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Application of Autoregressive Spectral Analysis
to Missing Data Problems

Piet M. T. Broersen, Stijn de Waele, and Robert Bos

Abstract—Time series solutions for spectral analysis in missing
data problems use reconstruction of the missing data, or a max-
imum likelihood approach that analyzes only the available mea-
sured data. Maximum likelihood estimation yields the most accu-
rate spectra. An approximate maximum likelihood algorithm is
presented that uses only previous observations falling in a finite
interval to compute the likelihood, instead of all previous obser-
vations. The resulting nonlinear estimation algorithm requires no
user-provided initial solution, is suited for order selection, and can
give very accurate spectra even if less than 10% of the data re-
mains.

Index Terms—Autocovariance estimation, missing observations,
order selection, parameter estimation, spectral estimation, Vostok
data.

I. INTRODUCTION

OBSERVED data are often incomplete. In controlled ex-
periments, sensor failure or outliers lead to missing data.

In meteorological, hydrological, astronomical, or satellite ob-
servations, the weather conditions may disturb the equidistant
sampling scheme. In paleoclimatic data, the relation between
the chronological time and the physical depth causes an ob-
served time series with missing observations on an equidistant
time grid [1], [2]. The pattern of data that are missing is impor-
tant for the analysis. It will often be random for sensor failure
or outliers, it may have large gaps due to weather conditions,
and it will not be stationary for paleoclimatic data where recent
observations are missing less frequently than very old ones. The
paper is mainly concerned with randomly missing data.

The treatment of missing data has two different principles:
reconstruct or interpolate the missing data and analyze the new
equidistant signal or use only the remaining data. The first group
of methods relies on estimation algorithms that have been de-
veloped for consecutive equidistant data. Three methods that
extract equidistant information from missing data will be dis-
tinguished in this category. The first is some sort of static in-
terpolation between the remaining observations, linear, nearest
neighbor, sample and hold, or splines. Those methods have been
studied extensively. The performance depends heavily on the
characteristics of the data. It may be accurate for slowly varying
low frequency signals, but no interpolation method gives good
results for all types of data [3]. The second method reconstructs
the missing data with a model for the covariance structure. This
method is derived from the EM algorithm for missing data. The
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E step finds the conditional expectation of the missing data
given the observed data together with the currently estimated
model; the M step computes maximum likelihood estimates for
the parameters of the model from all consecutive data, observed
and reconstructed [4]. The third reconstruction method is only
applicable in simulations because it uses the true process co-
variance in the reconstruction of the missing data. It can be con-
sidered as the ultimate possible reconstruction. If reconstruction
with the knowledge of the true process is not sufficient for ac-
curate spectral estimation in comparison with other methods, no
reconstruction method can be.

The method of Lomb–Scargle [5], [6] uses only measured
data. It computes Fourier coefficients as the least squares
fit of sines and cosines to the available observations. The
Lomb–Scargle spectrum is accurate in detecting spectral
peaks but rather poor in describing slopes in the spectrum
[7]. A second idea is to find some covariance estimate for
the incomplete data and to use that for further analysis [8].
This technique does not always guarantee that the sample
covariance estimate is positive semidefinite [9]. Moreover,
the sample covariances are known to be inefficient estimators
for the covariance structure and will generally not produce
accurate spectral estimates, not even for equidistant data [10].
The third idea selects consecutive segments in the observed
data and uses a special segment variant of the Burg algorithm
to compute the parameters of an autoregressive (AR) model
[11]. It can be successful if only a few parameters have to be
computed or if large gaps alternate with longer consecutive
segments. Its use is limited to rather small randomly missing
fractions, because only uninterrupted data segments can be
used. The final type fits a time series model directly to the
available observations with maximum likelihood estimation.
An exact maximum likelihood approach using Kalman filtering
can be calculated [12] and also a finite interval approximation
[13]. The computational effort of the exact approach depends
on the total observation length of missing and available data;
the computation time for the approximation depends mainly on
the available number of data.

This paper is organized as follows. An introduction in time
series shows that the AR parameters represent the spectrum and
the covariance function of measured data. The conditional den-
sity of joint normally distributed variables is used in Section III
to derive an approximate maximum likelihood estimator for
missing data AR models. Some specific choices for a good and
efficient numerical performance of this method are described
and the resulting spectra are compared with several existing
methods for randomly missing data. An investigation into the
possibility of order selection is made. Furthermore, the new
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method is applied to practical paleoclimatic data to demon-
strate that spectral estimates can be obtained for important
practical problems. In this example, the recent observations are
consecutive but many data in the far past are missing.

