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Reliability updating for lateral failure of historic quay walls
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Metropolitan Solutions, Amsterdam, The Netherlands; cDepartment of Maritime, Royal HaskoningDHV, Rotterdam, The Netherlands; 
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ABSTRACT  
The historic canal walls of Amsterdam, stretching 200 km in total, are constructed as a masonry wall 
on a timber deck supported by vertical timber piles. Understanding the resistance against lateral 
failure of these quays has been challenging due to uncertainties in their working principles, 
geometry, soil and structural properties. This paper proposes a Bayesian approach to include 
evidence from past loading situations and corresponding deformations into the reliability 
assessment. This approach enables refinement of the reliability predictions and parameter 
distribution uncertainties, leading to a more accurate prediction of the resistance against the 
lateral failure of historic quay wall. Depending on the type of evidence, an a-priori reliability 
prediction for a quay wall that fails to meet safety standards can be updated to any of the three 
consequence classes outlined in NEN8700. In a case study, a quay wall with an a-priori reliability 
of β = 1.5 has been increased to β = 3.2 by including evidence of an extreme survived load of 10 
kN/m2 that resulted in displacements of less than 4 mm. This is a decrease in failure probability 
by two orders of magnitude, showing the potential impact of using observational information 
in combination with Bayesian updating.

ARTICLE HISTORY
Received 27 July 2023 
Accepted 28 December 2023  

KEYWORDS  
Reliability updating; historic 
quay walls; lateral loaded 
timber piles; bacterial 
deterioration; Bayesian 
approach

1. Introduction

Amsterdam faces the challenge of maintaining a 200 km 
historic quay wall area, which is a vital part of the city’s 
historical landscape. Many quays are currently in poor 
condition and require renovation or replacement in 
the near future, significantly impacting the city. The 
quay wall construction consists of a masonry cantilever 
wall on top of a timber floor, which is supported by 
headstocks situated on three to six timber pile rows. 
These piles are often founded on sloping canal beds. A 
historic technical drawing, containing the terminology 
of quay wall components, is presented in Figure 1. 
The quays are over a century old, have various configur-
ations, and are used by road traffic, including heavy 
vehicles. However, signs of damage, partial collapse 
and warnings of such events have been observed 
(Korff, Hemel, and Esposito 2021). Calculating the stab-
ility and resistance of historic quay walls has shown that 
it is difficult to demonstrate sufficient safety. It seems 
that these models are too conservative, because in rea-
lity, the majority of the existing structures that proof 
unsafe on paper is performing quite well in practise, 
referring to them as “metastable”. Historical quay 

walls may be subjected to a variety of identified failure 
mechanisms, such as global stability, overturning or 
sliding of the masonry wall, axial bearing capacity fail-
ure of pile(s), failure of the headstocks and/or floor, lat-
eral failure of the pile foundation, and failure of 
connections between headstocks and piles or sheet pile 
(Heming 2019). This study focuses on the lateral failure 
of timber pile foundations (see Figure 2). The mechan-
ism involves soil pressure pushing the quay wall towards 
the canal side, countered by the lateral resistance of the 
pile foundation. If the active horizontal force exceeds 
the resistance of the pile group, lateral failure of the 
pile foundation can occur due to geotechnical or bend-
ing capacity failures, or a combination of them. This 
mechanism is considered most critical, which is sup-
ported by assessment reports as well as practical obser-
vations. Early signs of this mechanism, which are most 
commonly observed throughout the city centre, include 
leaning or bulging of the quay wall towards the water-
front, surface settlements on top and behind the quay, 
inclined piles, or even indications of broken piles. Fur-
thermore this lateral failure can result in the entire quay 
and its foundation collapsing into the canal, having 
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significant consequences. Limited understanding of the 
lateral behaviour of historic quay walls is attributed to 
factors such as poor documentation of their geometry 
(Balestrini et al. 2021), bacterial deterioration affecting 
the strength of the timber piles (Pagella et al. 2021; 
van de Kuilen et al. 2021), and the complex interaction 
between closely-spaced timber piles and cohesive soils 
(Ashour, Pilling, and Norris 2004; Hansen and Lundg-
ren 1960; Norris 1986). Additionally, there are uncer-
tainties regarding the geotechnical conditions and how 
the active soil volume transfers its weight, the depth of 
the canals and the occurrence of surface loads.

This paper aims to implement Bayesian updating to 
reduce uncertainties in geotechnical and structural par-
ameter distributions associated with the lateral failure 
mechanism of historic quay walls. Bayesian updating 
is a powerful method that effectively can reduce uncer-
tainties in structural and geotechnical model input par-
ameters, leading to a more precise understanding of the 

structural safety (Beck and Au 2002; Straub and 
Papaioannou 2015). Information on engineering sys-
tems through monitoring, direct observations or 
measurements of system performances can be used to 
update the system reliability estimate (Straub 2011). 
This principle is also referred to as proven strength or 
reliability updating and is a well-known technique 
within the geotechnical and civil engineering sector 
(Yuen 2010).

Examples in literature are found in a variety of fields 
within the engineering sector. Enright et al. conducted a 
study focused on enhancing the prediction of future 
bridge conditions (Enright and Frangopol 1999). The 
study incorporated inspection information and engin-
eering judgment into a quantitative assessment through 
the application of Bayesian updating. This was achieved 
using adaptive importance sampling and numerical 
integration methods. In the same field, Bayesian updat-
ing was used to include laboratory test data, field 

Figure 1. Cross-section of historical quay wall structure with terminology. (Lijnbaansgracht, tussen Palmgracht en perceelno. 14, 
Archive of Amsterdam.)
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observations and engineering judgement into the assess-
ment of reinforced concrete bridge columns under seis-
mic excitation (Choe, Gardoni, and Rosowsky 2007). 
Chung et al. applied Bayesian techniques to a simulation 
model of the North Edmonton Sanitary Trunk tunnel 
project, demonstrating significant improvement in pro-
jection accuracy (Chung, Mohamed, and AbouRizk  
2006). Past performance, such as the survival of a load-
ing condition, is an example of valuable information 
that can be utilised to enhance reliability estimates. 
Examples of such studies are survival of a phreatic 
level when analysing slope stability (Li et al. 2015; 
Zhang, Zhang, and Tang 2011) or an extreme observed 
water level into the assessment of the piping mechanism 
of dikes (Schweckendiek 2010; Schweckendiek, Vrou-
wenvelder, and Calle 2014). Following that same ana-
logy, pile proof load tests are used to reduce 
uncertainties in the design and construction of pile 
foundations (Ching, Lin, and Yen 2011; Zhang 2004). 
Other forms of survived loading conditions during 
the lifetime of the structure can be traffic loads 

(Gao, Duan, and Lan 2021; Yu and Cai 2019) or other 
service loads (such as soil retaining function or own 
weight).

The utilisation of Bayesian Updating in the context of 
quay walls is not a fully novel concept. A study con-
ducted by Den Adel et al. (2019) explored the feasibility 
of incorporating performance information in the assess-
ment of quay walls. The researchers conducted a case 
study involving an existing combi-wall quay structure 
and employed fictitious measurement data to showcase 
the potential impact of test loading on the reliability of 
the structure. To model the combi-wall quay a Blum 
model, which was verified using Finite Element Method 
(FEM), was employed. The effect of corrosion-induced 
degradation on the reliability of service-proven quay 
combi-walls was studied by Roubos et al. (2020). Includ-
ing successful service conditions helped to reduce time- 
independent uncertainties such as the uncertainty in soil 
strength, leading to an increase in reliability.

The studies mentioned demonstrate that incorporat-
ing the past performance of structures or observations 

Figure 2. Failure mechanism “Lateral failure of the quay wall foundation”. Detail is of pile cross-section is provided in which bending 
stresses are indicated.

GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS 3



into the reliability assessment can enhance the accuracy 
of reliability estimates and reduce uncertainties associ-
ated with individual parameters. Up to now, the appli-
cation of Bayesian updating has not been explored in 
relation to (the lateral failure of) historic inner-city 
quay walls. These quays face specific challenges such 
as unknowns in geometric layout, complex pile-soil- 
pile interaction and timber degradation for which Baye-
sian updating can improve the assessment, thereby pre-
venting the need for large-scale and time-sensitive 
replacements.

Thereto this paper presents a methodology for incor-
porating survival and observational information, such 
as the survival of extreme surface loads and observed 
deformations, into the reliability analysis of lateral fail-
ing historic inner-city quay walls. By integrating this 
information, not only does it result in a more precise 
and realistic estimation of failure probability, but it 
also allows for the reduction of uncertainties associated 
with individual parameters.

The lateral pile-soil-pile interaction is an essential 
component to include when modelling the lateral failure 
of quays. Soil-structure interaction is a complex and 
nonlinear process involving the influence of piles on 
the soil and vice versa, impacting neighbouring piles. 
Key factors influencing this pile-soil-pile interaction 
include pile spacing, pile diameter, pile stiffness and 
strength, soil properties, loading type and bed slope 
(Kavitha, Beena, and Narayanan 2016). Currently, com-
putational Finite Element Method (FEM) software, such 
as ANSYS, ABAQUS or PLAXIS, is commonly used to 
solve soil-structure interaction problems accurately. 
However, these software models involve a significant 
number of mesh nodes, leading to increased compu-
tational effort (Farmaga et al. 2011; Lou et al. 2011). 
Bayesian updating, which requires many simulations, 
poses a challenge due to the demand for fast compu-
tational time (Ehre, Papaioannou, and Straub 2018). 
To overcome this challenge, this paper employs the 
analytical pile group model presented in Hemel, Korff, 
and Peters (2022) to simulate the lateral failure of a his-
toric quay wall in Amsterdam. This model (briefly 
explained in 3.1) is computationally fast, enabling 
many realisations in a short period of time. With this 
model, forces in the pile foundation and corresponding 
displacements can be obtained. The model has later 
been validated with experiments from literature as 
well as field experiments and proven adequate and 
sufficiently accurate for calculation of limit states 
(Hemel 2023).

The structure and approach of this paper is as fol-
lows. First the theory of Bayesian updating and its appli-
cation for inner-city quay walls is discussed in section 

2. Two methods are discussed, Monte Carlo and Fragi-
lity curves. In section 3, a case study on a common type 
of quay wall geometry in Amsterdam is performed, 
demonstrating the potential of Bayesian updating. In 
this case study, an a-priori probability of failure is pre-
dicted for a reference period of 15 years. The probability 
of failure is then updated based on two types of observa-
tional evidence. The first type is evidence from an 
extreme survived load, while the second type involves 
incorporating deformation measurements taken during 
the extreme load event. The results of the case study are 
compared with NEN8700 “Veiligheidsfilosofie bes-
taande bouw” (Steenbergen, Vrouwenvelder, and Schol-
ten 2012), which represents safety standards for existing 
buildings in the Netherlands. Section 4 discusses the 
approach and obtained results. Finally, conclusions are 
provided in section 5.

2. Bayesian updating for lateral failing 
historic quay walls

This section provides the theory of Bayesian updating 
and its application on the lateral failure of historic 
inner-city quay walls.

2.1. A-priori reliability analysis of lateral quay 
wall failure

The safety of a structure can be expressed through the 
resistance R of the structure, which ideally must be 
greater than the load S throughout its lifetime (Lin 
et al. 2023; Tabarroki et al. 2022). The resistance and 
load of a structure are typically considered as random 
variables, and the probability of failure Pf is the prob-
ability that the load S is greater than the strength R, as 
expressed in Equation (1). A more rigorous approach 
involves employing the “greater than or equal to” nota-
tion, as outlined by Lesny (2009); both notations are 
commonly utilised.

Pf = P[R , S] (1) 

The probability of failure can be expressed using a 
limit state function formulated as Z = R – S (Roubos 
et al. 2020) in which failure of the system occurs when 
Z reaches a negative value. The associated failure prob-
ability is then Pf = P[Z<0] and its probability of survival 
or reliability is defined as Ps = 1 – Pf. The degree of safety 
is often expressed by the reliability index β, which is 
directly related to the failure probability as per 
Pf = F(− b ). Here, Φ is the cumulative normal distri-
bution. For cases where the resistance and load follow 
simple distributions, the failure probability can be easily 
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solved analytically. However, in the case that the system 
consists of various (non-linear) components, each with 
its own distributions, the solution of the failure prob-
ability becomes complex. A general approach of such 
a complex system can be described using a continuous 
performance function g(X) (Deng 2006). The vector X 
consists of a collection of random variables such as 
material properties, geometric properties, loads and 
model uncertainties. For each of these variables, an 
appropriate stochastic distribution must be chosen. Par-
ameters that do not have uncertainties can be distribu-
ted deterministically. The probability of failure (or an 
undesired event) is given in Equation (2) (Jonkman 
et al. 2015). In this equation, fX(X) is the common prob-
ability density function (PDF) of X.

Pf = P(g(X) , 0) =
􏽚.

g(X),0

fX(X)dX (2) 

The system failure considered in this study is the lat-
eral failure of the historic quay wall pile foundation, 
depicted in Figure 2. In this mechanism, the soil 
pressure at the backside of the quay wall is increased 
by a surface load q[kN/m2], causing a quay deflection 
w[m] towards the canal side accompanied by the bend-
ing of the timber piles. As such, quay wall foundation 
piles are not only loaded axially N[kN], but also later-
ally, introducing significant bending moments M 
[kNm] in the piles, which in their turn cause bending 
stresses σb [N/mm2]. Large scale lateral 3×4 group 
experiments on historic quay foundation piles were per-
formed by Hemel (2023) to study the failure of individ-
ual piles and system failure. Figure 3 illustrates the quay 
foundation’s system failure. In Amsterdam’s subsoil, 
timber yielding initiates at around 100 mm of group 
deflection, where bending stresses surpass the modulus 
of rupture (MOR) [N/mm2]. Foundation piles fracture 
upon reaching full yielding, indicating that bending 
stresses exceed the MOR across the entire pile cross-sec-
tion. Due to natural variation and bacterial degradation 
affecting pile stiffness and bending capacity, piles do not 
break at similar deflections. Redistribution between 
piles occurs, introducing redundancy to the system. 
Group failure is observed within the range of 200–350 
mm. Notably, the transition from the onset of yielding 
to group failure requires only a slight additional lateral 
load (15%), highlighting that the onset of pile yielding 
should not be seen as a safe condition. The chosen fail-
ure criterion is the onset of pile yielding within the pile 
group. This results in the performance function g(X,q) 
for this system in Equation (3). In here, the external 
diameter of the piles is indicated with D[m]. The corre-
sponding a-priori probability of failure is given by 

Equation (4). No serviceability limit state function is 
considered in this paper.

g(X, q) = MOR − sb

= MOR −
MuM
p

32
D3
+

NuN
p

4
D2

⎛

⎜
⎝

⎞

⎟
⎠ (3) 

Pf = P(g(X, q) , 0) (4) 

To describe the performance function g(X,q), the 
analytical quay wall model is used, described in in 3.1. 
For the bending moment and normal force, model 
uncertainties uM and uN are incorporated in the limit 
state function, consistent with prior investigations 
(Roubos et al. 2020). To determine the failure prob-
ability for this particular system, several probabilistic 
methods are available. In this study, two methods are 
considered for determining the probability of failure 
and updating it through Bayesian techniques. These 
methods are Crude Monte Carlo (MC) and fragility 
curves (FC). The theory for estimating the a-priori 
probability of failure using both methods is briefly 
outlined.

