Command and Control server to exfiltrate the data to, and to receive the com-
mands from. This will be indicated by contacting the same IP address multiple times. To ver-
ify this, threat intelligence databases, such as VirusTotal 1, threat Crowd 2 and Threat Miner 3

can be checked for reports related to that IP.

2. Data theft/exfiltration – in particular, theft of credentials or confidential files. This will be
indicated by repetitive big packets being sent from the localhost to a suspicious IP address.

3. Receiving attack commands or configuration updates from the Command and Control server.
This will be indicated by receiving big packets from a suspicious IP address.

1https://www.virustotal.com
2https://www.threatcrowd.org/
3https://www.threatminer.org/
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4. Heartbeat packet being sent to the C&C communicating that the infected host is still alive and
part of the botnet. This will be indicated by periodic small packets being sent to a suspicious
IP address.

5. Fraud can be potentially visible in the anomalous network activity being generated from an
infected host. Banking malware is now moving towards employing hosts to mine cryptocur-
rency. Most of the behavior (read: actual mining) is done offline, but they report back to the
C&C server to consolidate intermediate results. This should potentially be visible in the pay-
load or the request query parameters.

Other behaviors such as spying, integrity violation, and persistence are capabilities that are done
offline so they cannot be seen in the network traffic. However, a feature set is required that is capable
of capturing these behaviors, without having to look inside the payload.

5.1. SELECTED FEATURES

The inspiration for the feature set came from the IO-graph utility in Wireshark 4 – a tool to capture
and analyze network traffic. An example of an IO-graph is shown in Figure 5.1. The x-axis shows
the time, and the y-axis shows the number of packets/bytes sent/received. The IO-graph shows a
graphical representation of the high-level behavior exhibited by a Pcap file. If a botnet has a periodic
behavior, it will be shown in the IO-graph as peaks in the graph at regular intervals. We can further
drill down in the IO-graph by showing only the traffic transferred between two hosts or traffic using
a specific protocol.

Figure 5.1: An example IO-graph showing behavior of a Citadel malware sample

Hence, the initial feature set was the packet sizes and the interval between packets. However, we
quickly realized that these features were too high level to show any interesting malicious behavior.
In addition, the IO-graph shows sequential behavior aggregated on time basis (e.g., per second or
millisecond). This causes the sequences to lose detailed information. For example, it will show that
500 bytes (or 3 packets) per second were sent, but will not show that the first packet contained all the
500 bytes. Considering this to be crucial behavioral information, the interval in the chosen feature
set was calculated on a per-packet basis instead. Next, the protocol number utilized by the packets
was also added in the feature set. The intuition was that if the malware samples are related, then
they would switch protocols in a similar order. In addition, as part of the literature review, a number

4https://www.wireshark.org/
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of features in the Network-layer and the Transport-layer header were identified that were promising
enough to characterize a malware’s network behavior. A few of them were port numbers, Time to
Live (TTL), and packet fragmentation flags.

One important note is that these features may not distinguish malicious from benign behaviors.
The abstractness provided by the high-level feature set cannot guarantee the difference between
benign and malicious behaviors. Therefore, the presence of a human analyst is still required to
sift through the resulting clusters. The goal of these clusters is to show similar behaviors. Those
behaviors can all be benign, malicious or can also be a malware behaving like a benign entity. No
matter what the ground truth is, the resulting clusters will provide actionable intelligence on which
malware samples behave similarly and what that similar behavior is.

5.1.1. PACKET SIZES

The first chosen feature is the size of the IP datagram of each packet. The intuition is that the usage
of certain packet sizes and the periodicity in the usage of similar packet sizes might indicate similar
underlying infrastructure. Of course, there is a cap on how big a datagram can be. However, if
a packet size is used frequently, which does not appear in other traffic, for example, or if similar
packet sizes are being sent/received at regular intervals, they might indicate suspicious behavior. In
addition, if big packets are being sent frequently, it might indicate exfiltration, and if big packets are
received frequently, it might indicate the dropper file is downloading the malware payload.

As a motivating example, upon visualizing the content of Pcap files in the provided dataset, we
find the following case: A malware sample visits a host and downloads a .dmg file (an image file
for MacOS), while another sample visits a different host and downloads an .iso file (an image file
for Windows). Both of these malware samples have been labeled as Gozi-ISFB, but they do not
necessarily have to be labeled the same to exhibit similar behavior – any malware sample can be
programmed to contact a host and download an image file. The crux is that the timings of the
requests these samples send, and the responses they receive are similar. Although the exact hosts
contacted, the exact file downloaded and the content of the packet itself is different, the semantics
seem similar. On top of that, this similarity is also reflected in the high-level features of packet sizes.
An example of a sequence of packet sizes is shown in Figure 5.2. The y-axis shows the packet size in
Bytes, while the x-axis shows the packet number. The figure shows the use of a 300-byte packet after
every six packets.

Figure 5.2: An example sequence showing packet sizes in bytes

5.1.2. INTERVAL BETWEEN PACKETS SENT/RECEIVED

This feature captures the time interval between the previous and the current packet. Most of the
packets are sent/received with less than a second’s interval. There are a few packets that are sent
after 10-15 seconds but that behavior is rarely seen. If the interval is measured with a smaller unit,
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such as in microseconds, the interval may get polluted with noise introduced due to network delays.
Therefore, after experimentation, we measured the interval in milliseconds rounded off to three dec-
imal places. The intuition for this feature is similar to that of packet sizes – if two malware samples
report to the same C&C or the same attacker, the way the malware is programmed would be similar,
and that should be visible in the timing of when the malware becomes active and when it goes to
sleep. In addition, heartbeat packets 5 are also sent periodically to inform the C&C server that the
infected host is still part of the botnet. An example of a sequence generated with time interval is
shown in Figure 5.3. It shows that the malware is much slower in communicating with its C&C at
the start of the capture. It also shows a periodic switch between faster packets and slower packets.

Figure 5.3: An example sequence showing intervals in milliseconds

There are a few caveats to using this feature: Time intervals of Pcaps are comparable only if the
two Pcaps were collected on the same network, in order to avoid introducing network-related arti-
facts. In addition, malware can only exfiltrate information when that information becomes avail-
able. Hence, the malware may remain asleep for a variable amount of time before becoming active.
However, as soon as malware is installed on a victim’s machine, it needs to establish contact with
its C&C server to notify about the newly-infected host. This initial contact, which we define as the
handshake, is expected to remain similar for different infected hosts. Hence, only the interval infor-
mation available during the handshake is usable for clustering similar behaviors.

5.1.3. PROTOCOL

The protocol number field in the IP header shows the type of protocol used by the packet. IANA 6 has
standardized a protocol number for each protocol ranging from protocol number 0 (HOPOPT) to
254 (used for experimentation). Protocol number 255 is reserved by IANA. Some protocol numbers
for well-known protocols are: 1 (ICMP), 4 (IPv4), 6 (TCP), and 17 (UDP). The intuition for choos-
ing the protocol number is that if attackers use unconventional protocols to hide their actions, it
will be detected. In addition, if two malware samples are controlled by the same attacker, they
would switch between protocols in a similar way. This feature also makes the clustering technique
protocol-agnostic and will be able to cluster different types of malware. An example of protocol
switching behavior is shown in Figure 5.4, which shows that the packets periodically switch between
TCP and UDP.

5https://www.ixiacom.com/company/blog/mirai-botnet-things
6https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
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Figure 5.4: An example sequence showing protocol switching behavior

5.1.4. PORT NUMBERS

If IP addresses are identifiers of a host, then the port numbers can be considered as the ’doors’ that
hosts use to communicate with the outside world. Port numbers are part of the Transport layer
header. Some port numbers of well-known services are: 22 (SSH), 80|8080|8088 (HTTP), 443 (SSL),
53 (DNS). Port number 0 is reserved for requesting dynamic ports in socket programming 7. The in-
tuition behind using this feature is similar to the ones above. When exploring this feature, a number
of interesting behaviors were identified. For example, we could identify the protocol the malware
was most likely operating on, e.g., Figure 5.5(a) shows an HTTP-based malware and Figure 5.5(b)
shows a DNS-based malware. We could also identify potentially malicious behavior based on the
usage of certain port numbers. For example, ports 0 to 1023 are well-known ports that are used by
system processes. Ports 1024 to 49151 are registered port numbers for specific services, and ports
49152 to 65535 are private port numbers that can be used for customized services. Services running
behind some port numbers are vulnerable8, which makes the use of certain port numbers suspi-
cious.

For the feature set, two sequences were created – one for source ports and the other for destina-
tion ports.

5.1.5. FEATURES THAT WERE DISCARDED

A number of different features were evaluated, which we believed could characterize a malware’s
network behavior. Following are some features that were not useful in describing a malware’s net-
work activity.

IP ADDRESSES

We chose port numbers instead of IP addresses since IP address can be considered Personally Iden-
tifiable Information, especially in countries like the Netherlands where most of the hosts have a
fixed IP address. In addition, if we use IP address as a feature, multiple C&C servers controlled by
the same attacker, each identified by its own IP address, will not be grouped together.

7https://www.lifewire.com/port-0-in-tcp-and-udp-818145
8https://www.dummies.com/programming/networking/commonly-hacked-ports/
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(a) An example sequence showing HTTP-based malware

(b) An example sequence showing DNS-based malware

Figure 5.5: Visualizing HTTP- and DNS- based malware using port numbers

TIME-TO-LIVE ( TTL) VALUE

During literature review, we came across the study by Yamada and Goto [51] in which they claim
that TTL value is an excellent indicator of malicious activity. However, when we experimented with
the TTL value, we found that it is always outside the ’malicious value range’ presented in the paper.
It can either indicate that the malware samples we are analyzing are too sophisticated to use TTL
value to exfiltrate information or that this feature used as a sequence does not capture dynamic
behavior. In either case, this feature was dropped after seeing their distribution. An example is
shown in Figure 5.6, where the TTL value oscillates between 51 and 52 hops, both of which fall in
the safe range.

Figure 5.6: An example sequence showing TTL values. This feature was discarded because it always stays in the safe range
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DNS QUERY

After reading the study by Pomorova et al. [52], we could use DNS query types as features for clus-
tering DNS-based malware. However, because it limited our capability to handle other types of mal-
ware and because our dataset consisted of only a limited number of DNS-based malware samples,
we decided to drop this feature as well.

5.2. FEATURES FOR PCAP-LEVEL SEQUENCES

The features chosen in the previous section were used to generate sequences on the Pcap-level gran-
ularity. However, there were a few features that did more harm than good for the characterization of
the malware’s network behavior at this granularity.

We chose three sequences of (packet size, interval, protocol) to represent the network-
level behavior of malware at the Pcap-level granularity. A summary of the feature set used at the
Pcap-level is presented in Table 5.1.

The port numbers had an excessive amount of noise, which did not show any interesting pat-
terns that would have helped us in characterizing the malware’s network activity. We believe that
the noise is introduced as a result of values from different connections getting jumbled up together.
An example of the sequence of source port numbers at the Pcap-level is shown in Figure 5.7. The
figure does show some periodic behavior, but almost all the Pcap files generate the same kind of
behavior.

Figure 5.7: An example sequence showing source port numbers. It was discarded because of excessive noise

5.3. FEATURES FOR CONNECTION-LEVEL SEQUENCES

When a connection is established, it usually uses only a single protocol for communication. This
is why at the connection-level, the sequence generated by protocol numbers remains constant.
Moreover, it does not provide any additional useful information that the port numbers do not al-
ready provide. For example, if a host is communicating over HTTP, there would be a sequence of
80’s as the source port feature, while the protocol would be a constant 6 for TCP, which does not
provide any additional information because we already know that HTTP uses TCP on the Trans-
port layer. An example of a sequence of protocols at the connection-level is shown in Figure 5.8.
Hence, we dropped protocol number as a feature and instead used a quadruple of (packet size,
interval, source port, destination port) to characterize malware’s network activity at the
Connection-level granularity. A summary of the feature set used at this level is presented in Table
5.1.
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Figure 5.8: An example sequence showing protocol numbers at Connection-level. It was discarded because of its constant
behavior

5.4. DISTANCE MEASURES

Once we have decided the feature set that will be used to characterize the malware’s network behav-
ior, a distance measure is needed that can, appropriate to the requirements, measure the distance
between two sequences. In this section, we describe which of the distance measures from Section
3.2 have been used to measure the distance between sequences.

For numeric sequences – packet size and interval, we have used Dynamic Time Warping (Section
3.2.2) to calculate the distance between sequences. As mentioned in Section 3.2.1, the point-to-
point mapping method is too stringent to accommodate noise or delays, which are common in
network traffic.

For categorical sequences – protocol numbers, source and destination ports, we have used Ngram
analysis (Section 3.2.5) to transform the sequences into their vector representation and then we
have used cosine distance to measure the distance between two vectors. The value of n is set to 3 as
an experimental value. We also experimented with Sequence alignment (Section 3.2.3) and Longest
Common Subsequence (Section 3.2.4), which not only gave uninterpretable results but were also
very slow in computing the distances. In addition, we also experimented with discretizing numeric
sequences (Chapter 6). In that case, we also use Ngram analysis to measure the distance between
the discretized packet sizes and interval sequences. A summary of the distance measures used at
both the Pcap-level and Connection-level is presented in Table 5.1.

At both the Pcap-level and the Connection-level, multiple sequences represent a malware sam-
ple. The distance measure from each feature needs to be consolidated into a single number that
represents the distance for the whole Pcap/connection. Hence, each distance value is scaled to the
range [0-1]. Then, a simple unweighted average is used to combine all the distances. Although
unweighted average has its limitations, it works well for the proposes of this research. Hence, for
Pcap-level, the final distance measure is calculated as:

dpcap (a,b) = dpacketSi ze (a,b)+di nter val (a,b)+dpr oto(a,b)

3
(5.1)

where a and b are two Pcap files; dpcap (a,b) is the final calculated distance between a and b;
dpacketSi ze (a,b) is the distance between the sequences of packet sizes of a and b; di nter val (a,b)
is the distance between the sequences of intervals between a and b; dpr oto(a,b) is the distance
between the sequences of protocols between a and b.
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And the final distance measure for Connection-level is calculated as:

dconn(a,b) = dpacketSi ze (a,b)+di nter val (a,b)+dsour cePor t (a,b)+ddestPor t (a,b)

4
(5.2)

where a and b are two connections; dconn(a,b) is the final calculated distance between a and b;
dpacketSi ze (a,b) is the distance between the sequences of packet sizes of a and b; di nter val (a,b) is
the distance between the sequences of intervals between a and b; dsour cePor t (a,b) and ddestPor t (a,b)
are the distances between the sequences of source ports and destination ports between a and b, re-
spectively.

Features Feature set Data type Distance measure

Pcap-level 3
Packet sizes

Numeric | Categorical
(Trigrams) Sequences

DTW | Cosine

Interval
Numeric | Categorical
(Trigrams) Sequences

DTW | Cosine

Protocol
Categorical (Trigrams)

Sequences
Cosine

Connection-level 4

Packet sizes Numeric Sequences DTW
Interval Numeric Sequences DTW

Source port
Categorical (Trigrams)

Sequences
Cosine

Destination port
Categorical (Trigrams)

Sequences
Cosine

Pcap-level
Baseline

3
Packet sizes Float Absolute distance

Interval Float Absolute distance
Protocol Unigrams Cosine

Connection-level
Baseline

4

Packet sizes Float Absolute distance
Interval Float Absolute distance

Source port Unigrams Cosine
Destination port Unigrams Cosine

Table 5.1: Summary of the feature set, their representation and distance measures for Sequence and Baseline clustering

5.4.1. BASELINE FEATURES AND DISTANCE MEASURE

There does not exist a direct baseline, with which the results of this research can be compared.
Hence, a synthetic baseline was created to evaluate the effectiveness of using sequences-as-features.
The feature set used for both granularities was kept the same. However, the way they were repre-
sented and the distance calculation was modified to remove any order-related information. The
baseline aggregates the sequences into singular values, which are used as features instead.

For numeric features – packet sizes and the interval between packets, the average of the se-
quence is taken. For example, the sequence of my coffee-intake throughout the week [1,2,3,4,1,1,1]
is represented as an average of 1.8 coffees. The distance between the two features is then the abso-
lute distance between the averages.

For categorical features – protocol, source and destination ports, trigrams were used to capture
order-related information. Hence, for the baseline, unigrams (n=1) are used instead. The rest of the
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process is kept the same – converting the unigram profiles into vectors and measuring the distance
between two features using cosine distance.

The distances at both granularities were calculated using Equations 5.1 and 5.2. A summary of
the feature set representation and the distance measure for the baseline are shown in Table 5.1.

5.5. SUMMARY

In this chapter, we described the feature set that, according to us, best characterizes malware’s net-
work activity at the two levels of granularity under consideration. Four sequences-as-features are
selected in general: 1) Packet sizes measure the size of IP datagram in bytes, 2) Interval between
packets measure the time difference between the previous and current packet in milliseconds; 3)
Protocol number, and 4) Source and Destination port numbers. IP addresses, TTL values, and DNS
queries were discarded as features.

