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Abstract

In recent years the study of complex systems gained prominence. Since it
is usually difficult to use classical mathematic models to understand these
systems, scientists and engineers have to resort to simulations. Currently
programming languages like CUDA C and OpenCL are available to run large
scale simulations on a GPU architecture. Alternatively simulations can be
executed on agent-based simulators such as NetLogo.
The former enables the writing of highly performant programs whereas the
latter offers a simple language and execution model which is accessible to
people with little programming experience.
The purpose of this thesis is to devise a proof-of-concept simulator called
CudaSimulator which attempts to create a middleground between NetLogo
and CUDA, which on the one hand retains the simplicity of NetLogo and
on the other hand executes simulations on a GPU architecture.

Apart from the general context this thesis is motivated by a specific de-
mand. The Snowdrop project at the Embedded Software Group, TU Delft,
aims to find algorithms that are written in the NetLogo programming lan-
guage and exhibit certain emergent behavior. In order to find such algo-
rithms Genetic Programming is used.
Since a Genetic Programming framework has to simulate and evaluate a lot
of algorithms and this process is usually lengthy, it could be accelerated on
a GPU architecture.

The CudaSimulator is therefore developed in such a way that it could
serve as a backend to the Genetic Programming framework.

The thesis includes an evaluation of the simulator which shows the situ-
ations in which the CudaSimulator is more feasible than alternative solu-
tions.
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Chapter 1

Introduction

The study of complex systems is a novel scientific field dedicated to under-
standing how parts of a system interact to generate (new) collective behav-
iors, and how the whole system interacts with its environment. It is often
the case in these systems, that indirect, unpredictable effects appear when
different action or events happen. Examples of complex systems are found
in a wide range of domains, from social sciences to chemistry and biology,
or from economy to technology. To study complex systems, two classes of
methods are used: analytical methods, where the behavior of system is even-
tually modeled by in-depth analysis of patterns, and the simulation-based
methods, where systems are described and modeled in terms of actions, and
simulated to reproduce and eventually understand their behavior.

A widely used simulation-based method to study complex systems is
Agent-based Modeling (ABM). In ABM, the system is modeled as a set
of agents that are interacting with each other. Depending on the rules
of this interaction, the agent-to-agent communications, and the interaction
with the environment, the complex system evolves. Modeling these agents
and simulating all these interactions using computer-based tools allows the
observer to follow the evolution of the system.

There are many programs that support this modeling method. One of the
most popular is NetLogo [37]. Its popularity is due to its ease of use and the
expressiveness of the language (a variant of Logo [37]). NetLogo is accessible
to non-IT professionals (e.g., biologists, economists, or chemists) to develop
models, but it is often used by IT professionals as well, for fast-prototyping
of distributed algorithms. Programming is helped by a large set of examples
from various fields.

The main drawback of NetLogo (and of most other ABM systems) is
that these complex simulations can be very slow. The simulation engine of
NetLogo is a sequential one (i.e., it runs in a single-thread), which heavily
underutilizes the processing reasources of the parallel processors we have
today in all our machines. To make use of these parallel computing resources,
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the inherent parallelism in ABM – there is a multitude of agents executing
the same program – needs to be exploited. In fact, attempts are currently
being made to use both clusters [9] and Graphics Processing Units (GPUs)
[8] [13] [30] [40] for simulating agent-based systems. In this context, our
work focuses on exploring the benefits of using parallel architectures for
speeding-up agent based simulations. Specifically, we want to focus on the
use of GPUs, which are small, cheap, versatile, and power-efficient platforms
that provide very high computational throughput.

Until recently, writing any non-graphics application on a GPU was ex-
tremely laborious, since only the computations disguised as graphical oper-
ations could be carried out. However, when GPUs have started to signifi-
cantly overpower CPUs in terms of computation throughput, NVidia (one
of the two largest producers of GPUs) was the first to recognize the need for
a GPU framework that supports general computation. The result was the
Compute Unified Device Architecture programming model (i.e., CUDA). In
CUDA, the underlying architecture of the GPU is exposed as extensions to
general purpose languages such as C/C++ and FORTRAN. General pur-
pose applications suddenly became easier to program on GPUs.

However, programming in CUDA is still by far not as accessible to users as
NetLogo, since it is necessary to learn a relatively complicated programming
language, the prototyping procedure is tedious and error-prone, and debug-
ging can be very difficult. Thus, we believe the right way to make GPUs
a feasible option for agent-based modeling is to combine the ease of use of
systems like NetLogo (the user interface/language for building the models)
with novel, highly parallel simulation engines that allow the simulations to
use the parallel hardware to gain speed.

1.1 Problem statement

The main goal of this work is to efficiently combine the advantages of
NetLogo (for user interaction) and CUDA (for the simulation engine) to
improve the state of the art in parallel agent-based modeling.

Our approach is based on a framework called CudaSimulator, which en-
ables the NetLogo engine to use the GPU architecture and thus to exploit
its massive parallelism and compute power. The framework consists of two
parts: (1) a translator built inside the NetLogo engine, which transforms
NetLogo models into custom-designed bytecode, and (2) a virtual machine
that interprets and executes this bytecode on the GPU. In this thesis, we
present the design, implementation, and validation of the CudaSimulator.
Furthermore, to understand the impact of such a framework in the field of
agent-based modeling, we also analyze its limitations and efficiency, espe-
cially compared against the ”‘pure”’ solutions - i.e., original NetLogo and
CUDA-only solutions.
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1.1.1 Research questions

This thesis answers the following research questions:

1. Can NetLogo models be efficiently translated to CUDA?
We will summarize the basic features of both NetLogo and CUDA, and
analyze the mismatches between the two platforms. We will show that
the translation needs to be done at the compiler AST level, where the
levels of abstraction of the two models are compatible.

2. How should NetLogo be changed to accommodate the use of
GPU architecture?
We will discuss the internal structure of the NetLogo engine and an-
alyze the parts that need to be adapted for enabling GPU execution.
We will further design a subsystem to support GPU execution and
present a prototype that can be embedded inside the original software
with very low redundancy and modification. We call this prototype
CudaSimulator. We will further analyze the restrictions that need to
be imposed on the NetLogo modeling to allow for a simple and efficient
implementation of the CudaSimulator, and we will propose future re-
search directions for relaxing these constraints.

3. What are the capabilities and limitations of our CudaSimu-
lator?
We will examine the capabilities of CudaSimulator by implementing
a set of three representative test algorithms. We will analyze the size
constraints for NetLogo models running on a GPU using our Cud-
aSimulator, and briefly discuss the interesting scenario of the Meta-
Compiler, in which batch processing of simulations can be significantly
improved by our CudaSimulator. Last, but not least, we will include a
brief analysis of programming patterns that result in high performance
loss, and show how to avoid them and write models that utilize the
computational power of the GPU.

1.1.2 Thesis contributions

While answering these research questions, we make the following contribu-
tions:

1. We provide an alternative compilation and execution path for NetLogo
simulations.

2. We design and prototype a GPU back-end for executing NetLogo sim-
ulations. Our parallelization choice allows for a high-thorughput solu-
tion, and focuses on batch processing of multiple simulations.
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3. We analyze the capabilities and limitations of such a back-end in terms
of modeling, simulation size, throughput, and latency.

4. We discuss alternative implementations that could alleviate some of
these limitations.

1.2 Thesis organization

The structure of this thesis is as follows: In Chapter 2 we give an overview of
the literature research of the relevant work. In Chapter 3 we investigate the
main features after which we give an overview of the CUDA architecture.
Finally we draw the conclusions on how the main functionalities of NetLogo
could be mapped on the GPU, which results in the basic design of the system.
In Chapter 4 we describe the software part that translates the NetLogo model
into a bytecode that can be run on the GPU. In Chapter 5 we describe the
virtual machine that is running the above mentioned bytecode and therefore
executing the translated model on the GPU. In Chapter 6 we show the
measurements of three test algorithms. We conclude this work in Chapter
7 in which we briefly summarize the thesis and give and outlook of possible
future work.
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Chapter 2

Related work

In this chapter we are aiming to give an overview of relevant work done by
others, in order to understand the context and alternatives of the CudaSim-
ulator framework.

In Section 2.1 we examine the usage of Agent-Based Simulations (ABMs)
to research distributed algorithms. In most cases, a many agents are neces-
sary for emergent phenomena to arise. Therefore, powerful computers are
needed or else simulation can be a lengthy process. However the inherent
parallelism in the models (e.g. agents are behaving largely independently
with little interaction) can be utilized to be simulated with parallel architec-
tures – e.g. computation clusters or GPUs. The possible ways to accelerate
ABMs will be investigated in Section 2.2. In Section 2.3 we will give an
overview of the Snowdrop project and how this thesis is integrated in it. Fi-
nally we show in Section 2.4 what conclusions were drawn from the available
literature.

2.1 Agent-based Modeling

Recently natural [33], engineering [12] and social sciences [41] became inter-
ested in the emergent behavior of large-scale complex systems. One of the
ways to study these systems is to simulate them using Agent-based modeling
[6]. This method is usually simpler and in many cases yields better results
than e.g. differential equations [32].

To simplify the development process of models Agent-based simulators
were created. One of the most widely used Agent-based simulators is NetLogo
[37]. Its popularity is due to the simple yet powerful language (a derivative
of Logo), and a simple and intuitive GUI. It was conceived for educational
purposes (both high-school [35] [20] and undergraduate [10]), but researchers
from non-IT fields appreciate the ease of use as well, since it allows for rapid
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development [34]. Figure 2.1 shows NetLogo running an Agent-based simu-
lation.
There are other simulators as well. Swarm [24] is a programming library
aimed at developing ABMs. It is also one of the oldest ABM framework,
which partly inspired NetLogo. Mason [23] is a simulator with a GUI, how-
ever – as opposed to NetLogo – its language is based on Java. Repast Sim-
phony [27] is a multi-language ABM simulator, with functionality similar
to NetLogo’s or Mason’s – the supported languages are Java, Groovy, ReL-
ogo and Flowchart. Repast HPC [9] is developed by the same group which
develops Simphony with the intent to support computer clusters as well.