The Monte Carlo technique is a commonly used 
method for determining failure probabilities in complex 
systems with many stochastically distributed variables 
(Beck and Au 2002; Jiang et al. 2015; Wang 2011). 
This methodology involves the use of random sampling, 
whereby thousands or more of calculations are per-
formed. For each calculation, a random value is gener-
ated for each model input variable according to the 
corresponding chosen probability distribution. The fail-
ure probability can be determined by dividing the num-
ber of failed simulations nf = 1[g(X)<0] by the total 
number of simulations n (Pf;MC = nf /n), using the indi-
cator function.1 If the sample size goes to infinity, the 
exact failure probability is determined. With complex 
computations, a Monte Carlo calculation can take a 
considerable amount of time or even become unfeasible.

The second method applied in this study is the use of 
fragility curves (Kim and Shinozuka 2004). A FC rep-
resents the conditional probability of failure Pf as func-
tion of a (dominant) loading variable s, formulated in 
Equation (5). Here f represents “failure” and X all ran-
dom variables except for s. Fragility curves can be con-
structed by calculating the failure probability, in this 
study with FORM,2, for a number of deterministic 
loads s. Between the “fragility points” linear interp-
olation can be used. Outside the fragility points, extra-
polation can be used as long as the extrapolation takes 
place outside the boundaries of the area of interest. 
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An example of a fragility curve for dominant load s is 
provided in Figure 4 and indicated in black. The obser-
vation fragility curve (in red) is discussed in section 2.6 

and will be used in the posterior analysis.

P f ;FC = P( f |s) = P(g(X, s) , 0) (5) 

Once a fragility curve has been constructed, it is possible 
to determine failure probabilities for any stochastic distrib-
uted load s without requiring additional computationally 
expensive model simulations. To do so, a limit state func-
tion is used in the form Z = sc – s, in which sc is the critical 
load. The critical load can be determined according to 
Equation (6) (Schweckendiek and Kanning 2016).

sc = G− 1(u) (6) 

Here, u is the realisation of a standard normal ran-
dom variable and G−1 is the inverse of the interpolated 
β-s curve G(s) = β. The problem Pf;FC = P[Z<0] can be 
solved using Monte Carlo sampling.

2.2. Posterior analysis including evidence

Past performance of an existing structure is evidence η 
of its reliability and safety (Hall 1988). The simplest 

Figure 3. Failure trajectory of the quay wall system as function of the pile group deflection based on 3×4 group experiments by 
Hemel (2023).

Figure 4. Example of fragility curves of dominant load s. In 
black, the FC for the reliability analysis. In red, FC including 
observational information in past performance.
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example is that of a proof load. A structure survives a 
certain load, thus demonstrating that the resistance is 
at least equal to or greater than the load at the time of 
the proof load. This reduces the level of uncertainty 
associated with the resistance prior to the proof load. 
By taking the proof of the successful test load as evi-
dence, the likelihood of failure will decrease and thus 
the reliability of the construction will increase. In 
addition to conducting proof load tests, there are 
alternative approaches to incorporate observational 
information into the posterior reliability analysis. For 
instance, one can examine successful loading conditions 
that the structure has endured throughout its lifespan, 
and integrate information derived from test data, 
measurements, monitoring and direct observations 
(Papaioannou and Straub 2012; Straub 2011). The pos-
terior probability of failure Pf,p, given evidence η, is 
determined according to Bayes’ rule (Bayes 1763) and 
presented in Equation (7). In here, the evidence η is 
described in terms of an arbitrary observational excee-
dance limit state function O, described by Equation (8).

P f ,p = P( f |h) =
P( f > h)

P(h)

=
P([g(X) , 0] > [O(X) , 0])

P([O(X) , 0])
(7) 

h ; O(X) , 0 (8) 

In the situation of multiple (k) simultaneous obser-
vations, the evidence is given by their intersection: 
h ; >k{Ok(X) , 0} (Schweckendiek, Vrouwenvelder, 
and Calle 2014).

2.3. Evidence for historic quay walls

The posterior probability of failure for the historic quay 
wall system, given evidence η, is presented in Equation 
(9). In here, g(X,q) is the performance function of the 
quay system. To conduct a posterior failure probability 
assessment, two types of evidence are considered in this 
study.

P f ,p = P( f |h) =
P([g(X, q) , 0] > h)

P(h)
(9) 

The first evidence η1 is the survival of the quay wall 
over its lifetime given an extreme surface load qη [kN/ 
m2]. This evidence is formulated in Equation (10). 
Here, Xη is a vector of all random variables (except sur-
face load qη) at the time of observed survival of the quay 
wall. At the time of the observed extreme load, there is a 
positive performance function. Practical examples of 
extreme surface loads can be temporary storage of 

cargo or heavy vehicles such as fire trucks, garbage 
trucks or construction equipment.

h1 ; g(Xh, qh) . 0 (10) 

The second type of evidence η2 involves expanding 
on the evidence presented in Equation (10) by incor-
porating deformation measurements. These measure-
ments are specifically obtained at the same time as 
the extreme surface load was observed. Pile foun-
dation deformations are physical coupled to timber 
bending stresses, which directly impact the limit 
state function. When large deformations occur, bend-
ing stresses are likely to be higher compared to situ-
ations with smaller deformations. If the model 
predictions on deformation do not align with the 
actual deformation measurements (i.e. if they are 
either too stiff or too flexible), it is a clear indication 
that the model input for simulating soil-structure 
interaction is incorrect or the model has an prediction 
error. Given the variation in deformation measure-
ments along quay walls, the deformation evidence is 
presented as a range, including both an upper and a 
lower boundary. The evidence of a range of defor-
mation measurements at the time of an extreme sur-
face load is provided in Equation (11). Here, W(Xη, 
qη) is the model predicted quay wall displacement 
during the observation. Furthermore, wη,min[m] and 
wη,max[m] are the lower and upper bound of the 
deformation measurements.

h2 ; [g(Xh, qh) . 0]

> [wh,min , W(Xh, qh) , wh,max] (11) 

2.4. Uncertainties in random variables

To calculate the posterior probability of failure of the 
quay system, two moments in time are considered. 
These are the end of the reference period for which 
the reliability prediction is made, and second, the 
moment in time when the evidence was gathered 
(e.g. observation of an extreme load and correspond-
ing deformations). As stated before, a random vector 
X is used in the reliability prediction, while vector Xη 
is used at the time of evidence. Often, in the uncer-
tainty of these vectors, a distinction can be made 
between epistemic uncertainty and aleatory uncer-
tainty (Der Kiureghian and Ditlevsen 2009). Epistemic 
means that the modeller may have possibilities to 
reduce the uncertainty of the variable by collecting 
more information or refining the model. Aleatory 
uncertainties are uncertainties that cannot be reduced 
by collection of information. Parameters such as an 
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annual traffic load (other than an extreme traffic or 
test load) or phreatic water levels influenced by rain-
fall, describe a purely random process over time, and 
therefore are an aleatory uncertainty.

The “learning effect” in updating epistemic uncer-
tainties is most pronounced when perfect auto-corre-
lation in time exists. This means that parameters at 
the time of observation are perfectly correlated with 
the parameters used for the reliability prediction. Con-
versely, there is little to no learning effect for aleatory 
uncertainties. Consequently, treating an aleatory uncer-
tainty as an epistemic uncertainty (assuming auto-cor-
relation when there is none) may result in an 
underestimation of the posterior failure probability. 
When determining the probability of failure without 
utilising historical evidence data (referred to as the 
“prior probability of failure”), the distinction between 
epistemic uncertainties and aleatory uncertainties is 
irrelevant.