At the Pcap-level, a triple sequence of (packet sizes, interval between packets, protocol number)
is used to characterize malware families. At the Connection-level, a quadruple sequence of (packet
sizes, interval between packets, source ports, destination ports) is used to characterize malware
families. Dynamic Time Warping distance is used to measure the distance between numeric se-
quences. Ngram analysis and cosine distance are used to measure the distance between categorical
sequences. For the baseline version, all sequence-related information is removed from the features.
So, the numeric features are represented with the average of their sequence and distance is mea-
sured using the absolute distance between two averages. Categorical features are represented using
unigrams, and the cosine distance is used to measure the distance between two unigram profiles.
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SEQUENCE DISCRETIZATION

This chapter introduces three discretization techniques that can be used to convert numeric se-
quences into categorical ones. Since this project deals with sequences-as-features, there is a need
to define a notion of ’similarity’ among them. There exist different distance measures, as described
in Section 3.2, where some are applicable on numeric sequences and some on categorical ones. In
order to evaluate different types of distance measures, it is essential to convert the input sequence
into the applicable data type.

In Machine learning, many clustering algorithms only operate on numeric features, since calcu-
lating distances between numeric features is simpler and more efficient. Hence, categorical features
may be converted into numeric ones by using One Hot Encoding. One Hot Encoding is a technique
to convert categorical features into binary vectors by creating an individual feature corresponding
to each category and assigning 1 to data points that have that category and 0 to data points that do
not 1. Since the features we are dealing with are sequences themselves, applying One Hot encoding
to them would result in multiple binary sequences corresponding to each category. The higher the
number of sequences per malware sample, the more time it would take to compute the distance
between them.

On the other hand, some distance measures are only applicable to categorical sequences, and
if numeric sequences are used as-they-are, the results become uninterpretable. For example, the
distance between the numeric sequences [1,2,3,60,70,80,90,100] and [4,5,6,61,72,82,
91,102] should not be very large, since the values are very close together, as shown in Figure 6.1.

Figure 6.1: An example of a numeric sequence being treated as a categorical one

1https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
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However, if a technique such as Ngram analysis is used, which is meant explicitly for categorical
sequences, it considers a different symbol as a different category. Hence, there is a very high dis-
tance between the two sequences, since each number (e.g., 1, 2, 60, 61, etc.) will be considered a
separate category. Therefore, numeric sequences need to be converted into categorical ones before
such techniques can be used. The process is relatively easier – you define a number of categories
and assign each numeric value in the sequence to a category based on certain predefined thresh-
olds. The real challenge lies in deciding what those thresholds should be and in computing them
very quickly and efficiently. One straightforward way to determine the minimum and maximum val-
ues of a sequence and calculating thresholds based on those. For example, for a sequence of packet
sizes, the Maximum Transmission Unit (MTU) of an Ethernet packet is 1500 bytes, and the smallest
IP datagram size is 20 bytes for its smallest possible header (the maximum header size can go up to
60 bytes). So, one can simply divide this range using Equal-Width Interval Discretization (Section
2.4). However, this method would only be applicable for sequences that are uniformly/normally
distributed in the whole range. For skewed datasets, one category will contain significantly more el-
ements than the others. Since the thresholds chosen are based on the theoretical values of the pack-
ets rather than what is actually used in the dataset, the results may not be as intuitive. Therefore, as
simple as this method is, it cannot be applied to the cases where thresholds need to be determined
from the underlying dataset. In the next section, we describe three light-weight techniques that can
help in deciding the threshold values based on the dataset itself.

ASSUMPTIONS

There are two numeric features under consideration – packet size (measured in bytes) and the in-
terval between packets (measured in milliseconds).

We assume three categories for each of the two features:

1) Packet sizes can be categorized into Small, Medium and Large packets. Smaller values of this
feature would represent small packets, while larger values would represent large packets.

2) Intervals can be categorized into Slow, Medium and Fast packets. Smaller values of this feature
would represent fast packets, while larger values would represent slow packets.

We choose these three categories as a proof-of-concept for the applicability of the proposed
techniques. In practice, if the goal is to discretize sequences in a more fine-grained way, more cat-
egories can be introduced, e.g., five categories can be defined, such as (Very small, Small, Medium,
Large, Very large).

A NOTE ON MEAN VERSUS MEDIAN

In order to select the thresholds that take into consideration the underlying data distribution, it
needs to be applicable to the kind of distribution. For example, if the dataset is highly skewed, mean
should not be used because mean is susceptible to skews – a very high value within a sequence of
low values can unnaturally inflate the mean value. The dataset used in this project is very skewed
as some values are extremely small and some form huge spikes. So mean is not the right measure.
Median, on the other hand, only looks at the center of observations, not what an observation’s value
is like. Median is not an optimal measure because it can also get skewed in the presence of some
values that occur too frequently (a common characteristic of a sequence of time intervals, for exam-
ple). To sum up, one needs to be aware of the limitations of these commonly used measures before
using them.
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6.1. DISCRETIZATION TECHNIQUES

We propose three discretization techniques:

1. Local percentile method

2. Peak analysis method

3. Global set-percentile method

Below we describe each of the method, their working example, and their pros and cons. To
help the reader reason about the proposed techniques, consider the following t-shirt size-labeling
problem as a relevant analogy:

You are given a pile of t-shirts and are asked to label the shirts in one of the following categories
[Small (S), Medium (M), Large (L)]. Do you label them based on how prevalent a range of values is,
or purely based on their absolute value? Would it make sense to assign both small and medium to
one close range of values just because it was the most prevalent? Would you assign the categories as
soon as you see the shirt or would you collect all the possible values and then choose the categories
such that when you put the small shirts next to each other, they are comparable? There are multiple
correct answers to this problem depending on what the goal is. Each of the proposed technique
handles this issue differently.

6.1.1. LOCAL PERCENTILE METHOD

The local percentile method has been borrowed from the work of Pellegrino et al. [41]. For a given
sequence, the 33r d and 66th percentiles of the sequence are calculated as the thresholds for the
categories.

WORKING EXAMPLES

Consider the following sequences, where assume that they have been reordered in ascending order
to aid visualization:

1) [1,1,2,2,3,3,4,4,5,5,6,6]. The 33r d percentile is 2 and the 66th percentile is 4. Hence, for a value
v in the sequence, if v <= 2, then it is Small; if v > 2 but v <= 4, then it is Medium; and if v > 4, it is
Large. So, the sequence is transformed into: [S,S,S,S,M,M,M,M,L,L,L,L].

2) [1,1,1,1,1,4,4,5,7,7,700]. The 33r d percentile is 1 and the 66th percentile is 5. Hence, for a value
v in the sequence, if v <= 1, then it is Small; if v > 1 but v <= 5, then it is Medium; and if v > 5, it is
Large. So, the sequence is transformed into: [S,S,S,S,S,M,M,M,L,L,L].

3) [1,98,150,151,152,400]. The 33r d percentile is 98 and the 66th percentile is 151. Hence, for a
value v in the sequence, if v <= 98, then it is Small; if v > 98 but v <= 151, then it is Medium; and if v
> 151, it is Large. So, the sequence is transformed into: [S,S,M,M,L,L].

4) [1,1,1,1,1,1,1,1,1,1,1,1,1,10,11,12,13,1000,1000,1000]. Both the 33r d and the 66th percentile
are 1. Hence, for a value v in the sequence, if v <= 1, then it is Small; if v > 1 but v <= 1, then it is
Medium; and if v > 1, it is Large. So, everything over 1 goes directly into the Large category and the
sequence is transformed into: [S,S,S,S,S,S,S,S,S,S,S,S,S,L,L,L,L,L,L,L].
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5) [5,5,5,5,5,5,5,5,5,5,20,20,20,20]. Both the 33r d and the 66th percentile are 5. Hence, for a value
v in the sequence, if v <= 5, then it is Small; if v > 5 but v <= 5, then it is Medium; and if v > 5, it is
Large. So, everything over 5 goes directly into the Large category and the sequence is transformed
into: [S,S,S,S,S,S,S,S,S,S,L,L,L,L].

DISCUSSION

When the data is normally distributed (i.e., in example 1), the local percentile method works well.
The values are well-distributed among the categories. However, in anomalous traffic, such as that of
malware, there are a lot of traffic fluctuations. This creates a skewed dataset of values either larger
than normal, i.e., in example 2, or values too small, i.e., in example 3. Secondly, if the sequence
is such that a few values repeat too often, and the other values with large differences do not occur
as much, this method groups all the rare ones in a single category, i.e., in example 4. Lastly, if the
sequence is too fragmented, such that the thresholds end up being the same, one category will al-
ways be skipped. Hence, the resulting thresholds are prone to noise and may overshoot/undershoot
categories based on the percentile (median-based) values.

Local percentile method misses the global perspective. Packets that are categorized as small
that come from different sequences might not be in the same range if their sizes are compared.
One sequence might only have packets in range, e.g., 1000-9999, so a packet of size 1000 is labeled
small, and the other sequences might only have packets in range, e.g., 5-100, so a packet of size 1000
overshoots even the large category. Since the categories were assigned on a local perspective, we are
forced to consider a packet of size 1000 and 5 as equally small.

On the positive side, this method may help retain the local structure of a sequence. For exam-
ple, one sequence with packets in range 0-100 bytes and another with range 0-1000, both having the
same structure, such as a similar interval of sending packets, will end up having similar discretized
sequences. Consequently, this will help cluster sequences having similar local substructures to-
gether.

6.1.2. PEAK ANALYSIS METHOD

The ideal use-case involves similar malware performing similar actions ending up getting grouped.
In certain cases, when the dataset is extremely fragmented, the local percentile method does not
make sense anymore because it works on medians. We define fragmented datasets as having a few
values being repeated multiple times and being far apart from each other. Therefore, it would make
sense to look at the frequency of each value in the sequence. This method is called the peak analysis
method. In this method, a frequency table of the values occurring in a sequence is constructed, and
the top three most frequent values are collected – these form the highest peaks, and because the
dataset is fragmented, these peaks are far apart from each other. Next, the three frequent values are
ordered in ascending order, and the average between subsequent peak values is calculated. If val1,
val2, val3 are the top three frequent values, then:

thr esh1 = val1+ val2

2
(6.1)

thr esh2 = val2+ val3

2
(6.2)

In case three peaks are not available in the data, this method simply falls back to the local per-
centile method.
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WORKING EXAMPLES

Consider the following sequences, where assume that they have been reordered in ascending order
to aid visualization:

1) [2,2,2,5,5,5,5,10,10,10,10,100,400,800]. The top three frequent values are: val1 = 2; val2 =
5; val3 = 10. The thresholds will be: thr esh1 = 3.5; thr esh2 = 7.5. Hence, the sequence will be
transformed into: [S,S,S,M,M,M,M,L,L,L,L,L,L,L].

2) [10,11,12,13,13,43,43,50,80,700,700,900,1000]. The top three frequent values are: val1 = 13;
val2 = 43; val3 = 700. The thresholds will be: thr esh1 = 28; thr esh2 = 371.5. Hence, the sequence
will be transformed into: [S,S,S,S,S,M,M,M,M,L,L,L,L].

3) [0,0,0,5,5,5,5,5,7,7,9999]. The top three frequent values are: val1 = 0; val2 = 5; val3 = 7.
The thresholds will be: thr esh1 = 2.5; thr esh2 = 6. Hence, the sequence will be transformed into:
[S,S,S,M,M,M,M,M,L,L,L]

4) [5,5,5,5,5,5,5,5,5,5,20,20,20,20]. Because there are only two frequent values – 5 and 20, the
method falls back to the local percentile method and the result is the same as the discretized se-
quence shown in example 5 of Section 6.1.1.

DISCUSSION

This method allows for the categories to be assigned based on the prevalence of values rather than
statistics. This technique is different from the other two techniques because it is purely frequency-
based. In the t-shirt analogy, this represents the scenario where one assigns the categories based
on how frequent the sizes are – if shirts of sizes 2, 3, and 10 are most frequent, then the categories S
and M end up being closer to each other than category L. The intuition behind this technique is that
because a value is so frequent, it must mean something interesting so, that value must get its own
category. On the other hand, the rare but distant events will all get crammed into another category.
It can be useful if the goal is to assign categories based on the prevalence of a close-by range.

This method works well when there exist nearly-fragmented values in the dataset (frequently oc-
curring values that are far apart from each other). Other rare but similar values would get absorbed
in the nearest category of frequent items. On the other hand, this technique does not work on, for
example, a dataset where values exist closely or where all values are frequent, or none is frequent.
For example, this method would not work on an almost normally distributed dataset.

In general, at least one category will be full of similar values, which may be considered unin-
teresting depending on the context. This technique is value-agnostic, meaning if the dataset looks
like example 3, then 0 gets a whole category, 5 gets the second category while the 7’s and 9999 get
crammed into one. Whereas, one might have wanted to see 9999 get another category given the
assumption that rare events are not noise but rather malicious, and hence interesting.

The local percentile and peak analysis methods both operate locally on the sequences. This
means that the discretized sequences may not be comparable to other sequences based on their
actual values, e.g., a small packet of one sequence may not always be in the same range as a small
packet of another sequence.
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6.1.3. GLOBAL SET-PERCENTILE METHOD

A global standpoint is when all possible values occurring in the whole dataset are collected in an
initial pass, and the thresholds are calculated on that list. This gives a fixed threshold for the whole
dataset, meaning that if a value is considered small in one sequence, the other values considered
small in other sequences would surely lie in the same range. This helps standardize the discretized
sequences. In addition, a potential scenario is when some values occur so frequently that they be-
come uninteresting. They also affect the median by skewing it unnaturally towards the frequent val-
ues. This is the frequency problem – the most frequent items overshadow rare but interesting items.
To mitigate this problem, all possible values in the entire dataset are read, and only the unique ones
are collected. Next, the 33r d and 66th percentile values of that global set are calculated as the thresh-
olds. Hence, this method becomes frequency-agnostic.

WORKING EXAMPLES

Consider the following examples with a global set of [10,13,20,22,30,33,40,44,50,1,2,3,4,5,6,7,9,11,15,
17,19,21,23,38,45]; the 33r d percentile is 9.33 and the 66th percentile is 22.6:

1) [10,10,20,20,30,30,40,40] would transform into [M,M,M,M,L,L,L,L]

2) [10,13,20,22,30,32,40,44] would transform into [M,M,M,M,L,L,L,L]

Also, consider the following examples with a global set of [0,1,2,3,4,10,20,30,40]; the 33r d per-
centile is 2.33 and the 66th percentile is 16.6:

3) [0,0,1,1,2,2,3,3,4,4] would transform into [S,S,S,S,S,S,M,M,M,M].

4) [10,10,20,20,30,30,40,40] would transform into: [M,M,L,L,L,L,L,L].

DISCUSSION

As time passes by and additional sequences are observed, the global set gets enriched with addi-
tional values, and it starts becoming more normally distributed, which helps exploit the full use
of the percentiles. The sequences become globally comparable in a more objective way. In addi-
tion, the global thresholds help dampen the noise from the sequences and make them cleaner. For
example, in the case of examples 1 and 2, the global thresholds have provided tolerance and have
smoothed out the small bumps in values. If local percentiles were being considered here, the struc-
ture of examples 1 and 2 would not have been the same.

On the contrary, the positive point of local percentile method becomes negative in the global
set-percentile method. Consider an example of similar local substructures, as shown in examples
3 and 4. The similar local structure of the sequences present in these examples is lost because the
thresholds are calculated globally.

6.2. DISCRETIZING PCAP-LEVEL SEQUENCES

At the Pcap-level granularity, the sequences are long and are composed of each packet in the entire
Pcap file. Longer files allow for a variety of different behaviors (and values) to be contained in a
single sequence.

There are strong points, both for and against each of the three discretization techniques that
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have been explained above. However, based on the data distribution of the two numeric features
– packet sizes and the interval between packets, two different techniques would be applicable for
them.

Packet sizes are discretized using the Global Set-Percentile method and time intervals using
Peak Analysis method. In the following sections, we elaborate further on why they are the optimal
choices:

6.2.1. DISCRETIZING PACKET SIZES

The feature of packet sizes represents the size of the IP datagram of each packet. These values can
typically range from 20 bytes to 1500 bytes, which is the MTU for Ethernet. Upon visualizing the
dataset, it was found that the values are not normally distributed within this range – the values are
skewed towards packet sizes smaller than 100 bytes. In addition, there are local groups of values
that lie very close to each other. Hence, clear fragmented peaks are not always available.

With packet sizes, the goal is to find significant variations in the sequences because they are in-
teresting and we do not want them to get overshadowed because of noise generated from frequently
occurring values – anomalous packet sizes could indicate malicious activity, and similar-occurring
transitions in packet sizes could indicate similarity in malicious behaviors. In addition, we do not
want small differences in packet sizes to get overemphasized and be considered in a different cat-
egory. Figures 6.2 show two concrete examples of sequences of packet sizes, where the result of
discretization using global set-percentile thresholds performs the best. The figure shows four se-
ries and a histogram. The title shows the malware family label assigned to the Pcap file followed by
the first five characters of the Pcap’s hash. The histogram shows the data distribution for the whole
sequence. The first series (blue) shows the first 140 values of the sequence. The other three series
(green) represent the three discretization techniques – local percentile, global set-percentile, and
peak analysis method. The focus of the reader should be on comparing which of the three green
series represents the blue series in the best way, and also note the histogram distribution, which
also guides the choice of the best method to select.