We chose NetLogo due to its simple language and its source code has been
published under GPL [14]. Due to the popularity of NetLogo the findings
of this thesis has the potential to make an impact in the above mentioned
fields.

Figure 2.1: NetLogo running an Agent-based simulation

2.2 Acceleration of ABM Simulations

In order to leverage the inherent parallelism between agents, running the
simulation on parallel architectures has been proposed before. Currently
there are two options available to researchers: computation clusters, and
GPUs.
Repast HPC [9] supports computation on clusters (large number of net-
worked computers) with a programming library that is based on C++.
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It includes mechanisms which take care of placing and moving the agents
within the cluster, synchronizing their behavior and facilitating data ex-
change among them in a transparent manner.

Recently GPUs have gotten in the focus of attention since they are capa-
ble of running highly parallel programs as well, but they are cheaper than
a computation cluster and therefore more accessible.

For a long time GPUs have been used to take over geometric compu-
tations from the CPU in order to generate 3D graphics. Since graphical
computations can usually be deconstructed into smaller and data-parallel
computations, the architecture of the GPUs evolved towards special archi-
tecture which is largely different from that of a regular CPU. In the case of
a CPU there are few powerful cores which are designed to be able to carry
out many types of programs (parallel or serial with intense branching). In
contrast to that a typical GPU architecture consists of hundreds or thou-
sands of less powerful cores designed to be very fast for simple applications.
GPUs are designed for highly parallel workloads.

D’Souza et al. claimed to be able to run over a million agents on a GPU
[11] cleverly using the Graphics API. However writing non-graphics appli-
cation for these devices via the highly specialized graphics API was tedious
or even impossible in some cases.

The GPU manufacturer Nvidia recognized this market gap and created
the first General Purpose GPU (GPGPU) device and CUDA which is a non-
graphic, general purpose programming framework [17] [28]. An extension
of the C/C++ language [1], it allows programmers to control GPU specific
functionalities in a familiar way and provides the toolchain that includes a
compiler, a debugger and a profiler.

The relative simplicity of writing CUDA programs enabled scientists from
a wide range of fields to develop their simulations, e.g. in biology [8] [13],
in traffic engineering [30] and molecular chemistry [40].

The main drawback of the above examples is that it is still bug-prone and
time-consuming to write individual simulations in CUDA as opposed to the
ease of development in an ABM simulator. To simplify development while
utilizing the power of CUDA, HOOMD-Blue [4] [2] was proposed. Designed
with the intention to simplify model development, HOOMD-Blue can be
programmed with python scripts. However, this solution focuses on a very
special case of models – simulating many particle systems in potential fields
– and therefore its usage is limited to the molecular chemistry community.
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As we have seen, it is already possible to enable GPUs to develop individ-
ual simulations or specialized ABM simulators, but the development of more
general simulators remains an active area of research [31]. This thesis is an
effort to run NetLogo simulations on the GPU and try to create a simulator
capable of running more general simulations. This also coincides with the
intention of NetLogo’s developers to increase simulation speed [36].

2.3 Snowdrop project

This thesis is integrated into the Snowdrop project [16] of the Technical Uni-
versity of Delft. The main objective of this project is to design distributed
algorithms that can be used in interactive environments in buildings. The
solutions are based on embedding sensor nodes in the floors, walls and ceil-
ings of buildings. The sensor nodes detect local pressure, temperature, and
other environmental parameters. The measurement values are shared with
other nodes in the vicinity (via wired or wireless connection). Each node
is also equipped with actuators which are operated by algorithms using the
values from different sensors and the values measured locally. Due to the
large number of devices and distributed interactions, emergent phenomena
occur. This leads to interesting possibilities for the system and the people
in it. Nodes such as this were developed by Steffan Karger [18] and have
been installed into the Delft Proto Space 3.0 test-environment (see Figure
2.2).

Figure 2.2: ProtoSpace 3.0, Faculty of Architecture, TU Delft
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The algorithms running on these nodes are written in Proto [5] which
implements a novel paradigm called Spatial computing [43]. To help de-
signers and other non-IT professionals who would be interested in designing
interactive environments and do not have sufficient programming knowledge
multiple solutions have been proposed.
Agostino Di Figlia has developed a framework called Interactive Design Stu-
dio which aims at abstracting from the technical details and letting non-IT
professionals develop their spatial computing-based algorithms [19].
However it is very difficult to find an algorithm that displays certain emer-
gent behavior [26]. Therefore Sjors van Berkel developed the MetaCompiler
[38] which offers a top-down approach – finding the algorithm for the pre-
scribed global behavior – instead of the bottom-up approach of Di Figlia.
The method to achieve this is Genetic Programming.
However a major problem of the GP approach is that there is a massive
amount of programs that need to be evaluated. Since these evaluations
need simulations for multiple agents and iterations, the execution of the
MetaCompiler needs to be accelerated.
This thesis is integrated to the Snowdrop project to provide GPU accel-
erated simulators that can serve as a back-end to the MetaCompiler, thus
reducing search time by reducing the execution time of the simulations [39].

2.4 Conclusions of the literature survey

Our literature survey shows that the field of Agent-based simulation is very
active in ongoing research motivated by the need to understand complex
systems.

There are powerful, yet simple domain-specific languages which can be
used by non-IT professionals to create models. We found however that
these simulators tend to be slow for large-scale simulations.

In order to simulate large-scale systems researchers have to turn to par-
allel programming, which necessitates advanced programming skills, while
development is slow and bug-prone. Furthermore, these solutions need to
run either on clusters of computers, which are expensive, or on parallel ac-
celerators (such as GPUs), which are cheap and efficient, but even more
difficult to program.

We therefore identify a merger between these two solutions by a simulator
that takes models written in a subset of the NetLogo language to provide
simplicity and execute it on a CUDA capable GPU to provide execution
speed-up. This way we are expecting to gain performance over the pure
NetLogo while retaining its simplicity.
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Finally, we found the Snowdrop project very useful to validate our simu-
lator in a real use case.
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Chapter 3

System design

In previous chapters we have seen the motivation to choose NetLogo and
to accelerate it with CUDA. This chapter aims to provide an outline of the
system of the accelerated simulator.

In Section 3.1 we investigate the main features of a NetLogo model and in
Section 3.2 we look at the relevant features of CUDA programming. Section
3.3 shows how a NetLogo model could be mapped to the CUDA program-
ming architecture and discuss the design of the system. Finally, in Section
3.4 we take a look at three algorithms that can be used to characterize Cu-
daSimulator.

3.1 Overview of NetLogo models

NetLogo models consist of different types of agents, the geometric space that
they inhabit, and their behavior. This means that they carry out operations
(e.g. changing colors, moving, computing), affect their environment (writing
global data) and influence each other (e.g. asking other agents to carry out
pieces of programs, exchanging data, etc.). This behavior is defined by a
program written in the NetLogo language.

The common structure of a NetLogo model is shown in Figure 3.1. There
are two main procedures: one that initializes the model (setup) and one that
runs a tick of the simulation (go) – this is usually run iteratively in a loop.
Both of these procedures are executed by all agents in the simulation.
A tick is an iteration of the model execution, all agents run their program
once within the tick. After that a counter is incremented. When the maxi-
mum number of iterations is reached, the simulation stops.

Agents are told to execute some program with ask blocks. This means
that the target agent has to execute whatever is within the ask block (it can
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be instructions and procedure calls as well). Agents can ask each other as
well, which is the way they can exchange data.

3.1.1 Data representation

The data of NetLogo models are stored in different types of variables as
shown in the following:

Global variables (globalVar1, globalVar2, maxSimulationTime) which are
visible to all agents and exist only in one instance. These variables are
either defined in the program code, or placed on the GUI (as slider or
other input widgets). Apart from these, there are also default global
variables, which influence the NetLogo environment, e.g. ticks, which
measures the number of elapsed iterations and can be incremented by
the tick command.

Agent variables (agentVar1, agentVar2 ) which other agents can access
through the owner. These exist in one instance per every agent. These
are mostly user-defined for a breed of agents explicitly. However, every
agent has default shared variables, e.g. color, heading, etc.

Locally declared variables (variable x ) which are defined for the current
namespace and cannot be accessed from outside.

A variable can hold different types of data, e.g. numbers, character strings
or an other agent. However, only numbers are supported in this thesis, the
implementation of other data types are left for future work.

In NetLogo it is possible to use multiple kinds of agents in the same simu-
lation. The difference among them is in the shared variables that they have
and the behavior that they exhibit. Agents of the same kind are called a
breed. For the sake of simplicity we will use in this thesis one breed per
model only, since the algorithms that were used to test CudaSimulator (ex-
plained in Section 3.4) can be implemented with one breed. Implementing
more breeds per simulation will require additional research. This extension
is left for future work.

3.1.2 Concurrency model

NetLogo is a single thread application and concurrency between the agents is
simulated via scheduling. NetLogo agents can execute programs two ways: if
the code is in an ask -block the agents take turns and run exclusively, there-
fore there are no data hazards and no synchronization is necessary. Code
that is inside of an ask-concurrent block [3], runs pseudo-concurrently. This
means that the agents still take turns executing the code, but when they hit
a so-called switching command, which can potentially change the state of a
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globals [globalVar1 globalVar2]

breed [nodes node]

nodes-own [agentVar1 agentVar2]

to setup

clear-all

end

to go

ask nodes [

if ticks >= maxSimulationTime [ stop ]

let x 2

doSomething

]

tick

end

Figure 3.1: The usual structure of a NetLogo model

different agent, or the global state, execution is randomly transferred to an-
other agent. An example for a switching command is move, which changes
the coordinates of an agent, and thereby the global state.
Pseudo-concurrent execution emulates concurrency, because the switching
commands, which can influence other agents, happen in a random order.