II. AR THEORY

AR models describe the characteristics of stationary sto-
chastic processes [14]. The power spectrum and the complete
covariance function are determined by the parameters of the
AR model and by the variance. With consecutive data, the best
model order can be selected objectively and automatically,
based on reliable statistical criteria [10]. The observations
of an AR process with the parameters , , can
be written as [14]

(1)

where is a purely random process with variance . Almost
any stationary stochastic process can be written as a unique
AR process. In practice, estimated finite-order models will
include all statistically significant details. Hence, this model
type can be applied to random physical, meteorological, or as-
tronomical phenomena. The autocovariance function and the
power spectral density of the data can be computed from the
estimated model parameters. The power spectral density
of the AR model is thus given by [14]

(2)

All elements of the infinitely long true normalized correlation
function are determined by the true parameters of (1) with the
Yule–Walker relations [15]

(3)

where denotes and is the variance of the
signal . The same relations (3) can be used to compute the
estimated correlation function, belonging to estimated AR pa-
rameters. Also the inverse use of the Yule–Walker relations (3),
computing parameters from true or estimated correlations,
is often applied.

III. ARFIL ALGORITHM: AR FINITE INTERVAL LIKELIHOOD

AR models for missing data can be estimated with an exact
maximum likelihood (ML) technique [12]. However, the exact
likelihood theory may give computational problems in prac-
tice because it computes the recursive Kalman prediction for
each time instant, which is not efficient if too many data are
missing. Therefore, an approximate likelihood solution is de-
veloped here, with special care for the numerical robustness in
each stage of the algorithm.

The general prediction theory of Gaussian data gives a possi-
bility to estimate AR parameters from randomly available
observations. The observations at time , , are
denoted ; each is a multiple of the sampling time .
For notational simplicity, the observations are separated in two
groups and , with being given by , the single obser-
vation that will be predicted using the 1 dimensional vector

that consists of all available observations except . has
mean and variance , and has a joint multivariate normal
distribution with the 1 dimensional vector , with the same
mean value for each element and with the 1 1
covariance matrix or . The cross covariance matrix
is denoted or . Then the conditional density of
for given is a one-dimensional normal distribution with mean
and variance given by [16, p. 25]

(4)

Hence, is the best prediction of for given for normally
distributed observations. In applying (4) to missing data, the un-
conditional means and variances of and are the same: the
constant mean and variance of the signal. All remaining
observations are required in the vector in (4), from past and
future. This number can be limited to only the past observations
with a general relation for the joint distribution of nor-
mally distributed variables [17, p 255]

(5)

The joint distribution can be written exactly as a product
of conditional densities of increasing time index. This product
of conditional probabilities in chronological order will be used
to construct a prediction with (4) for an available observation

at time from only previous available, not consecutive
. Minimizing the difference between those predictions

and the actual observations carries out the parameter estimation.
The covariance matrix of the observations of an AR process
is required in (4). That covariance structure is completely deter-
mined by the AR parameters with (3). The best prediction from
consecutive observations requires the previous observations
in (1) [14]. If data are missing, an AR(1) process is still best
predicted by the single closest previous observation. However,
higher order AR processes require all previous observations
for the best prediction if data are missing.

The estimated AR parameter vector with elements
is estimated in the case of missing data by min-

imizing the negative of the log of the likelihood function
defined as , with respect
to . The exact algorithm for the likelihood, based on this
principle, would still require too much computing time in
practice, even for moderate . That is because the size of the
predictor would become 1 for the last observation and
an 1 1 matrix has to be inverted. Generally, the
prediction accuracy improves most with the nearest previous
observations, and observations farther away have almost no
influence. Therefore, the maximum length of the predictor with
an AR model is limited to a finite time interval

(6)
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where is the remaining fraction of the data. This algorithm is
AR for finite interval likelihood (ARFIL). The number of obser-
vations within the interval (6) has as average 2 . It has been
verified in several simulations that using a larger interval in (6)
would not have a noticeable influence on the estimated parame-
ters, but it would only require longer computing times. Taking a
much smaller interval reduces the accuracy. Of course, only the
first predecessors contribute to the prediction accuracy if the
observations are consecutive.