(a) Example 1 (b) Example 2

Figure 6.2: Comparing discretization techniques for packet sizes at Pcap-level granularity

For the dataset under consideration, the thresholds are thr esh1 = 362.62 bytes and thr esh2 =
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827.34 bytes. Figure 6.3 shows the distribution of values in the global set. Each point is one distinct
value in the set. The red and green lines show the 33r d and 66th percentile boundaries, respectively.

Figure 6.3: A visual representation of the global set used in the Global set-percentile method

Getting back to the Figures 6.2, the global set-percentile method cleans away the noise of the
sequences while keeping the original structure intact. In subfigure (a), the data distribution (shown
in the histogram) is such that there are local groups of values in the range of 0-400, and then again
from 1000-1200. The local percentile method overshoots the categories multiple times. For ex-
ample, the smaller peaks at the beginning of the sequences are assigned the same categories as
the highest peaks in the sequence. Hence, this technique performs the worst. The peak analysis
method, however, performs well because of the presence of at least three peaks in the data distri-
bution – it correctly distinguishes between the smaller peaks and the larger peaks. However, it also
sometimes overshoots categories, e.g., from 0-20 and 60-80 on the x-axis, it inconsistently assigns
multiple data points the Medium category. In subfigure (b), we see a similar trend – the global set-
percentile method performing the best by dampening the noise and keeping the overall structure
of the sequence intact; and the local percentile method overshooting categories on every chance it
gets. However, in the case of the peak analysis method, it performs almost as good as the global set-
percentile method because of the presence of its ideal conditions – the presence of three perfectly
fragmented peaks.

In conclusion, we found the global set-percentile method to be the best discretization technique
for packet sizes. It makes the comparison objective among different sequences by assigning similar
categories to packet sizes lying in similar ranges. It is also able to keep the sequence’s overall shape
intact and straightens out any noise that might come its way.

6.2.2. DISCRETIZING INTERVAL BETWEEN PACKETS

The feature of time interval represents the time (in milliseconds) between the current packet and
the previous packet. Upon data exploration, it was found that most of the values lie under 5 seconds.
However, sometimes delays as high as 16 seconds have been observed. In addition, the dataset is ex-
tremely skewed and equally fragmented – the range of possible intervals is very small, and often, the
values lie far apart from each other. Hence, this dataset seems ideal for the peak analysis method.

The time interval feature shows how fast or slow a packet is. It can be influenced by a number
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of factors, such as network delays, the system sitting idle, or that the malware is programmed to
send out packets after regular intervals. We are interested in identifying the latter case – we are
looking for frequently occurring values of this feature, which might represent periodicity. Moreover,
large values of intervals occur very rarely, which makes it safe to assume that they either occur due to
network delays or because there is no active communication happening. For example, an interval of
20 seconds and 60 seconds, both provide the same information that the malware sample’s network
activity has been idle for a relatively long time. Therefore, such infrequently occurring high values
can be thrown in a single category. On the other hand, we should be able to distinguish between the
various frequently occurring values. Figures 6.4 show two concrete examples of sequences of the
interval between packets. In order to make the comparison easier, the unit of time in the figures is
seconds.

(a) Example 1 (b) Example 2

Figure 6.4: Comparing discretization techniques for interval between packets at Pcap-level granularity

In both the figures, two things are very apparent: 1) the histograms show how fragmented the
dataset is, and 2) most of the packets are sent with less than a second of delay, which creates se-
quences where not many peaks exist. As mentioned previously, the dataset is composed of some
rarely occurring large interval values. This results in the global thresholds getting skewed by these
large values. The global thresholds for this dataset are: thr esh1 = 12 seconds and thr esh2 = 26
seconds. This results in almost all the sequences discretized into a single category of Fast pack-
ets, which is also apparent in both subfigures (a) and (b). The local percentile method has the same
drawback as explained for the packet sizes feature – it tends to overshoot categories quite frequently.
In both the subfigures, the local percentile method categorizes all the peaks as slow-paced packets
– it does not distinguish between smaller and larger peaks at all. On the other hand, because of
the fragmented nature of the dataset, the peak analysis method seems to perform the best. In both
of the subfigures, the peak analysis method correctly categorizes smaller peaks as medium-paced
packets and larger peaks as slow-paced packets, while maintaining the overall structure of the se-
quence intact. There is only one scenario when the peak analysis method performs poorly – if there
is an insufficient number of frequently occurring values in the sequence, the method will fall back
on the local percentile method, which performs the worst in almost all scenarios.
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6.2.3. TO DISCRETIZE OR NOT TO DISCRETIZE

Typically, distance measures for numeric sequences are much slower than those for categorical
ones. In the present case, calculating DTW is 16x slower than calculating cosine distance even on
a 3.8x shorter sequence. This is shown in Table 6.1. The table shows that it takes 7.07 seconds to
discretize 387 sequences (129 sequences per feature), but still the total time it takes to measure the
distance between two sequences is 0.19 seconds. However, the fact remains that discretization loses
subtle details and precision of the numeric sequences by mapping them in only a few possible cat-
egories. Yet, one must ask whether the lost information will affect the clustering performed on the
discretized sequences or whether the so-called precision in numeric sequences only adds noise.
Hence, in this section, a comparison is made between the data distribution of the Pcaps resulting
from numeric versus discretized sequences. The resulting distribution will help visualize the num-
ber of potential clusters in the data, and how potentially cohesive and well-separated they will be.
For example, if the dataset is too noisy, the clusters will not be well-separated, and the clustering
algorithm will have a hard time creating good clusters. Hence, based on the dataset distribution,
one can decide whether or not to discretize the sequences.

Figures 6.5 show the dataset distribution of Pcap files represented by numeric (non-discretized)
sequences (subfigure a) and discretized sequences (subfigure b). Each blue dot represents a Pcap
file in 2-dimensional space, relative to its pairwise distance from every other Pcap in the dataset.
Additional explanation of how these plots were generated is given in Section 7.2.1. The scales of the
figure do not represent anything concrete. However, the reader should focus on how the data points
are scattered on the plot. Remember: the goal of clustering is to extract cohesive clusters since the
data points inside them are the most similar to one another. Secondly, the method should allow
clusters of different shapes and sizes for added robustness.

Purely based on the distribution of the points, Figure 6.5(b) seems much better. It shows that
there are roughly 3-4 neatly separated clusters. It is also easy to draw the bounds of the clusters. This
happens because the extra, and possibly irrelevant values of numeric sequences are compressed
into a few categories. Hence, the total possibilities for each data point get reduced significantly,
making them go closer to the points they are most likely similar to. Figure 6.5(a) shows the dis-
tribution of data points represented by numeric sequences. Because of the high precision of each
sequence, the Pcaps end up having a variety of different distances from other Pcaps. This has cre-
ated 1-2 large clusters whose bounds are very hard to determine, especially compared to Figure
6.5(b). To sum up, discretizing numeric sequences will not only make the clustering 16x faster, but
it will also have a positive effect on the final clustering under similar conditions. This analysis has
been touched upon further in Chapter 7.

Length of
sequences

Time to discretize
sequences

Time to calculate
distance matrix

No. samples*
No. features=
No. sequences

Time to measure
distance per
sequence

Pcap-level,
Non-discretized
Sequences

First 50 packets - 1176.87 sec 129*3=387 3.04 sec

Pcap-level,
Discretized
Sequences

First 190 packets 7.07 sec 70.02 sec 129*3=387 0.19 sec

Connection-level,
Non-discretized
Sequences

First 20 packets - 8502.8 sec 733*4=2932 2.9 sec

Table 6.1: Performance evaluation of distance measurement between sequences at Pcap- and Connection- level
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(a) Non-discretized sequences

(b) Discretized sequences

Figure 6.5: Comparing data distribution of discretized and non-discretized sequences at Pcap-level

6.3. DISCRETIZING CONNECTION-LEVEL SEQUENCES

At the Connection-level granularity, behavior can be observed with much higher precision than in
the case of Pcap-level granularity. At the Pcap-level, the individual conversations are all jumbled
up with each other, so additional steps are required to clear away the potential noise in order to see
any behavioral patterns. In the case of Connection-level sequences, those behavioral patterns are
already visible, and it is much easier to infer about the similarity in behavior by comparing these
sequences.

6.3.1. TO DISCRETIZE OR NOT TO DISCRETIZE

As mentioned in Sections 6.2.1 and 6.2.2, Global Set-Percentile method performs the best in dis-
cretizing packet sizes, and Peak Analysis method performs the best in discretizing interval between
packets at the Pcap-level granularity. For discretizing packet sizes at Connection-level, the thresh-
old values would remain the same as for the Pcap-level, since the connections are essentially made
out of Pcap-level sequences. So at thr esh1 = 362.6 bytes and thr esh2 = 827.3 bytes, most of the
Connection-level sequences fall in only a single category. Two concrete examples of this happen-
ing are shown in Figures 6.6. The Global Set-Percentile method maps all the packets to the Small
category. In addition, Local Percentile method has already been established to perform the worst
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in all scenarios by overshooting categories, and Peak Analysis method to require a certain kind of
data distribution, which packet size feature often does not have. For discretizing interval between
packets at Connection-level, a similar trend is observed because the distribution of individual se-
quences has changed significantly. In any case, the average length of Connection-level sequences
is approximately 20 packets, which is significantly smaller than that of Pcap-level sequences (i.e.,
190 packets). This means that the distance measures for numeric sequences (e.g., DTW) will take
relatively less time in computing distances between sequences than in the case of Pcap-level ones.
Table 6.1 shows that it takes roughly 2.9 seconds to measure the distance between two numeric se-
quences. This value seems too high compared to 0.19 seconds, but it is not worth losing precision
over. Hence, it was decided not to discretize numeric sequences at the Connection-level granularity.

(a) Example 1 (b) Example 2

Figure 6.6: Comparing discretization techniques for packet sizes at Connection-level granularity

6.4. SUMMARY

In this chapter, we explained three straightforward discretization techniques to convert numeric
sequences into categorical ones. The techniques are 1) Local Percentile method, 2) Peak Analysis
method, and 3) Global Set-Percentile method. At the Pcap-level, discretizing sequences makes dis-
tance measurement between sequences 16x faster, and helps in extracting cleaner cluster bound-
aries. The Global Set-Percentile method is used to discretize packet sizes, while the Peak analysis
method is used to discretize the interval between packets. However, at the Connection-level, the
sequences are better represented without discretizing them.
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Once the feature set for each granularity is selected, and the distance measure is defined, a distance
matrix of size nxn is created, where n represents the number of Pcaps/connections in the dataset.
The distance matrix defines the pairwise distance of every sequence against every other sequence
in the dataset. This distance matrix is provided as a parameter to the clustering algorithm, which
uses it to create the final clusters.

In this chapter, the selected clustering algorithm and its parameter settings have been explained.
In addition, the procedure for result compilation has been described, including static versus dy-
namic cluster analysis.

A NOTE ON ATTACKER EVASION

Like any cat and mouse game, the results of this research will inevitably give attackers an edge over
defenders as they will be able to use evasion techniques more effectively. However, the goal of this
research is not to protect this method from attacker evasion. The goal is to show that even with their
current technology and tactics, patterns are still available in simple high-level features for defenders
to exploit, and that Deep Packet Inspection is not the only solution to identify malicious activity.

7.1. CLUSTERING ALGORITHM SELECTION

Both Single-linkage Hierarchical clustering and HDBScan clustering algorithms (explained in Sec-
tions 3.3.1 and 3.3.2) were evaluated. The single-linkage algorithm did a great job of building the
hierarchical tree or the dendrogram that showed how the different Pcaps/connections were related
to each other. However, the algorithm required the user to provide a parameter defining a cut-off
of the tree in order to extract the flat clusters. This parameter is fundamentally unintuitive to pro-
vide. In addition, it is highly rare to have just one cut-off point that satisfies the extraction of all the
optimal clusters – in many cases, only a few good clusters can be extracted along with some bad
ones. One possible solution to find the best cut-off point is to use a statistical cluster quality mea-
sure, such as DBIndex, and iteratively try many different values of the cut-off point in order to find
the optimal one (which minimizes the DBIndex). This solution was implemented, but the extracted
clusters were not optimal, and no interesting patterns were found in the resulting clusters.

Next, the HDBScan clustering algorithm was evaluated. At the time of writing this report, this al-

60



7.2. CLUSTER ANALYSIS 61

gorithm performs the best among all the other available clustering algorithms, especially for Python
implementations 1. The algorithm requires only two parameters – minimum cluster size and k-
nearest neighbors. Depending on the data distribution, these parameters are not too difficult to
determine. It also supports the option of having either ’leaf clusters’ or ’root clusters’. A Root clus-
ter is defined as a cluster obtained from a sub-root of the hierarchical tree. The leaf clusters are
formed by the sub-trees of the root cluster, where the size of each leaf cluster is still larger than the
minimum cluster size. This helps in extracting smaller and more specialized clusters. Even on the
default values of its parameters, this algorithm outperforms Hierarchical clustering algorithm by
many folds.

Hence, because of the robustness of HDBScan, this was the algorithm of choice for this project.
An important quality of HDBScan is that it does not forcefully assign each point to a cluster. All
points whose membership to any cluster cannot be determined, either because of high distance
with all other points or because they form bridges between two or more clusters, are considered
as Noisy points. Hence, a dataset with clear cluster boundaries will have less noise. In the current
context, Pcaps/connections that are either too different from all the others or that are somewhat
in the middle of two types of behaviors are considered noise. In this project, all noisy points have
been dropped from further analysis. An overview of the number of points discarded as noise at each
granularity is given in Table 8.1.

7.2. CLUSTER ANALYSIS

A difficult challenge in clustering is to determine the quality of the resulting clusters. The ’goodness’
of a cluster is a self-defined and context-dependent notion. Ideally, a metric is defined that can
capture the quality of the clusters. Regarding the current problem at hand, the following are the
properties that must be captured in the quality index:

• Difference in behavior should fall in different clusters. Each cluster should capture one be-
havior only. Therefore,well-separated clusters are desired.

• Cluster homogeneity should be high, which means that the items inside a cluster should ex-
hibit very similar behavior.

• Clusters should be cohesive since items farther away from the core could add increasing
amounts of noise.

Two cluster quality metrics are specifically meant to measure cluster separation and cohesion.
They are Silhouette index and DB Index, which have been explained in Sections 3.4.1 and 3.4.2.
However, the values of these indexes do not capture the expected density-based ’goodness’, which
we define for our clusters. The clustering that was optimal according to our definition resulted in
poor values of Silhouette and DBIndex and vice versa. Hence, we needed to define our own qual-
ity metric, which we have left as future work. Instead, we have laid the groundwork by performing
visual analysis as explained in Section 3.4.3. The visual analysis involves three steps: 1) Dataset Visu-
alization: Visualizing the placement of Pcaps/connections with respect to other Pcaps/connections
in the dataset, 2) Cluster Content Visualization: Visualizing the content of each cluster by visualizing
each feature individually, and 3) Cluster Label Analysis: Analyzing the distributions of Pcaps/connections
with respect to their assigned malware family labels.

1http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html
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7.2.1. DATASET VISUALIZATION

In order to visualize the distribution of the dataset, its dimensionality needs to be reduced to 2D be-
cause of the limitations of current technology. Each Pcap/connection in the dataset is represented
as a number of sequences, one for each feature. Once the distance matrix is computed for each
level of granularity, each Pcap/connection is represented as a set of distances relative to all the other
Pcaps/connections in the dataset. Hence, one Pcap/connection is an n-dimensional array, where n
is the size of the dataset. Dimensionality reduction techniques, such as Principal Component Anal-
ysis (PCA) 2 and t-Distributed Stochastic Neighbor Embedding (t-SNE) [53] can be used to reduce
the dimensions of a dataset to visualize it in 2D. t-SNE was chosen because it is specially optimized
for the visualization of very large datasets. t-SNE takes an n-dimensional dataset and plots it on a
2D scatter plot. An example of such a scatter plot is shown in Figure 7.1. Each Pcap/connection is
shown as one data point. The plot’s x- and y-axes represent the relative distances in reduced dimen-
sions. For analysis purposes, they do not convey any important information. However, the plot itself
shows the positioning of points relative to other points in the dataset, which is useful in determining
the ideal number of clusters.

Figure 7.1: t-SNE example – dataset visualization pre-clustering

t-SNE can also be applied once the clustering algorithm has extracted flat clusters. Figure 7.2
shows the extracted clusters from the dataset shown in Figure 7.1. The parameter setting was (mini-
mum cluster size = 6 and k-nearest neighbors was left unspecified). Each color represents a distinct
cluster, and the annotation on the data point shows the cluster number the point belongs to. The
figure shows that the dataset was divided into six clusters. Three gray points with the label ’-1’ are
considered noise since the algorithm could not determine their membership to any cluster. Accord-
ing to the visual analysis, these clusters seem to be very cohesive, and none of the clusters seem to
overlap other clusters.