3.2 Overview of CUDA

For the purpose of explaining the modern GPU hardware, as well as under-
standing the CUDA programming model, we use the NVidia GTX480 GPU,
the commonly available at the time the development and testing were per-
formed. However, the same principles apply for both older platforms (e.g.
GTX 295) and the newest ones (e.g. K20 and GTX680).

3.2.1 Hardware architecture

A GPU consists of multiple vector processors, called Streaming Multipro-
cessors – SMs, with 32 cores each. GTX480 consists of 16 SMs which are
tightly connected to a local memory hierarchy. This comprises of global
memory (accessible to all cores), local/shared memory (accessible to each
SM) and caches. As a GPU is used as an accelerator, it can only work in
the presence of a host(a CPU). The communication between the host and
accelerator(s) is using the PCI Express bus of the system.

Since the placement of data has strong implications on the performance
of the CUDA program, the programmer has to be aware of the memory ar-
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chitecture, and has to define explicitly where a variable is placed. Therefore
we list the possible types of memory below:

On-board memory is the most abundant storage of the GPU. It is acces-
sible from the host computer thus it is used for communication between
the host machine and the GPU (initialization values are copied into
and results are fetched from global memory). This is also globally ac-
cessible to all the threads, however this is dangerous since it can cause
data hazards. Global memory needs to be allocated by the host before
the kernel is launched.

Shared memory is an on-chip memory which provides a method to com-
municate for threads in a block. It is used to pass information.

Registers are the scarcest and fastest way to store and access informa-
tion. These are used to store temporary data and exclusively visible
to individual threads.

Figure 3.2: CUDA programming model

3.2.2 Programming architecture

CUDA is the software architecture that enables the GPU to execute pro-
grams written in C (and several other languages). The structural elements
of CUDA programs reflect the hardware architecture.

14



We introduce these structural elements below (see Figure 3.2 for a depic-
tion of the CUDA architecture):

Kernels are a portion of code that is to be executed on the GPU. The
programmer can explicitly specify when a kernel is launched and it
can be synchronized with the host machine code. A kernel is executed
by threads on the GPU which can be arranged in a grid which specifies
the mapping of the threads on SMs.

The grid consists of blocks which are units of scheduling and contain a set
of threads. Blocks are scheduled independently from each other on a
single SM. The programmer cannot make any assumptions about their
order of execution, nor can he assume that a block finishes before the
next one begins.

Threads are the basic parallel building blocks of CUDA execution. They
can be scheduled with zero overhead. Thus a large number of threads is
typically used as opposed to CPU programming. Every 32 threads are
arranged in warps, which are executing in lockstep (their instructions
are arranged in vectors in the SM). This brings restrictions for the
efficient use of these GPUs. For example, in the case of branching the
instructions in different paths are interleaved. This guarantees that
the execution is still functionally correct, but the performance will be
impaired.

As we can see memory can be read and written concurrently. In order to
avoid hazards there are special instructions to implement thread barriers i.e.
all threads that have hit the barrier wait until every thread in the block has
reached the barrier. However there is no global synchronization available,
i.e. the programming model does not include a way to block all the threads
in the same barrier. Instead, atomic instructions are provided to access the
memory.

The above mentioned architecture and limitations to the memory on the
GPU is reflected in the placement of the data of the agents and the simu-
lation. The global memory stores data that is rarely accessed (in order to
save shared and local memory). It is also used to transfer data between the
host and the GPU.
By contrast, the local and shared memory is used to store data that is ac-
cessed frequently. The local memory is used to store data exclusively owned
by agents, whereas shared memory is used to store data that is shared among
agents.

The memory allocation will be explained in detail in Section 3.3 in this
chapter and in Chapter 5.
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3.3 Design of the simulator extension

As we mentioned in the introduction, one of the purposes of CudaSimulator
is to provide a back-end to the Snowdrop MetaCompiler which generates a
multitude of models. In order to run these models on the GPU, they are first
translated into a special bytecode and then executed by a virtual machine
running on the GPU.
The system is made of two components: one of them extends the NetLogo
engine and is in charge of translating the model into bytecode. The other
part is the virtual machine that resides on the GPU and executes the byte-
code program.

The reason for the separation of the two parts is to reuse the NetLogo
engine as much as possible. NetLogo translates the models into an Abstract
Syntax Tree representation and then executes them. Since the translation
procedure is sequential in nature, it is more suitable for the CPU. On the
other hand, it is relatively simple to translate the AST representation of the
models into bytecode that can be downloaded and executed on the GPU.

As an alternative we considered using the NetLogo Extensions framework,
which provides an API to the engine which can be used to carry out certain
operations outside of the main engine. Therefore it would be possible to
define operations that are to be carried out by CUDA through extensions.
However the main obstacle is that the engine stores agent data internally,
therefore large amounts of data would have to be extracted from the soft-
ware engine, and moved between the GPU device and the PC. Since both of
these operations are time consuming, they could outweigh the performance
gains that were produced by the GPU. Therefore we made the decision to
add our contribution to the NetLogo engine directly.

The mapping of the models generated by the MetaCompiler is shown in
Figure 3.3 (cf. Figure 3.2). Since different models are independent of each
other and agents in a model are only loosely dependent, there are two levels
of parallelism that have to be considered: parallelism between the models
and parallelism between agents. The easiest option is to map models on the
blocks and agents to individual threads in that block. This also means that
the execution order of the models is up to the internal scheduler of the GPU.

The data that is shared between the agents encompasses agent variables
(such as color, heading, variables defined by the programmer), and flags
for communication. In order to facilitate fast exchange of data, these vari-
ables and flags are placed in the shared memory. The exact layout of the
communication flags is shown in Chapter 5.

As we have seen in Section 3.1 agents exist in a geometric space which
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Figure 3.3: Mapping NetLogo models to the CUDA architecture

has different possible geometries. For the sake of simplicity we support only
the fully toroidal shape, as it is enough to analyze the test algorithms (see
Section 3.4). Implementing other geometries would necessitate some cod-
ing, which it is left for future work. The coordinates of the agent’s position
reside in the global memory in order to use shared memory sparingly, since
the per block shared memory is usually scarce. We note however, that global
memory has a higher latency, therefore frequent accesses can make the sim-
ulation slower.
The global variables and the fitness value are also stored in the global mem-
ory. All the data that has to be passed to the agents before the simulation
starts are also stored in the global memory, since it is accessible by the host
machine.

From the concurrency models of NetLogo we focus on concurrent exe-
cution, since exclusivity would serialize the execution of agents and it is
undesirable on a parallel architecture.

The code run by the agents is downloaded to the GPU as a two-dimensional
array (Figure 3.4). Each row is an individual instruction. The first value
(with thick border) is the ID of the instruction after which the parameters
are listed. Each parameter has two numbers associated with it: the first one
encodes the type and the second one is the value. The encoding is shown in
Table 3.1.

This continuous two dimensional array stores the entire program the
agents have to execute. This means that all procedures from the model
are appended after one another and they are identified by the row number
in the bytecode array. The ask and ask-concurrent blocks are regarded as
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Figure 3.4: Structure of the bytecode

procedures as well. In Section 3.1 we mentioned the two main procedures:
setup – which is always the first procedure on the list and contains an auto-
matically generated jump command to go – and go – which contains a jump
command at the end which points back to the beginning of the procedure
(thus simulating the forever button functionality).

The simulation is terminated when all the agents have hit stop. This is
made possible with barrier synchronization after which all threads but the
main thread exit. The main thread is a designated thread (usually with
thread ID = 0) that carries out global operations e.g. aggregating informa-
tion. After the simulation stopped this thread carries out the bytecode of the
fitness function and places the result in the last global variable. After this
the CUDA kernel stops as well, and the host machine retrieves the fitness
value and submits it to the MetaCompiler (also running on the host) which
uses it to create the next generation of models. We note that CudaSimulator
is designed to work with the MetaCompiler, but the actual coupling is left
for future work. Figure 3.5 gives an overview of the complete system.

We note that the data transfer between the GPU device and the host
machine is relatively slow, therefore it should be minimized whenever pos-
sible. This is the reason why the fitness value is calculated on the device.
If it would be calculated on the PC, the values of all the necessary agent
variables should be transferred back to the PC, which can be lead to a sig-
nificant performance loss. The disadvantage of this is however, that the
expression used to calculate the fitness value is limited by the capabilities
of the CudaSimulator virtual machine (e.g. no lists or other complex data
structures can be used, etc.).
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Figure 3.5: Diagram of the system

3.4 Test algorithms

We mentioned at the end of Chapter 2 that the CudaSimulator is integrated
into the Snowdrop project. This integration provides us with a specific use
case, i.e. the simulation of large-scale MANETs (Mobile Ad-hoc Networks).

Obviously, there are many algorithms used in MANETs. To illustrate
the functionality and performance of the CudaSimulator, we chose three of
them: Leader election [15], Random walk [7] and Firefly synchronization
[25]. These algorithms are representative, since they employ different net-
work models.
In the case of Random walk the network is completely disconnected, whereas
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Type Encoding number Description

Local 0
Variable that is stored
in the local memory

Shared 1
Variable that is stored
in the shared memory

Global 2
Variable that is stored
in the global memory

Constant 3 Constant value

Agent identifier 4 Identifies an agent

Table 3.1: The possible data types of parameters

in the case of Leader election it is connected but static. Finally Firefly syn-
chronization works on a dynamically changing network (the sensor nodes
are connected only if they are within the transmission range of their radio
unit). The three test algorithms are presented in detail in Appendix A.