2.5. Time dependent variables

In this study, a reliability prediction for a reference 
period of 15 years is made, as specified by NEN8700 
“Veiligheidsfilosofie bestaande bouw” (Steenbergen, 
Vrouwenvelder, and Scholten 2012). Because the obser-
vations are being made presently, there is a 15-year gap 
between the time of observation and the projected end- 
of-life for the quay wall. Hence, it is crucial to consider 
the (time-dependent) variations that may occur during 
this period when evaluating the reliability. Differences 
can be included in the random vector X at the end-of- 

life and random vector Xη at the time of the observation, 
allowing for a relative “best-estimate” difference Δ 
(Schweckendiek et al. 2017). Three differences between 
the observation and the projected end-of-life are con-
sidered in this study: 

. Pile degradation: Timber piles are subjected to 
bacterial deterioration (Harmsen and Nissen 1965; 
Varossieau 1949) influencing the strength and stiff-
ness properties of the timber over time. The outer 
layers of the piles are mostly effected, creating a 
soft shell (without neglectable structural strength) 
around the core-wood (Pagella et al. 2021; van de 
Kuilen et al. 2021). Micro drillings were conducted 
on foundation piles of a quay wall that were 115 
years old, located at Amsterdam Overamstel. The 
purpose of these drillings was to determine the 
thickness of the soft shell, which is illustrated 
in Figure 5. Based on the findings, the average 
thickness of the soft shell in the quay wall was 
determined to be 20 mm. Assuming a linear degra-
dation of the piles over time, an effective diameter 
reduction of 0.34 mm/year is found. This implies 
that at the time of the observation, the piles are 
Δ = 5 mm thicker compared to their expected 
thickness at the end of the 15-year reference 
period.

. Canal bed deepening: Deepening by bow thrusters 
of ships or dredging activities takes place in the 
canals of Amsterdam and was one of the main 
causes of the collapse of an Amsterdam quay wall 
named the “Grimburgwal” (Korff, Hemel, and 
Peters 2022). Lowering of the canal bed causes a 
reduction in lateral pile resistance and thus an 
increase in bending moments and bending stresses. 
A dredging tolerance of Δ = 0.2 m is anticipated 
over a 15-year reference period. This projection is 
grounded in the operational standards of the dred-
gers responsible for sustaining the depth of the 
canals.

. Surface load restrictions: In the observation, 40-ton 
vehicles with a surface load of 10 kN/m2 drove 
through the city centre. However, due to stricter 
traffic regulations, only lighter vehicles with a maxi-
mum surface load of 7 kN/m2 are allowed during 
the remaining service life. As a result, the maximal 
surface load for the reliability prediction over a 
15-year period is Δ = 3 kN/m2 lower than in the 
observation.

Assuming a greater strength in observation does 
not lead to an underestimation of the posterior failure 

Figure 5. Pile degradation obtained with micro drilling for a 
population of Amsterdam quay wall timber foundation piles.
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probability, but is rather a conservative assumption. 
The greater the difference between observation and 
the projected end-of-life, the more the posterior fail-
ure probability Pf,p will approach the a-priori prob-
ability of failure Pf. It is important that the 
epistemic uncertainty in the structural and geotechni-
cal modelling must be small (the computational model 
should not diverge much from reality). Otherwise, the 
effect of reliability updating is small and possibly 
unreliable.

2.6. Implementation for Bayesian updating

The posterior failure probabilities described in 
Equation (9) with evidence η1 (Equation 10) and η2 
(Equation 11) is solved with Monte Carlo simulations 
and fragility curves. First, the sampling method Monte 
Carlo is evaluated. To this end, four steps are followed 
according to (Schweckendiek, Vrouwenvelder, and 
Calle 2014). 

(1) Simulation of the event to be predicted: n realis-
ations of each parameter from vector X are gener-
ated according to the respective probability 
distributions. The jth realisation of the random vari-
able i is denoted by Xij. The jth realisation of the 
random vector is denoted by Xj.

(2) Prior probability of failure: The prior probability 
of failure is determined by dividing the number of 
negative realisations of the performance function 
by n; P f ;MC =

􏽐

j
1[g(Xj, q) , 0]/n.

(3) Simulation of the event observed: All epistemic 
variables maintain the same value as in simulation 
step 1: Xη,ij = Xij for all i where the uncertainty is 
to be reduced. For aleatoric variables, new realis-
ations must be made according to their chosen dis-
tribution. For epistemic variables for which an 
average relative difference between observation 
and assessment is expected (but there is still auto-
correlation in time) Xη,ij = Δ +Xij applies, where Δ 
is the estimated difference between observation 
and assessment.

(4) Posterior probability of failure: The posterior 
probability of failure can be calculated using 
Equation (12), given the evidence η1. This formula 
is obtained by substituting Equation (10) into 
Equation (9). The posterior probability of failure 
for the evidence η2 is expressed in Equation (13). 
This formula is obtained by substituting Equation 
(11) into Equation (9). The evidence η2 is incorpor-
ated in the posterior analysis by inequality updating 
instead of equality updating, having the advantage 
of postprocessing W(Xη,qη) without performing 

additional computations.

P f ,p;MC,h1

=

􏽐
j (1[g(Xj, qj) , 0] · 1[g(Xh,j, qh,j) . 0])

􏽐
j (1[g(Xh,j, qh,j) . 0])

(12) 
P f ,p;MC,h2 =
􏽐

j (1[g(Xj, qj) , 0] · 1[g(Xh,j, qh,j) . 0] · 1
[wh,min , W(Xh,j, qh,j) , wh,max])

􏽐
j 1[g(Xh,j, qh,j) . 0] · 1

[wh,min , W(Xh,j, qh,j) , wh,max]

(13) 

Next, the fragility curve method is evaluated. The use 
of fragility curves has two major drawbacks; the first one 
is that deformation evidence cannot be taken into 
account in the assessment because the deformation is 
an output value that is not fully correlated with the 
limit state function. Second, distributions of individual 
random parameters cannot be refined/updated. Conse-
quently, with the FC method, only evidence η1 is con-
sidered. Four steps are followed according to Kanning 
and Schweckendiek (2017), Schweckendiek and Kan-
ning (2016). 

(1) Fragility curve of the prediction: Using the FORM 
method, the fragility curve is constructed with vari-
able distributions from vector X. For different 
deterministic values of q, the a-priori reliability 
index β is determined. Depending on the non-line-
arity of the β-q curve, the number of fragility points 
is determined.

(2) Fragility curve of the observation: Using the 
FORM method, the observation fragility curve is 
constructed with variable distributions from vector 
Xη. For different deterministic values of q, the 
observation reliability index β is determined. The 
fragility curves for the a-priori prediction and 
observation are presented in Figure 4.

(3) Critical surface load qc: The critical surface load is 
determined for the reliability prediction by 
qc = G− 1(u) and for the observation by 
qc,h1 = G− 1

h (u). Here, Gη
−1 is the inverse of the 

interpolated β-q observation curve Gη(q) = β and 
u is the realisation of a standard normal random 
variable

(4) Posterior probability of failure: System failure due 
to an excessive surface load is caused by a surface 
load q that is greater than the critical surface 
load; f = [qc<q]. With n realisations, the prior 
probability of failure can be determined using 
P f ;FC =

􏽐

j
1[G− 1(uj) , qj]/n. The posterior 
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probability of failure can be calculated using 
Equation (14), given the evidence η1.