A number of different parameters of the clustering algorithm were evaluated until the clusters
closest to the expected ones were formed. The configuration dataset on which the evaluation was
performed was roughly 5% of the original dataset.

2https://en.wikipedia.org/wiki/Principal_component_analysis
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Figure 7.2: t-SNE example – dataset visualization post-clustering

7.2.2. CLUSTER CONTENT VISUALIZATION

Each of the Pcap/connection in a cluster has at least four sequences associated to it, one corre-
sponding to each feature. We utilize heatmaps to visualize sequences in a cluster, one feature at a
time. Heatmaps represent each value of a feature as a color. An example of such visualization is
shown in Figure 7.3. The figure shows one of the clusters extracted by HDBScan. The title shows
the cluster number (which is meant to enumerate the kind of behaviors extracted), followed by the
name of the feature whose values are visualized in the graph. The x-axis represents the packet num-
ber. Each row corresponds to a sequence of one Pcap or connection depending on the granularity
and shows the feature value of the first 20 packets in a Pcap/connection. The row labels are en-
coded to reduce the space they take. There are at most three parts of the row labels, showing: 1) the
assigned family name of the Pcap/connection encoded as the first three letters of the family name
(e.g., Zeus-Panda becomes ZPA), 2) the first five characters of the SHA1 hash of the Pcap encoded
as a unique 3-digit number (e.g., 1e1e4 becomes 128), and 3) the source and destination IP address
encoded as 3-digit numbers for each unique host (e.g., 211.105.106.1 becomes 046) (only applicable
for Connection-level granularity). The mapping of the original values to the encoded ones are given
in Appendix A.

This figure shows that there are eight connections, exhibiting two major kinds of behaviors, en-
capsulated in this cluster. The first three connections send packets of similar sizes with similar in-
tervals. A different kind of behavior is common among the rest of the five points. The reader should
observe the slight lag in the 4th connection, which was elegantly handled by DTW. Because the over-
all distance measure is made up of distances from at most four features, the heatmaps for the other
features will also be visualized in the same way. This analysis provides a deeper understanding of
what the content of each Pcap/connection looks like with respect to that of other Pcap/connections
in the same cluster.

A quick False Positive analysis was also performed on the basis of cluster content visualization.
A False positive is defined as a Pcap/connection placed in cluster x, but whose values are almost
identical to Pcaps/connections in cluster y. In addition, a Pcap/connection placed in a cluster all of
whose features are different from other members of that cluster is also labeled as a False positive.
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Figure 7.3: Heatmap example – Visualizing cluster content

7.2.3. CLUSTER LABEL ANALYSIS

Each cluster represents a unique behavior exhibited by a group of Pcaps/Connections. Each Pcap
was assigned a family label based on its static analysis, which may or may not correspond to its
network-level behavior. An important aspect of this research is to find out whether malware sam-
ples’ family labels also map to their network behavior. Hence, each malware family is analyzed
separately by finding the percentage of samples split across various clusters. We identify the family
split based on two situations:

1) Uniformity/Diversity of behavior: For a malware family, uniform behavior means only one
kind of behavior, while Diverse behavior means multiple kinds of behaviors.
Uniform malware samples all lie in one cluster since only one aspect of their behavior is visible. On
the other hand, malware shows diverse behavior when Pcaps or connections of the same family are
divided across several clusters, showing the different (potential) attacking capabilities possessed by
the malware family.

2) Common/Rare behavior: For multiple malware families, the behavior common among them
is called Common behavior, while the behavior only specific to one malware family that is never seen
in another family is called Rare behavior.
The common behavior can either be benign-running operating system services or common attack-
ing behaviors showing a relationship between different malware families. Rare behaviors, on the
other hand, are represented by clusters that only contain samples from one malware family, and no
other family is observed behaving in that way. These behaviors distinguish one malware family from
the others. Hence, rare clusters can be used to extract behavioral signatures of samples behaving in
unique ways.
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7.3. PCAP-LEVEL CLUSTERING

At the Pcap-level, there are three features: packet sizes, the interval between packets, and the pro-
tocol used (details in Section 5.2). The sequences of packet sizes and the interval between packets
have been discretized because the dataset becomes cleaner compared to its non-discretized alter-
native and high-quality clusters can be extracted (explained in Section 6.2.3). Hence, three cate-
gorical features represent each Pcap. The distance between sequences is calculated using trigram
analysis (explained in Section 3.2.5). The formula used to consolidate all the distances in a single
number is given in equation 5.1. The average length of a sequence at the Pcap-level is 190 pack-
ets, and there are a total of 129 Pcaps out of 1196 fulfilling the criteria to be considered. Hence the
distance matrix is of dimensions 129x129.

The parameters provided to HDBScan were:

• Minimum cluster size = 7

• K-nearest neighbors = 1

Since the data distribution is sparse, a lower k-neighbor value will reduce the number of Pcaps
discarded as noise. In addition, the smallest well-separated group of points contained seven Pcaps.
The clustering algorithm produces five clusters. There are, on average, 21 Pcaps in each cluster. 25
Pcaps are discarded as noise since their membership to any cluster could not be determined. The
final five clusters are made up of 104 Pcap files. The Pcap distribution after clustering is shown
in Figure 7.4. The gray points without any label are noise and have been discarded from further
analysis. Clusters 2 and 3 almost overlap each other, but the rest of the clusters are well-separated.
Further analysis of these clusters is presented in Chapter 8.

Figure 7.4: Data distribution of clusters obtained at Pcap-level granularity

As a cursory comparison of discretizing sequences (Figure 7.4) versus non-discretized sequences,
under similar parameters, the following results are observed:

64 Pcaps are discarded as noise when clustering with numeric sequences, as opposed to 25
points in the case of discretized sequences. Even though a detailed cluster analysis shows that the
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same data points populate clusters in both cases, there are a few cases of points shifting clusters.
In addition, the clusters made from discretized sequences are well-separated, which results is eas-
ier bounds definition for clusters. Lastly, distance matrix calculation on discretized sequences is
16x faster on 3.8x longer sequences than non-discretized, numeric sequences. Hence, discretizing
sequences at the Pcap-level is the optimal choice.

7.4. CONNECTION-LEVEL CLUSTERING

At the Connection-level, there are four features: packet sizes, the interval between packets, source
and destination ports (details in Section 5.3). There are two numeric sequences: packet sizes, and
the interval between packets. The distance between them is calculated using Dynamic Time Warp-
ing (explained in Section 3.2.2). In addition, there are two categorical sequences: source and des-
tination port numbers. The distance between them is calculated using trigram analysis (Section
3.2.5). The formula used to consolidate all the distances in a single number is given in equation 5.2.
The average length of a sequence at the Connection-level is 20 packets. There are a total of 8997
connections coming out of 1196 Pcap files. Out of 8997 connections, only 733 connections fulfill the
criteria to be considered. These 733 connections form a total of 216 Pcap-files. Hence, the distance
matrix is of dimensions: 733x733.

The parameters provided to HDBScan were:

• Minimum cluster size = 7

• K-nearest neighbors = 7

Figure 7.5: Data distribution of clusters obtained at Connection-level granularity

The data distribution for Connection-level is dense, so the k-neighbor value has been increased
to match the minimum cluster size. The smallest well-separated cluster size is the same as that of
the Pcap-level. The clustering algorithm produces 18 clusters. There are, on average, 25 connections
in each cluster. 284 connections are discarded as noise. The final 18 clusters are made up of 449
connections coming from 172 Pcap-files. The data distribution after clustering is shown in Figure
7.5. The gray points without any label are noise and have not been considered in further analysis. It
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can be seen that most of the clusters are well-separated. Clusters (12,13,14) and clusters (15,16,17)
are overlapping among each other. Further analysis of these clusters is presented in Chapter 8.

7.5. SUMMARY

In this chapter, we explained the motivation behind using the HDBScan clustering algorithm and
describe the parameters used at the Pcap- and Connection-level granularity. We also describe three
cluster analysis techniques used to understand the resulting clusters in more detail – 1) Dataset
visualization helps estimate the number and quality of resulting clusters; 2) Cluster content visu-
alization provides an in-depth view of what behaviors are grouped inside a cluster and also helps
identify false positives; and 3) Cluster label analysis provides a comparison between clusters gener-
ated from static (family labels) and dynamic (network traces) analysis.
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RESULTS AND DISCUSSION

In this chapter, we discuss the insights that we have obtained from clustering malware samples’ net-
work activity. We divide this section into five parts. First, we present the findings of Pcap-level and
Connection-level analysis. Next, we summarize the most interesting attacking capabilities the pro-
posed method is able to detect. Then, a comparison of clusters obtained from static versus dynamic
analysis is presented, followed by a brief comparison with the baseline version.

8.1. PCAP-LEVEL CLUSTER ANALYSIS

At the Pcap level, 104 Pcap files produce 5 clusters. A detailed analysis of the cluster content and
detected behaviors is explained below.

8.1.1. DISCRETIZED VERSUS NON-DISCRETIZED SEQUENCE CLUSTERING

64 Pcaps are discarded as noise in non-discretized sequences, as opposed to only 25 for discretized
sequences. This happens because there are many points that form bridges between core clusters,
as shown in the t-SNE plot in Figure 8.1(a).

Clusters 0 and 1: The Pcaps in cluster 0 of discretized sequences (Figure 8.1(b)) also lie in clus-
ter 0 of non-discretized sequences (Figure 8.1(a)). The same case is observed for cluster 1. How-
ever, 5 data points in cluster 0 of non-discretized sequences lie very close to cluster 1, which indeed
are labeled as cluster 1 in discretized sequences. We consider these 5 points as false positives for
non-discretized sequences. Therefore, it can be concluded that the clusters 0 and 1 of discretized
sequences are much more cohesive and well-separated than those of non-discretized sequences.

Clusters 2, 3, and 4: The Pcaps labelled as noise in discretized sequences are also marked as
noise in non-discretized sequences. However, 39 additional Pcaps in non-discretized sequences are
also labeled as noise. These additional noise points come out of cluster 2 and 3 (the long island
of points in Figure 8.1(a)). In addition, the cluster 3 of discretized sequences is represented by a
combination of cluster 2 and noise points in non-discretized sequences. Moreover, the cluster 4 of
discretized sequences is entirely discarded as noise in non-discretized sequences.
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(a) Non-discretized sequence clusters

(b) Discretized sequence clusters

Figure 8.1: Comparing non-discretized and discretized sequence clusters

To sum up, non-discretized sequences discard a lot of Pcaps as noise, compared to discretized
sequences. Hence, in the rest of the chapter, we only explore clusters obtained from discretized
sequences.

8.1.2. CLUSTER ANALYSIS

In general, a lot of periodicity can be seen for each cluster in terms of packet sizes and the interval
between packets. However, the protocol feature does not show any interesting patterns. An example
of a cluster’s protocol sequence is shown in Figure 8.2. The protocol feature only switches between
TCP, UDP, ICMP, and IGMP protocols, which does not show any interesting patterns.

In general, each cluster shows a distinct type of behavior. In the following subsections, we ana-
lyze the behavior captured by two such clusters:
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Figure 8.2: An example cluster of sequence of protocols at Pcap-level

A CASE OF BLACKMOON

Cluster 0 contains four unique Pcap files labeled as Blackmoon. They all have extremely similar be-
havior. The four rows of periodic lines show that similarity in Figures 8.3(a) and 8.3(b). Upon traffic
analysis of two randomly selected samples, it was found that they both contact the same C&C at
103.7.30.86, which has been reported as malicious on many threat intelligence databases. The traf-
fic shows a series of TCP 3-way handshake, followed by an HTTP-GET request of exactly 305 bytes,
followed by a request to close the TCP connection. Hence, it makes a pattern of six TCP packets
followed by one big HTTP packet. In addition, the port number 80 of C&C server is contacted each
time. However, the source ports are gradually incremented by one (starting from 1044 until 1059) at
each new TCP session. A snapshot of the Pcap file is shown in Figure 8.4.

(a) Sequence of packet sizes (b) Sequence of intervals

Figure 8.3: Feature set visualization of Cluster 0 at Pcap-level
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Figure 8.4: Blackmoon’s traffic content exploration in Wireshark

A CASE OF GOZI AND ZEUS

Clusters 2 and 4 lie very close to each other on the scatter plot (Figure 8.1(b)). Their Pcaps’ se-
quences of packet sizes are also very similar, as shown in Figures 8.5. We analyze two samples from
cluster 2 – one labeled as Gozi-ISFB and the other as Zeus-VM-AES. They both lie in subfigure (a)
and have alternating behavior between huge and small packets. Upon traffic analysis, we found
that Gozi-ISFB visits a website and downloads tor/t32.dll file. This .dll file is a TOR client that is
used along with a Rig Exploit Kit. In addition, the IP address it visits to download the .dll file is also
reported as malicious in several threat intelligence databases. Upon traffic analysis of the Zeus-VM-
AES sample, we found that it sends a POST request to the domain letit2.bit/, which is the landing
page for Chthonic banking malware. The periodic behavior in the figure is a series of 2 large TCP
packets delivering the exploit kit followed by one acknowledgment packet as a response.

(a) Sequence of packet sizes (b) Sequence of packet sizes

Figure 8.5: Feature set visualization of Clusters 2 and 4 at Pcap-level

8.1.3. SUMMARY

In light of the observations shown above, the clusters do in fact group together similar behaviors,
and they are malicious in most of the observed cases. However, because the dataset was collected
in a controlled environment, we can be sure that the behaviors grouped are malicious. However, if
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several benign requests were made to a server to download a legitimate software, we expect to see
similar patterns. Moreover, at the Pcap-level granularity, multiple IP addresses are combined in a
single sequence, so it is difficult to distinguish benign connections from potentially malicious ones.

It has also been observed that malware performs periodic actions, e.g., sending a heartbeat mes-
sage to the C&C server to let it know that it is still part of the botnet. However, our observations show
that the periodicity is not always regarding ’time’, but is more frequently regarding packet sizes. One
explanation behind this observation is that the time interval can be affected by network delays, but
the packet sizes are immune to it. Hence, even if the periodicity of the time interval is lost due to
delays, the periodicity of packet sizes can be exploited to group similar behaviors together.

8.2. CONNECTION-LEVEL CLUSTER ANALYSIS

At the Connection-level, 449 connections produce 18 clusters. A detailed analysis of the clusters and
the behaviors they exhibit is explained below.

8.2.1. CLUSTER ANALYSIS

Clusters 0, 1, and 2: Cluster 0 represents all connections broadcasting to 239.255.255.250, which is
used by the SSDP protocol to find Plug and Play devices. Cluster 2 represents all connections broad-
casting to 224.0.0.252, which is used by Link-Local Multicast Name Resolution (LLMNR) protocol
to find local network computers. Cluster 1 represents all requests to the broadcast IP address of the
localhost, potentially in search of other devices connected to the local network. These three clusters
seem to exhibit device searching behavior. However, it cannot be concluded with certainty whether
they are used for malicious purposes.

Clusters 3 and 4: Cluster 4 contains outgoing traffic to multiple IP addresses. The responses of
those hosts are received as incoming connections in cluster 3. These clusters show malware sam-
ples primarily labeled as Zeus-VM-AES, Ramnit, and Blackmoon. Cluster 4 shows two distinct kinds
of requests being sent, while the responses can be grouped into five types (from visual analysis
of heatmaps in Figure 8.6). All the IPs contacted by the samples of this cluster operate on DNS
(port number 53), while the contacted port numbers of localhost are over 60000. Ramnit contacts
8.8.8.8, which is Google’s public DNS. However, there are reports that Ramnit uses DNS to query
for DGA domains 1. Three samples from Zeus-VM-AES contact 144.76.133.38, which has been re-
ported to drop Cerber ransomware. Three other samples of the same family contact 62.113.203.55
and 62.113.203.99, which are both associated with ZLoader ransomware [54]. Another two unique
samples of the same family contact 89.18.27.34, which were detected two days apart. This IP ad-
dress is associated with a Window’s malware, called CoinMiner. In addition, we also found five Pcap
files, each of which has two associated IP addresses, visible in 2 connections each. All 10 of those IP
addresses have been reported as malicious. This can indicate the presence of multiple C&C servers
for each of these malware samples.

1https://malwarebreakdown.com/2017/07/24/the-seamless-campaign-drops-ramnit-follow-up-malware-azorult-
stealer-smoke-loader-etc/
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(a) Incoming connections (b) Outgoing connections

Figure 8.6: Feature set visualization of Clusters 3 and 4 at Connection-level

Cluster 7: Cluster 7 contains outgoing connections, all of which belong to Zeus-VM-AES (Figure
8.7). Five connections from this cluster contact 47.91.124.165, which has been reported as the C&C
server of Despicable.ME malware dropped via Rig Exploit Kit. These five samples were all detected
on the same day and were executed on different Virtual machines. Hence, we can be sure that the IP
address is the C&C belonging to Zeus malware. We also found two samples contacting 185.195.24.6
and then one sample was detected 15 days later, which contacts 185.195.24.139. Hence, it seems
that the malware changed its C&C server to a host within the same subnet in the 15-day period. All
these samples are HTTP-based malware since they operate on port number 80. The port numbers
of the localhost are all very high (in the range from 52500 to 62500).