In the following chapters we will elaborate on how the above mentioned
functionalities were developed and how well the test algorithms are perform-
ing in the resulting framework.
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Chapter 4

NetLogo to bytecode
translator

This chapter gives a detailed description of the process that translates a
NetLogo model into its bytecode representation for the CUDA VM.

Section 4.1 gives a detailed insight into the relevant parts of the NetLogo
execution engine. In Section 4.2 we will see how the source code of the trans-
lating software is structured. Section 4.3 presents the naming conventions
which users of this software have to adhere to in their models. Finally we
will look into the details of the translation mechanism in Section 4.4.

4.1 Overview

Two of the most important components of NetLogo are the compiler and
the NVM (NetLogo Virtual Machine).

The compiler processes and converts the code of the model into an AST
(Abstract Syntax Tree) representation. The nodes of the AST are called
primitives. These are very simple operations which serve as the instructions
of the NVM. Under the hood, these primitives are Java classes which are
compiled into Java bytecode and executed by the NVM one-by-one [36].

The NVM executes the NetLogo program for the agents. The program is
divided into a set of jobs, which are smaller portions of the code (usually the
contents of an ask -block, since ask -blocks are used to initiate some action in
NetLogo). There is a set of agents that are assigned to each job. The NVM
includes a scheduler, which puts the jobs in some order and feeds them to
the NVM to be executed. During the execution of a job, the engine iterates
through the agents in the agent set, carries out the instructions, and changes
the local data of the respective agent. With this structure the NVM can
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execute an arbitrary number of agents in a single thread.

As we mentioned in Chapter 3 there are two types of execution: exclusive
and concurrent. An exclusive job is comparable to critical sections, agents
are selected in a random sequence and they carry out every instruction of
the job before a different agent is executed. In the case of a concurrent job
the agents are executed until a switching statement occurs. A switching
statement is a statement which changes global state or the state of a differ-
ent agent. Changing the executing agent at a switching statement emulates
concurrent execution, since the order in which data is changed is random at
any point.

NetLogo is primarily used with a GUI. However, it is possible to start
it in headless mode which means that there is no GUI and the application
is controlled programmatically. This usually means that certain functions
(e.g. open model, call setup and go) are called from an external launcher
program written in Java. It is used when models are run in a batch, and
they need to be started automatically. This is the way the MetaCompiler
connects to NetLogo and therefore we use the headless mode in this thesis.

The engine of NetLogo is written in two languages: Java and Scala [29].
Since both of these languages run on the JVM (Java Virtual Machine) [22]
one could use JNI (Java Native Interface) [21] to connect the NetLogo en-
gine with the CUDA kernels (which is implemented in native code). Since
programming the JNI tends to be complicated and bug-prone, we chose the
simpler and more convenient JCuda library [42] instead. JCuda hides the
JNI glue-code and provides an interface to most of CUDA’s functionality
seamlessly with Java.

4.2 Structure of the source code

One of the main requirements during the development was for the software
modules added to NetLogo to facilitate GPU execution to interfere with the
rest of the application as little as possible. This means that the modifica-
tions in the original code are kept to the bare minimum. This should enable
us to commit this software into the codebase of NetLogo.

The GPU extension resides in its own package, separated from the other
code. We only introduced two modifications in NetLogo’s application code:

In the compiler: the compiler translates the program code of the model
first into an AST representation, further translated into a list of prim-
itives, which are then compiled into Java bytecode. However due to
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encapsulation, any intermediate data is hidden. Therefore we added a
method to be able to extract the generated AST tree.

In the execution engine: Since the GPU execution replaces the normal
execution mechanism of NetLogo, the NVM is no longer necessary for
the execution of models. The normal execution path is not disabled
however, since we use the engine to extract information from the model
(e.g. initialization of global variables). Therefore, the setup procedure
is executed by the NVM, after which the GPU execution commences.
Execution for any other procedure (e.g. go) by the NVM is disabled
in the CudaSimulator.

4.3 Naming conventions

Before the NetLogo can be executed on the GPU the CUDA kernel has to
be set up. To set up a kernel certain parameters are necessary (e.g. number
of threads, size of shared memory, etc.). These parameters are static and
need to be known before launching the kernel.

Contrary to this, parameters can be changed dynamically (in NetLogo
agents can be created and destroyed at any point). The change of parame-
ters is usually done by executing certain commands in the program code.

This means that the kernel parameters have to be inferred by analyzing
the program code. However, to simplify the analysis certain restrictions and
naming conventions are necessary. We list here the elements that are in-
ferred from this analysis and the associated analysis restrictions.

Number of agents: Agent creation can only take place in one procedure,
which has to be called gpu initCreateNodes. The NetLogo command
create-turtles – which is responsible for agent creation – consists of
the number of agents and some initialization code. The translation
process extracts this initialization code and inserts it into the AST of
the setup procedure directly.

Transmission range: It is used in simulations where agents communi-
cate with other agents, who are within a given range. The trans-
mission range is set by the programmer in a global variable called
gpu transRange.

Aggregation functions: These are functions in which an agent gathers
information about the others, and are therefore used to collect data
about the status of the simulation (e.g. the average of some agent
variable at all agents, etc.). In order to avoid read-write hazards, only
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the master thread (thread 0 ) is allowed to read the data of all the
agents while the others wait. Procedures that are executed by one
thread only are enclosed by thread-guards (see Section 4.4.3). These
procedures have to have names that begin with gpu aggr.

Fitness function: This is a special instance of an aggregation function.
This procedure has to be executed by the master thread after all
threads have reached the stop instruction (i.e., the end of the sim-
ulation). After the threads have reached the last synchronization bar-
rier the master thread jumps to the address which was passed to the
CUDA kernel separately. In the fitness function the master thread col-
lects data from all the agents in the simulation and computes a fitness
value from it. The fitness function has to be called gpu aggrGetFitness.

4.4 Translation into bytecode

We have seen already how the AST is obtained. Next, we discuss how it
gets be translated into bytecode.

Figure 4.1: Overview of the translation process
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Figure 4.1 shows the basic steps of this translation. The translator soft-
ware processes the AST in multiple passes, i.e. it iterates through all nodes
of the AST to process and extract information. In the next iteration it
changes nodes when necessary. At the end of the AST processing steps we
have a syntax tree that includes only nodes that are relevant to the GPU
execution and can be directly translated into CUDA VM bytecode. We note
that a new AST is generated as a result of each step before ”Map instruc-
tions”.

The part of the translation process that is responsible for bytecode gener-
ation starts with the ”map instructions” phase, which maps the AST nodes
to bytecode instructions. The result is a collection of multiple small ar-
rays of bytecode instructions. This is because NetLogo stores the AST of
each procedure separately, so the mapper creates a bytecode array for each
of them. At the end of the ”create bytecode array” phase, all these sepa-
rate instruction arrays are concatenated, and a continuous bytecode array
is formed.

Since the row number of the instructions in the final array is unknown
until the separate arrays are assembled, the branching and jumping instruc-
tions (e.g. ifelse, for, etc.) are also stored in a separate array. The targets
of jumping and branching instructions in these operations are initially sub-
stituted by symbolic names. In the branch assembly substep, these names
are replaced by row numbers.

The arguments of the resulting bytecode instructions are still in human
readable format (e.g. AGENT.HEADING) in order to simplify debugging.
These are renamed at the end in the ”create bytecode” step, so that the
result is a numeric array (see Chapter 3).

In the following sections we present the steps and substeps of the trans-
lation process in more detail.

4.4.1 Configure simulation

The very first step of the translation is to extract all information necessary
to set up the simulation. This means that operations that include critical
parameters (see Section 4.3) are extracted. There are two operations in this
step: the extraction of the number of agents and the transmission range.

4.4.2 Generate setup code

In this step the AST corresponding to NetLogo’s setup procedure is gen-
erated (see Figure 4.2). Initialization code for the shared variables of the
agents and the global variables of the simulation are generated in the sub-
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Figure 4.2: Generate setup code process

steps ”init shared variables” and ”init global variables”. This is done by
extracting the list of variables from the procedure node of the AST gener-
ated by NetLogo. After extraction an assignment expression is generated
for each variable, where variables receive the value zero. The instructions
from the create-turtles instruction are extracted and inserted into the AST
in substep ”insert agent creation code”.

4.4.3 Modify AST

Figure 4.3: Modify AST process

This is the part where the ASTs of the procedures are modified such that
they can be directly mapped into bytecode instructions.
First, a jump command is inserted at the end of the go procedure which
points to the beginning of go in order to create an unconditional loop. This
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is necessary since in the usual NetLogo models the go procedure is imple-
mented to be run once, and the button that is assigned to it on the GUI
runs it over and over again (the so called forever button).

Next, the translator looks for aggregating functions (see Section 4.3) in the
substep ”generate thread guards” and places so called thread guard instruc-
tions at the beginning and end of each one of the function bodies. Executing
these instructions causes the agents to set/reset a locking flag. Where this
flag is set, only the master thread can carry out operations, the rest are
blocked. In this way, read-write hazards can be avoided.

The return statements are inserted at the end of non-reporter procedures
in the substep ”insert non-reporter returns”. Non-reporter procedures are
procedures that do not return values. The return commands at the end of
those procedures, which do return values, are translated at a later step.

Commands that have no meaning in the context of the GPU simulation
(e.g. clear-turtles, reset-ticks are removed in the step ”remove don’t care
commands”).

We designed communication between agents to happen through a so-called
remote call in the CudaSimulator. Remote calls reflect NetLogo’s way of fa-
cilitating communication between agents.

In NetLogo, an agent communicates by instructing a target agent to do
something. This behavior is implemented by ask -blocks. Also, ask -blocks
are generally the way to initiate action in NetLogo. Therefore, a conventional
model consists of higher level ask-blocks in which the simulation tells agents
to carry out certain actions (e.g. move in random walk). Agent commu-
nication is implemented by lower-level ask -blocks embedded in higher-level
ask -blocks (simulation asks agents to ask another agent to do something).
The translation software notices nested ask-blocks and translates them into
remote call instructions.