P f , p;FC,h1 =

􏽐
j (1[G− 1(uj) , qj] · 1[G− 1

h,j (uj) . qh1,j])
􏽐

j (1[G− 1
h,j (uj) . qh1,j])

(14) 

3. Bayesian updating for historic quay walls: a 
case study

In this section, a case study is performed in which the 
reliability of common type of quay wall geometry in 
Amsterdam is predicted for a reference period of 15 
years and compared with reliability standards according 
to NEN8700. The prior probability of failure for the his-
toric quay wall is determined using Monte Carlo and 
fragility curves. The prior probability of failure is then 
updated to a posterior probability using the Bayesian 
approach as discussed in 2.6. In this approach, two 
types of evidence are considered. The first evidence η1 
is the survival of the quay wall over its lifetime given 
an extreme surface load. The second type of evidence 
η2 involves expanding on evidence η1 by incorporating 
deformation measurements. These measurements are 
specifically obtained at the same time as the extreme 
surface load was observed. First, the quay wall model 
and its inputs are discussed.

3.1. Quay wall model

To describe the performance function g(X,q) and displa-
cement W(X,q), an analytical quay wall model is used, 
depicted in Figure 6. The model consists of a framework 
of elastic beams embedded in an elastic foundation and 
is externally loaded by a soil model based on the theory 
of Flamant. The beam model is made up of multiple 
Euler-Bernoulli beams, connected to each other by 
boundary and interface conditions. To model the lateral 
bearing pile-soil-pile interactions in layered sloping soil, 
a method developed by Hemel, Korff, and Peters (2022) 
is used. The analytical quay wall model has been suc-
cessfully validated through experiments found in litera-
ture, as well as experiments conducted on historical 
timber quay walls in Amsterdam (Hemel 2023), which 
makes it an accurate tool for describing failure mechan-
isms of quay walls with regards to lateral pile behaviour, 
considering both structural and geotechnical aspects.

3.2. Quay wall layout and model input

The quay wall layout used in this case study is shown in  
Figure 7. Within this case study, it is assumed that the 

quay wall has a successful past performance during its 
lifetime. The layout is based on common quay wall geo-
metries in the city centre of Amsterdam, literature and 
previous research (Hemel 2023; Korff, Hemel, and 
Peters 2022; Spannenburg 2020). The quay wall consists 
of a gravity wall 0.8 m wide and 2.0 m high located on a 
floor with length 2.5 m. The floor is supported by 3 piles 
with diameter D, modulus of elasticity E[MPa] and 
modulus of rupture MOR. The piles have their toe 
into the first sand layer, 13.5 m below surface level. 
The piles have a spacing of 1 m both parallel and per-
pendicular to the canal. At 0.3 m behind the 3rd pile 
row a soil-retaining screen with a length of 4 m is pre-
sent. The water level is 0.7 m below surface level, similar 
to the groundwater level. The fill of the quay consists of 
a 2 m thick sand layer, ending at floor level. Below the 
floor lies a peat layer with a thickness of 3 m. Below 
that a thick clay layer is present that goes up to the 
sand layer. The quay wall is loaded at a distance 2.5 m 
from the canal by surface load q which has a width of 
2 m.

For the reliability analysis, stochastic distributions 
are assigned to the most dominant parameters. For 
the timber structure, these are the diameter, elastic 
modulus and MOR of the piles. For the geotechnical 
parameters of pile embedded layers, the most dominant 
ones are the cohesion c, friction angle w, effective weight 
γ and stiffness k. Additionally, the friction angle and 
effective weight of the active soil volume behind the 
quay are considered dominant due to their effect on 
the load distribution. Table 1 shows the prior expected 
stochastically distributed parameters with their associ-
ated probabilities of occurrence during the remaining 
life. The parameters are assumed to be uncorrelated 
and epistemic, which is a simplification of the problem. 
The choice of dominant parameters is not fixed and is a 
choice of the designer. In this study, stochastic variables 
are modelled with normal distributions. While lognor-
mal distributions are often preferred for strictly positive 
parameters like self-weight, cohesion, or friction angle 
(Kool et al. 2021), this study intentionally avoids assign-
ing skewed uncertainties to parameters. It is emphasised 
that the samples drawn from the normal distribution 
remain positive at all times. Skewness in parameter 
uncertainties, if any, will be determined by the posterior 
parameter update, with examples provided in section 
3.5.

For the model uncertainties uM and uN lognormal 
distributions are adapted according to the Probabilis-
tic Model Code (JCSS 2000) for load effect calculation 
for moments and axial forces in frames. Quays are 
line-like structures, where the spatial variability of 
soil composition is important. This study excludes 
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these special variations. Prior research (Choosrithong 
and Korff 2023) examined the spatial variability of a 
quay in Amsterdam, revealing variations in fill thick-
ness and shallow peat and clay layers along a 100 m 
stretch. Probabilistic assessments of dikes in the Neth-
erlands (Kool et al. 2021; Pol et al. 2021) incorporated 
spatial variations, offering a methodology applicable to 
quay walls.

The reliability prediction is performed for a surface 
load of q = 7 kN/m2. This is the maximal allowed traffic 
load that is permitted in the remaining service life of 
the quay, based on a 15 ton truck. This case study thus 
assumes that over the next 15 years, there will be a regular 
occurrence of critical loads of 7 kN/m2 with certainty. The 
surface load q is stochastically distributed with a coeffi-
cient of variation (CV) of 0.2 since there is an uncertainty 
in the force distribution from the truck wheels towards 
the soil. This distribution uncertainty is autocorrelated 
in time. For instance, if the surface load at the observation 
is 10% larger than the mean, it can be expected that the 
surface load will also be 10% larger than the mean at 
the end-of-life period. At the observation (now), the 
diameter is measured 0.245 m on average and expected 

to degrade to 0.24 m at the end of the 15-year reference 
period. The diameter has a CV = 0.1 based on field exper-
iments, dive reports and data studies. The MOR is taken 
22 N/mm2 with CV =  0.1 and the modulus of elasticity is 
taken 9000 MPa with CV = 0.2. The (NEN-EN9997-1  
2012) is used to estimate the variation coefficients of the 
geotechnical parameters. Cohesive soil layers are mod-
elled as drained due to the long time scale.

3.3. Prior probability of failure

The prior probability of failure is made for a 15 year ser-
vice life time. As such, a degraded pile diameter of 0.24 
m, a canal bed deepening of 0.2 m and a 7 kN/m2 sur-
face load are used in the prediction. A summary of the 
prior probability of failure analysis for the Monte 
Carlo and Fragility curves methods is given in Table 
2. The probability of failure after 15 years service life, 
obtained with MC is Pf;MC = 6.65·10−2 and with FC is 
Pf,;FC = 6.02·10−2. The joint probability density function 
of the quay wall system is presented in Figure 8, which 
includes both failing and surviving samples from the 
Monte Carlo simulations. The sensitivity factors, 

Figure 6. Schematic of analytical quay wall model in which structural members are described by beams on elastic foundations, exter-
nally loaded by an elastic soil model.
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obtained with FORM are presented in Figure 9. It can be 
seen that the uncertainty in the pile diameter has the 
biggest impact on the system reliability with a sensitivity 
factor of ɑ2 =  0.668. The pile diameter significantly 
impacts bending stress (power-3), pile flexural rigidity 
(power-4) and ultimate bearing soil pressure, creating 
an exponential dependency on the limit state function. 

Meanwhile, the system’s resistance (MOR) lacks this 
exponential factor, resulting in a much smaller influence 
factor. Other dominant parameters (ɑ2> 0.04), are the 
cohesion of the peat cp (ɑ2 =  0.125), the surface load q 
(ɑ2 =  0.067), effective weight of the fill γ (ɑ2 =  0.048) 
and the friction angle of the peat wp (ɑ2 =  0.041).

For the Monte Carlo simulations, 10,000 samples 
were used for both the prior and posterior calculations. 
In Figure 10, it is substantiated that with the chosen 
sample size, the model converges strongly towards the 
FC outcomes for both prior and posterior simulations, 
indicating a stable and accurate model prediction. For 
the FC approach, 6 fragility points are computed with 
the FORM method, requiring only 5% of the number 
of MC simulations. Another advantage of FC compared 
to MC simulations is the ability to calculate the prior 
probability of failure for any stochastic distribution of 
the surface load q after constructing the fragility 
curve, without requiring additional computationally 
expensive model simulations.