Figure 8.7: Outgoing connections from Cluster 7 at Connection-level

Cluster 10: Cluster 10 contains incoming connections belonging to Zeus-Panda and Blackmoon
malware families, as shown in Figure 8.8. Two samples from Zeus-Panda and one sample from
Blackmoon contact 13.107.4.50, which is an official Microsoft IP address, but has been reported as a
C&C server. In addition, two samples from Zeus-Panda contact 88.221.14.11, while one sample from
Blackmoon contacts 88.221.14.16, which belongs to the same subset and hence, may be related to
each other. The former IP address belongs to an Internet explorer banking malware targeted towards
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the bank of Queensland in Australia, and the former one has also been reported as malicious.

Figure 8.8: Incoming connections from 10 at Connection-level

Clusters 9 and 11: Cluster 9 contains connections that send requests to several IP addresses and
Cluster 11 contains the resulting incoming connections, as shown in Figures 8.9. Cluster 9 is heavily
composed of Gozi-ISFB’s samples, while cluster 11 also contains incoming connections from other
malware families, e.g., Dridex-Loader and Citadel. In cluster 9, there are three connections that con-
tact 194.109.206.212, which has been reported as the C&C of ransomAQE malware originated from
the Netherlands; and two connections contact 86.59.21.38, which has been reported as Troldesh
ransomware. In cluster 11, there are three samples labeled as Zeus-Panda and two samples labeled
as Dridex-Loader, all of which contact the same IP address – 40.113.17.180. However, we were un-
able to find any reports regarding the maliciousness of this IP address. In any case, this IP address
uncovers some collaboration between the two malware families. All the samples in these clusters
represent HTTPs-based connections as they communicate over port number 443 (SSL).

(a) Outgoing connections (b) Incoming connections

Figure 8.9: Feature set visualization of Clusters 9 and 11 at Connection-level

Clusters 5, 6, and 8: The connections inside clusters 5, 6, and 8 show an interesting behavior
– they all contain connections from one Pcap file, which is labeled as Gozi-ISFB. Interestingly, this
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Pcap file has a total of 111 connections, 62 of which are split between clusters 5, 6 and 8 (Figures
8.10). The rest of the connections were discarded as noise. Each of the 62 connections contacts
unique IP addresses. Cluster 6 and 8 (subfigures (b) and (c)) contain outgoing traffic, and cluster
5 (subfigure (a)) contains incoming traffic from these IP addresses. The reason why clusters 6 and
8 were split is that the port number of the contacted IP addresses is different – port 443 (SSL) is
contacted in case of cluster 8, and port 9000 (EverQuest World Server) is contacted in case of cluster
6.

(a) Incoming connections (b) Outgoing connections

(c) Outgoing connections

Figure 8.10: Feature set visualization of Clusters 5, 6, 8 at Connection-level

Clusters 12, 13, 14, 15, 16, and 17: Clusters 12, 13, 14 and 15, 16, 17 are not well-separated.
Clusters 12, 13 and 14 contain of incoming connections (Figure 8.11), while the latter ones contain
their resulting outgoing connections (Figure 8.12). Cluster 12 contains four Gozi-ISFB samples con-
tacting 171.25.193.9, which is associated to RansomAQE malware originating from the Netherlands;
four Citadel samples contacting 178.255.83.1, which has reports of being associated to WannaCry
ransomware; two Zeus-Panda samples contacting 188.120.243.35, which is a Russian IP contact-
ing EvilBets.com. In addition, four Dridex-Loader samples contact 80.83.118.233, and three Citadel
samples contact 185.72.178.171, about which we could not find any malicious reports. In cluster
14, two Citadel samples contact 46.235.9.33, which was found in the blacklist of a company’s IDS;
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and two Gozi-ISFB samples contact 69.156.240.29, which was found on a ransomware tracker web-
site. There were no conclusive reports about the maliciousness of the IP addresses contacted by
connections in cluster 13. On the flip slide, cluster 16 is dominated by Gozi-ISFB samples, of which
most are malicious. There were no conclusive reports regarding the IP addresses contacted by the
Dridex-Loader samples in Cluster 15 and 17.

(a) Incoming connections (b) Incoming connections

(c) Incoming connections

Figure 8.11: Feature set visualization of Clusters 12, 13, 14 at Connection-level

Upon detailed cluster analysis, the clustered space can be divided into four regions, as shown in
Figure 8.13. The clusters on the left are all incoming connections, while the clusters on the right are
outgoing connections. The top section is for HTTP-based connections (communication over port
80), while the lower section has a mix of SSL-, DNS-, and other protocol-based connections.

8.2.2. FALSE POSITIVE ANALYSIS

As mentioned in Section 5.4, in order to find the distance between two connections, four sequences
of one connection are compared against four sequences of the other connection. This means that
for every data point in a cluster, there are four associated heatmaps, one for each feature. As intro-
duced in Section 7.2.2, a connection is flagged as a False Positive if none of the four features match
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(a) Outgoing connections (b) Outgoing connections

(c) Outgoing connections

Figure 8.12: Feature set visualization of Clusters 15, 16, 17 at Connection-level

the other members of its cluster. On the other hand, if multiple connections contact the same IP
address and have the same values of the four features, but still end up getting split into different
clusters, then they are also flagged as false positives.

Out of 449 connections, only 2.6% are flagged as False positives. They originate from 33% of
clusters – cluster numbers 13, 14, 15, 16 and 17. It was expected since clusters 13, 14 and 15 overlap
each other, and clusters 15, 16 and 17 overlap each other, as shown in the scatter plot 7.5.

• Two distinct connections of Gozi-ISFB get split into clusters 13 and 14. They both contact
185.64.219.6 and have negligible difference in their features.

• Similarly, two distinct connections from Citadel get split into clusters 16 and 17. They both
contact 46.235.9.33 and have negligible differences in their features.

• Six distinct connections of Dridex-Loader contact 80.83.118.233. Four connections end up
in cluster 15 and two in cluster 17. All six have minor differences in their interval between
packets.
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Figure 8.13: Division of Connection-level cluster space

• Finally, two distinct connections from Gozi-ISFB get split into cluster 16 and 17. They both
contact 185.64.219.6 and the value of their source port is off by just one value (49166 versus
49165).

8.2.3. IP ADDRESS ANALYSIS

We collected 5% (40) unique IP addresses, at random, from all the 18 clusters, which were contacted
by at least 2 connections. These IP addresses were manually analyzed if they had any existing reports
in threat intelligence databases, such as VirusTotal, ThreatCrowd, ThreatMiner, and Cymon.io. Out
of the 40 IP addresses, 80% of them had reports of being associated with various kinds of malware,
e.g., ransomware, banking Trojans, and cryptocurrency miners. For the other 20%, no conclusive
remarks could be made since the malware samples were executed in a controlled environment. We
suspect that these IP addresses are either malicious but were never reported, or are contacted as a
result of evasion techniques used by the malware sample.

8.2.4. SUMMARY

In light of the observations shown above, it is evident that the proposed technique groups together
different attacking capabilities of malware samples. Connections that behave similarly are grouped,
with a False positive rate of 2.6%, irrespective of their family labels. The results show a different way
of clustering malware samples. Upon reflection, we believe that organizations care more about the
kind of attack that is being performed rather than which malware family is attacking them. Hence,
the proposed technique clusters similar attacking behaviors rather than extracting signatures for
specific malware families, which has been the aim of most standard anti-virus software [16].

It is also apparent that at the Connection-level, the behavioral patterns are clearer and a lot
more information is available to infer about the kind of behaviors captured in the clusters. Although
clustering at the Connection-level requires more resources compared to Pcap-level, the results are
very promising. Optimizing Connection-level clustering for performance is left as future work.



8.3. DETECTED ATTACKING CAPABILITIES 79

8.3. DETECTED ATTACKING CAPABILITIES

This section lists the interesting behaviors that were captured in the clusters obtained at the
Connection-level granularity:

8.3.1. INCOMING/OUTGOING CONNECTIONS

The clustering algorithm is successfully able to distinguish between incoming and outgoing connec-
tions even though the IP address was not used in the feature set. One might assume that the port
numbers are responsible for this reason – the direction where the port number stays fixed shows the
outgoing traffic. However, we observed multiple instances where both the source and destination
ports were not fixed to a single value.

8.3.2. PORT SCANS

Two types of port scans have been detected as a result of using sequences of port numbers as fea-
tures. A couple of examples are shown in Figures 8.14. Subfigure (a) shows a systematic port scan
where ports from 1080 till 1200 are contacted incrementally. This causes the series to be shown as
a gradient. Subfigure (b) shows a randomized port scan, which scans ports from 51000 to 63000
randomly, which causes the series to have a checkered effect.

(a) Systematic port scan (b) Randomized port scan

Figure 8.14: Example of port scans detected at Connection-level

8.3.3. SPLIT-PERSONALITY C&C SERVERS

Several instances were found where multiple connections contacted the same IP address, but the
behavior exhibited was so different that they ended up being split into different clusters. For exam-
ple, Figures 8.15 show two distinct samples of Gozi-ISFB contacting a reportedly malicious server
located in Germany (46.38.238.142). They were split in clusters 13 and 14, which both contain in-
coming connections. The first sample receives a small packet followed by a series of 1200-byte pack-
ets. The second sample shows a periodic behavior where small packets are followed by large packets
of range 600 to 1800 bytes. However, the cause of this split-personality behavior is unknown.
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(a) Connection 1 with server

(b) Connection 2 with server

Figure 8.15: Example of a server showing split personalities at Connection-level

8.3.4. SAME C&C FOR MULTIPLE FAMILIES

A few instances were noted where connections coming from different malware families contacted
the same C&C server, and they all ended up in a single cluster. For example, in cluster 10, three
Zeus-Panda samples and two Blackmoon samples contact 13.107.4.50, which has been reported as
a malicious IP by multiple threat intelligence websites. The behavior of the server is also very similar
as shown in Figures 8.16. This suggests that either the YARA rules mislabeled one of the samples or
that the authors of these samples are working in collaborations, such that they share the same C&C
server.

(a) Blackmoon sample 1

(b) Blackmoon sample 2

Figure 8.16: Zeus-Panda and Blackmoon sharing a C&C server
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(c) Zeus-Panda sample 1

(d) Zeus-Panda sample 2

(e) Zeus-Panda sample 3

Figure 8.16: Zeus-Panda and Blackmoon sharing a C&C server (Cont.)

8.3.5. MALICIOUS SUBNETS

Several instances were noted where connections within the same cluster contacted IP addresses
that fell in the same subnet. For example, in cluster 10, two Zeus-Panda samples contact
88.221.14.11 (Figure 8.17(a)), one Blackmoon sample contacts 88.221.14.16 (Figure 8.17(b)), and one
Gozi-ISFB sample contacts 88.221.14.121 (Figure 8.17(c)). These examples suggest some collabora-
tion among the authors of those malware samples.

(a) Sample 1

(b) Sample 2

Figure 8.17: Potentially malicious subnet 88.221.14.XXX
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(c) Sample 3

Figure 8.17: Potentially malicious subnet 88.221.14.XXX (Cont.)

8.4. ABC LABEL ANALYSIS

The family labels assigned by our data partner were done so on the basis of static analysis of the
corresponding binary executables. Hence, each malware family can be considered as a cluster on
the static analysis level. On the other hand, the goal of this research was to cluster malware based
on its network behavior. Since the malware family labels are in such widespread use, it is only fair to
have a comparison of this project’s results with the family labels. Therefore, this section describes
in detail how the malware families are split across the different resulting clusters.

The available families and their contribution to the dataset are given in Table 4.1. As explained
in Section 7.2.3, the comparison is performed on two aspects: 1) How many types of behaviors are
exhibited by a malware family (Uniformity/Diversity), and 2) How many malware families share the
same kind of behaviors (Common/Rare).

8.4.1. PCAP-LEVEL CLUSTER SPLIT

The graphical representation of the Pcaps’ family names and their contribution to the dataset is
given in Figure 8.18. In addition, the sizes of the resulting 5 clusters are given in Figure 8.19. From
the figure, it can be seen that cluster 3 is the largest with 40 Pcaps, while cluster 4 is the smallest with
merely 7 Pcap files.

Figure 8.18: Malware families contributing to clusters at Pcap-level

A total of 8 families contribute to the clusters at Pcap-level, as shown in Figure 8.18. Pcaps
belonging to the rest of the families were either too short to be considered or were discarded as
noise. The split of each of the malware families into different clusters is shown in Figures 8.20.
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Figure 8.19: Cluster size distribution at Pcap-level

The pie chart of a malware family shows the percentage of Pcaps belonging to that family, assigned
to different clusters. These percentages can also be considered as the various kinds of network
behaviors exhibited by samples of that malware family.

(a) Blackmoon (b) Citadel (c) Dridex-Loader

(d) Gozi-ISFB (e) Ramnit (f) Zeus-Action

(g) Zeus-Panda (h) Zeus-VM-AES

Figure 8.20: Malware family split across Pcap-level clusters
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UNIFORMITY/DIVERSITY

Zeus-Action is the most concentrated family, as the two Pcaps that form this family fall in cluster 0.
Similarly, 69% of Pcaps coming from Ramnit fall in cluster 1, while the rest are discarded as noise.
Hence, only one kind of behavior is exhibited by the aforementioned malware families. Citadel,
Gozi-ISFB, and Zeus-VM-AES, on the other hand, show the most diverse behaviors, as they get di-
vided across 3 clusters (and some Pcaps being discarded as noise). Hence, it can be concluded that
the families mentioned above show 3 out of 5 possible behaviors.

COMMON/RARE

Behavior captured by cluster 0 is the most common among all the 8 families – Pcaps from 6 out of
8 families fall in this cluster. On the other hand, cluster 4 captures behavior only exhibited by 35%
Pcaps of Zeus-VM-AES – none of the other families show this behavior.

MISCELLANEOUS

Cluster 2 captures behavior common in Zeus-Panda, Zeus-VM-AES, and Gozi-ISFB. Moreover, clus-
ter 3 is the largest among all the clusters. It is dominated by behavior common among Gozi-ISFB
and Dridex-Loader, followed by a few Pcaps of Citadel and Zeus-Panda.

8.4.2. CONNECTION-LEVEL CLUSTER SPLIT

Similar to the Pcap-level case, a visual representation of connections belonging to different mal-
ware families is given in Figure 8.21. The percentage of each family’s samples, at both Pcap-level
(see Figure 8.18) and Connection-level (see Figure 8.21) is roughly the same. Some exceptions in-
clude Dridex and Zeus samples, which are present at the Connection-level but not at the Pcap-
level because their combined connection lengths are not long enough for the Pcap-level. On the
other hand, samples of Zeus-Action are present at the Pcap-level but not at the Connection-level
because there are many smaller connections present in these samples that are not long enough for
the Connection-level. Secondly, the family distribution at both granularities shows the dominance
of Gozi-ISFB’s samples (28% and 38% for both granularities, respectively), even though Blackmoon
had the highest number of samples in the initial 1196-file dataset. This happened because most
of the sequences generated from Blackmoon’s samples were not long enough to be considered at
either level of granularity.

The sizes of the resulting 18 clusters are given in Figure 8.22. The figure shows that cluster 1 is
the largest with 90 connections, while cluster 10 is the smallest with merely 8 connections.

A total of 12 families contribute to the clusters formed at the Connection-level granularity. This
is dramatically higher than Pcap-level since the minimum length of connections required to be con-
sidered in clustering is significantly shorter. The split of each malware families into different clus-
ters is shown in Figures 8.23. The pie chart of a family shows the percentage of connections that
are assigned to different clusters. These percentages can also be considered as the various kinds of
network behaviors exhibited by connections of a malware family.

UNIFORMITY/DIVERSITY

Four families show concentrated behavior, which falls in only a single cluster. Dridex (made up
of two connections) and Gozi-EQ (made up of one connection) fall in cluster 0. Similarly, Zeus-v1
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Figure 8.21: Malware families contributing to clusters at Connection-level

Figure 8.22: Cluster size distribution at Connection-level

and Zeus-P2P, each made up of one connection, fall in cluster 1. In addition, Zeus is made up of
two connections, where one falls in cluster 0 and the other in cluster 12. Clusters 0 and 1 capture
behavior similar to standard Windows services, so it is possible that the malware in these samples
is not yet activated. Hence, the only connections observed from these families seem benign. On the
other hand, Gozi-ISFB shows the most diverse kinds of behaviors, with its connections falling in 16
out of 18 clusters – 16 distinct behaviors were observed from samples of Gozi-ISFB.

COMMON/RARE

The most common clusters are 0 and 1, which capture behavior shown by Windows services. Since
the malware families that are being analyzed are all Windows-based, it explains why 9 out of 12
families have connections in this cluster. Clusters 5, 6 and 8 capture behavior only exhibited by
Gozi-ISFB. On top of that, one sample of Gozi-ISFB opens 111 connections (while the average num-
ber of connections per Pcap is 3), most of which fall in these clusters. Referring to Section 8.2.1,
cluster 5 represents incoming connections while 6 and 8 represent outgoing traffic. Lastly, cluster 7
captures behavior only exhibited by samples of Zeus-VM-AES. Hence, these clusters can be used to
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(a) Blackmoon (b) Citadel (c) Dridex

(d) Dridex-Loader (e) Gozi-EQ (f) Gozi-ISFB

(g) Ramnit (h) Zeus (i) Zeus-P2P

(j) Zeus-Panda (k) Zeus-v1 (l) Zeus-VM-AES

Figure 8.23: Malware family split across Connection-level clusters

extract behavioral signatures that will help detect these unique malware samples.