In NetLogo ask -blocks values can be passed to the target agent if a variable
that was declared in the outer ask -block is referenced in the inner ask -block.
The translation software notices value passing in substep ”generate remote
call argument passing”. Explicit instructions are inserted in the AST to
place and fetch parameters in shared memory such that it can be used to
pass parameters in remote calls.

The last substep is ”insert remote call synch”, in which synchronization
barriers are generated at the beginning and at the end of remote calls. Syn-
chronization barriers around remote calls are necessary to avoid hazards
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when agents write each other’s memory in the course of communication (see
Chapter 5 for a detailed explanation).

4.4.4 Map instructions

Figure 4.4: Example translation of an AST command node. Note local
variables are called LV x for the sake for brevity.

The modified AST is traversed again in this substep. At every node one
or more bytecode instructions are generated. Since commands depend on
their parameters (reporters, as they are called in NetLogo) the traversal is
bottom-up i.e. beginning with the children.

NetLogo’s reporters are statements that report a value. The values can
be a variable (global, agent, etc.), a constant value, a random value, or
an arithmetic expression which has other reporters as its parameters. The
translation process allocates a variable on the GPU for each reporter.

Figure 4.4 illustrates the process of the translation of a command node
and its children (reporters). The diagram is to be read bottom up.

Let us assume that the variable x has been allocated earlier to local vari-
able LV 00 when a command assigned a value to it. All agents have the
variable heading (a direction in which agents can move in the geometric
space they inhabit) by default therefore it has already been allocated in the
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shared memory in an earlier step.

As we can see, a local variable is allocated for every reporter and the byte-
code for the operation that assigns this variable is generated. In the case of
random reporters (e.g., rand-xcorr, which reports a random coordinate), a
rand command is generated to fill in the value.

Local variables are allocated in a similar fashion when they are directly
declared in NetLogo (e.g., with the command let).

The names of the allocated variables are stored in an associative array
in the translation program, such that later references can be resolved. The
name of the allocated variables consists of the name of the containing pro-
cedure and an identification number (e.g. the 5th variable that is allocated
in the procedure MYPROC will get the name MYPROC.LOCAL5 ) or in the
case of an agent variable (e.g. heading) the name will be AGENT.HEADING.
The naming provides readability for debugging and will be renamed into an
identification number at a later step.

We note that, there are reporters whose mapping is not straightforward.
Such are the aggregating reporters which collect data from the agents, e.g.,
mean, max, min, countwith. Aggregating reporters collect the value of a
given variable from all agents and either calculate the mean, maximum or
minimum of them, or, in the case of countwith, count agents where an ex-
pression over the variable is true (e.g. count how many agents are out there
with an x variable s.t. x > 0). These reporters are translated into a for
loop which iterates through all agents, reads the value of the variable of in-
terest and finally evaluates the expression on this variable. This final result
expression can be a simple arithmetic operation in case of mean or max –
or an arbitrary chain of reporters in case of countwith.

Similarly, there are commands which need to be translated into complex
structures as well.

For loops are translated into a structure that consists of three parts. The
first part includes chained reporters (a predicate expression) which are eval-
uated to decide whether the loop should be broken or continued on the next
iteration. The second part is the looping instruction itself, which evaluates
the local variable that contains the result of the reporter chain. If it evalu-
ates to true, jump is required to a specified adress, that contains the third
part – the loop body. The loop body contains the instructions executed in
the loop and it is translated as a procedure, (i.e. it is a separate list of
bytecode instructions which will be assembled with the rest of the program
in the last step see Section 4.4.5).
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In the conventional NetLogo programming style, the execution by the
agents is initiated by an ask -block in the go procedure (see Figure 3.1).
This ask -block is disregarded, and the code inside of the block is directly
placed into the bytecode program.

The ask -blocks inside of the code executed by the agents are however im-
portant as these are used to facilitate agent to agent communication. In
this case the target is extracted (either ask neighbors or ask agents in the
transmission range) and remote call instructions are created. The remote
call instructions are embedded in a loop which iterates through all neighbors
or all agents in the transmission range. The structure of the looping block
is similar to that of for loops, albeit it is surrounded by synchronization
instructions (see Chapter 5 for further explanation).

The remaining commands are directly mapped to the corresponding byte-
code instructions.

4.4.5 Create bytecode array

Figure 4.5: Create bytecode array process

The final step organizes the generated bytecode instructions into a format
that is directly executable by the CUDA VM.

Since NetLogo stores the ASTs for the procedures separately, all the above
mentioned operations run on the procedures one-by-one. Therefore the re-
sult is a list of bytecode fragments corresponding to each procedure. More-
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over, the branches of the ifelse instructions are also in separate fragments.
The reason for this is that until all procedures are assembled, the bytecode
instructions do not have addresses, so the branches are only referenced sym-
bolically.

Thus in ”assemble branches” and ”assemble procedures”, a continuous
stream of instructions is generated and the symbolic references are changed
to ”real” addresses. At this point the fitness function has an address as well,
so it is extracted and saved into a variable to be passed to the CUDA VM
kernel when it is launched.

Also here, the names of the variables are changed into an ID number, in
the order of appearence. Thus, local variables will be (L00, L01, L02, . . . ),
shared variables (S00, S01, S02, . . . ). Of course L and S are represented as
type numbers as well, according to Table 3.1. The final representation, that
is to be sent to the virtual machine, is in the case of the first local variable
00, the first shared variable 10, and so on.

Up until this moment the instructions were referenced by names (again
for human readability). In the ”generate instr. IDs” substep, these names
are replaced by ID numbers from a lookup table. At the end of this substep
the program has been translated into a two-dimensional array of numbers
that can be directly downloaded and executed by the CUDA VM.
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Chapter 5

CUDA Virtual Machine

This chapter describes the part of CudaSimulator that runs on the GPU.
This component of the framework is a virtual machine (VM) which is de-
signed and built to execute the bytecode generated by our translator, as
presented in see Chapter 4.

In Section 5.1 we explain how the CudaSimulator VM works and what
elements it consists of. In Section 5.2 we explain the need for synchroniza-
tion between agents and describe how it happens. In Section 5.3 we give an
overview of the layout of the shared memory which facilitates communica-
tion between agents and in Section 5.4 we show the way this communication
happens.

5.1 Overview of the CudaSimulator VM

The purpose of the CudaSimulator VM is to iterate through the bytecode
array of NetLogo models and execute the instructions.

In essence, the virtual machine runs in a loop. In each iteration the cur-
rent instruction ID is read from the bytecode array and a corresponding
function is called. The function implements the given instruction. The
addressing of the current instruction happens with an instruction pointer
which can be modified from the instructions (to facilitate jumps and func-
tion calls). This way, the virtual machine is similar to a CPU which reads
instructions from its program memory with the help of the program counter.

From the CUDA perspective, each agent is implemented as a CUDA
thread. We remind the reader the fast local and shared memory hosts agent
data, which is accessed frequently and used for agent-to-agent communica-
tion. The relatively slow global memory hosts simulation data (e.g. the tick

33



counter), which is read and written less often.

Figure 5.1: Overview of simulation on the CudaSimulator VM

Of course the VM has to do more that just executing the instructions:
moving data between host and GPU, initializing agents and providing syn-
chronization to agents. The run-time operation of the VM can be repre-
sented in a sequence of stages as shown in Figure 5.1.

Kernel initialization (setup): Data from the host is copied to the device:
e.g. the initial values of the global memory, the address of the fitness
function, and the bytecode array. The kernel is launched, the local
data of the agents is set up.

Simulation execution (go): The main loop starts and executes the in-
structions one-by-one. The agents break out of the main loop when
they encounter the stop instruction. After this, they synchronize (wait
until all agents have reached the stop instruction).

Fitness function execution: Finally, the master thread jumps to the spec-
ified address in the bytecode array and executes the instructions of the
fitness function. After this, the fitness value is copied in the global
variable that is reserved for it. By convention, the last global variable
is reserved for the fitness value. After the fitness value is calculated,
all threads exit and the host composes the fitness values from different
simulations and passes them to the MetaCompiler, which will eventu-
ally generate the next generation of programs.
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5.1.1 Components of the VM

As we mentioned previously, the CudaSimulator VM can be seen as a model
of a rudimentary processor. It executes a sequence of instructions in the or-
der determined by the ”instruction pointer”.

Furthermore, our VM also has different kinds of memory: local, shared
and global. Local memory is used internally, shared memory is used for
agents to communicate, and global memory is used to communicate with the
host machine. It has an instruction memory which contains the instructions
and their parameters immutably. Furthermore, there are memory places
which store the spatial position of the agents.

Finally, we have included two stacks: one is the callstack, and the other
one is the parameterstack. In the case of a function call (including remote
calls) the address of the current instruction is pushed onto the callstack
before the instruction pointer is modified. When the VM encounters the ret
instruction, the top of the stack is popped, and the instruction pointer is
restored to the popped value + 1. The parameter stack stores the parameters
in a function call (remote calls not included). This way it is possible to
send multiple parameters to the agents. The instructions to push and pop
parameters are inserted by the translation software (see Chapter 4).

5.2 Synchronization

In the CUDA concurrency model, a barrier synchronization is the simplest
synchronization primitive offered ( synchthreads()). A synchronization bar-
rier means that when a thread reaches this synchronization barrier, it has
to wait until all the other threads have reached it in the block. Care must
be taken with branching, since if the barrier is placed in an execution path
which is not taken by all threads, the system goes into a deadlock state.

A further option provided by CUDA to avoid data hazards is atomic
operations. The disadvantage of these is that these are generally slower and
only a few operations have atomized versions (e.g. arithmetics, swapping,
and comparisons). We use atomic synchronization when accessing the shared
flags of the agents.