Based on NEN8700, the Dutch regulations for exist-
ing structures, three consequence classes are applicable 
to structures with a reference period of 15 years: CC3, 
CC2 and CC1b. These consequence classes correspond 
to reliability indexes of 3.3, 2.5 and 1.8 respectively. 
However, with a predicted reliability of approximately 
1.5, the quay wall in this case study does not meet any 
of the requirements for the three consequence classes. 
Consequently, this quay wall fails to meet the necessary 
safety requirements.

3.4. Posterior probability of failure – extreme 
load survival

In this section, the prior probability of failure is updated 
with evidence η1, which is the survival of the quay wall 
over its lifetime given an extreme surface load qη. 
Between the moment of observation and the time for 
which the reliability prediction is made, changes to the 
quay wall have taken place. As discussed in section 2.5, 
three time effects are taken into account. Firstly, the pile 
diameter at the observation is 0.245 m, which degrades 
to 0.24 m at the end-of-life period. Secondly, the canal 
bed is 0.2 m higher at the observation than at the end 
of the 15 year reference period as a consequence of 
bow thrusters and dredging maintenance. Lastly, for 
the reliability prediction, the surface load is taken as q  

Figure 7. Schematic cross section of quay wall layout. Stochastic 
variables are indicated. Lateral deflection of the quay is 
described by w.

Table 1. Stochastic distributed input parameters and their 
distributions.
Variable Unit Type Mean CoV

q kN/m2 Normal 7 0.2
D Mm Normal 240 0.1
MOR N/mm2 Normal 22 0.1
E MPa Normal 9000 0.2
wp deg. Normal 15 0.1
cp kN/m2 Normal 6 0.2
wf deg. Normal 30 0.1
wc deg. Normal 28 0.1
cc kN/m2 Normal 4 0.2
kp kN/m3 Normal 10,0030 0.2
kc kN/m3 Normal 4300 0.2
γv kN/m3 Normal 2 0.05
γz kN/m3 Normal 8(sat)18(dry) 0.05
θM – Lognormal 1 0.1
θN – Lognormal 1 0.05

Table 2. Prior probability of failures for historic quay wall 
example.
Method Pf β Samples Simulation time (single pc)

MC 6.65·10−2 1.51 10,000 ∼ 3.5 d
FC 6.02·10−2 1.54 318 ∼ 4.8 h
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= 7 kN/m2, while during the observation, the surface 
load is qη = 10 kN/m2. A summary of the posterior prob-
abilities of failure analysis for the Monte Carlo and Fra-
gility curves methods is given in Table 3. For reference, 

the prior probabilities of failure are also provided. The 
probability of failure is reduced by a factor 3.

First, the effect of Bayesian updating is demonstrated 
by the Monte Carlo sampling method. In Figure 11, 

Figure 8. Joint PDF of quay wall system indicating the failure and survival domain.

Figure 9. Sensitivity factors ɑ2 obtained with FORM computation.
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sampling calculations have been made using random 
vector Xη and qη as model inputs. It is not possible to 
have the realisations (in grey) where the performance 
function g(Xh, qh) is negative, as there is evidence that 
the quay wall has not failed in the observation. The 
dark blue and light blue dots are the remaining realis-
ations where the quay wall does not fail. The remaining 

realisations g(Xh, qh) . 0 are used in the reliability pre-
diction which is shown in Figure 12. In this figure, the 
blue dots are the survival realisations while the red 
dots are the failing realisations. The light blue points 
in Figure 11 indicate realisations that survive in the 
observation but fail in the reliability prediction. Light 
blue realisations in the observation fail in the prediction 
due to time-related effects considered, which weaken 
the quay wall over time. The decrease in pile diameter 
increases bending moments and reduces the moment 
of inertia, leading to higher bending stresses in the tim-
ber piles. Additionally, the canal bed deepening reduces 

Figure 10. Reliability for a-priori and posterior MC realisation as 
function of the sample size compared with FC realisation.

Table 3. Prior and posterior probabilities of failure; given 
evidence η1.
Method Pf β Pf,p;η1 βp;η1

MC 6.65·10−2 1.51 2.31·10−2 1.99
FC 6.02·10−2 1.54 1.96·10−2 2.06

Figure 11. Monte Carlo sampling of observation with extreme 
surface load evidence.

Figure 12. Posterior Monte Carlo sampling of reliability 
prediction.

Figure 13. Fragility curves obtained with FORM. Fragility curve 
at observation in black and at prediction in red.
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lateral support, further increasing bending moments 
and stresses in the timber.

Second, the effect of Bayesian updating is demon-
strated using the fragility curve method. The fragility 
curves for the prediction and observation are presented 
in Figure 13. The fragility curve for the observation has 
on average a higher reliability which is due to the elev-
ated canal bed and a larger pile diameter. Figure 14 dis-
plays multiple critical surface loads. The critical surface 
load for the a-priori prediction, denoted as qc, rep-
resents the scenario without any evidence at the end 
of the service life time. On the other hand, the critical 
surface loads at the moment of an observed extreme sur-
face load, qη, is denoted as qc,η1. Both qc and qc,η1 are uti-
lised in Equation 14 to calculate the posterior 
probability of failure, Pf,p;FC,η1. The resulting posterior 
probabilities of failure are presented in Table 4. It is 
observed that with larger extreme loads observed in 
the past, the left tail of the critical surface load qc,η1 at 
the time of observation shifts to the right, ultimately 
increasing the reliability of the structure in the predic-
tion for a reference period of 15 years. Even without 
an observed surface load (qη = 0 kN/m2), the reliability 
of the structure increases. This is because the pile foun-
dation of the quay is laterally loaded by the active earth 
pressure behind the quay, even in the absence of any 
surface load. Quay walls can fail without the presence 
of top loads, as observed in the case of Grimburgwal 

(Korff, Hemel, and Esposito 2021). Therefore, evidence 
of “survival” without any observed top load is already 
valuable.

3.5. Posterior probability of failure – extreme 
load survival with deformation measurements

In this section, the prior probability of failure is updated 
using evidence η2. This evidence pertains to the quay’s 
successful past performance given an extreme observed 
surface load of 10 kN/m2, while simultaneously consid-
ering the availability of quay wall deformation measure-
ments taken at the same time of the observation. The 
deformation measurements, which capture a range of 
displacements along the quay wall and span the interval 
[wη,min, wη,max]. In this case study, it is assumed that all 
displacements of the quay wall are caused solely by the 
deflection of the pile foundation below the quay. Defor-
mations resulting from, for instance, the sliding of the 
gravity wall or the tilting of the gravity wall are not con-
sidered. Time effects between observation and predic-
tion are included as discussed in section 2.5.

The interval [wη,min = 0.02 m, wη,max = 0.08 m] is 
considered at the time of the observation. The Monte 
Carlo sampling at observation is presented in Figure 
15. The horizontal axis contains the performance func-
tion g(Xh, qh), shown in Equation (3), and the vertical 
axis the displacement W(Xh, qh). The relationship 
between displacement and the performance function 
shows a negative correlation, as larger deflections are 
associated with higher bending stresses. Consequently, 
quay walls with greater deflections are considered 
weaker. However, it’s important to note that displace-
ments and deflections are not fully correlated to the 
bending stresses. This lack of full correlation is the 
reason why the FC method cannot incorporate defor-
mation evidence. The grey realisations in Figure 15 rep-
resent realisations where the performance function is 
negative (indicating failure) and the displacement 
observation function is not fulfilled. The dark blue 
and light blue dots are the remaining realisations 
where the quay wall does not fail and deflects within 
the range of measured deflections. The remaining realis-
ations are used in the prediction which is shown in  
Figure 16. In this figure, the blue dots are the survival 
realisations while the red dots are the failing realisations. 
Observing the “survived realisations” (in Figure 15) 

Figure 14. Critical surface load PDF. Dashed line represents prior 
analysis without evidence. Coloured lines represent critical sur-
face loads with surface loads evidence.