MISCELLANEOUS

Cluster 2 captures behavior exhibited by four large malware families – Blackmoon, Citadel, Dridex-
Loader, and Gozi-ISFB. Cluster 10 captures behavior exhibited only by Zeus-Panda and Blackmoon.
Similarly, cluster 9 captures behavior exhibited only by Zeus-Panda and Gozi-ISFB. This indicates
that some aspect of Zeus-Panda, Blackmoon, and Gozi-ISFB is similar, which would not have been
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evident if we did not cluster their network behavior.

8.4.3. DISCUSSION

The benefit of clustering malware samples using their network behavior is twofold. First, it splits
samples from one malware family across different clusters, showing the variety of behaviors exhib-
ited by that single family. Second, it groups common network behaviors across different malware
families, showing relationships between them. On the contrary, a malware family label assigned
based on static analysis of the binary does not convey such detailed insights. Hence, the true bene-
fit of this research is that malware can be grouped based on its capabilities, rather than its assigned
family name.

8.5. BASELINE COMPARISON

Section 5.4.1 describes the feature set and the distance measure used for comparison with the base-
line. The analysis is performed individually for each level of granularity. The parameters of the
clustering algorithm are kept the same as mentioned in Sections 7.3 and 7.4 to allow objective com-
parison. The following subsections analyze how each of the sequence-as-features clusters is rep-
resented in the baseline version. In addition, cluster content analysis is performed on different
clusters to understand what behaviors they represent. A high-level comparison between sequence
and baseline clustering is presented in Table 8.1.

Granularity No. items No. clusters
Average

cluster size
Noisy
items

Pcap-level
clustering

Discretized
Sequential
features 219 Pcaps

5 20.8 Pcaps 25 Pcaps

Non-discretized
Sequential
features

4 16 Pcaps 64 Pcaps

Baseline 8 12.1 Pcaps 32 Pcaps

Connection-level
clustering

Sequential features 733
Connections

18
24.9

connections
284

connections

Baseline 20
19.9

connections
335

connections

Table 8.1: Comparison between Baseline and Sequence clustering

8.5.1. PCAP-LEVEL CLUSTERING

For minimum cluster size of 7 and 1 nearest neighbor, 8 clusters are formed. 32 Pcaps are discarded
as noise, as opposed to 25 in the case of sequence clustering. The distribution of Pcaps in sequence
clustering across different baseline clusters is given in Figure 8.24. The average cluster size is 12.12,
as opposed to 20.8 for the sequence clusters. Cluster 0 is the largest, while clusters 5 and 6 are the
smallest.

Table 8.2 shows the percentage of samples from sequence clustering split across baseline clus-
ters. The first row states the clusters at the sequence clustering level, while the first column states
the baseline clusters. Each cell shows the percentage of a sequence cluster split across different
baseline clusters. For example, 44.4% samples from cluster 0 of sequence clustering are discarded
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Figure 8.24: Baseline cluster size distribution at Pcap-level

Sequence clustering (%)
c0 c1 c2 c3 c4 Noise

c0 - 45.4 - - - 28
c1 - 24.2 - - - 4
c2 55.6 27.4 - - - 4
c3 - - - 27.5 - 12
c4 - - 40 2.5 - 4
c5 - - 26.7 2.5 - 8
c6 - - - 17.5 - -
c7 - - 26.7 22.5 - 8
Noise 44.4 3 6.6 27.5 100 32
Total 100 100 100 100 100 100

Table 8.2: Cluster split comparison between Baseline and Sequence clustering at Pcap-level

as noise in the baseline clusters. Upon traffic analysis, it is observed that these samples have a high
periodicity in both packet sizes and the interval between packets. Two of those samples are shown
in Figures 8.25, where (a) and (b) are the sequence of packet sizes, and (c) and (d) are the interval
between packets. The rest of the samples in cluster 0 show a little less periodicity, so instead of dis-
carding them as noise, baseline clusters discard the samples with clear periodicity, which is not a
desirable result.

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes
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(c) Sample 1 - Interval (d) Sample 2 - Interval

Figure 8.25: Similar-looking Pcaps from cluster 0 discarded as noise

The table also shows that cluster 1 is split into 3 baseline clusters and some noise samples. For
example, Figures 8.26 show the sequences of (a,b) packet sizes and (c,d) protocol numbers for two
samples from this cluster. All three features of these two samples seem structurally very similar, yet
they fall in different baseline clusters.

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

(c) Sample 1 - Protocol (d) Sample 2 - Protocol

Figure 8.26: Similar-looking Pcaps from cluster 1 split into smaller clusters

A few samples from each sequence cluster are discarded as noise. Moreover, cluster 4 is com-
pletely discarded as noise in the baseline clusters. Figures 8.27 show two samples from cluster 4
(sequence of packet sizes), which look so similar, yet they were discarded as noise.
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(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

Figure 8.27: Pcaps from cluster 4 discarded as noise

Cluster 3 gets split into as many as 5 clusters and a substantial amount of noise samples. Figures
8.28 show four samples (sequences of packet sizes), each of which ends up in a different baseline
cluster without any apparent reason to have split them.

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

(c) Sample 3 - Packet sizes (d) Sample 4 - Packet sizes

Figure 8.28: Similar-looking Pcaps from cluster 3 split into smaller clusters

In summary, clusters are further split into smaller baseline clusters whenever any small differ-
ence in features is observed. In many cases, the clusters are split unnecessarily resulting in a large
number of smaller and similar clusters.

8.5.2. CONNECTION-LEVEL CLUSTERING

For minimum cluster size of 7 and 7 nearest neighbors, 20 clusters are formed. 335 connections
are discarded as noise, as opposed to 284 in the case of sequence clustering. The distribution of
connections of sequence clustering across different baseline clusters is given in Figure 8.29. The
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average cluster size is 19.9, as opposed to 24.9 for the sequence clustering case. Cluster 3 is the
largest, while cluster 1 is the smallest.

Figure 8.29: Baseline cluster size distribution at Connection-level

Sequence clustering (%)
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 Noise

c0 100 - - - - - - - - - - - - - - - - - -
c1 - 7.8 - - - - - - - - - - - - - - - - -
c2 - - 100 - - - - - - - - - - - - - - - -
c3 - - - - 100 - - - - - - - - - - - - - 0.4
c4 - 20 - - - - - - - - - - - - - - - - -
c5 - - - 93.9 - - - - - - - - - - - - - - -
c6 - 25.6 - - - - - - - - - - - - - - - - -
c7 - 11.1 - - - - - - - - - - - - - - - - -
c8 - - - - - - 82.6 - - - - - - - - - - - 1.1
c9 - - - - - 92 - - - - - - - - - - - - 0.7
c10 - - - - - - - - - - - - 24 - - - - - 1.1
c11 - - - - - - - - - - - - - - - - - - 9.9
c12 - - - - - - - - - - - 22.2 - - - - - - 3.2
c13 - - - - - - - - - 77.8 - - - - - - - - 1.8
c14 - - - - - - - - - - - - - - - 83.3 - - -
c15 - - - - - - - - - - - - - - - - 10.5 100 0.4
c16 - - - - - - - - - - - - - - - - 84.2 - -
c17 - - - - - - - - - - - - - - 80 - - - -
c18 - - - - - - - - - - - - - 90 15 - - - -
c19 - - - - - - - - - - - - 48 - - - - - 0.4
Noise - 35.6 - 6.1 - 8 17.4 100 100 22.2 100 77.8 28 10 5 16.7 5.3 - 81.3
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 8.3: Cluster split comparison between Baseline and Sequence clustering at Connection-level

Table 8.3 shows the percentage of samples from sequence clustering split across different base-
line clusters. The first row states the clusters at the sequence clustering level, while the first column
states the baseline clusters. Each cell shows the percentage of a sequence-as-features cluster split
across baseline clusters. The table shows that clusters 0, 2, 4, and 17 are kept intact in the baseline
clusters. Clusters 3, 5, 6, 9, 11, 13, and 15 are also mapped to a single cluster each, while also shav-
ing away some connections as noise. For example, Figures 8.30 show two connections from cluster
3, one of which (Figure 8.30(a)) ends up as noise in the baseline clusters. The traffic from both
these connections is a series of alternating DNS queries, followed by multiple TCP acknowledge-
ment packets (ACK, FIN|ACK, SYN|ACK). Even the figures show the clear similarity in their sequence
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structure, yet they are separated in the baseline clusters.

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

Figure 8.30: Similar-looking Connections from cluster 3 discarded as noise

Clusters 7, 8, and 10 are completely discarded as noise, which is a shame since the connections
in these clusters are very similar. Figures 8.31 show two samples from cluster 7 (sequence of packet
sizes). The network traffic of both these samples starts with a POST request, followed by a number
of large TCP packets. The fact that both these samples are connecting to hosts that are present in
the same subnet (185.198.24.XX) provides even a more compelling reason of why they should have
been grouped, but instead, they are discarded as noise. Similarly, Figures 8.32 show two samples
from cluster 10 (sequence of packet sizes). The network traffic shows an HTTP 200 response code,
followed by a number of large reassembled TCP packets. Again, these samples are structurally sim-
ilar, but they were discarded as noise. A similar trend is also observed for connections of cluster
8.

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

Figure 8.31: Similar-looking Connections from cluster 7 discarded as noise

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

Figure 8.32: Similar-looking Connections from cluster 10 discarded as noise
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Cluster 1 is split across three clusters, and a significant number of connections are also discarded
as noise. For example, Figures 8.33 show three samples from cluster 1 that end up in 3 different
baseline clusters. Each sample is using NetBIOS name service (source and destination ports: 137)
to retrieve a set of NetBIOS names. The packets are all of type NBNS and are querying for MSBrowser
and PrintServer. In addition, the figures show the usage of two packet sizes (78 and 97 bytes), but
the order in which they are used is different. Statistically, these three samples should have been
similar, especially (a) and (c). Yet, using sequence clustering, these three samples were grouped,
while baseline clusters split them into three distinct clusters even though the rest of the features are
identical.

(a) Sample 1 - Packet sizes (b) Sample 2 - Packet sizes

(c) Sample 3 - Packet sizes

Figure 8.33: Similar-looking Connections from cluster 1 split into smaller clusters

In summary, some of the baseline clusters map correctly to the sequence clusters. Moreover,
81.3% of connections discarded as noise in sequence clustering are also labeled as noise in base-
line clusters. However, multiple clusters are either discarded as noise or are split across numerous
baseline clusters even though the structure of the connections is extremely similar.

8.5.3. DISCUSSION

There is no drastic difference between the assignment of samples in sequence and baseline clusters.
In fact, in some cases, the baseline clusters are exactly the same as sequence clusters. The incoming
and outgoing connections are also clustered separately in baseline clustering. The main difference
arises in the flexibility and leniency of the clusters. The baseline clusters are much more strict as
compared to using sequence clustering. Because each sample is represented as a tuple of three to
four numbers in the baseline, they are not able to handle the small variances arising from subtle
differences in behavior. For example, if even a single feature is different, a different cluster is as-
signed to that sample altogether. Therefore, a lot more clusters are formed for the baseline version
for exactly the same clustering parameters. Moreover, because of the stubborn nature of sample
representation, the baseline clustering causes a lot more samples to be discarded as noise than the
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sequence clustering. Using sequence clustering also allows leniency in the samples that are grouped
– the clusters may seem to contain different behaviors when looking at one feature, but if enough
features are ’similar’, they get clustered together.



9
LIMITATIONS AND FUTURE WORK

In this chapter, we list down the limitations of our proposed approach and some future directions
this project can take. We divide these limitations into three sections: 1) Dataset-related, which lists
limitations arising due to the particular dataset used. These limitations can be fixed by choosing a
different dataset; 2) Technique-related, which lists limitations in the proposed approach. These lim-
itations can be fixed by tweaking the algorithm and conducting further research on individual com-
ponents of the algorithm; and 3) Evaluation-related, which lists limitations in the way the research
methodology has been evaluated. These can be fixed by coming up with metrics that formalize the
validation of the methodology.

9.1. DATASET-RELATED

We did not collect the dataset used for this project. In fact, it was taken from an already collected
larger dataset. The issue was that no one from ABC could tell us how the dataset was collected, what
configurations were used to run the sandboxed environments, how long the malware samples were
executed for, etc. Therefore, it was not clear how to distinguish between noise and malicious events
in the data. So, it was assumed that any anomalous data is malicious and not noise due to being
executed in a sandboxed environment. In order to make the analysis easier in future studies, the
dataset needs to be collected by the researchers themselves, and there is a need for ground truth
labels that are applicable for network traffic analysis.

Since the proposed technique is exploratory, we started off by experimenting with a small dataset.
Out of 1.2M Pcap files, we analyzed 1196 files making up 15 malware families, out of which only
about 220 files make it to the final analysis. Hence, a potential bias could be created because of the
skewed dataset. However, because we are clustering the malware based on its network traffic, the
family labels assigned to it are not even used. The proposed method is only concerned with the
various behaviors exhibited by the Pcaps/connections, not their family labels.

In addition, the proposed technique is also not optimized for performance. Even though we
perform trivial optimizations such as caching intermediate results and using relatively small-length
sequences to compute distances, the proposed technique is in dire need of optimization before it
can be deployed in the real world. Hence, a potential direction is to optimize the proposed tech-
nique for performance and to perform this study on a larger dataset. Techniques, such as Locality
Sensitive Hashing can then be used to handle larger datasets by coarsely clustering them to reduce
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the number of pairwise distance measurements.

9.2. TECHNIQUE-RELATED

Upon deeper analysis of the network traffic, we realized that the network traffic only shows the
partial behavior of the malware – it only shows how the malware utilizes the Internet to conduct its
objective, rather than a full view of its activities. Therefore, in order to understand the full behavior
of the malware, the system-level behavior should also be an integral part of the analysis. We have left
combining the network- and system-level analysis as future work because of the lack of expertise to
analyze system-level activities at this point. To provide evidence that the system- and network- level
activities indeed capture different aspects of malware, we have performed a comparison between
network clusters and malware family labels.

Each level of granularity has its pros and cons. For example, Pcap-level captures a bird’s eye view
of the whole Pcap, but it suffers from noise pollution. On the other hand, Connection-level captures
clearer behaviors, but the connections’ relationships with each other are lost. Although our findings
suggest that Connection-level is better for clustering attacking capabilities, if a malware’s behavior
is such that it communicates with multiple C&C servers for various purposes, Connection-level will
treat each of those connections as unrelated. In addition, incoming and outgoing connections are
handled separately, which gives only one-sided information. So, another potential extension is to
experiment with Conversation-level granularity where sequences are generated from both incom-
ing and outgoing packet flows.

The feature ranking performed is cursory due to the lack of time. Moreover, since the scope of
this research was to cluster malware families together, no comparisons were made between mali-
cious and benign traffic. We hypothesize that with the current feature set, similar Internet-usage
behaviors, e.g., downloading a file, would be grouped, irrespective of the source being malicious or
benign. Hence, additional research is warranted to identify the feature set that can not only cluster
attacking capabilities but is also able to distinguish between malicious and benign traffic. Based on
our experience with network traffic analysis, exploring packet fragmentation flags at the Network
layer seems like a promising start. In addition, if this technique is to be deployed in real-world net-
work monitoring systems, a noise-tolerance test is required to evaluate its resiliency in the presence
of benign traffic.

The distance measure used to consolidate the distances of individual features is elementary.
Based on the results of feature ranking and feature importance, each feature should be weighted to
allow for a more customized distance measure between sequences. With the current unweighted
average, each feature is considered equally important even though we have identified that certain
features (e.g., protocol number at Pcap-level) do not contribute much in explaining the network
behavior.

The three proposed discretization techniques are all based on percentiles and frequency. Other
techniques, such as Kernel Density Estimation (KDE), which fits Gaussian curves based on regions
of highest density can be evaluated. In addition, a meta-algorithm that can automatically switch be-
tween these different techniques can be developed, which will reduce the effort required to identify
the best-suited discretization technique.

The length of the handshake is kept equal to the average sequence length of the whole dataset.
For example, at the Connection-level, 20 packets are used to represent numeric features, and tri-
grams are used to represent categorical features. However, the longer the sequences are, the more



9.3. EVALUATION-RELATED 97

sequential behavior they will capture. For example, numeric features of length 50 were required to
capture port scans. Hence, additional research is required to find the optimal length of the hand-
shake.

Although the parameters for HDBScan were selected after experimentation, at both the Pcap-
and Connection-level, some clusters overlapped each other, which introduced false positives. Even
though the false positive ratio was 2.6% for the whole dataset, this number is expected to grow with
the introduction of benign traffic and a larger dataset. Hence, we believe that the clustering can still
be improved. Specific characteristics, such as better handling of noise points and avoiding clusters
to overlap are good starting points for future research.