The CudaSimulator VM contains multiple levels of synchronization. The
primary level is instruction-level synchronization which is necessary to en-
sure memory consistency. In this scheme, all instructions are split into two
parts (see Figure 5.2): a part in which only reading from variables and cal-
culations happen, and a part in which calculation results are written back.
This way data hazards are avoided.
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Figure 5.2: Instruction level synchronization

The secondary levels are of tick synchronization, thread stop synchroniza-
tion, and remote call synchronization. These are all barriers as well, but
they are implemented using flags in the shared memory instead of the prim-
itive available in CUDA. This is necessary, because when an agent has not
yet reached the secondary barrier it still has to meet primary ones (of the
individual instructions). The two levels are necessary since barriers cannot
be nested in CUDA.

To understand this, let us suppose that all but one thread have finished
execution (reached stop). Those threads who are finished will set the flag
corresponding to thread stop synchronization in the shared memory and then
check out the flags of the other agents. After they have found out that one
thread has not set its flag yet, they will carry on looping and reaching the
instruction level synchronization barriers and check the flags at the end of
each iteration. When the last thread finally finishes it sets its flag which
will let all threads break out of the loop at the same time.

Tick synchronization implements the same scheme when the tick instruc-
tion is reached (at the end of an iteration of go). Remote call synchroniza-
tion synchronizes threads before and after remote call blocks which facilitate
communication between agents (see Section 5.4).

5.3 Shared memory flags

In the CudaSimulator VM, the communication between threads in the same
block is facilitated by the shared memory. Figure 5.3 shows the layout of
the shared memory, which contains the aforementioned synchronization flags
(thread finished, tick finished, ask finished) and remote call slots.

Remote calls correspond to the NetLogo’s ask -blocks in which an agent
asks a different agent to carry out a procedure. To facilitate this behavior
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Figure 5.3: Layout of the shared memory flags

in the CudaSimulator, the calling agent allocates a remote call slot in the
shared memory of the target agent. This means saving nr of rm calls and
incrementing it atomically. The saved value determines the slot of the caller
in the callee’s shared flags. Slots consist of rm call targets, rm call params
and rm call callers (shown on Figure 5.3). These flags exist in multiple
instances, one for each slot. After this the caller places the address of the
target procedure (in rm call targets), the ID of the calling agent (in rm call
callers) and one parameter (in rm call params).

Slots are necessary in order for each agent to enqueue the incoming re-
mote calls. The number of slots should reflect the worst-case number of
incoming calls in a tick. This corresponds to the number of agents for a
NetLogo model where an agent is connected to all other agents (e.g. Fire-
fly synchronization). However, if an agent needs only one connection (e.g.
Leader election) the number of necessary slots is one. If the agents in the
model are fully detached (e.g. Random walk), no slots are necessary as no
communication takes place. Currently, the CudaSimulator cannot infer the
number of necessary slots from the code as this is a parameter of the model.
We believe however that this can be done by the user or by overprovision-
ing. Given that the memory resources on the GPU are scarce, we prefer to
avoid overprovisioning and rely on the user to provide this value. We believe
this should not be too difficult, as the intended communication pattern is
already familiar to the model writer.

The flag rm call is set by the caller to signal a new remote call. When
the callee is finished with the execution, it sets the caller’s rm call finished
flag.

The flags thread finished, tick finished and ask finished implement the
higher level barrier synchronization: synchronization at the end of the pro-
gram (exiting thread), at the end of ticks, and before and after performing
remote calls, respectively.

37



5.4 Agent communication

As we have seen in Section 5.3 agents communicate by sending remote calls
to each other.
Figure 5.4 shows how remote calls are placed. When the caller executes the
instruction for remote calling, it needs to check whether it has allocated a
slot already. The reason is that placing parameters is implemented in a sep-
arate instruction and if it precedes the call, the slot allocation has happened
already. Slot allocation happens by atomically incrementing the counter in
the target’s nr of rm calls flag. After this the caller writes the corresponding
values in the shared memory of the callee. The caller waits (loops in the
same instruction) until the call is finished (i.e. the rm call finished flag is
reset by the callee) then proceeds and then continues executing the instruc-
tions of its program.

Figure 5.5 shows how instructions are executed and what happens when
an incoming remote call is received. The agent executes instructions in the
main loop until the rm call flag is set. The incoming remote call forces
the agent to jump to the procedure address what was passed to its shared
memory (rm call target). The callee saves data from the current slot and
atomically decrements nr of remote calls, and begins to carry out the in-
structions of the remote call. At the end of each remote call the callee sets
the callers rm call finished flag, thereby signaling to the caller that the call
is finished. When there are no more incoming remote calls the agent resets
its rm call flag and resumes the execution of the instructions of the normal
program.
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Figure 5.4: Diagram of remote calling
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Figure 5.5: Diagram of instruction execution
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Chapter 6

Experiments and results

This chapter provides a set of experiments and measurement results in order
to quantify the capabilities and shortcomings of our CudaSimulator.

As the first step, we explain the setup we used to carry out the measure-
ment, in Section 6.1. Then, we examine the limitations of the models in
Section 6.2 – i.e. how many simulations can be launched at the same time
as well as how many agents can those simulations have. In Section 6.3 we
examine the execution time taken by the simulations of various lengths and
simulation sizes. The measurements in Section 6.4 show the time needed
by the CudaSimulator translation component which generates the bytecode
representation of the models. In Section 6.5 we compare the performance
of CudaSimulator to alternative simulation methods. Finally in Section 6.6,
we take a look at models which are functionally correct, but the way they
are programmed causes the simulator to run inefficiently.

6.1 Experimental setup

The measurements and experiments were carried out in the computation
cluster of VU Amsterdam on a pool machines equipped with NVidia GTX
480 GPUs. The pool consists of computers with the same parameters. We
note that programs are submitted as jobs in a queue wich selects a random
computer from the pool. This means that programs might have been run
on different computers of the same kind.

It is also important to note, that the two parts of CudaSimulator, the
translator and the virtual machine were executed separately, such that the
bytecode array generated by the translator was saved into a file, which was
opened by a C program launching reading the bytecode and launching the
virtual machine. This was necessary in order to be able to measure their exe-
cution time separately. However, the sum of the execution times is expected
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to correspond to the execution time of the whole CudaSimulator, since the
exact same operations happen when the virtual machine is launched auto-
matically at the end of translation.

Although it would be possible to run different models at the same time,
we launched multiple instances of the same model, because this way we can
analyze the relation between a specific test algorithm and the measurement
results.

6.2 Limitations

The number and size of the models that can be executed simulataneously
by CudaSimulator are limited by the available resources on the GPU. The
resource usage of a simulation depends on the algorithm that is simulated
and the placement of the data in the memory. In order to investigate the
optimal resource usage, three configurations were compared, in which the
data was placed in different ways.

6.2.1 Register intensive configuration

The first configuration is called register intensive, because a lot of data is
stored in the GPU registers. This is the configuration that was described
in Chapters 3 and 5 – the local variables, the callstack, etc. reside in the
registers allocated to each agent. The shared memory contains the shared
variables and the shared flags (as shown in Chapter 5).

Table 6.1 shows the maximum number of threads and blocks (the number
of agents and the number of simultaneously executed simulations). It is
clearly visible that the Leader election is algorithm has the smallest mem-
ory usage. The last column shows the size of the allocated shared memory.
In this configuration the Firefly synchornization algorithm was not able to
start.

Algorithm Max. agents Max. blocks Shared memory

Leader election 32 1710 24 kB
Random walk 38 1190 24 kB
Firefly synch N/A N/A N/A kB

Table 6.1: Limits with register intensive configuration
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6.2.2 Shared memory intensive configuration

Registers are scarce compared to shared memory, since they are used to
store data that was generated by the compiler, e.g. loop counters, stack-
frames, etc., – and therefore less of it is available altogether. One way to
save registers is to put some of the local variables in the shared memory.
Note that if this not done by the programmer by hand, any register spills
that the compiler needs to perform are using the global memory for tempo-
rary storage. The performance penalty can be, in that case, 2-3 orders of
magnitude larger than when manually using the shared memory.

The configuration in which more data is placed in the shared memory is
called shared memory intensive, and Table 6.2 shows the limits in this con-
figuration. Note that all algorithms could start, but the number of agents
remain relatively small.

Algorithm Max. agents Max. blocks Shared memory

Leader election 32 2833 46 kB
Random walk 38 2330 47 kB
Firefly synch 24 750 48 kB

Table 6.2: Limits with shared memory intensive configuration

6.2.3 Shared memory intensive with instructions in global
memory

In the shared memory intensive configuration the instruction list and the
parameters are stored in the shared memory for each block. In order to save
space, instructions and parameters can be placed in the global memory. The
maximum possible agents and simulations are shown in Table 6.3. We note
that there is no significant improvement over the register-intensive or the
shared memory intensive configurations. In fact, the number of agents per
block is not changing due to an unknown reason. However, the shared mem-
ory solutions do allow more concurrent simulations.

6.2.4 Global memory intensive

Finally, it is also possible not to use the shared memory and registers at
all. All the data is stored in the global memory instead. While this takes
toll on the speed of the program, there is more space. The number of pos-
sible agents is the same as in the case of previous configurations for Leader
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Algorithm Max. agents Max. blocks Shared memory

Leader election 32 2830 42 kB
Random walk 38 2380 46 kB
Firefly synch N/A N/A N/A

Table 6.3: Limits when instructions and params are in global memory

election and less for Random walk, which is counterintuitive, because we
expected the number of agents to rise. However, for the most complicated
algorithm, Firefly synchronization, the number of possible agents did rise.
Table 6.4 shows the limits in this configuration. The usage of the global
memory is added in a separate column because the shared memory is not
used at all.

Algorithm Max. ag. Max. blk. Sh. mem. Glob. mem.