To improve the numerical robustness, reflection coefficients
are estimated instead of parameters. The ARFIL algorithm

uses the unconstrained optimization of for in-
creasing orders . This guarantees that the estimated reflection
coefficient is always in the range . Hence, all
models computed by nonlinear numerical optimization routines
are stationary. The usual Yule–Walker or Burg algorithms keep
previous reflection coefficients constant in computing the new

[15]. In contrast with those consecutive algorithms, however,
all , are optimized afresh and simultaneously in
ARFIL, for every model order . Initial solutions for the non-
linear optimization at order are the reflection coefficients of
the AR model with an additional zero for .

Order selection can be performed with the criterion

GIC (7)

The best value for the penalty factor still has to be investi-
gated in the missing data case; The criterion (7) with is
the famous AIC criterion [15]. For consecutive data, the choice

is used in automatic spectral analysis [10] because it gives
a better practical compromise between underfitting and overfit-
ting models.

IV. SIMULATIONS

First, the computational requirements of the ARFIL ML al-
gorithm of Section III have been compared to the exact ML al-
gorithm of Jones, with Kalman prediction [12]. The numerical
outcomes are almost always identical for both algorithms. The
Kalman prediction time is more or less proportional to the total
number and is faster for . The time required for
ARFIL is proportional to the number of remaining observations

and ARFIL is faster for smaller fractions . Those computing
times depend also somewhat on the AR order, where ARFIL is
more sensitive. For estimated AR(10) models, both methods re-
quire about the same time for . The Kalman filtering
is roughly ten times faster for and ARFIL is 50 times
faster for . Therefore, the remaining fraction deter-
mines which ML algorithm is preferable.

The accuracy of estimated models is evaluated with the model
error (ME). This is a relative measure in the frequency domain:
the integrated ratio of the spectral difference between model and
true process on the one hand and the true spectrum on the other
hand. Also a time-domain expression for the model error ME
exists as a normalized prediction error (PE) [10]

ME (8)

The PE is the mean square error of the fit of an estimated model
to new consecutive data of the same process. The multiplication

Fig. 1. Spectra of the AR(5) process and of two AR(5) estimates from a
realization of 100 remaining observations with 20% missing data. The ME for
Burg on segments is 13.2, the ME for ARFIL is 3.7.

with gives the ME an expectation that is independent of the
sample size, for unbiased models estimated from consecutive
data, with as the minimal expectation of the ME for unbiased
AR models.

A comparison of the spectral accuracy of the ML method with
the Lomb–Scargle method and with the sample covariance es-
timate has been made, but the results of those methods do not
deserve further mention. The Lomb–Scargle quality measured
in the ME is generally a hundred or more times worse, as it is in
a comparison of periodograms with time series spectra [10]. In
spectra with peaks and deep valleys, the Lomb–Scargle spectra
display a serious bias in the frequency range where the spectral
density is small. This method is not reliable in describing the
global spectral shape; the asset of this method is the capability
to detect periodicities against a more or less white background
noise.

ML will be compared to Burg on segments and to two re-
construction methods. Those methods reconstruct the missing
data and estimate the AR parameters from the newly obtained
consecutive signal, consisting of the true observations and the
model predictions for the missing data. The reported reconstruc-
tions used are the following.

1) Linear interpolation to reconstruct the missing data.
This was in most examples more accurate than nearest
neighbor, cubic, or spline interpolation.

2) Reconstruction of the data with the true covariance of the
data. It has been verified that this was always the best re-
construction in terms of giving the most accurate spectral
estimate. All recursive reconstruction variants like expec-
tation-maximization [10] that alternate estimation and re-
construction always had higher model errors, often much
higher.

The true process in the simulations is an AR(5) process with
parameters .

This gives a spectrum with slopes and a strong peak at the
frequency 0.3 as is shown in Fig. 1. Also two individual esti-
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TABLE I
THE AVERAGE MODEL ERROR ME AS A FUNCTION OF THE REMAINING DATA