Lastly, a limitation of density-based clustering is that it considers lower-density regions as noise.
Hence, if a limited number of malware samples exhibit strange (zero-day) attacking capabilities,
they are more likely to have large distances with every other Pcap/connection in the dataset and
be discarded as noise. Moreover, attacks are typically anomalous and rare events in general traffic.
So the proposed technique is more likely to discard rare malicious events and only capture com-
mon Internet-usage behaviors (which may potentially all be benign). Hence, a combination of an
anomaly detection system is essential to overcome this limitation.

9.3. EVALUATION-RELATED

The evaluation technique used in this research is preliminary and manual. The cluster quality es-
timation is based on visual analysis, which is prone to be subjective. The comparisons between
Pcap- and Connection-level granularity are flimsy since Pcaps are being compared with connec-
tions, which are subsets of Pcaps – the comparison is not performed at the same level. However,
due to lack of time, formalizing this section was left as future work. Hence, the first task in this
area is to develop a cluster quality metric that is able to capture our definition of cluster ’goodness’.
In addition, a framework needs to be designed that can merge distances from connection-level to
Pcap-level to allow an objective comparison between the two level of granularities.

9.4. FUTURE VISION

The proposed technique was developed as part of a larger research study. Now that it is clear that
higher-level sequential features can be used to cluster malware attacking capabilities, the evolu-
tion of malware attacking capabilities can be studied in detail using the proposed technique as its
foundation. We expect that the evolution study will uncover unprecedented collaborations among
malware authors and may also be used to infer attacker motivation. In addition, the proposed tech-
nique has the potential to shift the focus from system-level labeling of malware to network-level
labeling of attacking capabilities. These set of labels are expected to be more consistent due to the
uniformity of the Internet architecture in general.
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CONCLUSIONS

Malware attacks are becoming more elusive and powerful [1]. In addition, the sheer number of mal-
ware samples that are detected on a daily basis is exceeding our capacity to analyze them [55]. For-
tunately, a significant fraction of malware samples are variants of each other, which can be grouped
in families [5]. In this way, we can discard malware samples belonging to a family that we have
already analyzed.

Malware can be clustered using information retrieved from static analysis and dynamic analysis.
The data source for dynamic analysis can either be system-level behavior or network-level behavior
exhibited by a malware. Network activity shows the core behavior of malware as it captures the
malware’s interaction with its developer. It also does not induce additional overhead on end hosts,
and the existing network monitoring infrastructure can be utilized for this purpose [22].

A number of different clustering approaches exist to group similar-looking and similar-behaving
malware. Available literature [29, 33] shows an increasing emphasis towards Deep Packet Inspec-
tion, which is a controversial subject because of its severe privacy implications [56]. So, it is likely
that it may not be allowed in the future.

Hence, we propose an exploratory technique that utilizes sequences of high-level, non-privacy-
intrusive features to cluster malware based on their network behavior. Our intuition is that malware
samples that use the same underlying infrastructure will perform actions in a similar order, which
should be visible in high-level features, even in the presence of evasion techniques. The proposed
approach ends up clustering different Internet-usage behaviors exhibited by multiple malware fam-
ilies, which can also be referred to as their attacking capabilities. Clustering similar attacking capa-
bilities allows us to directly defend against that attack, rather than defending a system against a
particular malware family. Hence, it provides a new way to categorize malware samples into fami-
lies, which is in contrast to the labeling system based on static analysis of the binary executable.

We solve a number of challenges during the course of this research project. Our main contribu-
tions are:

• Identifying which level of granularity to construct the sequences at,

• Identifying which feature-set to use at those granularities,
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• Proposing discretization techniques in order to convert numeric sequences to categorical
ones,

• Identifying the appropriate distance measures to measure the distance between numeric and
categorical sequences,

• Identifying which clustering algorithm performs best in extracting interpretable clusters,

• Performing a detailed analysis on which behaviors are clustered using the proposed approach,
and

• Comparing the results of this research with clusters obtained from non-sequential features
and malware family labels.

The answers to research questions posed in Section 1.5 are given below:

RQ: Are high-level sequential features effective in characterizing and clustering malware fam-
ilies’ network behavior?

The proposed approach utilizes simple, sequential features to capture malware families’ net-
work behavior. In order to answer this question, one should define what a ’malware family’ means.
A malware family is defined as a group of malware samples behaving similarly or originating from
the same source. The malware samples present in the available dataset were labeled using static
analysis of their binary executables. However, the goal of this project is to cluster the network be-
havior exhibited by malware samples, which does not have a one-to-one mapping with the static
analysis – different families can behave similarly if their objectives are similar, and one malware
family can behave in multiple ways corresponding to each of its objective. Therefore, given the def-
inition that a malware family is composed of malware samples whose network behavior is similar,
the proposed technique is effective in characterizing those behaviors. The results show that the
clusters represent common attacking capabilities among malware families, rather than clustering
malware families themselves (Here malware families essentially refer to labels assigned using static
analysis). Upon reflection, we believe that for organizations, knowing what kind of attack is be-
ing performed on their network would better equip them to defend it, rather than knowing which
malware family is attacking them.

RQ1: What level of granularity is best to characterize malware families’ network behavior?

In this project, we evaluated two level of granularities – Pcap-level and Connection-level. Upon
cluster analysis, we found that Pcap-level captures high-level, bird’s eye view of the whole Pcap,
while Connection-level drills down to a deeper level and shows a much clearer behavioral pattern.
The analysis with connection-level can become resource-intensive due to the sheer amount of con-
nections coming from a few Pcap files. However, we were able to analyze the connections in much
more detail and identify attacking capabilities such as port scans, a C&C server controlling different
families, and a C&C server behaving differently at different times. We also detected several sub-
nets that seem to host C&C servers. In conclusion, Connection-level granularity, while having its
downsides, still outperforms Pcap-level in capturing malware attacking capabilities.

RQ2 (a): Which high-level feature-set characterizes a malware’s network traffic?
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In order to compensate for the abstractness of high-level features, we decided to leverage the
power of sequences-as-features. Our intuition is that the malware samples related to one another
will perform actions in a similar order, which will be captured aptly with sequences rather than sin-
gular values. Several features were evaluated that are suggested in the literature, extracted from the
headers of different layers of the OSI model [30, 31, 33, 37]. We discovered that the feature-set cho-
sen is dependent on the level of granularity being considered for the sequence construction. Hence,
at the Pcap-level granularity, a triple sequence of (packet size, interval between packets,
protocol number) was chosen as the feature set, and at the Connection-level granularity, a quadru-
ple sequence of (packet size, interval between packets, source port, destination
port) best characterized the malware behavior. In addition, we also identified that discretizing
numeric features at the Pcap-level granularity helps clear away noise and results in better-quality
clusters.

RQ2 (b): What is the difference between using features that are represented by sequences versus
those that are not?

A baseline was created to evaluate the effectiveness of sequence clustering at both levels of gran-
ularity. The features at the baseline were represented using aggregated singular values, instead of
sequences. The rest of the parameter settings were kept constant. A comparison between the clus-
ters obtained from sequence-as-features versus baseline was performed. The results showed that
using sequence clustering allowed robust and lenient clusters, compared to the baseline version.
The results also showed overall similar clusters in both settings. However, due to the stubborn na-
ture of feature representation in the baseline version, a lot more Pcaps/connections were discarded
as noise, and smaller clusters were formed.

RQ3: Which distance captures the (dis)similarity in sequences at the various granularities con-
sidered?

The feature-set at both levels of granularities is a combination of numeric and categorical se-
quences. A number of different distance measures were evaluated to define the notion of ’similar-
ity’ in this regard. For numeric features, we found Dynamic Time Warp distance to aptly measure
the distance, while Ngram analysis (N=3) and cosine distance were used to measure the distance be-
tween categorical features. In order to consolidate the distances calculated for each Pcap/connection,
a simple unweighted average was used.

RQ4 (a): What kind of behaviors are visible in the clustered malware samples resulting from
the proposed clustering approach?

The proposed clustering approach is able to cluster similar attacking capabilities exhibited by
different malware families. At the Pcap-level, a lot of repetitive behavior is seen in the sequence
of packet sizes and the interval between packets. Simple behaviors, such as initiating contact with
the C&C server and downloading malicious configuration files are responsible for that periodic-
ity. No specific behavioral insight is gained from the protocol-switching behavior. However, at the
Connection-level, the clusters can be divided in a quadrant having incoming and outgoing con-
nections at one axis while HTTP-based and other-protocol-based malware at the other axis. The
clusters are generally well-separated, and a false positive rate of 2.6% is observed. Each cluster
shows a distinct type of behavior. Incoming and outgoing connections are clustered separately. The



101

sequence of port numbers shows systematic and randomized port scans being conducted. Several
IP addresses, which are potentially C&C servers, are seen behaving differently at different times.
Samples from several malware families are also seen contacting the same IP address. These insights
suggest that either the malware family label assigned to those samples is incorrect or that those mal-
ware families work in collaboration with each other. Lastly, the clusters also revealed a few subnets
that are likely to be composed of C&C servers.

RQ4 (b): How different is the malware samples’ membership to clusters resulting from network
analysis versus static analysis?

Each Pcap was assigned a family label based on its static analysis, which may or may not corre-
spond to its network-level behavior. The benefit of clustering malware samples using their network
traffic rather than their family labels is twofold. First, the clustering splits samples from one family
across different clusters, showing the variety of behaviors exhibited by that single family. Second,
it groups common network behaviors among different malware families, showing relationships be-
tween them. On the contrary, a malware family label assigned based on static analysis of the binary
does not convey such detailed insights. Hence, dynamic, network-based sequence clustering is far
more qualified to identify the many behaviors exhibited by one family, as well as common behaviors
among multiple families.

In conclusion, the exploratory study performed in this thesis shows that high-level sequential
features are capable of characterizing and clustering the attacking capabilities of malware families.
The resulting clusters are robust and can uncover potential collaborations among malware fami-
lies. However, heavy optimization is required in order to make the clustering method ready to be
deployed in the real world.



A
FAMILY LABEL, HASH AND IP ADDRESS

MAPPING

Family name Encoded to
Blackmoon B
Citadel C
Dridex D
Dridex-Loader DL
Gozi-EQ GE
Gozi-ISFB GI
Ramnit R
ZeuS Z
ZeuS-v1 Z1
Zeus-Action ZA
ZeuS-P2P ZP2
Zeus-Panda ZPA
ZeuS-VM-AES ZVA
ZeuS-OpenSSL ZO
Dridex-RAT-FakePin DRF

Table A.1: Mapping of Malware family names to the first three characters of their names

Hash value Encoded to
4c7d6 0
2d63f 1
5b537 2
5606c 3
738f1 4
11536 5
6ee08 6
bddf2 7
372f8 8
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4c1fa 9
ebe83 10
05509 11
0bc7c 12
6e474 13
4bd77 14
16dad 15
3e636 16
4385a 17
78de2 18
6eaba 19
6b252 20
2d600 21
5ef1e 22
57b2c 23
3604d 24
26d08 25
3c914 26
41b22 27
26135 28
5e34b 29
0bdc3 30
52946 31
34391 32
0fe7b 33
eb578 34
dc1f6 35
6713d 36
5644f 37
11c95 38
1590b 39
16f4a 40
67189 41
20716 42
2c58c 43
1dece 44
5441c 45
6a081 46
5b125 47
24346 48
13a67 49
5a3be 50
34ff3 51
32e63 52
eb4e1 53
45592 54
6ff80 55
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786e4 56
2edc3 57
163fd 58
61db2 59
4c3bf 60
564ba 61
6fe95 62
6a7d4 63
6cc35 64
0da1e 65
a1590 66
400af 67
3b639 68
a07d1 69
5d171 70
44547 71
33110 72
0999f 73
0e6dd 74
36688 75
11a32 76
61cef 77
2a05a 78
3ed99 79
a11e1 80
79204 81
30c18 82
5b277 83
44c3c 84
25a27 85
7b1be 86
6743a 87
078ea 88
11286 89
03e0c 90
76b53 91
06fe3 92
1f57a 93
17b0e 94
5dfbe 95
13199 96
4b386 97
5a7d4 98
0fd3b 99
3b588 100
478f5 101
2c52d 102
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7754d 103
09d32 104
6263c 105
66312 106
112a1 107
244a6 108
6fa66 109
409ec 110
22a10 111
44cf9 112
1fb3c 113
042f0 114
75b4d 115
5cd55 116
490da 117
7a3ea 118
43b17 119
2d327 120
648a6 121
a3ef9 122
1207f 123
75ed9 124
3feac 125
25210 126
3a042 127
1e1e4 128
334ea 129
461c2 130
1b3b1 131
43ff0 132
15c03 133
6763c 134
063fa 135
35ac7 136
69bf8 137
a0563 138
035d8 139
3e6c3 140
026f4 141
5d931 142
474c1 143
18701 144
31d64 145
53dad 146
1048e 147
06896 148
dcee0 149



106 A. FAMILY LABEL, HASH AND IP ADDRESS MAPPING

74b28 150
6d00f 151
7bdf3 152
e4709 153
a1f87 154
a0152 155
a11b6 156
2db47 157
00e92 158
20660 159
1df9f 160
76170 161
5965b 162
3108e 163
1e6a8 164
360ce 165
3fd36 166
5896b 167
041bf 168
5272c 169
63ede 170
dc3dc 171
716e1 172
08a47 173
4bd80 174
40181 175
53310 176
21f0f 177
0ea2b 178
6896a 179
2cd5c 180
27f0d 181
5f925 182
4a191 183
1d653 184
68e84 185
18782 186
70238 187
ebbb8 188
431b7 189
45f63 190
0eeb1 191
336a7 192
560e2 193
59012 194
59dd1 195
b09ff 196
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68029 197
11b75 198
4a84f 199
009ea 200
54f41 201
1e008 202
588c6 203
62c89 204
32503 205
63003 206
72a53 207
5dc20 208
03d2d 209
6791f 210
177fe 211
23bdd 212
75487 213
20ec0 214
6f3ae 215