Leader election 32 2800 0 kB 128 MB
Random walk 32 2800 0 kB 111 MB
Firefly synch 32 2800 0 kB 168 MB

Table 6.4: Limits when everything is in the global memory

6.2.5 Conclusions

This analysis shows that the Random walk algorithm uses the least of re-
sources among the three algorithms, whereas Firefly synchronization uses
the most, reflecting the complexity of the algorithms. In the case of Ran-
dom walk agents have very few agent variables and less local variables are
allocated, since this algorithm involves almost no calculations. Leader elec-
tion uses few agent variables but a little more local variables are allocated.
Firefly synchronization has both a lot of agent variables and involves a lot
of calculations, therefore is is the most resource intensive.

The memory configurations that allow the largest simulations to be ex-
ecuted are the shared memory intesive and the global memory intensive.
This is especially true for the Firefly synchronization algorithm, which is
relatively complicated, and uses a lot of data. This is the reason why this
algorithm was not able to run in some configurations in the first place.

We also see that the maximum number of blocks and the maximum num-
ber of threads are somewhat independent. The maximum number of blocks
is limited by the shared memory usage, and the maximum number of threads

44



is limited by the register usage. The comparison is however not always
straightforward, since the data layout is partly up to the compiler, and pro-
grammers cannot influence it.

6.3 Simulation execution time

In this section we analyze the dependence of the execution time on the sim-
ulation length (the number of iterations). These measurements reflect the
impact of the different configurations on the execution speed. We discuss
these results per algorithm.

The configurations presented in the Section 6.2 differ in the placement
of variables: these variables that are placed in slower memories can lead
to large time penalties. If a specific algorithm accesses these variables fre-
quently, the entire execution might slow down substantially.

It has also been shown in Section 6.2 that different configuration can
accomodate different model sizes and numbers, so in order to get a fair
comparison, all the measurements were made at the lowest of these limits
to allow all models to accomodate all configurations.

6.3.1 Random walk

Random walk is an algorithm in which the agents move in the direction of
their current heading one step in each tick. The heading is changed randomly
at the beginning of the next tick, whereas the step size remains constant.
See Appendix A.2 for pseudocode of the algorithm.

Figure 6.1 shows the measurements for the Random walk algorithm. For
the sake of brevity, shared memory denotes the shared memory intensive
configuration, register corresponds to the register intensive configuration,
global instr. stands for the shared memory intensive configuration with in-
structions in the global memory. Finally, global everything means the global
memory intensive configuration.

It can be clearly seen that the register intensive configuration is the
fastest, since registers have the lowest latency. The difference between the
shared memory intensive configuration and the one where instructions are
placed in the global memory is relatively small which is due to the fact
that instructions and parameters are fetched relatively infrequently from
the memory. Thus the shared memory intensive configuration with instruc-
tions in global memory should be used. It might be surprising that the
execution speeds up if the instructions and parameters are moved into the
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Figure 6.1: Execution time for random walk

global memory. A possible explanation is that agents are accessing this data
simultaneously, and if the data is not well aligned, it can result in bus con-
flicts.

Finally if all the data is placed in the global memory the execution will
be slower since the global memory is very slow compared to others.

6.3.2 Leader election

Leader election is an algorithm in which agents exist in a static network, in
a ring topology. Since agents do not move, their spatial coordinates are not
important and are initialized to some random value. Agents send their ID to
their neighbor. At the same time they receive their neighbors ID, as well. If
the received ID is smaller than their own they will set an internal flag that
shows their leadership true, otherwise false. At the end of the algorithm
only one agent will have the flag with the value true.

Figure 6.2 shows the results for the Leader election algorithm, the legend
of the x-axis of the graph corresponds to the different configurations the
same way it was described in Subsection 6.3.2. The relations between the
different configurations are similar to those of the previous algorithm. The
global memory intensive configuration is however a lot slower than in the

46



Figure 6.2: Execution time for leader election

previous case. This is due to the general slowness of the global memory.

6.3.3 Firefly synchronization

Figure 6.3 shows the measurement results for the Firefly synchronization
algorithm. The two missing bars indicate that the algorithm could not be
started in the respective configuration.

The placement of all the variables in the global memory causes a signifi-
cant performance deteoriation. This is due to the fact that this particular
algorithm includes a lot of operations with variables, and the number of
instructions executed in each loop is a lot higher than with the rest of the
algorithms.

6.4 Translation speed

In this section we present measurements that show the time needed by the
translation process of the CudaSimulator. These measurements are neces-
sary to be able to compare the performance of our CudaSimulator to al-
ternative solutions since the translation time has to be added to the pure
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Figure 6.3: Execution time for firefly synchronization

execution time.

Algorithm Translation time Execution time

Leader election 6166 ms 7057 ms
Random walk 6309 ms 2162 ms
Firefly synch 6865 ms 42426 ms

Table 6.5: Time taken by the translation of the algorithms

Table 6.5 shows the execution time of the translation phase and the com-
parison with the execution times measuremed in the shared memory inten-
sive configuration. The proportion of the translation time to the execution
time is significant in the case of Leader election and Random walk. We note
however, that since the engine can run different models at the same time,
it is not fair to compare translation time directly with the total execution
time. We will use the normalized execution time to yield a fairer comparison
in Section 6.5.

We can see that there is very little difference between the translation time
of different algorithms. Therefore it is advised to run longer simulations with
many agents, in order to amortize the translation time. The slowness of the
translation phase is the result of single core execution of Scala code. The
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code that is processing the AST is written functionally with immutable data,
which results in frequent allocations.

6.5 Comparison with alternative solutions

To decide whether our CudaSimulator is competitive alternative for per-
forming fast simulations using NetLogo models, we compare its performance
against two alternatives: the original NetLogo and the solution when simu-
lations are written directly in CUDA (in the following we refer to it as Pure
Cuda).

There are four measurements per method for each algorithm: 10, 100,
1000 and 10000 iterations. These points are represented by dots on the
graphs, and lines connecting them were created by interpolation.

There are two sets of graphs in this section: The first set shows the total
execution times that were measured running the whole simulation. For a
fairer comparison, the second set of graphs shows the normalized execution
times. Normalization means that in the case of the CudaSimulator and
the Pure Cuda solutions, the execution times were divided by the number
of simulations running in parallel, whereas the exectution times with the
original NetLogo remain unchanged. Note that in the case of normalized
diagrams the translation time was added after normalization.

6.5.1 Leader election

Figure 6.4 shows the total execution time in the case of the Leader election
algorithm. While execution time is steadily rising when increasion the num-
ber of iterations, the execution time of the Pure Cuda solution is significantly
smaller (by 2-3 orders of magnitude) than the CudaSimulator, because the
overhead of the virtual machine (extra instructions, and frequent synchro-
nization barriers between bytecode instructions) is not present.

For simulations with a few iterations the CudaSimulator performs sligthly
better than the NetLogo engine. This is due to many factors that slow down
the NetLogo simulation. For example, JIT optimization in NetLogo’s engine
needs multiple executions of the same code to take effect. However, for larger
numbers of iterations the pure NetLogo outperforms the CudaSimulator.

In contrast to the previous graph, Figure 6.5 indicates that the normal-
ized execution times of the CudaSimulator are rising only very sligthly. In
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Figure 6.4: Comparison of different executions for leader election (note the
logarithmic scales on both axes)

Figure 6.5: Comparison of different executions for leader election normalized
(note the logarithmic scale on both axes)
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fact, most of the time is due to the translation into bytecode in CudaSimula-
tor. Therefore it becomes advantageous to use the CudaSimulator at larger
number iterations.

The normalized execution time of the Pure Cuda solution is even smaller
(the sub-microsecond execution times are represented by negative powers of
ten on the logarithmic scale).

6.5.2 Random walk

Figure 6.6: Comparison of different executions for random walk (note the
logarithmic scale on both axes)

The measurements for the Random walk algorithm paint a similar picture
to those for the Leader election. Figure 6.6 shows the total execution times.
The difference compared to the previous algorithm is that the ”crossover”
between the CudaSimulator and NetLogo occurs for higher iterations (i.e.
where the CudaSimulator becomes faster).

The normalized execution times are again close to the translation time
(see Figure 6.7). The execution time appears to be constant because of the
logarithmic nature of the graph, in reality there is a small increase. There-
fore the CudaSimulator is not expected to be faster than the Pure Cuda
solution for very large iterations.
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Figure 6.7: Comparison of different executions for random walk normalized
(note the logarithmic scale on both axes)

We can observe that in the case of the normalized execution time the
crossover between NetLogo and the CudaSimulator happens in the same in-
terval (around 3000 iterations) as in the case of Leader election.

6.5.3 Firefly synchronization

The measurement results for the Firefly synchronization algorithm are de-
picted on Figures 6.8 and 6.9. The differences between the three solutions
are more significant in this case.

First, the execution time for CudaSimulator is larger than all the other
solutions even for few iterations. Above 1000 iterations the execution time
was too long to measure, so the measurement at 10000 iterations is gener-
ated by interpolation (represented by the dashed line).

It is also interesting to note that PureCuda execution time is also sub-
stantially larger as compared to previous algorithms which reflects the com-
plexity of the algorithm.

The normalized execution times show that below 1000 iterations, Cud-
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Figure 6.8: Comparison of different executions for firefly synchronization
(note the logarithmic scale on both axes)

Figure 6.9: Comparison of different executions for firefly synchronization
normalized (note the logarithmic scale on both axes)
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aSimulator consumes most of the time to translate the simulations. Abover
1000 iterations the execution time starts to rise slightly, however the rate of
increase is smaller than that of the NetLogo engine.

The crossover point between NetLogo and CudaSimulator is at lower iter-
ations (between 100 and 1000) which again is due to the fact that JIT needs
a number of iterations to start to have an effect.

6.6 Pathological models

In this section we examine different ways to write NetLogo models which are
limiting the performance of CudaSimulator.