Table 4. Posterior probability of failures for multiple observed extreme load survivals obtained with fragility curve method.
qη [kN/m2] 0 5 7 10 15 Prediction (no evidence η1)

Pf,p;FC,η1 [–] 5.56·10−2 4.54·10−2 3.73·10−2 1.96·10−2 0 Pf;FC = 6.02·10−2

βp;FC,η1 [–] 1.58 1.69 1.78 2.06 ∞ βFC = 1.54
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represented by the light blue and blue dots, it becomes 
apparent that the deflection and bending stress values 
increase when utilised in the prediction (in Figure 16). 
This increase is a result of the time effects that take 
place over the remaining lifespan of the quay wall, ulti-
mately leading to failure for certain realisations. The 
posterior probability is updated according to Equation 
(14) from Pf:MC = 6.65·10−2 to Pf,p;MC,η2  = 4.20·10−3 

which is an increase in reliability from βMC = 1.51 to 
βp;MC,η2 = 2.63.

Observations do not necessarily lead to a reduction 
of the a-priori probability of failure. To demonstrate 

the effect of observed deformations on the posterior 
failure probability, the reliability index was set against 
the observed mean deformation wη[m], depicted in  
Figure 17. The mean deformation is defined by wη =  
(wη,min+wη,max)/2. The difference between wη,min and 
wη,max is kept constant with 0.06 m. For comparison, 
the a-priori reliability index is plotted. It can be seen 
that an increase in observed deformations results in a 
decrease of the reliability of the quay wall. With 0.1 m 
of displacement, the posterior reliability becomes smal-
ler than the prior reliability. The maximal reliability 
which can be obtained with 104 samples is Φ−1(10−4)  
= 3.72, resulting in no reliability estimate for deflections 

Figure 15. Monte Carlo sampling of observation with extreme 
surface load evidence in combination with deformation 
measurements.

Figure 16. Posterior Monte Carlo sampling of reliability 
prediction.

Figure 17. Posterior reliability index as function of displacement 
evidence for q = 7 kN/m2 and qη = 10 kN/m2.

Figure 18. Prior and posterior MOR and σb. For wη,min = 0.00 m 
and wη,max = 0.06 m. Surface loads are q = 7 kN/m2 and qη = 10 
kN/m2.
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smaller than 0.03 m. Note the β-w plot in Figure 17 is 
influenced by surface load q and also by the observed 
surface load qη.

A more general way to present the updated system is 
in terms of modulus of rupture (MOR) and model com-
puted bending stresses (σb) which are the two main par-
ameters in the performance function. For displacement 
range [wη,min = 0.00 m, wη,max = 0.06 m], the prior MOR 
and σb are visualised in Figure 18. It can be seen that 
Bayesian updating for quay walls primarily updates 
the model computed bending stress of the system, as 
97% of the influence factors affect this parameter. The 
modulus of rupture of piles is hardly updated, as its 
influence factor is less than 3%. The posterior esti-
mation shows a considerable reduction in the right 
tail of the bending stress compared to the prior 

estimation. This reduction leads to higher posterior sys-
tem reliability. Figure 19 shows the impact of Bayesian 
updating for the most dominant parameters, namely 
the pile diameter D, cohesion of the peat cp, the surface 
load q as well as the effective weight of the fill γ for dis-
placement range [wη,min = 0.00 m, wη,max = 0.06 m]. Par-
ameter updating has the most significant impact the 
diameter and cohesion of the peat layer (together 80% 
of the influence factors). When evidenced deformations 
are small, the pile diameter tends to shift towards larger 
values, and the cohesion, which provides support 
pressure to the piles, shifts towards higher values during 
the postdiction. The reduction of the right tail in the a- 
priori computed bending stress shown in Figure 18 is 
primarily attributable to the updating of the pile diam-
eter and the cohesion of the peat layer.

Figure 19. Prior and posterior stochastic distributions of individual parameters – evidence wη,min = 0.00 m and wη,max = 0.06 
m. Surface loads are q = 7 kN/m2 and qη = 10 kN/m2. Top left is the diameter D, top right is the surface load q, bottom left is soil 
weight of the sand fill and bottom right is the cohesion of the peat layer cp.
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3.6. Interpretation of case studies

Observations from the past can have a significant 
impact on the posterior reliability of historic quay 
walls. A summary of the various simulations and 
methods can be found in Table 5. Evidence of extreme 
observed surface loads during a test load (e.g. q << qη) 
without failing, can increase the reliability of quay 
walls by multiple orders of magnitude. The same is 
true for deformation evidence, in which the reliability 
index can increase to over 3.7 in case of small deflections 
observed in the past (e.g. <0.04 m). However, evidence 
of large deformations (e.g. >0.1 m) can be proof that a 
quay wall has a high risk to fail. The case study pre-
sented in this paper was conducted for a reference 
period of 15 years. To interpret the values listed in 
Table 5, the guidelines specified in NEN8700, known 
as “Veiligheidsfilosofie bestaande bouw” in Dutch, are 
employed. For structures with a reference period of 15 
years, three consequence classes are defined: CC3, 
CC2 and CC1b, each corresponding to specific 
reliability indexes of 3.3, 2.5 and 1.8, respectively. The 
case studies indicate that, depending on the evidence, 
the posterior reliability can fall within any of the 3 con-
sequence classes, if the a-priori prediction suggests 
insufficient safety.

4. Discussion

First, the limitations of the used quay wall model, and its 
effect on the results are discussed. The applied analytical 
quay wall model does not take into account loading his-
tory. Repetitive loadings from the past causes (plastic) 
deformations in the long term. Combined with time 
effects such as soil creep and timber relaxation, model 
deformations but also bending stresses may be inaccur-
ate, but are believed to be conservative. Furthermore, 
the modulus of rupture and the modules of elasticity 
of the timber are time- and load dependent (van de Kui-
len et al. 2021). This effect is not included, possibly over-
estimating the posterior reliability. The dependence of 
timber strength on its loading history is one of the 

greatest challenges for the intended application. This 
aspect should be further considered by timber experts. 
To take into account these kinds of effects, more com-
plex software is needed. However, increasing the com-
plexity of models results in greater computational 
times, making sampling methods less attractive. It is 
necessary to find a balance between the computational 
complexity and the computational speed. To overcome 
this challenge, it is advised to perform deterministic 
time-dependent computations using FEM software. 
These computations should include the effects men-
tioned earlier and assess their impact on the overall 
force distribution within the foundation. By calibrating 
the analytical model based on these computations, it can 
still be used in the probabilistic Bayesian analysis con-
ducted in this paper. If the use of FEM models is still 
desired, it is advised to employ the fragility curve 
approach as it significantly reduces computational 
effort (more than 18 times in this study) compared to 
Monte Carlo simulations.

Second, a discussion on Bayesian updating on lateral 
failing quay walls is provided. In this analysis a simplifi-
cation has been made; the maximum deformation of the 
quay wall is only due to the greatest load the quay has 
experienced during its lifetime. Furthermore, extreme 
events from the past may have weakened the quay 
wall structure. As a result, there will no longer be a per-
fect correlation between the moment of observation and 
the prediction. Moreover, assuming stochastic par-
ameters to be uncorrelated may lead to an overestima-
tion of the system’s reliability. For instance, the 
modulus of rupture and modulus of elasticity are 
strongly correlated (Pagella et al. 2022). Other examples 
of correlations between stochastically distributed par-
ameters include the densities of soils and friction angles, 
as well as the stiffness of the soil and cohesion and fric-
tion angle.