FRACTION  . N = 100 REMAINING OBSERVATIONS, ESTIMATED FIXED ORDER

AR(5) MODELS OF A TRUE AR(5) PROCESS

TABLE II
THE AVERAGE MODEL ERROR ME AS A FUNCTION OF THE REMAINING DATA

FRACTION  . N = 1000 REMAINING OBSERVATIONS, ESTIMATED FIXED

ORDER AR(5) MODELS OF A TRUE AR(5) PROCESS

TABLE III
THE AVERAGE MODEL ERROR ME FOR THE TRUE FIXED ORDER ESTIMATED

MODELS OF THREE PROCESSES. N = 500 REMAINING OBSERVATIONS,
REMAINING FRACTION  = 0:75

mated AR(5) spectra are given in the figure, to demonstrate the
accuracy and also to give an impression of the measure ME that
is used. Tables I and II give some average numerical results. In
all examples and for all fractions , the average ML quality is
better than Burg on segments and also better than reconstruction
with the true covariance. In this example, linear interpolation is
not accurate at all. However, some smooth simulation examples
have been found where the performance of linear interpolation
is reasonable for close to one. Finally, all methods except ML
and sometimes Burg for segments lose most of their accuracy
for less than about 0.5. The test results for lower are not re-
ported. The results indicate that reconstruction methods may be
accurate for few missing data, but not as good as ML estimation.
However, if 50% of the data or more is missing, reconstruction
is very inaccurate.

The simulations in Table III give results of three processes, for
and for . The first process, denoted “AR(5),”

is the same as above; the second process “AR ” is an AR(5)
process with a strong spectral peak on a weak and almost white
background; and the third process “AR(2)” is a low-order AR(2)
process. All conclusions from the first two tables remain appli-
cable. The only exception is that linear interpolation is rather ac-
curate for the AR(2) example. Furthermore, Burg on segments
has the advantage that the model order is only two, which gives
contributions of all segments of length three and greater to the
AR(2) estimation. The consecutive Cramér–Rao lower bound
for the ME would be five, five, and two for the three processes,
respectively. For all three processes, the quality of ML spectra
is the best of the four reported spectra. It should be mentioned,
however, that all processes are low-order AR processes with
known order.

Taking , with the first AR(5) example
gives the opportunity to test the possibility of order selection
in difficult conditions. The highest candidate order was taken
as AR(10). The average ME of the AR(5) model was 132; of
AR(10) it was 14 697. The inaccuracy measured in the ME in-
creases very much with the model order. The average ME of
selected models depends strongly on the penalty factor in (7).
For and , the average ME of the selected model was
2121 and 76, respectively. It is obvious that gives a poor
result, like it does in consecutive data [10]. It is remarkable that
the average ME of models selected with is better than
the ME of the average estimated AR(5) model with the fixed
true order. The explanation is simple. Sometimes, in individual
simulation runs, the nonlinear minimization algorithm did not
converge completely for the true order but it did converge for
a higher order model that used the lower order as initial condi-
tion. In those cases, the selection criteria select the higher order
models and order selection helps to improve the quality of the
estimated spectrum. The influence of the penalty factor in the
selection criterion (7) is very similar to that in consecutive data.
Many other simulations have supported the preference for
for AR order selection, for different missing fractions, for var-
ious , and for many processes.

The very high model error for the AR(10) model demon-
strates that the accuracy of the higher order models deterio-
rates quickly if many data are missing. In consecutive data, the
highest AR candidate order can be 2 without any problem,
but missing data allow much lower AR orders. About se-
quences of length two are present in the average, sequences
of length three, and so on [7]. Therefore, AR models can be
estimated with some reasonable accuracy with the Burg on seg-
ments algorithm if is greater than ten, because then about
ten consecutive segments contribute to the th parameter [7] and
more to the lower orders. The requirements for the ML method
are much less severe. Often much higher order models can be
estimated with ML with sufficient accuracy. This shows that for
every value of , however small, a minimum remaining sample
size can be found for which an accurate AR model can be
estimated.

V. EXAMPLE OF REAL-WORLD DATA

An ice core of length 3310 m is drilled from the ice cap at
the Vostok station in East Antarctica [1]. The ice core with sedi-
ments provides information over a period of 420 ky. The core is
analyzed with a spatial distance of 1 m between the samples.
A time scale is linked to the depth by combining theoretical
flow and accumulation models for the ice. The equidistant depth
scale gives irregular distances at the time scale. Equidistant re-
sampling with a period of four times per ky and accepting only
observations within a time slot of 1/8 ky from the resampling
instants gives an equidistant missing data temperature signal of
length 1474. Almost all time instants in the first part have an
observation within the slot, but a lot of data are missing in the
eldest period. This can be recognized in Fig. 2 where data are
sparser with increasing age.