Figure 6.10: Pathological programming: remote calls

The first set of measurements shows the way remote calls are used. Three
different scenarios are shown in Figure 6.10. Each scenario is created by
slightly modifying the firelfy synchronization model by adding code to the
part where agents exchange information with others in a remote call. The
measurements were taken at 1000 iterations in order to magnify the differ-
ences.

The normal scenario is created by simply adding extra code outside of
the body of the remote call. This version is to compare to others such that
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the amount of the executed code is always the same.

The scenario called rmcall much code is created by moving the extra code
inside of the remote call. The increase in latency is visible, but not very
significant.

The scenario called rmcall fragmented is created by putting the extra
code a separate remote call. This increases the execution time even further,
as a remote call is an expensive operation. In order to test the effect of
fragmentation, the extra code is divided into two parts each in a different
remote call. The result is shown on the bar titled rm call more fragmented.

Figure 6.11: Pathological programming: divergence

Figure 6.11 represents the second set of measurements which examines
the effect of divergence (branching code).

Since CUDA executes instructions on a SIMD architecture (the same ma-
chine instruction is executed on different data), divergent instructions have
to be serialized, and threads in the other branch are simply disabled. As
a result of this execution time might rise significantly. Measurement has
been made by modifing the code such that the extra code is duplicated in
two branches. As it can be seem from the Divergent bar, the latency grows
slightly.

The last scenario is to put the remote call instruction in one branch of an
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ifelse instruction. As a result the simulation hangs because of the remote
call mechanism synchronizes the threads first. In CUDA this results in a
deadlock since the threads in the other branch never meet the thread barrier.
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Chapter 7

Conclusions and Future
Work

This chapter concludes this thesis. In section 7.1 we give a brief overview
of the features of the CudaSimulator. We also compare its performance
to alternative means of running NetLogo simulations. We finally provide an
outlook of possible ways to improve the simulator we proposed in this thesis.

7.1 Conclusions

This section gives a brief overview of the salient features of the CudaSimu-
lator which are then compared to alternatives.

7.1.1 Overview of features

CudaSimulator was integrated in the Snowdrop project as a back-end to the
MetaCompiler [38] in order to accelerate the evaluation of programs gener-
ated by genetic programming.

The simulator consists of two parts: one is an extension of the NetLogo
engine and translates the model written by the user into a special bytecode
we have designed. The bytecode is then executed by the other part which
is written in CUDA C and runs directly on the GPU. The results of the
execution is then collected by the former part.

In our design, the capabilities of the NetLogo engine to compile models
can be initially reused. Then, the engine is bypassed and the execution is
rerouted to the part that is running on the GPU.

This thesis answered three research questions:
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• Can NetLogo models efficiently translated to CUDA? We in-
vestigated the mapping of simulations and agents to CUDA execu-
tion units. We found that due to dependencies and synchronization
possibilites between blocks and Streaming multiprocessors, individual
simulations are executed on blocks. We investigated the mapping of
NetLogo variables to different types of memory. Therefore global vari-
ables (which are accessed infrequently) are placed into the slower global
memory. Exclusive agent variables are placed in the local memory and
shared agent variables are placed in the shared memory in order to fa-
cilitate fast communication. We have seen that the compiler generates
an AST representation of NetLogo models. Most of the instructions
can be directly translated into bytecode, with a few exceptions (for
example, aggregation functions).

• How should NetLogo be changed in order to accomodate the
use of GPU architecture? We have found that NetLogo consists of
a compiler and an execution engine. We found that it is possible to
disable the execution engine and use the compiler to create an AST
representation. With additional modules the AST can be translated
into bytecode, which is then passed to the virtual machine. This way
we could reuse a large portion of NetLogo’s code and thus avoid re-
dundancy. We also imposed restrictions on this engine (only one breed
can be used, only one type of metric space is implemented) in order
to simplify development.

• Limitations of CudaSimulator: We identified three common al-
gorithms used in MANETs to characterize the performance of our
simulator. We examined the size constraints of CudaSimulator i.e.
how many blocks and threads can be launched simultaneously. We
found that the limitations depend on the different ways the data can
be placed in the memory of the GPU.We also compared the the Cu-
daSimulator with the original NetLogo and simulations directly im-
plemented in CUDA, with respect to performance. We found that
when running a large number of smaller sized simulations, CudaSim-
ulator has a better performance than NetLogo, however direct CUDA
solutions are always faster.

7.1.2 Comparison to alternatives

In Chapter 6 we compared the performance of the CudaSimulator to two
major alternatives: using the original NetLogo simulator and writing the
simulations in CUDA C.
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The measurements show that the simulation time for the CudaSimulator
is generally larger than that of the original NetLogo program. However if we
take into account the simulations running in parallel on the CudaSimulator
it is easy to see that the time is amortized among the models running in
parallel. In other words, our CudaSimulator is a high-throughput solution,
but is not very useful as a low latency solution. As a result of this, when
running many models, there is a point where CudaSimulator begins to out-
perform NetLogo.

The measurements in Chapter 6 show that if the models are re-implemented
in CUDA C, the performance is always better, usually by several orders of
magnitude. This is because it is possible to write highly optimal code in
CUDA C. Also, the overhead of the virtual machine in CudaSimulator is
not present in pure CUDA C solutions.

The above observations present a trade-off in which the user has multiple
choices. If the focus is on performance, then the best solution is to rewrite
the models in CUDA. If the focus is on simplicity, the user should use
NetLogo. For a compromise solution CudaSimulator might be a good choice.
The user will have to avoid certain programming patterns and commands
that are not implemented, but they might gain substantial performance in
the form of very high throughput.

7.2 Future Work

This thesis outlines a proof-of-concept version of a software system. There
are a lot of possible ways to develop this project further. In this section we
give an overview of some of these ways.

The first and most obvious way to develop the CudaSimulator is to widen
its support of NetLogo commands and concepts. Currently only one agent
type is supported whereas NetLogo has four: turtles, links, patches and the
observer, each capable of executing code. There are some widely used algo-
rithms that use multiple types of agents, e.g. usual implementations of ant
colony optimization use patches.

Next, run-time error checking should be implemented. Genetic Program-
ming guarantees that the generated code will be syntactically correct, but
it does not account for the meaningfulness of it. This means that run-time
errors can occur in the code, e.g., division by zero. Running the code in
NetLogo the JVM will catch these errors and generate exceptions. Contrary
to that, CudaSimulator will generate wrong results or NaN values instead.
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Finally, we have seen that the simulations are severely limited by their re-
source usage. As we have seen in Chapter 4, a separate variable is allocated
to store the results of each arithmetic/logic operation. This results in a lot
of allocations, most of them used only once. Therefore the resource usage
could be significantly improved. Thus, the CudaSimulator simulations could
be larger.

Overall, we believe our CudaSimulator can be an efficient solution for
high-throughput applications that use NetLogo models. However, for cases
where low latency is necessary a different design might be needed.
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Appendix A

Test algorithms

A.1 Leader election

Algorithm 1 Leader election

1: procedure setup
2: if myID 6= 0 then . Connect to neighbor (one-direction)
3: connectTo(myID − 1)
4: else
5: connectTo(nrOfAgents− 1)
6: end if
7: inMsg ← 0
8: outMsg ← 0
9: isLeader ← false

10: ticks← 0
11: end procedure

65



Algorithm 1 Leader election (Continued)

1: procedure go
2: if ticks > maxTicks then
3: exit
4: end if

5: neighbor.inMsg ← outMsg

6: if inMsg > myID then
7: outMsg ← inMsg
8: else
9: outMsg ← myID

10: if inMsg = myID then
11: isLeader ← true . I am the leader
12: end if
13: end if

14: ticks← ticks + 1
15: end procedure
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A.2 Random walk

Algorithm 2 Random walk

1: procedure setup
2: myPosX ← rand() mod MAX X
3: myPosY ← rand() mod MAX Y
4: heading ← 0
5: end procedure

6: procedure go
7: if ticks > maxTicks then
8: exit
9: end if

10: heading ← rand() mod 360
11: myPosX ← myPosX + STEP ∗ cos(π∗heading180 ) . move in X

direction
12: myPosY ← myPosY + STEP ∗ sin(π∗heading180 ) . move in Y

direction

13: ticks← ticks + 1
14: end procedure
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A.3 Firefly synchronization

Algorithm 3 Firefly synchronization

1: procedure setup
2: myXPos← rand mod MAX X
3: myY Pos← rand mod MAX Y
4: myColor ← 0
5: updateEnabled← 0
6: clock ← rand mod ROUND LEN
7: prevT ickClock ← 0
8: ticksClockDiff ← 0
9: end procedure

10: procedure go
11: if ticks > maxTicks then
12: exit
13: end if

14: moveRandomWalk()
15: clearConnections()
16: reconnectWithinRange(TRANSMIT RANGE) . bi-direcitonal

connections

17: if isNeighbCountSwitchedOnLargerThan() then
18: if clock > ON TIME then
19: clock ← ON TIME
20: end if
21: end if

22: updateColor()
23: incrAgentsClock()
24: updateT icksClockDiff()
25: prevT ickClock ← clock . store clock in prev. tick

26: ticks← ticks + 1
27: end procedure
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Algorithm 3 Firefly synchronization (Continued)

procedure updateColor
if clock < GLOW TIME then

myColor ← ON COLOR
else

myColor ← OFF COLOR
end if

end procedure
procedure incrAgentsClock

if clock < ROUND LEN then
clock ← clock + 1

else
clock ← 0

end if
end procedure
procedure updateTicksClockDiff

if abs(clock − prevT ickClock) = ROUND LEN then
ticksClockDiff ← 0

else
if clock < prevT ickClock then

ticksClockDiff ← 1
else

ticksClockDiff ← abs(clock − prevT ickClock − 1)
end if

end if
end procedure
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