Third, a discussion on the applied probabilistic 
methods is given. In the Monte Carlo analysis, 10,000 
samples were used to demonstrate the potential of 
reliability updating, which is a bit low. For further 
analysis, it is advised to perform more computations 
in order to get a higher accuracy. Promising methods 
to drastically reduce computational time are importance 
sampling or surrogate modelling which is roughly simi-
lar to the computational time needed for FORM.

Lastly, the practical implementation and applicability 
of Bayesian updating for quay walls in the city centre of 
Amsterdam are discussed. The quay configuration, as 
well as the soil and structural parameters used in this 
study, are highly representative of the quay walls 
found in the city centre of Amsterdam. Notably, 
examples such as Grimburgwal and Herengracht 

Table 5. Summary on prior and posterior reliability index for 
various observations.
Method Observation evidence Prior β Posterior β−

p

MC qη = 10 kN/m2 1.51 1.99
MC qη = 10 kN/m2 & 0 m <wη< 0.04 m 1.51 >3.72–3.2
MC qη = 10 kN/m2 & 0.04 m <wη< 0.10 m 1.51 3.2–1.47
MC qη = 10 kN/m2 & 0.10 m <wη< 0.20 m 1.51 1.47–0.44
FC qη = 0 kN/m2 1.54 1.58
FC qη = 5 kN/m2 1.54 1.69
FC qη = 7 kN/m2 1.54 1.78
FC qη = 10 kN/m2 1.54 2.06
FC qη = 15 kN/m2 1.54 ∞
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(Spannenburg 2020) feature quay walls with three piles, 
although the exact length in metres this type of quay is 
not known. However, Amsterdam has many quay walls 
which all have a unique configuration. Variation in the 
number of piles, the retaining height, the location of the 
soil retaining screen, the presence of trees and the traffic 
intensity may be present. Therefore, it cannot be said in 
advance whether the impact of proven strength will be 
similar to other quay wall configurations. Further 
exploratory studies should be undertaken to demon-
strate the impact of Bayesian updating on different 
configurations of quay walls, utilising similar obser-
vations. Furthermore, only two types of evidence are 
included in the posterior assessment of lateral failing 
quays. However, evidence can be collected through var-
ious monitoring methods, such as measuring pile 
rotations, surface settlements, or lateral soil deflections 
behind the quay.

A more general aspect to consider is that the method 
in this study includes only one failure mechanism. The 
failure of a quay wall is usually a combination of differ-
ent failure mechanisms, as the study of the collapsed 
Grimburgwal (Korff, Hemel, and Esposito 2021) 
showed. By taking into account multiple failure mech-
anisms in the analysis, it can be better clarified what 
the impact of proven strength is on the posterior 
reliability. It is important to note that different failure 
mechanisms may require different types of evidence. 
For instance, to assess the overturning of the masonry 
wall, deflection and rotation measurements can be uti-
lised. Similarly, settlement data from the masonry wall 
or the piles themselves can be used to evaluate the ver-
tical settlement of the entire pile foundation.

5. Conclusion

This paper describes how evidence of survived loading 
situations and related deformations that occurred in 
the past can be quantitatively taken into account in 
the reliability assessment of historical quay walls. The 
application of the available theory to a quay wall on lat-
erally loaded piles is, as far as is known, done for the first 
time and the results show that this is feasible and has a 
lot of potential. Two methods, Monte Carlo sampling 
and fragility curves, were used to implement the theory 
of proven strength. With MC individual parameters, 
individual parameters such as pile diameter and cohe-
sion of soils can be updated, which is not possible 
with fragility curves. However, the MC method is com-
putationally expensive compared to the fragility curve 
method. Once a fragility curve has been constructed, 
it is possible to determine failure probabilities for any 

stochastic distributed load without requiring additional 
computationally expensive model simulations.

A case study on a quay wall was performed, demon-
strating the potential of Bayesian updating. In this case 
study, an a-priori probability of failure was predicted 
for a reference period of 15 years. Subsequently, the 
probability of failure was updated by considering two 
types of observational evidence. The first type involved 
evidence derived from an extreme survived load, 
while the second type incorporated deformation 
measurements obtained during the extreme load 
event. Based on the findings, the following conclusions 
can be drawn: 

. Depending on the evidence, the posterior reliability 
can fall within any of the three consequence classes 
(CC3, CC2 and CC1b outlined in NEN8700), if the 
a-priori prediction suggests insufficient safety and 
strength. Updating can thus have a significant effect 
on the reliability estimate.

. The greater the observed extreme surface load com-
pared to the surface load used in the prediction, the 
greater the difference between prior and posterior 
reliability of the quay wall.

. If there is a large difference between the structural 
condition of the quay wall at the time of observation 
and the time of the reliability prediction, the effect of 
the observations on the posterior reliability decreases. 
Large differences between observation and prediction 
can be caused by, for example, pile degradation, dee-
pening of the canal or a reduction of the timber 
strength due to time effects.

. Deformation measurements at the time of obser-
vation have a strong influence on the updating of a 
prior determined failure probability. Small defor-
mations lead to a small failure probability while 
large deformations lead to a large failure probability. 
The deformation of the pile foundation is strongly 
correlated with the bending stresses within the foun-
dation itself. It is anticipated that larger deformations 
correspond to higher bending stresses, and vice versa.

. Bayesian updating has the greatest impact on par-
ameters with high influence factors. In the case 
study, the pile diameter and the cohesion of the shal-
low peat layer showed the largest differences between 
prior and posterior parameter uncertainties.

The following recommendations are given: 

. In order to test the applicability and robustness of 
Bayesian updating on quay walls, it is important to 
consider different case studies. Variations can be 
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made in the main characteristics of the quay wall for 
each case.

. Further research is needed in methods to include the 
load history of quay walls. Repetitive loading, soil- 
and timber creep, and strength reduction over time 
are effects that are of paramount importance to be 
included in the reliability prediction of historical 
quay walls.

. By performing non-destructive tests in the city centre 
(operational load testing), additional evidence can be 
obtained about quay walls. For example, a truck can 
be parked as a static load for a certain period of time 
on a quay wall while the deformations are measured 
at the same time. This methodology must be carefully 
studied to determine the extent to which the load test 
has caused permanent damage to the quay wall. In 
the case of a load test, it is necessary to make an esti-
mation in advance of the probability of damage/fail-
ure and corresponding deformations, both of which 
should be sufficiently low.

. To make more reliable failure probability analyses, it 
is important to conduct further research into the cor-
relation between randomly distributed parameters.

. Uncertainties concerning parameters can be reduced 
by conducting on-site inspections and investigations. 
It has been revealed that pile diameter is the most 
dominant parameter. By conducting further research 
into the pile diameter at the location to be assessed, a 
large part of the uncertainty can be eliminated.

. It is recommended to systematically apply the 
method to any structures whose exact geometry 
and loading history are known. Ideally, a simple 
model similar to the one used in this study should 
be used, but calibrated with finite element models 
and/or with a loading test.

. The principle of Bayesian updating can significantly 
influence the failure probability related to various 
failure mechanisms in quay walls. It is recommended 
to explore the potential of Bayesian updating for 
assessing other failure mechanisms as well.

Notes

1. The indicator function is represented by 1[]. This 
means that if the criterion inside the brackets is met, 
the output of 1[] is equal to 1; if not, it is equal to 0.

2. FORM (First Order Reliability Method) is seen as a 
good alternative to the “brute force” Monte Carlo 
method (Bai 2003). The method is an accurate approxi-
mation that requires significantly fewer calculations to 
determine the failure probability. FORM approximates 
the failure probability by linearising the performance 
function g(X) with the help of Taylor series at the 

design point. With the FORM method, the sensitivity 
factor ɑi can be determined for each variable.

3. In the PDF, this value is not centered well
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