The ARFIL algorithm and the Burg on segments algorithm
have been applied to the paleoclimatic data [1] in Fig. 3. The
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Fig. 2. Paleoclimatic temperature variation data, extracted once per meter
from the Antarctica Vostok 3310-m-long ice core data and ordered along an
estimated time scale.

Fig. 3. Estimated spectra of paleoclimatic temperature data from the
Antarctica Vostok 3310-m-long ice core data. Burg on segments selected an
AR(2) model, ARFIL selected the AR(7) model.

selected order was two for Burg on segments; for ML it was
seven. Obviously, ARFIL selects more details as statistically
significant. However, the order selection criterion had only a
slight preference for order seven; all orders between two and
ten give very similar values for GIC . The Burg spectrum
for order seven looks very much like the ARFIL spectrum in
Fig. 3. Taking somewhat higher AR orders, some more small
wiggles appear in the high-frequency end, above 0.5 cycles per
ky. Taking the estimated ARFIL model of order seven as a ref-
erence, the ME value of the Burg model of order seven was two
and all Burg models with orders between three and 25 had ME
values less than 33. No peaks at low frequencies have been de-
tected with the time series methods.

This conclusion is in contrast with the spectra that have been
computed with Fourier techniques like Lomb–Scargle spectra
for missing data or modified periodograms for consecutive data

Fig. 4. Comparison between Lomb–Scargle and time series for spectral
estimation of paleoclimatic temperature data from the Antarctica Vostok data.
Only a small portion of the frequency scale is shown.

[1]. The Lomb–Scargle spectrum is shown in Fig. 4. The fre-
quency scale is truncated and the vertical scaling is made linear
for an easy comparison with previous spectral results [1]. Qual-
itatively, the appearance of the Lomb–Scargle spectrum is close
to the temperature difference spectrum as presented in [1]. The
two time series spectra are also close to each other on the linear
scale and quite different from the Lomb–Scargle spectrum.

Lomb–Scargle treats the data as periodic with noise; time se-
ries methods treat them as a finite number of observations of
a stationary stochastic signal. The difference in the estimated
spectra is remarkable in Fig. 4. No undisputable preference can
be given. If one wants to predict the temperature variations in
the future by assuming that the temperature behavior will be
stationary over the centuries, the stochastic signal approach is
preferable. Only if one wants to treat the data as quasi-determin-
istic, implying that taking another ice core on another location
would have given identical data with perhaps some negligible
noise contribution, would the Lomb–Scargle spectrum be proper
to use. However, predictions for the future are not justified then.
It is peculiar that the appearance of the Lomb–Scargle spectrum
just looks like a possible realization of a Lomb–Scargle esti-
mate computed from 1474 AR(7) data. This has been verified
by using the AR(7) model as generating process and applying
the ARFIL and the Lomb–Scargle estimator to many realiza-
tions. ARFIL estimates are close to the generating spectrum in
every realization; Lomb–Scargle spectra are very wild and dif-
ferent in every realization.

Fig. 5 shows that the Burg spectrum becomes similar to
Lomb–Scargle for an estimated AR(250) model. Even the
AR(100) model shows no peaks in the very low frequency
range. This demonstrates that although time series have a
model similar to Lomb–Scargle among the candidates, order
selection will not consider those details as significant. Looking
at the data in Fig. 2, one might say that four periods are visible
in 400 ky. However, the third period is about 30% shorter than
the first. Therefore, the distributed low frequency emphasis of
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Fig. 5. Spectra of paleoclimatic Vostok data. Burgs on segments spectra for
several orders are shown. The AR(2) model was selected for Burg. The AR(250)
model looks like Lomb–Scargle, but has many insignificant parameters.

AR spectra looks more reliable for those data than the strong
peaks at 0.01 and 0.025 ky in Lomb–Scargle.

VI. CONCLUDING REMARKS

The finite interval likelihood maximization algorithm ARFIL
is numerically stable in estimating AR models from incomplete
data. This approximation gives the same result as the exact like-
lihood method of Jones. ARFIL is computationally attractive
if less than 5% of the data remain. For few missing data, the
performance of ML methods is better than that of other known
methods, including all methods that reconstruct the missing data
before the spectral density is estimated. Moreover, ARFIL can
also be used for very sparse data. The quality of the estimated
model with a selected model order is very good in simulations
where the true process is a low-order AR process, often com-
parable to the Cramér–Rao lower bound for consecutive data.
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