Table A.2: Mapping of hash values to numbers

IP address Encoded to
94.23.148.62 0
23.219.162.170 1
10.74.23.100 2
148.81.111.121 3
10.74.54.100 4
103.17.117.29 5
10.74.45.100 6
88.221.254.203 7
2.22.22.82 8
13.107.4.50 9
172.217.17.78 10
134.102.200.101 11
47.91.111.171 12
74.125.206.139 13
74.125.206.138 14
62.173.141.42 15
94.73.148.160 16
10.74.34.100 17
188.114.140.245 18
2.22.146.113 19
2.22.146.112 20
31.15.10.10 21
92.48.108.28 22
62.113.203.55 23
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103.56.139.8 24
103.244.148.179 25
75.27.136.151 26
92.53.112.89 27
45.79.84.186 28
54.192.203.182 29
23.219.88.153 30
159.203.42.254 31
62.138.144.162 32
23.67.250.139 33
88.221.15.19 34
193.42.156.106 35
13.69.159.30 36
50.7.178.98 37
211.115.106.9 38
211.115.106.8 39
211.115.106.7 40
211.115.106.6 41
211.115.106.5 42
211.115.106.4 43
211.115.106.3 44
211.115.106.2 45
211.115.106.1 46
10.74.33.100 47
67.229.228.218 48
95.100.156.11 49
46.4.99.46 50
78.142.63.63 51
72.246.56.120 52
195.110.124.188 53
193.124.181.50 54
144.217.254.208 55
216.58.198.174 56
209.126.119.168 57
10.74.32.255 58
130.255.73.90 59
216.58.201.36 60
23.62.62.167 61
62.149.144.108 62
23.96.219.115 63
104.93.82.160 64
198.15.236.140 65
198.15.236.141 66
66.102.1.102 67
10.74.18.100 68
74.125.206.102 69
184.51.1.48 70
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198.41.215.184 71
198.41.215.185 72
184.51.1.41 73
198.41.215.183 74
103.56.139.16 75
103.56.139.17 76
34.194.213.50 77
144.217.56.140 78
10.74.49.100 79
217.182.45.165 80
10.74.20.100 81
23.229.23.2 82
123.110.49.77 83
149.202.2.106 84
104.223.114.11 85
10.74.53.100 86
94.240.170.216 87
5.9.147.226 88
62.210.213.17 89
54.192.203.88 90
2.22.49.14 91
103.226.155.56 92
18.181.5.37 93
108.61.164.218 94
2.20.188.188 95
72.247.184.121 96
185.25.50.5 97
213.136.80.109 98
47.91.121.168 99
23.4.241.89 100
52.174.55.168 101
63.234.248.163 102
151.80.147.153 103
23.4.241.80 104
64.233.184.102 105
5.135.183.146 106
64.233.184.101 107
46.166.167.46 108
88.221.112.131 109
14.17.41.150 110
2.22.48.177 111
141.138.157.53 112
47.91.104.57 113
10.74.5.100 114
95.59.26.76 115
95.46.114.129 116
67.198.227.220 117
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62.149.140.138 118
2.22.23.73 119
216.58.208.228 120
10.74.10.255 121
216.58.198.196 122
51.254.202.160 123
10.74.29.255 124
216.58.208.227 125
10.74.7.255 126
10.74.23.255 127
62.149.128.160 128
93.119.123.193 129
10.74.30.255 130
178.63.97.34 131
147.32.5.111 132
87.106.190.153 133
85.195.207.92 134
91.103.125.24 135
203.205.151.50 136
72.14.182.233 137
40.68.38.156 138
192.35.177.195 139
10.74.34.255 140
46.101.6.132 141
81.31.147.141 142
10.74.24.255 143
23.14.84.49 144
74.125.206.100 145
74.125.206.101 146
94.23.204.175 147
2.22.146.123 148
185.129.60.131 149
192.88.99.1 150
10.74.20.255 151
85.159.213.210 152
76.73.17.194 153
163.172.156.198 154
1.164.149.14 155
91.121.230.216 156
74.91.21.2 157
195.154.181.146 158
10.74.3.255 159
2.22.22.218 160
2.22.22.219 161
10.74.29.100 162
5.178.43.18 163
81.176.239.224 164
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195.8.222.232 165
54.192.203.236 166
54.192.203.238 167
87.98.175.85 168
46.249.205.50 169
2.16.4.176 170
185.81.0.99 171
185.64.219.6 172
23.81.66.90 173
188.138.75.101 174
2.16.4.178 175
10.74.25.100 176
188.120.243.35 177
10.74.16.100 178
10.74.47.100 179
23.215.133.9 180
10.74.30.100 181
216.58.206.131 182
31.31.73.222 183
50.62.111.1 184
163.172.146.169 185
91.134.135.12 186
46.38.238.142 187
204.188.136.44 188
208.185.118.105 189
31.11.32.99 190
185.156.179.126 191
23.215.130.114 192
37.187.30.78 193
72.167.191.65 194
216.58.213.142 195
66.102.1.138 196
66.102.1.139 197
104.86.110.251 198
10.74.55.255 199
10.74.8.255 200
92.122.122.146 201
92.122.122.147 202
89.223.27.179 203
23.62.6.16 204
2.22.22.105 205
63.243.244.8 206
63.243.244.9 207
185.195.24.6 208
31.11.32.73 209
209.48.71.250 210
88.86.120.181 211
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184.51.0.250 212
212.112.245.170 213
64.69.66.200 214
85.204.74.132 215
10.74.40.255 216
78.47.18.110 217
104.93.82.8 218
10.74.19.255 219
5.9.88.74 220
85.214.236.207 221
24.234.152.249 222
80.239.216.34 223
136.243.214.137 224
10.74.39.255 225
217.182.73.92 226
80.231.244.27 227
46.4.34.242 228
10.74.7.100 229
8.253.44.158 230
104.86.110.74 231
111.231.53.226 232
23.219.162.168 233
10.74.36.255 234
144.76.133.38 235
62.149.140.210 236
178.165.72.60 237
8.254.194.174 238
35.187.55.75 239
72.249.193.34 240
23.62.6.171 241
40.74.50.25 242
37.48.122.22 243
10.74.5.255 244
62.210.142.39 245
23.62.6.179 246
54.192.203.68 247
23.55.149.163 248
37.115.202.156 249
2.22.23.25 250
69.181.245.46 251
213.246.56.62 252
89.223.109.60 253
71.17.184.96 254
77.123.108.42 255
239.255.255.250 256
107.167.87.242 257
89.163.224.250 258
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2.22.146.40 259
109.74.196.143 260
45.55.8.14 261
10.74.15.100 262
67.131.160.25 263
2.22.146.48 264
10.74.40.100 265
193.23.244.244 266
10.74.13.255 267
90.154.128.74 268
31.11.32.119 269
119.28.86.77 270
64.71.164.5 271
10.74.24.100 272
2.22.22.65 273
198.98.53.5 274
103.244.148.70 275
37.59.236.156 276
195.133.146.57 277
148.251.193.100 278
10.74.37.100 279
109.74.195.149 280
173.223.52.43 281
23.219.88.107 282
198.15.236.121 283
103.24.94.36 284
111.90.140.7 285
23.192.125.168 286
85.227.129.23 287
23.3.96.11 288
88.221.14.168 289
216.58.198.164 290
194.87.237.127 291
85.235.225.239 292
10.74.27.255 293
72.246.56.35 294
40.77.64.160 295
2.16.106.139 296
49.51.38.83 297
45.32.28.232 298
2.21.67.81 299
94.23.144.49 300
104.168.87.167 301
23.215.132.91 302
136.243.176.148 303
104.16.91.188 304
10.74.16.255 305
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139.59.36.57 306
50.87.37.56 307
162.246.57.206 308
104.40.208.40 309
23.215.132.235 310
86.105.1.11 311
62.113.203.99 312
5.196.159.173 313
5.196.159.175 314
104.91.166.81 315
137.116.77.120 316
2.16.4.40 317
23.206.242.58 318
10.74.11.255 319
184.83.3.50 320
23.23.170.235 321
103.226.155.43 322
91.207.7.81 323
192.87.28.82 324
88.221.14.193 325
23.215.130.235 326
51.15.135.103 327
216.58.213.131 328
8.253.86.14 329
10.74.22.100 330
10.74.55.100 331
61.74.49.180 332
10.74.44.100 333
176.9.17.142 334
23.61.194.147 335
10.74.15.255 336
2.22.22.137 337
104.155.38.253 338
10.74.37.255 339
185.68.144.62 340
138.197.202.35 341
10.74.9.255 342
173.223.106.227 343
217.73.238.12 344
195.154.255.174 345
64.233.184.113 346
176.31.163.89 347
65.153.18.99 348
2.20.188.172 349
10.74.19.100 350
99.116.60.120 351
67.198.128.252 352
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54.192.203.22 353
199.15.250.210 354
151.101.0.233 355
185.107.224.208 356
216.58.208.238 357
10.74.10.100 358
46.173.214.226 359
104.27.138.75 360
10.74.51.100 361
10.74.32.100 362
23.219.162.153 363
192.99.108.183 364
209.170.111.8 365
184.50.238.217 366
10.74.2.255 367
10.74.22.255 368
62.149.140.244 369
5.9.49.12 370
178.16.208.56 371
31.11.34.21 372
89.223.27.249 373
62.149.142.160 374
154.35.32.5 375
198.41.214.184 376
202.218.50.130 377
38.229.70.53 378
172.217.23.14 379
212.111.30.190 380
2.21.67.57 381
2.16.4.112 382
88.221.144.18 383
107.154.113.172 384
66.110.99.19 385
208.67.222.222 386
88.221.144.10 387
88.221.14.121 388
27.133.240.230 389
104.238.186.189 390
70.32.39.218 391
88.221.14.128 392
54.192.203.163 393
2.22.146.75 394
10.74.4.100 395
10.74.9.100 396
87.72.239.187 397
10.74.35.255 398
31.11.32.129 399
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23.215.133.64 400
67.131.160.19 401
184.51.0.243 402
172.217.17.142 403
23.74.28.25 404
63.217.21.41 405
216.58.201.238 406
94.242.254.91 407
54.192.203.111 408
99.126.22.157 409
10.74.1.255 410
89.163.247.43 411
5.196.71.24 412
118.214.160.203 413
72.246.56.107 414
69.31.132.16 415
69.31.132.10 416
204.79.197.200 417
77.246.163.142 418
54.192.203.142 419
23.3.96.57 420
2.16.106.51 421
40.113.17.180 422
5.150.221.137 423
75.56.51.58 424
94.23.186.184 425
185.72.178.171 426
88.221.14.16 427
31.11.32.88 428
72.246.56.10 429
198.105.184.30 430
185.141.25.23 431
66.102.1.101 432
23.215.130.179 433
185.133.72.100 434
216.58.212.174 435
198.105.184.26 436
198.105.184.25 437
23.50.225.25 438
217.70.144.15 439
209.85.202.113 440
198.105.184.28 441
122.114.152.92 442
96.90.175.167 443
89.18.27.34 444
204.188.136.221 445
54.72.46.30 446
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99.103.223.24 447
10.74.35.100 448
10.74.3.100 449
116.255.164.235 450
54.192.203.65 451
67.225.166.132 452
10.74.50.100 453
88.99.199.87 454
23.219.163.24 455
10.74.4.255 456
118.214.160.195 457
10.74.11.100 458
31.128.74.100 459
184.51.1.10 460
45.63.99.180 461
23.61.194.178 462
94.242.255.112 463
171.25.193.9 464
2.18.65.112 465
217.73.238.20 466
10.74.12.255 467
23.215.130.99 468
10.74.21.100 469
10.74.1.100 470
91.209.77.11 471
216.58.210.35 472
216.18.70.74 473
93.115.91.66 474
144.76.253.229 475
216.58.208.206 476
115.126.14.26 477
47.91.124.165 478
115.126.14.25 479
185.15.72.62 480
198.41.215.182 481
88.221.15.73 482
46.91.215.207 483
137.116.74.190 484
88.221.15.75 485
23.219.162.104 486
10.74.2.100 487
23.54.18.42 488
185.141.25.242 489
155.133.38.226 490
91.229.20.27 491
72.247.9.121 492
23.215.132.11 493
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31.11.32.166 494
63.217.21.26 495
138.201.169.12 496
91.121.23.100 497
69.42.64.26 498
99.92.50.150 499
69.42.64.24 500
10.74.28.100 501
103.56.139.15 502
78.156.117.236 503
104.86.110.64 504
51.141.32.51 505
46.235.9.33 506
10.74.46.100 507
62.149.142.84 508
10.74.31.100 509
46.101.100.94 510
83.162.202.182 511
173.212.206.230 512
10.74.48.100 513
198.15.236.139 514
10.74.27.100 515
213.66.28.170 516
79.250.130.36 517
84.201.32.108 518
54.192.203.153 519
68.168.221.222 520
89.163.225.6 521
10.74.21.255 522
2.18.213.59 523
123.58.180.166 524
94.242.58.233 525
92.222.180.87 526
194.109.206.212 527
23.111.11.204 528
72.246.64.177 529
37.191.160.173 530
212.47.229.2 531
188.240.208.89 532
2.16.4.152 533
10.74.12.100 534
92.122.212.27 535
197.2.66.166 536
164.132.77.175 537
10.74.18.255 538
185.159.129.195 539
50.7.151.127 540
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23.204.138.56 541
52.166.120.77 542
2.16.4.72 543
194.94.127.98 544
62.149.140.188 545
10.74.17.255 546
168.235.146.20 547
23.61.194.250 548
10.74.26.255 549
194.50.97.16 550
96.126.117.198 551
10.74.33.255 552
10.74.28.255 553
10.74.6.100 554
184.105.192.2 555
122.114.84.167 556
195.225.171.30 557
104.80.88.152 558
66.7.218.146 559
198.105.184.16 560
104.16.93.188 561
89.22.100.64 562
118.214.160.216 563
200.35.156.207 564
93.63.162.60 565
35.198.166.240 566
52.179.17.38 567
5.178.43.17 568
136.243.106.162 569
2.20.188.140 570
23.61.194.10 571
62.233.121.75 572
2.21.67.59 573
31.11.33.18 574
91.134.243.173 575
173.224.119.211 576
173.224.119.212 577
107.180.41.148 578
10.74.38.255 579
188.166.82.61 580
195.123.218.172 581
23.14.90.114 582
103.24.94.38 583
13.65.245.138 584
5.9.25.79 585
216.58.206.142 586
62.149.128.166 587
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51.15.177.148 588
23.219.162.146 589
216.58.198.206 590
184.25.56.91 591
46.252.26.2 592
47.90.82.159 593
184.25.56.99 594
10.74.17.100 595
185.86.150.78 596
178.255.83.2 597
178.66.0.167 598
37.187.20.164 599
213.108.41.176 600
54.192.203.251 601
88.221.14.11 602
67.229.104.211 603
180.163.251.231 604
10.74.42.100 605
208.80.154.39 606
193.183.98.154 607
208.83.223.34 608
23.219.162.99 609
10.74.26.100 610
96.6.45.57 611
54.192.203.211 612
95.100.156.8 613
23.215.133.73 614
93.170.96.235 615
23.67.250.121 616
10.74.6.255 617
178.254.9.25 618
10.74.43.100 619
104.20.1.85 620
2.22.22.48 621
104.27.147.174 622
203.130.58.30 623
23.217.129.17 624
8.250.15.254 625
185.45.192.116 626
92.122.122.154 627
92.122.122.137 628
92.122.122.136 629
72.246.56.137 630
104.223.114.3 631
10.74.38.100 632
2.22.22.144 633
23.74.2.66 634
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63.234.248.160 635
208.118.235.148 636
10.74.14.100 637
216.58.213.163 638
10.74.41.100 639
72.246.56.186 640
31.11.32.228 641
23.215.130.146 642
66.102.1.113 643
178.16.208.62 644
5.196.20.5 645
8.253.13.110 646
103.17.117.246 647
92.122.212.19 648
64.233.184.100 649
224.0.0.22 650
23.38.103.25 651
84.22.184.152 652
209.85.202.106 653
209.85.202.101 654
209.85.202.100 655
80.83.118.233 656
209.85.202.102 657
85.204.74.158 658
121.42.51.120 659
209.107.217.74 660
192.35.177.64 661
31.193.131.147 662
64.233.184.139 663
162.159.211.43 664
185.20.225.124 665
69.73.130.134 666
119.28.81.30 667
98.139.183.24 668
62.149.142.166 669
103.7.30.86 670
152.195.32.39 671
62.210.254.132 672
23.74.2.120 673
185.61.149.12 674
23.215.132.162 675
198.167.140.243 676
115.126.14.81 677
93.184.220.29 678
185.21.216.157 679
45.123.118.101 680
23.38.103.32 681
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10.74.47.255 682
173.223.106.200 683
173.223.106.201 684
217.12.223.202 685
10.74.14.255 686
192.87.28.28 687
212.51.134.123 688
224.0.0.252 689
188.165.200.156 690
23.50.225.17 691
23.219.163.83 692
198.55.107.156 693
198.41.214.185 694
93.170.13.22 695
62.149.128.151 696
10.74.13.100 697
62.149.128.154 698
62.149.128.157 699
142.91.104.107 700
192.42.116.41 701
209.85.203.94 702
23.50.225.9 703
51.255.41.91 704
141.20.33.67 705
95.163.121.162 706
54.91.240.28 707
52.41.240.139 708
23.94.5.133 709
115.159.4.107 710
10.74.8.100 711
185.195.24.139 712
23.97.178.173 713
87.245.242.234 714
194.58.100.73 715
54.202.79.255 716
207.154.244.147 717
51.255.48.78 718
178.62.252.82 719
103.244.148.71 720
38.140.184.17 721
23.43.69.163 722
40.69.25.97 723
62.210.141.69 724
2.18.213.64 725
31.11.32.214 726
2.22.22.209 727
62.149.142.58 728
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54.192.203.143 729
104.93.82.19 730
45.63.25.55 731
8.8.8.8 732
72.246.64.187 733
62.149.128.74 734
62.149.128.72 735
88.221.113.49 736
10.74.39.100 737
89.45.67.144 738
209.48.71.121 739
23.111.11.211 740
2.22.146.19 741
10.74.25.255 742
37.139.24.90 743
206.190.36.45 744
138.201.132.17 745
23.204.138.9 746
23.219.162.89 747
95.215.111.125 748
103.52.216.15 749
138.197.133.81 750
217.23.7.103 751
10.74.36.100 752
5.149.216.60 753
185.118.66.84 754
23.229.147.161 755
173.223.52.18 756
144.76.184.104 757
2.16.4.187 758
74.88.96.7 759
37.122.208.220 760
178.255.83.1 761
89.46.105.15 762
54.192.203.136 763
62.210.92.11 764
62.149.128.163 765
80.239.216.58 766
23.219.88.82 767
23.219.88.81 768
10.74.52.100 769
112.90.78.177 770
23.215.130.216 771
23.215.132.138 772
118.214.160.251 773
111.206.66.62 774
86.59.21.38 775
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72.246.56.170 776
198.50.146.252 777
23.62.6.27 778
64.233.184.138 779
8.253.129.66 780
104.16.90.188 781
118.166.47.54 782
208.67.183.204 783
198.41.214.183 784
23.61.194.27 785
31.11.32.116 786
198.41.214.187 787
67.229.60.202 788
211.115.106.11 789
211.115.106.10 790
23.43.75.27 791
183.131.79.137 792
89.223.29.55 793
92.122.192.81 794
188.241.58.10 795
165.254.52.106 796
69.156.240.29 797
216.58.209.238 798
195.110.124.133 799
10.74.31.255 800
23.74.28.8 801
62.210.82.244 802
45.56.117.118 803

Table A.3: Mapping of IP addresses to numbers



B
COVER PICTURE SHOWS A PORT SCAN

The inspiration for the cover picture came from the heatmaps generated during cluster content
visualization. The cover page shows a real-life port scan taking place. So, it goes to show that the
results of this project are quite useful and the visualizations, artistic.

Following is the original version of the cover, showing the family labels and hashes responsible
for the port scan.

Figure B.1: Cover picture’s original heatmap
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